WorldWideScience

Sample records for low-frequency waves observed

  1. Observation of low-frequency acoustic surface waves in the nocturnal boundary layer.

    Science.gov (United States)

    Talmadge, Carrick L; Waxler, Roger; Di, Xiao; Gilbert, Kenneth E; Kulichkov, Sergey

    2008-10-01

    A natural terrain surface, because of its porosity, can support an acoustic surface wave that is a mechanical analog of the familiar vertically polarized surface wave in AM radio transmission. At frequencies of several hundred hertz, the acoustic surface wave is attenuated over distances of a few hundred meters. At lower frequencies (e.g., below approximately 200 Hz) the attenuation is much less, allowing surface waves to propagate thousands of meters. At night, a low-frequency surface wave is generally present at long ranges even when downward refraction is weak. Thus, surface waves represent a ubiquitous nighttime transmission mode that exists even when other transmission modes are weak or absent. Data from recent nighttime field experiments and theoretical calculations are presented, demonstrating the persistence of the surface wave under different meteorological conditions. The low-frequency surface wave described here is the "quasiharmonical" tail observed previously in nighttime measurements but not identified by S. Kulichkov and his colleagues (Chunchuzov, I. P. et al. 1990. "On acoustical impulse propagation in a moving inhomogeneous atmospheric layer," J. Acoust. Soc. Am. 88, 455-461).

  2. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    Science.gov (United States)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  3. MAVEN Observation of an Obliquely Propagating Low-Frequency Wave Upstream of Mars

    Science.gov (United States)

    Ruhunusiri, Suranga; Halekas, J. S.; Connerney, J. E. P.; Espley, J. R.; McFadden, J. P.; Mazelle, C.; Brain, D.; Collinson, G.; Harada, Y.; Larson, D. E.; hide

    2016-01-01

    We report Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations of a large amplitude low-frequency plasma wave that propagated oblique to the ambient magnetic field upstream of Mars along with a non-solar-wind plasma component that had a flow velocity perpendicular to the magnetic field. We consider nine possibilities for this wave that include various combinations of its propagation direction, polarization in the solar wind frame, and ion source responsible for its generation. Using the observed wave parameters and the measured plasma parameters as constraints, we uniquely identify the wave by systematically discarding these possibilities. We determine that the wave is a right-hand polarized wave that propagated upstream in the solar wind frame. We find two possibilities for the ion source that can be responsible for this wave generation. They are either newly born pickup protons or reflected solar wind protons from the bow shock.We determine that the observed non-solar-wind component is not responsible for the wave generation, and it is likely that the non-solar-wind component was merely perturbed by the passage of the wave.

  4. Observation of frequency cutoff for self-excited dust acoustic waves

    Science.gov (United States)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  5. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  6. Low-frequency waves in magnetized dusty plasmas revisited

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    The general dispersion relation of any wave is examined for low-frequency waves in a homogeneous dusty plasma in the presence of an external magnetic field. The low-frequency parallel electromagnetic wave propagates as a dust cyclotron wave or a whistler in the frequency range below the ion cyclotron frequency. In the same frequency regime, the transverse electromagnetic magnetosonic wave is modified with a cutoff frequency at the dust-ion lower-hybrid frequency, which reduces to the usual magnetosonic wave in absence of the dust. Electrostatic dust-lower- hybrid mode is also recovered propagating nearly perpendicular to the magnetic field with finite ion temperature and cold dust particles which for strong ion-Larmor radius effect reduces to the usual dust-acoustic wave driven by the ion pressure. (author)

  7. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

    Science.gov (United States)

    Cheriton, Olivia; Storlazzi, Curt; Rosenberger, Kurt

    2016-01-01

    Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

  8. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

    Science.gov (United States)

    Cheriton, Olivia M.; Storlazzi, Curt D.; Rosenberger, Kurt J.

    2016-05-01

    Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

  9. A combined wave distribution function and stability analysis of Viking particle and low-frequency wave data

    International Nuclear Information System (INIS)

    Oscarsson, T.E.; Roennmark, K.G.

    1990-01-01

    In this paper the authors present an investigation of low-frequency waves observed on auroral field lines below the acceleration region by the Swedish satellite Viking. The measured frequency spectra are peaked at half the local proton gyrofrequency, and the waves are observed in close connection with precipitating electrons. In order to obtain information about the distribution of wave energy in wave vector space, they reconstruct the wave distribution function (WDF) from observed spectral densities. They use a new scheme that allows them to reconstruct simultaneously the WDF over a broad frequency band. The method also makes it possible to take into account available particle observations as well as Doppler shifts caused by the relative motion between the plasma and the satellite. The distribution of energy in wave vector space suggested by the reconstructed WDF is found to be consistent with what is expected from a plasma instability driven by the observed precipitating electrons. Furthermore, by using UV images obtained on Viking, they demonstrate that the wave propagation directions indicated by the reconstructed WDFs are consistent with a simple model of the presumed wave source in the electron precipitation region

  10. Observations of Low-Frequency Magnetic Waves due to Newborn Interstellar Pickup Ions Using ACE, Ulysses, and Voyager Data

    Science.gov (United States)

    Smith, Charles W.; Aggarwal, Poornima; Argall, Matthew R.; Burlaga, Leonard F.; Bzowski, Maciej; Cannon, Bradford E.; Gary, S. Peter; Fisher, Meghan K.; Gilbert, Jason A.; Hollick, Sophia J.; Isenberg, Philip A.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.; Pine, Zackary B.; Richardson, John D.; Schwadron, Nathan A.; Skoug, Ruth M.; Sokół, Justyna M.; Taylor, David K.; Vasquez, Bernard J.

    2017-09-01

    Wave excitation by newborn interstellar pickup ions (PUIs) plays a significant role in theories that attempt to describe IBEX and Voyager observations in the solar wind and heliosheath. The same dynamic processes can be far-reaching and extend into the inner heliosphere to at least 1AU and likely to smaller heliocentric distances. While the high-resolution magnetic field measurements required to study these waves are not yet available in the heliosheath, we have studied a range of available observations and found evidence of waves due to interstellar PUIs using ACE (1998-2015 at 1 AU), Ulysses (1996-2006 at 2 to 5 AU, high and low latitudes) and Voyager (1978-1979 and 2 to 6 AU) observations. Efforts to extend the Voyager observations to 35 AU are ongoing. We have examined these data sets and report on observations of low-frequency waves that result from newborn interstellar pickup H+ and He+ ions. Although not as common as theory originally predicted, we presently have identified 524 independent occurrences. Our conclusion from studying these waves is that they are seen only when the ambient turbulence is sufficiently weak. The instability that generates these waves requires a slow accumulation of wave energy over several to tens of hours to achieve observable wave amplitudes. In regions where the turbulence is moderate to strong, the turbulence absorbs the wave energy before it can reach observable levels and transports the energy to the dissipation scales where it heats the background thermal particles. Only intervals with the weakest turbulence will permit energy accumulation over this time scale. These conditions are most often, but not exclusively, achieved in solar wind rarefaction regions.

  11. Radiative cooling and broadband phenomenon in low-frequency waves

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial -plane and semi-geostrophic condition. The results show that radiative cooling does not, exclusively, provide the damping effects on the development of low-frequency waves. Under the delicate radiative-convective equilibrium, radiative effects will alter the phase speed and wave period, and bring about the broadband of phase velocity and wave period by adjusting the vertical profiles of diabatic heating. when the intensity of diabatic heating is moderate and appropriate, it is conductive to the development and sustaining of the low-frequency waves and their broadband phenomena, not the larger, the better. The radiative cooling cannot be neglected in order to reach the moderate and appropriate intensity of diabatic heating.

  12. Low-frequency electrostatic waves in the ionospheric E-region: a comparison of rocket observations and numerical simulations

    Directory of Open Access Journals (Sweden)

    L. Dyrud

    2006-11-01

    Full Text Available Low frequency electrostatic waves in the lower parts of the ionosphere are studied by a comparison of observations by instrumented rockets and of results from numerical simulations. Particular attention is given to the spectral properties of the waves. On the basis of a good agreement between the observations and the simulations, it can be argued that the most important nonlinear dynamics can be accounted for in a 2-D numerical model, referring to a plane perpendicular to a locally homogeneous magnetic field. It does not seem necessary to take into account turbulent fluctuations or motions in the neutral gas component. The numerical simulations explain the observed strongly intermittent nature of the fluctuations: secondary instabilities develop on the large scale gradients of the largest amplitude waves, and the small scale dynamics is strongly influenced by these secondary instabilities. We compare potential variations obtained at a single position in the numerical simulations with two point potential-difference signals, where the latter is the adequate representation for the data obtained by instrumented rockets. We can demonstrate a significant reduction in the amount of information concerning the plasma turbulence when the latter signal is used for analysis. In particular we show that the bicoherence estimate is strongly affected. The conclusions have implications for studies of low frequency ionospheric fluctuations in the E and F regions by instrumented rockets, and also for other methods relying on difference measurements, using two probes with large separation. The analysis also resolves a long standing controversy concerning the supersonic phase velocities of these cross-field instabilities being observed in laboratory experiments.

  13. Low-frequency fluid waves in fractures and pipes

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2010-09-01

    Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

  14. Low Frequency Waves Detected in a Large Wave Flume under Irregular Waves with Different Grouping Factor and Combination of Regular Waves

    Directory of Open Access Journals (Sweden)

    Luigia Riefolo

    2018-02-01

    Full Text Available This paper describes a set of experiments undertaken at Universitat Politècnica de Catalunya in the large wave flume of the Maritime Engineering Laboratory. The purpose of this study is to highlight the effects of wave grouping and long-wave short-wave combinations regimes on low frequency generations. An eigen-value decomposition has been performed to discriminate low frequencies. In particular, measured eigen modes, determined through the spectral analysis, have been compared with calculated modes by means of eigen analysis. The low frequencies detection appears to confirm the dependence on groupiness of the modal amplitudes generated in the wave flume. Some evidence of the influence of low frequency waves on runup and transport patterns are shown. In particular, the generation and evolution of secondary bedforms are consistent with energy transferred between the standing wave modes.

  15. Observational study of generation conditions of substorm-associated low-frequency AKR emissions

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-11-01

    Full Text Available It has lately been shown that low-frequency bursts of auroral kilometric radiation (AKR are nearly exclusively associated with substorm expansion phases. Here we study low-frequency AKR using Polar PWI and Interball POLRAD instruments to constrain its possible generation mechanisms. We find that there are more low-frequency AKR emission events during wintertime and equinoxes than during summertime. The dot-AKR emission radial distance range coincides well with the region where the deepest density cavities are seen statistically during Kp>2. We suggest that the dot-AKR emissions originate in the deepest density cavities during substorm onsets. The mechanism for generating dot-AKR is possibly strong Alfvén waves entering the cavity from the magnetosphere and changing their character to more inertial, which causes the Alfvén wave associated parallel electric field to increase. This field may locally accelerate electrons inside the cavity enough to produce low-frequency AKR emission. We use Interball IESP low-frequency wave data to verify that in about half of the cases the dot-AKR is accompanied by low-frequency wave activity containing a magnetic component, i.e. probably inertial Alfvén waves. Because of the observational geometry, this result is consistent with the idea that inertial Alfvén waves might always be present in the source region when dot-AKR is generated. The paper illustrates once more the importance of radio emissions as a powerful remote diagnostic tool of auroral processes, which is not only relevant for the Earth's magnetosphere but may be relevant in the future in studying extrasolar planets.

  16. Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko

    Directory of Open Access Journals (Sweden)

    I. Richter

    2015-08-01

    Full Text Available We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1, compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.

  17. ISII-II satellite observations during Siple Station very-low-frequency wave-injection experiments

    International Nuclear Information System (INIS)

    Bell, T.F.; Katsufrakis, J.P.

    1987-01-01

    One of the critical scientific objectives of space plasma physics is to understand the processes that couple distinct parts of the Earth's plasma environment, such as the solar wind, magnetosphere, ionosphere, and upper atmosphere. An important source of coupling between the magnetosphere, ionosphere, and upper atmosphere is the flux of energetic particles which are precipitated from the Earth's radiation belts through interactions with both natural and manmade very-low-frequency (VLE) waves. One of the goals of this study is to understand a newly discovered phenomenon in which high-amplitude electrostatic waves are stimulated by electromagnetic VLF whistler-mode waves propagating at low altitudes (less than 8,000 kilometers) (Bell and Ngo in press a). This phenomenon is very common at all latitudes, and theoretical models (Bell and Ngo in press b) indicate that the electrostatic waves are stimulated when the input electromagnetic waves scatter from small scale (less than 100 meters) magnetic-field-aligned plasma density irregularities. It is believed that the stimulated electrostatic waves produce enhanced pitch angle scattering of energetic radiation belt particles, resulting in enhanced particle precipitation. The precipitated flux produces plasma density enhancements in the ionosphere, and upward diffusion of thermal plasma from the regions of enhanced ionospheric plasma density creates additional magnetic-field-aligned plasma density irregularities in the magnetosphere

  18. Cluster observations of high-frequency waves in the exterior cusp

    Directory of Open Access Journals (Sweden)

    Y. Khotyaintsev

    2004-07-01

    Full Text Available We study wave emissions, in the frequency range from above the lower hybrid frequency up to the plasma frequency, observed during one of the Cluster crossings of a high-beta exterior cusp region on 4 March 2003. Waves are localized near narrow current sheets with a thickness a few times the ion inertial length; currents are strong, of the order of 0.1-0.5μA/m2 (0.1-0.5mA/m2 when mapped to ionosphere. The high frequency part of the waves, frequencies above the electron-cyclotron frequency, is analyzed in more detail. These high frequency waves can be broad-band, can have spectral peaks at the plasma frequency or spectral peaks at frequencies below the plasma frequency. The strongest wave emissions usually have a spectral peak near the plasma frequency. The wave emission intensity and spectral character change on a very short time scale, of the order of 1s. The wave emissions with strong spectral peaks near the plasma frequency are usually seen on the edges of the narrow current sheets. The most probable generation mechanism of high frequency waves are electron beams via bump-on-tail or electron two-stream instability. Buneman and ion-acoustic instability can be excluded as a possible generation mechanism of waves. We suggest that high frequency waves are generated by electron beams propagating along the separatrices of the reconnection region.

  19. Lower frequency companions for the Advanced LIGO gravitational wave interferometric detectors: an observational opportunity?

    International Nuclear Information System (INIS)

    DeSalvo, Riccardo

    2004-01-01

    Recent x-ray and optical observations provide evidence for a population of intermediate mass black holes with masses of tens to thousands of solar masses. Dynamical braking in high stellar density regions may 'catalyze' the inspiral of heavy mass objects down to the million-year time scale. Black-hole binaries, with the masses implied by the observations, will plunge below 100 Hz. It may be technologically possible to build ground-based low frequency gravitational wave interferometric detectors optimized to detect these events and install them next to Advanced LIGO (AdL), within the existing LIGO facilities. This additional interferometer, operated coherently with AdL and Virgo, would greatly enhance the effectiveness of the existing interferometers by generating a wealth of triggers for potentially frequent but otherwise undetectable heavy mass inspirals. AdL would study, at higher frequency, the triggered, ultra-relativistic phases (merging and ringdown) of these inspirals. Comparisons are made between the expected detection performances of AdL in its proposed wide band tuning, as well as AdL in its best low frequency tuning, with a low frequency gravitational wave interferometric detector that is mechanically and optically optimized for operation at the lowest possible frequency. Finally, the synergies of tandem operation of AdL and the proposed low frequency interferometer have been considered

  20. Low-Frequency Waves in HF Heating of the Ionosphere

    Science.gov (United States)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  1. Wave Transformation over a Fringing Coral Reef and the Importance of Low-Frequency Waves and Offshore Water Levels to Runup and Island Overtopping

    Science.gov (United States)

    Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.

    2016-02-01

    Low-lying, reef-fringed islands are susceptible to sea-level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, wave gauges and a current meter were deployed for 5 months across two shore-normal transects on Roi-Namur, an atoll island in the Republic of the Marshall Islands. These observations captured two large wave events that had maximum wave heights greater than 6 m and peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly-skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, exceeded 3.7 m at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3-hr time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along atoll and fringing reef-lined shorelines, such as island overwash. These observations lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of both extreme shoreline runup and island overwash, threatening the sustainability of these islands.

  2. Nonlinear low-frequency wave aspect of foreshock density holes

    Directory of Open Access Journals (Sweden)

    N. Lin

    2008-11-01

    Full Text Available Recent observations have uncovered short-duration density holes in the Earth's foreshock region. There is evidence that the formation of density holes involves non-linear growth of fluctuations in the magnetic field and plasma density, which results in shock-like boundaries followed by a decrease in both density and magnetic field. In this study we examine in detail a few such events focusing on their low frequency wave characteristics. The propagation properties of the waves are studied using Cluster's four point observations. We found that while these density hole-structures were convected with the solar wind, in the plasma rest frame they propagated obliquely and mostly sunward. The wave amplitude grows non-linearly in the process, and the waves are circularly or elliptically polarized in the left hand sense. The phase velocities calculated from four spacecraft timing analysis are compared with the velocity estimated from δE/δB. Their agreement justifies the plane electromagnetic wave nature of the structures. Plasma conditions are found to favor firehose instabilities. Oblique Alfvén firehose instability is suggested as a possible energy source for the wave growth. Resonant interaction between ions at certain energy and the waves could reduce the ion temperature anisotropy and thus the free energy, thereby playing a stabilizing role.

  3. Cosmological constraints on the very low frequency gravitational-wave background

    International Nuclear Information System (INIS)

    Seto, Naoki; Cooray, Asantha

    2006-01-01

    The curl modes of cosmic microwave background polarization allow one to indirectly constrain the primordial background of gravitational waves with frequencies around 10 -18 to 10 -16 Hz. The proposed high precision timing observations of a large sample of millisecond pulsars with the pulsar timing array or with the square kilometer array can either detect or constrain the stochastic gravitational-wave background at frequencies greater than roughly 0.1 yr -1 . While existing techniques are limited to either observe or constrain the gravitational-wave background across six or more orders of magnitude between 10 -16 and 10 -10 Hz, we suggest that the anisotropy pattern of time variation of the redshift related to a sample of high-redshift objects can be used to study the background around a frequency of 10 -12 Hz. Useful observations to detect an anisotropy signal in the global redshift change include spectroscopic observations of the Ly-α forest in absorption towards a sample of quasars, redshifted 21 cm line observations either in absorption or emission towards a sample of neutral HI regions before or during reionization, and high-frequency (0.1 to 1 Hz) gravitational-wave analysis of a sample of neutron star-neutron star binaries detected with gravitational-wave instruments such as the Decihertz Interferometer Gravitational Wave Observatory (DECIGO). For reasonable observations expected in the future involving extragalactic sources, we find limits at the level of Ω GW -6 at a frequency around 10 -12 Hz while the ultimate limit is likely to be around Ω GW -11 . On the other hand, if there is a background of gravitational waves at 10 -12 Hz with an amplitude larger than this limit, its presence will be visible as a measurable anisotropy in the time-evolving redshift of extragalactic sources

  4. The role of localised Ultra-Low Frequency waves in energetic electron precipitation

    Science.gov (United States)

    Rae, J.; Murphy, K. R.; Watt, C.; Mann, I. R.; Ozeke, L.; Halford, A. J.; Sibeck, D. G.; Clilverd, M. A.; Rodger, C. J.; Degeling, A. W.; Singer, H. J.

    2016-12-01

    Electromagnetic waves play pivotal roles in radiation belt dynamics through a variety of different means. Typically, Ultra-Low Frequency (ULF) waves have historically been invoked for radial diffusive transport leading to both acceleration and loss of outer radiation belt electrons. Very-Low Frequency (VLF) and Extremely-Low Frequency (ELF) waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to direct modulation of the loss cone via localized compressional ULF waves. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity. We then perform statistical computations of the probability distribution to determine how likely a given magnetic perturbation would produce a given percentage change in the bounce loss-cone (BLC). We discuss the ramifications of the action of coherent, localized compressional ULF waves on drifting electron populations; their precipitation response can be a complex interplay between electron energy, the shape of the phase space density profile at pitch angles close to the loss cone, ionospheric decay timescales, and the time-dependence of the electron source. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. We determine that the two pivotal components not usually considered are localized ULF wave fields and ionospheric decay timescales. We conclude that ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be

  5. Prediction of the Low Frequency Wave Field on Open Coastal Beaches

    National Research Council Canada - National Science Library

    Ozkan-Haller, H. T

    2005-01-01

    ... (both abrupt and gradual) affect the resulting low frequency wave climate. 3. The assessment of the importance of interactions between different modes of time-varying motions in the nearshore region, as well as interactions between these modes and the incident wave field. 4. To arrive at a predictive understanding of low frequency motions.

  6. Morphology of low-frequency waves in the solar wind and their relation to ground pulsations

    International Nuclear Information System (INIS)

    Odera, T.J.; Stuart, W.F.

    1986-01-01

    Three classes of low frequency waves (period range 20 to 80 s) were identified using data from the UCLA fluxgate magnetometer experiment on board the ISEE 2 spacecraft. These are continuous pulsations similar in type to Pc 3, band-limited oscillations distinguished by mixed period fluctuations, and relatively isolated wave bundles. The waves were preferentially observed when the interplanetary magnetic field (IMF) direction was sunward and were most common when the cone angle, i.e. the angle between IMF and the Sun-Earth line (thetasub(xB)) was often between 15 deg and 45 deg. Their frequency is proportional to the IMF magnitude. Comparison between the waves observed on board the ISEE 2 spacecraft and the Pc 3-4 recorded simultaneously at a mid-latitude ground station, Oulu (L = 4.5), showed that similarity of spectra of the waves in the spacecraft and on the ground was very rare and that correspondence between the events in space and on the ground was extremely low. (author)

  7. Nonlinear low-frequency wave aspect of foreshock density holes

    Directory of Open Access Journals (Sweden)

    N. Lin

    2008-11-01

    Full Text Available Recent observations have uncovered short-duration density holes in the Earth's foreshock region. There is evidence that the formation of density holes involves non-linear growth of fluctuations in the magnetic field and plasma density, which results in shock-like boundaries followed by a decrease in both density and magnetic field. In this study we examine in detail a few such events focusing on their low frequency wave characteristics. The propagation properties of the waves are studied using Cluster's four point observations. We found that while these density hole-structures were convected with the solar wind, in the plasma rest frame they propagated obliquely and mostly sunward. The wave amplitude grows non-linearly in the process, and the waves are circularly or elliptically polarized in the left hand sense. The phase velocities calculated from four spacecraft timing analysis are compared with the velocity estimated from δEB. Their agreement justifies the plane electromagnetic wave nature of the structures. Plasma conditions are found to favor firehose instabilities. Oblique Alfvén firehose instability is suggested as a possible energy source for the wave growth. Resonant interaction between ions at certain energy and the waves could reduce the ion temperature anisotropy and thus the free energy, thereby playing a stabilizing role.

  8. Stabilizing effects of hot electrons on low frequency plasma drift waves

    International Nuclear Information System (INIS)

    Huang Chaosong; Qiu Lijian; Ren Zhaoxing

    1988-01-01

    The MHD equation is used to study the stabilization of low frequency drift waves driven by density gradient of plasma in a hot electron plasma. The dispersion relation is derived, and the stabilizing effects of hot electrons are discussed. The physical mechanism for hot electron stabilization of the low frequency plasma perturbations is charge uncovering due to the hot electron component, which depends only on α, the ratio of N h /N i , but not on the value of β h . The hot electrons can reduce the growth rate of the interchange mode and drift wave driven by the plasma, and suppress the enomalous plasma transport caused by the drift wave. Without including the effectof β h , the stabilization of the interchange mode requires α≅2%, and the stabilization of the drift wave requires α≅40%. The theoretical analyses predict that the drift wave is the most dangerous low frequency instability in the hot electron plasma

  9. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    Energy Technology Data Exchange (ETDEWEB)

    Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  10. Kinetic Scale Structure of Low-frequency Waves and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States); Araneda, Jaime A., E-mail: rlopezh@umd.edu, E-mail: yoonp@umd.edu [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)

    2017-08-10

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave–particle interactions.

  11. The Role of Localized Compressional Ultra-low Frequency Waves in Energetic Electron Precipitation

    Science.gov (United States)

    Rae, I. Jonathan; Murphy, Kyle R.; Watt, Clare E. J.; Halford, Alexa J.; Mann, Ian R.; Ozeke, Louis G.; Sibeck, David G.; Clilverd, Mark A.; Rodger, Craig J.; Degeling, Alex W.; Forsyth, Colin; Singer, Howard J.

    2018-03-01

    Typically, ultra-low frequency (ULF) waves have historically been invoked for radial diffusive transport leading to acceleration and loss of outer radiation belt electrons. At higher frequencies, very low frequency waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere of radiation belt electrons. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to a direct modulation of the loss cone via localized compressional ULF waves. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity, which greatly exceeds the change in pitch angle through conservation of the first and second adiabatic invariants. The precipitation response can be a complex interplay between electron energy, the localization of the waves, the shape of the phase space density profile at low pitch angles, ionospheric decay time scales, and the time dependence of the electron source; we show that two pivotal components not usually considered are localized ULF wave fields and ionospheric decay time scales. We conclude that enhanced precipitation driven by compressional ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm times.

  12. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lo, W.-C.; Sposito, G.; Majer, E.

    2007-02-01

    An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.

  13. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  14. Observations from 1 to 6 AU of Low-Frequency Magnetic Waves due to Newborn Interstellar Pickup Ions Using Ulysses, Voyager and ACE Data

    Science.gov (United States)

    Smith, C. W.; Aggarwal, P.; Argall, M. R.; Burlaga, L. F.; Bzowski, M.; Cannon, B. E.; Gary, S. P.; Fisher, M. K.; Gilbert, J. A.; Hollick, S. J.; Isenberg, P. A.; Joyce, C. J.; Murphy, N.; Nuno, R. G.; Pine, Z. B.; Richardson, J. D.; Schwadron, N.; Skoug, R. M.; Sokol, J. M.; Taylor, D. K.; Vasquez, B. J.; Zurbuchen, T.

    2016-12-01

    Wave excitation by newborn interstellar pickup ions (PUIs) play a significant role in theories that attempt to describe IBEX and Voyager observations in the heliosheath as well as solar wind heating. The same dynamic processes can be far-reaching and extend into the inner heliosphere to at least 1AU and likely to smaller heliocentric distances. While the high-resolution magnetic field measurements required to study these waves are not yet available in the heliosheath, we have studied a range of available observations and found evidence of waves due to interstellar PUIs using ACE (1998-2015 at 1 AU), Ulysses (1996-2006 at 2 to 5 AU, high and low latitudes) and Voyager (1978-1979 and 2 to 6 AU) observations. Efforts to extend the Voyager observations to 35 AU are ongoing. We have examined these data sets and report on observations of low-frequency waves that result from newborn interstellar pickup H+ and He+ ions. Although not as common as theory once predicted, we presently have identified 524 independent occurrences. Our conclusion from studying these waves is that they are seen only when the ambient turbulence is sufficiently weak. The instability that leads to the generation of these waves requires a slow accumulation of wave energy over several to tens of hours to achieve the observed wave amplitudes. In regions where the turbulence is moderate to strong, the turbulence consumes the wave energy before it can reach observable levels and transports the energy to the dissipation scales where it heats the background thermal particles. Only intervals with the weakest turbulence will permit energy accumulation over this time scale. These conditions are most often, but not exclusively, achieved in solar wind rarefaction regions.

  15. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  16. Frequency splitting in stria bursts: Possible roles of low-frequency waves

    International Nuclear Information System (INIS)

    Melrose, D.B.

    1983-01-01

    The kinematics of the process L+-F->L' are explored where L represents a parallel Langmuir wave, F represents a low frequency fluctuation and L' represents a secondary Langmuir wave, and the results are used to discuss (a) a possible interpretation of the frequency splitting in stria bursts in terms of the processes L+-F->L', L'+-F'->t, where t represents a transverse wave, and (b) second harmonic emission due to the processes L+-s->L', L+L'->t, where s represents an ion sound wave. The following results are obtained: (1) The processes L+-s->L' are allowed only for ksub(s) 0 , respectively, with k 0 =ωsub(p)/65 Vsub(e). (2) The inclusion of a magnetic field does not alter the result (1) and adds further kinematic restrictions related to angles of propagation; the kinematic restriction Tsub(e)>5x10 5 K for second harmonic emission through process (b) above is also unchanged by inclusion of the magnetic field. The effect of a spread in the wavevectors of the Langmuir waves on this restriction is discussed in the Appendix. (3) For parallel Langmuir waves the process L-f->L' is forbidden for lower hybrid waves and for nearly perpendicular resonant whistlers, and the process L+F->L' is allowed only for resonant whistlers at ωsub(F)> or approx.1/2ωsub(p)(Ωsub(e)/ωsub(p)) 2 . (4) The sequential three waves processes L+-s->L', L'+-s->t and L+F->L', L'+-F'->t encounter difficulties when applied to the interpretation of the splitting in split pair and triple bursts. (5) The four-wave process L+-F+-F'->t is kinematically allowed and provides a favourable qualitative interpretation of the splitting when F denotes a resonant whistler near the frequency mentioned in (3) above. The four wave processes should saturate under conditions which are not extreme and produce fundamental plasma emission with brightness temperature Tsub(t) equal to the effective temperature Tsub(L) of the Langmuir waves. (orig.)

  17. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  18. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  19. Low-frequency magnetic field fluctuations in Venus' solar wind interaction region: Venus Express observations

    Directory of Open Access Journals (Sweden)

    L. Guicking

    2010-04-01

    Full Text Available We investigate wave properties of low-frequency magnetic field fluctuations in Venus' solar wind interaction region based on the measurements made on board the Venus Express spacecraft. The orbit geometry is very suitable to investigate the fluctuations in Venus' low-altitude magnetosheath and mid-magnetotail and provides an opportunity for a comparative study of low-frequency waves at Venus and Mars. The spatial distributions of the wave properties, in particular in the dayside and nightside magnetosheath as well as in the tail and mantle region, are similar to observations at Mars. As both planets do not have a global magnetic field, the interaction process of the solar wind with both planets is similar and leads to similar instabilities and wave structures. We focus on the spatial distribution of the wave intensity of the fluctuating magnetic field and detect an enhancement of the intensity in the dayside magnetosheath and a strong decrease towards the terminator. For a detailed investigation of the intensity distribution we adopt an analytical streamline model to describe the plasma flow around Venus. This allows displaying the evolution of the intensity along different streamlines. It is assumed that the waves are generated in the vicinity of the bow shock and are convected downstream with the turbulent magnetosheath flow. However, neither the different Mach numbers upstream and downstream of the bow shock, nor the variation of the cross sectional area and the flow velocity along the streamlines play probably an important role in order to explain the observed concentration of wave intensity in the dayside magnetosheath and the decay towards the nightside magnetosheath. But, the concept of freely evolving or decaying turbulence is in good qualitative agreement with the observations, as we observe a power law decay of the intensity along the streamlines. The observations support the assumption of wave convection through the magnetosheath, but

  20. Acceleration of Magnetospheric Relativistic Electrons by Ultra-Low Frequency Waves: A Comparison between Two Cases Observed by Cluster and LANL Satellites

    Science.gov (United States)

    Shao, X.; Fung, S. F.; Tan, L. C.; Sharma, A. S.

    2010-01-01

    Understanding the origin and acceleration of magnetospheric relativistic electrons (MREs) in the Earth's radiation belt during geomagnetic storms is an important subject and yet one of outstanding questions in space physics. It has been statistically suggested that during geomagnetic storms, ultra-low-frequency (ULF) Pc-5 wave activities in the magnetosphere are correlated with order of magnitude increase of MRE fluxes in the outer radiation belt. Yet, physical and observational understandings of resonant interactions between ULF waves and MREs remain minimum. In this paper, we show two events during storms on September 25, 2001 and November 25, 2001, the solar wind speeds in both cases were > 500 km/s while Cluster observations indicate presence of strong ULF waves in the magnetosphere at noon and dusk, respectively, during a approx. 3-hour period. MRE observations by the Los Alamos (LANL) spacecraft show a quadrupling of 1.1-1.5 MeV electron fluxes in the September 25, 2001 event, but only a negligible increase in the November 2.5, 2001 event. We present a detailed comparison between these two events. Our results suggest that the effectiveness of MRE acceleration during the September 25, 2001 event can be attributed to the compressional wave mode with strong ULF wave activities and the physical origin of MRE acceleration depends more on the distribution of toroidal and poloidal ULF waves in the outer radiation belt.

  1. Observations of 35- 10 1600-keV protons and low-frequency waves upstream of interplanetary shocks

    International Nuclear Information System (INIS)

    Sanderson, T.R.; Reinhard, R.; Van Nes, P.; Wenzel, K.P.; Smith, E.J.; Tsurutani, B.T.; California Institute of Technology, Pasadena)

    1985-01-01

    The present investigation is concerned with a comparison of measurements of energetic protons in the range from 35 to 1600 keV and low-frequency waves (periods of approximately 6 s) on ISEE 3 associated with the passage of the large oblique shock of April 5, 1979, which exhibits an extended foreshock. An attempt is made to identify the energy of the particles which are responsible for the waves. Intensity profiles of both waves and particles as a function of upstream distance are compared, taking into account the relation between the energy of the particles and the period of the waves. The considered approach makes it possible to identify protons with energies of a few hundred keV as being responsible for the waves in the extended foreshock. It is believed that the high energy density of the high-energy solar flare protons preceding the shock could be responsible for seed waves which provide the scattering centers necessary for the acceleration of the lower-energy protons via a first-order Fermi mechanism. 31 references

  2. Identification and classification of very low frequency waves on a coral reef flat

    Science.gov (United States)

    Gawehn, Matthijs; van Dongeran, Ap; van Rooijen, Arnold; Storlazzi, Curt; Cheriton, Olivia; Reniers, Ad

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (∼0.5–6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  3. Identification and classification of very low frequency waves on a coral reef flat

    Science.gov (United States)

    Gawehn, Matthijs; van Dongeren, Ap; van Rooijen, Arnold; Storlazzi, Curt D.; Cheriton, Olivia M.; Reniers, Ad

    2016-10-01

    Very low frequency (VLF, 0.001-0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (˜0.5-6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  4. Low-Frequency Waves in the Near-Earth Magnetotail before Substorm Expansion Onsets

    Science.gov (United States)

    Miyashita, Y.; Saito, M. H.; Hiraki, Y.; Machida, S.

    2013-12-01

    Magnetic reconnection and dipolarization, which occur in the near-Earth magnetotail just before substorm expansion onsets, are important processes for the substorm triggering. To understand the triggering of these processes, we have investigated low-frequency waves that were observed in the near-Earth magnetotail before onsets, by performing statistical analysis based on Geotail observations and case studies based on multi-point THEMIS and Geotail observations. Here we focused our examination on ~10 min interval before onsets. We find that small-amplitude Alfven and slow-mode magnetosonic waves with a period of ~1 to 2 min continuously exist for more than 10 min before onsets. Such waves are seen not only in the initial dipolarization region but also midway between the magnetic reconnection and initial dipolarization regions. It seems that the amplitudes of the waves are larger in the off-equator plasma sheet and the plasma sheet boundary layer than at the magnetic equator and in the lobe. After onsets the waves considerably amplify in the plasma sheet. These results may imply that instabilities already begin to grow gradually in a wide region during the substorm growth phase, while their explosive growth begins in localized regions just before onsets.

  5. Structured waves near the plasma frequency observed in three auroral rocket flights

    Directory of Open Access Journals (Sweden)

    M. Samara

    2006-11-01

    Full Text Available We present observations of waves at and just above the plasma frequency (fpe from three high frequency electric field experiments on three recent rockets launched to altitudes of 300–900 km in active aurora. The predominant observed HF waves just above fpe are narrowband, short-lived emissions with amplitudes ranging from <1 mV/m to 20 mV/m, often associated with structured electron density. The nature of these HF waves, as determined from frequency-time spectrograms, is highly variable: in some cases, the frequency decreases monotonically with time as in the "HF-chirps" previously reported (McAdams and LaBelle, 1999, but in other cases rising frequencies are observed, or features which alternately rise and fall in frequency. They exhibit two timescales of amplitude variation: a short timescale, typically 50–100 ms, associated with individual discrete features, and a longer timescale associated with the general decrease in the amplitudes of the emissions as the rocket moves away from where the condition f~fpe holds. The latter timescale ranges from 0.6 to 6.0 s, corresponding to distances of 2–7 km, assuming the phenomenon to be stationary and using the rocket velocity to convert time to distance.

  6. Identification and classification of very low frequency waves on a coral reef flat

    NARCIS (Netherlands)

    Gawehn, M.; van Dongeren, AR; van Rooijen, A.A.; Storlazzi, C.D.; Cheriton, O.M.; Reniers, A.J.H.M.

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on

  7. Remote pipeline assessment and condition monitoring using low-frequency axisymmetric waves: a theoretical study of torsional wave motion

    Science.gov (United States)

    Muggleton, J. M.; Rustighi, E.; Gao, Y.

    2016-09-01

    Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Particularly useful are the n = 0, or axisymmetric, modes in which there is no displacement (or pressure) variation over the pipe cross section. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s = 1, fluid- dominated wave; and the s = 2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s = 0 torsional wave, is studied. Whilst there is a large body of research devoted to the study of torsional waves and their use for defect detection in pipes at ultrasonic frequencies, little is known about their behaviour and possible exploitation at lower frequencies. Here, a low- frequency analytical dispersion relationship is derived for the torsional wavenumber for a buried pipe from which both the wavespeed and wave attenuation can be obtained. How the torsional waves subsequently radiate to the ground surface is then investigated, with analytical expressions being presented for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. Example results are presented and, finally, how such waves might be exploited in practice is discussed.

  8. Major enhancement of extra-low-frequency radiation by increasing the high-frequency heating wave power in electrojet modulation

    International Nuclear Information System (INIS)

    Kuo, S.P.; Lee, S.H.; Kossey, Paul

    2002-01-01

    Extra-low-frequency (ELF) wave generation by modulated polar electrojet currents is studied. The amplitude-modulated high-frequency (HF) heating wave excites a stimulated thermal instability to enhance the electrojet current modulation by the passive Ohmic heating process. Inelastic collisions of electrons with neutral particles (mainly due to vibrational excitation of N 2 ) damp nonlinearly this instability, which is normally saturated at low levels. However, the electron's inelastic collision loss rate drops rapidly to a low value in the energy regime from 3.5 to 6 eV. As the power of the modulated HF heating wave exceeds a threshold level, it is shown that significant electron heating enhanced by the stimulated thermal instability can indeed cause a steep drop in the electron inelastic collision loss rate. Consequently, this instability saturates at a much higher level, resulting to a near step increase (of about 10-13 dB, depending on the modulation wave form) in the spectral intensity of ELF radiation. The dependence of the threshold power of the HF heating wave on the modulation frequency is determined

  9. Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria

    International Nuclear Information System (INIS)

    Frieman, E.A.; Chen, L.

    1981-10-01

    A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency

  10. Structured waves near the plasma frequency observed in three auroral rocket flights

    Directory of Open Access Journals (Sweden)

    M. Samara

    2006-11-01

    Full Text Available We present observations of waves at and just above the plasma frequency (fpe from three high frequency electric field experiments on three recent rockets launched to altitudes of 300–900 km in active aurora. The predominant observed HF waves just above fpe are narrowband, short-lived emissions with amplitudes ranging from <1 mV/m to 20 mV/m, often associated with structured electron density. The nature of these HF waves, as determined from frequency-time spectrograms, is highly variable: in some cases, the frequency decreases monotonically with time as in the "HF-chirps" previously reported (McAdams and LaBelle, 1999, but in other cases rising frequencies are observed, or features which alternately rise and fall in frequency. They exhibit two timescales of amplitude variation: a short timescale, typically 50–100 ms, associated with individual discrete features, and a longer timescale associated with the general decrease in the amplitudes of the emissions as the rocket moves away from where the condition f~fpe holds. The latter timescale ranges from 0.6 to 6.0 s, corresponding to distances of 2–7 km, assuming the phenomenon to be stationary and using the rocket velocity to convert time to distance.

  11. Absorption of low-frequency electromagnetic waves by plasma in electromagnetic trap

    International Nuclear Information System (INIS)

    D'yakov, V.E.

    1984-01-01

    Absorption of electromagnetic waves in plasma of the electromagnetic trap is investigated. An integro-differential equation describing the behaviour of the electrical and magnetic fields of the wave is obtained. The wave has a component along the plasma inhomogeneity axis. Solution of this equation is found within the low frequency range corresponding to the anomalous skin-effect. The possibility of ion-acoustic waves excitation is demonstrated. Expressions are found for reflection, absorption and transformation coefficients

  12. Comparison of High, Intermediate, and Low Frequency Shock Wave Lithotripsy for Urinary Tract Stone Disease: Systematic Review and Network Meta-Analysis.

    Science.gov (United States)

    Kang, Dong Hyuk; Cho, Kang Su; Ham, Won Sik; Lee, Hyungmin; Kwon, Jong Kyou; Choi, Young Deuk; Lee, Joo Yong

    2016-01-01

    To perform a systematic review and network meta-analysis of randomized controlled trials (RCTs) to determine the optimal shock wave lithotripsy (SWL) frequency range for treating urinary stones, i.e., high-frequency (100-120 waves/minute), intermediate-frequency (80-90 waves/minute), and low-frequency (60-70 waves/minute) lithotripsy. Relevant RCTs were identified from electronic databases for meta-analysis of SWL success and complication rates. Using pairwise and network meta-analyses, comparisons were made by qualitative and quantitative syntheses. Outcome variables are provided as odds ratios (ORs) with 95% confidence intervals (CIs). Thirteen articles were included in the qualitative and quantitative synthesis using pairwise and network meta-analyses. On pairwise meta-analyses, comparable inter-study heterogeneity was observed for the success rate. On network meta-analyses, the success rates of low- (OR 2.2; 95% CI 1.5-2.6) and intermediate-frequency SWL (OR 2.5; 95% CI 1.3-4.6) were higher than high-frequency SWL. Forest plots from the network meta-analysis showed no significant differences in the success rate between low-frequency SWL versus intermediate-frequency SWL (OR 0.87; 95% CI 0.51-1.7). There were no differences in complication rate across different SWL frequency ranges. By rank-probability testing, intermediate-frequency SWL was ranked highest for success rate, followed by low-frequency and high-frequency SWL. Low-frequency SWL was also ranked highest for low complication rate, with high- and intermediate-frequency SWL ranked lower. Intermediate- and low-frequency SWL have better treatment outcomes than high-frequency SWL when considering both efficacy and complication.

  13. Nonlinear beat excitation of low frequency wave in degenerate plasmas

    Science.gov (United States)

    Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.

    2018-03-01

    The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.

  14. Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?

    Energy Technology Data Exchange (ETDEWEB)

    Rousseaux, Germain [ACRI, Laboratoire Genimar, 260 route du Pin Montard, BP 234, 06904 Sophia-Antipolis Cedex (France); Mathis, Christian; Maissa, Philippe [Universite de Nice-Sophia Antipolis, Laboratoire J-A Dieudonne, UMR CNRS-UNSA 6621, Parc Valrose, 06108 Nice Cedex 02 (France); Philbin, Thomas G; Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland (United Kingdom)], E-mail: ulf@st-andrews.ac.uk

    2008-05-15

    The conversion of positive-frequency waves into negative-frequency waves at the event horizon is the mechanism at the heart of the Hawking radiation of black holes. In black-hole analogues, horizons are formed for waves propagating in a medium against the current when and where the flow exceeds the wave velocity. We report on the first direct observation of negative-frequency waves converted from positive-frequency waves in a moving medium. The measured degree of mode conversion is significantly higher than that expected from the theory.

  15. Identification of low-frequency kinetic wave modes in the Earth's ion foreshock

    Directory of Open Access Journals (Sweden)

    X. Blanco-Cano

    1997-03-01

    Full Text Available In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequency (ωr « Ωp waves observed upstream of the Earth's bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock the Alfvén ratio, the parallel compressibility, the cross-helicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles ≤ 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions. Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves' characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when other properties can diverge from those of the

  16. Low-frequency spatial wave manipulation via phononic crystals with relaxed cell symmetry

    International Nuclear Information System (INIS)

    Celli, Paolo; Gonella, Stefano

    2014-01-01

    Phononic crystals enjoy unique wave manipulation capabilities enabled by their periodic topologies. On one hand, they feature frequency-dependent directivity, which allows directional propagation of selected modes even at low frequencies. However, the stellar nature of the propagation patterns and the inability to induce single-beam focusing represent significant limitations of this functionality. On the other hand, one can realize waveguides by defecting the periodic structure of a crystal operating in bandgap mode along some desired path. Waveguides of this type are only activated in the relatively high and narrow frequency bands corresponding to total bandgaps, which limits their potential technological applications. In this work, we introduce a class of phononic crystals with relaxed cell symmetry and we exploit symmetry relaxation of a population of auxiliary microstructural elements to achieve spatial manipulation of elastic waves at very low frequencies, in the range of existence of the acoustic modes. By this approach, we achieve focusing without modifying the default static properties of the medium and by invoking mechanisms that are well suited to envision adaptive configurations for semi-active wave control

  17. Low-frequency electrostatic waves in the ionospheric E region

    Energy Technology Data Exchange (ETDEWEB)

    Krane, B [NDRE, Box 25, N-2027 Kjeller (Norway); Pecseli, H L; Sato, H [Physics Department, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway); Trulsen, J [Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, N-0315 Oslo (Norway); Wernik, A W, E-mail: hans.pecseli@fys.uio.n [Space Research Center, Polish Academy of Sciences, ul. Bartycka 18a, 00-716 Warsaw (Poland)

    2010-06-15

    Low-frequency electrostatic waves in the ionospheric E region are studied by analyzing data obtained by instrumented rockets. We identify the origin of the enhanced fluctuation level to be the Farley-Buneman instability. The basic information on instability, such as altitude varying spectra and speed of propagation are obtained. Comparison of power spectra for the fluctuations in plasma density and electrostatic potential, respectively, provides information on the electron dynamics. A bispectral analysis gives indications of phase-coherent couplings within the wave spectrum, while higher order structure functions indicate some intermittent features of the turbulence.

  18. Resonant interactions between cometary ions and low frequency electromagnetic waves

    Science.gov (United States)

    Thorne, Richard M.; Tsurutani, Bruce T.

    1987-01-01

    The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.

  19. Flow motion waves with high and low frequency in severe ischaemia before and after percutaneous transluminal angioplasty.

    Science.gov (United States)

    Hoffmann, U; Schneider, E; Bollinger, A

    1990-09-01

    STUDY OF OBJECTIVE: The aim was to evaluate skin flux and prevalence of low and high frequency flow motion waves in patients with severe ischaemia due to peripheral arterial occlusive disease before and after percutaneous transluminal angioplasty (PTA) with and without local thrombolysis. Flow motion was recorded by the laser Doppler technique at the dorsum of the foot before, one day, and one month after PTA. The results were separately analysed in patients with successful and unsuccessful treatment. 18 patients with rest pain or incipient gangrene were included. Mean pretreatment systolic ankle pressure was 55.8(SD 25.5) mm Hg, and mean transcutaneous PO2 at 43 degrees C was 5.2(9.4) mm Hg. Arteriography revealed relevant stenoses or occlusions of the femoropopliteal and calf arteries. Before treatment two patterns of flow motion with characteristic frequency ranges were observed at the foot dorsum and at a probe temperature of 32 degrees C: low frequency (LF) waves with a mean frequency of 2.2(0.5) cycles.min-1 and a mean amplitude of 0.73(0.42) arbitrary units (AU) and high frequency (HF) waves with a mean frequency of 22.6(4.2) cycles.min-1 and a mean amplitude of 0.39(0.33) AU. PTA was successful in 11 of the 18 patients. After successful treatment, prevalence of HF waves decreased from 10/11 to 4/11 cases (p less than 0.001), but remained nearly unchanged after failed procedure. Prevalence of LF waves before and after PTA did not differ significantly. Our data support the hypothesis that HF waves represent a reaction of skin microcirculation to severe ischaemia. With reference to animal studies it is proposed that HF waves originate from terminal arterioles. They may function as a compensatory mechanism of flow regulation involved in pathophysiology of ischaemia.

  20. Upstream waves simultaneously observed by ISEE and UKS

    International Nuclear Information System (INIS)

    Russell, C.T.; Luhmann, J.G.; Elphic, R.C.; Southwood, D.J.; Smith, M.F.; Johnstone, A.D.

    1987-01-01

    Measurements obtained in the solar wind by ISEE-2 and the United Kingdom Subsatellite (UKS) have been examined for observations of upstream waves. These data reveal that the waves in the foreshock region are enhanced at all frequencies from at least 0.003 Hz to 0.5 Hz. The wave spectra generally have a spectral peak, but this peak is usually broad and the peak frequency depends on the position of the spacecraft. Generally, the spectra seen at the two spacecraft are most similar at high frequencies and least similar at low frequencies. The geometry of the interaction is displayed in the plane containing the magnetic field, the solar wind velocity, and the spacecraft location. However, this coordinate system does not order all the observed wave properties. It does not clearly explain or order the handedness of the waves, or their direction of propagation. It is clear that the upstream region is inherently three-dimensional. The position-dependent nature of the upstream waves indicates that comparisons between ground-based measurements and in-situ observations must be undertaken with some caution

  1. First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Gonzalez, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kraemer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lueck, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Hernandez, I. Magana; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Anderson, D. P.

    2017-01-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO.

  2. Incident wave, infragravity wave, and non-linear low-frequency bore evolution across fringing coral reefs

    Science.gov (United States)

    Storlazzi, C. D.; Griffioen, D.; Cheriton, O. M.

    2016-12-01

    Coral reefs have been shown to significantly attenuate incident wave energy and thus provide protection for 100s of millions of people globally. To better constrain wave dynamics and wave-driven water levels over fringing coral reefs, a 4-month deployment of wave and tide gauges was conducted across two shore-normal transects on Roi-Namur Island and two transects on Kwajalein Island in the Republic of the Marshall Islands. At all locations, although incident wave (periods 250 s) heights on the outer reef flat just inshore of the zone of wave breaking, the infragravity wave heights generally equaled the incident wave heights by the middle of the reef flat and exceeded the incident wave heights on the inner reef flat by the shoreline. The infragravity waves generally were asymmetric, positively skewed, bore-like forms with incident-band waves riding the infragravity wave crest at the head of the bore; these wave packets have similar structure to high-frequency internal waves on an internal wave bore. Bore height was shown to scale with water depth, offshore wave height, and offshore wave period. For a given tidal elevation, with increasing offshore wave heights, such bores occurred more frequently on the middle reef flat, whereas they occurred less frequently on the inner reef flat. Skewed, asymmetric waves are known to drive large gradients in velocity and shear stress that can transport material onshore. Thus, a better understanding of these low-frequency, energetic bores on reef flats is critical to forecasting how coral reef-lined coasts may respond to sea-level rise and climate change.

  3. Large Amplitude Low Frequency Waves in a Magnetized Nonuniform Electron-Positron-Ion Plasma

    Institute of Scientific and Technical Information of China (English)

    Q. Haque; H. Saleem

    2004-01-01

    @@ It is shown that the large amplitude low-frequency electromagnetic drift waves in electron-positron-ion plasmas might give rise to dipolar vortices. A linear dispersion relation of several coupled electrostatic and electromagnetic low-frequency modes is obtained. The relevance of this work to both laboratory and astrophysical situations is pointed out.

  4. Low frequency wave sources in the outer magnetosphere, magnetosheath, and near Earth solar wind

    Directory of Open Access Journals (Sweden)

    O. D. Constantinescu

    2007-11-01

    Full Text Available The interaction of the solar wind with the Earth magnetosphere generates a broad variety of plasma waves through different mechanisms. The four Cluster spacecraft allow one to determine the regions where these waves are generated and their propagation directions. One of the tools which takes full advantage of the multi-point capabilities of the Cluster mission is the wave telescope technique which provides the wave vector using a plane wave representation. In order to determine the distance to the wave sources, the source locator – a generalization of the wave telescope to spherical waves – has been recently developed. We are applying the source locator to magnetic field data from a typical traversal of Cluster from the cusp region and the outer magnetosphere into the magnetosheath and the near Earth solar wind. We find a high concentration of low frequency wave sources in the electron foreshock and in the cusp region. To a lower extent, low frequency wave sources are also found in other magnetospheric regions.

  5. Creating poloidal flux in a tokamak plasma with low frequency waves

    International Nuclear Information System (INIS)

    Kirkwood, R.K.; Capewell, D.L.; Bellan, P.M.

    1993-01-01

    Using a fully toroidal, collisionless, low frequency model, we show that low amplitude, circularly polarized waves can, depending on antenna geometry (i) drive the toroidal EMF necessary to sustain a tokamak reactor, or (ii) shift the internal current profile. Measurements on a small tokamak to test (ii) agree with the model predictions. (orig.)

  6. Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations

    Science.gov (United States)

    Tsurutani, Bruce T.; Arballo, John K.; Mok, John; Smith, Edward J.; Mason, Glenn M.; Tan, Lun C.

    1994-01-01

    Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.

  7. Ultra-low-frequency electromagnetic waves in the Earth's crust and magnetosphere

    International Nuclear Information System (INIS)

    Guglielmi, A V

    2007-01-01

    Research on natural intra- and extraterrestrially produced electromagnetic waves with periods ranging from 0.2 to 600 s is reviewed. The way in which the energy of rock movements transforms into the energy of an alternating magnetic field is analyzed. Methods for detecting seismomagnetic signals against a strong background are described. In discussing the physics of ultra-low-frequency waves in the magnetosphere, the 11-year activity modulation of 1-Hz waves and ponderomotive forces affecting plasma distribution are emphasized. (reviews of topical problems)

  8. Parametrically induced low-frequency waves in weakly inhomogeneous magnetized plasmas

    International Nuclear Information System (INIS)

    Pesic, S.

    1981-01-01

    The linear dispersion relation governing the parametric interaction of a lower hybrid pump wave with a weakly-inhomogeneous current carrying hot plasma confined by a helical magnetic field is derived and solved numerically. The stability boundaries are delineated over a wide range in the k-space. The frequency and growth rate of decay instabilities are calculated for plasma parameters relevant to lower hybrid plasma heating experiments. The parametric excitation of drift waves and ion cyclotron current instabilities is discussed. In the low-density plasma region low minimum thresholds and high growth rates are obtained for the pump decay into ion cyclotron and nonresonant quasimodes. The spatial amplification of hot ion Bernstein waves and nonresonant quasimodes dominate in the plasma core (ω 0 /ωsub(LH) < 2). The presented theoretical results are in qualitative agreement with current LH plasma heating experiments. (author)

  9. Observation of low frequency electromagnetic activity at 1000 km altitude

    Directory of Open Access Journals (Sweden)

    N. Ivchenko

    Full Text Available We present a statistical study of low frequency fluctuations of electric and magnetic fields, commonly interpreted as Alfvénic activity. The data base consists of six months of electric and magnetic field measurements by the Astrid-2 microsatellite. The occurrence of the events is studied with respect to the location and general activity. Large regions of broadband Alfvénic activity are persistently observed in the cusp/cleft and, during the periods of high geo-magnetic activity, also in the pre-midnight sector of the auroral oval.

    Key words. Ionosphere (auroral ionosphere – Space plasma physics (waves and instabilities – Magnetospheric physics (magnetosphere-ionosphere interactions

  10. Meteor radar observations of vertically propagating low-frequency inertia-gravity waves near the southern polar mesopause region

    Science.gov (United States)

    Song, I.-S.; Lee, C.; Kim, J.-H.; Jee, G.; Kim, Y.-H.; Choi, H.-J.; Chun, H.-Y.; Kim, Y. H.

    2017-04-01

    Vertically propagating low-frequency inertia-gravity waves (IGWs) are retrieved from meteor radar winds observed at King Sejong Station (KSS: 62.22°S, 58.78°W), Antarctica. IGW horizontal winds extracted from temporal band-pass filtering in regular time-height bins show the frequent occurrence of IGWs with the downward phase progression and the counterclockwise rotation of their horizontal wind vectors with time (i.e., upward energy propagation) near the mesopause region throughout the whole year of 2014. The vertical wavelengths of the observed IGWs roughly range from 14 km to more than 20 km, which is consistent with previous observational studies on the mesospheric IGWs over Antarctica. Stokes parameters and rotary spectra computed from the hodographs of the IGW horizontal wind components reveal that the intrinsic frequencies of the upward propagating IGWs are |f|-3|f| with seasonal variations of the relative predominance between |f|-2|f| and 2|f|-3|f|, where f is the Coriolis parameter at KSS. The hodograph analysis also indicates that the N-S propagation is dominant in austral summer, while the NE-SW propagation is pronounced in austral winter. The propagation direction is discussed in relation to the generation of IGWs due to dynamical imbalances occurring in the tropospheric and stratospheric jet flow systems. Ray tracing results indicate that the N-S propagation in summer may be due to the jet flow systems roughly north of KSS and the NE-SW propagation in winter may be either the SW propagation from the jet flow systems northeast of KSS or the NE propagation (around the South Pole) from the south of Australia and Southern Indian and Pacific Oceans.

  11. Inverted pendulum as low-frequency pre-isolation for advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Takamori, A.; Raffai, P.; Marka, S.; DeSalvo, R.; Sannibale, V.; Tariq, H.; Bertolini, A.; Cella, G.; Viboud, N.; Numata, K.; Takahashi, R.; Fukushima, M.

    2007-01-01

    We have developed advanced seismic attenuation systems for Gravitational Wave (GW) detectors. The design consists of an Inverted Pendulum (IP) holding stages of Geometrical Anti-Spring Filters (GASF) and pendula, which isolate the test mass suspension from ground noise. The ultra-low-frequency IP suppresses the horizontal seismic noise, while the GASF suppresses the vertical ground vibrations. The three legs of the IP are supported by cylindrical maraging steel flexural joints. The IP can be tuned to very low frequencies by carefully adjusting its load. As a best result, we have achieved an ultra low, ∼12 mHz pendulum frequency for the system prototype made for Advanced LIGO (Laser Interferometer Gravitational Wave Observatory). The measured quality factor, Q, of this IP, ranging from Q∼2500 (at 0.45 Hz) to Q∼2 (at 12 mHz), is compatible with structural damping, and is proportional to the square of the pendulum frequency. Tunable counterweights allow for precise center-of-percussion tuning to achieve the required attenuation up to the first leg internal resonance (∼60 Hz for advanced LIGO prototype). All measurements are in good agreement with our analytical models. We therefore expect good attenuation in the low-frequency region, from ∼0.1to ∼50 Hz, covering the micro-seismic peak. The extremely soft IP requires minimal control force, which simplifies any needed actuation

  12. The frequency dependence of friction in experiment, theory, and observations of low frequency earthquakes

    Science.gov (United States)

    Thomas, A.; Beeler, N. M.; Burgmann, R.; Shelly, D. R.

    2011-12-01

    Low frequency earthquakes (LFEs) are small amplitude, short duration events composing tectonic tremor, probably generated by shear slip on asperities downdip of the seismogenic zone. In Parkfield, Shelly and Hardebeck [2010] have identified 88 LFE families, or hypocentral locations, that contain over half a million LFEs since 2001 on a 160-km-long section of the San Andreas fault between 16 and 30 km depth. A number of studies have demonstrated the extreme sensitivity of low frequency earthquakes (LFEs) near Parkfield to stress changes ranging from contingent upon the amplitude and frequency content of the applied stress. We attempt to test this framework by comparing observations of LFEs triggered in response to stresses spanning several orders of magnitude in both frequency and amplitude (e.g. tides, teleseismic surface waves, static stress changes, etc.) to the predicted response of a single degree of freedom slider block model with rate and state dependent strength. The sensitivity of failure time in the friction model as developed in previous studies does not distinguish between shear and normal stresses; laboratory experiments show a more complicated sensitivity of failure time to normal stress change than in the published model. Because the shear and normal tidal stresses at Parkfield have different amplitudes and are not in phase, we have modified the model to include the expected sensitivity to normal stress. Our prior investigations of the response of both regular and low frequency earthquakes to tidal stresses [Thomas et al., 2009; Shelly and Johnson, 2011] are qualitatively consistent with the predictions of the friction model , as both the timing and degree (probability) of correlation are in agreement.

  13. Localization of Ultra-Low Frequency Waves in Multi-Ion Plasmas of the Planetary Magnetosphere

    Directory of Open Access Journals (Sweden)

    Eun-Hwa Kim

    2015-12-01

    Full Text Available By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

  14. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: raquel.nuno@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  15. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    International Nuclear Information System (INIS)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.

    2014-01-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  16. First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Anderson, D. P.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1 /√{Hz }] . At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8 ×1 0-25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 ×1 0-24. At 55 Hz we can exclude sources with ellipticities greater than 1 0-5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038 kg m2 .

  17. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission

    Science.gov (United States)

    Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young

    2018-02-01

    Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.

  18. Electromagnetic Waves with Frequencies Near the Local Proton Gryofrequency: ISEF-3 1 AU Observations

    Science.gov (United States)

    Tsurutani, B.

    1993-01-01

    Low Frequency electromagnetic waves with periods near the local proton gyrofrequency have been detected near 1 AU by the magnetometer onboard ISEE-3. For these 1 AU waves two physical processes are possible: solar wind pickup of nuetral (interstellar?) particles and generation by relativistic electron beams propagating from the Sun.

  19. Identification of low-frequency kinetic wave modes in the Earth's ion foreshock

    Directory of Open Access Journals (Sweden)

    X. Blanco-Cano

    Full Text Available In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequencyr « Ωp waves observed upstream of the Earth's bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock the Alfvén ratio, the parallel compressibility, the cross-helicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles ≤ 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions. Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves' characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when

  20. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  1. Experimental Research on the Low Frequency Wave That Radiates into the Air before the Failure of Rock

    Institute of Scientific and Technical Information of China (English)

    Li Shiyu; Tang Linbo; He Xuesong; Su Fang; Sun Wei; Liu Jianxin

    2005-01-01

    Experiments on sonic transmission show that a slabstone can directly transmit part of the energy of a wave excited by knocking or by a transducer into the air. The other part of the wave energy can generate the normal mode of vibration on the slabstone and excite measurable acoustic signals in the air. The dominant frequency is related to the size of the slabstone. These results indicate that the acoustic emission (AE) in rock also displays similar behavior if the source is shallow. It is demonstrated that with the nucleation and propagation of cracks, the dominant frequency of the radiated wave will be lower. When the frequency becomes very low,the wave can be transmitted through the rock into the air and be received by a microphone.According to the theory of similarity of size, there will be low-frequency waves before strong earthquakes because of nucleation of cracks, which can be received by special low-frequency transducers or infrasonic detectors. Before earthquakes, the mechanism of precursors could be very complicated. They might be produced by plastic creep or attributed to liquids but not brittle fracture in most cases. So the periods of the produced waves will be longer. This perhaps accounts for the lack of foreshocks before many strong earthquakes.

  2. Low-Frequency Gravitational-Wave Science with eLISA/ NGO

    Science.gov (United States)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Emanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; hide

    2011-01-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  3. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  4. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    2002-01-01

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  5. Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency.

    Science.gov (United States)

    Fadel, M A; Mohamed, S A; Abdelbacki, A M; El-Sharkawy, A H

    2014-08-01

    Typhoid is a serious disease difficult to be treated with conventional drugs. The aim of this study was to demonstrate a new method for the control of Salmonella typhi growth, through the interference with the bioelectric signals generated from the microbe during cell division by extremely low frequency electromagnetic waves (ELF-EMW-ELF-EM) at resonance frequency. Isolated Salmonella typhi was subjected to square amplitude modulated waves (QAMW) with different modulation frequencies from two generators with constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength of 200 V m(-1) at 37°C. Both the control and exposed samples were incubated at the same conditions during the experiment. The results showed that there was highly significant inhibition effect for Salm. typhi exposed to 0·8 Hz QAMW for a single exposure for 75 min. Dielectric relaxation, TEM and DNA results indicated highly significant changes in the molecular structure of the DNA and cellular membrane resulting from the exposure to the inhibiting EM waves. It was concluded that finding out the inhibiting resonance frequency of ELF-EM waves that deteriorates Salm. typhi growth will be promising method for the treatment of Salm. typhi infection either in vivo or in vitro. This new non-invasive technique for treatment of bacterial infections is of considerable interest for the use in medical and biotechnological applications. © 2014 The Society for Applied Microbiology.

  6. Development of Search-Coil Magnetometer for Ultra Low Frequency (ULF) Wave Observations at Jang Bogo Station in Antarctica

    Science.gov (United States)

    Lee, J. K.; Shin, J.; Kim, K. H.; Jin, H.; Kim, H.; Kwon, J.; Lee, S.; Jee, G.; Lessard, M.

    2016-12-01

    A ground-based bi-axial search-coil magnetometer (SCM) has been devloped for observation of time-varying magnetic fields (dB/dt) in the Ultra Low Frequency (ULF) range (a few mHz up to 5 Hz) to understand magnetosphere-ionosphere coupling processes. The SCM consists of magnetic sensors, analog electronics, cables and data acquisition system (DAQ). The bi-axial magnetic sensor has coils of wire wound around a mu-metal cores, each of which measures magnetic field pulsations in the horizontal components, geomagnetic north-south and east-west, respectively. The analog electronics is designed to control the cut-off frequency of the instrument and to amplify detected signals. The DAQ has a 16 bit analog to digital converter (ADC) at the user defined rate of 10 Hz. It is also equipped with the Global Positioning System (GPS) and Network Time Protocol (NTP) for time synchronization and accuracy. We have carried out in-lab performance tests (e.g., frequency response, noise level, etc) using a magnetically shielded case and a field-test in a magnetically quiet location in South Korea. During the field test, a ULF Pi 2 event has been observed clearly. We also confirmed that it was a substorm activity from a fluxgate magnetometer data at Mineyama (35°57.3'N, 135°05'E, geographic). The SCM will be installed and operated at Jang Bogo Antarctic Research Station (74°37.4'S, 164°13.7'E, geographic) on Dec. 2016. The geomagnetic latitude of the station is similar to that of the US McMurdo station (77°51'S, 166°40'E, geographic), both of which are typically near the cusp region. Thus, we expect that the SCM can provide useful information to understand ULF wave propagation characteristics.

  7. WIND observations of coherent electrostatic waves in the solar wind

    Directory of Open Access Journals (Sweden)

    A. Mangeney

    1999-03-01

    Full Text Available The time domain sampler (TDS experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s. waves: coherent wave packets of Langmuir waves with frequencies f ~ fpe, coherent wave packets with frequencies in the ion acoustic range fpi < f < fpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ~ 25λD, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations. The type (wave packet or IES of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.Key words

  8. Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone: A case study

    International Nuclear Information System (INIS)

    Peterson, W.K.; Shelley, E.G.; Boardsen, S.A.; Gurnett, D.A.; Ledley, B.G.; Sugiura, M.; Moore, T.E.; Waite, J.H.

    1988-01-01

    The transport of ions from the ionosphere to the magnetosphere requires that ions acquire significant energy in directions both transverse and parallel to the magnetic field. There is a considerable body of experimental evidence that shows that transverse energization occurs over a wide range of altitudes on auroral field lines. Many recent analytical and simulation studies have addressed the microphysics involved in transverse ion energization. There are, however, remarkably few published high-resolution plasma and plasma wave observations obtained in the mid-altitude auroral region available to compare with the analytical and simulation studies. Several hundred hours of high-resolution plasma data obtained from the Dynamics Explorer 1 satellite have been surveyed. A wide variety of plasma environments that are difficult to simply characterize were found. We present here a comprehensive set of high-sensitivity, high-resolution plasma wave, ion, and magnetometer data obtained from an evening auroral zone crossing at r/R/sub E/∼3. The total density, thermal structure, and composition of the plasma in this representative interval varied rapidly, as did the character (mode) of low-frequency plasma waves observed. We did not find an unambiguous particle and wave signature of local transverse ion energization, but we did frequently find intervals where local transverse ion heating was consistent with the observations. We also found a downward flowing ion distribution that occurred simultaneously with a region of intense plasma wave emissions primarily below the lower hybrid resonance frequency. copyright American Geophysical Union 1988

  9. Low frequency acoustic waves from explosive sources in the atmosphere

    Science.gov (United States)

    Millet, Christophe; Robinet, Jean-Christophe; Roblin, Camille; Gloerfelt, Xavier

    2006-11-01

    In this study, a perturbative formulation of non linear euler equations is used to compute the pressure variation for low frequency acoustic waves from explosive sources in real atmospheres. Based on a Dispersion-Relation-Preserving (DRP) finite difference scheme, the discretization provides good properties for both sound generation and long range sound propagation over a variety of spatial atmospheric scales. It also assures that there is no wave mode coupling in the numerical simulation The background flow is obtained by matching the comprehensive empirical global model of horizontal winds HWM-93 (and MSISE-90 for the temperature profile) with meteorological reanalysis of the lower atmosphere. Benchmark calculations representing cases where there is downward and upward refraction (including shadow zones), ducted propagation, and generation of acoustic waves from low speed shear layers are considered for validation. For all cases, results show a very good agreement with analytical solutions, when available, and with other standard approaches, such as the ray tracing and the normal mode technique. Comparison of calculations and experimental data from the high explosive ``Misty Picture'' test that provided the scaled equivalent airblast of an 8 kt nuclear device (on May 14, 1987), is also considered. It is found that instability waves develop less than one hour after the wavefront generated by the detonation passes.

  10. Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial

    Directory of Open Access Journals (Sweden)

    Riaz U. Ahmed

    2014-11-01

    Full Text Available This letter presents the possibility of energy scavenging (ES utilizing the physics of acousto-elastic metamaterial (AEMM at low frequencies (<∼3KHz. It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester, simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz, maximum power in the micro Watts (∼35µW range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW between 0.2 KHz and 1.5 KHz acoustic frequencies.

  11. Azimuthal propagation and frequency characteristic of compressional Pc 5 waves observed at geostationary orbit

    International Nuclear Information System (INIS)

    Takahashi, K.; Higbie, P.R.; Baker, D.N.

    1985-01-01

    Energetic particle data from the 1977-007 and 1979-053 satellites and magnetic field data from the GOES 2 and 3 satellites have been used to study eight compressional Pc 5 wave events observed at geostationary orbit during 1979. All the events occurred on the dayside, and most of them were observed during the recovery phase of a geomagnetic storm. By using the data from two of the satellites which were close to each other, we measured the azimuthal phase velocity V/sub phi/ and azimuthal wave number m for selected intervals. For all these intervals the waves propagated westward in the spacecraft frame, and we obtained Vertical Bar V/sub phi/ Vertical Bar = 4--14 km/s and Vertical Bar m Vertical Bar = 40--120. In addition, harmonics of a local standing Alfven wave were often present simultaneously with a compressional Pc 5 wave. The frequency of the compressional wave was typically 25% of that of the second harmonic of the Alfven wave. These observed features are discussed in the light of existing theories of instabilities in the ring current plasma

  12. Pseudo-real-time low-pass filter in ECG, self-adjustable to the frequency spectra of the waves.

    Science.gov (United States)

    Christov, Ivaylo; Neycheva, Tatyana; Schmid, Ramun; Stoyanov, Todor; Abächerli, Roger

    2017-09-01

    The electrocardiogram (ECG) acquisition is often accompanied by high-frequency electromyographic (EMG) noise. The noise is difficult to be filtered, due to considerable overlapping of its frequency spectrum to the frequency spectrum of the ECG. Today, filters must conform to the new guidelines (2007) for low-pass filtering in ECG with cutoffs of 150 Hz for adolescents and adults, and to 250 Hz for children. We are suggesting a pseudo-real-time low-pass filter, self-adjustable to the frequency spectra of the ECG waves. The filter is based on the approximation procedure of Savitzky-Golay with dynamic change in the cutoff frequency. The filter is implemented pseudo-real-time (real-time with a certain delay). An additional option is the automatic on/off triggering, depending on the presence/absence of EMG noise. The analysis of the proposed filter shows that the low-frequency components of the ECG (low-power P- and T-waves, PQ-, ST- and TP-segments) are filtered with a cutoff of 14 Hz, the high-power P- and T-waves are filtered with a cutoff frequency in the range of 20-30 Hz, and the high-frequency QRS complexes are filtered with cutoff frequency of higher than 100 Hz. The suggested dynamic filter satisfies the conflicting requirements for a strong suppression of EMG noise and at the same time a maximal preservation of the ECG high-frequency components.

  13. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2018-03-01

    Full Text Available Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE. The SNIPE mission consists of four nanosatellites (~10 kg, which will be launched into a polar orbit at an altitude of 600 km (TBD in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  14. WIND observations of coherent electrostatic waves in the solar wind

    Directory of Open Access Journals (Sweden)

    A. Mangeney

    Full Text Available The time domain sampler (TDS experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s. waves: coherent wave packets of Langmuir waves with frequencies f ~ fpe, coherent wave packets with frequencies in the ion acoustic range fpi < f < fpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ~ 25λD, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations. The type (wave packet or IES of the observed LF waves is mainly determined

  15. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  16. SCALAR AND VECTOR NONLINEAR DECAYS OF LOW-FREQUENCY ALFVÉN WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan 3 Avenue Circulaire, B-1180 Brussels (Belgium)

    2015-02-01

    We found several efficient nonlinear decays for Alfvén waves in the solar wind conditions. Depending on the wavelength, the dominant decay is controlled by the nonlinearities proportional to either scalar or vector products of wavevectors. The two-mode decays of the pump MHD Alfvén wave into co- and counter-propagating product Alfvén and slow waves are controlled by the scalar nonlinearities at long wavelengths ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}<ω{sub 0}/ω{sub ci} (k {sub 0} is wavenumber perpendicular to the background magnetic field, ω{sub 0} is frequency of the pump Alfvén wave, ρ {sub i} is ion gyroradius, and ω {sub ci} is ion-cyclotron frequency). The scalar decays exhibit both local and nonlocal properties and can generate not only MHD-scale but also kinetic-scale Alfvén and slow waves, which can strongly accelerate spectral transport. All waves in the scalar decays propagate in the same plane, hence these decays are two-dimensional. At shorter wavelengths, ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}>ω{sub 0}/ω{sub ci}, three-dimensional vector decays dominate generating out-of-plane product waves. The two-mode decays dominate from MHD up to ion scales ρ {sub i} k {sub 0} ≅ 0.3; at shorter scales the one-mode vector decays become stronger and generate only Alfvén product waves. In the solar wind the two-mode decays have high growth rates >0.1ω{sub 0} and can explain the origin of slow waves observed at kinetic scales.

  17. Clamped seismic metamaterials: ultra-low frequency stop bands

    International Nuclear Information System (INIS)

    Achaoui, Y; Enoch, S; Guenneau, S; Antonakakis, T; Brûlé, S; Craster, R V

    2017-01-01

    The regularity of earthquakes, their destructive power, and the nuisance of ground vibration in urban environments, all motivate designs of defence structures to lessen the impact of seismic and ground vibration waves on buildings. Low frequency waves, in the range 1–10 Hz for earthquakes and up to a few tens of Hz for vibrations generated by human activities, cause a large amount of damage, or inconvenience; depending on the geological conditions they can travel considerable distances and may match the resonant fundamental frequency of buildings. The ultimate aim of any seismic metamaterial, or any other seismic shield, is to protect over this entire range of frequencies; the long wavelengths involved, and low frequency, have meant this has been unachievable to date. Notably this is scalable and the effects also hold for smaller devices in ultrasonics. There are three approaches to obtaining shielding effects: bragg scattering, locally resonant sub-wavelength inclusions and zero-frequency stop-band media. The former two have been explored, but the latter has not and is examined here. Elastic flexural waves, applicable in the mechanical vibrations of thin elastic plates, can be designed to have a broad zero-frequency stop-band using a periodic array of very small clamped circles. Inspired by this experimental and theoretical observation, all be it in a situation far removed from seismic waves, we demonstrate that it is possible to achieve elastic surface (Rayleigh) wave reflectors at very large wavelengths in structured soils modelled as a fully elastic layer periodically clamped to bedrock. We identify zero frequency stop-bands that only exist in the limit of columns of concrete clamped at their base to the bedrock. In a realistic configuration of a sedimentary basin 15 m deep we observe a zero frequency stop-band covering a broad frequency range of 0–30 Hz. (paper)

  18. Parametric excitation of very low frequency (VLF) electromagnetic whistler waves and interaction with energetic electrons in radiation belt

    Science.gov (United States)

    Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.

    2018-04-01

    The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.

  19. Observations of a low-frequency cutoff in magnetospheric radio noise received on Imp 6

    International Nuclear Information System (INIS)

    Vesecky, J.F.; Frankel, M.S.

    1975-01-01

    Observations of magnetospheric radio noise by the Goddard Space Flight Center radio experiment on the Imp 6 spacecraft have revealed a quasi-continuous component at frequencies between 30 and 110 kHz. When the spacecraft is in the interplanetary medium or the magnetosheath, a low-frequency cutoff often characterizes the otherwise power law (f - /sup alpha/) spectrum of this noise. A positive correlation is observed between this cutoff frequency f) and the solar wind plasma frequency f), deduced from the Los Alamos plasma experiment on the same spacecraft; on the average, f)approx. =1.3f). If one pictures the magnetosheath as a homogeneous layer of plasma lying between the radio noise source (at Lapprox.4--7) and the spacecraft in the interplanetary medium and having an electron density 2--3 times that of the solar wind, then one will expect f)approximately-greater-than2 1 / 2 f)--3 1 / 2 f). Within the limits of experimental error this simple model correctly accounts for the observations. A rough calculation shows that radio wave scattering by electron density fluctuations in the magnetosheath plasma is likely to be important for frequencies below 200 kHz. However, the effects of such scattering cannot be detected in the Imp 6 observations considered here because neither concurrent measurements nor sufficiently accurate models of the necessar []magnetosheath plasma parameters are presently available

  20. Sensitivity of new detection method for ultra-low frequency gravitational waves with pulsar spin-down rate statistics

    Science.gov (United States)

    Yonemaru, Naoyuki; Kumamoto, Hiroki; Takahashi, Keitaro; Kuroyanagi, Sachiko

    2018-04-01

    A new detection method for ultra-low frequency gravitational waves (GWs) with a frequency much lower than the observational range of pulsar timing arrays (PTAs) was suggested in Yonemaru et al. (2016). In the PTA analysis, ultra-low frequency GWs (≲ 10-10 Hz) which evolve just linearly during the observation time span are absorbed by the pulsar spin-down rates since both have the same effect on the pulse arrival time. Therefore, such GWs cannot be detected by the conventional method of PTAs. However, the bias on the observed spin-down rates depends on relative direction of a pulsar and GW source and shows a quadrupole pattern in the sky. Thus, if we divide the pulsars according to the position in the sky and see the difference in the statistics of the spin-down rates, ultra-low frequency GWs from a single source can be detected. In this paper, we evaluate the potential of this method by Monte-Carlo simulations and estimate the sensitivity, considering only the "Earth term" while the "pulsar term" acts like random noise for GW frequencies 10-13 - 10-10 Hz. We find that with 3,000 milli-second pulsars, which are expected to be discovered by a future survey with the Square Kilometre Array, GWs with the derivative of amplitude of about 3 × 10^{-19} {s}^{-1} can in principle be detected. Implications for possible supermassive binary black holes in Sgr* and M87 are also given.

  1. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  2. Theory of charged particle heating by low-frequency Alfven waves

    International Nuclear Information System (INIS)

    Guo Zehua; Crabtree, Chris; Chen, Liu

    2008-01-01

    The heating of charged particles by a linearly polarized and obliquely propagating shear Alfven wave (SAW) at frequencies a fraction of the charged particle cyclotron frequency is demonstrated both analytically and numerically. Applying Lie perturbation theory, with the wave amplitude as the perturbation parameter, the resonance conditions in the laboratory frame are systematically derived. At the lowest order, one recovers the well-known linear cyclotron resonance condition k parallel v parallel -ω-nΩ=0, where v parallel is the particle velocity parallel to the background magnetic field, k parallel is the parallel wave number, ω is the wave frequency, Ω is the gyrofrequency, and n is any integer. At higher orders, however, one discovers a novel nonlinear cyclotron resonance condition given by k parallel v parallel -ω-nΩ/2=0. Analytical predictions on the locations of fixed points, widths of resonances, and resonance overlapping criteria for global stochasticity are also found to agree with those given by computed Poincare surfaces of section

  3. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    Science.gov (United States)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  4. Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies

    Institute of Scientific and Technical Information of China (English)

    Tang Wen-Lin; Tian Gui-Hua

    2011-01-01

    Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their analytic ground eigenvalues and eigenfunctions are obtained by means of a series in low frequency. The ground eigenvalue and eigenfunction for small complex frequencies are numerically determined.

  5. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  6. LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, B.; Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Greenhill, L. J.; Bernardi, G.; De Oliveira-Costa, A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Tingay, S. J.; Gaensler, B. M. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), School of Physics, The University of Sydney, Sydney, NSW (Australia); Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune (India); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Arcus, W.; Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Perth (Australia); Barnes, D. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne (Australia); Bunton, J. D. [CSIRO Astronomy and Space Science, Canberra (Australia); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA (United States); Deshpande, A. [Raman Research Institute, Bangalore (India); DeSouza, L. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Goeke, R. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); and others

    2013-01-01

    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.

  7. Frequency-dependent Alfvén-wave Propagation in the Solar Wind: Onset and Suppression of Parametric Decay Instability

    Science.gov (United States)

    Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.

    2018-06-01

    Using numerical simulations we investigate the onset and suppression of parametric decay instability (PDI) in the solar wind, focusing on the suppression effect by the wind acceleration and expansion. Wave propagation and dissipation from the coronal base to 1 au is solved numerically in a self-consistent manner; we take into account the feedback of wave energy and pressure in the background. Monochromatic waves with various injection frequencies, f 0, are injected to discuss the suppression of PDI, while broadband waves are applied to compare the numerical results with observation. We find that high-frequency ({f}0≳ {10}-3 {Hz}) Alfvén waves are subject to PDI. Meanwhile, the maximum growth rate of the PDI of low-frequency ({f}0≲ {10}-4 {Hz}) Alfvén waves becomes negative due to acceleration and expansion effects. Medium-frequency ({f}0≈ {10}-3.5 {Hz}) Alfvén waves have a positive growth rate but do not show the signature of PDI up to 1 au because the growth rate is too small. The medium-frequency waves experience neither PDI nor reflection so they propagate through the solar wind most efficiently. The solar wind is shown to possess a frequency-filtering mechanism with respect to Alfvén waves. The simulations with broadband waves indicate that the observed trend of the density fluctuation is well explained by the evolution of PDI while the observed cross-helicity evolution is in agreement with low-frequency wave propagation.

  8. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  9. Solar observations with a low frequency radio telescope

    Science.gov (United States)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  10. Low-frequency permittivity of spin-density wave in (TMTSF)2PF6 at low temperatures

    DEFF Research Database (Denmark)

    Nad, F.; Monceau, P.; Bechgaard, K.

    1995-01-01

    Conductivity and permittivity epsilon of(TMTSF)(2)PF6 have been measured at low frequencies of (10(2)-10(7) Hz) at low temperatures below the spin-density wave (SDW) transition temperature T-p. The temperature dependence of the conductivity shows a deviation from thermally activated behavior at T...

  11. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide

    Science.gov (United States)

    Jiang, Changyong; Huang, Lixi

    2018-03-01

    In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.

  12. Low frequency sonic waves assisted cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator.

    Science.gov (United States)

    Murugesan, Sivananth; Iyyaswami, Regupathi

    2017-08-15

    Low frequency sonic waves, less than 10kHz were introduced to assist cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator present within the crude broth. Process parameters including surfactant system variables and sonication parameters were studied for their effect on extraction efficiency. Introduction of low frequency sonic waves assists in the dissolution of microbial cell wall by the surfactant micelles and release of cellular content, polyhydroxyalkanoate granules released were encapsulated by the micelle core which was confirmed by crotonic acid assay. In addition, sonic waves resulted in the separation of homogeneous surfactant and broth mixture into two distinct phases, top aqueous phase and polyhydroxyalkanoate enriched bottom surfactant rich phase. Mixed surfactant systems showed higher extraction efficiency compared to that of individual Triton X-100 concentrations, owing to increase in the hydrophobicity of the micellar core and its interaction with polyhydroxyalkanoate. Addition of salts to the mixed surfactant system induces screening of charged surfactant head groups and reduces inter-micellar repulsion, presence of ammonium ions lead to electrostatic repulsion and weaker cation sodium enhances the formation of micellar network. Addition of polyethylene glycol 8000 resulted in increasing interaction with the surfactant tails of the micelle core there by reducing the purity of polyhydroxyalkanoate. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    Science.gov (United States)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  14. Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method

    Institute of Scientific and Technical Information of China (English)

    Tang Wen-Lin; Tian Gui-Hua

    2011-01-01

    The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.

  15. Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone - A case study

    Science.gov (United States)

    Peterson, W. K.; Shelley, E. G.; Boardsen, S. A.; Gurnett, D. A.; Ledley, B. G.; Sugiura, M.; Moore, T. E.

    1988-01-01

    Evidence of transverse ion energization at altitudes of several earth radii in the auroral zone was reexamined using several hundred hours of high-sensitivity and high-resolution plasma data obtained by the Dynamics Explorer 1 satellite. The data on particle environment encountered at midaltitudes in the auroral zone disclosed rapid variations in the values of total density, thermal structure, and composition of the plasma in the interval measured; the modes of low-frequency plasma waves also varied rapidly. It was not possible to unambiguously identify in these data particle and wave signature of local transverse ion energization; however, many intervals were found where local transverse ion heating was consistent with the observations.

  16. The potential for very high-frequency gravitational wave detection

    International Nuclear Information System (INIS)

    Cruise, A M

    2012-01-01

    The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies. (paper)

  17. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment.

    Science.gov (United States)

    Gérard, Merlin; Noamen, Omri; Evelyne, Gonze; Eric, Valette; Gilles, Cauffet; Marc, Henry

    2015-10-15

    This study aims to elucidate the interactions between water, subjected to electromagnetic waves of very low frequency (VLF) (kHz) with low strength electromagnetic fields (3.5 mT inside the coils), and the development of microbial biofilms in this exposed water. Experimental results demonstrate that in water exposed to VLF electromagnetic waves, the biomass of biofilm is limited if hydraulic continuity is achieved between the electromagnetic generator and the biofilm media. The measured amount of the biofilm's biomass is approximately a factor two lower for exposed biofilm than the non-exposed biofilm. Measurements of electromagnetic fields in the air and simulations exhibit very low intensities of fields (electromagnetic generator. Exposure to electric and magnetic fields of the quoted intensities cannot explain thermal and ionizing effects on the biofilm. A variable electrical potential with a magnitude close to 20 mV was detected in the tank in hydraulic continuity with the electromagnetic generator. The application of quantum field theory may help to explain the observed effects in this case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Observations of low-frequency radio emissions in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Filbert, P.C.; Kellogg, P.J.

    1989-01-01

    A study is made of electromagnetic radiation in the Earth's magnetosphere in the frequency range between 10 kHz and 80 kHz using data from the University of Minnesota Plasma Wave Experiment aboard the IMP 6 satellite. Two types of radio emissions are investigated. First is the nonthermal continuum radiation, it is found that discrete enhancements above ambient levels are correlated with enhancements of the magnetic substorm index AE and appear to follow the onset of the negative bay feature of the AU index by about 20 min or so. The directions of these discrete source regions of continuum radiation are measured as a function of time, and movement of the source region in a dusk-to-dawn direction is directly observed. This drift motion is used to measure the energy of the generating electrons by a time-of-flight method, and a range between 10 keV and 50 keV is found in agreement with previous studies. A second type of radiation is also observed which correlates with auroral kilometric radiation (AKR) on a time scale of ∼ 1 min. This radiation lies between 10 and 60 kHz with a spectral peak near 30 kHz and is found to have a source direction very near that of the coincident AKR. The lower frequency of the spectral peak, in conjunction with the analysis of the spin-modulated wave data, suggests a source location at a higher elevation than the higher-frequency AKR indicating a source altitude of roughly 3 Earth radii

  19. Low amplitude rhythmic contraction frequency in human detrusor strips correlates with phasic intravesical pressure waves.

    Science.gov (United States)

    Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P

    2017-08-01

    Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.

  20. Attenuation bands and cut-off frequencies for ELF electromagnetic waves

    International Nuclear Information System (INIS)

    Rauch, J.L.; Lefeuvre, F.; Cerisier, J.C.; Berthelier, J.J.; Boud'ko, N.; Michailova, G.; Kapustina, O.

    1985-01-01

    The propagation characteristic of ELF (10 Hz - 1500 Hz) electromagnetic waves observed on ARCAD 3, in three different zones: low L value (L 6). Unambiguous determinations of the wave normal directions are obtained from the interpretations of the measurements of four (3 magnetic, 1 electric) wave field components. The technique that is used, is based on the Means method in the cases of highly polarized waves and on the Storey and Lefeuvre WDF method in the other cases. A particular emphasis is put on the propagation characteristics of the waves, in a multiple ion plasma, and on the cut-off frequencies which appear at and below the local proton gyrofrequency

  1. Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5° N, 79.2° E

    Directory of Open Access Journals (Sweden)

    V. Sivakumar

    2006-05-01

    Full Text Available The low-latitude middle atmospheric gravity wave characteristics are presented using 310 nights of Rayleigh lidar observations made at Gadanki (13.5° N, 79.2° E over the period from March 1998 to December 2002. The gravity wave characteristics are presented in terms of vertical wave number and frequency spectra, along with the estimated potential energy for the four seasons, namely, spring, summer, autumn and winter. The computed wave number spectra for both the stratosphere and the mesosphere are found to differ significantly from a saturated model predicted spectrum. The spectra were found to be shallower at lower wave numbers and steeper at higher wave numbers with transition at ~8.85×10-4 cy/m. The computed frequency spectra seem to follow the model plot with a power law index of -5/3 above a frequency of ~2×10-4 Hz. The estimated potential energy per unit mass increases gradually up to ~60 km and then rather rapidly above this height to reach values of the order of 200J/kg at ~70 km.

  2. MMS Observations of Harmonic Electromagnetic Cyclotron Waves

    Science.gov (United States)

    Usanova, M.; Ahmadi, N.; Ergun, R.; Trattner, K. J.; Fuselier, S. A.; Torbert, R. B.; Mauk, B.; Le Contel, O.; Giles, B. L.; Russell, C. T.; Burch, J.; Strangeway, R. J.

    2017-12-01

    Harmonically related electromagnetic ion cyclotron waves with the fundamental frequency near the O+ cyclotron frequency were observed by the four MMS spacecraft on May 20, 2016. The wave activity was detected by the spacecraft on their inbound passage through the Earth's morning magnetosphere during generally quiet geomagnetic conditions but enhanced solar wind dynamic pressure. It was also associated with an enhancement of energetic H+ and O+ ions. The waves are seen in both magnetic and electric fields, formed by over ten higher order harmonics, most pronounced in the electric field. The wave activity lasted for about an hour with some wave packets giving rise to short-lived structures extending from Hz to kHz range. These observations are particularly interesting since they suggest cross-frequency coupling between the lower and higher frequency modes. Further work will focus on examining the nature and role of these waves in the energetic particle dynamics from a theoretical perspective.

  3. Observation of disturbance in the lower ionosphere due to standard very low frequency transmission

    International Nuclear Information System (INIS)

    Muraoka, Yoshikazu; Murata, Hiroo; Sato, Teruo

    1976-01-01

    A number of trials to make clear the disturbance phenomena of the lower ionosphere have been carried out by observing the phase and intensity of standard very low frequency waves. Here, the sudden phase anomaly (SPA) and the storm after-effect are discussed, based on the data obtained so far. In the observation of VLF waves, the height of reflecting point of the ionosphere is lowered by the ionization with solar X-ray accompanying flares, and the phase angle generally advances. The SPS was observed to determine the quantitative relation between this phase deviation and the solar X-ray flux as a function of solar zenith angle. The lower ionosphere disturbance which occurs subsequently to magnetic storm is a phenomenon specific to middle latitudes, and called storm after-effect. The observations were carried out to clarify the form of the after-effect by comparing its characteristics with the result of theoretical discussions. Concerning the storm after-effect, it was made clear that its duration considerably changed with the value of Dst, and it showed a different aspect during winter. It was also made clear that a part of the complicated aspect of phase angle change in winter was caused by the storm after-effect. (Wakatsuki, Y.)

  4. MESSENGER Observations of ULF Waves in Mercury's Foreshock Region

    Science.gov (United States)

    Le, Guan; Chi, Peter J.; Bardsen, Scott; Blanco-Cano, Xochitl; Slavin, James A.; Korth, Haje

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth s is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury s bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury s foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury s foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the 1-Hz waves in the Earth s foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth s foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  5. STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks

    Science.gov (United States)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  6. Biophysical control of the growth of Agrobacterium tumefaciens using extremely low frequency electromagnetic waves at resonance frequency.

    Science.gov (United States)

    Fadel, M Ali; El-Gebaly, Reem H; Mohamed, Shaimaa A; Abdelbacki, Ashraf M M

    2017-12-09

    Isolated Agrobacterium tumefaciens was exposed to different extremely low frequencies of square amplitude modulated waves (QAMW) from two generators to determine the resonance frequency that causes growth inhibition. The carrier was 10 MHz sine wave with amplitude ±10 Vpp which was modulated by a second wave generator with a modulation depth of ± 2Vpp and constant field strength of 200 V/m at 28 °C. The exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min inhibited the bacterial growth by 49.2%. In addition, the tested antibiotics became more effective against A. tumefaciens after the exposure. Furthermore, results of DNA, dielectric relaxation and TEM showed highly significant molecular and morphological changes due to the exposure to 1.0 Hz QAMW for 90 min. An in-vivo study has been carried out on healthy tomato plants to test the pathogenicity of A. tumefaciens before and after the exposure to QAMW at the inhibiting frequency. Symptoms of crown gall and all pathological symptoms were more aggressive in tomato plants treated with non-exposed bacteria, comparing with those treated with exposed bacteria. We concluded that, the exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min modified its cellular activity and DNA structure, which inhibited the growth and affected the microbe pathogenicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    Science.gov (United States)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  8. ON THE FLARE INDUCED HIGH-FREQUENCY GLOBAL WAVES IN THE SUN

    International Nuclear Information System (INIS)

    Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; GarcIa, R. A.

    2010-01-01

    Recently, Karoff and Kjeldsen presented evidence of strong correlation between the energy in the high-frequency part (5.3 < ν < 8.3 mHz) of the acoustic spectrum of the Sun and the solar X-ray flux. They have used disk-integrated intensity observations of the Sun obtained from the Variability of solar IRradiance and Gravity Oscillations instrument on board Solar and Heliospheric Observatory (SOHO) spacecraft. Similar signature of flares in velocity observations has not been confirmed till now. The study of low-degree high-frequency waves in the Sun is important for our understanding of the dynamics of the deeper solar layers. In this Letter, we present the analysis of the velocity observations of the Sun obtained from the Michelson and Doppler Imager (MDI) and the Global Oscillations at Low Frequencies (GOLF) instruments on board SOHO for some major flare events of the solar cycle 23. Application of wavelet techniques to the time series of disk-integrated velocity signals from the solar surface using the full-disk Dopplergrams obtained from the MDI clearly indicates that there is enhancement of high-frequency global waves in the Sun during the flares. This signature of flares is also visible in the Fourier Power Spectrum of these velocity oscillations. On the other hand, the analysis of disk-integrated velocity observations obtained from the GOLF shows only marginal evidence of effects of flares on high-frequency oscillations.

  9. THE LOW-FREQUENCY CHARACTERISTICS OF PSR J0437–4715 OBSERVED WITH THE MURCHISON WIDE-FIELD ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; Tingay, S. J.; Oronsaye, S.; Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Van Straten, W.; Briggs, F. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Curtin University, Bentley, WA 6102 (Australia); Bernardi, G. [Square Kilometre Array South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405 (South Africa); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Goeke, R.; Hewitt, J. N. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J.; Kasper, J. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); and others

    2014-08-20

    We report on the detection of the millisecond pulsar PSR J0437–4715 with the Murchison Wide-field Array (MWA) at a frequency of 192 MHz. Our observations show rapid modulations of pulse intensity in time and frequency that arise from diffractive scintillation effects in the interstellar medium (ISM), as well as prominent drifts of intensity maxima in the time-frequency plane that arise from refractive effects. Our analysis suggests that the scattering screen is located at a distance of ∼80-120 pc from the Sun, in disagreement with a recent claim that the screen is closer (∼10 pc). Comparisons with higher frequency data from Parkes reveal a dramatic evolution of the pulse profile with frequency, with the outer conal emission becoming comparable in strength to that from the core and inner conal regions. As well as demonstrating the high time resolution science capabilities currently possible with the MWA, our observations underscore the potential to conduct low-frequency investigations of timing-array millisecond pulsars, which may lead to increased sensitivity in the detection of nanoHertz gravitational waves via the accurate characterization of ISM effects.

  10. Extracting a shape function for a signal with intra-wave frequency modulation.

    Science.gov (United States)

    Hou, Thomas Y; Shi, Zuoqiang

    2016-04-13

    In this paper, we develop an effective and robust adaptive time-frequency analysis method for signals with intra-wave frequency modulation. To handle this kind of signals effectively, we generalize our data-driven time-frequency analysis by using a shape function to describe the intra-wave frequency modulation. The idea of using a shape function in time-frequency analysis was first proposed by Wu (Wu 2013 Appl. Comput. Harmon. Anal. 35, 181-199. (doi:10.1016/j.acha.2012.08.008)). A shape function could be any smooth 2π-periodic function. Based on this model, we propose to solve an optimization problem to extract the shape function. By exploring the fact that the shape function is a periodic function with respect to its phase function, we can identify certain low-rank structure of the signal. This low-rank structure enables us to extract the shape function from the signal. Once the shape function is obtained, the instantaneous frequency with intra-wave modulation can be recovered from the shape function. We demonstrate the robustness and efficiency of our method by applying it to several synthetic and real signals. One important observation is that this approach is very stable to noise perturbation. By using the shape function approach, we can capture the intra-wave frequency modulation very well even for noise-polluted signals. In comparison, existing methods such as empirical mode decomposition/ensemble empirical mode decomposition seem to have difficulty in capturing the intra-wave modulation when the signal is polluted by noise. © 2016 The Author(s).

  11. Lower Hybrid Frequency Range Waves Generated by Ion Polarization Drift Due to Electromagnetic Ion Cyclotron Waves: Analysis of an Event Observed by the Van Allen Probe B

    Science.gov (United States)

    Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.

    2017-01-01

    We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of approximately 0.86. We assume that the correlation is the result of LHFR wave generation by the ions polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD)parallel and perpendicular to the ambient magnetic eld to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions polarization drift in the electric field of an EMIC wave.

  12. Alfvén waves in the foreshock propagating upstream in the plasma rest frame: statistics from Cluster observations

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2004-07-01

    Full Text Available We statistically study various properties of low-frequency waves such as frequencies, wave numbers, phase velocities, and polarization in the plasma rest frame in the terrestrial foreshock. Using Cluster observations the wave telescope or k-filtering is applied to investigate wave numbers and rest frame frequencies. We find that most of the foreshock waves propagate upstream along the magnetic field at phase velocity close to the Alfvén velocity. We identify that frequencies are around 0.1xΩcp and wave numbers are around 0.1xΩcp/VA, where Ωcp is the proton cyclotron frequency and VA is the Alfvén velocity. Our results confirm the conclusions drawn from ISEE observations and strongly support the existence of Alfvén waves in the foreshock.

  13. The application of low frequency longitudinal guided wave mode for the inspection of multi-hole steel floral pipes

    International Nuclear Information System (INIS)

    Liu, Z H; Xie, X D; Wu, B; Li, Y H; He, C F

    2012-01-01

    Shed-pipe grouting technology, an effective advanced supporting method, is often used in the excavation of soft strata. Steel floral pipes are one of the key load-carrying components of shed-pipe grouting supporting structures. Guided waves are a very attractive methodology to inspect multi-hole steel floral pipes as they offer long range inspection capability, mode and frequency tuning, and cost effectiveness. In this contribution, preliminary experiments are described for the inspection of steel floral pipes using a low frequency longitudinal guided wave mode, L(0,2). The relation between the number of grouting holes and the peak-to-peak amplitude of the first end-reflected signal was obtained. The effect of the grouting holes in steel floral pipes on the propagation velocity of the L(0,2) mode at 30 kHz was analyzed. Experimental results indicate that the typical grouting holes in steel floral pipe have no significant effect on the propagation of this mode. As a result, low frequency longitudinal guided wave modes have potential for the non-destructive long range inspection of multi-hole steel floral pipes. Furthermore, the propagation velocity of the investigated L(0,2) mode at 30 kHz decreases linearly with the increase of the number of grouting holes in a steel floral pipe. It is also noticeable that the effect of the grouting holes cumulates along with the increase in the number of grouting holes and subsequent increase in reflection times of longitudinal guided waves in the steel floral pipe. The application potential of the low frequency longitudinal guided wave technique for the inspection of embedded steel floral pipes is discussed.

  14. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    Science.gov (United States)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-01-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  15. Experimental investigation of standing wave effect in dual-frequency capacitively coupled argon discharges: role of a low-frequency source

    Science.gov (United States)

    Zhao, Kai; Liu, Yong-Xin; Kawamura, E.; Wen, De-Qi; Lieberman, M. A.; Wang, You-Nian

    2018-05-01

    It is well known that the plasma non-uniformity caused by the standing wave effect has brought about great challenges for plasma material processing. To improve the plasma uniformity, a low-frequency (LF) power source is introduced into a 100 MHz very-high-frequency (VHF) capacitively coupled argon plasma reactor. The effect of the LF parameters (LF voltage amplitude ϕ L and LF source f L) on the radial profile of plasma density has been investigated by utilizing a hairpin probe. The result at a low pressure (1 Pa) is compared to the one obtained by a 2D fluid-analytical capacitively coupled plasma model, showing good agreement in the plasma density radial profile. The experimental results show that the plasma density profile exhibits different dependences on ϕ L and f L at different gas pressures/electrode driven types (i.e., the two rf sources are applied on one electrode (case I) and separate electrodes (case II)). At low pressures (e.g., 8 Pa), the pronounced standing wave effect revealed in a VHF discharge can be suppressed at a relatively high ϕ L or a low f L in case I, because the HF sheath heating is largely weakened due to strong modulation by the LF source. By contrast, ϕ L and f L play insignificant roles in suppressing the standing wave effect in case II. At high pressures (e.g., 20 Pa), the opposite is true. The plasma density radial profile is more sensitive to ϕ L and f L in case II than in case I. In case II, the standing wave effect is surprisingly enhanced with increasing ϕ L at higher pressures; however, the center-high density profile caused by the standing wave effect can be compensated by increasing f L due to the enhanced electrostatic edge effect dominated by the LF source. In contrast, the density radial profile shows a much weaker dependence on ϕ L and f L in case I at higher pressures. To understand the different roles of ϕ L and f L, the electron excitation dynamics in each case are analyzed based on the measured spatio

  16. Technologies for low radio frequency observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, D. L.

    2014-03-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts z > ~20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface. In addition, recent results from laboratory testing of low frequency receiver designs are presented. Finally, several concepts for space-based imaging interferometers utilizing deployable low frequency antennas are described. Some of these concepts involve large numbers of antennas and consequently a large digital cross-correlator will be needed. JPL has studied correlator architectures that greatly reduce the DC power required for this step, which can dominate the power consumption of real-time signal processing. Strengths and weaknesses of each mission concept are discussed in the context of the additional technology development required.

  17. Generation of EMIC Waves Observed by Van Allen Probes at Low L-shells of Earth's Magnetosphere

    Science.gov (United States)

    Gamayunov, K. V.; Zhang, J.; Saikin, A.; Rassoul, H.

    2017-12-01

    In a multi-ion magnetospheric plasma, where the major species are H+, He+, and O+, the He-band of electromagnetic ion cyclotron (EMIC) waves is the dominant band observed in the inner magnetosphere, and waves are generally quasi-field-aligned inside the geostationary orbit. Almost all the satellite-based studies of EMIC waves before Van Allen Probes, however, have not reported waves below L 3.5. There is probably only one exception from the Akebono satellite where both the H-band and He-band EMIC waves were observed at L 2. The situation has changed dramatically after two Van Allen Probes spacecraft were launched on 30 August, 2012, and many EMIC wave events have been observed below L=4. The Van Allen Probes observations confirm that the He-band of EMIC waves is a dominant band in the inner magnetosphere, but the observation of the He-band waves below L=4 is a new and quite unexpected result compared to our knowledge about EMIC waves before the Van Allen Probes era. In addition, observations show that almost all the He-band EMIC waves are linearly polarized in the region L field, and energetic ion distribution functions will be taken from the Van Allen Probes observations during the EMIC wave event to calculate growth rates of EMIC waves. We will then identify the energetic ions responsible for instability, frequencies and normals generated, and physical mechanism of instability.

  18. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    Science.gov (United States)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  19. Observation of magntosphere and ionosphere through HF and VLF standard waves

    International Nuclear Information System (INIS)

    Ogawa, Toru

    1974-01-01

    The observation of magnetosphere and ionosphere through HF and VLF standard waves is a part of the IMS research subject I on the structure and dynamics of the earth's plasmasphere. By receiving the HF and VLF standard waves with high accuracy, and through the changes of the phase and frequency, continuous observation is made concerning the lower plasmasphere at equator and middle/low latitudes and the upper layers in polar regions. In this way, the dynamic state at the time of disturbance such as magnetic storm can be explored. The following matters are described: features of standard-wave observation, purpose and observation plans, the exhcange of data with overseas countries and satellites, and the results of observation expected. (Mori, K.)

  20. Artificial excitation of ELF waves with frequency of Schumann resonance

    Science.gov (United States)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  1. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  2. Investigation of wave emission phenomena in dual frequency capacitive discharges using particle-in-cell simulation

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2014-01-01

    Dual frequency capacitively coupled discharges are widely used during fabrication of modern-day integrated circuits, because of low cost and robust uniformity over broad areas. At low pressure, stochastic or collisionless electron heating is important in such discharges. The stochastic heating occurs adjacent to the sheath edge due to energy transfer from the oscillating high voltage electron sheath to electrons. The present research discusses evidence of wave emission from the sheath in such discharges, with a frequency near the electron plasma frequency. These waves are damped very promptly as they propagate away from the sheath towards the bulk plasma, by Landau damping or some related mechanism. In this work, the occurrence of strong wave phenomena during the expanding and collapsing phase of the low frequency sheath has been investigated. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. The characteristics of waves in the dual-frequency case are entirely different from the single-frequency case studied in earlier works. The existence of a field reversal phenomenon, occurring several times within a lower frequency period in the proximity of the sheath is also reported. Electron trapping near to the field reversal regions also occurs many times during a lower frequency period. The emission of waves is associated with these field reversal regions. It is observed that the field reversal and electron trapping effects appear under conditions typical of many recent experiments, and are consequently of much greater practical interest than similar effects in single frequency discharges, which occur only under extreme conditions that are not usually realized in experiments. (paper)

  3. Characteristics of inertial currents observed in offshore wave records

    Science.gov (United States)

    Gemmrich, J.; Garrett, C.

    2012-04-01

    It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.

  4. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  5. Alfvén waves in the foreshock propagating upstream in the plasma rest frame: statistics from Cluster observations

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2004-07-01

    Full Text Available We statistically study various properties of low-frequency waves such as frequencies, wave numbers, phase velocities, and polarization in the plasma rest frame in the terrestrial foreshock. Using Cluster observations the wave telescope or k-filtering is applied to investigate wave numbers and rest frame frequencies. We find that most of the foreshock waves propagate upstream along the magnetic field at phase velocity close to the Alfvén velocity. We identify that frequencies are around 0.1xΩcp and wave numbers are around 0.1xΩcp/VA, where Ωcp is the proton cyclotron frequency and VA is the Alfvén velocity. Our results confirm the conclusions drawn from ISEE observations and strongly support the existence of Alfvén waves in the foreshock.

  6. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    International Nuclear Information System (INIS)

    Fraser, B.J.; Samson, J.C.; Hu, Y.D.; McPherron, R.L.; Russell, C.T.

    1992-01-01

    Pc 2 electromagnetic ion cyclotron waves at 0.1 waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE 1 and 2 between L = 7.6 and 5.8 on an inbound near-equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width ∼ 1.5 R E and penetrated ∼1 R E into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He + and the warm (0.1-16 keV/e) O + and He + heavy ion populations. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities (E x B)/B 2 were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Poynting fluxes calculated during the first 15 min of the event show wave energy propagation directions both parallel and antiparallel to the field. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event may be attributed to the modulation of this energy source by the Pc 5 waves seen at the same time. Overall, the results are considered an example of an electromagnetic ion cyclotron wave-particle interaction occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase

  7. K2 photometry and HERMES spectroscopy of the blue supergiant ρ Leo: rotational wind modulation and low-frequency waves

    Science.gov (United States)

    Aerts, C.; Bowman, D. M.; Símon-Díaz, S.; Buysschaert, B.; Johnston, C.; Moravveji, E.; Beck, P. G.; De Cat, P.; Triana, S.; Aigrain, S.; Castro, N.; Huber, D.; White, T.

    2018-05-01

    We present an 80-d long uninterrupted high-cadence K2 light curve of the B1Iab supergiant ρ Leo (HD 91316), deduced with the method of halo photometry. This light curve reveals a dominant frequency of frot = 0.0373 d-1 and its harmonics. This dominant frequency corresponds with a rotation period of 26.8 d and is subject to amplitude and phase modulation. The K2 photometry additionally reveals multiperiodic low-frequency variability (<1.5 d-1) and is in full agreement with low-cadence high-resolution spectroscopy assembled during 1800 d. The spectroscopy reveals rotational modulation by a dynamic aspherical wind with an amplitude of about 20 km s-1 in the H α line, as well as photospheric velocity variations of a few km s-1 at frequencies in the range 0.2-0.6 d-1 in the Si III 4567 Å line. Given the large macroturbulence needed to explain the spectral line broadening of the star, we interpret the detected photospheric velocity as due to travelling superinertial low-degree large-scale gravity waves with dominant tangential amplitudes and discuss why ρ Leo is an excellent target to study how the observed photospheric variability propagates into the wind.

  8. Low-Frequency Raman Modes of 2H-TaSe2 in the Charge Density Wave Phase

    Science.gov (United States)

    Chowdhury, Sugata; Simpson, J.; Einstein, T. L.; Hight Walker, A. R.; Theoretical Collaboration

    With changes in temperatures, tantalum diselenide (2H-TaSe2) , a layered, transition metal chalcogenides (TMD) exhibits unique super-lattice structures. The metallic ground state changes to an incommensurate charge density wave (CDW) state at 122?K followed by a commensurate CDW state at 90?K, and eventually a superconducting state 0.14 K. These phase transitions are driven by strong electron-phonon coupling and favored by the particular form of the Fermi surface of these systems. Here we theoretically studied the structural origin of low-frequency Raman modes of bulk 2H-TaSe2\\ in the CDW phases. Our calculations reveal that changes observed in the Raman modes are associated with the thermal expansion in the basal plane of 2H-TaSe2. The Grüneisen parameters of these two Raman modes increase in the CDW phases. Changes in the lattice parameter ``a'' are large compared to ``c'' which induces strain along the a-axis. We compared our results with experimental data which show low-frequency Raman phonon modes are very sensitive to temperature and are not observed in the metallic room-temperature state. In addition, we found that cation displacement is more than anion in CDW phase. Our results may shed more light on exact nature of the CDW instability and optical properties in this system.

  9. Cluster Observations of Non-Time Continuous Magnetosonic Waves

    Science.gov (United States)

    Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.

    2016-01-01

    Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.

  10. ULF wave activity during the 2003 Halloween superstorm: multipoint observations from CHAMP, Cluster and Geotail missions

    Directory of Open Access Journals (Sweden)

    G. Balasis

    2012-12-01

    Full Text Available We examine data from a topside ionosphere and two magnetospheric missions (CHAMP, Cluster and Geotail for signatures of ultra low frequency (ULF waves during the exceptional 2003 Halloween geospace magnetic storm, when Dst reached ~−380 nT. We use a suite of wavelet-based algorithms, which are a subset of a tool that is being developed for the analysis of multi-instrument multi-satellite and ground-based observations to identify ULF waves and investigate their properties. Starting from the region of topside ionosphere, we first present three clear and strong signatures of Pc3 ULF wave activity (frequency 15–100 mHz in CHAMP tracks. We then expand these three time intervals for purposes of comparison between CHAMP, Cluster and Geotail Pc3 observations but also to be able to search for Pc4–5 wave signatures (frequency 1–10 mHz into Cluster and Geotail measurements in order to have a more complete picture of the ULF wave occurrence during the storm. Due to the fast motion through field lines in a low Earth orbit (LEO we are able to reliably detect Pc3 (but not Pc4–5 waves from CHAMP. This is the first time, to our knowledge, that ULF wave observations from a topside ionosphere mission are compared to ULF wave observations from magnetospheric missions. Our study provides evidence for the occurrence of a number of prominent ULF wave events in the Pc3 and Pc4–5 bands during the storm and offers a platform to study the wave evolution from high altitudes to LEO. The ULF wave analysis methods presented here can be applied to observations from the upcoming Swarm multi-satellite mission of ESA, which is anticipated to enable joint studies with the Cluster mission.

  11. USA and RXTE Observations of a Variable Low-Frequency QPO in XTEJ1118+480

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Elliott

    2000-06-29

    The USA experiment on ARGOS and RXTE have extensively observed the X-ray transient XTEJ1118+480 during its recent outburst in 2000 April--June. The authors present detailed monitoring of the evolution of a low frequency QPO which drifts from 0.07 Hz to 0.15 Hz during the outburst. They examine possible correlations of the QPO frequency with the flux and spectral characteristics of the source, and compare this QPO to low frequency QPOs observed in other black hole candidates.

  12. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    Science.gov (United States)

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  13. Observation of Magnetic Waves Excited by Newborn Interstellar Pickup He+ Observed by the Voyager 2 Spacecraft at 30 au

    Energy Technology Data Exchange (ETDEWEB)

    Argall, Matthew R.; Hollick, Sophia J.; Pine, Zackary B., E-mail: Matthew.Argall@unh.edu, E-mail: sjhollick@hotmail.com, E-mail: zbpine@gmail.com [Physics Department and Space Science Center, Morse Hall, University of New Hampshire, Durham, New Hampshire (United States); and others

    2017-11-01

    We report two observations of magnetic waves due to He{sup +} pickup ions observed by the Voyager 2 spacecraft in mid-1989 to demonstrate that such waves occur as far out as ∼30 au from the Sun. The observations are sufficiently far from planets, interplanetary shocks, and other possible sources of energetic particles to make newborn interstellar He{sup +} the only likely explanation for the source of the waves. Additionally, the low-frequency waves that might be expected for a variety of cometary pickup species are not seen. The events studied here were picked from a preliminary list of ∼300 events that were discovered based on polarization signatures in daily spectrograms of the magnetic field between 1977 and 1990. Analysis of those observations is ongoing. We present an analysis of these two observations using the same techniques we have employed for recently reported observations closer to the Sun.

  14. Low-frequency observations of Galactic supernova remnants and the distribution of low-density ionized gas in the interstellar medium

    International Nuclear Information System (INIS)

    Kassim, N.E.

    1989-01-01

    New long-wavelength observations of Galactic SNRs at 30.9 and 57.5 MHz are used to derive detailed low-frequency radio spectra for 32 SNRs. Of these, about two-thirds show turnovers at low frequencies, implying the presence of a widespread, but inhomogeneous, ionized absorbing medium along the lines of sight. These observations are combined with other low-frequency data to derive free-free optical depths toward 457 SNRs and to constrain the physical properties of the ionized gas responsible for the absorption. These optical depths are consistent with the expected absorbing properties of extended H II region envelopes. 43 refs

  15. Effects of the interstellar medium on detection of low-frequency gravitational waves

    International Nuclear Information System (INIS)

    Stinebring, Dan

    2013-01-01

    Time variable delays due to radio wave propagation in the ionized interstellar medium are a substantial source of error in pulsar timing array efforts. We describe the physical origin of these effects, discussing dispersive and scattering effects separately. Where possible, we give estimates of the magnitude of timing errors produced by these effects and their scaling with radio frequency. Although there is general understanding of the interstellar medium propagation errors to be expected with pulsar timing array observations, detailed comparison between theory and practice is still in its infancy, particularly with regard to scattering effects. (paper)

  16. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela

    2016-01-06

    We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.

  17. Characterization of blasts in medium and low thermosphere from infrasonic wave observations

    International Nuclear Information System (INIS)

    Lalande, J.M.

    2012-01-01

    The International Monitoring System (IMS) designed to monitor compliance with the Comprehensive Nuclear Test-Ban Treaty (CTBT) uses four complementary verification methods: seismic, hydro-acoustic, radionuclide and micro-barometric stations spanning the entire globe. Micro-barometric stations record continuously infrasonic waves in the frequency band 0.02-4 Hz. These waves propagate at long-ranges through atmospheric ducts resulting from the natural stratification of atmospheric properties (temperature, density, winds,...) and represent a valuable information to understand atmospheric dynamic until the lower thermosphere. In this thesis, we seek to determine the possible contribution of infra-sound observations for improving current atmospheric specifications. We describe the atmospheric media and its circulation mechanisms as well as the conventional observations used in the development of atmospheric models. A description of the interaction between infrasonic waves and the atmosphere help to understand the interest of micro-barometric measurement compared with conventional observations. To highlight this potential we develop an inverse algorithm in order to estimate atmospheric parameters from infrasonic observations. The forward problem is handled by a ray-tracing algorithm. First-order perturbation equation resulting from perturbation of atmospheric properties, and especially wind parameters, are developed and numerically validated. We then analyse the inverse problem through several numerical experiments in order to show the capabilities and limitations of our algorithm. Results show the suitability of our approach and indicate that infrasonic observations can significantly improve current atmospheric specification at the altitudes of acoustic energy refraction, i.e. around 50 km and between 100 and 120 km. (author)

  18. Experimental observations of the spatial structure of wave-like disturbances generated in midlatitude ionosphere by high power radio waves

    Science.gov (United States)

    Kunitsyn, V.; Andreeva, E.; Padokhin, A. M.; Nazarenko, M.; Frolov, V.; Komrakov, G.; Bolotin, I.

    2012-12-01

    We present the results of the experiments carried out in 2009-2012 on the Sura heating facility (Radio Physical Research Institute, N. Novgorod, Russia) on modification of the midlatitude ionosphere by powerful HF radiowaves. The experiments were conducted using O-mode radiowaves at frequencies lower than critical frequency of the ionospheric F2 layer both in daytime and nighttime ionosphere. Various schemes of the radiation of the heating wave were used including square wave modulation of the effective radiated power (ERP) at various frequencies and power stepping. Radio transmissions of the low- (Parus/Tsikada) and high-orbital (GPS/GLONASS) navigational satellites received at the mobile network of receiving sites were used for the remote sensing of the heated area of the ionosphere. The variations in the slant total electron content (TEC), which are proportional to the reduced phase of navigational signals, were studied for the satellite passes for which ionospheric penetration points crossed the disturbed area during HF heating. The variations in TEC caused by HF heating are identified in a number of examples. It is shown that the GNSS TEC spectra contain frequency components corresponding to the modulation periods of the ERP of the heating wave. The manifestations of the heating-induced variations in TEC are most prominent in the area of magnetic zenith of the pumping wave. Different behavior of TEC variations was observed during nighttime and daytime heating experiments. In daytime conditions the pump wave switched ON causes the increase of TEC while in the nighttime it causes a decrease in TEC. This can be explained by the different contribution of the processes responsible for the increase and decrease of TEC in daytime in nighttime conditions. In this work we also present the first time radiotomographic reconstructions of the spatial structure of the wave-like disturbances, generated in the ionosphere by high-power radio waves radiated by the Sura heater

  19. Measurement of low-frequency noise in rooms

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    Measurement of low-frequency noise in rooms is problematic due to standing wave patterns. The spatial variation in the sound pressure level can typically be as much as 20-30 dB. For assessment of annoyance from low-frequency noise in dwellings, it is important to measure a level close...... rooms. The sound pressure level was measured 1) in three-dimensional corners and 2) according to current Swedish and Danish measurement methods. Furthermore, the entire sound pressure distributions were measured by scanning. The Swedish and Danish measurement methods include a corner measurement...... to the highest level present in a room, rather than a room average level. In order to ensure representative noise measurements, different positions were investigated based on theoretical considerations and observations from numerical room simulations. In addition measurements were performed in three different...

  20. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. I. New observations and linear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, CA (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: raquel.nuno@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States)

    2014-04-01

    We have examined Ulysses magnetic field data using dynamic spectrogram techniques that compute wave amplitude, polarization, and direction of propagation over a broad range of frequencies and time. Events were identified that showed a strong polarization signature and an enhancement of power above the local proton gyrofrequency. We perform a statistical study of 502 wave events in an effort to determine when, where, and why they are observed. Most notably, we find that waves arising from newborn interstellar pickup ions are relatively rare and difficult to find. The quantities normally employed in theories of wave growth are neutral atom density and quantities related to their ionization and the subsequent dynamics such as wind speed, solar wind flux, and magnetic field orientation. We find the observations of waves to be largely uncorrelated to these quantities except for mean field direction where quasi-radial magnetic fields are favored and solar wind proton flux where wave observations appear to be favored by low flux conditions which runs contrary to theoretical expectations of wave generation. It would appear that an explanation based on source physics and instability growth rates alone is not adequate to account for the times when these waves are seen.

  1. Temperature effects on the pickup process of water group and hydrogen ions - Extensions of 'A theory for low-frequency waves observed at Comet Giacobini-Zinner' by M. L. Goldstein and H. K. Wong

    Science.gov (United States)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1988-01-01

    Cometary heavy ions can resonantly excite hydromagnetic wave activity with spacecraft frequency spectra strongly deviating from the ion cyclotron frequency. The influence of the newborn particle temperature on this effect is assessed, its relevance to the interpretation of the observations is discussed, and an alternative, more efficient mechanism to generate spacecraft frequencies of the order of the proton cyclotron frequency is suggested.

  2. Observation of High-Frequency Electrostatic Waves in the Vicinity of the Reconnection Ion Diffusion Region by the Spacecraft of the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.; hide

    2016-01-01

    We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.

  3. Statistical Study of Low-Frequency Electromagnetic Cyclotron Waves in the Solar Wind at 1 AU

    Science.gov (United States)

    Zhao, G. Q.; Feng, H. Q.; Wu, D. J.; Liu, Q.; Zhao, Y.; Zhao, A.; Huang, J.

    2018-03-01

    Electromagnetic cyclotron waves (ECWs) near the proton cyclotron frequency are common wave activities in the solar wind and have attracted much attention in recent years. This paper investigates 82,809 ECWs based on magnetic field data from the Solar Terrestrial Relations Observatory-A mission between 2007 and 2013. Results show that ECWs may last for just a few seconds or incessantly for several tens of minutes. The time fraction of ECW storms among all solar wind is about 0.9%; the storms are obtained with the duration threshold of 10 min, amplitude criterion of 0.032 nT, and time separation limit of 3 min for combination of intermittent ECWs. Most of ECWs have their amplitudes less than 1 nT, while some ECWs have large amplitudes comparable to the ambient magnetic field. The distributions of the durations and amplitudes of these ECWs are characterized by power law spectra, respectively, with spectrum indexes around 4. Statistically, there seems to be a tendency that ECWs with a longer duration will have a larger amplitude. Observed ECW properties are time dependent, and the median frequency of left-hand ECWs can be lower than that of right-hand ECWs in some months in the spacecraft frame. The percentage of left-hand ECWs varies in a large range with respect to months; it is much low (26%) in a month, though it frequently exceeds 50% in other months. Characteristics of ECWs with concurrent polarizations are also researched. The present study should be of importance for a more complete picture of ECWs in the solar wind.

  4. ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations

    Science.gov (United States)

    Streltsov, A. V.; Tulegenov, B.

    2017-12-01

    We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured

  5. Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances

    Science.gov (United States)

    Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi

    2018-05-01

    A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.

  6. Plasma wave observations during electron and ion gun experiments

    International Nuclear Information System (INIS)

    Olsen, R.C.; Lowery, D.R.; Weddle, L.E.

    1988-01-01

    Plasma wave instruments with high temporal and frequency resolution in the 0-6 kHz frequency range have been used to monitor electron gun-employing charge control experiments with the USAF/NASA p78-2 satellite, in order to determine whether plasma wave signatures consistent with the previous inference of electron heating were present. Strong plasma waves were noted near the electron gyrofrequency; these waves can heat ambient low energy electrons, as previously inferred. Attention is given to the two distinct classes of behavior revealed by the ion gun experiments. 16 references

  7. A time-frequency analysis of wave packet fractional revivals

    International Nuclear Information System (INIS)

    Ghosh, Suranjana; Banerji, J

    2007-01-01

    We show that the time-frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time-domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. Our calculations are based on the model example of fractional revivals in a Rydberg wave packet of circular states. We end by providing an analytical investigation which fully agrees with our numerical observations on the utility of time-frequency analysis in the study of wave packet fractional revivals

  8. TEMPERATURE ANISOTROPY IN THE PRESENCE OF ULTRA LOW FREQUENCY WAVES IN THE TERRESTRIAL FORESHOCK

    International Nuclear Information System (INIS)

    Selzer, L. A.; Hnat, B.; Osman, K. T.; Nakariakov, V. M.; Eastwood, J. P.; Burgess, D.

    2014-01-01

    We report the first study of the correlation between elevated solar wind core plasma temperatures and temperature anisotropy in the terrestrial foreshock. Plasma temperature is enhanced near the fire hose marginal stability threshold in the presence of ultra low frequency (ULF) large amplitude magnetic perturbations, which are intrinsically right-hand circularly polarized. Direct comparison of contemporaneous anisotropic temperatures in the upstream solar wind and the foreshock suggests that the net heating of plasma is mediated via increase of the parallel temperature in the foreshock region where the ULF waves are present. We consider the possibility that a mechanism based on Landau damping, where solar wind plasma temperature parallel to the background magnetic field is increased by interaction with oblique compressible fast magneto-acoustic ULF waves, influences temperature anisotropy

  9. TEMPERATURE ANISOTROPY IN THE PRESENCE OF ULTRA LOW FREQUENCY WAVES IN THE TERRESTRIAL FORESHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Selzer, L. A.; Hnat, B.; Osman, K. T.; Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Eastwood, J. P. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College London, London (United Kingdom); Burgess, D., E-mail: L.A.Selzer@warwick.ac.uk [School of Physics and Astronomy, Queen Mary University of London (United Kingdom)

    2014-06-10

    We report the first study of the correlation between elevated solar wind core plasma temperatures and temperature anisotropy in the terrestrial foreshock. Plasma temperature is enhanced near the fire hose marginal stability threshold in the presence of ultra low frequency (ULF) large amplitude magnetic perturbations, which are intrinsically right-hand circularly polarized. Direct comparison of contemporaneous anisotropic temperatures in the upstream solar wind and the foreshock suggests that the net heating of plasma is mediated via increase of the parallel temperature in the foreshock region where the ULF waves are present. We consider the possibility that a mechanism based on Landau damping, where solar wind plasma temperature parallel to the background magnetic field is increased by interaction with oblique compressible fast magneto-acoustic ULF waves, influences temperature anisotropy.

  10. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  11. A Model for Lower Hybrid Wave Excitation Compared with Observations by Viking

    Science.gov (United States)

    Khazanov, G. V.; Liemohn, M. W.; Krivorutsky, E. N.; Horwitz, J. L.

    1997-01-01

    The mechanism of lower hybrid wave (LHW) excitation due to the O+ relative drift in a plasma subjected to low-frequency waves (LFWs) is used for analysis of Viking satellite data for events in the cusp/cleft region. In some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed, suggesting the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in space plasmas.

  12. Effects of heavy ion temperature on low-frequency kinetic Alfven waves

    International Nuclear Information System (INIS)

    Yang, L.; Wu, D. J.

    2011-01-01

    Heavy ion-electron (or proton) temperature ratio varies in a wide range in the solar and space environment. In this paper, proton and heavy ion temperatures are included in a three-fluid plasma model. For the specified parameters, low-frequency (<< heavy ion gyrofrequency) kinetic Alfven waves (KAWs) with sub- and super-Alfvenic speeds are found to coexist in the same plasma environment. Our results show that the temperature ratio of heavy ions to electrons can considerably affect the dispersion, propagation, and electromagnetic polarizations of the KAWs. In particular, the temperature ratio can increase the ratio of parallel to perpendicular electric fields and the normalized electric to magnetic field ratio, the variations of which are greatly different in regions with a high heavy ion temperature and with a low one. The results may help to understand the physical mechanism of some energization processes of heavy ions in the solar and space plasma environment. Effects of the ratio of electron thermal to Alfven speeds and the heavy ion abundance on these parameters are also discussed.

  13. High-efficiency frequency doubling of continuous-wave laser light.

    Science.gov (United States)

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  14. On low-frequency whistler propagation in ionosphere

    International Nuclear Information System (INIS)

    Mazur, V.A.

    1988-01-01

    The propagation along the Earth surface of an electromagnetic wave with frequency below the ion gyrofrequency is theoretically investigated. In Hall layer of the ionosphere this wave is the whistler mode. It is shown that - contrary to previous works - Ohmic dissipation makes impossible the long-distance propagation of low-frequency whistlers. A many-layer model of the medium is used. The geomagnetic field is considered inclined. The eigen modes and evolution of the initial perturbation are considered

  15. Low frequency radioastronomy

    International Nuclear Information System (INIS)

    Zarka, Philippe; Cecconi, Baptiste; Tagger, Michel; Torchinsky, Steve; Picard, Philippe; Pezzani, Jacques; Cognard, Ismael; Boone, Frederic; Woan, Graham; Weber, Rodolphe; Gousset, Thierry; Lautridou, Pascal; Dallier, Richard

    2011-07-01

    Low frequency radioastronomy deals with the direct detection (below 100 MHz) and heterodyne detection (up to few GHz) of electromagnetic waves (phase and amplitude) followed by a time or spectral analysis. The 30. Goutelas school covered several aspects of radioastronomy involving various aspects of physics: non-thermal phenomena in plasmas and physics of magnetized plasmas, atomic and molecular physics, and particle physics. These proceedings comprise 17 lectures dealing with: 1 - Low-Frequency Radioastronomy Basics (P. Zarka); 2 - Radioastronomy Historical Highlights (S. A. Torchinsky); 3 - Antennas (P. Picard, J. Pezzani); 4 - Receptors (P. Picard, J. Pezzani); 5 - Pulsars chronometry: metrology in radioastronomy (I. Cognard); 6 - Interferometry as imaging technique (F. Boone); 7 - Radio propagation and scintillation (G. Woan); 8 - Square Kilometer Array (S. A. Torchinsky); 9 - Techniques against radio-electrical interferences in low-frequency radioastronomy (R. Weber); 10 - Introduction to poly-phase filtering (R. Weber); 11 - Three decades of Jupiter's radio-emission studies: from the Nancay deca-meter network to LOFAR (P. Zarka); 12 - Atmospheric showers and their radio counterpart (T. Gousset); 13 - From cosmic rays radio-detection to pulse radioastronomy (P. Lautridou, R. Dallier); 14 - The CODALEMA project (R. Dallier, P. Lautridou); 15 - Space-based radio measurements: Gonio-polarimetry (B. Cecconi); 16 - Radio astronomy from space (G. Woan); 17 - LOFAR: the Low Frequency Array and the French FLOW consortium (M. Tagger, P. Zarka)

  16. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  17. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  18. Radial frequency stimuli and sine-wave gratings seem to be processed by distinct contrast brain mechanisms

    Directory of Open Access Journals (Sweden)

    M.L.B. Simas

    2005-03-01

    Full Text Available An assumption commonly made in the study of visual perception is that the lower the contrast threshold for a given stimulus, the more sensitive and selective will be the mechanism that processes it. On the basis of this consideration, we investigated contrast thresholds for two classes of stimuli: sine-wave gratings and radial frequency stimuli (i.e., j0 targets or stimuli modulated by spherical Bessel functions. Employing a suprathreshold summation method, we measured the selectivity of spatial and radial frequency filters using either sine-wave gratings or j0 target contrast profiles at either 1 or 4 cycles per degree of visual angle (cpd, as the test frequencies. Thus, in a forced-choice trial, observers chose between a background spatial (or radial frequency alone and the given background stimulus plus the test frequency (1 or 4 cpd sine-wave grating or radial frequency. Contrary to our expectations, the results showed elevated thresholds (i.e., inhibition for sine-wave gratings and decreased thresholds (i.e., summation for radial frequencies when background and test frequencies were identical. This was true for both 1- and 4-cpd test frequencies. This finding suggests that sine-wave gratings and radial frequency stimuli are processed by different quasi-linear systems, one working at low luminance and contrast level (sine-wave gratings and the other at high luminance and contrast levels (radial frequency stimuli. We think that this interpretation is consistent with distinct foveal only and foveal-parafoveal mechanisms involving striate and/or other higher visual areas (i.e., V2 and V4.

  19. FIRST SPECTROSCOPIC IMAGING OBSERVATIONS OF THE SUN AT LOW RADIO FREQUENCIES WITH THE MURCHISON WIDEFIELD ARRAY PROTOTYPE

    International Nuclear Information System (INIS)

    Oberoi, Divya; Matthews, Lynn D.; Lonsdale, Colin J.; Benkevitch, Leonid; Cairns, Iver H.; Lobzin, Vasili; Emrich, David; Wayth, Randall B.; Arcus, Wayne; Morgan, Edward H.; Williams, Christopher; Prabu, T.; Vedantham, Harish; Williams, Andrew; White, Stephen M.; Allen, G.; Barnes, David; Bernardi, Gianni; Bowman, Judd D.; Briggs, Frank H.

    2011-01-01

    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9- 201.6 MHz. Though our observing period is characterized as a period of 'low' to 'medium' activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years.

  20. Low-frequency wave propagation in an elastic plate loaded by a two-layer fluid

    DEFF Research Database (Denmark)

    Indeitsev, Dmitrij; Sorokin, Sergey

    2012-01-01

    concern is propagation of low-frequency waves in such a coupled waveguide. In the present paper, we assume that an inhomogeneous fluid may be modelled as two homogeneous, inviscid and incompressible layers with slightly different densities. The lighter layer of fresh water lies on top of the heavier layer......In several technical applications, for example, in the Arctic off-shore oil industry, it is necessary to predict waveguide properties of floating elastic plates in contact with a relatively thin layer of water, which has a non-uniform density distribution across its depth. The issue of particular...... formulation, such as depths of the layers, stiffness and inertia of the plate, are assessed in several frequency ranges. Dispersion diagrams obtained from approximate dispersion relations are compared with their exact counterparts....

  1. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    International Nuclear Information System (INIS)

    Yin, J.; Huang, J.; Zhang, S.; Zhang, H.W.; Chen, B.S.

    2014-01-01

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results. - Highlights: • A Brick-and-Mortar structure is used to discuss wave propagation through nacreous materials. • A 1D Bloch wave solution of nacreous materials with a tension-shear chain model is obtained. • The band structure and transmission characteristics of nacreous materials with the FE model are examined. • An ultrawide low frequency band gap is found in nacreous materials with both theory and FE model

  2. Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer

    Science.gov (United States)

    Weissman, D. E.; Johnson, J. W.

    1986-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  3. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    Science.gov (United States)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  4. Alfvén waves in the near-PSBL lobe: Cluster observations

    Directory of Open Access Journals (Sweden)

    T. Takada

    2006-05-01

    Full Text Available Electromagnetic low-frequency waves in the magnetotail lobe close to the PSBL (Plasma Sheet Boundary Layer are studied using the Cluster spacecraft. The lobe waves show Alfvénic properties and transport their wave energy (Poynting flux on average toward the Earth along magnetic field lines. Most of the wave events are rich with oxygen (O+ ion plasma. The rich O+ plasma can serve to enhance the magnetic field fluctuations, resulting in a greater likelihood of observation, but it does not appear to be necessary for the generation of the waves. Taking into account the fact that all events are associated with auroral electrojet enhancements, the source of the lobe waves might be a substorm-associated instability, i.e. some instability near the reconnection site, or an ion beam-related instability in the PSBL.

  5. Alfvén waves in the near-PSBL lobe: Cluster observations

    Directory of Open Access Journals (Sweden)

    T. Takada

    2006-05-01

    Full Text Available Electromagnetic low-frequency waves in the magnetotail lobe close to the PSBL (Plasma Sheet Boundary Layer are studied using the Cluster spacecraft. The lobe waves show Alfvénic properties and transport their wave energy (Poynting flux on average toward the Earth along magnetic field lines. Most of the wave events are rich with oxygen (O+ ion plasma. The rich O+ plasma can serve to enhance the magnetic field fluctuations, resulting in a greater likelihood of observation, but it does not appear to be necessary for the generation of the waves. Taking into account the fact that all events are associated with auroral electrojet enhancements, the source of the lobe waves might be a substorm-associated instability, i.e. some instability near the reconnection site, or an ion beam-related instability in the PSBL.

  6. A SURVEY OF MAGNETIC WAVES EXCITED BY NEWBORN INTERSTELLAR He+ OBSERVED BY THE ACE SPACECRAFT AT 1 au

    International Nuclear Information System (INIS)

    Fisher, Meghan K.; Argall, Matthew R.; Joyce, Colin J.

    2016-01-01

    We report observations of low-frequency waves at 1 au by the magnetic field instrument on the Advanced Composition Explorer ( ACE /MAG) and show evidence that they arise due to newborn interstellar pickup He + . Twenty-five events are studied. They possess the generally predicted attributes: spacecraft-frame frequencies slightly greater than the He + cyclotron frequency, left-hand polarization in the spacecraft frame, and transverse fluctuations with minimum variance directions that are quasi-parallel to the mean magnetic field. Their occurrence spans the first 18 years of ACE operations, with no more than 3 such observations in any given year. Thus, the events are relatively rare. As with past observations by the Ulysses and Voyager spacecraft, we argue that the waves are seen only when the background turbulence is sufficiently weak as to allow for the slow accumulation of wave energy over many hours.

  7. Relativistic runaway breakdown in low-frequency radio

    Science.gov (United States)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  8. Doppler Frequency Shift in Ocean Wave Measurements: Frequency Downshift of a Fixed Spectral Wave Number Component by Advection of Wave Orbital Velocity

    National Research Council Canada - National Science Library

    Hwang, Paul

    2006-01-01

    ... at he expected intrinsic frequency in the frequency spectrum measured by a stationary probe. The advection of the wave number component by the orbital current of background waves produces a net downshift in the encounter frequency...

  9. Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-09-01

    Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.

  10. Experimental observation of Alfven wave cones

    International Nuclear Information System (INIS)

    Gekelman, W.; Leneman, D.; Maggs, J.; Vincena, S.

    1994-01-01

    The spatial evolution of the radial profile of the magnetic field of a shear Alfven wave launched by a disk exciter with radius on the order of the electron skin depth has been measured. The waves are launched using wire mesh disk exciters of 4 mm and 8 mm radius into a helium plasma of density about 1.0x10 12 cm -3 and magnetic field 1.1 kG. The electron skin depth δ=c/ω pe is about 5 mm. The current channel associated with the shear Alfven wave is observed to spread with distance away from the exciter. The spreading follows a cone-like pattern whose angle is given by tan θ=k A δ, where k A is the Alfven wave number. The dependence of the magnetic profiles on wave frequency and disk size are presented. The effects of dissipation by electron--neutral collisions and Landau damping are observed. The observations are in excellent agreement with theoretical predictions [Morales et al., Phys. Plasmas 1, 3765 (1994)

  11. Observing a Gravitational Wave Background With Lisa

    National Research Council Canada - National Science Library

    Tinto, M; Armstrong, J; Estabrook, F

    2000-01-01

    ... formation of several observables. All are independent of lasers and frequency standard phase fluctuations, but have different couplings to gravitational waves and to the various LISA instrumental noises...

  12. Ocean and laboratory observations on waves over topography

    NARCIS (Netherlands)

    Lam, F.P. A.

    2007-01-01

    This thesis addresses the observation, analysis and dynamics of waves as being trapped, generated and focused by sloping topography. ---Shelf waves with diurnal tidal frequency off Greenland--- Tidal analysis has been carried out on current measurements at a “cross-shelf” transect off Greenland at

  13. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks

    Science.gov (United States)

    Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; Du, X. D.; Thome, K. E.; Van Zeeland, M. A.; Collins, C.; Lvovskiy, A.; Moyer, R. A.; Austin, M. E.; Brennan, D. P.; Liu, C.; Jaeger, E. F.; Lau, C.

    2018-04-01

    DIII-D experiments at low density (ne˜1019 m-3 ) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.

  14. Indoor measurements of sound at low frequencies

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    Due to standing waves, the sound pressure level within a room may vary as much as 20-30 dB with low-frequency tonal noise, somewhat less with noise bands. For assessment of annoyance from low-frequency noise it is relevant to measure a level close to the highest level of the room, rather than a r...

  15. Evaluation on surface current observing network of high frequency ground wave radars in the Gulf of Thailand

    Science.gov (United States)

    Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli

    2018-05-01

    Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a

  16. Observational evidence of lower-frequency Yanai waves in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    David, D.T.; PrasannaKumar, S.; Byju, P.; Sarma, M.S.S.; Suryanarayana, A.; Murty, V.S.N.

    created by the northward shifting and strengthening of the westward flowing south equatorial current associated with positive IOD and the eastward flowing southwest monsoon current provides energy for the generation of lower-frequency Yanai waves. Vertical...

  17. Ulysses radio and plasma wave observations at high southern heliographic latitudes.

    Science.gov (United States)

    Stone, R G; Macdowall, R J; Fainberg, J; Kaiser, M L; Desch, M D; Goldstein, M L; Hoang, S; Bougeret, J L; Harvey, C C; Manning, R; Steinberg, J L; Kellogg, P J; Lin, N; Goetz, K; Osherovich, V A; Reiner, M J; Canu, P; Cornilleau-Wehrlin, N; Lengyel-Frey, D; Thejappa, G

    1995-05-19

    Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.

  18. Magnetospheric pulsations: Models and observations of compressional waves

    International Nuclear Information System (INIS)

    Zhu, Xiaoming.

    1989-01-01

    The first part of the dissertation models ultralow frequency (ULF) waves in a simplified geometry in order to understand the physics of the mode coupling between the compressional and shear Alfven waves in an inhomogeneous magnetized plasma. Wave mode coupling occurs when a field line resonant frequency (defined by the shear Alfven mode) matches the global mode frequency (defined by the compressional mode). Large wave amplitudes occur near the resonant field line. Although the wave amplitude of the global mode is small away from resonant field lines, significant wave energy is stored in the wave mode due to its large scale nature. It serves as a reservoir to continuously feed energy to resonant field lines. This mechanism may explain why some field line resonances can last for times longer than that predicted from the ionospheric Joule dissipation. A nonmonotonic Alfven velocity divides the magnetosphere into two or more cavities by the local maxima of the Alfven velocity. The global mode is typically localized in one of the cavities except at some preferred frequencies, the global mode can extend through more than one cavity. This may explain ULF wave excitations in the low latitude magnetosphere. The second part of the dissertation is devoted to study compressional waves in the outer magnetosphere using magnetic field and plasma data. Statistical information on the distribution of compressional Pc 5 waves in the outer magnetosphere is obtained. Large amplitude, long period compressional Pc 5 pulsations are found very common near the magnetic equator. They are polarized mainly in a meridian plane with comparable compressional and transverse amplitudes. Close correlation between compressional wave amplitude and plasma β is also found. Several case studies show that compressional waves are quenched in the region where β < 1

  19. Low temperature spin wave dynamics in classical Heisenberg chains

    International Nuclear Information System (INIS)

    Heller, P.; Blume, M.

    1977-11-01

    A detailed and quantitative study of the low-temperature spin-wave dynamics was made for the classical Heisenberg-coupled chain using computer simulation. Results for the spin-wave damping rates and the renormalization of the spin-wave frequencies are presented and compared with existing predictions

  20. Wave-particle interaction phenomena observed by antarctic rockets

    International Nuclear Information System (INIS)

    Kimura, I.; Hirasawa, T.

    1979-01-01

    Rocket measurements of wave and particles activities made at Syowa Station in Antarctica during IMS period are reviewed. Nine rockets were used for such observations, out of which 6 rockets were launched in the auroral sky. In the VLF frequency range, 0 - 10 KHz, wideband spectra of wave electric and magnetic fields, Poynting flux and the direction of propagation vector were measured for chorus, ELF and VLF hiss, and for electrostatic noises. In the MF and HF range, the dynamic frequency spectra of 0.1 - 10 MHz were measured. The relationship of these wave phenomena with energetic particle activities measured by the same rockets are discussed. (author)

  1. Nonlinear frequency shift of a coherent dust-acoustic wave in the presence of dust-acoustic turbulence

    International Nuclear Information System (INIS)

    Yi Sumin; Ryu, C.-M.; Yoon, Peter H.

    2003-01-01

    The nonlinear frequency shift of a low-frequency, coherent dust-acoustic wave in the presence of higher frequency dust-acoustic turbulence is investigated in the framework of weak turbulence theory. It is found that the frequency shift of the dust-acoustic wave in an unmagnetized dusty plasma is always positive irrespective of the propagation direction of the coherent wave. It is also found that turbulent waves propagating in the same direction as the coherent wave are shown to give rise to a much higher frequency shift than the opposite case. Finally, it is shown that the nonlinear frequency shift of a dust-acoustic wave is more pronounced than in the case of the customary ion-acoustic waves in fully ionized plasmas

  2. An initial ULF wave index derived from 2 years of Swarm observations

    Science.gov (United States)

    Papadimitriou, Constantinos; Balasis, Georgios; Daglis, Ioannis A.; Giannakis, Omiros

    2018-03-01

    The ongoing Swarm satellite mission provides an opportunity for better knowledge of the near-Earth electromagnetic environment. Herein, we use a new methodological approach for the detection and classification of ultra low-frequency (ULF) wave events observed by Swarm based on an existing time-frequency analysis (TFA) tool and utilizing a state-of-the-art high-resolution magnetic field model and Swarm Level 2 products (i.e., field-aligned currents - FACs - and the Ionospheric Bubble Index - IBI). We present maps of the dependence of ULF wave power with magnetic latitude and magnetic local time (MLT) as well as geographic latitude and longitude from the three satellites at their different locations in low-Earth orbit (LEO) for a period spanning 2 years after the constellation's final configuration. We show that the inclusion of the Swarm single-spacecraft FAC product in our analysis eliminates all the wave activity at high altitudes, which is physically unrealistic. Moreover, we derive a Swarm orbit-by-orbit Pc3 wave (20-100 MHz) index for the topside ionosphere and compare its values with the corresponding variations of solar wind variables and geomagnetic activity indices. This is the first attempt, to our knowledge, to derive a ULF wave index from LEO satellite data. The technique can be potentially used to define a new Level 2 product from the mission, the Swarm ULF wave index, which would be suitable for space weather applications.

  3. Low-frequency electromagnetic field in a Wigner crystal

    OpenAIRE

    Stupka, Anton

    2016-01-01

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  4. A SURVEY OF MAGNETIC WAVES EXCITED BY NEWBORN INTERSTELLAR He{sup +} OBSERVED BY THE ACE SPACECRAFT AT 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Meghan K.; Argall, Matthew R.; Joyce, Colin J., E-mail: mkl54@wildcats.unh.edu, E-mail: Matthew.Argall@unh.edu, E-mail: cjl46@wildcats.unh.edu [Physics Department and Space Science Center, Morse Hall, University of New Hampshire, Durham, NH (United States); and others

    2016-10-10

    We report observations of low-frequency waves at 1 au by the magnetic field instrument on the Advanced Composition Explorer ( ACE /MAG) and show evidence that they arise due to newborn interstellar pickup He{sup +}. Twenty-five events are studied. They possess the generally predicted attributes: spacecraft-frame frequencies slightly greater than the He{sup +} cyclotron frequency, left-hand polarization in the spacecraft frame, and transverse fluctuations with minimum variance directions that are quasi-parallel to the mean magnetic field. Their occurrence spans the first 18 years of ACE operations, with no more than 3 such observations in any given year. Thus, the events are relatively rare. As with past observations by the Ulysses and Voyager spacecraft, we argue that the waves are seen only when the background turbulence is sufficiently weak as to allow for the slow accumulation of wave energy over many hours.

  5. VHF radar observations of gravity waves at a low latitude

    Directory of Open Access Journals (Sweden)

    G. Dutta

    1999-08-01

    Full Text Available Wind observations made at Gadanki (13.5°N by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2-6 h from the power spectral density (PSD spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides

  6. The structure of low-latitude Pc3 pulsations observed by CHAMP and on the ground

    Directory of Open Access Journals (Sweden)

    D. C. Ndiitwani

    2009-03-01

    Full Text Available The structure of low-latitude continuous pulsations termed Pc3, which are naturally occurring MHD waves in the Earth's magnetosphere, were studied by comparing ground and satellite magnetic field measurements. Data from two induction magnetometers, located at Hermanus and Sutherland in South Africa were used in conjunction with Challenging Minisatellite Payload (CHAMP satellite observations to study a Pc3 event observed on 15 February 2003, at a time when CHAMP was passing over the ground stations. We observed a number of discrete frequency oscillations for the fast mode wave, one of which drives a field line resonance (FLR at characteristic latitude as detected by both ground and satellite measurements. Consequently, our observations confirmed the compressional wave as being the driver of the field line resonance. The toroidal mode frequency observed on CHAMP experienced a Doppler frequency shift due to the rapid motion across the resonance region. Polarization hodograms in the resonance region clearly showed the expected 90° rotation of the field line resonant magnetic field components.

  7. The structure of low-latitude Pc3 pulsations observed by CHAMP and on the ground

    Directory of Open Access Journals (Sweden)

    D. C. Ndiitwani

    2009-03-01

    Full Text Available The structure of low-latitude continuous pulsations termed Pc3, which are naturally occurring MHD waves in the Earth's magnetosphere, were studied by comparing ground and satellite magnetic field measurements. Data from two induction magnetometers, located at Hermanus and Sutherland in South Africa were used in conjunction with Challenging Minisatellite Payload (CHAMP satellite observations to study a Pc3 event observed on 15 February 2003, at a time when CHAMP was passing over the ground stations. We observed a number of discrete frequency oscillations for the fast mode wave, one of which drives a field line resonance (FLR at characteristic latitude as detected by both ground and satellite measurements. Consequently, our observations confirmed the compressional wave as being the driver of the field line resonance. The toroidal mode frequency observed on CHAMP experienced a Doppler frequency shift due to the rapid motion across the resonance region. Polarization hodograms in the resonance region clearly showed the expected 90° rotation of the field line resonant magnetic field components.

  8. Self organization and low frequency Raman scattering in quartz glasses irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Davranov, O. D.; Subhankulov, I.

    2002-01-01

    In all investigated glasses materials in low frequency region of the IR absorption and Raman scattering spectra intensive and sufficiently broad band with maximum within ∼10-100 cm -1 is observed. The availability of such band is a typical trait of low frequency spectra of amorphous materials and spectroscopic characteristics of this observed low frequency peak in glasses are similar to the spectra of liquids and liquid crystals. In this work the influence of fast neutrons (from 2.5·10 15 to 2.2·10 20 cm -2 ) on location of low frequency peak in quartz glass was investigated with accidental impurities (Ca, Al, Ba, Sb, Pb, Mn, B, Na, Zn), in which summary maintenance of impurities was (10 13 -10 -1 ) mass %). Spectral from of low frequency Raman scattering peak is identical in all glasses independently from their chemical composition. It is discovered that the frequency and amplitude of boson peak increase with increasing of irradiation dose. Maximum of peak is displaced from 54 to 72 cm -1 depending on irradiation dose, but amplitude is increased up to 1.5 times. The increasing of glass density and velocity of acoustic waves propagation are observed. Depending on E-centre ( 28 Si 3+ ) concentration under irradiation dose at first a gradual growth, and then saturation of these centres is observed. The increasing of concentration of centres correlates with the growth of intensity of narrow Raman line 606 cm -1 , connected to oxygen atoms' vibrations on the clusters surface. The irradiation by fast neutron lead to the changing degree of self organization of phase correlation in glasses. It leads to the rising of internal field of phase structure, and consequently, to the changing of wave vector of phase structure, which is displayed in the shift of frequency of boson peak. The changing of self organization degree influences the macroscopic parameters of medium and it is displayed in the changing of glass density and velocity of acoustic waves propagation. The

  9. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    International Nuclear Information System (INIS)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z.

    2004-01-01

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10 -14 m/√Hz, decreasing with frequency approximately as 1/ν. Seismic noise contamination is not observed above a few Hz

  10. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z

    2004-02-23

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10{sup -14} m/{radical}Hz, decreasing with frequency approximately as 1/{nu}. Seismic noise contamination is not observed above a few Hz.

  11. Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism

    Science.gov (United States)

    Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.

    2018-01-01

    Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.

  12. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    Science.gov (United States)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  13. Potential health effects of standing waves generated by low frequency noise

    Directory of Open Access Journals (Sweden)

    Stanislav Ziaran

    2013-01-01

    Full Text Available The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.

  14. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity

    Science.gov (United States)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.

    2012-12-01

    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG

  15. In situ statistical observations of EMIC waves by Arase satellite

    Science.gov (United States)

    Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.

    2017-12-01

    We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.

  16. Ground and space observations of medium frequency auroral radio emissions

    Science.gov (United States)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  17. Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability

    Science.gov (United States)

    Parsons, Luke Alexander

    structure of the variance spectrum has important consequences for the probability of multi-year drought. Our lake record suggests there is a significant background threat of multi-year, and even decade-length, drought in western Amazonia, whereas climate model simulations indicate most droughts likely last no longer than one to three years. These findings suggest climate models may underestimate the future risk of extended drought in this important region. In Appendix C, we expand our analysis of climate variability beyond South America. We use observations, well-constrained tropical paleoclimate, and Earth system model data to examine the overall shape of the climate spectrum across interannual to century frequencies. We find a general agreement among observations and models that temperature variability increases with timescale across most of the globe outside the tropics. However, as compared to paleoclimate records, climate models generate too little low-frequency variability in the tropics (e.g., Laepple and Huybers, 2014). When we compare the shape of the simulated climate spectrum to the spectrum of a simple autoregressive process, we find much of the modeled surface temperature variability in the tropics could be explained by ocean smoothing of weather noise. Importantly, modeled precipitation tends to be similar to white noise across much of the globe. By contrast, paleoclimate records of various types from around the globe indicate that both temperature and precipitation variability should experience much more low-frequency variability than a simple autoregressive or white-noise process. In summary, state-of-the-art climate models generate some degree of dynamically driven low-frequency climate variability, especially at high latitudes. However, the latest climate models, observations, and paleoclimate data provide us with drastically different pictures of the background climate system and its associated risks. This research has important consequences for improving

  18. Subduction zone guided waves in Northern Chile

    Science.gov (United States)

    Garth, Thomas; Rietbrock, Andreas

    2016-04-01

    Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (young subducting lithosphere also has the potential to carry much larger amounts of water to the mantle than has previously been appreciated.

  19. Low-frequency (0.7-7.4 mHz geomagnetic field fluctuations at high latitude: frequency dependence of the polarization pattern

    Directory of Open Access Journals (Sweden)

    L. Cafarella

    2001-06-01

    Full Text Available A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 mHz covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0°S geomagnetic latitude throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.

  20. 18 centimeter VLBI observations of the quasar NRAO 140 during and after a low-frequency outburst

    International Nuclear Information System (INIS)

    Marscher, A.P.; Broderick, J.J.; Padrielli, L.; Bartel, N.; Romney, J.D.; Virginia Polytechnic Institute and State Univ., Blacksburg; CNR, Istituto di Radioastronomia, Bologna, Italy; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA; Natitonal Radio Astronomy Observatory, Charlottesville, VA)

    1987-01-01

    VLBI and spectra observations have been used to identify the specific site of a low-frequency outburst in the quasar NRAO 140. The properties of the low-frequency variability in the quasar are compared with the predictions of several models. The refractive scintillation model alone does not account for the source's properties. 32 references

  1. Flow motion waves with high and low frequency in severe ischaemia before and after percutaneous transluminal angioplasty

    OpenAIRE

    Hoffmann, Ulrich; Schneider, Ernst; Bollinger, Alfred

    2017-01-01

    Study of objective - The aim was to evaluate skin flux and prevalence of low and high frequency flow motion waves in patients with severe ischaemia due to peripheral arterial occlusive disease before and after percutaneous transluminal angioplasty (PTA) with and without local thrombolysis. Design - Flow motion was recorded by the laser Doppler technique at the dorsum of the foot before, one day, and one month after PTA. The results were separately analysed in patients with successful and unsu...

  2. Observation of Gravitational Waves from a Binary Black Hole Merger

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M.A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Johnson-McDaniel, N. K.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, R.M.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.A.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10−21. It matches

  3. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  4. VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au

    International Nuclear Information System (INIS)

    Aggarwal, Poornima; Taylor, David K.; Smith, Charles W.; Joyce, Colin J.; Fisher, Meghan K.; Isenberg, Philip A.; Vasquez, Bernard J.; Schwadron, Nathan A.; Cannon, Bradford E.; Richardson, John D.

    2016-01-01

    We report observations by the Voyager 1 and 2 spacecraft of low-frequency magnetic waves excited by newborn interstellar pickup ions H + and He + during 1978–1979 when the spacecraft were in the range from 2 to 6.3 au. The waves have the expected association with the cyclotron frequency of the source ions, are left-hand polarized in the spacecraft frame, and have minimum variance directions that are quasi-parallel to the local mean magnetic field. There is one exception to this in that one wave event that is excited by pickup H + is right-hand polarized in the spacecraft frame, but similar exceptions have been reported by Cannon et al. and remain unexplained. We apply the theory of Lee and Ip that predicts the energy spectrum of the waves and then compare growth rates with turbulent cascade rates under the assumption that turbulence acts to destroy the enhanced wave activity and transport the associated energy to smaller scales where dissipation heats the background plasma. As with Cannon et al., we find that the ability to observe the waves depends on the ambient turbulence being weak when compared with growth rates, thereby allowing sustained wave growth. This analysis implies that the coupled processes of pitch-angle scattering and wave generation are continuously associated with newly ionized pickup ions, despite the fact that the waves themselves may not be directly observable. When waves are not observed, but wave excitation can be argued to be present, the wave energy is simply absorbed by the turbulence at a rate that prevents significant accumulation. In this way, the kinetic process of wave excitation by scattering of newborn ions continues to heat the plasma without producing observable wave energy. These findings support theoretical models that invoke efficient scattering of new pickup ions, leading to turbulent driving in the outer solar wind and in the IBEX ribbon beyond the heliopause.

  5. VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Poornima [Electrical Engineering Department, Cooper Union, New York, NY 10003 (United States); Taylor, David K. [Rensselaer Polytechnic Institute, Troy, NH 12180 (United States); Smith, Charles W.; Joyce, Colin J.; Fisher, Meghan K.; Isenberg, Philip A.; Vasquez, Bernard J.; Schwadron, Nathan A. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, FL 32306 (United States); Richardson, John D., E-mail: neema2000@gmail.com, E-mail: daves@orol.org, E-mail: Charles.Smith@unh.edu, E-mail: cjl46@wildcats.unh.edu, E-mail: mkl54@wildcats.unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: N.Schwadron@unh.edu, E-mail: bc13h@my.fsu.edu, E-mail: jdr@space.mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 37-655, Cambridge, MA 02139 (United States)

    2016-05-10

    We report observations by the Voyager 1 and 2 spacecraft of low-frequency magnetic waves excited by newborn interstellar pickup ions H{sup +} and He{sup +} during 1978–1979 when the spacecraft were in the range from 2 to 6.3 au. The waves have the expected association with the cyclotron frequency of the source ions, are left-hand polarized in the spacecraft frame, and have minimum variance directions that are quasi-parallel to the local mean magnetic field. There is one exception to this in that one wave event that is excited by pickup H{sup +} is right-hand polarized in the spacecraft frame, but similar exceptions have been reported by Cannon et al. and remain unexplained. We apply the theory of Lee and Ip that predicts the energy spectrum of the waves and then compare growth rates with turbulent cascade rates under the assumption that turbulence acts to destroy the enhanced wave activity and transport the associated energy to smaller scales where dissipation heats the background plasma. As with Cannon et al., we find that the ability to observe the waves depends on the ambient turbulence being weak when compared with growth rates, thereby allowing sustained wave growth. This analysis implies that the coupled processes of pitch-angle scattering and wave generation are continuously associated with newly ionized pickup ions, despite the fact that the waves themselves may not be directly observable. When waves are not observed, but wave excitation can be argued to be present, the wave energy is simply absorbed by the turbulence at a rate that prevents significant accumulation. In this way, the kinetic process of wave excitation by scattering of newborn ions continues to heat the plasma without producing observable wave energy. These findings support theoretical models that invoke efficient scattering of new pickup ions, leading to turbulent driving in the outer solar wind and in the IBEX ribbon beyond the heliopause.

  6. Resonant magnetic pumping at very low frequency

    International Nuclear Information System (INIS)

    Canobbio, Ernesto

    1978-01-01

    We propose to exploit for plasma heating purposes the very low frequency limit of the Alfven wave resonance condition, which reduces essentially to safety factor q=m/n, a rational number. It is shown that a substantial fraction of the total RF-energy can be absorbed by the plasma. The lowest possible frequency value is determined by the maximum tolerable width of the RF-magnetic islands which develop near the singular surface. The obvious interest of the proposed scheme is the low frequency value (f<=10 KHz) which allows the RF-coils to be protected by stainless steel or even to be put outside the liner

  7. Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.

    2010-01-01

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  8. Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment.

    Science.gov (United States)

    Nornberg, M D; Ji, H; Schartman, E; Roach, A; Goodman, J

    2010-02-19

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  9. The linear variable differential transformer (LVDT) position sensor for gravitational wave interferometer low-frequency controls

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, Hareem E-mail: htariq@ligo.caltech.edu; Takamori, Akiteru; Vetrano, Flavio; Wang Chenyang; Bertolini, Alessandro; Calamai, Giovanni; DeSalvo, Riccardo; Gennai, Alberto; Holloway, Lee; Losurdo, Giovanni; Marka, Szabolcs; Mazzoni, Massimo; Paoletti, Federico; Passuello, Diego; Sannibale, Virginio; Stanga, Ruggero

    2002-08-21

    Low-power, ultra-high-vacuum compatible, non-contacting position sensors with nanometer resolution and centimeter dynamic range have been developed, built and tested. They have been designed at Virgo as the sensors for low-frequency modal damping of Seismic Attenuation System chains in Gravitational Wave interferometers and sub-micron absolute mirror positioning. One type of these linear variable differential transformers (LVDTs) has been designed to be also insensitive to transversal displacement thus allowing 3D movement of the sensor head while still precisely reading its position along the sensitivity axis. A second LVDT geometry has been designed to measure the displacement of the vertical seismic attenuation filters from their nominal position. Unlike the commercial LVDTs, mostly based on magnetic cores, the LVDTs described here exert no force on the measured structure.

  10. Adaptive nonparametric estimation for L\\'evy processes observed at low frequency

    OpenAIRE

    Kappus, Johanna

    2013-01-01

    This article deals with adaptive nonparametric estimation for L\\'evy processes observed at low frequency. For general linear functionals of the L\\'evy measure, we construct kernel estimators, provide upper risk bounds and derive rates of convergence under regularity assumptions. Our focus lies on the adaptive choice of the bandwidth, using model selection techniques. We face here a non-standard problem of model selection with unknown variance. A new approach towards this problem is proposed, ...

  11. Cantilever-detected high-frequency ESR measurement using a backward travelling wave oscillator

    International Nuclear Information System (INIS)

    Tokuda, Y; Hirano, S; Ohmichi, E; Ohta, H

    2012-01-01

    Our cantilever-detected electron spin resonance (ESR) technique is motivated for terahertz ESR spectroscopy of a tiny single crystal at low temperature. In this technique, ESR signal is detected as deflection of a sample-mounted cantilever, which is sensitively detected by built-in piezoresistors. So far, ESR detection at 315 GHz was succeeded using Gunn oscillator. In this study, we combine our ESR technique with a backward traveling wave oscillator (BWO), which can cover a wide frequency range 120-1200 GHz, to achieve better spectral resolution. Experiments were carried out at 4.2 K for a single crystal of Co Tutton salt with a newly constructed optical system. We successfully observed two ESR absorption lines in BWO frequencies up to 370 GHz. From multi-frequency measurements, the observed ESR lines shifted linearly with BWO frequency, being consistent with paramagnetic resonance. The estimated g values are g 1 = 3.00 and g 2 = 3.21. The spin sensitivity was estimated to ∼10 12 spins/gauss at 370 GHz.

  12. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-12-31

    Although eastward propagation is usually regarded as an essential feature of the low-frequency ``Madden-Julian oscillation`` observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  13. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-01-01

    Although eastward propagation is usually regarded as an essential feature of the low-frequency Madden-Julian oscillation'' observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  14. Low frequency turbulence, particle and heat transport in the Wisconsin levitated octupole

    International Nuclear Information System (INIS)

    Garner, H.R.

    1982-01-01

    Low frequency turbulence in the drift frequency range and its relation to the observed particle transport in the Wisconsin Levitated Octupole has been studied with a microwave scattering apparatus. The experimental parameters were T/sub e/ approx. T/sub i/ 13 cm -3 , 200 G < B/sub p-average/ < 1.25 kG. The effect of shear on the transport was studied by the addition of a small toroidal field. By matching experimentally measured density profiles to those given by numerical solutions of the transport equations, diffusion coefficients were obtained. Time dependent density fluctuation spectra were measured with an 8 mm microwave scattering diagnostic to correlate the drift wave portion of the spectrum with the observed diffusion. The density fluctuation spectrum of low frequency (1 kHz < ω < 6 MHz) turbulence was measured for several values of perpendicular wavenumber, k/sub perpendicular to/. Electron heat transport was studied by fitting experimentally measured electron temperature profiles to those predicted by numerical solutions of electron energy transport equation

  15. ULF wave effects on high frequency signal propagation through the ionosphere

    Directory of Open Access Journals (Sweden)

    C. L. Waters

    2009-07-01

    Full Text Available Variations in the total electron content (TEC of the ionosphere alter the propagation characteristics of EM radiation for frequencies above a few megahertz (MHz. Spatial and temporal variations of the ionosphere TEC influence highly sensitive, ground based spatial measurements such as those used in radio astronomy and Global Positioning System (GPS applications. In this paper we estimate the magnitudes of the changes in TEC and the time delays of high frequency signals introduced by variations in the ionosphere electron density caused by the natural spectrum of ultra-low frequency (ULF wave activity that originates in near-Earth space. The time delays and associated phase shifts depend on the frequency, spatial structure and amplitude of the ULF waves.

  16. Dynamics and quantum Zeno effect for a qubit in either a low- or high-frequency bath beyond the rotating-wave approximation

    International Nuclear Information System (INIS)

    Cao Xiufeng; You, J. Q.; Zheng, H.; Kofman, A. G.; Nori, Franco

    2010-01-01

    We use a non-Markovian approach to study the decoherence dynamics of a qubit in either a low- or high-frequency bath modeling the qubit environment. This is done for two separate cases: either with measurements or without them. This approach is based on a unitary transformation and does not require the rotating-wave approximation. In the case without measurement, we show that, for low-frequency noise, the bath shifts the qubit energy toward higher energies (blue shift), while the ordinary high-frequency cutoff Ohmic bath shifts the qubit energy toward lower energies (red shift). In order to preserve the coherence of the qubit, we also investigate the dynamics of the qubit subject to measurements (quantum Zeno regime) in two cases: low- and high-frequency baths. For very frequent projective measurements, the low-frequency bath gives rise to the quantum anti-Zeno effect on the qubit. The quantum Zeno effect only occurs in the high-frequency-cutoff Ohmic bath, after counterrotating terms are considered. In the condition that the decay rate due to the two kinds of baths are equal under the Wigner-Weisskopf approximation, we find that without the approximation, for a high-frequency environment, the decay rate should be faster (without measurements) or slower (with frequent measurements, in the Zeno regime), compared to the low-frequency bath case. The experimental implementation of our results here could distinguish the type of bath (either a low- or high-frequency one) and protect the coherence of the qubit by modulating the dominant frequency of its environment.

  17. Low Frequency Space Array

    International Nuclear Information System (INIS)

    Dennison, B.; Weiler, K.W.; Johnston, K.J.

    1987-01-01

    The Low Frequency Space Array (LFSA) is a conceptual mission to survey the entire sky and to image individual sources at frequencies between 1.5 and 26 MHz, a frequency range over which the earth's ionosphere transmits poorly or not at all. With high resolution, high sensitivity observations, a new window will be opened in the electromagnetic spectrum for astronomical investigation. Also, extending observations down to such low frequencies will bring astronomy to the fundamental limit below which the galaxy becomes optically thick due to free-free absorption. A number of major scientific goals can be pursued with such a mission, including mapping galactic emission and absorption, studies of individual source spectra in a frequency range where a number of important processes may play a role, high resolution imaging of extended sources, localization of the impulsive emission from Jupiter, and a search for coherent emission processes. 19 references

  18. Influence of radio frequency waves on the interchange stability in HANBIT mirror plasmas

    International Nuclear Information System (INIS)

    Hogun Jhang; Kim, S.S.; Lee, S.G.; Park, B.H.; Bak, J.G.

    2005-01-01

    Experimental and theoretical studies are made of the influence of high frequency radio frequency (rf) waves upon interchange stability in HANBIT mirror plasmas. An emphasis is put on the interchange stability near the resonance region, ω 0 ∼Ω i , where ω 0 is the angular frequency of the applied rf wave and Ω i is the ion cyclotron frequency. Recent HANBIT experiments have shown the existence of the interchange-stable operation window in favor of ω 0 /Ω i ≤1 with its sensitivity on the applied rf power. A strong nonlinear interaction between the rf wave and the interchange mode has been observed with the generation of sideband waves. A theoretical analysis including both the ponderomotive force and the nonlinear sideband wave coupling has been developed and applied to the interpretation of the experiments, resulting in a good agreement. From the study, it is concluded that the nonlinear wave-wave coupling process is responsible for the rf stabilization of the interchange modes in HANBIT mirror plasmas operating near the resonance condition. (author)

  19. Electrostatic instabilities and nonlinear structures of low-frequency waves in nonuniform electron-positron-ion plasmas with shear flow

    International Nuclear Information System (INIS)

    Mirza, Arshad M.; Hasan, Asma; Azeem, M.; Saleem, H.

    2003-01-01

    It is found that the low-frequency ion acoustic and electrostatic drift waves can become unstable in uniform electron-ion and electron-positron-ion plasmas due to the ion shear flow. In a collisional plasma a drift-dissipative instability can also take place. In the presence of collisions the temporal behavior of nonlinear drift-dissipative mode can be represented in the form of well-known Lorenz and Stenflo type equations that admit chaotic trajectories. On the other hand, a quasi-stationary solution of the mode coupling equations can be represented in the form of monopolar vortex. The results of the present investigation can be helpful in understanding electrostatic turbulence and wave phenomena in laboratory and astrophysical plasmas

  20. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-01-01

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  1. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp [Department of Aeronautics and Astronautics, The University of Tokyo, Bunkyo-ku 113-8656 (Japan); Ohnishi, Naofumi [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2016-08-14

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  2. Dynamics of a nonlinear oscillator and a low-amplitude frequency-modulated wave

    International Nuclear Information System (INIS)

    White, R.C.; McNamara, B.

    1987-01-01

    When the frequency of a small amplitude plane wave is varied slowly over a large enough bandwidth and this wave is incident upon a nonlinear oscillator, the resulting perturbed motion can exhibit stochastic behavior. Applications for the study of this system are wide and varied. We apply Lie-transform perturbation theory and mapping techniques in the analysis of the stochastic transition and the consequent induced diffusion in the oscillator phase space. A constant of the motion to the first order in a peturbation parameter is calculated, a mapping approximation is derived, and diffusion calculations from the mapping are given. Copyright 1987 Academic Press, Inc

  3. Electrostatic quasi-monochromatic waves in the downstream region of the Earth's bow shock based on Geotail observations

    Science.gov (United States)

    Shin, K.; Kojima, H.; Matsumoto, H.; Mukai, T.

    2007-02-01

    Geotail plasma wave observations show the existence of intense electrostatic quasi-monochromatic (EQM) waves in the downstream region of the Earth's bow shock. They oscillate parallel to the ambient magnetic field and appear at frequencies between the electron plasma and ion plasma frequencies. Although these waves have been believed to be Doppler-shifted ion acoustic waves, the typical plasma parameters observed in the downstream region do not support the generation conditions for ion acoustic waves. In this paper, the existence of cold electron beam-like components accompanying EQM waves is considered based on waveform and statistical analyses. Linear dispersion analyses using realistic plasma parameters revealed that the cold electron beams cause destabilization of electron acoustic waves at frequencies consistent with those of observed EQM waves. The results of observations and linear analyses suggest that EQM waves are generated by the destabilization of the electron acoustic mode.

  4. TEMPERATURE GRADIENTS IN THE SOLAR ATMOSPHERE AND THE ORIGIN OF CUTOFF FREQUENCY FOR TORSIONAL TUBE WAVES

    International Nuclear Information System (INIS)

    Routh, S.; Musielak, Z. E.; Hammer, R.

    2010-01-01

    Fundamental modes supported by a thin magnetic flux tube embedded in the solar atmosphere are typically classified as longitudinal, transverse, and torsional waves. If the tube is isothermal, then the propagation of longitudinal and transverse tube waves is restricted to frequencies that are higher than the corresponding global cutoff frequency for each wave. However, no such global cutoff frequency exists for torsional tube waves, which means that a thin and isothermal flux tube supports torsional tube waves of any frequency. In this paper, we consider a thin and non-isothermal magnetic flux tube and demonstrate that temperature gradients inside this tube are responsible for the origin of a cutoff frequency for torsional tube waves. The cutoff frequency is used to determine conditions for the wave propagation in the solar atmosphere, and the obtained results are compared to the recent observational data that support the existence of torsional tube waves in the Sun.

  5. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    Science.gov (United States)

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  6. Gravitational-wave detection using redshifted 21-cm observations

    International Nuclear Information System (INIS)

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-01-01

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different μ dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  7. DEMETER observations of manmade waves that propagate in the ionosphere

    Science.gov (United States)

    Parrot, Michel

    2018-01-01

    This paper is a review of manmade waves observed by the ionospheric satellite DEMETER. It concerns waves emitted by the ground-based VLF and ELF transmitters, by broadcasting stations, by the power line harmonic radiation, by industrial noise, and by active experiments. Examples are shown including, for the first time, the record of a wave coming from an ELF transmitter. These waves propagate upwards in the magnetosphere and they can be observed in the magnetically conjugated region of emission. Depending on their frequencies, they perturb the ionosphere and the particles in the radiation belts, and additional emissions are triggered. xml:lang="fr"

  8. Latitudinal beaming of Jupiter's low frequency radio emissions

    International Nuclear Information System (INIS)

    Alexander, J.K.; Desch, M.D.; Kaiser, M.L.; Thieman, J.R.

    1979-01-01

    By comparing Rae 1 and Imp 6 satelite measurements of Jupiter's radio emissions near 1 MHz with recent Voyager 1 and 2 observations in the same frequency range it is now possible to study the properties of the low frequency radiation pattern over a 10 0 range of latitudes with respect to the Jovian rotation equator. These observations, which cover a wider latitudinal range than is possible from the earth, are consistent with many aspect of earlier ground-based measurements that have been used to infer a sharp beaming pattern for the decameter wavelength emissions. We find marked, systematic changes in the statistical occurrence probability distributions with system III central meridian longitude as the Jovigraphic latitude of the observer changes over this range. Moreover, simultaneous observations by the two Voyager spacecraft, which are separated by up to 3 0 in Jovigraphic latitude, suggest that the instantaneous beam width may be no more than a few degrees at times. The new hectometer wave results can be interpreted in terms of a narrow, curved sheet at a fixed magnetic latitude into which the emission is beamed to escape the planet

  9. Proofs for the Wave Theory of Plants

    Science.gov (United States)

    Wagner, Orvin E.

    1997-03-01

    Oscillatory behavior in plants. (2)Standing waves observed coming from probes equally spaced up tree trunks and freshly cut live wood samples. (3)Beat frequencies observed while applying AC voltages to plants. (4)Plant length quantization. (5)Plant growth angle and voltage quantization with respect to the gravitational field. (6)The measurement of plant frequences with a low frequency spectrum analyzer which correlate with the frequencies observed by other means such as by measuring plant lengths, considered as half wavelengths, and beat frequencies. (7)Voltages obtained from insulated, isolated from light, diode dies placed in slits in tree trunks. Diodes become relatively low impedance sources for voltages as high as eight volts. Diodes indicate charge separating longitudinal standing waves sweeping up and down a tree trunk. Longitudinal waves also indicated by plant structure. (8)The measured discrete wave velocities appear to be dependent on their direction of travel with respect to the gravitational field. These provide growth references for the plant and a wave guide affect. For references see Wagner Research Laboratory Web Page.

  10. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the low latitude boundary layer (LLBL and duskside magnetosphere occurred under such inflated conditions that the magnetospheric magnetic pressure was insufficient to maintain pressure balance. In these crossings, the inner edge of

  11. Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals

    International Nuclear Information System (INIS)

    Xu, Zhenlong; Wu, Fugen; Guo, Zhongning

    2012-01-01

    The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies. -- Highlights: ► We report a new class of quasi-periodic hetero-structures, arc-shaped phononic crystals (APCs). ► The results show the first PBGs start with zero Hz with low modes. ► Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials.

  12. Auroral ion beams and ion acoustic wave generation by fan instability

    Energy Technology Data Exchange (ETDEWEB)

    Vaivads, A

    1996-04-01

    Satellite observations indicate that efficient energy transport among various plasma particles and between plasma waves and plasma particles is taking place in auroral ion beam regions. These observations show that two characteristic wave types are associated with the auroral ion beam regions: electrostatic hydrogen cyclotron waves with frequencies above hydrogen gyrofrequency, and low frequency waves with frequencies below hydrogen gyrofrequency. We speculate that the low frequency waves can be ion acoustic waves generated through the fan instability. The presence of a cold background ion component is necessary for the onset of this instability. A cold ion component has been directly observed and has been indirectly suggested from observations of solitary wave structures. The wave-particle interaction during the development of the fan instability results in an efficient ion beam heating in the direction perpendicular to the ambient magnetic field. The fan instability development and the ion beam heating is demonstrated in a numerical particle simulation. 23 refs, 16 figs.

  13. Scaling observations of surface waves in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Madison Smith

    2016-04-01

    Full Text Available Abstract The rapidly changing Arctic sea ice cover affects surface wave growth across all scales. Here, in situ measurements of waves, observed from freely-drifting buoys during the 2014 open water season, are interpreted using open water distances determined from satellite ice products and wind forcing time series measured in situ with the buoys. A significant portion of the wave observations were found to be limited by open water distance (fetch when the wind duration was sufficient for the conditions to be considered stationary. The scaling of wave energy and frequency with open water distance demonstrated the indirect effects of ice cover on regional wave evolution. Waves in partial ice cover could be similarly categorized as distance-limited by applying the same open water scaling to determine an ‘effective fetch’. The process of local wave generation in ice appeared to be a strong function of the ice concentration, wherein the ice cover severely reduces the effective fetch. The wave field in the Beaufort Sea is thus a function of the sea ice both locally, where wave growth primarily occurs in the open water between floes, and regionally, where the ice edge may provide a more classic fetch limitation. Observations of waves in recent years may be indicative of an emerging trend in the Arctic Ocean, where we will observe increasing wave energy with decreasing sea ice extent.

  14. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    Science.gov (United States)

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  15. Observation of proton chorus waves close to the equatorial plane by Cluster

    Science.gov (United States)

    Grison, B.; Pickett, J. S.; Santolik, O.; Robert, P.; Cornilleau-Wehrlin, N.; Engebretson, M. J.; Constantinescu, D. O.

    2009-12-01

    Whistler mode chorus waves are a widely studied phenomena. They are present in numerous regions of the magnetosphere and are presumed to originate in the magnetic equatorial region. In a spectrogram they are characterized by narrowband features with rise (or fall) in frequency over short periods of time. Being whistler mode waves around a few tenths of the electron cyclotron frequency they interact mainly with electrons. In the present study we report observations by the Cluster spacecraft of what we call proton chorus waves. They have spectral features with rising frequency, similar to the electron chorus waves, but they are detected in a frequency range that starts roughly at 0.50fH+ up to fH+ (the local proton gyro-frequency). The lower part of their spectrum seems to originate from monochromatic Pc 1 waves (1.5 Hz). Proton chorus waves are detected close to the magnetic equatorial plane in both hemispheres during the same event. Our interpretation of these waves as proton chorus is supported by polarization analysis with the Roproc procedures and the Prassadco software using both the magnetic (STAFF-SC) and electric (EFW) parts of the fluctuations spectrum.

  16. MONITORING HIGH-FREQUENCY OCEAN SIGNALS USING LOW-COST GNSS/IMU BUOYS

    Directory of Open Access Journals (Sweden)

    Y.-L. Huang

    2016-06-01

    Full Text Available In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS or Precise Point Positioning (PPP solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  17. Infragravity Waves Produced by Wave Groups on Beaches

    Institute of Scientific and Technical Information of China (English)

    邹志利; 常梅

    2003-01-01

    The generation of low frequency waves by a single or double wave groups incident upon two plane beaches with the slope of 1/40 and 1/100 is investigated experimentally and numerically. A new type of wave maker signal is used to generate the groups, allowing the bound long wave (set-down) to be included in the group. The experiments show that the low frequency wave is generated during breaking and propagation to the shoreline of the wave group. This process of generation and propagation of low frequency waves is simulated numerically by solving the short-wave averaged mass and momentum conservation equations. The computed and measured results are in good agreement. The mechanism of generation of low frequency waves in the surf zone is examined and discussed.

  18. MULTI-FLUID APPROACH TO HIGH-FREQUENCY WAVES IN PLASMAS. I. SMALL-AMPLITUDE REGIME IN FULLY IONIZED MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume, E-mail: david.martinez@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2016-12-01

    Ideal magnetohydrodynamics (MHD) provides an accurate description of low-frequency Alfvén waves in fully ionized plasmas. However, higher-frequency waves in many plasmas of the solar atmosphere cannot be correctly described by ideal MHD and a more accurate model is required. Here, we study the properties of small-amplitude incompressible perturbations in both the low- and the high-frequency ranges in plasmas composed of several ionized species. We use a multi-fluid approach and take into account the effects of collisions between ions and the inclusion of Hall’s term in the induction equation. Through the analysis of the corresponding dispersion relations and numerical simulations, we check that at high frequencies ions of different species are not as strongly coupled as in the low-frequency limit. Hence, they cannot be treated as a single fluid. In addition, elastic collisions between the distinct ionized species are not negligible for high-frequency waves, since an appreciable damping is obtained. Furthermore, Coulomb collisions between ions remove the cyclotron resonances and the strict cutoff regions, which are present when collisions are not taken into account. The implications of these results for the modeling of high-frequency waves in solar plasmas are discussed.

  19. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    Science.gov (United States)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  20. SCINTILLATION ARCS IN LOW-FREQUENCY OBSERVATIONS OF THE TIMING-ARRAY MILLISECOND PULSAR PSR J0437–4715

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; McSweeney, S. J.; Tingay, S. J. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia)

    2016-02-10

    Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz reveal a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.

  1. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    -ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...... was found to steadily decrease with decreasing center frequency. Although the observed decrease in filter bandwidth with decreasing center frequency was only approximately monotonic, the preliminary data indicates the filter bandwidth does not stabilize around 100 Hz, e.g. it still decreases below...

  2. Computer simulations on the nonlinear frequency shift and nonlinear modulation of ion-acoustic waves

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu; Kamimura, Tetsuo.

    1976-11-01

    The nonlinear behavior of ion-acoustic waves with rather short wave-length, k lambda sub(De) asymptotically equals 1, is investigated by computer sumulations. It is observed that the nonlinear frequency shift is negative and is proportional to square root of the initial wave amplitude when the amplitude is not too large. This proportionality breaks down and the frequency shift can become positive (for large Te/Ti), when (n tilde sub(i)/n 0 )sup(1/2)>0.25, where n tilde sub(i) is the ion density perturbation and n 0 the average plasma density. Nonlinear modulation of the wave-packet is clearly seen; however, modulational instability was not observed. The importance of the effects of trapped ions to these phenomena is emphasized. (auth.)

  3. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    Science.gov (United States)

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  4. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    Science.gov (United States)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  5. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    Science.gov (United States)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  6. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.; Gundlach, David; Cheung, Kin. P., E-mail: Kin.Cheung@NIST.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Liu, Changze [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Institute of Microelectronics, Peking University, Beijing 100871 (China); Southwick, Richard G. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); IBM Research, Albany, NY 12205 (United States); Oates, Anthony S. [Taiwan Semiconductor Manufacturing Corporation, Hsinchu 30844, Taiwan (China); Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.

  7. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream

    Science.gov (United States)

    Todd, Robert E.

    2017-06-01

    Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.

  8. Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2006-09-01

    Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.

  9. First low frequency all-sky search for continuous gravitational wave signals

    NARCIS (Netherlands)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Andersen, M.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Ashton, G.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, C. D.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Branco, V.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Bustillo, J. Calderon; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Damjanic, M. D.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Dia, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Edwards, M.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. A.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Gonzalez, J.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gossler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammer, D. X.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hoelscher-Obermaier, J.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jang, D.H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Karlen, J. L.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kerrigan, J.; Key, J. S.; Khalili, F. Y.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J. T.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, J. P.; Lee, J. P.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lubinski, M. J.; Luck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Madden-Fong, D. X.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Ma, H.Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, A.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Okounkova, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ortega, W. E.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C. T.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H. R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Racz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rodger, A. S.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosins, D.; Rowan, S.; Rud, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sanchez, E.; Sandberg, V.; Sanders, J. R.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schonbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shaffery, P.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tap, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Tse, M.; Turconi, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; Van Bakel, N.; Van Beuzekom, Martin; Van den Brand, J. F. J.; Van Den Broeck, C.F.F.; van der Schaaf, L.; van der Sluys, M. V.; Eijningen, J. V.; Eggel, A. A. V.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, MT; Wade, L. E.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, K. J.; Williams, L.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10−23/√Hz at 100 Hz, the product of observable volume and measurement time

  10. Frequency-Modulated Wave Dielectrophoresis of Vesicles And Cells: Periodic U-Turns at the Crossover Frequency

    Science.gov (United States)

    Frusawa, Hiroshi

    2018-06-01

    We have formulated the dielectrophoretic force exerted on micro/nanoparticles upon the application of frequency-modulated (FM) electric fields. By adjusting the frequency range of an FM wave to cover the crossover frequency f X in the real part of the Clausius-Mossotti factor, our theory predicts the reversal of the dielectrophoretic force each time the instantaneous frequency periodically traverses f X . In fact, we observed periodic U-turns of vesicles, leukemia cells, and red blood cells that undergo FM wave dielectrophoresis (FM-DEP). It is also suggested by our theory that the video tracking of the U-turns due to FM-DEP is available for the agile and accurate measurement of f X . The FM-DEP method requires a short duration, less than 30 s, while applying the FM wave to observe several U-turns, and the agility in measuring f X is of much use for not only salty cell suspensions but also nanoparticles because the electric-field-induced solvent flow is suppressed as much as possible. The accuracy of f X has been verified using two types of experiment. First, we measured the attractive force exerted on a single vesicle experiencing alternating-current dielectrophoresis (AC-DEP) at various frequencies of sinusoidal electric fields. The frequency dependence of the dielectrophoretic force yields f X as a characteristic frequency at which the force vanishes. Comparing the AC-DEP result of f X with that obtained from the FM-DEP method, both results of f X were found to coincide with each other. Second, we investigated the conductivity dependencies of f X for three kinds of cell by changing the surrounding electrolytes. From the experimental results, we evaluated simultaneously both of the cytoplasmic conductivities and the membrane capacitances using an elaborate theory on the single-shell model of biological cells. While the cytoplasmic conductivities, similar for these cells, were slightly lower than the range of previous reports, the membrane capacitances obtained

  11. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= $T_{p, perp}/T_{p, parallel}{-}1$ became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the

  12. High frequency ion sound waves associated with Langmuir waves in type III radio burst source regions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2004-01-01

    Full Text Available Short wavelength ion sound waves (2-4kHz are detected in association with the Langmuir waves (~15-30kHz in the source regions of several local type III radio bursts. They are most probably not due to any resonant wave-wave interactions such as the electrostatic decay instability because their wavelengths are much shorter than those of Langmuir waves. The Langmuir waves occur as coherent field structures with peak intensities exceeding the Langmuir collapse thresholds. Their scale sizes are of the order of the wavelength of an ion sound wave. These Langmuir wave field characteristics indicate that the observed short wavelength ion sound waves are most probably generated during the thermalization of the burnt-out cavitons left behind by the Langmuir collapse. Moreover, the peak intensities of the observed short wavelength ion sound waves are comparable to the expected intensities of those ion sound waves radiated by the burnt-out cavitons. However, the speeds of the electron beams derived from the frequency drift of type III radio bursts are too slow to satisfy the needed adiabatic ion approximation. Therefore, some non-linear process such as the induced scattering on thermal ions most probably pumps the beam excited Langmuir waves towards the lower wavenumbers, where the adiabatic ion approximation is justified.

  13. Thickness Measurement of a Film on a Substrate by Low-Frequency Ultrasound

    Institute of Scientific and Technical Information of China (English)

    LI Ming-Xuan; WANG Xiao-Min; MAO Jie

    2004-01-01

    @@ We describe a new simple technique for the low-frequency ultrasonic thickness measurement of an air-backed soft thin layer attached on a hard substrate of finite thickness through the frequency-shifts of the substrate resonances by the substrate-side insonification. A plane compressive wave impinging normally on the substrate surface from a liquid is studied. Low frequency here means an interrogating acoustical wave frequency of less than half of coating to the substrate. Equations for the frequency-shifts are derived and solved by the Newton iterative method and the Taylor expansion method, respectively, indicating satisfactory agreement within the range of interest of thickness ratio of the thin layer to the substrate for a polymer-aluminium structure. An experimental setup is constructed to verify the validity of the technique.

  14. Observation and theory of Pc 5 waves with harmonically related transverse and compressional components

    International Nuclear Information System (INIS)

    Takahashi, K.; McEntire, R.W.; Cheng, C.Z.; Kistler, L.M.

    1990-01-01

    The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studies. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1,600 -2,100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number, m, estimated from an ion finite Larmor radius effect, is generally large (|m| ∼ 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate right-hand polarization, and propagate westward. The authors suggest that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties. The drift mirror instability is considered to be the mechanism for exciting the westward propagation waves. An analytical formula for the ion flux oscillations is derived on the basis of the nonlinear gyrokinetic theory. The observed correlation between the ion flux and the parallel magnetic field perturbation δB parallel can be adequately explained with this analytical formula

  15. MASER: Measuring, Analysing, Simulating low frequency Radio Emissions.

    Science.gov (United States)

    Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P. M.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J. M.; Faden, J.; Piker, C.; André, N.; Genot, V. N.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.

    2017-12-01

    The MASER (Measuring, Analysing and Simulating Radio Emissions) project provides a comprehensive infrastructure dedicated to low frequency radio emissions (typically Radioastronomie de Nançay and the CDPP deep archive. These datasets include Cassini/RPWS, STEREO/Waves, WIND/Waves, Ulysses/URAP, ISEE3/SBH, Voyager/PRA, Nançay Decameter Array (Routine, NewRoutine, JunoN), RadioJove archive, swedish Viking mission, Interball/POLRAD... MASER also includes a Python software library for reading raw data.

  16. Comparing and Merging Observation Data from Ka-Band Cloud Radar, C-Band Frequency-Modulated Continuous Wave Radar and Ceilometer Systems

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-12-01

    Full Text Available Field experiment in South China was undertaken to improve understanding of cloud and precipitation properties. Measurements of the vertical structures of non-precipitating and precipitating clouds were obtained using passive and active remote sensing equipment: a Ka-band cloud radar (CR system, a C-band frequency modulated continuous wave vertical pointing radar (CVPR, a microwave radiometer and a laser ceilometer (CEIL. CR plays a key role in high-level cloud observation, whereas CVPR is important for observing low- and mid-level clouds and heavy precipitation. CEIL helps us diminish the effects of “clear-sky” in the planetary boundary layer. The experiment took place in Longmen, Guangdong Province, China from May to September of 2016. This study focuses on evaluating the ability of the two radars to deliver consistent observation data and develops an algorithm to merge the CR, CVPR and CEIL data. Cloud echo base, thickness, frequency of observed cloud types and reflectivity vertical distributions are analyzed in the radar data. Comparisons between the collocated data sets show that reflectivity biases between the CR three operating modes are less than 2 dB. The averaged difference between CR and CVPR reflectivity can be reduced with attenuation correction to 3.57 dB from the original 4.82 dB. No systemic biases were observed between velocity data collected in the three CR modes and CVPR. The corrected CR reflectivity and velocity data were then merged with the CVPR data and CEIL data to fill in the gaps during the heavy precipitation periods and reduce the effects of Bragg scattering and fog on cloud observations in the boundary layer. Meanwhile, the merging of velocity data with different Nyquist velocities and resolutions diminishes velocity folding to provide fine-grain information about cloud and precipitation dynamics. The three daily periods in which low-level clouds tended to occur were at sunrise, noon and sunset and large

  17. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    Science.gov (United States)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  18. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-01

    Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v vph diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.

  19. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional electromagnetic response. In particular, we show that the use of scatterers with low refractive-index contrast favors the formation of unidirectional frequency gaps which is the optimal route for achieving unidirectional wave propagation.

  20. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures.

    Science.gov (United States)

    Yannopapas, Vassilios

    2015-03-19

    We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional electromagnetic response. In particular, we show that the use of scatterers with low refractive-index contrast favors the formation of unidirectional frequency gaps which is the optimal route for achieving unidirectional wave propagation.

  1. World map of ELF/VLF emissions as observed by a low-orbiting satellite

    International Nuclear Information System (INIS)

    Parrot, M.

    1990-01-01

    Statistical studies were performed of the intensities of the ELF/VLF emissions observed by the low-orbiting satellite AUREOL-3. Data were obtained from filterbanks and the frequency range of observations extends from a few tens of Hz up to 15 kHz. The most important phenomena observed are ELF hiss and VLF hiss. Electric and magnetic components are used. Thus, representation of the waves intensities in geographical coordinates was made at different frequencies. The relative ability of natural waves (whistler, hiss) and man-made waves, such as powerful VLF transmitters or powerline harmonic radiations (PLHR), to precipitate particles in the slot region, is studied. Using geomagnetical representation, it is shown that ELF hiss is maximum between 06 and 20 Magnetic Local Time and in the invariant latitude range 50 0 -70 0 as usual, but geographic representation indicates that the waves are intensified at the longitudes of VLF transmitters and near the South Atlantic Anomaly (SAA). The SAA plays a dominant role in the localization of the strongest ELF hiss. Weakest intensities are observed to the east of the SAA. As to the VLF hiss, the maximum intensity is related to regions of enhanced thunderstorm activity, and may be influenced by powerline harmonic radiations (PLHR) over USA. Comparisons with past work, experimental as well as theoretical, are made

  2. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    forecasting in real-time, as the GPU-based wave model backbone was very computationally efficient. The data assimilation algorithm was developed on a polar grid domain in order to match the sampling characteristics of the observation system (wave imaging marine radar). For verification purposes, a substantial set of synthetic wave data (i.e. forward runs of the wave model) were generated to be used as ground truth for comparison to the reconstructions and forecasts produced by Wavecast. For these synthetic cases, Wavecast demonstrated very good accuracy, for example, typical forecast correlation coefficients were between 0.84-0.95 when compared to the input data. Dependencies on shadowing, observational noise, and forecast horizon were also identified. During the second year of the project, a short field deployment was conducted in order to assess forecast accuracy under field conditions. For this, a radar was installed on a fishing vessel and observations were collected at the South Energy Test Site (SETS) off the coast of Newport, OR. At the SETS site, simultaneous in situ wave observations were also available owing to an ongoing field project funded separately. Unfortunately, the position and heading information that was available for the fishing vessel were not of sufficient accuracy in order to validate the forecast in a phase-resolving sense. Instead, a spectral comparison was made between the Wavecast forecast and the data from the in situ wave buoy. Although the wave and wind conditions during the field test were complex, the comparison showed a promising reconstruction of the wave spectral shape, where both peaks in the bimodal spectrum were represented. However, the total reconstructed spectral energy (across all directions and frequencies) was limited to 44% of the observed spectrum. Overall, wave-by-wave forecasting using a data assimilation approach based on wave imaging radar observations and a physics-based wave model shows promise for short-term phase

  3. Sound field control for a low-frequency test facility

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik

    2013-01-01

    The two largest problems in controlling the reproduction of low-frequency sound for psychoacoustic experiments is the effect of the room due to standing waves and the relatively large sound pressure levels needed. Anechoic rooms are limited downward in frequency and distortion may be a problem even...... at moderate levels, while pressure-field playback can give higher sound pressures but is limited upwards in frequency. A new solution that addresses both problems has been implemented in the laboratory of Acoustics, Aalborg University. The solution uses one wall with 20 loudspeakers to generate a plane wave...... that is actively absorbed when it reaches the 20 loudspeakers on the opposing wall. This gives a homogeneous sound field in the majority of the room with a flat frequency response in the frequency range 2-300 Hz. The lowest frequencies are limited to sound pressure levels in the order of 95 dB. If larger levels...

  4. Large-scale transmission-type multifunctional anisotropic coding metasurfaces in millimeter-wave frequencies

    Science.gov (United States)

    Cui, Tie Jun; Wu, Rui Yuan; Wu, Wei; Shi, Chuan Bo; Li, Yun Bo

    2017-10-01

    We propose fast and accurate designs to large-scale and low-profile transmission-type anisotropic coding metasurfaces with multiple functions in the millimeter-wave frequencies based on the antenna-array method. The numerical simulation of an anisotropic coding metasurface with the size of 30λ × 30λ by the proposed method takes only 20 min, which however cannot be realized by commercial software due to huge memory usage in personal computers. To inspect the performance of coding metasurfaces in the millimeter-wave band, the working frequency is chosen as 60 GHz. Based on the convolution operations and holographic theory, the proposed multifunctional anisotropic coding metasurface exhibits different effects excited by y-polarized and x-polarized incidences. This study extends the frequency range of coding metasurfaces, filling the gap between microwave and terahertz bands, and implying promising applications in millimeter-wave communication and imaging.

  5. An extraordinary ULF wave episode during the 2003 Halloween superstorm revealed by wavelet transforms of multipoint observations

    Science.gov (United States)

    Balasis, G.; Daglis, I. A.; Georgiou, M.; Papadimitriou, C.; Zesta, E.; Mann, I.

    2013-09-01

    We investigate a rare concurrent observation of an ultra low frequency (ULF) wave event in the Earth's magnetosphere, topside ionosphere and surface employing a time-frequency analysis technique. We have examined the ULF wave activity in the Pc3 (22-100 mHz) and Pc4-5 (1-22 mHz) frequency bands within a short time interval during the Halloween 2003 magnetic storm, when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction near the dayside noon-midnight meridian. A key finding of the wavelet spectral analysis of data collected from the Geotail, Cluster and CHAMP spacecraft, and the CARISMA and GIMA magnetometer networks was a remarkably clear transition of the waves' frequency into a higher regime within the Pc3 range. Our study offers insights into the energy transfer traced all the way from the solar wind through the magnetosphere and ionosphere to the ground. This work has received support from the European Community's Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  6. Finite-difference modeling and dispersion analysis of high-frequency love waves for near-surface applications

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.

    2010-01-01

    Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.

  7. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    KAUST Repository

    Ryu, Seol

    2010-01-01

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. © 2009 The Combustion Institute.

  8. High frequency single mode traveling wave structure for particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.

  9. Massive MIMO 5G Cellular Networks:mm-Wave vs.μ-Wave Frequencies

    Institute of Scientific and Technical Information of China (English)

    Stefano Buzzi; Carmen D'Andrea

    2017-01-01

    Enhanced mobile broadband (eMBB) is one of the key use-cases for the development of the new standard 5G New Radio for the next generation of mobile wireless networks. Large-scale antenna arrays, a.k.a. massive multiple-input multiple-output (MIMO), the usage of carrier frequencies in the range 10-100 GHz, the so-called millimeter wave (mm-Wave) band, and the network densifica-tion with the introduction of small-sized cells are the three technologies that will permit implementing eMBB services and realiz-ing the Gbit/s mobile wireless experience. This paper is focused on the massive MIMO technology. Initially conceived for conven-tional cellular frequencies in the sub-6 GHz range (μ-Wave), the massive MIMO concept has been then progressively extended to the case in which mm-Wave frequencies are used. However, due to different propagation mechanisms in urban scenarios, the re-sulting MIMO channel models at μ-Wave and mm-Wave are radically different. Six key basic differences are pinpointed in this paper, along with the implications that they have on the architecture and algorithms of the communication transceivers and on the attainable performance in terms of reliability and multiplexing capabilities.

  10. Anomalous resistivity due to low-frequency turbulence. [of collisionless plasma with limited acceleration of high velocity runaway electrons

    Science.gov (United States)

    Rowland, H. L.; Palmadesso, P. J.

    1983-01-01

    Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.

  11. Observation of the low-frequency ion acoustic instability in the turbulently heated TRIAM-1 tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O; Watanabe, T; Nakamura, Y; Nakamura, K; Hiraki, N; Toi, K; Kawai, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-12-01

    Density fluctuations in the frequency range of several MHz are observed in the turbulently heated TRIAM-1 tokamak plasma by means of a 4 mm microwave scattering method. It is found from the measurement of the dispersion relation that this instability is considered to be the low-frequency ion acoustic instability propagating nearly perpendicular to the toroidal magnetic field.

  12. Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.

    Science.gov (United States)

    Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu

    2018-01-01

    Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ionospheric heating with oblique high-frequency waves

    International Nuclear Information System (INIS)

    Field, E.C. Jr.; Bloom, R.M.; Kossey, P.A.

    1990-01-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions

  14. Low-frequency electromagnetic solitary and shock waves in an inhomogeneous dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.

    2003-01-01

    It is shown that the nonlinear dynamics of one-dimensional Shukla mode [Phys. Lett. A 316, 238 (2003)] is governed by a modified Kortweg-de Vries-Burgers equation. The latter admits stationary solutions in the form of either a solitary wave or a monotonic/oscillatory shock. The present nonlinear waves may help to understand the salient features of localized density and magnetic field structures in molecular dusty clouds as well as in low-temperature laboratory dusty plasma discharges

  15. Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range

    Science.gov (United States)

    Chen, Xing; Liu, Peng; Hou, Zewei; Pei, Yongmao

    2017-04-01

    Wavelength division multiplexing technology, adopted to increase the information density, plays a significant role in optical communication. However, in acoustics, a similar function can be hardly implemented due to the weak dispersion in natural acoustic materials. Here, an acoustic demultiplexer, based on the concept of metasurfaces, is proposed for splitting acoustic waves and propagating along different trajectories in a low frequency range. An acoustic metasurface, containing multiple resonant units, is designed with various phase profiles for different frequencies. Originating from the highly dispersive properties, the resonant units are independent and merely work in the vicinity of their resonant frequencies. Therefore, by combing multiple resonant units appropriately, the phenomena of anomalous reflection, acoustic focusing, and acoustic wave bending can occur in different frequencies. The proposed acoustic demultiplexer has advantages on the subwavelength scale and the versatility in wave control, providing a strategy for separating acoustic waves with different Fourier components.

  16. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation.

    Science.gov (United States)

    Suizu, Koji; Koketsu, Kaoru; Shibuya, Takayuki; Tsutsui, Toshihiro; Akiba, Takuya; Kawase, Kodo

    2009-04-13

    Terahertz (THz) wave generation based on nonlinear frequency conversion is promising way for realizing a tunable monochromatic bright THz-wave source. Such a development of efficient and wide tunable THz-wave source depends on discovery of novel brilliant nonlinear crystal. Important factors of a nonlinear crystal for THz-wave generation are, 1. High nonlinearity and 2. Good transparency at THz frequency region. Unfortunately, many nonlinear crystals have strong absorption at THz frequency region. The fact limits efficient and wide tunable THz-wave generation. Here, we show that Cherenkov radiation with waveguide structure is an effective strategy for achieving efficient and extremely wide tunable THz-wave source. We fabricated MgO-doped lithium niobate slab waveguide with 3.8 microm of thickness and demonstrated difference frequency generation of THz-wave generation with Cherenkov phase matching. Extremely frequency-widened THz-wave generation, from 0.1 to 7.2 THz, without no structural dips successfully obtained. The tuning frequency range of waveguided Cherenkov radiation source was extremely widened compare to that of injection seeded-Terahertz Parametric Generator. The tuning range obtained in this work for THz-wave generation using lithium niobate crystal was the widest value in our knowledge. The highest THz-wave energy obtained was about 3.2 pJ, and the energy conversion efficiency was about 10(-5) %. The method can be easily applied for many conventional nonlinear crystals, results in realizing simple, reasonable, compact, high efficient and ultra broad band THz-wave sources.

  17. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube

    International Nuclear Information System (INIS)

    Deng Ming-Xi; Gao Guang-Jian; Li Ming-Liang

    2015-01-01

    The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle. (paper)

  18. Nonlinear low frequency (LF) waves - Comets and foreshock phenomena

    Science.gov (United States)

    Tsurutani, Bruce T.

    1991-01-01

    A review is conducted of LF wave nonlinear properties at comets and in the earth's foreshock, engaging such compelling questions as why there are no cometary cyclotron waves, the physical mechanism responsible for 'dispersive whiskers', and the character of a general description of linear waves. Attention is given to the nonlinear properties of LF waves, whose development is illustrated by examples of waves and their features at different distances from the comet, as well as by computer simulation results. Also discussed is a curious wave mode detected from Comet Giacobini-Zinner, both at and upstream of the bow shock/wave.

  19. Plasma waves observed by sounding rockets

    International Nuclear Information System (INIS)

    Kimura, I.

    1977-01-01

    Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)

  20. Theoretical study of very low-frequency wave heating of a fusion plasma

    International Nuclear Information System (INIS)

    Fiori, C.

    1980-12-01

    For a certain order of frequencies defined here we give the derivation and general solution of the 4th order differential equation obeyed by the radial MHD displacement of a cylindrical, resistive and incompressible plasma column. By means of a flux function the expressions of the elctromagnetic field and the current density in the resistive layer are obtained the power dissipated in this layer by an external wave and its limit when the resistivity disappears are then discussed [fr

  1. Modeling and experiments with low-frequency pressure wave propagation in liquid-filled, flexible tubes

    DEFF Research Database (Denmark)

    Bjelland, C; Bjarnø, Leif

    1992-01-01

    relations and frequency-dependent attenuation. A 12-m-long, liquid-filled tube with interior stress members and connectors in each end is hanging vertically from an upper fixture. The lower end connector is excited by a power vibrator to generate the relevant wave modes. Measurements with reference...

  2. Predictions and observations of low-shear beta-induced shear Alfven-acoustic eigenmodes in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N.N. [Princeton Plasma Physics Laboratory, Princeton University (United States)], E-mail: ngorelen@pppl.gov; Berk, H.L. [IFS, Austin, Texas (United States); Fredrickson, E. [Princeton Plasma Physics Laboratory, Princeton University (United States); Sharapov, S.E. [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United States)

    2007-10-08

    New global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfven-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high-beta >20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfven coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.

  3. Non-local coexistence of multiple spiral waves with independent frequencies

    International Nuclear Information System (INIS)

    Zhan Meng; Luo Jinming

    2009-01-01

    The interactions of several spiral waves with different independent rotation frequencies are studied in a model of two-dimensional complex Ginzburg-Laudau equation. We find a general coexistence phenomenon, non-local non-phase-locking-invasion coexistence, that is, the non-slowest spiral wave can survive and not be killed by the fastest spiral wave as it is insulated from the fastest one with the sacrifice of the slowest one, which stays in the spatial position between the fastest spiral and the non-slowest one. Both the parameter non-monotonicity and the non-phase-locking invasion between the fastest and the slowest spiral waves play key roles in this phenomenon. Importantly, the results could give a general idea for extensively observed coexistence of spiral waves in various inhomogeneous circumstances.

  4. Simulation model for studying low frequency microinstabilities

    International Nuclear Information System (INIS)

    Lee, W.W.; Okuda, H.

    1976-03-01

    A 2 1 / 2 dimensional, electrostatic particle code in a slab geometry has been developed to study low frequency oscillations such as drift wave and trapped particle instabilities in a nonuniform bounded plasma. A drift approximation for the electron transverse motion is made which eliminates the high frequency oscillations at the electron gyrofrequency and its multiples. It is, therefore, possible to study the nonlinear effects such as the anomalous transport of plasmas within a reasonable computing time using a real mass ratio. Several examples are given to check the validity and usefulness of the model

  5. Comparison of pulse characteristic of low frequency ultrasonic probes for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Suhairy Sani; Muhammad Pauzi Ismail

    2006-01-01

    Ultrasonic testing of concrete or large volume of composites usually is done in low frequency range. To obtain low frequency pulse, a low frequency pulser/receiver is used attached to a low frequency probe as transmitter/receiver. Concrete is highly attenuative and a high energy pulse is essential to ensure good penetration of test samples. High energy pulse can be obtained by producing low frequency ultrasonic waves.To achieve high penetration in concrete, a low frequency probe is fabricated with the centre frequency lying at around 100 kHz. The probe is fabricated with single crystal of 18 mm thickness without any backing material to obtain wider pulse and higher pulse power. Then, comparison of pulse characteristic is done between the fabricated probe and a commercially available probe to determine the quality of the probe fabricated. (Author)

  6. High frequency fast wave results from the CDX-U spherical torus

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)

  7. High frequency fast wave results from the CDX-U spherical torus

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Menard, J.

    1999-01-01

    The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)

  8. Analysis of Energy Overshoot of High Frequency Waves with Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    WEN Fan

    2000-01-01

    A study is made on the overshoot phenomena in wind-generated waves. The surface displace ments of time-growing waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland's. It is found that high frequency wave components experience much stronger energy overshoot in the evolution.The energy of high frequency waves decreases greatly after overshoot

  9. ULF Waves Upstream from Planetary Bow Shocks: Application to the Interball-Tail Observations at the Earth

    International Nuclear Information System (INIS)

    Trotignon, J.G.; Rauch, J.L.; Klimov, S.; Nozdrachev, M.; Romanov, S.; Savin, S.; Skalsky, A.; Blecki, J.; Juchniewicz, J.; Amata, E.

    1999-01-01

    One of the outstanding problems in solar system plasma physics is the morphology of planetary and cometary foreshocks. A large variety of electron and ion velocity distribution functions, as well as electrostatic and electromagnetic waves phenomena, are indeed currently observed in these regions located upstream from, and magnetically connected to, bow shocks. Foreshocks being complex and highly dynamic, it is not easy to get a comprehensive description of them. Nevertheless, simple geometrical considerations can be of help to order foreshock structures. In light of the great number of results obtained in planetary foreshocks, which are briefly reviewed, we present an ongoing study of the upstream waves observed by the INTERBALL-TAIL magnetometers in the Ultra Low Frequency range. (author)

  10. Gravitational Waves and the Maximum Spin Frequency of Neutron Stars

    NARCIS (Netherlands)

    Patruno, A.; Haskell, B.; D'Angelo, C.

    2012-01-01

    In this paper, we re-examine the idea that gravitational waves are required as a braking mechanism to explain the observed maximum spin frequency of neutron stars. We show that for millisecond X-ray pulsars, the existence of spin equilibrium as set by the disk/magnetosphere interaction is sufficient

  11. Observation of L-bursts of Jupiter decameter waves

    International Nuclear Information System (INIS)

    Imai, Kazumasa; Tomisawa, Ichiro

    1978-01-01

    The Jupiter decameter waves are the only information source which can be obtained on the earth for the investigation of dynamics concerning the generation of plasma waves in the magnetosphere of Jupiter. The emission of Jupiter decameter waves is modulated by the satellite Io considerably. It is observed that the emission of decameter waves fluctuated much in course of time. The duration time of bursts is 1 to 10 sec and 1 to 50 msec for L-bursts and S-bursts, respectively. The simultaneous observations were conducted at two locations from August, 1977, and at three locations from December, 1977, for searching the source of L-bursts. The relation between the appearance frequency of L-bursts and S-bursts and Io phase and system 3 longitude is explained. The observation points were Sugadaira, Chofu and Toyokawa, The minimum detectable flux density by the wave receiving network is 10 -21 W/m 2 .Hz. Concerning the observed results, the locations of observed events on the Io phase and the system 3 longitude are shown. The analytical results on the L-bursts of the main source and the early source are explained, taking ten events. The analysed dynamic cross-correlation and the spectrum analysis of the decameter intensity are shown. The relation between the origin and the emission mechanism was investigated, considering the observed data and the evaluation mentioned above for the main source and early source, and the clue was obtained to solve the riddle of emission mechanism. (Nakai, Y.)

  12. High-frequency matrix converter with square wave input

    Science.gov (United States)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  13. Propagation of interplanetary shock waves by observations of type II solar radio bursts on IMP-6

    International Nuclear Information System (INIS)

    Chertok, I.M.; Fomichev, V.V.

    1976-01-01

    A new interpretation of the low frequency type II solar radio bursts of 30 June 1971, and 7-8 August 1972 observed with IMP-6 satellite (Malitson, H.H., Fainberg, J. and Stone, R.G., 1973, Astrophys. Lett., vol. 14, 111; Astrophys. J., vol. 183, L35) is suggested. The analysis is carried out for two models of the electron density distribution in the interplanetary medium taking into account that N approximately 3.5 cm -3 at a distance of 1 a.u. It is assumed that the frequency of the radio emission corresponds to the average electron density behind the shock front which exceeds the undisturbed electron density by the factor of 3. The radio data indicate essential deceleration of the shock waves during propagation from the Sun up to 1 a.u. The characteristics of the shock waves obtained from the type II bursts agree with the results of the in situ observations. (author)

  14. Time-domain analysis of frequency dependent inertial wave forces on cylinders

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave......-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... the reduction of the resonant part of the response for natural structural frequencies above the dominating wave frequency....

  15. SyZyGy: A straight interferometric spacecraft system for gravity wave observations

    International Nuclear Information System (INIS)

    Estabrook, F.B.; Armstrong, J.W.; Tinto, Massimo; Folkner, William

    2003-01-01

    We consider a spaceborne gravitational wave (GW) detector formed by three spacecraft in a linear array, coherently exchanging laser beams and using the data combinations of time-delay interferometry (TDI). We previously showed how the measured time series of Doppler shifts in the six one-way laser links between spacecraft pairs in a general unequal-arm triangular configuration can be combined, using TDI, to exactly cancel the otherwise overwhelming phase noise of the lasers while retaining sensitivity to GWs. Here we apply TDI, unfolding the general triangular configuration, to the special case of a linear array of three spacecraft. We show that such an array ('SyZyGy') has, compared with an equilateral triangle GW detector of the same scale, a degraded (but non-zero) sensitivity at low frequencies [f -4 -10 -1 Hz). SyZyGy with ∼1 light-second scale could, for the same instrumental assumptions as LISA, make observations in this intermediate frequency GW band with 5σ sensitivity to sinusoidal waves ≅2.5x10 -23 in a year's integration

  16. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  17. The Importance of Pressure Sampling Frequency in Models for Determination of Critical Wave Loadingson Monolithic Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Meinert, Palle

    2008-01-01

    This paper discusses the influence of wave load sampling frequency on calculated sliding distance in an overall stability analysis of a monolithic caisson. It is demonstrated by a specific example of caisson design that for this kind of analyses the sampling frequency in a small scale model could...... be as low as 100 Hz in model scale. However, for design of structure elements like the wave wall on the top of a caisson the wave load sampling frequency must be much higher, in the order of 1000 Hz in the model. Elastic-plastic deformations of foundation and structure were not included in the analysis....

  18. Tunable ferromagnetic resonance in La-Co substituted barium hexaferrites at millimeter wave frequencies

    Science.gov (United States)

    Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.

    2018-05-01

    Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.

  19. Locating Very-Low-Frequency Earthquakes in the San Andreas Fault.

    Science.gov (United States)

    Peña-Castro, A. F.; Harrington, R. M.; Cochran, E. S.

    2016-12-01

    The portion of tectonic fault where rheological properties transtition from brittle to ductile hosts a variety of seismic signals suggesting a range of slip velocities. In subduction zones, the two dominantly observed seismic signals include very-low frequency earthquakes ( VLFEs), and low-frequency earthquakes (LFEs) or tectonic tremor. Tremor and LFE are also commonly observed in transform faults, however, VLFEs have been reported dominantly in subduction zone environments. Here we show some of the first known observations of VLFEs occurring on a plate boundary transform fault, the San Andreas Fault (SAF) between the Cholame-Parkfield segment in California. We detect VLFEs using both permanent and temporary stations in 2010-2011 within approximately 70 km of Cholame, California. We search continous waveforms filtered from 0.02-0.05 Hz, and remove time windows containing teleseismic events and local earthquakes, as identified in the global Centroid Moment Tensor (CMT) and the Northern California Seismic Network (NCSN) catalog. We estimate the VLFE locations by converting the signal into envelopes, and cross-correlating them for phase-picking, similar to procedures used for locating tectonic tremor. We first perform epicentral location using a grid search method and estimate a hypocenter location using Hypoinverse and a shear-wave velocity model when the epicenter is located close to the SAF trace. We account for the velocity contrast across the fault using separate 1D velocity models for stations on each side. Estimated hypocentral VLFE depths are similar to tremor catalog depths ( 15-30 km). Only a few VLFEs produced robust hypocentral locations, presumably due to the difficulty in picking accurate phase arrivals with such a low-frequency signal. However, for events for which no location could be obtained, the moveout of phase arrivals across the stations were similar in character, suggesting that other observed VLFEs occurred in close proximity.

  20. Modulational instability of ultra-low-frequency shear dust Alfvén waves in a plasma medium of positive and negatively charged dust fluids

    International Nuclear Information System (INIS)

    Mamun, A. A.

    2014-01-01

    The propagation of finite amplitude ultra-low-frequency shear dust Alfvén (SDA) waves, and their modulational instability in a magnetized plasma medium of positive and negatively charged dust fluids have been theoretically investigated by using the reductive perturbation method. The derivative nonlinear Schrödinger equation is derived to examine the stability analysis of such SDA waves. It is found that the SDA waves propagating in such an opposite polarity dust plasma medium are modulationally unstable, and that the instability criterion and the growth rate of these unstable SDA waves in such a novel opposite polarity dust plasma medium are found to be significantly different from those in electron–ion or electron–positron plasma media. The implications of the present investigation in different space environments and laboratory devices are briefly discussed.

  1. Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, D.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Etienne, Z. B.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, D J; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blari, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, J.G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S. S. Y.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; Debra, D.; Deelman, E; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.J.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, A.S.P.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.E.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, S.W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kramer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang-Cheol, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, W. H.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Luck, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana Hernandez, I.; Magana-Sandoval, F.; Magana Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P.G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Castro-Perez, J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schonbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A.; Shahriar, M. S.; Shao, L.P.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, J. A.; Taylor, W.R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y. -F.; Ward, L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, G.W.K.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Suvorova, S.; Moran, W.; Evans, J.R.

    2017-01-01

    Results are presented from a semicoherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run. The search combines a frequency domain matched filter (Bessel-weighted F-statistic) with a

  2. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  3. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  4. SDO/AIA Observations of Quasi-periodic Fast (~1000 km/s) Propagating (QFP) Waves as Evidence of Fast-mode Magnetosonic Waves in the Low Corona: Statistics and Implications

    Science.gov (United States)

    Liu, W.; Ofman, L.; Title, A. M.; Zhao, J.; Aschwanden, M. J.

    2011-12-01

    Recent EUV imaging observations from SDO/AIA led to the discovery of quasi-periodic fast (~2000 km/s) propagating (QFP) waves in active regions (Liu et al. 2011). They were interpreted as fast-mode magnetosonic waves and reproduced in 3D MHD simulations (Ofman et al. 2011). Since then, we have extended our study to a sample of more than a dozen such waves observed during the SDO mission (2010/04-now). We will present the statistical properties of these waves including: (1) Their projected speeds measured in the plane of the sky are about 400-2200 km/s, which, as the lower limits of their true speeds in 3D space, fall in the expected range of coronal Alfven or fast-mode speeds. (2) They usually originate near flare kernels, often in the wake of a coronal mass ejection, and propagate in narrow funnels of coronal loops that serve as waveguides. (3) These waves are launched repeatedly with quasi-periodicities in the 30-200 seconds range, often lasting for more than one hour; some frequencies coincide with those of the quasi-periodic pulsations (QPPs) in the accompanying flare, suggestive a common excitation mechanism. We obtained the k-omega diagrams and dispersion relations of these waves using Fourier analysis. We estimate their energy fluxes and discuss their contribution to coronal heating as well as their diagnostic potential for coronal seismology.

  5. The temporal and spatial variations of low frequency geomagnetic pulsations at polar cusp and cap latitudes

    International Nuclear Information System (INIS)

    Kleimenova, N.; Kozyreva, O.V.; Francia, P.; Villante, U.

    1999-01-01

    Geomagnetic field measurements at two Antarctic are compared during two weeks in the local summer (January 1-15, 1992). Low frequency (0.6 mHz) pulsations are observed at each station near local magnetic noon. The same wave packets appear in some case also at the other station, although with a significant attenuation, more clearly in the morning sector; the wave show a near noon reversal of the polarization sense from counterclockwise in the morning to clockwise in the afternoon indicating a westward and an eastward propagation, respectively

  6. The temporal and spatial variations of low frequency geomagnetic pulsations at polar cusp and cap latitudes

    Directory of Open Access Journals (Sweden)

    J. Bitterly

    1999-06-01

    Full Text Available Geomagnetic field measurements at two Antarctic stations are compared during two weeks in the local summer (January 1-15, 1992. Low frequency (0.6-6 mHz pulsations are observed at each station near local magnetic noon. The same wave packets appear in some cases also at the other station, although with a significant attenuation, more clearly in the morning sector; the waves show a near noon reversal of the polarization sense from counter-clockwise in the morning to clockwise in the afternoon indicating a westward and an eastward propagation, respectively.

  7. On second order effects in a galvanic cell : Part I. Polarization by a sine wave modulated high frequency current

    NARCIS (Netherlands)

    Pol, F. van der; Sluyters-Rehbach, M.; Sluyters, J.H.

    1975-01-01

    A theoretical study is presented concerning the application of a high-frequency alternating current, amplitude modulated by a low-frequency sine wave, to a galvanic cell. Based on the correlation with the faradaic rectification technique, expressions are given for the low-frequency demodulation

  8. Shallow PS-logging by high frequency wave; Koshuha wo mochiita senbu PS kenso

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, A; Miyazawa, M; Azuma, H [OYO Corp., Tokyo (Japan)

    1996-05-01

    This paper describes the following matters on down-hole PS logging in shallow subsurface. Determining an elastic wave velocity structure in shallow subsurface with high accuracy by using down-hole PS logging requires reduction of errors in reading travel time. Therefore, a high-frequency vibration source was fabricated with an objective to raise frequencies of waves used for the measurement. Measurements were made on two holes, A and B, at a measurement interval of 0.5 m, whereas at the hole A a measurement was performed simultaneously by using a normal type (low-frequency) vibration source. A spectral analysis on the waveform record revealed that the frequencies with each vibration source were 127 Hz and 27 Hz for the hole A, 115 Hz for the hole B, and the S/N ratio was all the same for both holes. When the high-frequency vibration source was used, the velocity was determined at accuracy of 5% over the whole length of the shallow section. When the low-frequency vibration source was used, sections with the velocity determining error greater than 5% were found, and it was not possible to derive the velocity structure in the shallow subsurface in fine segments. 3 refs., 8 figs., 2 tabs.

  9. Predictions and Observations of Low-shear Beta-induced Alfvén-acoustic Eigenmodes in Toroidal Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N. N.; Berk, H. L.; Fredrickson, E.; Sharapov, S. E.

    2007-07-02

    New global MHD eigenmode solutions arising in gaps in the low frequency Alfvén -acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfvén-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfvén-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta < 2% as well as in NSTX plasmas at relatively high beta > 20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfvén coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.

  10. A low-frequency asymptotic model of seismic reflection from a high-permeability layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy; Goloshubin, Gennady

    2009-03-01

    Analysis of compression wave propagation through a high-permeability layer in a homogeneous poroelastic medium predicts a peak of reflection in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of the Biot's model of poroelasticity. A new physical interpretation of some coefficients of the classical poroelasticity is a result of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and the Darcy's law. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The latter is equal to the product of the kinematic reservoir fluid mobility, an imaginary unit, and the frequency of the signal. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). The practical implications of the theory developed here are seismic modeling, inversion, and attribute analysis.

  11. Numerical simulation of seismic low-frequency shadows and its application%地震低频伴影的数值模拟与应用

    Institute of Scientific and Technical Information of China (English)

    贺振华; 熊晓军; 边立恩

    2008-01-01

    Strong low-frequency energy beneath a hydrocarbon reservoir is called a seismic low-frequency shadow and can be used as a hydrocarbon indicator (Taner et al., 1979) but the physical mechanism of the observed low-frequency shadow is still unclear. To study the mechanism, we performed seismic numerical simulation of geological models with a hydrocarbon-bearing zone using the 2-D diffusive-viscous wave equation which can effectively model the characteristics of velocity dispersion and transform the seismic data centered in a target layer slice within a time window to the time-frequency domain by using time-frequency signal analysis and sort the frequency gathers to common frequency cubes. Then, we observe the characteristics of the seismic low-frequency shadow in the common frequency cubes. The numerical simulations reveal that the main mechanism of seismic low-frequency shadows is attributed to high attenuation of the medium to high seismic frequency components caused by absorption in the hydrocarbon-filled reservoir. Results from a practical example of seismic low-frequency shadows show that it is possible to identify the reservoir by the low-frequency shadow with high S/N seismic data.

  12. High-frequency modulation of ion-acoustic waves.

    Science.gov (United States)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  13. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-04-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  14. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    Science.gov (United States)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-07-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  15. Accuracy of visual wave observation from merchant ships and estimated wave loads; Accuracy of visual wave observation from merchant ships and estimated wave loads

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, H. [National Defense Academy, Kanagawa (Japan); Masaoka, K. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    1998-06-01

    There is a large number of studies on discussions concerning accuracy of visual observation of waves and the correction method thereon. This paper give considerations on observation accuracy placing a viewpoint on that by merchant ships. Based on ship meteorological observation tables reported to the Meteorological Agency of Japan on meteorology in North Pacific during 14 years from 1976 to1989, wave observation values taken by merchant ships and observation ships were compared statistically to investigate the accuracy of visual wave observations carried out by merchant ships. With regard to wave heights, the observation values taken by the observation ships and the merchant ships have strong correlation, where the merchant ships evaluate them somewhat higher than the observation ships. Regarding wave cycles of wind waves, the merchant ships tend to have the observation values on longer cycle side. Correlation between the observations values by the merchant ships and the observation ships is weak both in wind waves and swells. There is not much of variation in accuracy of observations during daytime and at night performed by the merchant ships. It will be necessary in the future to give considerations on a method to correct the observation values on wave cycles taken by the merchant ship, and on a correction method in which both of the wave cycles and the wave heights are corrected simultaneously to make the observation values of the merchant ship equal to those of the observation ships. Thus, the observation values reported by general merchant ships in a large number every year will have to be utilized more effectively. 11 refs., 21 figs., 2 tabs.

  16. Transient eddy feedback and low-frequency variability

    International Nuclear Information System (INIS)

    Robinson, W.A.

    1994-01-01

    Superposed on any externally driven secular climatic change are fluctuations that arise from the internal nonlinear dynamics of the climate system. These internally generated variations may involve interactions between the atmosphere and the ocean, as in the case of El Nino, or they may arise from the dynamics of the atmosphere alone. Here we discuss the dynamics of interactions between transient eddies and lower-frequency motions in the atmosphere. The interactions between more transient and more persistent motions can be divided into two types. Nonlinear interactions among the transient motions can act as an essentially random source of low-frequency motion. The idea that the low-frequencies respond in a linear way to stochastic forcing from higher frequencies has been applied to the generation of planetary waves and to the forcing of changes in global angular momentum. In addition to stochastic coupling, there are systematic interactions, denoted feedbacks, through which the persistent motions modulate their own forcing by the transient eddies. This paper discusses the dynamics of these feedbacks

  17. Low-cost precise measurement of oscillator frequency instability based on GNSS carrier observation

    Science.gov (United States)

    Kou, Yanhong; Jiao, Yue; Xu, Dongyang; Zhang, Meng; Liu, Ya; Li, Xiaohui

    2013-03-01

    Global navigation satellite systems (GNSS) receivers can be used in time and frequency metrology by exploiting stable GNSS time scales. This paper proposes a low-cost method for precise measurement of oscillator frequency instability using a single-frequency software GNSS receiver. The only required hardware is a common radio frequency (RF) data collection device driven by the oscillator under test (OUT). The receiver solves the oscillator frequency error in high time resolution using the carrier Doppler observation and the broadcast ephemeris from one of the available satellites employing the onboard reference atomic frequency standard that is more stable than the OUT. Considering the non-stable and non-Gaussian properties of the frequency error measurement, an unbiased finite impulse response (FIR) filter is employed to obtain robust estimation and filter out measurement noise. The effects of different filter orders and convolution lengths are further discussed. The frequency error of an oven controlled oscillator (OCXO) is measured using live Beidou-2/Compass signals. The results are compared with the synchronous measurement using a specialized phase comparator with the standard coordinated universal time (UTC) signal from the master clock H226 in the national time service center (NTSC) of China as its reference. The Allan deviation (ADEV) estimates using the two methods have a 99.9% correlation coefficient and a 0.6% mean relative difference over 1-1000 s intervals. The experiment demonstrates the effectiveness and high precision of the software receiver method.

  18. Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core

    Science.gov (United States)

    Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.

    2017-12-01

    Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.

  19. On the observations of unique low latitude whistler-triggered VLF/ELF emissions

    Science.gov (United States)

    Altaf, M.; Singh, K. K.; Singh, A. K.; Lalmani

    A detailed analysis of the VLF/ELF wave data obtained during a whistler campaign under All India Coordinated Program of Ionosphere Thermosphere Studies (AICPITS) at our low latitude Indian ground station Jammu (geomag. lat. = 22° 26‧ N, L = 1.17) has yielded two types of unusual and unique whistler-triggered VLF/ELF emissions. These include (1) whistler-triggered hook emissions and (2) whistler-triggered long enduring discrete chorus riser emissions in VLF/ELF frequency range during night time. Such types of whistler-triggered emissions have not been reported earlier from any of the ground observations at low latitudes. In the present study, the observed characteristics of these emissions are described and interpreted. Dispersion analysis of these emissions show that the whistlers as well as emissions have propagated along a higher geomagnetic field line path with L-values lying ∼L = 4, suggesting that these triggered emissions are to be regarded as mid-latitude emissions. These waves could have propagated along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal (PL) mode. The measured intensity of the triggered emissions is almost equal to that of the source waves and does not vary throughout the period of observation on that day. It is speculated that these emissions may have been generated through a process of resonant interaction of the whistler waves with energetic electrons. Parameters related to this interaction are computed for different values of L and wave amplitude. The proposed mechanism explains some aspects of the dynamic spectra.

  20. Determination of Jupiter's electron density profile from plasma wave observations

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Scarf, F.L.; Kurth, W.S.; Shaw, R.R.; Poynter, R.L.

    1981-01-01

    This paper summarizes the electron density measurements obtained in the Jovian magnetosphere from the plasma wave instruments on the Voyager 1 and 2 spacecraft. Three basic techniques are discussed for determining the electron density: (1) local measurements from the low-frequency cutoff of continuum radiation, (2) local measurements from the frequency of upper hybrid resonance emissions, and (3) integral measurements from the dispersion of whistlers. The limitations and advantages of each technique are critically reviewed. In all cases the electron densities are unaffected by spacecraft charging or sheath effects, which makes these measurements of particular importance for verifying in situ plasma and low-energy charged particle measurments. In the outer regions of the dayside magnetosphere, beyond about 40 R/sub J/, the electron densities range from about 3 x 10 -3 to 3 x 10 -2 cm -3 . On Voyager 2, several brief excursions apparently occurred into the low-density region north of the plasma sheet with densities less than 10 -3 cm -3 . Approaching the planet the electron density gradually increases, with the plasma frequency extending above the frequency range of the plasma wave instrument (56 kHz, or about 38 electrons cm -3 ) inside of about 8 R/sub J/. Within the high-density region of the Io plasma torus, whistlers provide measurements of the north-south scale height of the plasma torus, with scale heights ranging from about 0.9 to 2.5 R/sub J/

  1. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    International Nuclear Information System (INIS)

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-01-01

    The Doppler-shifted cyclotron resonance (ω-k z v z =Ω f ) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; k z , axial wavenumber; v z , fast-ion axial speed; Ω f , fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li + source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ω ci . Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  2. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyu, E-mail: cqufangyuli@hotmail.com [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wen, Hao [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Zhenyun [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wei, Lianfu; Wang, Yiwen; Zhang, Miao [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-10-15

    Interaction of very low-frequency primordial (relic) gravitational waves (GWs) to cosmic microwave background (CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM) response to high-frequency GWs (HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  3. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Verth, G. [School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Morton, R. J. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST (United Kingdom); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom); Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Christian, D. J., E-mail: krishna.prasad@qub.ac.uk [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States)

    2017-09-20

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.

  4. Experimental Observation of Negative Effective Gravity in Water Waves

    Science.gov (United States)

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132

  5. ULF/ELF Waves in Near-Moon Space

    Science.gov (United States)

    Nakagawa, Tomoko

    2016-02-01

    The reflection of the solar wind protons is equivalent to a beam injection against the solar wind flow. It is expected to produce a ring beam with a 3D distribution function in many cases. The reflected protons are responsible for the generation of ultra-low-frequency (ULF) waves at ˜0.01 Hz and narrowband waves at ˜1 Hz in the extremely low frequency (ELF) range through resonant interaction with magnetohydrodynamic waves and whistler mode waves in the solar wind, respectively. This chapter discusses these commonly observed waves in the near-Moon space. The sinusoidal waveforms and sharp spectra of the monochromatic ELF waves are impressive, but commonly observed are non-monochromatic waves in the ELF range ˜0.03-10 Hz. Some of the solar wind protons reflected by the dayside lunar surface or crustal magnetic field gyrate around the solar wind magnetic field and can access the center of the wake owing to the large Larmour radius.

  6. LOFAR, the low frequency array

    Science.gov (United States)

    Vermeulen, R. C.

    2012-09-01

    LOFAR, the Low Frequency Array, is a next-generation radio telescope designed by ASTRON, with antenna stations concentrated in the north of the Netherlands and currently spread into Germany, France, Sweden and the United Kingdom; plans for more LOFAR stations exist in several other countries. Utilizing a novel, phased-array design, LOFAR is optimized for the largely unexplored low frequency range between 30 and 240 MHz. Digital beam-forming techniques make the LOFAR system agile and allow for rapid re-pointing of the telescopes as well as the potential for multiple simultaneous observations. Processing (e.g. cross-correlation) takes place in the LOFAR BlueGene/P supercomputer, and associated post-processing facilities. With its dense core (inner few km) array and long (more than 1000 km) interferometric baselines, LOFAR reaches unparalleled sensitivity and resolution in the low frequency radio regime. The International LOFAR Telescope (ILT) is now issuing its first call for observing projects that will be peer reviewed and selected for observing starting in December. Part of the allocations will be made on the basis of a fully Open Skies policy; there are also reserved fractions assigned by national consortia in return for contributions from their country to the ILT. In this invited talk, the gradually expanding complement of operationally verified observing modes and capabilities are reviewed, and some of the exciting first astronomical results are presented.

  7. Low-frequency asymptotic analysis of seismic reflection from afluid-saturated medium

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.B.; Korneev, V.A.; Goloshubin, G.M.; Patzek, T.W.

    2004-04-14

    Reflection of a seismic wave from a plane interface betweentwo elastic media does not depend on the frequency. If one of the mediais poroelastic and fluid-saturated, then the reflection becomesfrequency-dependent. This paper presents a low-frequency asymptoticformula for the reflection of seismic plane p-wave from a fluid-saturatedporous medium. The obtained asymptotic scaling of the frequency-dependentcomponent of the reflection coefficient shows that it is asymptoticallyproportional to the square root of the product of the reservoir fluidmobility and the frequency of the signal. The dependence of this scalingon the dynamic Darcy's law relaxation time is investigated as well.Derivation of the main equations of the theory of poroelasticity from thedynamic filtration theory reveals that this relaxation time isproportional to Biot's tortuosity parameter.

  8. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    Science.gov (United States)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  9. Low-frequency elastic vibrations localized near fracture in solid

    International Nuclear Information System (INIS)

    Kosevich, Yu.A.; Syrkin, E.S.

    1994-11-01

    We propose a consistent macroscopic description of the thermodynamic and dynamical properties of two-dimensional surface layers on the interface between two crystals or between different media. Such description enables one to elucidate the effect of two-dimensional defects (fracture) on the frequency, dispersion and polarization characteristics of surface waves and scattered on two-dimensional defects bulk waves of various nature, starting from rather general assumptions and without using of the microscopic models of surface or interface layers. A new thermodynamic variable for two-dimensional defect with an internal dynamical degree of freedom is introduced. The coupled long-wavelength and low-frequency equations of motion of the defect layer are obtained as a set of nontraditional boundary conditions for the bulk equations of the theory of elasticity. New types of surface and pseudo-surface (resonance) waves caused by two-dimensional absorbed or segregated layers with different strength of bonding with elastic substrate are analyzed. (author). 31 refs, 4 figs

  10. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...

  11. Frequency dependent steering with backward leaky waves via photonic crystal interface layer.

    Science.gov (United States)

    Colak, Evrim; Caglayan, Humeyra; Cakmak, Atilla O; Villa, Alessandro D; Capolino, Filippo; Ozbay, Ekmel

    2009-06-08

    A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70 degrees angular range when frequency ranges in the 11.88-13.69 GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure.

  12. Simultaneous multi-band channel sounding at mm-Wave frequencies

    DEFF Research Database (Denmark)

    Müller, Robert; Häfner, Stephan; Dupleich, Diego

    2016-01-01

    The vision of multi Gbit/s data rates in future mobile networks requires the change to millimeter wave (mm-Wave) frequencies for increasing bandwidth. As a consequence, new technologies have to be deployed to tackle the drawbacks of higher frequency bands, e.g. increased path loss. Development an...

  13. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  14. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    International Nuclear Information System (INIS)

    Ono, K.; Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S.; Yano, M.; Shoji, T.; Manabe, A.; Kato, A.; Kaneko, Y.

    2014-01-01

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D sw (100.0 ± 4.9 meV.Å 2 ) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)

  15. Observation of gravity waves during the extreme tornado outbreak of 3 April 1974

    Science.gov (United States)

    Hung, R. J.; Phan, T.; Smith, R. E.

    1978-01-01

    A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.

  16. Experiments and characterization of low-frequency oscillations in a granular column

    Science.gov (United States)

    Oyarte Gálvez, Loreto; Rivas, Nicolás; van der Meer, Devaraj

    2018-04-01

    The behavior of a vertically vibrated granular bed is reminiscent of a liquid in that it exhibits many phenomena such as convection and Faraday-like surface waves. However, when the lateral dimensions of the bed are confined such that a quasi-one-dimensional geometry is formed, the only phenomena that remain are bouncing bed and the granular Leidenfrost effect. This permits the observation of the granular Leidenfrost state for a wide range of energy injection parameters and more specifically allows for a thorough characterization of the low-frequency oscillation (LFO) that is present in this state. In both experiments and particle simulations we determine the LFO frequency from the power spectral density of the center-of-mass signal of the grains, varying the amplitude and frequency of the driving, the particle diameter, and the number of layers in the system. We thus find that the LFO frequency (i) is inversely proportional to the fast inertial timescale and (ii) decorrelates with a typical decay time proportional to the slow dissipative timescale in the system. The latter is consistent with the view that the LFO is driven by the inherent noise that is present in the granular Leidenfrost state with a low number of particles.

  17. Letter to the Editor: First direct observations of the reduced striations at pump frequencies close to the electron gyroharmonics

    Directory of Open Access Journals (Sweden)

    M. T. Rietveld

    Full Text Available It is well known that the ionospheric plasma response to high-power HF radio waves changes drastically as the heater frequency approaches harmonics of the electron gyrofrequency. These include changes in the spectrum of the stimulated electromagnetic emission, reduction in the anomalous absorption of low-power diagnostic waves propagating through the heated volume, and reduction in the large scale F-region heating. Theoretical models as well as previous experimental evidence point towards the absence of small-scale field-aligned plasma density irregularities at pump frequencies close to electron gyroharmonics as the main cause of these changes. Results presented in this paper are the first direct observations of the reduced striations at the 3rd gyroharmonic made by the CUTLASS radar. In addition, simultaneous EISCAT observations have revealed that the "enhanced ion-line" usually present in the EISCAT ion-line spectrum during the first few seconds after heater switch on, persisted at varying strengths while the heater was transmitting at frequencies close to the 3rd electron gyroharmonics.Key words. Ionosphere (active experiments; ionospheric irregularities · Radio science (ionospheric physics

  18. Letter to the Editor: First direct observations of the reduced striations at pump frequencies close to the electron gyroharmonics

    Directory of Open Access Journals (Sweden)

    F. Honary

    1999-09-01

    Full Text Available It is well known that the ionospheric plasma response to high-power HF radio waves changes drastically as the heater frequency approaches harmonics of the electron gyrofrequency. These include changes in the spectrum of the stimulated electromagnetic emission, reduction in the anomalous absorption of low-power diagnostic waves propagating through the heated volume, and reduction in the large scale F-region heating. Theoretical models as well as previous experimental evidence point towards the absence of small-scale field-aligned plasma density irregularities at pump frequencies close to electron gyroharmonics as the main cause of these changes. Results presented in this paper are the first direct observations of the reduced striations at the 3rd gyroharmonic made by the CUTLASS radar. In addition, simultaneous EISCAT observations have revealed that the "enhanced ion-line" usually present in the EISCAT ion-line spectrum during the first few seconds after heater switch on, persisted at varying strengths while the heater was transmitting at frequencies close to the 3rd electron gyroharmonics.Key words. Ionosphere (active experiments; ionospheric irregularities · Radio science (ionospheric physics

  19. LOW-FREQUENCY OBSERVATIONS OF TRANSIENT QUASI-PERIODIC RADIO EMISSION FROM THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar Raja, K.; Ramesh, R., E-mail: sasikumar@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India)

    2013-09-20

    We report low-frequency observations of quasi-periodic, circularly polarized, harmonic type III radio bursts whose associated sunspot active regions were located close to the solar limb. The measured periodicity of the bursts at 80 MHz was ≈5.2 s, and their average degree of circular polarization (dcp) was ≈0.12. We calculated the associated magnetic field B (1) using the empirical relationship between the dcp and B for the harmonic type III emission, and (2) from the observed quasi-periodicity of the bursts. Both the methods result in B ≈ 4.2 G at the location of the 80 MHz plasma level (radial distance r ≈ 1.3 R{sub ☉}) in the active region corona.

  20. Searching for chaos on low frequency

    OpenAIRE

    Nicolas Wesner

    2004-01-01

    A new method for detecting low dimensional chaos in small sample sets is presented. The method is applied to financial data on low frequency (annual and monthly) for which few observations are available.

  1. Geomagnetically conjugate observations of ionospheric and thermospheric variations accompanied by a midnight brightness wave at low latitudes

    Science.gov (United States)

    Fukushima, D.; Shiokawa, K.; Otsuka, Y.; Kubota, M.; Yokoyama, T.; Nishioka, M.; Komonjinda, S.; Yatini, C. Y.

    2017-08-01

    We conducted geomagnetically conjugate observations of 630-nm airglow for a midnight brightness wave (MBW) at Kototabang, Indonesia [geomagnetic latitude (MLAT): 10.0°S], and Chiang Mai, Thailand (MLAT: 8.9°N), which are geomagnetically conjugate points at low latitudes. An airglow enhancement that was considered to be an MBW was observed in OI (630-nm) airglow images at Kototabang around local midnight from 2240 to 2430 LT on February 7, 2011. This MBW propagated south-southwestward, which is geomagnetically poleward, at a velocity of 290 m/s. However, a similar wave was not observed in the 630-nm airglow images at Chiang Mai. This is the first evidence of an MBW that does not have geomagnetic conjugacy, which also implies generation of MBW only in one side of the hemisphere from the equator. We simultaneously observed thermospheric neutral winds observed by a co-located Fabry-Perot interferometer at Kototabang. The observed meridional winds turned from northward (geomagnetically equatorward) to southward (geomagnetically poleward) just before the wave was observed. This indicates that the observed MBW was generated by the poleward winds which push ionospheric plasma down along geomagnetic field lines, thereby increasing the 630-nm airglow intensity. The bottomside ionospheric heights observed by ionosondes rapidly decreased at Kototabang and slightly increased at Chiang Mai. We suggest that the polarization electric field inside the observed MBW is projected to the northern hemisphere, causing the small height increase observed at Chiang Mai. This implies that electromagnetic coupling between hemispheres can occur even though the original disturbance is caused purely by the neutral wind.[Figure not available: see fulltext.

  2. Experimental Limits on Gravitational Waves in the MHz frequency Range

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, Robert Jr. [Univ. of Chicago, IL (United States)

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  3. Investigations of the low frequency seismic waves recorded at near-regional distances from the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patton, H.J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    Seismic waves recorded at near-regional distances are used to characterize the source of the Non-Proliferation Experiment (NPE) and three selected nuclear explosions detonated in N-tunnel on Rainier Mesa. For periods longer than 5 sec, the signal-to-noise ratio is poor on most recordings of the NPE. A seismogram-stacking method is used in order to reduce background noise in coherent arrivals of Rayleigh waves. This method requires equalization of path dispersion and attenuation, which is accomplished in this study with empirical Green`s functions. The stacked, equalized Rayleigh-wave spectra are inverted, along with the spectral amplitudes of Lg waves with periods of 2-5 sec, for estimates of the seismic moment tensor. The NPE isotropic moment is 1.6 x 10{sup 14} Nt-m. The inferred static level of the reduced displacement potential is 825 m{sup 3}, which is about two times smaller than the estimate from free-field data recorded within 1 km of the NPE. Moment tensors of the NPE and nuclear explosions are asymmetric, describing prolate ellipsoids of rotation with the long axis in the vertical direction. The asymmetries are among the largest for explosions on Pahute and Rainier Mesa. The non-isotropic component is a compensated linear vector dipole (CLVD), which may represent driven block motions occurring within a conical volume of material extending from the shot point (apex) to the free surface. The CLVD source can help explain some observations of scalloping in the spectra of Lg waves and Lg spectral ratios. Seismic radiation from the NPE is virtually indistinguishable from that of nearby nuclear explosions for frequencies below 1 Hz.

  4. Borehole strain observations of very low frequency earthquakes

    Science.gov (United States)

    Hawthorne, J. C.; Ghosh, A.; Hutchinson, A. A.

    2016-12-01

    We examine the signals of very low frequency earthquakes (VLFEs) in PBO borehole strain data in central Cascadia. These MW 3.3 - 4.1 earthquakes are best observed in seismograms at periods of 20 to 50 seconds. We look for the strain they produce on timescales from about 1 to 30 minutes. First, we stack the strain produced by 13 VLFEs identified by a grid search moment tensor inversion algorithm by Ghosh et. al. (2015) and Hutchinson and Ghosh (2016), as well as several thousand VLFEs detected through template matching these events. The VLFEs are located beneath southernmost Vancouver Island and the eastern Olympic Peninsula, and are best recorded at co-located stations B005 and B007. However, even at these stations, the signal to noise in the stack is often low, and the records are difficult to interpret. Therefore we also combine data from multiple stations and VLFE locations, and simply look for increases in the strain rate at the VLFE times, as increases in strain rate would suggest an increase in the moment rate. We compare the background strain rate in the 12 hours centered on the VLFEs with the strain rate in the 10 minutes centered on the VLFEs. The 10-minute duration is chosen as a compromise that averages out some instrumental noise without introducing too much longer-period random walk noise. Our results suggest a factor of 2 increase in strain rate--and thus moment rate--during the 10-minute VLFE intervals. The increase gives an average VLFE magnitude around M 3.5, within the range of magnitudes obtained with seismology. Further analyses are currently being carried out to better understand the evolution of moment release before, during, and after the VLFEs.

  5. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  6. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves

    Science.gov (United States)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.

    2009-12-01

    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  7. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Directory of Open Access Journals (Sweden)

    F.Y. Fangyu Li

    2016-10-01

    Full Text Available Interaction of very low-frequency primordial (relic gravitational waves (GWs to cosmic microwave background (CMB can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM response to high-frequency GWs (HFGWs would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  8. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    Science.gov (United States)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  9. Magnonic Crystal Theory of the Spin-Wave Frequency Gap in Low-Doped $La_{1-x}Ca_{x}MnO_{3}$ Manganites

    OpenAIRE

    Krawczyk, M.; Puszkarski, H.

    2005-01-01

    A theory of three-dimensional (3D) hypothetical magnonic crystal (conceived as the magnetic counterpart of the well-known photonic crystal) is developed and applied to explain the existence of a spin-wave frequency gap recently revealed in low-doped manganites $La_{1-x}Ca_{x}MnO_{3}$ by neutron scattering. A successful confrontation with the experimental results allows us to formulate a working hypothesis that certain manganites could be regarded as 3D magnonic crystals existing in nature.

  10. On propagating direction of ring current proton ULF waves observed by ATS 6 at 6.6 R/sub e/

    International Nuclear Information System (INIS)

    Su, S.; Konradi, A.; Fritz, T.A.

    1977-01-01

    From June 11 to September 16, 1974, the NOAA low-energy proton detector on board the ATS 6 satellite observed 71 cases of ultralow-frequency oscillations of proton flux intensities. The oscillation periods varied from 40 s to 6 min, and the events were observed most frequently during moderate geomagnetic conditions. The flux oscillations occurred at various local times, yet almost two thirds of the events were detected in the near-dusk region of the magentosphere. For a majority of the events in this set a substantial phase shift in flux oscillation was detected between different energy channels and/or between two oppositely oriented detector telescopes. The phase shift is mainly due to the finite gyroradius effect of the protons gyrating in the geomagnetic field. By examining this finite gyroradius effect on the perturbed particle distribution function associated with the wave in a nonuniform magnetic field we are able to determine the propagation direction of the wave from particle observations made by a single spacecraft. Although the type of wave and its excitation mechanism can only be conjectured at the present time, it is concluded that the wave propagates in the westward direction with a phase velocity of about 13 km/s. Furthermore, it also has a very small phase velocity approx.0.15 km/s propagating toward the earth. If the wave had been traveling 1 hour or so before it was observed near the dusk magnetosphere, it might have originated in the dark magnetosphere in associating with some changes in geophysical conditions. The statistical correlation between the times of the observed wave events and the onsets of the auroral magnetic bays indicates that although they seldom occurred simultaneously, 80% of the waves were observed within 1 hour of the bay onset. Therefore it is concluded that the condition of the magnetosphere after a substorm is favorable for the occurrence of the ring current proton ultralow-frequency waves

  11. A case study of low-frequency waves at the magnetopause

    Directory of Open Access Journals (Sweden)

    L. Rezeau

    2001-09-01

    Full Text Available We present the study of one of the first magnetopause crossings observed by the four Cluster spacecraft simultaneously, on 10 December 2000. Although the delays between the crossings are very short, the features of the boundary appear quite different as seen by the different spacecraft, strongly suggesting the presence of a local curvature of the magnetopause at that time. The small-scale fluctuations observed by the STAFF search-coil experiment are placed in relation to this context. A preliminary investigation of their behaviour on the boundary and in the neighbourhood magnetosheath is performed in comparison with the theoretical model of Belmont and Rezeau (2001, which describes the interaction of waves with the boundary.Key words. Space plasma physics (transport processes, discontinuities, turbulence

  12. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  13. Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions

    Science.gov (United States)

    Ting, Wang; Hui, Wang; Mei-Ping, Sheng; Qing-Hua, Qin

    2016-04-01

    A two-dimensional phononic crystal (PC) structure possessing a relatively low frequency range of complete bandgap is presented. The structure is composed of periodic spindle-shaped plumbum inclusions in a rubber matrix which forms a square lattice. The dispersion relation, transmission spectrum and displacement field are studied using the finite element method in conjunction with the Bloch theorem. Numerical results show that the present PC structure can achieve a large complete bandgap in a relatively low frequency range compared with two inclusions of different materials, which is useful in low-frequency noise and vibration control and can be designed as a low frequency acoustic filter and waveguides. Moreover, the transmission spectrum and effective mass are evaluated to validate the obtained band structure. It is interesting to see that within the band gap the effective mass becomes negative, resulting in an imaginary wave speed and wave exponential attenuation. Finally, sensitivity analysis of the effect of geometrical parameters of the presented PC structure on the lowest bandgap is performed to investigate the variations of the bandgap width and frequency. Project supported by the China Scholarship Council.

  14. Frequency selective tunable spin wave channeling in the magnonic network

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Odincov, S. A.; Sheshukova, S. E.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Stognij, A. I. [Scientific-Practical Materials Research Center, National Academy of Sciences of Belarus, 220072 Minsk (Belarus)

    2016-04-25

    Using the space-resolved Brillouin light scattering spectroscopy, we study the frequency and wavenumber selective spin-wave channeling. We demonstrate the frequency selective collimation of spin-wave in an array of magnonic waveguides, formed between the adjacent magnonic crystals on the surface of yttrium iron garnet film. We show the control over spin-wave propagation length by the orientation of an in-plane bias magnetic field. Fabricated array of magnonic crystal can be used as a magnonic platform for multidirectional frequency selective signal processing applications in magnonic networks.

  15. Particle acceleration through the resonance of high magnetic field and high frequency electromagnetic wave

    International Nuclear Information System (INIS)

    Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu

    2004-01-01

    We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)

  16. Dominant wave frequency and amplitude estimation for adaptive control of wave energy converters

    OpenAIRE

    Nguyen , Hoai-Nam; Tona , Paolino; Sabiron , Guillaume

    2017-01-01

    International audience; Adaptive control is of great interest for wave energy converters (WEC) due to the inherent time-varying nature of sea conditions. Robust and accurate estimation algorithms are required to improve the knowledge of the current sea state on a wave-to-wave basis in order to ensure power harvesting as close as possible to optimal behavior. In this paper, we present a simple but innovative approach for estimating the wave force dominant frequency and wave force dominant ampl...

  17. Alpha-wave frequency characteristics in health and insomnia during sleep.

    Science.gov (United States)

    Schwabedal, Justus T C; Riedl, Maik; Penzel, Thomas; Wessel, Niels

    2016-06-01

    Appearances of alpha waves in the sleep electrencephalogram indicate physiological, brief states of awakening that lie in between wakefulness and sleep. These microstates may also cause the loss in sleep quality experienced by individuals suffering from insomnia. To distinguish such pathological awakenings from physiological ones, differences in alpha-wave characteristics between transient awakening and wakefulness observed before the onset of sleep were studied. In polysomnographic datasets of sleep-healthy participants (n = 18) and patients with insomnia (n = 10), alpha waves were extracted from the relaxed, wake state before sleep onset, wake after sleep-onset periods and arousals of sleep. In these, alpha frequency and variability were determined as the median and standard deviation of inverse peak-to-peak intervals. Before sleep onset, patients with insomnia showed a decreased alpha variability compared with healthy participants (P insomnia, alpha variability increased for short wake after sleep-onset periods. Major differences between the two groups were encountered during arousal. In particular, the alpha frequency in patients with insomnia rebounded to wake levels, while the frequency in healthy participants remained at the reduced level of short wake after sleep-onset periods. Reductions in alpha frequency during wake after sleep-onset periods may be related to the microstate between sleep and wakefulness that was described for such brief awakenings. Reduced alpha variability before sleep may indicate a dysfunction of the alpha generation mechanism in insomnia. Alpha characteristics may also prove valuable in the study of other sleep and attention disorders. © 2016 European Sleep Research Society.

  18. Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field.

    Science.gov (United States)

    Xiang, Ying; Zhou, Meng-jie; Xu, Ming-Ya; Salamon, Péter; Éber, Nándor; Buka, Ágnes

    2015-04-01

    Electric-field-induced patterns of diverse morphology have been observed over a wide frequency range in a recently synthesized bent-core nematic (BCN) liquid crystal. At low frequencies (up to ∼25 Hz), the BCN exhibited unusual polarity-dependent patterns. When the amplitude of the ac field was enhanced, these two time-asymmetrical patterns turned into time-symmetrical prewavylike stripes. At ac frequencies in the middle-frequency range (∼50-3000 Hz), zigzag patterns were detected whose obliqueness varied with the frequency. Finally, if the frequency was increased above 3 kHz, the zigzag pattern was replaced by another, prewavylike pattern, whose threshold voltage depended on the frequency; however, the wave vector did not. For a more complete characterization, material parameters such as elastic constants, dielectric permittivities, and the anisotropy of the diamagnetic susceptibility were also determined.

  19. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    Science.gov (United States)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  20. LOW FREQUENCY DAMPER

    Directory of Open Access Journals (Sweden)

    Radu BOGATEANU

    2009-09-01

    Full Text Available The low frequency damper is an autonomous equipment for damping vibrations with the 1-20Hz range.Its autonomy enables the equipment to be located in various mechanical systems, without requiring special hydraulic installations.The low frequency damper was designed for damping the low frequency oscillations occurring in the circuit controls of the upgraded IAR-99 Aircraft.The low frequency damper is a novelty in the aerospace field ,with applicability in several areas as it can be built up in an appropriate range of dimensions meeting the requirements of different beneficiaries. On this line an equipment able to damp an extended frequency range was performed for damping oscillations in the pipes of the nuclear power plants.This damper, tested in INCAS laboratories matched the requirements of the beneficiary.The low frequency damper is patented – the patent no. 114583C1/2000 is held by INCAS.

  1. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies

    Science.gov (United States)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin

    2018-01-01

    This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.

  2. Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies

    International Nuclear Information System (INIS)

    Lavazec, Deborah; Cumunel, Gwendal; Duhamel, Denis; Soize, Christian; Batou, Anas

    2016-01-01

    At low frequencies, for which the wavelengths are wide, the acoustic waves and the mechanical vibrations cannot easily be reduced in the structures at macroscale by using dissipative materials, contrarily to the middle- and high-frequency ranges. The final objective of this work is to reduce the vibrations and the induced noise on a broad low-frequency band by using a microstructured material by inclusions that are randomly arranged in the material matrix. The dynamical regimes of the inclusions will be imposed in the nonlinear domain in order that the energy be effectively pumped over a broad frequency band around the resonance frequency, due to the nonlinearity. The first step of this work is to design and to analyze the efficiency of an inclusion, which is made up of a hollow frame including a point mass centered on a beam. This inclusion is designed in order to exhibit nonlinear geometric effects in the low-frequency band that is observed. For this first step, the objective is to develop the simplest mechanical model that has the capability to roughly predict the experimental results that are measured. The second step, which is not presented in the paper, will consist in developing a more sophisticated nonlinear dynamical model of the inclusion. In this paper, devoted to the first step, it is proved that the nonlinearity induces an attenuation on a broad frequency band around the resonance, contrarily to its linear behavior for which the attenuation is only active in a narrow frequency band around the resonance. We will present the design in terms of geometry, dimension and materials for the inclusion, the experimental manufacturing of this system realized with a 3D printing system, and the experimental measures that have been performed. We compare the prevision given by the stochastic computational model with the measurements. The results obtained exhibit the physical attenuation over a broad low-frequency band, which were expected. (paper)

  3. LOW-FREQUENCY OSCILLATIONS IN XTE J1550-564

    International Nuclear Information System (INIS)

    Rao Fengyun; Belloni, Tomaso; Stella, Luigi; Zhang Shuangnan; Li Tipei

    2010-01-01

    We present the results of a timing analysis of the low-frequency quasi-periodic oscillation (QPO) in the Rossi X-Ray Timing Explorer data of the black hole binary XTE J1550-564 during its 1998 outburst. The QPO frequency is observed to vary on timescales between ∼100 s and days, correlated with the count rate contribution from the optically thick accretion disk: we studied this correlation and discuss its influence on the QPO width. In all observations, the quality factors (ν 0 /FWHM) of the fundamental and second harmonic peaks were observed to be consistent, suggesting that the quasi-periodic nature of the oscillation is due to frequency modulation. In addition to the QPO and its harmonic peaks, a new 1.5ν component was detected in the power spectra. This component is broad, with a quality factor of ∼0.6. From this, we argue that the peak observed at half the QPO frequency, usually referred to as 'sub-harmonic', could be the fundamental frequency, leading to the sequence 1:2:3:4. We also studied the energy dependence of the timing features and conclude that the two continuum components observed in the power spectrum, although both more intense at high energies, show a different dependence on energy. At low energies, the lowest-frequency component dominates, while at high energies the higher-frequency one has a higher fractional rms. An interplay between these two components was also observed as a function of their characteristic frequency. In this source, the transition between the low/hard state and the hard-intermediate state appears to be a smooth process.

  4. Anomalous high-frequency wave activity flux preceding anomalous changes in the Northern polar jet

    Science.gov (United States)

    Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo

    2010-05-01

    Anomalous forcing by quasi-geostrophic (QG) waves has been reported as an important forcing factor in the Northern Annular Mode (NAM) in recent literatures. In order to shed a light on the dynamics of the NAM from a different angle, we have examined anomalous behavior of the winter jets in the upper troposphere and stratosphere by focusing our diagnosis on not the anomalous geopotential height (Z) itself, but on the anomalous change in the Z (dZ) between two successive months and preceding transient QG wave activity flux during the cold season. We calculated EOFs of dZ between two successive months at 150hPa for a 46-year period, from 1958 to 2003, using the monthly mean NCEP reanalysis data. We then formed anomaly composites of changes in Z and the zonal velocity (U), as well as the preceding and following wave activity flux, Z, U, and temperature at various heights, for both positive and negative phases of the first EOF. For the wave forcing fields, we adopted the diagnostic system for the three-dimensional QG transient wave activity flux in the zonally-varying three-dimensional mean flow developed by Plumb (1986) with a slight modification in its application to the data. Our choice of the Plumb86 is based on the fact that the winter mean flow in the Northern Hemisphere is characterized by noticeable zonal asymmetry, and has a symbiotic relationship with waves in the extra-tropics. The Plumb86 flux was calculated for high-frequency (period of 2 to 7 days) and low-frequency (period of 10 to 20 days) waves with the ultra-low-frequency (period of 30 days or longer) flow as the reference state for each time frame of the 6 hourly NCEP reanalysis data from 1958 to 2003. By replacing the mean flow with the ultra-low-frequency flow in the application of the Plumb86 formula, the flux fields were calculated as time series at 6 hour intervals. The time series of the wave activity flux was then averaged for each month. The patterns of composited anomalous dZ and dU clearly

  5. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    Science.gov (United States)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  6. The Low Band Observatory (LOBO): Expanding the VLA Low Frequency Commensal System for Continuous, Broad-band, sub-GHz Observations

    Science.gov (United States)

    Kassim, Namir E.; Clarke, Tracy E.; Helmboldt, Joseph F.; Peters, Wendy M.; Brisken, Walter; Hyman, Scott D.; Polisensky, Emil; Hicks, Brian

    2015-01-01

    The Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) are currently commissioning the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) on a subset of JVLA antennas at modest bandwidth. Its bounded scientific goals are to leverage thousands of JVLA on-sky hours per year for ionospheric and transient studies, and to demonstrate the practicality of a prime-focus commensal system on the JVLA. Here we explore the natural expansion of VLITE to a full-antenna, full-bandwidth Low Band Observatory (LOBO) that would follow naturally from a successful VLITE experience. The new Low Band JVLA receivers, coupled with the existing primary focus feeds, can access two frequency bands: 4 band (54 - 86 MHz) and P band (236-492 MHz). The 4 band feeds are newly designed and now undergoing testing. If they prove successful then they can be permanently mounted at the primary focus, unlike their narrow band predecessors. The combination of Low Band receivers and fixed, primary-focus feeds could provide continuous, broad-band data over two complimentary low-frequency bands. The system would also leverage the relatively large fields-of-view of ~10 degrees at 4 band, and ~2.5 degrees at P band, coupling an excellent survey capability with a natural advantage for serendipitous discoveries. We discuss the compelling science case that flows from LOBO's robust imaging and time domain capabilities coupled with thousands of hours of wide-field, JVLA observing time each year. We also touch on the possibility to incorporate Long Wavelength Array (LWA) stations as additional 'dishes' through the LOBO backend, to improve calibration and sensitivity in LOBO's 4 band.

  7. Using low-frequency pulsar observations to study the 3-D structure of the Galactic magnetic field

    Science.gov (United States)

    Sobey, C.; LOFAR Collaboration; MWA Collaboration

    2018-05-01

    The Galactic magnetic field (GMF) plays a role in many astrophysical processes and is a significant foreground to cosmological signals, such as the Epoch of Reionization (EoR), but is not yet well understood. Dispersion and Faraday rotation measurements (DMs and RMs, respectively) towards a large number of pulsars provide an efficient method to probe the three-dimensional structure of the GMF. Low-frequency polarisation observations with large fractional bandwidth can be used to measure precise DMs and RMs. This is demonstrated by a catalogue of RMs (corrected for ionospheric Faraday rotation) from the Low Frequency Array (LOFAR), with a growing complementary catalogue in the southern hemisphere from the Murchison Widefield Array (MWA). These data further our knowledge of the three-dimensional GMF, particularly towards the Galactic halo. Recently constructed or upgraded pathfinder and precursor telescopes, such as LOFAR and the MWA, have reinvigorated low-frequency science and represent progress towards the construction of the Square Kilometre Array (SKA), which will make significant advancements in studies of astrophysical magnetic fields in the future. A key science driver for the SKA-Low is to study the EoR, for which pulsar and polarisation data can provide valuable insights in terms of Galactic foreground conditions.

  8. A universal quantum frequency converter via four-wave-mixing processes

    Science.gov (United States)

    Cheng, Mingfei; Fang, Jinghuai

    2016-06-01

    We present a convenient and flexible way to realize a universal quantum frequency converter by using nondegenerate four-wave-mixing processes in the ladder-type three-level atomic system. It is shown that quantum state exchange between two fields with large frequency difference can be readily achieved, where one corresponds to the atomic resonant transition in the visible spectral region for quantum memory and the other to the telecommunication range wavelength (1550 nm) for long-distance transmission over optical fiber. This method would bring great facility in realistic quantum information processing protocols with atomic ensembles as quantum memory and low-loss optical fiber as transmission channel.

  9. Theoretical and experimental investigation into structural and fluid motions at low frequencies in water distribution pipes

    Science.gov (United States)

    Gao, Yan; Liu, Yuyou

    2017-06-01

    Vibrational energy is transmitted in buried fluid-filled pipes in a variety of wave types. Axisymmetric (n = 0) waves are of practical interest in the application of acoustic techniques for the detection of leaks in underground pipelines. At low frequencies n = 0 waves propagate longitudinally as fluid-dominated (s = 1) and shell-dominated (s = 2) waves. Whilst sensors such as hydrophones and accelerometers are commonly used to detect leaks in water distribution pipes, the mechanism governing the structural and fluid motions is not well documented. In this paper, the low-frequency behaviour of the pipe wall and the contained fluid is investigated. For most practical pipework systems, these two waves are strongly coupled; in this circumstance the ratios of the radial pipe wall displacements along with the internal pressures associated with these two wave types are obtained. Numerical examples show the relative insensitivity of the structural and fluid motions to the s = 2 wave for both metallic and plastic pipes buried in two typical soils. It is also demonstrated that although both acoustic and vibration sensors at the same location provide the identical phase information of the transmitted signals, pressure responses have significantly higher levels than acceleration responses, and thus hydrophones are better suited in a low signal-to-noise ratio (SNR) environment. This is supported by experimental work carried out at a leak detection facility. Additional pressure measurements involved excitation of the fluid and the pipe fitting (hydrant) on a dedicated water pipe. This work demonstrates that the s = 1 wave is mainly responsible for the structural and fluid motions at low frequencies in water distribution pipes as a result of water leakage and direct pipe excitation.

  10. Characteristic frequencies of a non-Maxwellian plasma - A method for localizing the exact frequencies of magnetospheric intense natural waves near fpe

    International Nuclear Information System (INIS)

    Belmont, G.

    1981-01-01

    Intense natural waves are commonly observed onboard satellites in the outer earth's magnetosphere, inside a narrow frequency range, including the electron plasma and upper hybrid frequencies. In order to progress in the understanding of their emission processes, it is necessary to determine precisely the relationship which exists between their frequencies and the characteristic frequencies of the magnetospheric plasma. For this purpose, it is necessary to take into account the fact that some of these characteristic frequencies, which are provided by active sounding of the plasma, not only depend on the total density, but also on the shape of the distribution function (which has generally been assumed to be Maxwellian). A method providing a fine diagnosis of general non-Maxwellian plasmas is developed. This method of analysis of the experimental data is based on a theoretical study which points out the influence of the shape of the distribution function on the dispersion curves (for wave vectors perpendicular to the static magnetic field)

  11. Using PVDF for wavenumber-frequency analysis and excitation of guided waves

    Science.gov (United States)

    Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.

    2018-04-01

    The role of transducers in nondestructive evaluation using ultrasonic guided waves cannot be overstated. Energy conversion from electrical to mechanical for actuation and then back to electrical for signal processing broadly describes transduction, but there are many other aspects of transducers that determine their effectiveness. Recently we have reported on polyvinylidene difluoride (PVDF) array sensors that enable determination of the wavenumber spectrum, which enables modal content in the received signal to be characterized. Modal content is an important damage indicator because, for example, mode conversion is a frequent consequence of wave interaction with defects. Some of the positive attributes of PVDF sensors are: broad frequency bandwidth, compliance for use on curved surfaces, limited influence on the passing wave, minimal cross-talk between elements, low profile, low mass, and inexpensive. The anisotropy of PVDF films also enables them to receive either Lamb waves or shear horizontal waves by proper alignment of the material principal coordinate axes. Placing a patterned set of electrodes on the PVDF film provides data from an array of elements. A linear array of elements is used to enable a 2D fast Fourier transform to determine the wavenumber spectrum of both Lamb waves and shear horizontal waves in an aluminum plate. Moreover, since PVDF film can sustain high voltage excitation, high power pulsers can be used to improve the signal-to-noise ratio. The capability of PVDF as a transmitter has been demonstrated with high voltage excitation.

  12. Sizing of intergranular stress corrosion cracking using low frequency ultrasound

    International Nuclear Information System (INIS)

    Fuller, M.D.; Avioli, M.J.; Rose, J.L.

    1985-01-01

    Based upon the work thus far accomplished on low frequency sizing, the following conclusions can be drawn: the potential of low frequency ultrasound for the sizing of IGSCC seams encouraging as demonstrated in this work. If minimal walking is expected, larger values of crack height/wavelength ratios should not affect the reliability of estimates; notch data points out the validity of signal amplitude for sizing. With care in frequency consideration, the technique can be extended to cracks; when wavelength is greater than flaw size, importance of orientation and reflector shape diminishes although less so for deeper cracks; when beam profile is larger than the defect size, echo amplitude is proportional to defect area when using shear wave probes and corner reflectors; other factors, in addition to crack size, affect signal amplitude. Reference data to compensate for depth and material (HAZ) is a must; additional crack samples should be studied in order to further develop and characterize the use of low frequency ultrasonics

  13. High-frequency homogenization for travelling waves in periodic media.

    Science.gov (United States)

    Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V

    2016-07-01

    We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω 2 . We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω 1 = ω 2 and [Formula: see text] where Λ =(λ 1 λ 2 …λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a ⊙ b is defined to be the vector ( a 1 b 1 , a 2 b 2 ,…, a d b d ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.

  14. Observation of Gravitational Waves from a Binary Black Hole Merger.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  15. Damping of Mechanical Waves with Styrene/Butadiene Rubber Filled with Polystyrene Particle: Effects of Particles Size and Wave Frequency

    Directory of Open Access Journals (Sweden)

    M. Haghgo

    2007-08-01

    Full Text Available Utilizing polymeric materials for damping mechanical waves is of great importance in various fields of applications such as military camouflage, prevention of structural vibrational energy transfer, and noise attenuation. This ability originates from segmental dynamics of chain-like polymer molecules. Damping properties of styrene-butadiene rubbercontaining 10 wt% of monosize polystyrene particles with different diameters (from 80 nm to 500 μm was investigated in the frequency range of vibration, sound, and ultrasound via dynamic mechanical thermal analysis, normalsound adsorption test, and ultrasound attenuation coefficient measurement. The obtained results indicated that for different systems, containing different sizes of polystyrene particles, the area under the damping curve does not show significant change comparing to the neat SBR in the frequency range studied. However, addition of polystyrene particles, specifically nanosized particles, resulted in emergence of a secondary glass transition temperature which could be attributed to the modified dynamics of a layer of matrix molecules near the surface of PS particles. In the range of sound frequency, 0.5 to 6.3 kHz, the maximum damping was observed for the system containing polystyrene nanoparticles. However the single damping curve of neat SBR was separated into two or even three distinct curves owing to the presence of the particles. The maximum damping in the ultrasound frequency range was found for the system containing 0.5 mm polystyrene particles. This is attributed to different contributions from matrix chains dynamics and the reflection of mechanical waves from particles-matrix interface at different frequency ranges. On other words, the increase in the glass transition temperature of the elastomeric matrix phase with increasing the mechanical wave frequency causes a reduction in the contribution from matrix chains dynamics while the contribution due to diffraction from dispersed

  16. Non-stationary ionization in the low ionosphere by gravitational wave action

    International Nuclear Information System (INIS)

    Nikitin, M.A.; Kashchenko, N.M.

    1977-01-01

    Non-stationary effects in the lower ionosphere caused by gravitation waves are analyzed. Time dependences are obtained for extremum electron concentrations, which describe the dynamics of heterogeneous layer formation from the initially homogeneous distribution under the effect of gravitation waves. Diffusion of plasma and its complex composition are not taken into account. The problem is solved for two particular cases of low and high frequency gravitation waves impact on the ionosphere. Only in the former case electron concentration in the lower ionosphere deviates considerably from the equilibrium

  17. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions

    Science.gov (United States)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank

    2018-01-01

    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  18. ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES

    International Nuclear Information System (INIS)

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2012-01-01

    Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f p and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f p by LW eigenmodes. The EM wave power emitted near f p is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f p radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.

  19. Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics

    Science.gov (United States)

    Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.

    2018-01-01

    Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p , a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.

  20. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2017-03-24

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_{α,Θ}(f)<(0.1-56)×10^{-8}    erg cm^{-2} s^{-1} Hz^{-1}(f/25  Hz)^{α-1} depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10^{-8}  sr^{-1}(f/25  Hz)^{α} depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h_{0}<(6.7,5.5,  and  7.0)×10^{-25}, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  1. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  2. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  3. Short-wavelength electrostatic waves in the earth's magnetosheath

    International Nuclear Information System (INIS)

    Gallagher, D.L.

    1985-01-01

    Recent observations with the ISEE 1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emission has a characteristic parabola shape or ''festoon'' shape. The low-frequency cutoff ranges from 100 to 400 Hz, while the high-frequency limit ranges from about 1 to 4 kHz. The bandwidth is found to minimize for antenna orientations parallel to the wave vectors. The wave vector does not appear to be related to the local magnetic field, the plasma flow velocity, or the spacecraft-sun directions. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler-shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest frame wave vectors and frequencies indicate that emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 40 and 600 m. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  4. Hook whistlers observed at low latitude ground station Varanasi

    International Nuclear Information System (INIS)

    Khosa, P.N.; Lalmani; Ahmed, M.M.; Singh, B.D.

    1983-01-01

    Employing the Haselgrove ray tracing equations and a diffusive equilibrium model of the ionosphere, the propagation characteristics of hook whistlers recorded at low-latitude ground station Varanasi (geomag. lat., 16 0 6'N) are discussed. It is shown that the two traces of the hook whistlers are caused by the VLF waves radiated from the return stroke of a lightning discharge which after penetrating the ionosphere at two different entry points, propagated to the opposite hemisphere in the whistler mode and were received at 16 geomagnetic latitude. Further the crossing of ray paths for the same frequency leads to the explanation of the hook whistler. The lower and higher cut-off frequencies are explained in terms of their deviating away from the bunch of the recorded whistler waves and crossing of ray paths for the same frequency. (Auth.)

  5. Wave front sensing for next generation earth observation telescope

    Science.gov (United States)

    Delvit, J.-M.; Thiebaut, C.; Latry, C.; Blanchet, G.

    2017-09-01

    High resolution observations systems are highly dependent on optics quality and are usually designed to be nearly diffraction limited. Such a performance allows to set a Nyquist frequency closer to the cut off frequency, or equivalently to minimize the pupil diameter for a given ground sampling distance target. Up to now, defocus is the only aberration that is allowed to evolve slowly and that may be inflight corrected, using an open loop correction based upon ground estimation and refocusing command upload. For instance, Pleiades satellites defocus is assessed from star acquisitions and refocusing is done with a thermal actuation of the M2 mirror. Next generation systems under study at CNES should include active optics in order to allow evolving aberrations not only limited to defocus, due for instance to in orbit thermal variable conditions. Active optics relies on aberration estimations through an onboard Wave Front Sensor (WFS). One option is using a Shack Hartmann. The Shack-Hartmann wave-front sensor could be used on extended scenes (unknown landscapes). A wave-front computation algorithm should then be implemented on-board the satellite to provide the control loop wave-front error measure. In the worst case scenario, this measure should be computed before each image acquisition. A robust and fast shift estimation algorithm between Shack-Hartmann images is then needed to fulfill this last requirement. A fast gradient-based algorithm using optical flows with a Lucas-Kanade method has been studied and implemented on an electronic device developed by CNES. Measurement accuracy depends on the Wave Front Error (WFE), the landscape frequency content, the number of searched aberrations, the a priori knowledge of high order aberrations and the characteristics of the sensor. CNES has realized a full scale sensitivity analysis on the whole parameter set with our internally developed algorithm.

  6. Enhanced Next Generation Millimeter-Wave Multicarrier System with Generalized Frequency Division Multiplexing

    Directory of Open Access Journals (Sweden)

    Hidekazu Shimodaira

    2016-01-01

    Full Text Available Orthogonal Frequency Division Multiplexing (OFDM is a popular multicarrier technique used to attain high spectral efficiencies. It also has other advantages such as multipath tolerance and ease of implementation. However, OFDM based systems suffer from high Peak-to-Average Power Ratio (PAPR problem. Because of the nonlinearity of the power amplifiers, the high PAPR causes significant distortion in the transmitted signal for millimeter-wave (mmWave systems. To alleviate the high PAPR problem, this paper utilizes Generalized Frequency Division Multiplexing (GFDM which can achieve high spectral efficiency as well as low PAPR. In this paper, we show the performance of GFDM using the IEEE 802.11ad multicarrier frame structures. IEEE 802.11ad is considered one of the most successful industry standards utilizing unlicensed mmWave frequency band. In addition, this paper indicates the feasibility of using GFDM for the future standards such as IEEE 802.11ay. This paper studies the performance improvements in terms of PAPR reduction for GFDM. Based on the performance results, the optimal numbers of subcarriers and subsymbols are calculated for PAPR reduction while minimizing the Bit Error Rate (BER performance degradation. Moreover, transmitter side ICI (Intercarrier Interference reduction is introduced to reduce the receiver load.

  7. Borehole stoneley waves and permeability: Laboratory results

    International Nuclear Information System (INIS)

    Winkler, K.W.; Plona, T.J.; Froelich, B.; Liu, H.L.

    1987-01-01

    Recent interest in full waveform sonic logging has created the need for full waveform laboratory experiments on model boreholes. Of particular interest is the investigation of Stoneley waves and their interaction with permeable formations. The authors describe experimental results that show how Stoneley wave slowness and attenuation are affected by formation permeability. Both slowness and attenuation (1/Q) are observed to increase with formation permeability. This increase is frequency dependent, being greatest at low frequencies. The presence of simulated mudcakes on the borehole wall reduces the permeability effect on Stoneley waves, but does not eliminate it. The mudcake effect is frequency dependent, being greatest at low frequencies. In our experiments on rocks, the laboratory data is in qualitative agreement with theoretical predictions. In a very well characterized synthetic porous material, theory and experiment are in good quantitative agreement

  8. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  9. Frequency spectral broadening of lower hybrid waves in tokamak plasmas - causes and effects

    Energy Technology Data Exchange (ETDEWEB)

    Pericoli Ridolfini, V; Giannone, L.; Bartiromo, R [Associazione Euratom-ENEA sulla Fusione, Rome (Italy). Centro Ricerche Energia Frascati

    1994-04-01

    The frequency spectral broadening of lower hybrid (LH) waves injected into tokamak plasmas is extensively analyzed with reference mostly to experimental data from the ASDEX tokamak. The link between the magnitude of the pump spectral width and the degradation of the LH current drive efficiency (up to a factor of 2), pointed out in previous works, is explained. The experimental behaviour of LH power absorption is also well reproduced, even in situations when the access of the launched LH waves to the core plasma should be largely forbidden. Experiments are described that are aimed at determined whether parametric decay instabilities (PDIs) or scattering of LH waves by density fluctuations in the plasma edge are causes of the broadening of the LH pump frequency spectrum. Fluctuations emerge as the largely dominant process, while no signature of PDI processes is observed. Careful measurements of the density fluctuations in the ASDEX scrape-off layer plasma allow the analytical description given by Andrews and Perkins to be assumed as the appropriate model of LH scattering. Indeed, it supplies the correct magnitude for the frequency spectral width of the LH pump, and explains quantitatively, together with a ray tracing code, why the CD efficiency decreases with the broadening of the pump spectrum. It can also account for the observed LH power absorption coefficient. (author). 48 refs, 13 figs, 2 tabs.

  10. Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies

    Science.gov (United States)

    Mugundhan, V.; Ramesh, R.; Kathiravan, C.; Gireesh, G. V. S.; Hegde, Aathira

    2018-03-01

    A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15 - 85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of {≈} 15 - 85 MHz during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that i) Type I storm bursts have a spectral index of {≈} {+}3.5, ii) the spectral index of the background continuum is ≈+2.9, iii) the transition frequency between Type I and Type III storms occurs at ≈55 MHz, iv) Type III bursts have an average spectral index of ≈-2.7, v) the spectral index of the Type III continuum is ≈-1.6, and vi) the degree of circular polarization of all Type I (Type III) bursts is ≈90% (30%). The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.

  11. Low-frequency-noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    From 203 cases of low-frequency complaints a random selection of twenty-one cases were investigated. The main aim of the investigation was to answer the question whether the annoyance is caused by an external physical sound or by a physically non-existing sound, i.e. low-frequency tinnitus. Noise...... of the complainants are annoyed by a physical sound (20-180 Hz), while others suffer from low-frequency tinnitus (perceived frequency 40-100 Hz). Physical sound at frequencies below 20 Hz (infrasound) is not responsible for the annoyance - or at all audible - in any of the investigated cases, and none...... of the complainants has extraordinary hearing sensitivity at low frequencies. For comparable cases of low-frequency noise complaints in general, it is anticipated that physical sound is responsible in a substantial part of the cases, while low-frequency tinnitus is responsible in another substantial part of the cases....

  12. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    International Nuclear Information System (INIS)

    Sati, Priti; Tripathi, V. K.

    2012-01-01

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  13. Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control

    Science.gov (United States)

    Krushynska, A. O.; Bosia, F.; Miniaci, M.; Pugno, N. M.

    2017-10-01

    Attenuating low-frequency sound remains a challenge, despite many advances in this field. Recently-developed acoustic metamaterials are characterized by unusual wave manipulation abilities that make them ideal candidates for efficient subwavelength sound control. In particular, labyrinthine acoustic metamaterials exhibit extremely high wave reflectivity, conical dispersion, and multiple artificial resonant modes originating from the specifically-designed topological architectures. These features enable broadband sound attenuation, negative refraction, acoustic cloaking and other peculiar effects. However, hybrid and/or tunable metamaterial performance implying enhanced wave reflection and simultaneous presence of conical dispersion at desired frequencies has not been reported so far. In this paper, we propose a new type of labyrinthine acoustic metamaterials (LAMMs) with hybrid dispersion characteristics by exploiting spider web-structured configurations. The developed design approach consists in adding a square surrounding frame to sectorial circular-shaped labyrinthine channels described in previous publications (e.g. (11)). Despite its simplicity, this approach provides tunability in the metamaterial functionality, such as the activation/elimination of subwavelength band gaps and negative group-velocity modes by increasing/decreasing the edge cavity dimensions. Since these cavities can be treated as extensions of variable-width internal channels, it becomes possible to exploit geometrical features, such as channel width, to shift the band gap position and size to desired frequencies. Time transient simulations demonstrate the effectiveness of the proposed metastructures for wave manipulation in terms of transmission or reflection coefficients, amplitude attenuation and time delay at subwavelength frequencies. The obtained results can be important for practical applications of LAMMs such as lightweight acoustic barriers with enhanced broadband wave

  14. Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control

    International Nuclear Information System (INIS)

    Krushynska, A O; Bosia, F; Miniaci, M; Pugno, N M

    2017-01-01

    Attenuating low-frequency sound remains a challenge, despite many advances in this field. Recently-developed acoustic metamaterials are characterized by unusual wave manipulation abilities that make them ideal candidates for efficient subwavelength sound control. In particular, labyrinthine acoustic metamaterials exhibit extremely high wave reflectivity, conical dispersion, and multiple artificial resonant modes originating from the specifically-designed topological architectures. These features enable broadband sound attenuation, negative refraction, acoustic cloaking and other peculiar effects. However, hybrid and/or tunable metamaterial performance implying enhanced wave reflection and simultaneous presence of conical dispersion at desired frequencies has not been reported so far. In this paper, we propose a new type of labyrinthine acoustic metamaterials (LAMMs) with hybrid dispersion characteristics by exploiting spider web-structured configurations. The developed design approach consists in adding a square surrounding frame to sectorial circular-shaped labyrinthine channels described in previous publications (e.g. (11)). Despite its simplicity, this approach provides tunability in the metamaterial functionality, such as the activation/elimination of subwavelength band gaps and negative group-velocity modes by increasing/decreasing the edge cavity dimensions. Since these cavities can be treated as extensions of variable-width internal channels, it becomes possible to exploit geometrical features, such as channel width, to shift the band gap position and size to desired frequencies. Time transient simulations demonstrate the effectiveness of the proposed metastructures for wave manipulation in terms of transmission or reflection coefficients, amplitude attenuation and time delay at subwavelength frequencies. The obtained results can be important for practical applications of LAMMs such as lightweight acoustic barriers with enhanced broadband wave

  15. Effect of observed micropolar motions on wave propagation in deep Earth minerals

    Science.gov (United States)

    Abreu, Rafael; Thomas, Christine; Durand, Stephanie

    2018-03-01

    We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr , which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth's mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth's mantle material by providing Cosserat couple modulus that were not available before.

  16. Low-Frequency Current Variability Observed at the Shelfbreak in the Northeastern Gulf of Mexico: November 2004-May 2005

    National Research Council Canada - National Science Library

    Carnes, Michael R; Teague, William J; Jarosz, Ewa

    2007-01-01

    ...) as part of its Slope to Shelf Energetics and Exchange Dynamics (SEED) project. The winter and spring observations are discussed here in regards to the low-frequency current variability and its relation to wind and eddy forcing...

  17. Effects of the major sudden stratospheric warming event of 2009 on the subionospheric very low frequency/low frequency radio signals

    Science.gov (United States)

    Pal, S.; Hobara, Y.; Chakrabarti, S. K.; Schnoor, P. W.

    2017-07-01

    This paper presents effects of the major sudden stratospheric warming (SSW) event of 2009 on the subionospheric very low frequency/low frequency (VLF/LF) radio signals propagating in the Earth-ionosphere waveguide. Signal amplitudes from four transmitters received by VLF/LF radio networks of Germany and Japan corresponding to the major SSW event are investigated for possible anomalies and atmospheric influence on the high- to middle-latitude ionosphere. Significant anomalous increase or decrease of nighttime and daytime amplitudes of VLF/LF signals by ˜3-5 dB during the SSW event have been found for all propagation paths associated with stratospheric temperature rise at 10 hPa level. Increase or decrease in VLF/LF amplitudes during daytime and nighttime is actually due to the modification of the lower ionospheric boundary conditions in terms of electron density and electron-neutral collision frequency profiles and associated modal interference effects between the different propagating waveguide modes during the SSW period. TIMED/SABER mission data are also used to investigate the upper mesospheric conditions over the VLF/LF propagation path during the same time period. We observe a decrease in neutral temperature and an increase in pressure at the height of 75-80 km around the peak time of the event. VLF/LF anomalies are correlated and in phase with the stratospheric temperature and mesospheric pressure variation, while minimum of mesospheric cooling shows a 2-3 day delay with maximum VLF/LF anomalies. Simulations of VLF/LF diurnal variation are performed using the well-known Long Wave Propagating Capability (LWPC) code within the Earth-ionosphere waveguide to explain the VLF/LF anomalies qualitatively.

  18. Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory

    Science.gov (United States)

    Zeng, Yuehua

    2017-01-01

    This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.

  19. Low frequency torsional vibration gaps in the shaft with locally resonant structures

    International Nuclear Information System (INIS)

    Yu Dianlong; Liu Yaozong; Wang Gang; Cai Li; Qiu Jing

    2006-01-01

    The propagation of torsional wave in the shaft with periodically attached local resonators is studied with the transfer matrix theory and the finite element method. The analytical dispersion relation and the complex band structure of such a structure is presented for the first time, which indicates the existence of low frequency gaps. The effect of shaft material on the vibration attenuation in band gap is investigated. The frequency response function of the shaft with finite periodic locally resonant oscillators is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The low frequency torsional gap in shafts provides a new idea for vibration control

  20. Millimeter-wave interconnects for microwave-frequency quantum machines

    Science.gov (United States)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  1. Electromagnetic Ion Cyclotron Waves in the High Altitude Cusp: Polar Observations

    Science.gov (United States)

    Le, Guan; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow band waves at frequencies approximately 0.2 to 3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency, and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both lefthanded and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  2. Electromagnetic Ion Cyclotron Waves in the High-Altitude Cusp: Polar Observations

    Science.gov (United States)

    Le, G.; Blanco-Cano, X.; Russell, C. T.; Zhou, X.-W.; Mozer, F.; Trattner, K. J.; Fuselier, S. A.; Anderson, B. J.

    2005-01-01

    High-resolution magnetic field data from the Polar Magnetic Field Experiment (MFE) show that narrow-band waves at frequencies approx. 0.2-3 Hz are a permanent feature in the vicinity of the polar cusp. The waves have been found in the magnetosphere adjacent to the cusp (both poleward and equatorward of the cusp) and in the cusp itself. The occurrence of waves is coincident with depression of magnetic field strength associated with enhanced plasma density, indicating the entry of magnetosheath plasma into the cusp region. The wave frequencies are generally scaled by the local proton cyclotron frequency and vary between 0.2 and 1.7 times local proton cyclotron frequency. This suggests that the waves are generated in the cusp region by the precipitating magnetosheath plasma. The properties of the waves are highly variable. The waves exhibit both left-handed and right-handed polarization in the spacecraft frame. The propagation angles vary from nearly parallel to nearly perpendicular to the magnetic field. We find no correlation among wave frequency, propagation angle, and polarization. Combined magnetic field and electric field data for the waves indicate that the energy flux of the waves is guided by the background magnetic field and points downward toward the ionosphere.

  3. Observation of Gravitational Waves from a Binary Black Hole Merger

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  4. Scattering of radio frequency waves by blob-filaments

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2010-01-01

    Radio frequency waves used for heating and current drive in magnetic confinement experiments must traverse the scrape-off-layer (SOL) and edge plasma before reaching the core. The edge and SOL plasmas are strongly turbulent and intermittent in both space and time. As a first approximation, the SOL can be treated as a tenuous background plasma upon which denser filamentary field-aligned blobs of plasma are superimposed. The blobs are approximately stationary on the rf time scale. The scattering of plane waves in the ion-cyclotron to lower-hybrid frequency range from a cylindrical blob is treated here in the cold plasma fluid model. Scattering widths are derived for incident fast and slow waves, and the scattered power fraction is estimated. Processes such as scattering-induced mode conversion, scattering resonances, and shadowing are investigated.

  5. Observations of low and intermediate-frequency-peaked BL Lacs above 100 GeV with VERITAS

    Directory of Open Access Journals (Sweden)

    Errando M.

    2013-12-01

    Full Text Available Most of the ~ 50 blazars detected to date at TeV energies (E > 0.1 TeV are high-frequency-peaked BL Lacs (HBLs. Only a handful episodic detections of low- and intermediate-frequency-peaked BL Lacs (LBL/IBLs, with synchrotron peak frequencies in the infrared and optical regime have been reported by ground-based gamma-ray telescopes, typically during high-flux states. The VERITAS array located in southern Arizona has observed five known TeV LBL/IBLs since 2009: 3C 66A, WComae, PKS 1424+240, S5 0716+714 and BL Lacertae, with exposures of 5-10 hours/year, which so far resulted in the detection of a bright, sub-hour timescale gamma-ray flare of BL Lacertae in June 2011. We also report the detection and characterization of two new IBLs: VER J0521+211 and B2 1215+30.

  6. Statistical Analysis of Langmuir Waves Associated with Type III Radio Bursts: I. Wind Observations

    Directory of Open Access Journals (Sweden)

    Vidojević S.

    2011-12-01

    Full Text Available Interplanetary electron beams are unstable in the solar wind and they generate Langmuir waves at the local plasma frequency or its harmonic. Radio observations of the waves in the range 4-256 kHz, observed in 1994-2010 with the WAVES experiment onboard the WIND spacecraft, are statistically analyzed. A subset of 36 events with Langmuir waves and type III bursts occurring at the same time was selected. After removal of the background, the remaining power spectral density is modeled by the Pearson system of probability distributions (types I, IV and VI. The Stochastic Growth Theory (SGT predicts log-normal distribution for the power spectrum density of the Langmuir waves. Our results indicate that SGT possibly requires further verification.

  7. Detecting high-frequency gravitational waves with optically levitated sensors.

    Science.gov (United States)

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  8. Nonlinear frequency shift of finite-amplitude electrostatic surface waves

    International Nuclear Information System (INIS)

    Stenflo, L.

    1989-01-01

    The problem concerning the appropriate form for the nonlinear frequency shift arising from slow density modulations of electrostatic surface waves in a semi-infinite unmagnetized plasma is reconsidered. The spatial dependence of the wave amplitude normal to the surface is kept general in order to allow for possible nonlinear attenuation behaviour of the surface waves. It is found that if the frequency shift is expressed as a function of the density and its gradient then the result is identical with that of Zhelyazkov, I. Proceedings International Conference on Plasma Physics, Kiev, 1987, Vol. 2, p. 694, who assumed a linear exponential attenuation behaviour. (author)

  9. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    Science.gov (United States)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  10. Mooring observations of the near-inertial wave wake of Hurricane Ida (2009)

    Science.gov (United States)

    Pallàs-Sanz, Enric; Candela, Julio; Sheinbaum, Julio; Ochoa, José

    2016-12-01

    The near-inertial wave wake of Hurricane Ida is examined of the basis of horizontal velocity observations acquired from 7 moorings instrumented with acoustic Doppler current profilers deployed across the shelf break, slope, and at the abyssal plain of the Yucatan Peninsula, from 130 m to ∼3300 m. During the forced stage, background mean-flow consisted on a dominant cyclonic circulation of ∼100 km of diameter intensified toward the Yucatan's shelf (topographic constraint) and bounded by anticyclonic vorticity northeastward (north 25° N). In the low frequency band, subinertial signals of ∈ [5.5-7.5] day period propagating along the Yucatan shelf break. After the passage of Hurricane Ida, energetic near-inertial oscillations spread away from the storm's track over cyclonic vorticity. The wave's Eulerian frequency increases shoreward and toward the Yucatan's shelf. After Ida's passage, mooring data show a contrasting velocity response: semi-diurnal and diurnal tides are enhanced at the shelf break of the Yucatan Peninsula and near-inertial oscillations at the slope and abyssal plain. The near-inertial kinetic energy is largest to the right of the storm track because of the asymmetric wind-stress and amplified due to vorticity trapping near z =-500 m, which is a proxy of the base of the mesoscale structure and where the mean-flow is nearly zero. The blue frequency shifted wave wake propagates downward at ∼57-70 m day-1 and horizontally at 23-28 km day-1 leading a downward vertical energy flux of [1.3-1.6] × 10-2 W m-2. This represents a 7-9% of the total wind power input to near-inertial oscillations that, ultimately, became available for interior ocean mixing. The results suggest that the most energetic wave packet propagated poleward and downward from a broad upwelling region located near the Hurricane's track. The vertical structure of the near-inertial kinetic energy is described as a sum of the first 12 standing vertical modes and as vertically

  11. Low-frequency Landau-Zener-Stuckelberg interference in dissipative superconducting qubits

    International Nuclear Information System (INIS)

    Du-lingjie; Lan- Dong; Yu-Yang

    2013-01-01

    Landau-Zener-Stuckelberg (LZS) interference of continuously driven superconducting qubits is studied. Going beyond the second order perturbation expansion, we find a time dependent stationary population evolution as well as unsymmetrical microwave driven Landau-Zener transitions, resulting from the nonresonant terms which are neglected in rotating-wave approximation. For the low-frequency driving, the qubit population at equilibrium is a periodical function of time, owing to the contribution of the nonresonant terms. In order to obtain the average population, it is found that the average approximation based on the perturbation approach can be applied to the low-frequency region. For the extremely low frequency which is much smaller than the decoherence rate, we develop noncoherence approximation by dividing the evolution into discrete time steps during which the coherence is lost totally. These approximations present comprehensive analytical descriptions of LZS interference in most of parameter space of frequency and decoherence rate, agreeing well with those of the numerical simulations and providing a simple but integrated understanding to system dynamics. The application of our models to microwave cooling can obtain the minimal frequency to realize effective microwave cooling.

  12. Short wavelength electrostatic waves in the earth's magnetosheath

    International Nuclear Information System (INIS)

    Gallagher, D.L.

    1982-01-01

    Recent observations with the ISEE-1 spacecraft have found electric field emissions in the dayside magnetosheath whose frequency spectrum is modulated at twice the spacecraft spin period. The upper frequency cutoff in the frequency-time spectrum of the emissions has a characteristic parabola shape or ''festoon'' shape. The low frequency cutoff ranges from 100 Hz to 400 Hz, while the high frequency limit ranges from about 1kHz to 4kHz. The bandwidth is found to minimize for antenna orientations parallel to these wave number vectors, requiring the confinement of those vectors to a plane which contains the geocentric solar eclilptic coordinate z-axis. The spacecraft observed frequency spectrum results from the spacecraft antenna response to the Doppler shifted wave vector spectrum which exists in the plasma. Imposed constraints on the plasma rest-frame wave vectors and frequencies indicate that the emissions occur within the frequency range from about 150 Hz to 1 kHz, with wavelengths between about 30 meters and 600 meters. These constraints strongly suggest that the festoon-shaped emissions are ion-acoustic waves. The small group velocity and k vector direction of the ion-acoustic mode are consistent with wave generation upstream at the bow shock and convection downstream to locations within the outer dayside magnetosheath

  13. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    Science.gov (United States)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and

  14. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    International Nuclear Information System (INIS)

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.; Manweiler, Jerry W.; Spence, Harlan E.

    2017-01-01

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.

  15. An accurate, fast, and scalable solver for high-frequency wave propagation

    Science.gov (United States)

    Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.

    2017-12-01

    In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and

  16. Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.

    Science.gov (United States)

    Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun

    2017-09-01

    Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.

  17. Radio-frequency wave excitation and damping on a high β plasma column

    International Nuclear Information System (INIS)

    Meuth, H.

    1984-01-01

    Azimuthally symmetric (m = 0) radio-frequency (RF) waves for zero and for finite axial wave number k/sub z/ are investigated on the High BETA Q Machine, a two-meter, 20 cm-diameter, low-compression linear theta pinch (T greater than or equal to 200 eV, n approx. = 10 15 cm -3 ) fast rising (0.4 μs) compression field. The (k/sub z/ = 0) modes occur spontaneously following the implosion phase of the discharge. A novel 100-MW 1 to 1.3 MHz, short wavelength current drive excites the plasma column in the vicinity of the lowest fast magnetoacoustic mode at various filling pressures. This current drive is designed as an integral part of the compression coil, which is segmented with a 20-cm axial wavelength (k/sub z/ = 0.314 cm -1 ). The electron density oscillations along major and minor chords at various positions are measured by interferometry perpendicular to the pinch axis. The oscillatory radial magnetic field component between pinch wall and hot plasma edge is measured by probes. Phases, amplitudes and radial mode structure are studied for the free (k = 0) modes and the externally driven (k does not equal 0) modes for various filling pressures of deuterium. The energy deposition from the externally driven RF wave leads to a radial expansion of the plasma column, as observed by axial interferometry and by excluded flux measurements

  18. On the nature of electromagnetic waves in the vicinity of auroral archs

    International Nuclear Information System (INIS)

    Volokitin, A.S.; Mordovskaya, V.G.

    1988-01-01

    Excitation of kinetic Alfven waves by longitudinal current in the vicinity of auroral arcs is considered in the framework of quasilinear theory. It is shown that experimentally observed low-frequency electromagnetic waves with f<2Hz frequency in the vicinity of uniform auroral arcs represent the Alfven waves, excited at altitudes of three Earth radii and above by longitudinal electric current

  19. Turbulence Scattering of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-01-01

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)

  20. Elastic-plastic response characteristics during frequency nonstationary waves

    International Nuclear Information System (INIS)

    Miyama, T.; Kanda, J.; Iwasaki, R.; Sunohara, H.

    1987-01-01

    The purpose of this paper is to study fundamental effects of the frequency nonstationarity on the inelastic responses. First, the inelastic response characteristics are examined by applying stationary waves. Then simple representation of nonstationary characteristics is considered to general nonstationary input. The effects for frequency nonstationary response are summarized for inelastic systems. The inelastic response characteristics under white noise and simple frequency nonstationary wave were investigated, and conclusions can be summarized as follows. 1) The maximum response values for both BL model and OO model corresponds fairly well with those estimated from the energy constant law, even when R is small. For the OO model, the maximum displacement response forms a unique curve except for very small R. 2) The plastic deformation for the BL model is affected by wide frequency components, as R decreases. The plastic deformation for the OO model can be determined from the last stiffness. 3). The inelastic response of the BL model is considerably affected by the frequency nonstationarity of the input motion, while the response is less affected by the nonstationarity for OO model. (orig./HP)

  1. Warped frequency transform analysis of ultrasonic guided waves in long bones

    Science.gov (United States)

    De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.

    2010-03-01

    Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.

  2. Modeling of temporal variation of very low frequency radio waves over long paths as observed from Indian Antarctic stations

    Science.gov (United States)

    Sasmal, Sudipta; Basak, Tamal; Chakraborty, Suman; Palit, Sourav; Chakrabarti, Sandip K.

    2017-07-01

    Characteristics of very low frequency (VLF) signal depends on solar illumination across the propagation path. For a long path, solar zenith angle varies widely over the path and this has a significant influence on the propagation characteristics. To study the effect, Indian Centre for Space Physics participated in the 27th and 35th Scientific Expedition to Antarctica. VLF signals transmitted from the transmitters, namely, VTX (18.2 kHz), Vijayanarayanam, India, and NWC (19.8 kHz), North West Cape, Australia, were recorded simultaneously at Indian permanent stations Maitri and Bharati having respective geographic coordinates 70.75°S, 11.67°E, and 69.4°S, 76.17°E. A very stable diurnal variation of the signal has been obtained from both the stations. We reproduced the signal variations of VLF signal using solar zenith angle model coupled with long wavelength propagation capability (LWPC) code. We divided the whole path into several segments and computed the solar zenith angle (χ) profile. We assumed a linear relationship between the Wait's exponential model parameters effective reflection height (h'), steepness parameter (β), and solar zenith angle. The h' and β values were later used in the LWPC code to obtain the VLF signal amplitude at a particular time. The same procedure was repeated to obtain the whole day signal. Nature of the whole day signal variation from the theoretical modeling is also found to match with our observation to some extent.

  3. Nonlocal nonlinear coupling of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    O. Lyubchyk

    2014-11-01

    Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

  4. Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations

    Science.gov (United States)

    Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Said, R.; Parrot, M.

    2014-12-01

    Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which strongly impacts the Van Allen radiation belt electron dynamics, is injected across the ionosphere into the Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Numerical models of trans-ionospheric propagation of such waves remain unvalidated, and early models may have overestimated the absorption, hindering a comprehensive understanding of the global impact of VLF waves in the loss of radiation belt electrons. In an attempt to remedy the problem of a lack of accurate trans-ionospheric propagation models, we have used a full electromagnetic wave method (FWM) numerical code to simulate the propagation of lightning-generated whistlers into the magnetosphere and compared the results with whistlers observed on the DEMETER satellite and paired with lightning stroke data from the National Lightning Detection Network (NLDN). We have identified over 20,000 whistlers occuring in 14 different passes of DEMETER over the central United States during the summer of 2009, and 14,000 of those occured within the 2000 km x 2000 km simulation grid we used. As shown in the attached figure, which shows a histogram of the ratio of the simulated whistler energy to the measured whistler energy for the 14,000 whistlers we compared, the simulation tends to slightly underestimate the total whistler energy injected by about 5 dB. However, the simulation underestimates the DEMETER measurements more as one gets further from the source lightning stroke, so since the signal to noise ratio of more distant whistlers will be smaller, possibly additive noise in the DEMETER measurements (which of course is not accounted for in the model) may explain some of the observed discrepancy.

  5. Frequency pulling in a low-voltage medium-power gyrotron

    Science.gov (United States)

    Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun

    2018-04-01

    Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.

  6. Cluster observations of particle acceleration up to supra-thermal energies in the cusp region related to low-frequency wave activity – possible implications for the substorm initiation process

    Directory of Open Access Journals (Sweden)

    T. A. Fritz

    2008-03-01

    Full Text Available The purpose of our study is to investigate the way particles are accelerated up to supra-thermal energies in the cusp diamagnetic cavities. For this reason we have examined a number of Cluster cusp crossings, originally identified by Zhang et al. (2005, for the years 2001 and 2002 using data from RAPID, STAFF, EFW, CIS, PEACE, and FGM experiments. In the present study we focus on two particular cusp crossings on 25 March 2002 and on 10 April 2002 which demonstrate in a clear way the general characteristics of the events in our survey. Both events exhibit very sharp spatial boundaries seen both in CNO (primarily single-charged oxygen of ionospheric origin based on CIS observations and H+ flux increases within the RAPID energy range with the magnetic field intensity being anti-correlated. Unlike the first event, the second one shows also a moderate electron flux increase. The fact that the duskward electric field Ey has relatively low values <5 mV/m while the local wave activity is very intense provides a strong indication that particle energization is caused primarily by wave-particle interactions. The wave power spectra and propagation parameters during these cusp events are examined in detail. It is concluded that the high ion fluxes and at the same time the presence or absence of any sign of energization in the electrons clearly shows that the particle acceleration depends on the wave power near the local particle gyrofrequency and on the persistence of the wave-particle interaction process before particles escape from cusp region. Furthermore, the continuous existence of energetic O+ ions suggests that energetic O+ populations are of spatial nature at least for the eight events that we have studied so far.

  7. Analysis of ULF Waves During Substorms Observed in the Ionosphere from the Dayside Ground Magnetometer and in the Solar Wind from the Satellite

    Science.gov (United States)

    Streltsov, A. V.; Alimaganbetov, M.

    2017-12-01

    Magnetospheric substorm is one of the most interesting and complicated phenomena of solar-terrestrial interactions. Despite numerous theoretical and experimental studies conducted during last 50 years, its several important phenomena are not completely understood yet. One of them are intense, ultra-low-frequency (from 0.5 mHz to 100 mHz), electromagnetic pulsations which are always observed during the substorms with the ground-based magnetometers and radars at high latitudes. These waves have the largest amplitudes in the power spectral densities during substorms. Hence, they are the most effective drivers of such mechanisms as high-latitude ionosphere energization, ion outflow production, formation of plasma density cavities, etc. In our study, we focus on the waves with frequencies 0.5-1.0 mHz, which is the lowest part of the frequency spectra observed during the substorm. The questions of what phenomena cause these oscillations and what are their spatiotemporal properties are among the most important ones about the physics of the substorm. To answer these questions, we analyzed disturbances of the magnetic field obtained from the two sources for the period from October 2015 to November 2016 during several substorms. One source is the fluxgate magnetometer in Poker Flat, Alaska. Another is the NASA Advanced Composite Explorer satellite in the Lagrangian L1 point that detects most of the solar wind from the Sun. The goal of our project is to find correlations between the disturbances observed from these sources, which will be a strong argument that the solar wind has a strong influence on the electromagnetic coupling between the ionosphere and magnetosphere of the Earth during the substorms. We observed 48 substorms during the abovementioned period. Our findings show that 1) the dominant frequency of the large-amplitude ULF waves observed during the substorms is 1 mHz or less; and 2) the same frequencies are frequently observed in the waves detected from the both

  8. Investigation of conditions for the generation and propagation of low-frequency disturbances in the troposphere

    Science.gov (United States)

    Mordvinov, V. I.; Devyatova, E. V.; Kochetkova, O. S.; Oznobikhina, O. A.

    2013-01-01

    Low-frequency disturbances responsible for the excitation of torsional oscillations—variations in the zonal mean flow intensity with a characteristic scale of 15-20 days—propagating along the meridian at mid and low latitudes of both hemispheres are investigated [1]. As data observed over the eastern parts of continents and the western parts of oceans are processed with the lag correlation statistics, traveling waves intersecting the eastern parts of continents from northwest to southeast and then returning to the north along the ocean coasts are identified. In this case, trains of anomalies oriented in the zonal direction periodically appear and are destructed in the western parts of continents. The simulation of the propagation of disturbances in the quasi-geostrophic approximation made it possible to explain the specific features of lag correlation statistics over continents by the dispersion of two-dimensional Rossby waves from traveling sources. The turnover of disturbances over Asia and wave trains to the west from the pole were reproduced. Torsional oscillations caused by the dispersion of two-dimensional Rossby waves have a characteristic form of inclined bands in the latitude-time diagram, whose steepness is controlled by the velocity of displacement of the vorticity source along the meridian.

  9. Plasma acceleration in a wave with varying frequency

    International Nuclear Information System (INIS)

    Petrzilka, V.A.

    1978-01-01

    The averaged velocity of a test particle and the averaged velocity of a plasma in an electromagnetic wave packet with varying frequency (e.g., a radiation pulse from pulsar) is derived. The total momentum left by the wave packet in regions of plasma inhomogeneity is found. In case the plasma concentration is changing due to ionization the plasma may be accelerated parallelly or antiparallelly to the direction of the wave packet propagation which is relevant for a laser induced breakdown in gas. (author)

  10. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    Science.gov (United States)

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  11. Experimental observation of azimuthal shock waves on nonlinear acoustical vortices

    International Nuclear Information System (INIS)

    Brunet, Thomas; Thomas, Jean-Louis; Marchiano, Regis; Coulouvrat, Francois

    2009-01-01

    Thanks to a new focused array of piezoelectric transducers, experimental results are reported here to evidence helical acoustical shock waves resulting from the nonlinear propagation of acoustical vortices (AVs). These shock waves have a three-dimensional spiral shape, from which both the longitudinal and azimuthal components are studied. The inverse filter technique used to synthesize AVs allows various parameters to be varied, especially the topological charge which is the key parameter describing screw dislocations. Firstly, an analysis of the longitudinal modes in the frequency domain reveals a wide cascade of harmonics (up to the 60th order) leading to the formation of the shock waves. Then, an original measurement in the transverse plane exhibits azimuthal behaviour which has never been observed until now for acoustical shock waves. Finally, these new experimental results suggest interesting potential applications of nonlinear effects in terms of acoustics spanners in order to manipulate small objects.

  12. Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: a case study

    Directory of Open Access Journals (Sweden)

    K. Meziane

    2004-07-01

    Full Text Available An energetic ion (E≤40 event observed by the CLUSTER/CIS experiment upstream of the Earth's bow shock is studied in detail. The ion event is observed in association with quasi-monochromatic ULF MHD-like waves, which we show modulate the ion fluxes. According to three statistical bow shock position models, the Cluster spacecrafts are located at ~0.5 Re from the shock and the averaged bow shock θBn0 is about ~30°. The analysis of the three-dimensional angular distribution indicates that ions propagating roughly along the magnetic field direction are observed at the onset of the event. Later on, the angular distribution is gyrophase-bunched and the pitch-angle distribution is peaked at α0~θBn0, consistent with the specular reflection production mechanism. The analysis of the waves shows that they are left-handed in the spacecraft frame of reference (right-handed in the solar wind frame and propagate roughly along the ambient magnetic field; we have found that they are in cyclotron-resonance with the field-aligned beam observed just upstream. Using properties of the waves and particles, we explain the observed particle flux-modulation in the context of θBn changes at the shock caused by the convected ULF waves. We have found that the high count rates coincide with particles leaving the shock when θBn angles are less than ~40°, consistent with the specular reflection hypothesis as the production mechanism of ions.

  13. Model for spontaneous frequency sweeping of an Alfvén wave in a toroidal plasma

    Science.gov (United States)

    Wang, Ge; Berk, H. L.

    2012-05-01

    We study the frequency chirping signals arising from spontaneously excited toroidial Alfvén eigenmode (TAE) waves that are being driven by an inverted energetic particle distribution whose free energy is tapped from the generic particle/wave resonance interaction. Initially a wave is excited inside the Alfvén gap with a frequency determined from the linear tip model of Rosenbluth, Berk and Van dam (RBV) [1]. Hole/clumps structures are formed and are observed to chirp towards lower energy states. We find that the chirping signals from clump enter the Alfvén continuum which eventually produce more rapid chirping signals. The accuracy of the adiabatic approximation for the mode evolution is tested and verified by demonstrating that a WKB-like decomposition of the time response for the field phase and amplitude agree with the data. Plots of the phase space structure correlate well with the chirping dependent shape of the separatrix structure. A novel aspect of the simulation is that it performed close to the wave frame of the phase space structure, which enables the numerical time step to remain the same during the simulation, independent of the rest frame frequency.

  14. A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode

    Science.gov (United States)

    Yu, Yueyue; Cai, Ming; Ren, Rongcai

    2017-08-01

    We consider three indices to measure the polar stratospheric mass and stratospheric meridional mass circulation variability: anomalies of (1) total mass in the polar stratospheric cap (60-90°N, above the isentropic surface 400 K, PSM), (2) total adiabatic mass transport across 60°N into the polar stratosphere cap (AMT), (3) and total diabetic mass transport across 400 K from the polar stratosphere into the troposphere below (DMT). It is confirmed that the negative stratospheric Northern Annular Mode (NAM) and PSM indices have a nearly indistinguishable temporal evolution and a similar red-noise-like spectrum with a de-correlation timescale of 4 weeks. This enables us to examine the low-frequency nature of the NAM in the framework of mass circulation, namely, d/{dt}{PSM}={AMT} - {DMT} . The DMT index tends to be positively correlated with the PSM with a red-noise-like spectrum, representing slow radiative cooling processes giving rise to a de-correlation timescale of 3-4 weeks. The AMT is nearly perfectly correlated with the day-to-day tendency of PSM, reflecting a robust quasi 90° out-of-phase relation between the AMT and PSM at all frequency bands. Variations of vertically westward tilting of planetary waves contribute mainly to the high-frequency portion of AMT. It is the wave amplitude's slow vacillation that plays the leading role in the quasi 90° out-of-phase relation between the AMT and PSM. Based on this, we put forward a linear stochastic model with a low-frequency amplification feedback from low-frequency amplitude vacillations of planetary waves to explain the amplified low-frequency response of PSM/NAM to a stochastic forcing from the westward tilting variability.

  15. Multisatellite and ground-based observations of transient ULF waves

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Takahashi, K.; Erlandson, R.E.; Luehr, H.; Marklund, G.T.; Block, L.P.; Blomberg, L.G.; Lepping, R.P.

    1989-01-01

    A unique alignment of the Active Magnetospheric Particle Tracer Explorers (AMPTE) CCE and Viking satellites with respect to the EISCAT Magnetometer Cross has provided an opportunity to study transient ULF pulsations associated with variations in solar wind plasma density observed by the IMP 8 satellite. These observations were acquired during a relatively quiet period on April 24, 1986, during the Polar Region and Outer Magnetosphere International Study (PROMIS) period. An isolated 4-mHz (4-min period) pulsation was detected on the ground which was associated with transverse magnetic field oscillations observed by Viking at a ∼ 2-R E altitude above the auroral zone and by CCE at ∼ 8-R E in the equatorial plane on nearly the same flux tube. CCE detected a compressional oscillation in the magnetic field with twice the period (∼ 10 min) of the transverse waves, and with a waveform nearly identical to an isolated oscillation in the solar wind plasma density measured by IMP 8. The authors conclude that the isolated 10-min oscillation in solar wind plasma density produced magnetic field compression oscillations inside the magnetosphere at the same frequency which also enhanced resonant oscillations at approximately twice the frequency that were already present. The ground magnetic field variations are due to ionospheric Hall currents driven by the electric field of the standing Alfven waves. The time delay between surface and satellite data acquired at different local times supports the conclusion that the periodic solar wind density variation excites a tailward traveling large-scale magnetosphere wave train which excites local field line resonant oscillations. They conclude that these transient magnetic field variations are not associated with magnetic field reconnection or flux transfer events

  16. Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - I. Cowling approximation

    Science.gov (United States)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.

    2018-03-01

    Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.

  17. A Spectroscopic Study of the Energy Deposition in the Low Corona: Connecting Global Modeling to Observations

    Science.gov (United States)

    Szente, J.; Landi, E.; Toth, G.; Manchester, W.; van der Holst, B.; Gombosi, T. I.

    2017-12-01

    We are looking for signatures of coronal heating process using a physically consistent 3D MHD model of the global corona. Our approach is based on the Alfvén Wave Solar atmosphere Model (AWSoM), with a domain ranging from the upper chromosphere (50,000K) to the outer corona, and the solar wind is self-consistently heated and accelerated by the dissipation of low-frequency Alfvén waves. Taking into account separate electron and anisotropic proton heating, we model the coronal plasma at the same time and location as observed by Hinode/EIS, and calculate the synthetic spectra that we compare with the observations. With the obtained synthetic spectra, we are able to directly calculate line intensities, line width, thermal and nonthermal motions, line centroids, Doppler shift distributions and compare our predictions to real measurements. Our results directly test the extent to which Alfvénic heating is present in the low corona.

  18. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P., E-mail: David.Pappas@NIST.gov [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2016-01-04

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  19. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    Science.gov (United States)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.

    2016-01-01

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  20. The low-frequency encoding disadvantage: Word frequency affects processing demands.

    Science.gov (United States)

    Diana, Rachel A; Reder, Lynne M

    2006-07-01

    Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative recognition, are used, the effects seem to contradict a low-frequency advantage in memory. Four experiments are presented to support the claim that in addition to the advantage of low-frequency words at retrieval, there is a low-frequency disadvantage during encoding. That is, low-frequency words require more processing resources to be encoded episodically than high-frequency words. Under encoding conditions in which processing resources are limited, low-frequency words show a larger decrement in recognition than high-frequency words. Also, studying items (pictures and words of varying frequencies) along with low-frequency words reduces performance for those stimuli. Copyright 2006 APA, all rights reserved.

  1. Radio-frequency wave enhanced runaway production rate

    International Nuclear Information System (INIS)

    Chan, V.S.; McClain, F.W.

    1983-01-01

    Enhancement of runaway electron production (over that of an Ohmic discharge) can be achieved by the addition of radio-frequency waves. This effect is studied analytically and numerically using a two-dimensional Fokker--Planck quasilinear equation

  2. Ground and Satellite Observations of ULF Waves Artificially Produced by HAARP

    Science.gov (United States)

    Chang, C.; Labenski, J.; Shroff, H.; Doxas, I.; Papadopoulos, D.; Milikh, G.; Parrot, M.

    2008-12-01

    Modulated ionospheric heating at ULF frequencies using the HAARP heater was performed from April 28 to May 3, 2008 (http://www.haarp.alaska.edu). Simultaneous ground-based ULF measurements were made locally at Gakona, AK and at Lake Ozette, WA that is 2000 km away. The ground-based results showed that ULF amplitudes measured at Gakona are mostly proportional to the electrojet strength above HAARP, indicating electrojet modulation to be the source of the local ULF waves. However, the timing of ULF events recorded at Lake Ozette did not correlated with the electrojet strength at Gakona, indicating that modulation of F region pressure is the more likely source for distant ULF waves. These observations are consistent with the theoretical understanding that ULF waves generated by current modulation are shear Alfven waves propagating along the magnetic field line, thus at high latitude their observations are limited to the vicinity of the heated spot. On the other hand, propagation of ULF waves at significant lateral distances requires generation of magnetosonic waves since they are the only mode that propagates isotropically and can thus couple efficiently in the Alfvenic duct. In addition to ground-based observations, the DEMETER satellite also provided space measurements of the heating effects during its passes over HAARP. The DEMETER results showed direct detection of HAARP ULF waves at 0.1 Hz. Moreover, density dips were observed every time HAARP was operated at CW mode, which provides clear evidence of duct formation by direct HF heating at F peak. Details of these results will be presented at the meeting. We would like to acknowledge the support provided by the HAARP facility during our ULF experiments.

  3. A low frequency RFI monitoring system

    Science.gov (United States)

    Amiri, Shahram; Shankar, N. Udaya; Girish, B. S.; Somashekar, R.

    Radio frequency interference (RFI) is a growing problem for research in radio astronomy particularly at wavelengths longer than 2m. For satisfactory operation of a radio telescope, several bands have been protected for radio astronomy observations by the International Telecommunication Union. Since the radiation from cosmic sources are typically 40 to 100 dB below the emission from services operating in unprotected bands, often the out-of-band emission limits the sensitivity of astronomical observations. Moreover, several radio spectral emissions from cosmic sources are present in the frequency range outside the allocated band for radio astronomy. Thus monitoring of RFI is essential before building a receiver system for low frequency radio astronomy. We describe the design and development of an RFI monitoring system operating in the frequency band 30 to 100 MHz. This was designed keeping in view our proposal to extend the frequency of operation of GMRT down to 40 MHz. The monitor is a PC based spectrometer recording the voltage output of a receiver connected to an antenna, capable of digitizing the low frequency RF directly with an 8 bit ADC and sampling bandwidths up to 16 MHz. The system can operate continuously in almost real-time with a loss of only 2% of data. Here we will present the systems design aspects and the results of RFI monitoring carried out at the Raman Research Institute, Bangalore and at the GMRT site in Khodad.

  4. A multispacecraft event study of Pc5 ultralow-frequency waves in the magnetosphere and their external drivers

    International Nuclear Information System (INIS)

    Wang, Chih-Ping; Thorne, Richard; Liu, Terry Z.; Hartinger, Michael D.; Nagai, Tsugunobu

    2017-01-01

    We investigate a quiet time event of magnetospheric Pc5 ultralow-frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5–2 mHz and 3.5–4 mHz, were observed over a large radial distance range from r ~ 5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5–4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field line resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the solar wind dynamic pressure perturbations. For the first interval, good correlations between the flow perturbations in the magnetosphere and magnetosheath and an indirect signature for Kelvin-Helmholtz (K-H) vortices suggest K-H surface waves as the driver. For the second interval, good correlations are found between the magnetosheath dynamic pressure perturbations, magnetopause deformation, and magnetospheric waves, all in good correspondence to interplanetary magnetic field (IMF) discontinuities. The characteristics of these perturbations can be explained by being driven by foreshock perturbations resulting from these IMF discontinuities. This event shows that even during quiet periods, K-H-unstable magnetopause and ion foreshock perturbations can combine to create a highly dynamic magnetospheric ULF wave environment

  5. Quantum Frequency Conversion by Four-wave Mixing Using Bragg Scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Rottwitt, Karsten; McKinstrie, C. J.

    2012-01-01

    Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection.......Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection....

  6. Low-frequency electromagnetic iirradiation treatment of grain in harvester

    Directory of Open Access Journals (Sweden)

    E. V. Zhalnin

    2016-01-01

    Full Text Available Treatment of crop seeds by low-frequency electromagnetic field contributes to obtaining high and stable yields. After this treatment in a laboratory environment crop production can increase from 15 to 40 percent. To research an effect of magnetic field on a seed material in the field we developed technological design for a seeds treatment in a combine harvester «Enisey-1200 NМ». Three modules of low frequency electromagnetic waves source were mounted in the design of transporting working elements from the threshing apparatus to the grain tank for the impact they have on the moving of freshly threshed grain portion. Conditions of magnetization of seeds vere varied. Influence of modes of grain treatment at threshing of spring wheat in a harvester on the effectiveness of the stimulation vere researched. A comparative laboratory analysis of quality of grain, magnetic directly in the harvester, and 3 months after thrashing showed that the new technology allows to increase sowing qualities of grain. Electromagnetic irradiation of grain in a harvester increases the germination of seeds from 6 to 20 percent, germination energy about 30 percent, also raises the weight of the plant parts and more qualitatively clears seeds of a peel that promotes best storage. Regime of magnetization determines a germination ability and readiness og seeds. The most pronounced effect of the grain magnetization is observed under irradiation becomes apparent for more than 9 minutes. Irradiation of grain placed in the hopper of the combine is more effective. The optimum parameters of electromagnetic radiation is a frequency equaled to 16 Hz, the value of magnetic induction of 6 mT. We proposed to extend the technology field stimulation of seeds with low-frequency magnetic field in order to increase germination and yield of different crops. An application of the proposed design of the electromagnetic module for any model and size of modern types of grain and rice harvesters

  7. Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

    Science.gov (United States)

    Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.

    2014-01-01

    Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.

  8. Low Frequency Electrostatic Waves in Weakly Inhomogeneous Magnetoplasma Modeled by Lorentzian (kappa) Distributions

    National Research Council Canada - National Science Library

    Basu, Bamandas

    2008-01-01

    ... (to the ambient magnetic field) flow velocities associated with the current. In order to illustrate the distinguishing features of the kappa distributions, stability properties of the low frequency...

  9. Initial frequency shift of large amplitude plasma wave, 2

    International Nuclear Information System (INIS)

    Yamanaka, K.; Sugihara, R.; Ohsawa, Y.; Kamimura, T.

    1979-07-01

    A nonlinear complex frequency shift of the ion acoustic wave in the initial phase defined by 0 0 and ωsub(s)/k as long as ωsub(s) >> γsub( l), where phi 0 , ωsub(s), γsub( l) and t sub(c) are the initial value of the potential, the frequency of the wave, the linear Landau damping coefficient and the time for the first minimum of the amplitude oscillation, respectively. A simulation study is also carried out. The results confirm the validity of the theory. (author)

  10. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  11. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  12. Wave disturbances in the solar corona: radio observations at 24.5-25.5 MHz

    International Nuclear Information System (INIS)

    Kobrin, M.M.; Snegriev, S.D.

    1984-01-01

    We present an analysis of observations of fluctuations in the integrated flux of radio emission from the ''quiet'' sun. The observations were made on the UTR-2 radiotelescope, simultaneously at 11 frequencies in the range 24.5-25.5 MHz. Control observations of Taurus were made in order to allow for the effects of the earth's ionosphere. We measured the phase dependences between oscillations in the radio emission intensity which looked like wave trains. From these measurements we found that for periods of about 10 min we always observed disturbances propagating from the lower levels of the corona to the upper levels. The frequency drift in the trains is observed to be about 10 -3 MHz/sec, corresponding to a disturbance velocity of about 100 km/sec. This may be associated with the propagation of magnetosonic waves. Our estimates show that the observed effects cannot be explained by a bremsstrahlung mechanism: We need to rely on plasma mechanisms in order to explain how the radio emission is generated

  13. Nonlinear radiation of waves at combination frequencies due to radiation-surface wave interaction in plasmas

    International Nuclear Information System (INIS)

    El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1992-09-01

    Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs

  14. Proton beam generation of whistler waves in the earth's foreshock

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1987-01-01

    It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.

  15. Proton beam generation of whistler waves in the Earth's foreshock

    International Nuclear Information System (INIS)

    Wong, H.K.; Goldstein, M.L.

    1987-01-01

    We show that proton beams, often observed upstream of the Earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T/sub perpendicular//T/sub parallel/>>1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the ''1-Hz'' waves often seen in the Earth's foreshock

  16. Absorption of longitudinal high-frequency acoustic waves in Ysub(3-x)Lusub(x)Alsub(5)Osub(12) crystals

    International Nuclear Information System (INIS)

    Gulyaev, Yu.V.; Ivanov, S.N.; Kozorezov, A.G.; Kotelyanskij, I.M.; Medved', V.V.; Akhmetov, S.F.; Davydchenko, A.G.

    1983-01-01

    Absorption of longitudinal high frequency acoustic waves in Ysub(3-x)Lusub(x)Alsub(5)Osub(12) l0<=x<=3) crystals is investigated theoretically and experimentally at temperatures T<80 K in the case when the absorption in a pure crystal is due to three-phonon processes. It is shown that the absorption of acoustic waves depends pronouncedly on the impurity concentration. The frequency dependence of sound absorption at low temperatures is found to possess a number of peculiarities. The form of the dependence qualitatively corresponds to that predicted theoretically

  17. The MMS observation of an off-equatorial dipolarization front and associated wave characteristics in the near-Earth magnetotail

    Science.gov (United States)

    Li, H.; Guo, L.; Zhou, M.; Cheng, Q.; Yu, X.; Huang, S.; Pang, Y.

    2017-12-01

    In this paper, we report the observation of the off-equatorial depolarization front structures by Magnetospheric Multiscale (MMS) mission at around X -8Re in the Earth's magnetotail. The dipolarization front was located at the flow rebounce region associated with a parallel electron beam. A large lower frequency electromagnetic wave fluctuation at the depolarization front is observed with the frequency near the ion gyrofrequency, left-handed polarization and a parallel propagation. A parallel current attributed to an electron beam coexist with the wave. The wave is believed to be generated by the current-driven ion cyclotron instability. Such instability is important because of its potential contribution to global electromagnetic energy conversion at the dipolarization front.

  18. Low-frequency linear waves and instabilities in uniform and stratified plasmas: the role of kinetic effects

    Directory of Open Access Journals (Sweden)

    K. M. Ferrière

    2004-01-01

    Full Text Available We review the basic approximations underlying magnetohydrodynamic (MHD theory, with special emphasis on the closure approximations, i.e. the approximations used in any fluid approach to close the hierarchy of moment equations. We then present the main closure models that have been constructed for collisionless plasmas in the large-scale regime, and we describe our own mixed MHD-kinetic model, which is designed to study low-frequency linear waves and instabilities in collisionless plasmas. We write down the full dispersion relation in a new, general form, which gathers all the specific features of our MHD-kinetic model into four polytropic indices, and which can be applied to standard adiabatic MHD and to double-adiabatic MHD through a simple change in the expressions of the polytropic indices. We study the mode solutions and the stability properties of the full dispersion relation in each of these three theories, first in the case of a uniform plasma, and then in the case of a stratified plasma. In both cases, we show how the results are affected by the collisionless nature of the plasma.

  19. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    Science.gov (United States)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  20. On the generation of solitary waves observed by Cluster in the near-Earth magnetosheath

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2005-01-01

    Full Text Available Through case studies involving Cluster waveform observations, solitary waves in the form of bipolar and tripolar pulses have recently been found to be quite abundant in the near-Earth dayside magnetosheath. We expand on the results of those previous studies by examining the distribution of solitary waves from the bow shock to the magnetopause using Cluster waveform data. Cluster's orbit allows for the measurement of solitary waves in the magnetosheath from about 10 RE to 19.5 RE. Our results clearly show that within the magnetosheath, solitary waves are likely to be observed at any distance from the bow shock and that this distance has no dependence on the time durations and amplitudes of the solitary waves. In addition we have found that these same two quantities show no dependence on either the ion velocity or the angle between the ion velocity and the local magnetic field direction. These results point to the conclusion that the solitary waves are probably created locally in the magnetosheath at multiple locations, and that the generation mechanism is most likely not solely related to ion dynamics, if at all. To gain insight into a possible local generation mechanism, we have examined the electron differential energy flux characteristics parallel and perpendicular to the magnetic field, as well as the local electron plasma and cyclotron frequencies and the type of bow shock that Cluster is behind, for several time intervals where solitary waves were observed in the magnetosheath. We have found that solitary waves are most likely to be observed when there are counterstreaming (~parallel and anti-parallel to the magnetic field electrons at or below about 100eV. However, there are times when these counterstreaming electrons are present when solitary waves are not. During these times the background magnetic field strength is usually very low (<10nT, implying that the amplitudes of the solitary waves, if present, would be near or below those of

  1. Low frequency temperature forcing of chemical oscillations.

    Science.gov (United States)

    Novak, Jan; Thompson, Barnaby W; Wilson, Mark C T; Taylor, Annette F; Britton, Melanie M

    2011-07-14

    The low frequency forcing of chemical oscillations by temperature is investigated experimentally in the Belousov-Zhabotinsky (BZ) reaction and in simulations of the Oregonator model with Arrhenius temperature dependence of the rate constants. Forcing with temperature leads to modulation of the chemical frequency. The number of response cycles per forcing cycle is given by the ratio of the natural frequency to the forcing frequency and phase locking is only observed in simulations when this ratio is a whole number and the forcing amplitude is small. The global temperature forcing of flow-distributed oscillations in a tubular reactor is also investigated and synchronisation is observed in the variation of band position with the external signal, reflecting the periodic modulation of chemical oscillations by temperature.

  2. A Sparse Stochastic Collocation Technique for High-Frequency Wave Propagation with Uncertainty

    KAUST Repository

    Malenova, G.

    2016-09-08

    We consider the wave equation with highly oscillatory initial data, where there is uncertainty in the wave speed, initial phase, and/or initial amplitude. To estimate quantities of interest related to the solution and their statistics, we combine a high-frequency method based on Gaussian beams with sparse stochastic collocation. Although the wave solution, uϵ, is highly oscillatory in both physical and stochastic spaces, we provide theoretical arguments for simplified problems and numerical evidence that quantities of interest based on local averages of |uϵ|2 are smooth, with derivatives in the stochastic space uniformly bounded in ϵ, where ϵ denotes the short wavelength. This observable related regularity makes the sparse stochastic collocation approach more efficient than Monte Carlo methods. We present numerical tests that demonstrate this advantage.

  3. A Sparse Stochastic Collocation Technique for High-Frequency Wave Propagation with Uncertainty

    KAUST Repository

    Malenova, G.; Motamed, M.; Runborg, O.; Tempone, Raul

    2016-01-01

    We consider the wave equation with highly oscillatory initial data, where there is uncertainty in the wave speed, initial phase, and/or initial amplitude. To estimate quantities of interest related to the solution and their statistics, we combine a high-frequency method based on Gaussian beams with sparse stochastic collocation. Although the wave solution, uϵ, is highly oscillatory in both physical and stochastic spaces, we provide theoretical arguments for simplified problems and numerical evidence that quantities of interest based on local averages of |uϵ|2 are smooth, with derivatives in the stochastic space uniformly bounded in ϵ, where ϵ denotes the short wavelength. This observable related regularity makes the sparse stochastic collocation approach more efficient than Monte Carlo methods. We present numerical tests that demonstrate this advantage.

  4. Compact Polarimetry in a Low Frequency Spaceborne Context

    Science.gov (United States)

    Truong-Loi, M-L.; Freeman, A.; Dubois-Fernandez, P.; Pottier, E.

    2011-01-01

    Compact polarimetry has been shown to be an interesting alternative mode to full polarimetry when global coverage and revisit time are key issues. It consists on transmitting a single polarization, while receiving on two. Several critical points have been identified, one being the Faraday rotation (FR) correction and the other the calibration. When a low frequency electromagnetic wave travels through the ionosphere, it undergoes a rotation of the polarization plane about the radar line of sight for a linearly polarized wave, and a simple phase shift for a circularly polarized wave. In a low frequency radar, the only possible choice of the transmit polarization is the circular one, in order to guaranty that the scattering element on the ground is illuminated with a constant polarization independently of the ionosphere state. This will allow meaningful time series analysis, interferometry as long as the Faraday rotation effect is corrected for the return path. In full-polarimetric (FP) mode, two techniques allow to estimate the FR: Freeman method using linearly polarized data, and Bickel and Bates theory based on the transformation of the measured scattering matrix to a circular basis. In CP mode, an alternate procedure is presented which relies on the bare surface scattering properties. These bare surfaces are selected by the conformity coefficient, invariant with FR. This coefficient is compared to other published classifications to show its potential in distinguishing three different scattering types: surface, doublebounce and volume. The performances of the bare surfaces selection and FR estimation are evaluated on PALSAR and airborne data. Once the bare surfaces are selected and Faraday angle estimated over them, the correction can be applied over the whole scene. The algorithm is compared with both FP techniques. In the last part of the paper, the calibration of a CP system from the point of view of classical matrix transformation methods in polarimetry is

  5. Upper atmospheric planetary-wave and gravity-wave observations

    Science.gov (United States)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  6. Synthesis of Pt nanoparticles as catalysts of oxygen reduction with microbubble-assisted low-voltage and low-frequency solution plasma processing

    Science.gov (United States)

    Horiguchi, Genki; Chikaoka, Yu; Shiroishi, Hidenobu; Kosaka, Shinpei; Saito, Morihiro; Kameta, Naohiro; Matsuda, Naoki

    2018-04-01

    In the preparation of metallic nanoparticles by conventional solution plasma (SP) techniques, unstable plasma emission becomes an issue when the voltage and frequency of the waves applied between two electrodes placed in solution are lowered to avoid the boiling of the solution. In this study, we confirm that, in the presence of microbubbles, plasma is generated stably at low voltage (440 V) and low frequency (50-100 Hz) and small-size (≤10 nm) Pt nanoparticles (PtNPs) are synthesized in succession using a flow cell. The smallest PtNPs, ∼3.3 nm in diameter, are obtained using half-wave rectification, a tungsten wire anode, and a platinum wire cathode. The PtNPs are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimeter-differential thermal analysis. The oxygen reduction reaction (ORR) is investigated in 0.1 M HClO4 solution on carbon-supported PtNPs using a rotating ring-disk electrode. The catalytic activities per initial electrochemical active surface area of the carbon-supported PtNPs synthesized employing the low-voltage, low-frequency (LVLF)-SP technique is higher than that of the commercially available 20 wt% Pt on Vulcan XC-72R. These results indicate that the LVLF-SP technique is a promising approach to producing carbon-supported PtNPs that catalyze ORR with low energy consumption.

  7. Low-frequency radio absorption in Cassiopeia A

    Science.gov (United States)

    Arias, M.; Vink, J.; de Gasperin, F.; Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; van Amesfoort, A. S.; Anderson, J.; Beck, R.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Geus, E.; Deller, A.; van Dijk, P. C. G.; Duscha, S.; Eislöffel, J.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; van Haarlem, M. P.; Heald, G.; Hessels, J.; Hörandel, J.; Holties, H. A.; van der Horst, A. J.; Iacobelli, M.; Juette, E.; Krankowski, A.; van Leeuwen, J.; Mann, G.; McKay-Bukowski, D.; McKean, J. P.; Mulder, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pekal, R.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J. A.; Rothkaehl, H.; Schwarz, D. J.; Smirnov, O.; Soida, M.; Steinmetz, M.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vocks, C.; van der Wiel, M. H. D.; Wijers, R. A. M. J.; Wucknitz, O.; Zarka, P.; Zucca, P.

    2018-05-01

    Context. Cassiopeia A is one of the best-studied supernova remnants. Its bright radio and X-ray emission is due to shocked ejecta. Cas A is rather unique in that the unshocked ejecta can also be studied: through emission in the infrared, the radio-active decay of 44Ti, and the low-frequency free-free absorption caused by cold ionised gas, which is the topic of this paper. Aims: Free-free absorption processes are affected by the mass, geometry, temperature, and ionisation conditions in the absorbing gas. Observations at the lowest radio frequencies can constrain a combination of these properties. Methods: We used Low Frequency Array (LOFAR) Low Band Antenna observations at 30-77 MHz and Very Large Array (VLA) L-band observations at 1-2 GHz to fit for internal absorption as parametrised by the emission measure. We simultaneously fit multiple UV-matched images with a common resolution of 17″ (this corresponds to 0.25 pc for a source at the distance of Cas A). The ample frequency coverage allows us separate the relative contributions from the absorbing gas, the unabsorbed front of the shell, and the absorbed back of the shell to the emission spectrum. We explored the effects that a temperature lower than the 100-500 K proposed from infrared observations and a high degree of clumping can have on the derived physical properties of the unshocked material, such as its mass and density. We also compiled integrated radio flux density measurements, fit for the absorption processes that occur in the radio band, and considered their effect on the secular decline of the source. Results: We find a mass in the unshocked ejecta of M = 2.95 ± 0.48 M⊙ for an assumed gas temperatureof T = 100 K. This estimate is reduced for colder gas temperatures and, most significantly, if the ejecta are clumped. We measure the reverse shock to have a radius of 114″± 6″ and be centred at 23:23:26, +58:48:54 (J2000). We also find that a decrease in the amount of mass in the unshocked ejecta

  8. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    OpenAIRE

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of du...

  9. Black Hole Kicks as New Gravitational Wave Observables.

    Science.gov (United States)

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  10. LOW-FREQUENCY OSCILLATIONS IN GLOBAL SIMULATIONS OF BLACK HOLE ACCRETION

    International Nuclear Information System (INIS)

    O'Neill, Sean M.; Reynolds, Christopher S.; Coleman Miller, M.; Sorathia, Kareem A.

    2011-01-01

    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles have previously been seen in local shearing box simulations, but we discuss their evolution over 1500 inner disk orbits of a global π/4 disk wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are 10-20 times lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the cycles manifest themselves at discrete, narrowband frequencies that often share power across broad radial ranges. We explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies, however, fail to feature peaks with rms amplitudes comparable to LFQPO observations, suggesting that further theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on timescales much longer than those derived from test particle considerations.

  11. An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation

    Science.gov (United States)

    Fan, Li; Chen, Zhe; Zhang, Shu-yi; Ding, Jin; Li, Xiao-juan; Zhang, Hui

    2015-04-01

    Insulating against low-frequency sound (below 500 Hz ) remains challenging despite the progress that has been achieved in sound insulation and absorption. In this work, an acoustic metamaterial based on membrane-coated perforated plates is presented for achieving sound insulation in a low-frequency range, even covering the lower audio frequency limit, 20 Hz . Theoretical analysis and finite element simulations demonstrate that this metamaterial can effectively block acoustic waves over a wide low-frequency band regardless of incident angles. Two mechanisms, non-resonance and monopolar resonance, operate in the metamaterial, resulting in a more powerful sound insulation ability than that achieved using periodically arranged multi-layer solid plates.

  12. Very high-frequency gravitational waves from magnetars and gamma-ray bursts

    Science.gov (United States)

    Wen, Hao; Li, Fang-Yu; Li, Jin; Fang, Zhen-Yun; Beckwith, Andrew

    2017-12-01

    Extremely powerful astrophysical electromagnetic (EM) systems could be possible sources of high-frequency gravitational waves (HFGWs). Here, based on properties of magnetars and gamma-ray bursts (GRBs), we address “Gamma-HFGWs” (with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation (in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields (˜1011 T). By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density Ω gw around 10-6, and they would cause perturbed signal EM waves of ˜10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future. Supported by National Natural Science Foundation of China (11605015, 11375279, 11205254, 11647307) and the Fundamental Research Funds for the Central Universities (106112017CDJXY300003, 106112017CDJXFLX0014)

  13. Wave excitation in electron beam experiment on Japanese satellite JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Kawashima, N.

    1982-01-01

    This chapter reports on a beam-plasma interaction experiment conducted in the magnetosphere by emitting an electron beam (100-200 eV, 0.25-1.0 mA) from the JIKIKEN satellite. Topics considered include instrumentation, wave excitation, and the charging of the satellite. Various types of wave emission are detected by low frequency and high frequency wave detectors. Waves near upper-hybrid frequency and at electron cyclotron frequency are detected in a low L-value region, which will be useful diagnostic means for plasma density and magnetic field. Vehicle charging up to the beam energy is observed outside the plasmapause. The main objectives of the Controlled Beam Experiment (CBE) are to control the satellite potential by an electron beam emission, and to study the wave excitation (linear and non-linear wave phenomena due to the beam-plasma interaction). It is concluded that waves excited in the beamplasma interaction are strongly dependent on plasma and other parameters in the magnetosphere so that it will provide important knowledge of the magnetosphere plasma processes

  14. Narrow-band modulation of semiconductor lasers at millimeter wave frequencies (7100 GHz) by mode locking

    International Nuclear Information System (INIS)

    Lau, K.Y.

    1990-01-01

    This paper reports on the possibility of mode locking a semiconductor laser at millimeter wave frequencies approaching and beyond 100 GHz which was investigated theoretically and experimentally. It is found that there are no fundamental theoretical limitations in mode locking at frequencies below 100 GHz. AT these high frequencies, only a few modes are locked and the output usually takes the form of a deep sinusoidal modulation which is synchronized in phase with the externally applied modulation at the intermodal heat frequency. This can be regarded for practical purposes as a highly efficient means of directly modulating an optical carrier over a narrow band at millimeter wave frequencies. Both active and passive mode locking are theoretically possible. Experimentally, predictions on active mode locking have been verified in prior publications up to 40 GHz. For passive mode locking, evidence consistent with passive mode locking was observed in an inhomogeneously pumped GaAIAs laser at a frequency of approximately 70 GHz. A large differential gain-absorption ratio such as that present in an inhomogeneously pumped single quantum well laser is necessary for pushing the passive mode-locking frequency beyond 100 GHz

  15. Alfven waves and associated energetic ions downstream from Uranus

    International Nuclear Information System (INIS)

    Zhang, Ming; Belcher, J.W.; Richardson, J.D.; Smith, C.W.

    1991-01-01

    The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10 -3 Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location

  16. Study on low frequency probe characterization for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Pauzi Ismail

    2002-01-01

    Ultrasonic testing has been widely used in metal and non-metal material. For non-metal material such as concrete, a probe emitting low frequency ultrasonic wave is applied. This paper describes the comparison between three custom made probes using same design and piezoelectric crystal. The only difference is the backing material, which comprise of three different materials. Characterization of each transducer is compared in order to understand the effects of backing material in the probe. (Author)

  17. Photoacoustic wave propagating from normal into superconductive phases in Pb single crystals

    OpenAIRE

    Iwanaga, Masanobu

    2005-01-01

    Photoacoustic (PA) wave has been examined in a superconductor of the first kind, Pb single crystal. The PA wave is induced by optical excitation of electronic state and propagates from normal into superconductive phases below T$_{\\rm C}$. It is clearly shown by wavelet analysis that the measured PA wave includes two different components. The high-frequency component is MHz-ultrasonic and the relative low-frequency one is induced by thermal wave. The latter is observed in a similar manner irre...

  18. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  19. Monocrystalline fibres for low thermal noise suspension in advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Amico, P; Bosi, L; Gammaitoni, L; Losurdo, G; Marchesoni, F; Mazzoni, M; Parisi, D; Punturo, M; Stanga, R; Toncelli, A; Tonelli, M; Travasso, F; Vetrano, F; Vocca, H

    2004-01-01

    Thermal noise in mirror suspension will be the most severe fundamental limit to the low-frequency sensitivity of future interferometric gravitational wave detectors. We propose a new type of materials to realize low thermal noise suspension in such detectors. Monocrystalline suspension fibres are good candidates both for cryogenic and for ambient temperature interferometers. Material characteristics and a production facility are described in this paper

  20. Monocrystalline fibres for low thermal noise suspension in advanced gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Amico, P [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Bosi, L [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Gammaitoni, L [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Losurdo, G [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze/Urbino, Florence (Italy); Marchesoni, F [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Mazzoni, M [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze/Urbino, Florence (Italy); Parisi, D [NEST-Dipartimento di Fisica, Universita di Pisa, Pisa (Italy); Punturo, M [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Stanga, R [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze/Urbino, Florence (Italy); Toncelli, A [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa (Italy); Tonelli, M [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa (Italy); Travasso, F [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy); Vetrano, F [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze/Urbino, Florence (Italy); Vocca, H [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Virgo Project, I-06100 Perugia (Italy)

    2004-03-07

    Thermal noise in mirror suspension will be the most severe fundamental limit to the low-frequency sensitivity of future interferometric gravitational wave detectors. We propose a new type of materials to realize low thermal noise suspension in such detectors. Monocrystalline suspension fibres are good candidates both for cryogenic and for ambient temperature interferometers. Material characteristics and a production facility are described in this paper.