WorldWideScience

Sample records for low-field nuclear magnetic

  1. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  2. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Costa, Paula de M.; Tavares, Maria I.B.

    2005-01-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  3. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  4. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  5. Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response

    Science.gov (United States)

    Prasad, M.; Livo, K.

    2017-12-01

    Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.

  6. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    Science.gov (United States)

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  7. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  8. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    Science.gov (United States)

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  9. Low-field nuclear magnetic resonance characterization of organic content in shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.; Seymour, Joseph D.; Kirkland, Catherine; Vogt, Sarah J.

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Longitudinal T1 and transverse T2 relaxation time measurements made using LF-NMR on conventional reservoir systems provides information on rock porosity, pore size distributions, and fluid types and saturations in some cases. Recent improvements in LF-SNMR instrument electronics have made it possible to apply these methods to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids, therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus some types of T2 relaxation during correlation measurements allows for improved resolution of solid phase photons. LF-NMR measurements of T1 and T2 relaxation time correlations were carried out on raw oil shale samples from resources around the world. These shales vary widely in mineralogy, total organic carbon (TOC) content and kerogen type. NMR results were correlcated with Leco TOC and geochemical data obtained from Rock-Eval. There is excellent correlation between NMR data and programmed pyrolysis parameters, particularly TOC and S2, and predictive capability is also good. To better understand the NMR response, the 2D NMR spectra were compared to similar NMR measurements made using high-field (HF) NMR equipment.

  10. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D - T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D - T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and hydraulic

  11. Development and applications of NMR [nuclear magnetic resonance] in low fields and zero field

    International Nuclear Information System (INIS)

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab

  12. Assessing the wettability of unconsolidated porous media using low-field nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Manalo, Florence Pabalan

    2002-01-01

    Methods such as the molarity of ethanol droplet (MED) test and water drop penetration test (WDPT) are commonly used to measure soil wettability because these tests are quick and easy to perform. However, they are not without limitations. This thesis proposes using a low-field NMR relaxometer as an alternative method of assessing soil wettability. This instrument is able to discriminate surface bound fluid from bulk fluid Fluid bound to the surface relaxes quickly and produces signal amplitude peaks at low transverse relaxation time (T 2 ) values. Bulk fluid , on the other hand, relaxes much more slowly and signal amplitude peaks consequently appear at higher T 2 values. An extensive experimental program was designed to test the above hypothesis. Hundreds of NMR measurements were performed on clays, humic acids, fulvic acids, clean sands, sands coated with organic matter, wettable soils and water-repellent soils exposed to distilled water and kerosene. The results confirm the hypothesis and show clearly that NMR does detect preferentially water-wet and water-repellent samples. The differences in the solid-fluid interactions between water and unconsolidated porous media with varying wetting preferences also allow for the use of low-field NMR to detect wettability alteration and to monitor fluid uptake in unconsolidated porous media. The advantages of using this tool include obtaining reproducible results quickly, using only small amounts of sample for analysis, and calculating the mass of water without performing a mass balance calculation. (author)

  13. Characterization of moisture in acetylated and propionylated radiata pine using low-field nuclear magnetic resonance (LFNMR) relaxometry

    DEFF Research Database (Denmark)

    Beck, Greeley; Thybring, Emil Engelund; Thygesen, Lisbeth Garbrecht

    2018-01-01

    . A possible explanation is the counteracting effects of decreased hydrophilicity and reduced moisture content (MC) of these water populations at higher levels of acetylation. The evaluation of propionylation on WCW T2 data was complicated by peak splitting in the relaxation spectrum. Constant T2 values......Moisture in radiata pine (Pinus radiata D. Don) earlywood (EW), which was acetylated or propionylated to various degrees, was measured by low-field nuclear magnetic resonance (LFNMR) relaxometry. Spin-spin relaxation times (T2) were determined for fully saturated samples at 22 and -18°C. T2 values...... for EW lumen water increased with increasing acetylation weight percentage gain (WPG), perhaps caused by the less hydrophilic acetylated wood (AcW) surface. Cell wall water (WCW) and the water in pits and small voids also showed increasing T2 values as a function of WPG but with a weaker tendency...

  14. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy; Avaliacao da polivinilpirrolidona e do colageno por ressonancia magnetica nuclear de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paula de M.; Tavares, Maria I.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano]. E-mail: pmcosta@ima.ufrj.br

    2005-07-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  15. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  16. Study of the method of water-injected meat identifying based on low-field nuclear magnetic resonance

    Science.gov (United States)

    Xu, Jianmei; Lin, Qing; Yang, Fang; Zheng, Zheng; Ai, Zhujun

    2018-01-01

    The aim of this study to apply low-field nuclear magnetic resonance technique was to study regular variation of the transverse relaxation spectral parameters of water-injected meat with the proportion of water injection. Based on this, the method of one-way ANOVA and discriminant analysis was used to analyse the differences between these parameters in the capacity of distinguishing water-injected proportion, and established a model for identifying water-injected meat. The results show that, except for T 21b, T 22e and T 23b, the other parameters of the T 2 relaxation spectrum changed regularly with the change of water-injected proportion. The ability of different parameters to distinguish water-injected proportion was different. Based on S, P 22 and T 23m as the prediction variable, the Fisher model and the Bayes model were established by discriminant analysis method, qualitative and quantitative classification of water-injected meat can be realized. The rate of correct discrimination of distinguished validation and cross validation were 88%, the model was stable.

  17. The effect of divalent ions on the elasticity and pore collapse of chalk evaluated from compressional wave velocity and low-field Nuclear Magnetic Resonance (NMR)

    DEFF Research Database (Denmark)

    Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul

    2015-01-01

    The effects of divalent ions on the elasticity and the pore collapse of chalk were studied through rock-mechanical testing and low-field Nuclear Magnetic Resonance (NMR) measurements. Chalk samples saturated with deionized water and brines containing sodium, magnesium, calcium and sulfate ions were...... subjected to petrophysical experiments, rock mechanical testing and low-field NMR spectroscopy. Petrophysical characterization involving ultrasonic elastic wave velocities in unconfined conditions, porosity and permeability measurements, specific surface and carbonate content determination and backscatter...... electron microscopy of the materials were conducted prior to the experiments. The iso-frame model was used to predict the bulk moduli in dry and saturated conditions from the compressional modulus of water-saturated rocks. The effective stress coefficient, as introduced by Biot, was also determined from...

  18. Very low field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Herreros, Quentin

    2013-01-01

    The aim of this thesis is to perform Magnetic Resonance Imaging at very low field (from 1 mT to 10 mT). A new kind of sensor called 'mixed sensor' has been used to achieve a good detectivity at low frequencies. Combining a superconducting loop and a giant magnetoresistance, those detectors have a competitive equivalent field noise compared to existing devices (Tuned coils, SQUIDs and Atomic Magnetometers). They have been combined with flux transformers to increase the coupling between the sample and the sensor. A complete study has been performed to adapt it to mixed sensors and then maximize the gain. This set has been incorporated in an existing small MRI device to test its robustness in real conditions. In parallel, several MRI sequences (GE, SE, FLASH, EPI,...) have been integrated and adapted to very low field requirements. They have been used to perform in-vivo three dimensional imaging and relaxometry studies on well known products to test their reliability. Finally, a larger setup adapted for full-head imaging has been designed and built to perform images on a larger working volume. (author) [fr

  19. A novel non-destructive manner for quantitative determination of plumpness of live Eriocheir sinensis using low-field nuclear magnetic resonance.

    Science.gov (United States)

    Song, Lingling; Zhang, Hongcai; Chen, Shunsheng

    2018-03-01

    The present study investigated the quantitative and non-destructive determination of Eriocheir sinensis' plumpness during four mature stages using low field-nuclear magnetic resonance (LF- 1 H NMR). Normalized lipid volume of live E. sinensis was calculated from Sept to Dec using 3D LF- 1 H nuclear magnetic imaging (MRI) and the validity of proposed technique was compared and verified with traditional Soxhlet extraction and live dissection method, respectively. The results showed the plumpness of female E. sinensis was higher than that of male ones from Sept to Dec and the highest plumpness of male and female E. sinensis reached 99,436.44 and 109,207.15mm 3 in Oct. The normalized lipid volume of live male and female E. sinensis had a positive correlation with lipid content. This proposed method with short assay time, favorable selectivity, and accuracy demonstrated its application potential in grading regulation and quality evaluation of live E. sinensis. Copyright © 2017. Published by Elsevier Ltd.

  20. Analysis and reduction of thermal magnetic noise in liquid-He dewar for sensitive low-field nuclear magnetic resonance measurements

    International Nuclear Information System (INIS)

    Hwang, S. M.; Yu, K. K.; Lee, Y. H.; Kang, C. S.; Kim, K.; Lee, S. J.

    2013-01-01

    For sensitive measurements of micro-Tesla nuclear magnetic resonance (μT-NMR) signal, a low-noise superconducting quantum interference device (SQUID) system is needed. We have fabricated a liquid He dewar for an SQUID having a large diameter for the pickup coil. The initial test of the SQUID system showed much higher low-frequency magnetic noise caused by the thermal magnetic noise of the aluminum plates used for the vapor-cooled thermal shield material. The frequency dependence of the noise spectrum showed that the noise increases with the decrease of frequency. This behavior could be explained from a two-layer model; one generating the thermal noise and the other one shielding the thermal noise by eddy-current shielding. And the eddy-current shielding effect is strongly dependent on the frequency through the skin-depth. To minimize the loop size for the fluctuating thermal noise current, we changed the thermal shield material into insulated thin Cu mesh. The magnetic noise of the SQUID system became flat down to 0.1 Hz with a white noise of 0.3 fT√ Hz, including the other noise contributions such as SQUID electronics and magnetically shielded room, etc, which is acceptable for low-noise μT-NMR experiments.

  1. Liquid-phase characterization of molecular interactions in polyunsaturated and n-fatty acid methyl esters by (1)H low-field nuclear magnetic resonance.

    Science.gov (United States)

    Meiri, Nitzan; Berman, Paula; Colnago, Luiz Alberto; Moraes, Tiago Bueno; Linder, Charles; Wiesman, Zeev

    2015-01-01

    To identify and develop the best renewable and low carbon footprint biodiesel substitutes for petroleum diesel, the properties of different biodiesel candidates should be studied and characterized with respect to molecular structures versus biodiesel liquid property relationships. In our previous paper, (1)H low-field nuclear magnetic resonance (LF-NMR) relaxometry was investigated as a tool for studying the liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (FAMEs). The technological potential was demonstrated with oleic acid and methyl oleate standards having similar alkyl chains but different head groups. In the present work, molecular organization versus segmental and translational movements of FAMEs in their pure liquid phase, with different alkyl chain lengths (10-20 carbons) and degrees of unsaturation (0-3 double bonds), were studied with (1)H LF-NMR relaxometry and X-ray, (1)H LF-NMR diffusiometry, and (13)C high-field NMR. Based on density values and X-ray measurements, it was proposed that FAMEs possess a liquid crystal-like order above their melting point, consisting of random liquid crystal aggregates with void spaces between them, whose morphological properties depend on chain length and degree of unsaturation. FAMEs were also found to exhibit different degrees of rotational and translational motions, which were rationalized by chain organization within the clusters, and the degree and type of molecular interactions and temperature effects. At equivalent fixed temperature differences from melting point, saturated FAME molecules were found to have similar translational motion regardless of chain length, expressed by viscosity, self-diffusion coefficients, and spin-spin (T 2) (1)H LF-NMR. T 2 distributions suggest increased alkyl chain rigidity, and reduced temperature response of the peaks' relative contribution with increasing unsaturation is a direct result of the alkyl chain's morphological packing and molecular

  2. Improving Magnet Designs With High and Low Field Regions

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2011-01-01

    A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays have to deliver high field regions in close proximity...... to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example, these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material...

  3. Low-Field Magnetic Resonance Imaging of Canine Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Z. Adamiak* and M. Jaskólska and A. Pomianowski1

    2012-01-01

    Full Text Available The aim of presented study was to evaluate selected surface spine coil, and low-field magnetic resonance (MR selected sequences in diagnosing hydrocephalus in dogs. This paper discusses 19 dogs (14 canine patients with hydrocephalus and 5 healthy dogs, of five breeds, subjected to low-field magnetic resonance imaging (MRI of hydrocephalus. Area of the lateral ventricles and brain were examined in dogs with hydrocephalus using low-field MRI (at 0.25 Tesla. The MRI of FSE REL, SE, FLAIR, STIR, 3D HYCE, T3DT1, GE STIR 3D and 3D SHARC sequences with an indication of the most effective sequences are described. Additionally, coils for MR were compared, and models for infusion anesthesia were described. As a result of performed study all estimated sequences were diagnostically useful. However, spinal coil No. 2 (ESAOTE was the most optimal for examining and positioning the cranium.

  4. Low-field magnetization process and complex permeability of ...

    Indian Academy of Sciences (India)

    Amorphous metallic materials hold a prominent position ... elements in magnetic sensors and/or transducer devices. Recently ... interest in the development of biphase wires consisting of a .... netic and superconducting materials (ed.) ...

  5. Low Field Magnetic and Thermal Hysteresis in Antiferromagnetic Dysprosium

    Directory of Open Access Journals (Sweden)

    Iuliia Liubimova

    2017-06-01

    Full Text Available Magnetic and thermal hysteresis (difference in magnetic properties on cooling and heating have been studied in polycrystalline Dy (dysprosium between 80 and 250 K using measurements of the reversible Villari effect and alternating current (AC susceptibility. We argue that measurement of the reversible Villari effect in the antiferromagnetic phase is a more sensitive method to detect magnetic hysteresis than the registration of conventional B(H loops. We found that the Villari point, recently reported in the antiferromagnetic phase of Dy at 166 K, controls the essential features of magnetic hysteresis and AC susceptibility on heating from the ferromagnetic state: (i thermal hysteresis in AC susceptibility and in the reversible Villari effect disappears abruptly at the temperature of the Villari point; (ii the imaginary part of AC susceptibility is strongly frequency dependent, but only up to the temperature of the Villari point; (iii the imaginary part of the susceptibility drops sharply also at the Villari point. We attribute these effects observed at the Villari point to the disappearance of the residual ferromagnetic phase. The strong influence of the Villari point on several magnetic properties allows this temperature to be ranked almost as important as the Curie and Néel temperatures in Dy and likely also for other rare earth elements and their alloys.

  6. Low field orientation magnetic separation methods for magnetotactic bacteria

    International Nuclear Information System (INIS)

    Moeschler, F.D.

    1999-01-01

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the

  7. The low-field permanent magnet electrostatic plasma lens

    International Nuclear Information System (INIS)

    Goncharov, A.; Gorshkov, V.; Maslov, V.; Zadorozhny, V.; Brown, I.

    2004-01-01

    We describe the status of ongoing research and development of the electrostatic plasma lens as used for the manipulation of high current broad beams of heavy ions of moderate energy. In some collaborative work at Lawrence Berkeley National Laboratory the lens was used to good effect for carrying out high dose ion implantation processing. In the process of this work a very narrow range of low magnetic field was found for which the ion-optical characteristics of the lens improved markedly. Subsequent theoretical analysis and computer modeling has led to an understanding of this phenomenon. These serendipitous results open up some attractive possibilities for the development of a new compact and low cost plasma lens based on permanent magnets rather than on current-driven field coils surrounding the lens volume. The development of this kind of lens, including both very low noise and minimal spherical aberration effects, may lead to a tool suitable for use in the injection beam lines of high current heavy ion linear accelerators. Here we briefly review the lens fundamentals, some characteristics of focusing heavy ion beams at low magnetic fields, and summarize recent theoretical and experimental developments, with emphasis on the relevance and suitability of the lens for accelerator injection application

  8. Intermediate polars as low-field magnetic cataclysmic variables

    International Nuclear Information System (INIS)

    Wickramasinghe, D.T.; Kinwah Wu; Ferrario, Lilia

    1991-01-01

    We present the first detailed calculations of the polarization properties of extended accretion shocks on the surface of a magnetic white dwarf where allowance is made both for field spread and for the change in shock height as a function of specific accretion rate. These results are used to show conclusively that the null detection of circular polarization in most IPs imply fields of less than 5 MG. We suggest that the X-ray properties of MCVs depends critically on the fractional area of the white-dwarf surface over which accretion occurs, and on the type of accretion (smooth or clumpy). We argue that in the known IPs, accretion occurs via a disc. The accretion flow is smooth and a strong shock forms making them a powerful source of hard X-rays. We propose that there is a new class of MCV distinct from the IPs, where the white dwarf is asynchronous and accretes without a disc in which the accretion is clumpy and the radiation is mainly in the EUV region. (author)

  9. Low-field multi-step magnetization of GaV4S8 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Kajinami, Y; Tabata, Y [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Ikeno, R; Motoyama, G; Kohara, T, E-mail: h.nakamura@ht8.ecs.kyoto-u.ac.j [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan)

    2009-01-01

    The magnetization process of single crystalline GaV4S8 including tetrahedral magnetic clusters was measured in the magnetically ordered state below T{sub C} {approx_equal} 13 K. Just below TC, steps were observed at very low fields of the order of 100 Oe, suggesting the competition of several intra- and inter-cluster interactions in a low energy range.

  10. Anisotropy of susceptibility in rocks which are magnetically nonlinear even in low fields

    Science.gov (United States)

    Hrouda, František; Chadima, Martin; Ježek, Josef

    2018-06-01

    Theory of the low-field anisotropy of magnetic susceptibility (AMS) assumes a linear relationship between magnetization and magnetizing field, resulting in field-independent susceptibility. This is valid for diamagnetic and paramagnetic minerals by definition and also for pure magnetite, while in titanomagnetite, pyrrhotite and hematite the susceptibility may be clearly field-dependent even in low fields used in common AMS meter. Consequently, the use of the linear AMS theory is fully legitimate in the former minerals, but in principle incorrect in the latter ones. Automated measurement of susceptibility in 320 directions in variable low-fields ranging from 5 to 700 A m-1 was applied to more than 100 specimens of various pyrrhotite-bearing and titanomagnetite-bearing rocks. Data analysis showed that the anisotropic susceptibility remains well represented by an ellipsoid in the entire low-field span even though the ellipsoid increases its volume and eccentricity. The principal directions do not change their orientations with low-field in most specimens. Expressions for susceptibility as a function of field were found in the form of diagonal tensor whose elements are polynomials of low order. In a large proportion of samples, the susceptibility expressions can be further simplified to have one common skeleton polynomial.

  11. Redesigning existing transcranial magnetic stimulation coils to reduce energy: application to low field magnetic stimulation

    Science.gov (United States)

    Wang, Boshuo; Shen, Michael R.; Deng, Zhi-De; Smith, J. Evan; Tharayil, Joseph J.; Gurrey, Clement J.; Gomez, Luis J.; Peterchev, Angel V.

    2018-06-01

    Objective. To present a systematic framework and exemplar for the development of a compact and energy-efficient coil that replicates the electric field (E-field) distribution induced by an existing transcranial magnetic stimulation coil. Approach. The E-field generated by a conventional low field magnetic stimulation (LFMS) coil was measured for a spherical head model and simulated in both spherical and realistic head models. Then, using a spherical head model and spatial harmonic decomposition, a spherical-shaped cap coil was synthesized such that its windings conformed to a spherical surface and replicated the E-field on the cortical surface while requiring less energy. A prototype coil was built and electrically characterized. The effect of constraining the windings to the upper half of the head was also explored via an alternative coil design. Main results. The LFMS E-field distribution resembled that of a large double-cone coil, with a peak field strength around 350 mV m‑1 in the cortex. The E-field distributions of the cap coil designs were validated against the original coil, with mean errors of 1%–3%. The cap coil required as little as 2% of the original coil energy and was significantly smaller in size. Significance. The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.

  12. Thermal coupling in low fields between the nuclear and electronic spins in Tm2+ doped CaF2

    International Nuclear Information System (INIS)

    Urbina, Cristian.

    1977-01-01

    It is shown that in a CaF 2 crystal doped with divalent thulium ions there is in low fields, a thermal coupling between the electron magnetic moments of Tm 2+ and the nuclear moments of 19 F. When these ones have been lowered down to temperature through dynamical high-field polarization and adiabatic demagnetization in succession the resulting polarisation of the formed ones can overstep their original polarization in high field. A trial is given to explain this Zeeman electronic energy cooling through nuclear Zeeman energy with invoking a thermal coupling between both systems through the spin-spin electronic interaction but no theoretical model is developed in view of a quantitative explanation of the dynamics of such a process. The magnetic resonance spectrum of Tm 2 + in low field is also investigated: an important shift and narrowing of the electron resonance line in low field are obtained when 19 F nuclei are very cold. This special spectral characters are explained as due to magnetic interactions between electronic impurities and the neighbouring 19 F nuclei and a theoretical model is developed (based on the local Weiss field approximation) which explains rather well the changes in the spectral shift as a function of the 19 F nucleus temperature. A second theoretical model has also been developed in view of a quantitative explanation of both the narrowing and shift of the spectrum, but its prediction disagree with the experimental results. It is shown that in low fieldsx it is possible to get rid of paramagnetic impurities after they have been reused as reducing agents for 19 F nucleus entropy populating at about 80%, a non magnetic metastable state with these impurities [fr

  13. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  14. Precise measurements and shimming of magnetic field gradients in the low field regime

    Energy Technology Data Exchange (ETDEWEB)

    Allmendinger, Fabian; Schmidt, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Grasdijk, Olivier; Jungmann, Klaus; Willmann, Lorenz [University of Groningen (Netherlands); Heil, Werner; Karpuk, Sergei; Repetto, Maricel; Sobolev, Yuri; Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Krause, Hans-Joachim; Offenhaeuser, Andreas [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); Collaboration: MIXed-Collaboration

    2016-07-01

    For many experiments at the precision frontier of fundamental physics, the accurate measurement and knowledge of magnetic field gradients in particular in the low field regime (<μT) is a necessity: On the one hand, in the search for an Electric Dipole Moment (EDM) of free neutrons or atoms, field gradients contribute to geometric-phase-induced false EDM signals for particles in traps. On the other hand, clock comparison experiments like the {sup 3}He/{sup 129}Xe spin clock experiment suffer from gradients, since the coherent T{sub 2}*-time of free spin precession, and thus the measurement sensitivity, scales ∝ ∇ vector B{sup -2}. Here we report on a new and very effective method, to shim and to measure tiny magnetic field gradients in the range of pT/cm by using effective T{sub 2}*-measurement sequences in varying the currents of trim coils of known geometry.

  15. Low field-low cost: Can low-field magnetic resonance systems replace high-field magnetic resonance systems in the diagnostic assessment of multiple sclerosis patients?

    International Nuclear Information System (INIS)

    Ertl-Wagner, B.B.; Reith, W.; Sartor, K.

    2001-01-01

    As low-field MR imaging is becoming a widely used imaging technique, we aimed at a prospective assessment of differences in imaging quality between low- and high-field MR imaging in multiple sclerosis patients possibly interfering with diagnostic or therapeutic decision making. Twenty patients with clinically proven multiple sclerosis were examined with optimized imaging protocols in a 1.5- and a 0.23-T MR scanner within 48 h. Images were assessed independently by two neuroradiologists. No statistically significant interrater discrepancies were observed. A significantly lower number of white matter lesions could be identified in low-field MR imaging both on T1- and on T2-weighted images (T2: high field 700, low field 481; T1: high field 253, low field 177). A total of 114 enhancing lesions were discerned in the high-field MR imaging as opposed to 45 enhancing lesions in low-field MR imaging. Blood-brain barrier disruption was identified in 11 of 20 patients in the high-field MR imaging, but only in 4 of 20 patients in low-field MR imaging. Since a significantly lower lesion load is identified in low-field MR imaging than in high-field MR imaging, and blood-brain barrier disruption is frequently missed, caution must be exercised in interpreting a normal low-field MR imaging scan in a patient with clinical signs of multiple sclerosis and in interpreting a scan without enhancing lesions in a patient with known multiple sclerosis and clinical signs of exacerbation. (orig.)

  16. Magnetization, Low Field Instability and Quench of RHQT Nb(3)Al Strands

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Wake, M.; Kikuchi, A.; Velev, V.; /Fermilab

    2009-01-01

    Since 2005, we made and tested three RHQT Nb{sub 3}Al strands, one with Nb matrix and two with Ta matrix, which are fully stabilized with Cu electroplating. We observed anomalously large magnetization curves extending beyond 1 to 1.5 Tesla with the F1 Nb matrix strand at 4.2 K, when we measured its magnetization with a balanced coil magnetometer. This problem was eliminated with the Ta matrix strands operating at 4.2 K. But with these strands a similar but smaller anomalous magnetization was observed at 1.9 K. We studied these phenomena with FEM. With the F1 Nb matrix strand, it is explained that at low external field, inter-filamentary coupling currents in the outer layers of sub-elements create a shielding effect. It reduces the inside field, keeps the inside Nb matrix superconductive, and stands against a higher outside field beyond the Hc of Nb. At an even higher external field, the superconductivity of the whole Nb matrix collapses and releases a large amount of energy, which may cause a big quench. Depending on the size of the energy in the strand or the cable, a magnet could quench, causing the low field instability. Some attempt to analyze the anomaly with FEM is presented.

  17. Low-field anomalous magnetic phase in the kagome-lattice shandite Co3Sn2S2

    OpenAIRE

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2017-01-01

    The magnetization process of single crystals of the metallic kagom\\'e ferromagnet Co3Sn2S2 was carefully measured via magnetization and AC susceptibility. Field-dependent anomalous transitions in the magnetization indicate a low-field unconventionally ordered phase stabilized just below TC. The magnetic phase diagrams in applied fields along different crystallographic directions were determined. The magnetic relaxation process studied in frequencies covering five orders of magnitude from 0.01...

  18. Functional magnetic resonance imaging in a low-field intraoperative scanner.

    Science.gov (United States)

    Schulder, Michael; Azmi, Hooman; Biswal, Bharat

    2003-01-01

    Functional magnetic resonance imaging (fMRI) has been used for preoperative planning and intraoperative surgical navigation. However, most experience to date has been with preoperative images acquired on high-field echoplanar MRI units. We explored the feasibility of acquiring fMRI of the motor cortex with a dedicated low-field intraoperative MRI (iMRI). Five healthy volunteers were scanned with the 0.12-tesla PoleStar N-10 iMRI (Odin Medical Technologies, Israel). A finger-tapping motor paradigm was performed with sequential scans, acquired alternately at rest and during activity. In addition, scans were obtained during breath holding alternating with normal breathing. The same paradigms were repeated using a 3-tesla MRI (Siemens Corp., Allandale, N.J., USA). Statistical analysis was performed offline using cross-correlation and cluster techniques. Data were resampled using the 'jackknife' process. The location, number of activated voxels and degrees of statistical significance between the two scanners were compared. With both the 0.12- and 3-tesla imagers, motor cortex activation was seen in all subjects to a significance of p < 0.02 or greater. No clustered pixels were seen outside the sensorimotor cortex. The resampled correlation coefficients were normally distributed, with a mean of 0.56 for both the 0.12- and 3-tesla scanners (standard deviations 0.11 and 0.08, respectively). The breath holding paradigm confirmed that the expected diffuse activation was seen on 0.12- and 3-tesla scans. Accurate fMRI with a low-field iMRI is feasible. Such data could be acquired immediately before or even during surgery. This would increase the utility of iMRI and allow for updated intraoperative functional imaging, free of the limitations of brain shift. Copyright 2003 S. Karger AG, Basel

  19. Low-field-strength magnetic resonance imaging in the canine brain

    International Nuclear Information System (INIS)

    Esteve Ratsch, B.

    2000-06-01

    Magnetic resonance imaging (MRI; 0,23 T) of the canine brain was performed. Each scan plane was compared with corresponding anatomic sections. The best imaging planes to visualize various anatomic structures were determined. Low-field-strength MRI allowed the good definition of all relevant anatomic structures of the brain of 55 dogs with the exception of most cranial nerves. White matter could be best differentiated using proton-weighted images. On T1-weighted images the contrast of white matter was markedly limited in the living dogs in contrast to the examined canine specimens. The relative size of the lateral ventricle was defined as the ratio of the size of the lateral ventricle and the size of the half brain. The relative size of the lateral ventricle of Yorkshire Terrier dogs (5,35 %) was significantly (p 0,05) in the relative size of the lateral ventricles of healthy Yorkshire Terrier dogs (5,35 %) and Yorkshire Terrier dogs with neurological symptoms (7,06 %). Asymmetric lateral ventricles were very common in the examined dogs independently from body size, skull shape and neurological status. Occasionally the septum telencephali was not developed completely. 11 of 12 intracranial neoplasm could be delineated using low-field-strength MRI. Anatomic site, number of intracerebral lesions, limitation, shape and growth pattern, secondary brain lesions and development of peritumoral edema were described for each intracranial neoplasm as well as its signal intensity on T1- and T2-weighted images and contrast enhancement pattern. MRI did not allow an accurate diagnosis of tumor type, nevertheless skull shape (brachycephalic/dolichocephalic), anatomic site and number of intracerebral lesions facilitated a presumable diagnosis of the tumor type. (author)

  20. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery.

    Science.gov (United States)

    Senft, Christian; Seifert, Volker; Hermann, Elvis; Franz, Kea; Gasser, Thomas

    2008-10-01

    The aim of this study was to demonstrate the usefulness of a mobile, intraoperative 0.15-T magnetic resonance imaging (MRI) scanner in glioma surgery. We analyzed our prospectively collected database of patients with glial tumors who underwent tumor resection with the use of an intraoperative ultra low-field MRI scanner (PoleStar N-20; Odin Medical Technologies, Yokneam, Israel/Medtronic, Louisville, CO). Sixty-three patients with World Health Organization Grade II to IV tumors were included in the study. All patients were subjected to postoperative 1.5-T imaging to confirm the extent of resection. Intraoperative image quality was sufficient for navigation and resection control in both high- and low-grade tumors. Primarily enhancing tumors were best detected on T1-weighted imaging, whereas fluid-attenuated inversion recovery sequences proved best for nonenhancing tumors. Intraoperative resection control led to further tumor resection in 12 (28.6%) of 42 patients with contrast-enhancing tumors and in 10 (47.6%) of 21 patients with noncontrast-enhancing tumors. In contrast-enhancing tumors, further resection led to an increased rate of complete tumor resection (71.2 versus 52.4%), and the surgical goal of gross total removal or subtotal resection was achieved in all cases (100.0%). In patients with noncontrast-enhancing tumors, the surgical goal was achieved in 19 (90.5%) of 21 cases, as intraoperative MRI findings were inconsistent with postoperative high-field imaging in 2 cases. The use of the PoleStar N-20 intraoperative ultra low-field MRI scanner helps to evaluate the extent of resection in glioma surgery. Further tumor resection after intraoperative scanning leads to an increased rate of complete tumor resection, especially in patients with contrast-enhancing tumors. However, in noncontrast- enhancing tumors, the intraoperative visualization of a complete resection seems less specific, when compared with postoperative 1.5-T MRI.

  1. Static and dynamic evaluation of pelvic floor disorders with an open low-field tilting magnet

    International Nuclear Information System (INIS)

    Fiaschetti, V.; Pastorelli, D.; Squillaci, E.; Funel, V.; Rascioni, M.; Meschini, A.; Salimbeni, C.; Sileri, P.; Franceschilli, L.; Simonetti, G.

    2013-01-01

    Aim: To assess the feasibility of magnetic resonance defaecography (MRD) in pelvic floor disorders using an open tilting magnet with a 0.25 T static field and to compare the results obtained from the same patient both in supine and orthostatic positions. Materials and methods: From May 2010 to November 2011, 49 symptomatic female subjects (mean age 43.5 years) were enrolled. All the patients underwent MRD in the supine and orthostatic positions using three-dimensional (3D) hybrid contrast-enhanced (HYCE) sequences and dynamic gradient echo (GE) T1-weighted sequences. All the patients underwent conventional defaecography (CD) to correlate both results. Two radiologists evaluated the examinations; inter and intra-observer concordance was measured. The results obtained in the two positions were compared between them and with CD. Results: The comparison between CD and MRD found statistically significant differences in the evaluation of anterior and posterior rectocoele during defaecation in both positions and of rectal prolapse under the pubo-coccygeal line (PCL) during evacuation, only in the supine position (versus MRD orthostatic: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.008; versus CD: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.01). The value of intra-observer intra-class correlation coefficient (ICC) ranged from good to excellent; the interobserver ICC from moderate to excellent. Conclusion: MRD is feasible with an open low-field tilting magnet, and it is more accurate in the orthostatic position than in the supine position to evaluate pelvic floor disorders

  2. Low-field anomalous magnetic phase in the kagome-lattice shandite C o3S n2S2

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2017-07-01

    The magnetization process of single crystals of the metallic kagome ferromagnet C o3S n2S2 was carefully measured via magnetization and ac susceptibility. Field-dependent anomalous transitions observed in low fields indicate the presence of an unconventional magnetic phase just below the Curie temperature, TC. The magnetic phase diagrams in low magnetic fields along different crystallographic directions were determined for the first time. The magnetic relaxation measurements at various frequencies covering five orders of magnitude from 0.01 to 1000 Hz indicate markedly slow spin dynamics only in the anomalous phase with characteristic relaxation times longer than 10 s.

  3. Low field magnetic resonance experiments in superfluid 3He--A

    International Nuclear Information System (INIS)

    Gully, W.J. Jr.

    1976-01-01

    Measurements of the longitudinal and transverse nuclear magnetic resonance signals have been made on the A phase of liquid 3 He. They were performed on a sample of 3 He self-cooled by the Pomeranchuk effect to the critical temperature of the superfluid at 2.7 m 0 K. The longitudinal resonance is a magnetic mode of the liquid excited by radio frequency magnetic fields applied in the direction of the static magnetic field. Frequency profiles of this resonance were indirectly obtained by contour techniques from signals recorded by sweeping the temperature. Its frequency is found to be related to the frequency shift of the transverse resonance in agreement with theoretical predictions for the ABM pairing state. Its linewidth also agrees with theoretical predictions based upon dissipative phenomena peculiar to the superfluid phase. An analysis of the linewidth of the longitudinal resonance yields a value for the quasiparticle collision time. Transverse NMR lines were also studied. In low magnetic fields (20 Oersted) these lines were found to become extremely broad. This is shown to be a manifestation of the same collisional processes that broaden the longitudinal resonance lines. Also, the effects of various textures on the resonance lines are discussed, including the results of an attempt to create a single domain of 3 He with crossed electric and magnetic fields

  4. Methodological developments of low field MRI: Elasto-graphy, MRI-ultrasound interaction and dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Madelin, Guillaume

    2005-01-01

    This thesis deals with two aspects of low field (0.2 T) Magnetic Resonance Imaging (MRI): the research of new contrasts due to the interaction between Nuclear Magnetic Resonance (NMR) and acoustics (elasto-graphy, spin-phonon interaction) and enhancement of the signal-to-noise ratio by Dynamic Nuclear Polarization (DNP). Magnetic Resonance Elasto-graphy (MRE) allows to assess some viscoelastic properties of tissues by visualization of the propagation of low frequency acoustic strain waves. A review on MRE is given, as well as a study on local measurement of the acoustic absorption coefficient. The next part is dedicated to MRI-ultrasound interaction. First, the ultrasonic transducer was calibrated for power and acoustic field using the comparison of two methods: the radiation force method (balance method) and laser interferometry. Then, we tried to modify the T1 contrast of tissues by spin-phonon interaction due to the application of ultrasound at the resonance frequency at 0.2 T, which is about 8.25 MHz. No modification of T1 contrast has been obtained, but the acoustic streaming phenomenon has been observed in liquids. MRI visualization of this streaming could make possible to calibrate transducers as well as to assess some mechanical properties of viscous fluids. The goal of the last part was to set up DNP experiments at 0.2 T in order to enhance the NMR signal. This double resonance method is based on the polarization transfer of unpaired electrons of free radicals to the surrounding protons of water. This transfer occurs by cross relaxation during the saturation of an electronic transition using Electronic Paramagnetic Resonance (EPR). Two EPR cavities operating at 5.43 GHz have been tested on oxo-TEMPO free radicals (nitroxide). An enhancement of the NMR signal by a factor 30 was obtained during these preliminary experiments. (author)

  5. Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours

    DEFF Research Database (Denmark)

    Kristensen, B.H.; Laursen, F.J.; Logager, V.

    2008-01-01

    Background and purpose: Magnetic resonance (MR) imaging is superior to computed tomography (CT) in radiotherapy of brain tumours. In this study an open low-field MR-simulator is evaluated in order to eliminate the cost of and time spent on additional CT scanning. Materials and methods: Eleven...

  6. Low field magnetic resonance imaging of the lumbar spine: Reliability of qualitative evaluation of disc and muscle parameters

    DEFF Research Database (Denmark)

    Sørensen, Joan Solgaard; Kjaer, Per; Jensen, Tue Secher

    2006-01-01

    PURPOSE: To determine the intra- and interobserver reliability in grading disc and muscle parameters using low-field magnetic resonance imaging (MRI). MATERIAL AND METHODS: MRI scans of 100 subjects representative of the general population were evaluated blindly by two radiologists. Criteria......: Convincing reliability was found in the evaluation of disc- and muscle-related MRI variables....

  7. MR arthrography in chondromalacia patellae diagnosis on a low-field open magnet system.

    Science.gov (United States)

    Harman, Mustafa; Ipeksoy, Umit; Dogan, Ali; Arslan, Halil; Etlik, Omer

    2003-01-01

    The purpose of this study was to compare the diagnostic efficacy conventional MRI and MR arthrography (MRA) in the diagnosis of chondromalacia patella (CP) on a low-field open magnet system (LFOMS), correlated with arthroscopy. Forty-two patients (50 knees) with pain in the anterior part of the knee were prospectively examined with LFOMS, including T1-weighted, proton density-weighted and T2-weighted sequences. All were also examined T1-weighted MRI after intraarticular injection of dilue gadopentetate dimeglumine. Two observers, who reached a consensus interpretation, evaluated each imaging technique independently. Thirty-six of the 50 facets examined had chondromalacia shown by arthroscopy, which was used as the standard of reference. The sensitivity, specificity and accuracy of each imaging technique in the diagnosis of each stage of CP were determined and compared by using the McNemar two-tailed analysis. Arthroscopy showed that 16 facets were normal. Four (30%) of 13 grade 1 lesions were detected with T1. Four lesions (30%) with T2 and three lesions (23%) with proton-weighted images were detected. Seven (53%) of 13 grade 1 lesions were detected with MRA. Grade 2 abnormalities were diagnosed in two (33%) of six facets with proton density-weighted pulse sequences, two (33%) of six facets with T1-weighted pulse sequences, in three (50%) of six facets with T2-weighted pulse sequences, in five (83%) of six facets with MRA sequences. Grade 3 abnormalities were diagnosed in three (71%) of seven facets with proton density- and T1-weighted images, five (71%) of seven facets with T2-weighted pulse sequences, six (85%) of seven facets with MRA sequences. Grade 4 CP was detected with equal sensitivity with T1-, proton density- and T2-weighted pulse sequences, all showing seven (87%) of the eight lesions. MRA again showed these findings in all eight patients. All imaging techniques were insensitive to grade 1 lesions and highly sensitive to grade 4 lesion, so that no

  8. Evaluation of the SLAP lesion using a low-field (0.2T) magnetic resonance system

    International Nuclear Information System (INIS)

    Cho, Yong Soo; Back, Chang Hee; Lee, Kyung Rae; Shin, Yun Hack

    2007-01-01

    To evaluate the diagnostic capabilities of the low-field (0.2T) magnetic resonance (MR) system in the detection of the superior labrum anterior to posterior (SLAP) lesion. One hundred fifty patients underwent magnetic resonance imaging of the shoulder over a 7-month period. Forty-six patients underwent arthroscopic surgery, and the surgical results were correlated with the findings of the MR imaging. Arthroscopic procedures were performed within a mean of 8 days after MR imaging. MR imaging of the shoulder was conducted as follows: shoulder coil; T1-weighted spin echo, coronal-oblique images; T2-weighted gradient echo, coronal-oblique and axial images; and T2-weighted spin echo, coronal oblique and sagittal-oblique images. Prospectively, one radiologist interpreted the MR images. The results of surgery were as follow: SLAP II in 26 shoulders, SLAP III in 1 shoulder, SLAP IV in 1 shoulder, normal labrum in 6 shoulder. For SLAP lesions with a higher grade than type 2, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the low-field MRI were 85.7%, 55.5%. 75%, 71%, and 74%, respectively. There was relatively good agreement for the comparison of the MR results obtained using a low-field MR system with the surgical findings for identifying SLAP lesions

  9. Comparative magnetic resonance imaging of renal space-occupying lesions with a high and a low field MRI system

    International Nuclear Information System (INIS)

    Gehl, H.B.; Lorch, H.; Amblank, O.B.M.; Engerhoff, B.; Weiss, H.D.

    1998-01-01

    Purpose: A prospective study of the diagnostic accuracy and image quality of two MRI systems in the detection of renal tumors was investigated. Materials and Methods: 34 patients with the clinical suspicion of a space-occupying renal lesion were examined by MRI with a low field (0.2 Tesla magnet) and a high field (1.5 Tesla magnet) for comparison. An 'informed' and a 'blind' observer evaluated all of the MR images. In addition, the signal-to-noise and contrast-to-noise ratios were evaluated as second quality parameters. Results: In 29 cases the results could be compared with a confirmed release diagnosis. Diagnostic accuracy was comparable with both systems (Sensitivity for both observer on LF apparatus: 83%, HF apparatus: 81%) although the signal-to-noise and contrast-to-noise ratios were significantly poorer at low field. Conclusions: The low field system in comparable to the high field MRI for detection and differentiation of renal space-occupying lesions. (orig.) [de

  10. Pelvic endometriosis: a comparison between low-field (0.2 T) and high-field (1.5 T) magnetic resonance imaging

    International Nuclear Information System (INIS)

    Minaif, Karine; Ajzen, Sergio; Shigueoka, David Carlos; Minami, Cintia Cristina Satie; Sales, Danilo Moulin; Szejnfeld, Jacob; Ruano, Jose Maria Cordeiro; Noguti, Alberto Sinhiti

    2008-01-01

    Objective: to compare low-field (0.2 T) with high-field (1.5 T) magnetic resonance imaging in the assessment of pelvic endometriosis and adenomyosis. Materials and methods: twenty-seven female patients with clinically suspected endometriosis were prospectively evaluated by means of high-field and low-field magnetic resonance imaging. The reading of the images was performed by a single radiologist, initiating by the low-field, followed by the high-field images. High-field magnetic resonance imaging was utilized as the golden-standard. Results: among the 27 patients included in the present study, 18 (66.7%) had some type of lesion suggesting the presence of endometriosis demonstrated at high-field images. In 14 of these patients the diagnosis was correctly established by low-field magnetic resonance imaging. Endometriomas, tubal lesions, and endometriotic foci > 7 mm identified at the high-field images were also identified at low-field images with 100% accuracy, sensitivity and specificity. Among the nine patients diagnosed with adenomyosis by high-field images, eight were correctly diagnosed by low-field images with 88.9% accuracy, specificity and sensitivity. Conclusion: low-field magnetic resonance imaging demonstrated a low sensitivity in the detection of small endometriotic foci, high sensitivity in the detection of endometriomas and large endometriotic foci, and high accuracy in the detection of adenomyosis when compared with high-field magnetic resonance imaging. (author)

  11. Pelvic endometriosis: a comparison between low-field (0.2 T) and high-field (1.5 T) magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Minaif, Karine; Ajzen, Sergio [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of Imaging Diagnosis]. E-mail: kminaif@uol.com.br; Shigueoka, David Carlos; Minami, Cintia Cristina Satie; Sales, Danilo Moulin; Szejnfeld, Jacob [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of Imaging Diagnosis. Unit of Abdomen; Ruano, Jose Maria Cordeiro [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of General Gynecology. Sector of Videlaparoscopy; Noguti, Alberto Sinhiti [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. of General Gynecology

    2008-11-15

    Objective: to compare low-field (0.2 T) with high-field (1.5 T) magnetic resonance imaging in the assessment of pelvic endometriosis and adenomyosis. Materials and methods: twenty-seven female patients with clinically suspected endometriosis were prospectively evaluated by means of high-field and low-field magnetic resonance imaging. The reading of the images was performed by a single radiologist, initiating by the low-field, followed by the high-field images. High-field magnetic resonance imaging was utilized as the golden-standard. Results: among the 27 patients included in the present study, 18 (66.7%) had some type of lesion suggesting the presence of endometriosis demonstrated at high-field images. In 14 of these patients the diagnosis was correctly established by low-field magnetic resonance imaging. Endometriomas, tubal lesions, and endometriotic foci > 7 mm identified at the high-field images were also identified at low-field images with 100% accuracy, sensitivity and specificity. Among the nine patients diagnosed with adenomyosis by high-field images, eight were correctly diagnosed by low-field images with 88.9% accuracy, specificity and sensitivity. Conclusion: low-field magnetic resonance imaging demonstrated a low sensitivity in the detection of small endometriotic foci, high sensitivity in the detection of endometriomas and large endometriotic foci, and high accuracy in the detection of adenomyosis when compared with high-field magnetic resonance imaging. (author)

  12. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  13. New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury

    Science.gov (United States)

    2016-04-01

    vectorially to the encoding field. This is explicitly corrected for when calculating the encoding matrix. Other external fields and magnet field drift (~-1/ 2G ...simulated reconstruction with the same parameters as Fig. 3c. Fig. 3f and 3g show the experimental and simulated single coil image from the phantom...acquisition times (1), including a mobile MRI system developed for outdoor imaging of small tree branches (2), but these scanners lack a bore size suitable for

  14. Passive shimming of the fringe field of a superconducting magnet for ultra-low field hyperpolarized noble gas MRI.

    Science.gov (United States)

    Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E

    2005-05-01

    Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.

  15. Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling

    International Nuclear Information System (INIS)

    Patra, Moumita; Maiti, Santanu K.

    2017-01-01

    We report an unconventional behavior of electron transport in the limit of zero magnetic flux in a one-dimensional disordered ring, be it completely random or any correlated one, subjected to Rashba spin–orbit (SO) coupling. It exhibits much higher circulating current compared to a fully perfect ring for a wide range of SO coupling yielding larger electrical conductivity which is clearly verified from our Drude weight analysis. - Highlights: • Unconventional behavior of electron transport in a 1D disordered ring is reported. • Interplay between Rashba So interaction and disorder is discussed. • Disordered ring provides much higher current compared to a perfect one. • Results are independent with disorderness, be it correlated or random. • MI transition and selective switching effects are discussed.

  16. Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in

    2017-01-30

    We report an unconventional behavior of electron transport in the limit of zero magnetic flux in a one-dimensional disordered ring, be it completely random or any correlated one, subjected to Rashba spin–orbit (SO) coupling. It exhibits much higher circulating current compared to a fully perfect ring for a wide range of SO coupling yielding larger electrical conductivity which is clearly verified from our Drude weight analysis. - Highlights: • Unconventional behavior of electron transport in a 1D disordered ring is reported. • Interplay between Rashba So interaction and disorder is discussed. • Disordered ring provides much higher current compared to a perfect one. • Results are independent with disorderness, be it correlated or random. • MI transition and selective switching effects are discussed.

  17. A high temperature superconductor tape RF receiver coil for a low field magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Cheng, M C; Yan, B P; Lee, K H; Ma, Q Y; Yang, E S

    2005-01-01

    High temperature superconductor (HTS) thin films have been applied in making a low loss RF receiver coil for improving magnetic resonance imaging image quality. However, the application of these coils is severely limited by their limited field of view (FOV). Stringent fabrication environment requirements and high cost are further limitations. In this paper, we propose a simpler method for designing and fabricating HTS coils. Using industrial silver alloy sheathed Bi (2-x) Pb x Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) HTS tapes, a five-inch single-turn HTS solenoid coil has been developed, and human wrist images have been acquired with this coil. The HTS tape coil has demonstrated an enhanced FOV over a six-inch YBCO thin film surface coil at 77 K with comparable signal-to-noise ratio

  18. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  19. The technique of MRT aided abdominal drainage using an open low field magnet. Feasibility and first results

    International Nuclear Information System (INIS)

    Gehl, H.B.; Frahm, C.; Schimmelpenning, H.; Weiss, H.D.

    1996-01-01

    To test the practicality of MRT-aided drainage using an open low field magnet and to report on the early clinical results. So far seven patients have been treated (four subphrenic abscesses, two psoas abscesses and one pancreatic pseudocyst). The planning of the approach and catheter insertion were carried out under MRT control (Magnetom Open, 0.2 T). Subsequent treatment was controlled by CT and fluoroscopy. Initial puncture was carried out with a non-magnetic 18 gauge Chiba needle. The drainage catheter was introduced by Seldinger's technique in six cases and with a trocar in one patient. In all seven patients drainage could be started successfully. The design of the magnet and coils permitted adequate accessibility of the patient. There were no problems in visualising the puncture needle. Controlling the position of the catheter by MRT was, however, difficult. The first two steps in abscess drainage (planning the approach and inserting the catheter) can be carried out under MRT control. For further catheter control and observing the course of the disease we presently prefer CT or fluoroscopy. (orig.) [de

  20. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    Science.gov (United States)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  1. Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zevenhoven, Koos C. J.; Ilmoniemi, Risto J.; Dong, Hui; Clarke, John

    2015-01-01

    Pulse-induced transients such as eddy currents can cause problems in measurement techniques where a signal is acquired after an applied preparatory pulse. In ultra-low-field magnetic resonance imaging, performed in magnetic fields typically of the order of 100 μT, the signal-to-noise ratio is enhanced in part by prepolarizing the proton spins with a pulse of much larger magnetic field and in part by detecting the signal with a Superconducting QUantum Interference Device (SQUID). The pulse turn-off, however, can induce large eddy currents in the shielded room, producing an inhomogeneous magnetic-field transient that both seriously distorts the spin dynamics and exceeds the range of the SQUID readout. It is essential to reduce this transient substantially before image acquisition. We introduce dynamical cancellation (DynaCan), a technique in which a precisely designed current waveform is applied to a separate coil during the later part and turn off of the polarizing pulse. This waveform, which bears no resemblance to the polarizing pulse, is designed to drive the eddy currents to zero at the precise moment that the polarizing field becomes zero. We present the theory used to optimize the waveform using a detailed computational model with corrections from measured magnetic-field transients. SQUID-based measurements with DynaCan demonstrate a cancellation of 99%. Dynamical cancellation has the great advantage that, for a given system, the cancellation accuracy can be optimized in software. This technique can be applied to both metal and high-permeability alloy shielded rooms, and even to transients other than eddy currents

  2. Nuclear magnetic resonance gyroscope

    International Nuclear Information System (INIS)

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  3. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  4. Nuclear magnetic resonance scattering

    International Nuclear Information System (INIS)

    Young, I.R.

    1985-01-01

    A nuclear magnetic resonance apparatus is described including a magnet system which is capable of providing a steady magnetic field along an axis, and is constructed so as to define a plurality of regions along the axis in each of which the field is substantially homogeneous so that in each region an imaging operation may be separately carried out. Iron shields increase the field homogeneity. In use, each patient lies on a wheeled trolley which is provided with magnetic field gradient coils and an RF coil system, some of the coils being movable to facilitate positioning of the patient, and there are terminals for connection to a common computing and control facility. (author)

  5. The low-field peak in magnetization loops of uniform and granular superconductors in perpendicular magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Johansen, T. H.; Shantsev, D. V.; Koblischka, M. R.; Galperin, Y. M.; Nálevka, Petr; Jirsa, Miloš

    341-348, - (2000), s. 1443-1444 ISSN 0921-4534. [International Conference on Materials and Mechanism of Superconductivity High Temperature Superconductors /4./. Houston , 20.02.2000-25.02.2000] Institutional research plan: CEZ:AV0Z1010914 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2000

  6. Nondestructive prediction and visualization of plumpness in live Eriocheir sinensis using low-field 1 H magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Hongcai; Mei, Jun; Chen, Shunsheng; Wu, Xugan

    2018-02-06

    The plumpness of hepatopancreas and gonad tissues in live Chinese mitten crabs (Eriocheir sinensis) depends on the grading scale and its commercial value. In this work, a low-field T 1 -weighted 1 H magnetic resonance imaging (LF- 1 H MRI) technique was developed to nondestructively analyze the plumpness of hepatopancreas and gonad tissues in live E. sinensis. Both male and female E. sinensis were characterized by two-dimensional (2D) LF- 1 H MRI. Moreover, a three-dimensional (3D) LF- 1 H MRI model that quantitatively integrated the total volume of lipid tissues in live E. sinensis was used. The results showed 2D LF- 1 H MRI could accurately discriminate the plumpness of hepatopancreas and gonad tissues in live E. sinensis. The results of the 3D LF- 1 H MRI model displayed that the lipid volume of E. sinensis could be used to quantify lipid accumulation in lipid tissues. LF- 1 H MRI technology was successfully developed to accurately discriminate the development of E. sinensis hepatopancreas and gonad tissues in a nondestructive manner, indicating its application potential in grading commercial live crabs or advising crab farmers on breeding and fattening processes. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Diagnosis of initial changes in patients suffering from rheumatoid arthritis. A comparison between low-field magnetic resonance imaging, 3-phase bone scintigraphy and conventional X-ray

    International Nuclear Information System (INIS)

    Hoepfner, S.; Dresel, S.; Weiss, M.; Hahn, K.; Treitl, M.; Krolak, C.; Becker-Gaab, C.; Schattenkirchner, M.

    2002-01-01

    Besides conventional X-rays, in the diagnostic work up of initial changes in patients suffering from rheumatoid arthritis (RA), 3-phase bone scintigraphy (3P-Sz) is as well established as magnetic resonance imaging (MRI). The aim of this study was to compare the diagnostic value of the newly developed low field MRI with the proven methods X-rays and 3P-Sz. Methods: 65 patients (47f, 18m; 20-86 yrs) were studied on a one day protocol with 3P-Sz (550 MBq Tc-99m DPD), MRI and X-rays of the hands. Images were visually analysed by two blinded nuclear medicine physicians and radiologists and classified as a) RA-typical, b) inflammatory, non-RA-typical and c) non inflammatory changes. All methods were compared to 3P-Sz as golden standard. Results: In comparison to 3P-Sz, low field MRI presents with almost equal sensitivity and specificity in rheumatoid-typical and inflammatory changes. Conventional X-rays revealed in arthritis-typical changes as well as in inflammatory changes a significantly lower sensitivity and also a lower negative predictive value while specificity equals the one of MRI. Quantitative analysis of 3P-Sz using ROI-technique unveiled significantly higher values in patients with rheumatoid arthritis than in those with no inflammatory changes. Conclusion: MRI represents an equally sensitive method in the initial diagnosis of rheumatoid-typical and inflammatory changes in the region of the hands as compared to the 3P-Sz. Besides the basic diagnosis with conventional X-rays, 3P-Sz is still the recommended method of choice to evaluate the whole body when RA is suspected. Additionally, quantitative analysis of the 3P-Sz using the ROI technique in the region of the hands reveals statistically significant results and should therefore be taken into account in the assessment of inflammatory changes. (orig.) [de

  8. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  9. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  10. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  11. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy.

    Science.gov (United States)

    Noel, Camille E; Parikh, Parag J; Spencer, Christopher R; Green, Olga L; Hu, Yanle; Mutic, Sasa; Olsen, Jeffrey R

    2015-01-01

    Onboard magnetic resonance imaging (OB-MRI) for daily localization and adaptive radiotherapy has been under development by several groups. However, no clinical studies have evaluated whether OB-MRI improves visualization of the target and organs at risk (OARs) compared to standard onboard computed tomography (OB-CT). This study compared visualization of patient anatomy on images acquired on the MRI-(60)Co ViewRay system to those acquired with OB-CT. Fourteen patients enrolled on a protocol approved by the Institutional Review Board (IRB) and undergoing image-guided radiotherapy for cancer in the thorax (n = 2), pelvis (n = 6), abdomen (n = 3) or head and neck (n = 3) were imaged with OB-MRI and OB-CT. For each of the 14 patients, the OB-MRI and OB-CT datasets were displayed side-by-side and independently reviewed by three radiation oncologists. Each physician was asked to evaluate which dataset offered better visualization of the target and OARs. A quantitative contouring study was performed on two abdominal patients to assess if OB-MRI could offer improved inter-observer segmentation agreement for adaptive planning. In total 221 OARs and 10 targets were compared for visualization on OB-MRI and OB-CT by each of the three physicians. The majority of physicians (two or more) evaluated visualization on MRI as better for 71% of structures, worse for 10% of structures, and equivalent for 14% of structures. 5% of structures were not visible on either. Physicians agreed unanimously for 74% and in majority for > 99% of structures. Targets were better visualized on MRI in 4/10 cases, and never on OB-CT. Low-field MR provides better anatomic visualization of many radiotherapy targets and most OARs as compared to OB-CT. Further studies with OB-MRI should be pursued.

  12. Advanced Nuclear Magnetic Resonance

    OpenAIRE

    Alonso, Diego A.

    2014-01-01

    Transparencias en inglés de la asignatura "Resonancia Magnética Nuclear Avanzada" (Advanced Nuclear Magnetic Resonance) (36643) que se imparte en el Máster de Química Médica como asignatura optativa de 3 créditos ECTS. En esta asignatura se completa el estudio iniciado en la asignatura de quinto curso de la licenciatura en Química "Determinación estructural" (7448) y en la del Grado de Química de tercer curso "Determinación estructural de los compuestos orgánicos" (26030) en lo referente a té...

  13. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cremin, B.J.

    1981-01-01

    Recent advances in diagnostic imaging, have been the medical application of nuclear magnetic resonance (NMR). It's been used to study the structure of various compounds in chemistry and physics, and in the mid-1970 to produce images of rabbits and eventually of the human hand and head. The images are produced by making use of the nuclear magnetization of the hydrogen ion, or proton, that is present in biological material to record the density distribution of protons in cellular water and lipids. An exploration of the end-results of complicated free induction decay signals, that have been digitized and frequency-analysed by mathematical computerized techniques to produce an image of tissue density, is given. At present NMR produces images comparable to those of early computed tomography

  14. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  15. Detection of early osteoarthritis in the centrodistal joints of Icelandic horses: Evaluation of radiography and low-field magnetic resonance imaging.

    Science.gov (United States)

    Ley, C J; Björnsdóttir, S; Ekman, S; Boyde, A; Hansson, K

    2016-01-01

    Validated noninvasive detection methods for early osteoarthritis (OA) are required for OA prevention and early intervention treatment strategies. To evaluate radiography and low-field magnetic resonance imaging (MRI) for the detection of early stage OA osteochondral lesions in equine centrodistal joints using microscopy as the reference standard. Prospective imaging of live horses and imaging and microscopy of cadaver tarsal joints. Centrodistal (distal intertarsal) joints of 38 Icelandic research horses aged 27-29 months were radiographed. Horses were subjected to euthanasia approximately 2 months later and cadaver joints examined with low-field MRI. Osteochondral joint specimens were classified as negative or positive for OA using light microscopy histology or scanning electron microscopy. Radiographs and MRIs were evaluated for osteochondral lesions and results compared with microscopy. Forty-two joints were classified OA positive with microscopy. Associations were detected between microscopic OA and the radiography lesion categories; mineralisation front defect (Pradiography and low-field MRI pooled lesion categories, but radiography was often superior when individual lesion categories were compared. Early stage centrodistal joint OA changes may be detected with radiography and low-field MRI. Detection of mineralisation front defects in radiographs may be a useful screening method for detection of early OA in centrodistal joints of young Icelandic horses. © 2015 EVJ Ltd.

  16. Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO₃ thin films.

    Science.gov (United States)

    Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M

    2013-05-22

    Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.

  17. Nuclear magnetic resonance studies of lipoproteins

    International Nuclear Information System (INIS)

    Hamilton, J.A.; Morrisett, J.D.

    1986-01-01

    Several nuclei in lipoproteins are magnetically active and are thus potential NMR probes of lipoprotein structure. Table I lists the magnetic isotopes preset in the covalent structures of the molecular constituents of lipoproteins: lipids, proteins, and carbohydrates. Every type of nucleus that is part of the endogenous structure of these molecules has at least one magnetic isotope. Each magnetic nucleus represents an intrinsic and completely nonperturbing probe (when at the natural abundance level) of local molecular motion and magnetic environment. The NMR experiment itself is also nonperturbing and nondestructive. Table I also lists for each nucleus its nuclear spin, its natural isotopic abundance, its sensitivity, and its resonance frequency at two commonly employed magnetic in the low field range (21.14 kG or 2.11 Tesla) and the other in the high field range (47.0 kG or 4.70 Tesla). Of the nuclei listed in Table I, /sup 1/H, /sup 13/C, and /sup 31/P have been the primary ones studied in lipoproteins. The general advantages and disadvantages afforded by these and other nuclei as probes of lipoprotein structure are discussed. /sup 13/C NMR spectroscopy, the method which has had the most extensive application (and probably has the greatest future potential) to lipoproteins, is treated in greatest detail, but many of the principles described apply to other nuclei as well

  18. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Guo, W.

    1988-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most widely used instrumental methods, with applications ranging from the characterization of pure compounds by high-resolution NMR to the diagnosis of disease by magnetic resonance imaging (MRI). To give some idea of the wide-spread use of NMR, a computer search for the period 1985-1987 turned up over 500 books and review articles and over 7000 literature citations, not including papers in which NMR was used together with other spectroscopic methods for the routine identification of organic compounds. Consequently, they have by necessity been somewhat selective in the topics they have chosen to cover and in the articles they have cited. In this review, which covers the published literature for the approximate period Sept 1985-Aug 1987, they have focused on new developments and applications of interest to the chemist. First they review recent developments in instrumentation and techniques. Although there have not been any major break-throughs in NMR instrumentation during the past two years, significant refinements have been reported which optimize instrumentation for the demanding multiple pulse experiments in routine use today. Next they review new developments in methods for processing NMR data, followed by reviews of one-dimensional and two-dimensional NMR experiments

  19. Effectiveness of low-field magnetic resonance imaging in diagnosing brachial plexus tumours in dogs – short communication

    Directory of Open Access Journals (Sweden)

    Adamiak Zbigniew

    2015-06-01

    Full Text Available The aim of the study was to identify magnetic resonance imaging (MRI sequences that contribute to a quick and reliable diagnosis of brachial plexus tumours in dogs. The tumours were successfully diagnosed in 6 dogs by the MRI with the use of SE, FSE, STIR, Turbo 3 D, 3D HYCE, and GE sequences and the gadolinium contrast agent

  20. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  1. Nuclear magnetic resonance diagnostic apparatus

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1985-01-01

    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  2. The nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  3. Does Low-Field Intraoperative Magnetic Resonance Improve the Results of Endoscopic Pituitary Surgery? Experience of the Implementation of a New Device in a Referral Center.

    Science.gov (United States)

    García, Sergio; Reyes, Luis; Roldán, Pedro; Torales, Jorge; Halperin, Irene; Hanzu, Felicia; Langdon, Cristobal; Alobid, Isam; Enseñat, Joaquim

    2017-06-01

    To assess the contribution of low-field intraoperative magnetic resonance (iMRI) to endoscopic pituitary surgery. We analyzed a prospective series of patients undergoing endoscopic endonasal surgery for pituitary macroadenomas assisted with a low-field iMRI (PoleStarN30, 0.15 T [Medtronic]). Clinical, radiologic, and surgical variables were analyzed and compared with our fully endoscopic historic cohort operated on without iMRI assistance. A bibliographic review of pituitary surgery assisted with iMRI was conducted. Thirty patients (57% female; mean age, 55 years) were prospectively analyzed. The most frequent tumor subtype was nonfunctioning macroadenoma (50%). The average Knosp grade was 2.3 and mean tumor size was 18 mm. Surgical and positioning time were 102 and 47 minutes, respectively. Hospital stay and complication rates were similar to our historical cohort for pituitary surgery. Mean follow-up was 10 months. Complete resection (CR) was achieved in 83% of patients. Seven patients (23%) benefited from iMRI assistance and achieved a CR in their surgeries. All patients except 1 experienced hormonal activity remission. iMRI sensitivity and specificity was 0.8 and 1, respectively. Although not statistically significant, CR rates were globally 11.5% superior in iMRI series compared with our historical cohort. This difference was independent of cavernous sinus invasiveness grade (CR rate increased 12.5% for Knosp grade 0-2 and 8.1% for Knosp grade 3-4). Low-field iMRI is a useful and safe assistance even in advanced surgical techniques such as endoscopy. Its contribution is limited by the intrinsic features of the tumor. Further randomized studies are required to confirm the cost-effectiveness of iMRI in pituitary surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Evaluation of low back pain with low field open magnetic resonance imaging scanner in rural hospital of Southern India

    Directory of Open Access Journals (Sweden)

    Sadhanandham Shrinuvasan

    2016-01-01

    Full Text Available Background: Low back pain (LBP is the most common symptom which is associated with limitation of normal activities and work-related disability. Imaging techniques are often essential in making the correct diagnosis for prompt management. Plain Radiography though remain a first imaging modality, magnetic resonance imaging (MRI due to its inherent softtissue contrast resolution and lack of ionizing radiation remains invaluable modality in the evaluation of LBP. Aim: To find the common causes of LBP in different age groups and the role of MRI in detecting the spectrum of various pathological findings. Materials and Methods: This is a prospective study done in the Department of Radiodiagnosis during a period of 2 years from July 2013 to July 2015. The study population includes all the cases referred to our department with complaints of LBP. Patients with ferromagnetic metallic implants and uncooperative cases were excluded. HITACHI 0.4 Tesla open MRI machine was used for imaging. Results and Conclusion: This study involved a total of 235 cases. There were 121 males and 114 females. The age of the patient ranged from 21 to 68 years with an average of 41.3 years. Back pain was commonly observed in the third to fifth decade. The common causes for back pain are disc herniations (disc bulge - 35.3%, disc protrusion - 39.6%, disc extrusion - 7.2% accounting to 82.1%, followed by normal study (10.2%, vertebral collapse (traumatic - 2.1%, osteoporotic - 1.7%, infections (2.1%, and neoplasm (1.7%. MRI provides valuable information regarding the underlying causes of LBP, especially in disc and marrow pathology.

  5. Evaluation of the liver in normal subjects and cases of hepatic diseases by ultra-low field (0.02 T) magnetic resonance imaging

    International Nuclear Information System (INIS)

    Iwasaki, Yoshie

    1988-01-01

    A total of 123 cases (45 controls, 14 liver cirrhoses, 6 fatty livers, 22 cavernous hemangiomas, 14 hepatomas, 9 metastases, 10 cysts, and 3 hemorrhagic cysts) were studied by ultra-low field magnetic resonance imaging. On T1-weighted images, the means of the intesity ratio in controls were 0.703±0.074 (liver to spleen), 0.658±0.073 (liver to kidney) and 0.932±0.058 (spleen to kidney). On T2-weighted images, the means of the intensity ratios in controls were 0.449±0.083 (liver to spleen), 0.363±0.069 (liver to kidney) and 0.822±0.115 (spleen to kidney). In liver cirrhosis, on T2-weighted images, the intensity ratio of liver to kidney and spleen to kidney. In liver cirrhosis were significantly higher than those in controls. In fatty liver, the intensity ratio of liver to spleen on T1-weighted image, and those of liver to spleen and liver to kidney on T2-weighted image were higher than those in controls. On T2-weighted images, the intensity ratio of tumor to liver in hepatic cavernous hemangioma were significantly higher than those in hepatocellular carcinoma and metastatic liver tumor. Ultra-low field magnetic resonance imaging with the intensity ratio of tumor to liver was valuable in distinguishing between hepatic cavernous hemangioma and hepatic malignancies and it was also possible to distinguish hemorrhagic liver cyst from non-hemorrhagic liver cyst. (author)

  6. GHz nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  7. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    Science.gov (United States)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  8. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  9. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  10. Postoperative computed tomography and low-field magnetic resonance imaging findings in dogs with degenerative lumbosacral stenosis treated by dorsal laminectomy.

    Science.gov (United States)

    Rapp, Martin; Ley, Charles J; Hansson, Kerstin; Sjöström, Lennart

    2017-03-20

    To describe postoperative computed tomography (CT) and magnetic resonance imaging (MRI) findings in dogs with degenerative lumbosacral stenosis (DLSS) treated by dorsal laminectomy and partial discectomy. Prospective clinical case study of dogs diagnosed with and treated for DLSS. Surgical and clinical findings were described. Computed tomography and low field MRI findings pre- and postoperatively were described and graded. Clinical, CT and MRI examinations were performed four to 18 months after surgery. Eleven of 13 dogs were clinically improved and two dogs had unchanged clinical status postoperatively despite imaging signs of neural compression. Vacuum phenomenon, spondylosis, sclerosis of the seventh lumbar (L7) and first sacral (S1) vertebrae endplates and lumbosacral intervertebral joint osteoarthritis became more frequent in postoperative CT images. Postoperative MRI showed mild disc extrusions in five cases, and in all cases contrast enhancing non-discal tissue was present. All cases showed contrast enhancement of the L7 spinal nerves both pre- and postoperatively and seven had contrast enhancement of the lumbosacral intervertebral joints and paraspinal tissue postoperatively. Articular process fractures or fissures were noted in four dogs. The study indicates that imaging signs of neural compression are common after DLSS surgery, even in dogs that have clinical improvement. Contrast enhancement of spinal nerves and soft tissues around the region of disc herniation is common both pre- and postoperatively and thus are unreliable criteria for identifying complications of the DLSS surgery.

  11. The nuclear magnetic resonance well logging

    International Nuclear Information System (INIS)

    Zhang Yumin; Shen Huitang

    2003-01-01

    In this paper, the characteristic of the nuclear magnetic resonance logging is described at first. Then its development and its principle is presented. Compared with the nuclear magnetic resonance spectrometer, the magnet techniques is the first question that we must solve in the manufacture of the NMR well logging

  12. Nuclear magnetic resonance imaging method

    International Nuclear Information System (INIS)

    Johnson, G.; MacDonald, J.; Hutchison, S.; Eastwood, L.M.; Redpath, T.W.T.; Mallard, J.R.

    1984-01-01

    A method of deriving three dimensional image information from an object using nuclear magnetic resonance signals comprises subjecting the object to a continuous, static magnetic field and carrying out the following set of sequential steps: 1) exciting nuclear spins in a selected volume (90deg pulse); 2) applying non-aligned first, second and third gradients of the magnetic field; 3) causing the spins to rephase periodically by reversal of the first gradient to produce spin echoes, and applying pulses of the second gradient prior to every read-out of an echo signal from the object, to differently encode the spin in the second gradient direction for each read-out signal. The above steps 1-3 are then successively repeated with different values of gradient of the third gradient, there being a recovery interval between the repetition of successive sets of steps. Alternate echoes only are read out, the other echoes being time-reversed and ignored for convenience. The resulting signals are appropriately sampled, set out in an array and subjected to three dimensional Fourier transformation. (author)

  13. Magnetic resonance imaging of hindfoot involvement in patients with spondyloarthritides: Comparison of low-field and high-field strength units

    Energy Technology Data Exchange (ETDEWEB)

    Eshed, Iris; Althoff, Christian E. [Department of Radiology, Charite Medical School, Berlin (Germany); Feist, Eugen [Department of Rheumatology and Clinical Immunology, Charite Medical School, Berlin (Germany); Minden, Kirsten [Helios Clinics, 2nd Children' s Hospital Berlin-Buch, Rheumatology Unit, Berlin (Germany); German Rheumatology Research Center, Berlin (Germany); Schink, Tania [Department of Medical Biometry, Charite Medical School, Berlin (Germany); Hamm, Bernd [Department of Radiology, Charite Medical School, Berlin (Germany); Hermann, Kay-Geert A. [Department of Radiology, Charite Medical School, Berlin (Germany)], E-mail: kgh@charite.de

    2008-01-15

    Objective: To compare MRI evaluation of a painful hindfoot of patients with spondyloarthritides (SpA) on low-field (0.2 T) versus high-field (1.5 T) MRI. Materials and methods: Patients with SpA and hindfoot pain were randomly referred to either high-field or low-field MRI. Twenty-seven patients were evaluated (male/female: 17:10; mean age: 39 {+-} 1.4 years). Fifteen patients were examined by low-field and 12 by high-field MRI. Two patients (evaluated by high-field MRI) were excluded. Images were separately read by two radiologists who later reached a consensus. In each patient the prevalence of erosions, fluid, synovitis or bone marrow edema of the hindfoot joints, tendinosis or tenosynovitis of tendons, enthesitis of the plantar fascia and Achilles tendon and retrocalcaneal bursitis were recorded. Clinical and demographic parameters were comparable between both groups. Results: MRI evaluation of joints and tendons of the hindfoot revealed no significant differences in patients with SpA groups for all parameters. Analyzing all joints or tendons together, there was no statistically significant difference between the two groups. Conclusion: Low-field and high-field MRI provide comparable information for evaluation of inflammatory hindfoot involvement. Thus, low-field MRI can be considered as a reliable diagnostic tool for the detection of hindfoot abnormalities in SpA patients.

  14. Magnetic resonance imaging of hindfoot involvement in patients with spondyloarthritides: Comparison of low-field and high-field strength units

    International Nuclear Information System (INIS)

    Eshed, Iris; Althoff, Christian E.; Feist, Eugen; Minden, Kirsten; Schink, Tania; Hamm, Bernd; Hermann, Kay-Geert A.

    2008-01-01

    Objective: To compare MRI evaluation of a painful hindfoot of patients with spondyloarthritides (SpA) on low-field (0.2 T) versus high-field (1.5 T) MRI. Materials and methods: Patients with SpA and hindfoot pain were randomly referred to either high-field or low-field MRI. Twenty-seven patients were evaluated (male/female: 17:10; mean age: 39 ± 1.4 years). Fifteen patients were examined by low-field and 12 by high-field MRI. Two patients (evaluated by high-field MRI) were excluded. Images were separately read by two radiologists who later reached a consensus. In each patient the prevalence of erosions, fluid, synovitis or bone marrow edema of the hindfoot joints, tendinosis or tenosynovitis of tendons, enthesitis of the plantar fascia and Achilles tendon and retrocalcaneal bursitis were recorded. Clinical and demographic parameters were comparable between both groups. Results: MRI evaluation of joints and tendons of the hindfoot revealed no significant differences in patients with SpA groups for all parameters. Analyzing all joints or tendons together, there was no statistically significant difference between the two groups. Conclusion: Low-field and high-field MRI provide comparable information for evaluation of inflammatory hindfoot involvement. Thus, low-field MRI can be considered as a reliable diagnostic tool for the detection of hindfoot abnormalities in SpA patients

  15. Nuclear magnetic ordering in silver

    International Nuclear Information System (INIS)

    Lefmann, K.

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of 109 Ag. The critical temperature is found to 700 pK, and the critical field is 100 μT. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs

  16. Nuclear magnetic ordering in silver

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of {sup 109}Ag. The critical temperature is found to 700 pK, and the critical field is 100 {mu}T. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs.

  17. Updated methodology for nuclear magnetic resonance characterization of shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  18. Transition metal nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Pregosin, P.S.

    1991-01-01

    Transition metal NMR spectroscopy has progressed enormously in recent years. New methods, and specifically solid-state methods and new pulse sequences, have allowed access to data from nuclei with relatively low receptivities with the result that chemists have begun to consider old and new problems, previously unapproachable. Moreover, theory, computational science in particular, now permits the calculation of not just 13 C, 15 N and other light nuclei chemical shifts, but heavy main-group element and transition metals as well. These two points, combined with increasing access to high field pulsed spectrometer has produced a wealth of new data on the NMR transition metals. A new series of articles concerned with measuring, understanding and using the nuclear magnetic resonance spectra of the metals of Group 3-12 is presented. (author)

  19. Orientation-dependent low field magnetic anomalies and room-temperature spintronic material – Mn doped ZnO films by aerosol spray pyrolysis

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-12-01

    Full Text Available of ferromagnetism, a relatively new phenomenon called “low-field microwave absorption” has been observed in ferromagnetic materials and other various materials such as high temperature superconductors, ferrites, manganites, doped silicate glasses and soft... absorption phenomenon has been observed in ferromagnetic materials and various other materials such as superconductors, ferrites, manganites, semiconductors, doped silicate glasses, in soft materials and recently in iron monosilicides films [41- 46...

  20. Nuclear signals in magnetically ordered media

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1993-01-01

    The book contains a review of theoretical and experimental investigations in the field of nuclear magnetism in magnetically ordered media. The semiclassical theory of nuclear spins motion is developed that takes into consideration three main features of magnetically ordered media: Suhl-Nakamura interaction, quadrupole interaction and microscopic inhomogeneity of nuclear frequencies. The detailed classification of nuclear spin echo signals is given for standard conditions of experiments, when the Suhl-Nakamura interaction is small in comparison with the NMR line width. The extremal states of the electron - nuclear magnetic system are described in detail: the coexistence of NMR and FMR, nuclear ferromagnetism and NMR at fast remagnetization of a ferromagnet. 157 refs., 20 figs

  1. Basis of the nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bahceli, S.

    1996-08-01

    The aim of this book which is translated from English language is to explain the physical and mathematical basis of nuclear magnetic resonance (NMR). There are nine chapters covering different aspects of NMR. In the firs chapter fundamental concepts of quantum mechanics are given at a level suitable for readers to understand NMR fully. The remaining chapters discuss the magnetic properties of nucleus, the interactions between atoms and molecules, continuous wave NMR, pulsed NMR, nuclear magnetic relaxation and NMR of liquids

  2. Force detection of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Rugar, D.; Zueger, O.; Hoen, S.; Yannoni, C.S.; Vieth, H.M.; Kendrick, R.D.

    1994-01-01

    Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10 13 protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging

  3. Low-field magnetic resonance imaging or combined ultrasonography and anti-cyclic citrullinated peptide antibody improve correct classification of individuals as established rheumatoid arthritis

    DEFF Research Database (Denmark)

    Pedersen, Jens K; Lorenzen, Tove; Ejbjerg, Bo

    2014-01-01

    (RA). METHODS: In 53 individuals from a population-based, cross-sectional study, historic fulfilment of the American College of Rheumatology (ACR) 1987 criteria ("classification") or RA diagnosed by a rheumatologist ("diagnosis") were used as standard references. The sensitivity, specificity and Area....../specificity) was 78% (62%/94%) (classification) and 85% (69%/100%) (diagnosis), while for the total synovitis score of MCP joints plus wrist (cut-off ≥10) it was 78% (62%/94%) (both classification and diagnosis). CONCLUSIONS: Compared with the ACR 1987 criteria, low-field MRI alone or adapted criteria incorporating...

  4. Nuclear reactions in ultra-magnetized supernovae

    International Nuclear Information System (INIS)

    Kondratyev, V.N.

    2002-06-01

    The statistical model is employed to investigate nuclear reactions in ultrastrong magnetic fields relevant for supernovae and neutron stars. For radiative capture processes the predominant mechanisms are argued to correspond to modifications of nuclear level densities, and γ-transition energies due to interactions of the field with magnetic moments of nuclei. The density of states reflects the nuclear structure and results in oscillations of reaction cross sections as a function of field strength, while magnetic interaction energy enhances radiative neutron capture process. Implications in the synthesis of r-process nuclei in supernova site are discussed. (author)

  5. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  6. Nuclear and magnetic correlations in a topologically frustrated elemental magnet

    International Nuclear Information System (INIS)

    Stewart, J.R.; Andersen, K.H.; Cywinski, R.

    1999-01-01

    β-Mn is an exchange enhanced paramagnetic metal on the verge of antiferromagnetic order. However, strong spin-fluctuations and topological frustration prevent the formation of static long-range order. We investigate the magnetic properties of the β-MnAl series of alloys in which short-range magnetic order is achieved at low temperature. We extract the short-range nuclear and magnetic correlations using a novel reverse Monte-Carlo procedure. (authors)

  7. Fifty years of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Valderrama, Juan Crisostomo

    1997-01-01

    Short information about the main developments of nuclear magnetic resonance during their fifty existence years is presented. Beside two examples of application (HETCOR and INADEQUATE) to the structural determination of organic compounds are described

  8. Principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Pykett, I.L.; Newhouse, J.H.; Buonanno, F.S.; Brady, T.J.; Goldman, M.R.; Kistler, J.P.; Pohost, G.M.

    1982-01-01

    The physical principles which underlie the phenomenon of nuclear magnetic resonance (NMR) are presented in this primer. The major scanning methods are reviewed, and the principles of technique are discussed. A glossary of NMR terms is included

  9. Nuclear Magnetic Resonance Trackbed Moisture Sensor System

    Science.gov (United States)

    2018-02-01

    In this initial phase, conducted from March 2015 through December 2016, Vista Clara and its subcontractor Zetica Rail successfully developed and tested a man-portable, non-invasive spot-check nuclear magnetic resonance (NMR) moisture sensor that dire...

  10. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Burl, M.; Young, I.R.

    1984-01-01

    A method and apparatus for determining the rate of flow of a liquid in a selected region of a body by nuclear magnetic resonance techniques are described. The method includes a sequence of applying a first magnetic pulse effective to excite nuclear magnetic resonance of a chosen nucleus within the liquid preferentially in a slice of the body which includes the selected region. A period of time (tsub(D)) is waited and then a second magnetic pulse is applied which is effective to excite nuclear magnetic resonance of the nuclei preferentially in the slice, and the free induction decay signal is measured. The whole sequence is repeated for different values of the period of time (tsub(D)). The variation in the value of the measured signal with tsub(D) is then related to the rate of flow of the liquid through the slice. (author)

  11. Simultaneous quantification of oil and protein in cottonseed by low-field time-domain nuclear magnetic resonance

    Science.gov (United States)

    Modification of cottonseed quality traits is likely to be achieved through a combination of genetic modification, manipulation of nutrient allocation and selective breeding. Oil and protein stores comprise the majority of mass of cottonseed embryos. A more comprehensive understanding of the relation...

  12. Nonlinear nuclear magnetic resonance in ferromagnets

    International Nuclear Information System (INIS)

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  13. Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature

    Science.gov (United States)

    Wu, Y. J.; Shen, C.; Tan, Q. H.; Shi, J.; Liu, X. F.; Wu, Z. H.; Zhang, J.; Tan, P. H.; Zheng, H. Z.

    2018-04-01

    The valley Zeeman splitting of monolayer two-dimensional (2D) materials in the magnetic field plays an important role in the valley and spin manipulations. In general, a high magnetic field (6-65 T) and low temperature (2-30 K) were two key measurement conditions to observe the resolvable valley Zeeman splitting of monolayer 2D materials in current reported experiments. In this study, we experimentally demonstrate an effective measurement scheme by employing magnetic circular dichroism (MCD) spectroscopy, which enables us to distinguish the valley Zeeman splitting under a relatively low magnetic field of 1 T at room temperature. MCD peaks related to both A and B excitonic transitions in monolayer MoS2 can be clearly observed. Based on the MCD spectra under different magnetic fields (-3 to 3 T), we obtained the valley Zeeman splitting energy and the g-factors of A and B excitons, respectively. Our results show that MCD spectroscopy is a high-sensitive magneto-optical technique to explore the valley and spin manipulation in 2D materials.

  14. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Beckmann, N.X.

    1986-01-01

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  15. Low-field EPR studies of levels near the top of the barrier in Mn 12-acetate reveal a new magnetization relaxation pathway

    Science.gov (United States)

    Rakvin, Boris; Žilić, Dijana; Dalal, Naresh S.; Harter, Andrew; Sanakis, Yiannis

    2006-07-01

    We show that X-band electron paramagnetic resonance (EPR) measurements using a dual-mode resonance cavity can directly probe the levels near the top of the magnetization reversal barrier in the single-molecule magnet (SMM) Mn 12-acetate. The observed transitions are much sharper than those reported in high-field EPR studies. The observed temperature dependence of the line positions points to the presence of a spin-diffusional mode. The correlation time for such fluctuations is of the order of 6×10 -8 s at 10 K, and follows an Arrhenius activation energy of 35-40 K. These results open a new avenue for understanding the mechanism of tunneling and spin-lattice relaxations in these SMMs.

  16. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  17. Theory of nuclear magnetic moments - LT-35

    Energy Technology Data Exchange (ETDEWEB)

    Kerman, A. K.

    1952-09-15

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  18. Diagnostic apparatus employing nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Hoshino, K.; Yamada, N.; Yoshitome, E.; Matsuura, H.

    1987-01-01

    An NMR diagnostic apparatus is described comprising means for applying a primary magnetic field to a subject; means for applying RF pulses to the subject to give nuclear magnetic resonance to the nuclei of atoms in the subject; means for applying gradient magnetic fields to project an NMR signal of the nuclei at least in one direction; means for observing the NMR signal projected by the gradient magnetic fields applying means; and arithmetic means for constructing a distribution of information on resonance energy as an image from an output signal from the observing means; wherein the gradient magnetic fields applying means comprises means for applying the gradient magnetic fields at a predetermined time and for not applying the gradient magnetic fields at another predetermined time, during the time period of one view; and wherein the gradient magnetic fields applying means further comprises means for measuring the NMR signal during the predetermined time when the gradient magnetic fields are applied, and means for measuring the intensity of the primary magnetic field during the other predetermined time when no gradient magnetic fields are applied

  19. Nuclear magnetic resonance spectroscopy and imaging

    International Nuclear Information System (INIS)

    Jiang Weiping; Wang Qi; Zhou Xin

    2013-01-01

    This paper briefly introduces the basic principle of nuclear magnetic resonance (NMR). Protein's structures and functions and dynamics studied by liquid NMR are elaborated; methods for enhancing the resolution of solid state NMR and its applications are discussed; the principle of magnetic resonance imaging (MRI) is interpreted, and applications in different aspects are reviewed. Finally, the progress of NMR is commented. (authors)

  20. Nuclear magnetic resonance (NMR) tomography

    International Nuclear Information System (INIS)

    Skalpe, I.O.

    1984-01-01

    A brief survey of the working principle of the NMR technique in diagnostical medicine is given. Its clinical usefulness for locating tumors, diagnosing various other diseases, such as some mental illnesses and multiple sclerosis, and its possibilities for studying biochemical processes in vivo are mentioned. The price of NMR image scanners and the problems of the strong magnetic field around the machines are mentioned

  1. Evaluation of PHB nanocomposite by low field NMR

    International Nuclear Information System (INIS)

    Silva, Mariana Bruno Rocha e; Tavares, Maria Ines Bruno

    2009-01-01

    Poly(3-hydroxybutyrate) (PHB) based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B8) were prepared employing solution intercalation method. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR), as a part of characterization methodology, which has been used by Tavares et al. It involves the proton spin-lattice relaxation time, T1 H, by solid state nuclear magnetic resonance, employing low field NMR. X-ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of proton nuclear relaxation time values and by X-ray, which showed an increase in the clay interlamellar space due to the intercalation of the polymer in the clay between lamellae. (author)

  2. Nuclear magnetic resonance studies of lens transparency

    International Nuclear Information System (INIS)

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ( 31 P) NMR spectroscopy was used to measure the 31 P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. 1 H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T 1 and T 2 with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T 1 and T 2 at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T 1 or T 2 , consistent with the phase separation being a low-energy process. 1 H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T 1 relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine γ-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T 1 with increasing magnetic field

  3. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  4. Nuclear magnetic resonance imaging in pharmaceutical research

    International Nuclear Information System (INIS)

    Sarkar, S.K.

    1991-01-01

    Nuclear magnetic resonance imaging has important applications in pharmaceutical research since it allows specific tissue and disease characterization in animal models noninvasively with excellent anatomical resolution and therefore provides improved ability to monitor the efficacy of novel drugs. The utility of NMR imaging in renal studies to monitor the mechanism of drug action and renal function in rats is described. The extension of the resolution of an NMR image to microscopic domain at higher magnetic field strengths and the utility of NMR microimaging in cerebrovascular and tumour metastasis studies in mice are discussed. (author). 40 refs., 14 figs

  5. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Young, I.R.

    1983-01-01

    In a method of investigating the distribution of a quantity in a chosen region of a body (E) by nuclear magnetic resonance techniques movement of the body during the investigation is monitored by probes (A, B C) (C extends orthogonally to A and B) attached to the body and responsive to magnetic fields applied to the body during the investigation. An apparatus for carrying out the method is also described. If movement is detected, due compensation may be made during processing of the collected data, or the latter may be re-ascertained after appropriate adjustment e.g. a change in the RF excitation frequency. (author)

  6. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  7. High-Resolution Nuclear Magnetic Resonance Determination of Transfer RNA Tertiary Base Pairs in Solution. 2. Species Containing a Large Variable Loop

    NARCIS (Netherlands)

    HURD, RE; ROBILLARD, GT; REID, BR

    1977-01-01

    The number of base pairs in the solution structure of several class III D3VN tRNA species from E. coli has been determined by analyzing the number of low-field (-15 to -11 ppm) proton resonances in their nuclear magnetic resonance spectra at 360 MHz. Contrary to previous reports indicating the

  8. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  9. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1979-01-01

    A lateral restraint and control systemm for a nuclear reactor core provides an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit is composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased by an amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  10. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1978-01-01

    Disclosed is a lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  11. Nuclear magnetic resonance - from molecules to man

    OpenAIRE

    Wüthrich, Kurt

    2017-01-01

    Initial observations of the physical phenomenon of nuclear magnetic resonance (NMR) date back to the late 1940s. In the following two decades high-resolution NMR in solution became an indispensible analytical tool in chemistry, and solid state NMR had an increasingly important role in physics. Some of the potentialities of the method for investigations of complex biological systems had also long been anticipated, and initial experiments with biological specimens were described already 30 year...

  12. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  13. Nuclear magnetic resonance and sound velocity measurements of chalk saturated with magnesium rich brine

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    2013-01-01

    The use of low field Nuclear Magnetic Resonance (NMR) to determine petrophysical properties of reservoirs has proved to be a good technique. Together with sonic and electrical resistivity measurements, NMR can contribute to illustrate the changes on chalk elasticity due to different pore water...... solutions of the same ionic strength. Saturation with a solution that contained divalent ions caused a major shift on the distribution of the relaxation time. The changes were probably due to precipitats forming extra internal surface in the sample. Sonic velocities were relatively low in the MgCl2 solution...

  14. A magnet without a magnetic circuit, of high homogeneity, specially for nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Barjhoux, Yves.

    1981-01-01

    This invention concerns a high homogeneity, double access magnet without a magnetic circuit. It is specially adapted for nuclear magnetic resonance (N.M.R.) imagery. Another advantage worth stressing resides in the possibilities of NMR in biochemical analysis which will enable, for instance, cancerous tumours to be detected in vivo. In order to increase the NMR signal ratio over background noise, it is necessary to increase the homogeneity of the B 0 orientating magnetic field. This magnetic field must orientate the nuclear magnetic moments of the elementary particles which compose the body being examined and in particular the protons. It must therefore be relatively constant in intensity and direction in the entire domain of the examination [fr

  15. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    International Nuclear Information System (INIS)

    Mitchell, Jonathan; Fordham, Edmund J.

    2014-01-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general

  16. Experimental test of nuclear magnetization distribution and nuclear structure models

    International Nuclear Information System (INIS)

    Beirsdorfer, P; Crespo-Lopez-Urrutia, J R; Utter, S B.

    1999-01-01

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place

  17. Ultra-low field NMR for detection and characterization of 235 UF6

    Energy Technology Data Exchange (ETDEWEB)

    Espy, Michelle A [Los Alamos National Laboratory; Magnelind, Per E [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory

    2009-01-01

    We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

  18. Magnetic signature surveillance of nuclear fuel

    International Nuclear Information System (INIS)

    Bernatowicz, H.; Schoenig, F.C.

    1981-01-01

    Typical nuclear fuel material contains tramp ferromagnetic particles of random size and distribution. Also, selected amounts of paramagnetic or ferromagnetic material can be added at random or at known positions in the fuel material. The fuel material in its non-magnetic container is scanned along its length by magnetic susceptibility detecting apparatus whereby susceptibility changes along its length are obtained and provide a unique signal waveform of the container of fuel material as a signature thereof. The output signature is stored. At subsequent times in its life the container is again scanned and respective signatures obtained which are compared with the initially obtained signature, any differences indicating alteration or tampering with the fuel material. If the fuel material includes a paramagnetic additive by taking two measurements along the container the effects thereof can be cancelled out. (author)

  19. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  20. Nuclear magnetic resonance in ferromagnetic terbium metal

    International Nuclear Information System (INIS)

    Cha, C.L.T.

    1974-01-01

    The magnetic properties of terbium were studied by the method of zero field nuclear magnetic resonance at 1.5 to 4 and 85 to 160 0 K. Two unconventional experimental techniques have been employed: the swept frequency and the swept temperature technique. Near 4 0 K, triplet resonance line structures were found and interpreted in terms of the magnetic domain and wall structures of ferromagnetic terbium. In the higher temperature range, temperature dependence of the resonance frequency and the quadrupole splitting were measured. The former provides a measurement of the temperature dependence of the magnetization M, and it agrees with bulk M measurements as well as the latest spin wave theory of M(T) (Brooks 1968). The latter agrees well with a calculation using a very general single ion density matrix for collective excitations (Callen and Shtrikman 1965). In addition, the small temperature-independent contribution to the electric field gradient at the nucleus due to the lattice and conduction electrons was untangled from the P(T) data. Also an anomalous and unexplained relaxation phenomenon was also observed

  1. Dedicated low-field MRI in mice

    International Nuclear Information System (INIS)

    Choquet, P; Breton, E; Goetz, C; Constantinesco, A; Marin, C

    2009-01-01

    The rationale of this work is to point out the relevance of in vivo MR images of mice obtained using a dedicated low-field system. For this purpose a small 0.1 T water-cooled electro-magnet and solenoidal radio frequency (RF) transmit-receive coils were used. All MR images were acquired in three-dimensional (3D) mode. An isolation cell was designed allowing easy placement of the RF coils and simple delivery of gaseous anesthesia as well as warming of the animal. Images with and without contrast agent were obtained in total acquisition times on the order of half an hour to four hours on normal mice as well as on animals bearing tumors. Typical in plane pixel dimensions range from 200 x 200 to 500 x 500 μm 2 with slice thicknesses ranging between 0.65 and 1.50 mm. This work shows that, besides light installation and low cost, dedicated low-field MR systems are suitable for small rodents imaging, opening this technique even to small research units.

  2. Dedicated low-field MRI in mice

    Science.gov (United States)

    Choquet, P.; Breton, E.; Goetz, C.; Marin, C.; Constantinesco, A.

    2009-09-01

    The rationale of this work is to point out the relevance of in vivo MR images of mice obtained using a dedicated low-field system. For this purpose a small 0.1 T water-cooled electro-magnet and solenoidal radio frequency (RF) transmit-receive coils were used. All MR images were acquired in three-dimensional (3D) mode. An isolation cell was designed allowing easy placement of the RF coils and simple delivery of gaseous anesthesia as well as warming of the animal. Images with and without contrast agent were obtained in total acquisition times on the order of half an hour to four hours on normal mice as well as on animals bearing tumors. Typical in plane pixel dimensions range from 200 × 200 to 500 × 500 µm2 with slice thicknesses ranging between 0.65 and 1.50 mm. This work shows that, besides light installation and low cost, dedicated low-field MR systems are suitable for small rodents imaging, opening this technique even to small research units.

  3. Nuclear magnetic resonance common laboratory, quadrennial report

    International Nuclear Information System (INIS)

    1994-01-01

    This quadrennial report of the nuclear magnetic resonance common laboratory gives an overview of the main activities. Among the different described activities, only one is interesting for the INIS database: it concerns the Solid NMR of cements used for radioactive wastes storage. In this case, the NMR is used to characterize the structure of the material and the composition, structure and kinetics of formation of the alteration layer which is formed at the surface of concrete during water leaching conditions. The NMR methodology is given. (O.M.)

  4. Nuclear magnetic resonance applications in biological systems

    International Nuclear Information System (INIS)

    Jiang Ling; Liu Maili

    2011-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a state-of-the-art technology which has been widely applied in biological systems over the past decades. It is a powerful tool for macromolecular structure determination in solution, and has the unique advantage of being capable of elucidating the structure and dynamic behavior of proteins during vital biomedical processes. In this review, we introduce the recent progress in NMR techniques for studying the structure, interaction and dynamics of proteins. The methods for NMR based drug discovery and metabonomics are also briefly introduced. (authors)

  5. Proceedings of the nuclear magnetic resonance user meeting

    International Nuclear Information System (INIS)

    1987-01-01

    Studies on utilization of nuclear magnetic resonance, such as: chemical analysis in complexes and organic compounds; structures and magnetic properties of solids; construction of images and; spectrometer designs, are presented. (M.C.K.) [pt

  6. Chiral discrimination in nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Lazzeretti, Paolo

    2017-11-01

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.

  7. The statistic-thermodynamically calculations of magnetic thermodynamically functions for nuclear magnetic moments

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Luo Deli; Feng Kaiming

    2013-01-01

    The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)

  8. QED Theory of the Nuclear Magnetic Shielding in Hydrogenlike Ions

    International Nuclear Information System (INIS)

    Yerokhin, V. A.; Pachucki, K.; Harman, Z.; Keitel, C. H.

    2011-01-01

    The shielding of the nuclear magnetic moment by the bound electron in hydrogenlike ions is calculated ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently, to the first order in the expansion in this parameter. The results obtained lay the basis for the high-precision determination of nuclear magnetic dipole moments from measurements of the g factor of hydrogenlike ions.

  9. Guar gum/borax hydrogel: Rheological, low field NMR and release characterizations

    Directory of Open Access Journals (Sweden)

    M. Grassi

    2013-09-01

    Full Text Available Guar gum (GG and Guar gum/borax (GGb hydrogels are studied by means of rheology, Low Field Nuclear Magnetic Resonance (LF NMR and model drug release tests. These three approaches are used to estimate the mesh size (ζ of the polymeric network. A comparison with similar Scleroglucan systems is carried out. In the case of GGb, the rheological and Low Field NMR estimations of ζ lead to comparable results, while the drug release approach seems to underestimate ζ. Such discrepancy is attributed to the viscous effect of some polymeric chains that, although bound to the network to one end, can freely fluctuate among meshes. The viscous drag exerted by these chains slows down drug diffusion through the polymeric network. A proof for this hypothesis is given by the case of Scleroglucan gel, where the viscous contribution is not so significant and a good agreement between the rheological and release test approaches was found.

  10. Spatial localization in nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Keevil, Stephen F

    2006-01-01

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications. (topical review)

  11. Bipolar programmable current supply for superconducting nuclear magnetic resonance magnets

    Science.gov (United States)

    Koivuniemi, Jaakko; Luusalo, Reeta; Hakonen, Pertti

    1998-09-01

    In high resolution continuous-wave nuclear magnetic resonance (NMR) work well-reproducible, linear sweeps of current are needed. We have developed a microcontroller based programmable current supply, tested with superconducting magnets with inductance of 10 mH and 10 H. We achieved a resolution and noise of 4 ppm. The supply has an internal sweep with programmable ramping rate and a possibility for remote operation from a computer with either GPIB or RS232 interface. It is based on an 18-bit D/A converter. The maximum output current is ±10 A, the sweep rate can be set between 1 μA/s-140 mA/s, and the maximum output voltage is ±2.5 V. In work at ultralow temperatures, especially in superconducting quantum interference device NMR, all rf interference to the experiment should be avoided. One of the sources of this kind of unwanted input is the digital switching noise of fast logic devices. We discuss this problem in the context of our design.

  12. Nuclear magnetic resonance imaging of the thorax

    International Nuclear Information System (INIS)

    Gamsu, G.; Webb, W.R.; Sheldon, P.; Kaufman, L.; Crooks, L.E.; Birnberg, F.A.; Goodman, P.; Hinchcliffe, W.A.; Hedgecock, M.

    1983-01-01

    Nuclear magnetic resonance (NMR) images of the thorax were obtained in ten normal volunteers, nine patients with advanced bronchogenic carcinoma, and three patients with benign thoracic abnormalities. In normal volunteers, mediastinal and hilar structures were seen with equal frequency on NMR images and computed tomographic scans. The hila were especially well displayed on spin-echo images. Spin-echo images showed mediastinal invasion by tumor, vascular and bronchial compression and invasion, and hilar and mediastinal adenopathy. Tumor and benign abnormalities could be separated from mediastinal and hilar fat because of their longer T1 times. Lung masses and nodules as small as 1.5 cm could be seen on the spin-echo images. NMR imaging shows promise for assessment of benign and malignant mediastinal, hilar, and lung abnormalities

  13. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  14. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    International Nuclear Information System (INIS)

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-01-01

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied

  15. Nuclear magnetic resonance spectroscopy in organic chemistry. 2. ed.

    International Nuclear Information System (INIS)

    Zschunke, A.

    1977-01-01

    The fundamentals of nuclear magnetic resonance spectroscopy are discussed only briefly. The emphasis is laid on developing reader's ability to evaluate resonance spectra. The following topics are covered: principles of nuclear magnetic resonance spectroscopy; chemical shift and indirect nuclear spin coupling constants and their relation to the molecular structure; analysis of spectra; and uses for structural analysis and solution of kinetic problems, mainly with regard to organic compounds. Of interest to chemists and graduate students who want to make themselves acquainted with nuclear magnetic resonance spectroscopy

  16. Quantitative analysis by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wainai, T; Mashimo, K [Nihon Univ., Tokyo. Coll. of Science and Engineering

    1976-04-01

    Recent papers on the practical quantitative analysis by nuclear magnetic resonance spectroscopy (NMR) are reviewed. Specifically, the determination of moisture in liquid N/sub 2/O/sub 4/ as an oxidizing agent for rocket propulsion, the analysis of hydroperoxides, the quantitative analysis using a shift reagent, the analysis of aromatic sulfonates, and the determination of acids and bases are reviewed. Attention is paid to the accuracy. The sweeping velocity and RF level in addition to the other factors must be on the optimal condition to eliminate the errors, particularly when computation is made with a machine. Higher sweeping velocity is preferable in view of S/N ratio, but it may be limited to 30 Hz/s. The relative error in the measurement of area is generally 1%, but when those of dilute concentration and integrated, the error will become smaller by one digit. If impurities are treated carefully, the water content on N/sub 2/O/sub 4/ can be determined with accuracy of about 0.002%. The comparison method between peak heights is as accurate as that between areas, when the uniformity of magnetic field and T/sub 2/ are not questionable. In the case of chemical shift movable due to content, the substance can be determined by the position of the chemical shift. Oil and water contents in rape-seed, peanuts, and sunflower-seed are determined by measuring T/sub 1/ with 90 deg pulses.

  17. Relaxation rates of low-field gas-phase ^129Xe storage cells

    Science.gov (United States)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  18. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  19. Evaluation of T2-weighted versus short-tau inversion recovery sagittal sequences in the identification and localization of canine intervertebral disc extrusion with low-field magnetic resonance imaging.

    Science.gov (United States)

    Housley, Daniel; Caine, Abby; Cherubini, Giunio; Taeymans, Olivier

    2017-07-01

    extrusion in low-field magnetic resonance. © 2017 American College of Veterinary Radiology.

  20. One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co [Medical Physics Group, Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation of the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.

  1. Enhanced nuclear magnetism: some novel features and prospective experiments

    International Nuclear Information System (INIS)

    Abragam, A.; Bleaney, B.

    1983-01-01

    It is shown that methods used for studying nuclear magnetism and nuclear magnetic ordering can be extended to 'enhanced nuclear magnetism'. These methods include the use of r.f. fields for adiabatic demagnetization in the rotating frame (a.d.r.f) and beams of neutrons whose spins interact with the nuclear spins. The 'enhancement' of the nuclear moment arises from the electronic magnetization M 1 induced through the hyperfine interaction. It is shown that the spatial distribution of M 1 is the same as that of The Van Vleck magnetization induced by an external field, provided that J is a good quantum number. The spatial distributions are not in general the same in Russell-Saunders coupling, eg. in the 3d group. The Bloch equations are extended to include anisotropic nuclear moments. The 'truncated' spin Hamiltonian is derived for spin-spin interaction between enhanced moments. A general cancellation theorem for second-order processes in spin-lattice relaxation is derived. The interactions of neutrons with the true nuclear moment, the Van Vleck moment, the 'pseudonuclear' moment and the 'pseudomagnetic' nuclear moment are discussed. Ordered states of enhanced nuclear moment systems are considered, together with the conditions under which they might be produced by a.d.r.f. following dynamic nuclear polarization. (U.K.)

  2. Nuclear magnetic resonance of randomly diluted magnetic materials

    International Nuclear Information System (INIS)

    Magon, C.J.

    1985-01-01

    The temperature dependence of the nuclear relaxation rates and line shapes of the F O resonance in the diluted antiferromagnet Fe x Zn 1-x F 2 and Mn x Zn 1-x F 2 are studied over a large temperature range T N 1 ) of the F O nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 ≤ x ≤ 0.8. The temperature dependence of 1/T 1 for T N 1 data near T N was used to study Random Field Effects on the critical behavior of Mn .65 Zn . 3 5 F 2 , for fields applied parallel and perpendicular to the easy (C) axis. It was found that the transition temperature T N depressed substantially with field only for H o || C. The experimental results are in general accord with the theory for Random Field Effects in disordered, anisotropic antiferromagnets. The critical divergence of the inhomogeneously broadened F O NMR was studied in Fe .6 Zn .4 F 2 above T N . The experimental results agree with Heller's calculation of the NMR line broadening by Random Field Effects. With H o || C the line shape changes from Gaussian towards Lozentzian for t -2 and below T N its line width increase qualitatively following the increase in the sublattice magnetization. (author)

  3. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  4. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    Science.gov (United States)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  5. Low-field dc magnetization investigations in a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystal: observation of a magnetic phase transition at the vortex melting line

    Energy Technology Data Exchange (ETDEWEB)

    Revaz, B. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Triscone, G. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Fabrega, L. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Junod, A. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Muller, J. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee

    1996-03-20

    The mixed-state magnetization M(H parallel c, T) of a Bi-2212 single crystal has been investigated with high resolution using a SQUID magnetometer. In the high-temperature region (50 K < T < T{sub c} = 80.2 K), we found that the slope {partial_derivative}M/{partial_derivative}H vertical stroke {sub T} vs. H shows a positive step at H{sub trans}(T) {approx} H{sub 0} x (1 - T/T{sub c}){sup n} with H{sub 0} = 2340 Oe and n = 1.28. This observation is compatible with a first-order phase transition with a distribution of internal fields, and is attributed to the melting of the 3D vortex lattice. The estimated entropy jump is 1 k{sub B}/vortex/layer CuO. However, when T is lower than 50 K, we observe radical changes in M(H); the 3D melting line divides into a decoupling line at a temperature-independent field and the onset of the irreversibility. (orig.).

  6. Low-field dc magnetization investigations in a Bi2Sr2CaCu2O8 single crystal: observation of a magnetic phase transition at the vortex melting line

    International Nuclear Information System (INIS)

    Revaz, B.; Triscone, G.; Fabrega, L.; Junod, A.; Muller, J.

    1996-01-01

    The mixed-state magnetization M(H parallel c, T) of a Bi-2212 single crystal has been investigated with high resolution using a SQUID magnetometer. In the high-temperature region (50 K c = 80.2 K), we found that the slope ∂M/∂H vertical stroke T vs. H shows a positive step at H trans (T) ∼ H 0 x (1 - T/T c ) n with H 0 = 2340 Oe and n = 1.28. This observation is compatible with a first-order phase transition with a distribution of internal fields, and is attributed to the melting of the 3D vortex lattice. The estimated entropy jump is 1 k B /vortex/layer CuO. However, when T is lower than 50 K, we observe radical changes in M(H); the 3D melting line divides into a decoupling line at a temperature-independent field and the onset of the irreversibility. (orig.)

  7. Nuclear magnetic resonance imaging of the kidney

    International Nuclear Information System (INIS)

    Hricak, H.; Crooks, L.; Sheldon, P.; Kaufman, L.

    1983-01-01

    The role of nuclear magnetic resonance (NMR) imaging of the kidney was analyzed in 18 persons (6 normal volunteers, 3 patients with pelvocaliectasis, 2 with peripelvic cysts, 1 with renal sinus lipomatosis, 3 with renal failure, 1 with glycogen storage disease, and 2 with polycystic kidney disease). Ultrasound and/or computed tomography (CT) studies were available for comparison in every case. In the normal kidney distinct anatomical structures were clearly differentiated by NMR. The best anatomical detail ws obtained with spin echo (SE) imaging, using a pulse sequence interval of 1,000 msec and an echo delay time of 28 msec. However, in the evaluation of normal and pathological conditions, all four intensity images (SE 500/28, SE 500/56, SE 1,000/28, and SE 1,000/56) have to be analyzed. No definite advantage was found in using SE imaging with a pulse sequence interval of 1,500 msec. Inversion recovery imaging enhanced the differences between the cortex and medulla, but it had a low signal-to-noise level and, therefore, a suboptimal overall resolution. The advantages of NMR compared with CT and ultrasound are discussed, and it is concluded that NMR imaging will prove to be a useful modality in the evaluation of renal disease

  8. Selectivity in multiple quantum nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible

  9. Selectivity in multiple quantum nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Warren Sloan [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  10. Nuclear magnetic resonance studies of metabolic regulation

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Han, C.H.; Whaley, T.W.

    1983-01-01

    Nuclear magnetic resonance (NMR) techniques for the detection of the metabolic transformations of biological compounds labeled with stable isotopes, particularly carbon-13 have been explored. We have studied adipose tissue in the intact rat, the exteriorized epididymal fat pad, and the isolated adipocyte. Triacylglycerol metabolism in adipose tissue is regulated by lipogenic factors (insulin, corticosterone, thyroxine, and growth hormone) and lipolytic factors (glucagon and catecholamines). The synthesis of triglyceride from 5.5 mM glucose was stimulated by about 4-fold by 10 nM insulin. Triglyceride synthesis from glucose in the presence of insulin occurred at a rate of 330 nmol/hr/10 6 cells. Since the NMR signals from free and esterified fatty acids and glycerol are distinct, we could directly measure the rate of hormone-stimulated lipolysis. Epinephrine (10 μM) gave a lipolytic rate of 0.30 μmol/hr/10 6 cells as monitored by free-glycerol appearance in the medium. 13 C NMR provides a superior method for the measurement of triglyceride metabolism since it directly measures the changes in the substrates and products in situ

  11. Quantum information processing and nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cummins, H.K.

    2001-01-01

    Quantum computers are information processing devices which operate by and exploit the laws of quantum mechanics, potentially allowing them to solve problems which are intractable using classical computers. This dissertation considers the practical issues involved in one of the more successful implementations to date, nuclear magnetic resonance (NMR). Techniques for dealing with systematic errors are presented, and a quantum protocol is implemented. Chapter 1 is a brief introduction to quantum computation. The physical basis of its efficiency and issues involved in its implementation are discussed. NMR quantum information processing is reviewed in more detail in Chapter 2. Chapter 3 considers some of the errors that may be introduced in the process of implementing an algorithm, and high-level ways of reducing the impact of these errors by using composite rotations. Novel general expressions for stabilising composite rotations are presented in Chapter 4 and a new class of composite rotations, tailored composite rotations, presented in Chapter 5. Chapter 6 describes some of the advantages and pitfalls of combining composite rotations. Experimental evaluations of the composite rotations are given in each case. An actual implementation of a quantum information protocol, approximate quantum cloning, is presented in Chapter 7. The dissertation ends with appendices which contain expansions of some equations and detailed calculations of certain composite rotation results, as well as spectrometer pulse sequence programs. (author)

  12. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  13. The Nuclear Magnetic Resonance and its utilization in image formation

    International Nuclear Information System (INIS)

    Bonagamba, T.J.; Tannus, A.; Panepucci, H.

    1987-01-01

    Some aspects about Nuclear Magnetic Resonance (as Larmor Theorem, radio frequency pulse, relaxation of spins system) and its utilization in two dimensional image processing with the necessity of a tomography plane are studied. (C.G.C.) [pt

  14. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary; Hussain, Muhammad Mustafa; Emwas, Abdul-Hamid M.; Agarwal, Praveen; Archer, Lynden A.

    2010-01-01

    using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core

  15. Nuclear magnetic ordering in PrNi5

    International Nuclear Information System (INIS)

    Kubota, M.

    1980-11-01

    The specific heat of the hyperfine enhanced nuclear magnetic system PrNi 5 has been measured from 0.2 mK to 100 mK and in magnetic fields up to 6 T. The system was found to order at (0.40+-0.02) mK. From the study of the measured thermodynamic quantities in various magnetic fields, we obtain various information, the order at T=0 K is ferromagnetic, the hyperfine enhancement factor 1+K=(12.2+-0.5), the enhanced nuclear magnetic moment is (0.027+-0.004)μsub(B) and a nuclear exchange parameter μsub(j)Ksup(N)sub(ij)/ksub(B)=(0.20+-0.04) mK. The nature of the interactions which cause the ordering is discussed, together with the magnetic properties of the system deduced from the analysis. (orig.)

  16. Magnetic resonance vs. computerized tomography, ultrasonic examinations and nuclear medicine

    International Nuclear Information System (INIS)

    Bruna, J.

    1985-01-01

    A symposium on magnetic resonance in nuclear medicine was held from 23rd to 27th January, 1985 in Munich and Garmisch-Partenkirchen. Discussed were suitable methods, the use of contrast media, the evaluation of results, the application of nuclear magnetic resonance in examining various body organs, and the latest apparatus. NMR achievements in medicine were compared to those by other diagnostic methods. (M.D.)

  17. Time-Domain Nuclear Magnetic Resonance Investigation of Water Dynamics in Different Ginger Cultivars.

    Science.gov (United States)

    Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang

    2016-01-20

    Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.

  18. GEOCHEMICAL CONTROLS ON NUCLEAR MAGNETIC RESONANCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Knight, Rosemary

    2008-01-01

    Proton nuclear magnetic resonance (NMR) is used in the Earth Sciences as a means of obtaining information about the molecular-scale environment of fluids in porous geological materials. Laboratory experiments were conducted to advance our fundamental understanding of the link between the NMR response and the geochemical properties of geological materials. In the first part of this research project, we studied the impact of both the surface-area-to-volume ratio (S/V) of the pore space and the surface relaxivity on the NMR response of fluids in sand-clay mixtures. This study highlighted the way in which these two parameters control our ability to use NMR measurements to detect and quantify fluid saturation in multiphase saturated systems. The second part of the project was designed to explore the way in which the mineralogic form of iron, as opposed to simply the concentration of iron, affects the surface relaxation rate and, more generally, the NMR response of porous materials. We found that the magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. Of particular significance from this study was the finding of an anomalously large surface relaxivity of magnetite compared to that of the other iron minerals. Differences in the NMR response of iron minerals were seen in column experiments during the reaction of ferrihydrite-coated quartz sand with aqueous Fe(II) solutions to form goethite, lepidocrocite and magnetite; indicating the potential use of NMR as a means of monitoring geochemical reactions. The final part of the research project investigated the impact of heterogeneity, at the pore-scale, on the NMR response. This work highlighted the way in which the geochemistry, by controlling the surface relaxivity, has a significant impact on the link between NMR data and the microgeometry of the pore space.

  19. A superconductive electromagnet for nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Jelinek, J.; Srnka, A.; Studenik, J.

    1989-01-01

    The superconductive magnet includes at least three concentric frames mounted onto each other; they can be dismantled, or readjusted by axial or rotary motion. The frames carry the main coils and the inner and outer balancing coils. This arrangement offers a higher number of degrees of freedom for the calculation of the system geometry so as to attain the optimum magnetic field configuration. The design also allows the superconductive magnet to be operated at a liquid helium level depressed below the upper magnet plate. (J.B.). 1 fig

  20. Susceptibility effects in nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ziener, Christian Herbert

    2008-01-01

    The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)

  1. Low-field susceptibilities of rare earth spin glass alloys

    International Nuclear Information System (INIS)

    Sarkissian, B.V.B.

    1977-01-01

    Static susceptibility in various applied fields and AC susceptibility data on Sc 13% Gd and Sc 4.5% Tb spin glass alloys are reported. The data show that the sharp peak at the freezing temperature, Tsub(g), normally observed in the low-field susceptibility of spin glasses containing 3d magnetic impurities is observed here in the case of Gd, which is an S state solute, but not for Tb. On the contrary, for the Sc-Tb alloy a rather rounded maximum is observed which becomes slightly sharper with increasing applied magnetic fields. (author)

  2. Application of transient magnetic field to the measurement of nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ribas, R.V.

    1987-01-01

    A review on: the mechanism for producing transient magnetic field; techniques for measuring nuclear gyromagnetic factor; and some examples of recent measurements using this technique is presented. (M.C.K.) [pt

  3. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  4. Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis

    DEFF Research Database (Denmark)

    Guðjónsdóttir, María; Gacutan, Manuel D.; Mendes, Ana Carina Loureiro

    2015-01-01

    The effects of using electrospun chitosan fibres as a wrapping material for dry-ageing beef was studied and compared to traditional dry-ageing and wet-ageing of beef for up to 21 days. The chitosan treatment showed improved results in terms of yield, reduction of microbial counts, yeasts and moulds......, and lighter appearance compared to traditional dry-ageing. Weight and trimming losses were minimal in the wet-ageing beef. However, significant growth of lactic acid bacteria was observed in this group. Transverse relaxation times indicated a lower degree of muscle denaturation during ageing in the chitosan...... chitosan fibre mats have potential as a wrapping material for improved quality during dry-ageing of beef....

  5. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  6. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID

    Science.gov (United States)

    Wang, Ning; Jin, Yirong; Li, Shao; Ren, Yufeng; Tian, Ye; Chen, Yingfei; Li, Jie; Chen, Genghua; Zheng, Dongning

    2012-12-01

    We have detected the ultra-low field nuclear magnetic resonance signal from water samples using a high-Tc dc-SQUID sensor. The measurements were carried out in a homemade magnetically shielded room. Resonance spectra of 1H from tap water and other substance samples were obtained in the field range from 7-110μT corresponding to resonance frequency 300-4.68kHz. Two kind of experimental systems were built, the first one is a directly coupled system, its signal to noise ratio in a single-shot measurement is around 4 for about 15 ml water. The second one used a Cu coil to transfer the flux to the SQUID sensor. Signal to noise ratio was improved to about 20 in a single-shot measurement for 5ml water, which benefits from the improvement of coupling efficiency. The effect of residual gradient in the magnetically shielded room was also investigated. J-coupling of 2,2,2-Trifluoroethyl alcohol was measured, the peaks are consistent with high field results.

  7. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID

    International Nuclear Information System (INIS)

    Wang Ning; Jin Yirong; Li Shao; Ren Yufeng; Tian Ye; Chen Yingfei; Li Jie; Chen Genghua; Zheng Dongning

    2012-01-01

    We have detected the ultra-low field nuclear magnetic resonance signal from water samples using a high-T c dc-SQUID sensor. The measurements were carried out in a homemade magnetically shielded room. Resonance spectra of 1 H from tap water and other substance samples were obtained in the field range from 7-110μT corresponding to resonance frequency 300-4.68kHz. Two kind of experimental systems were built, the first one is a directly coupled system, its signal to noise ratio in a single-shot measurement is around 4 for about 15 ml water. The second one used a Cu coil to transfer the flux to the SQUID sensor. Signal to noise ratio was improved to about 20 in a single-shot measurement for 5ml water, which benefits from the improvement of coupling efficiency. The effect of residual gradient in the magnetically shielded room was also investigated. J-coupling of 2,2,2-Trifluoroethyl alcohol was measured, the peaks are consistent with high field results.

  8. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  9. Preparation of polyurethane/montmorillonite nanocomposites by solution: characterization using low-field NMR and study of thermal stability

    International Nuclear Information System (INIS)

    Silva, Marcos Anacleto da; Tavares, Maria Ines B.

    2009-01-01

    Polyurethanes (PU) are important and versatile class of polymer materials, especially because of their desirable properties, such as high abrasion resistance, tear strength, excellent shock absorption, flexibility and elasticity. However, there also exist some disadvantages, for example, low thermal stability and barrier properties. To overcome the disadvantages, research on novel polyurethane/clay nanocomposites has been carried out. The investigation of the structure of polyurethane/clay nanocomposites has been mostly done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In this work, PU/clay films were prepared by solution, and the obtained nanocomposites were characterized by XRD and low-field nuclear magnetic resonance (NMR). Low field NMR measurements were able to provide important information on molecular dynamics of the polymeric nanocomposites PU/OMMT. In addition, they also confirmed the results obtained by XRD. The thermal stability was determined by thermogravimetric analysis (TGA). (author)

  10. Magnetic confinement in plasmas in nuclear devices

    International Nuclear Information System (INIS)

    Tull, C.G.

    1979-01-01

    The main emphasis of the magnetic fusion energy research program today lies in the development of two types of confinement schemes: magnetic mirrors and tokamaks. Experimental programs for both of these confinement schemes have shown steady progress toward achieving fusion power breakeven. The scaling of the current machines to a reactor operating regime and newly developed methods for plasma heating will very likely produce power breakeven within the next decade. Predictions are that the efficiency in a fusion power plant should exceed 32%

  11. Low-field MRI can be more sensitive than high-field MRI

    Science.gov (United States)

    Coffey, Aaron M.; Truong, Milton L.; Chekmenev, Eduard Y.

    2013-12-01

    MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium ‘hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of 1H and 13C spins. Experimental SNRs at 0.0475 T were ∼40% of those obtained at 4.7 T. Conservatively, theoretical SNRs at 0.0475 T 1.13-fold higher than those at 4.7 T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7 T and 0.0475 T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters.

  12. Characteristics of Xanthosoma sagittifolium roots during cooking, using physicochemical analysis, uniaxial compression, multispectral imaging and low field NMR spectroscopy

    DEFF Research Database (Denmark)

    Boakye, Abena Achiaa; Gudjónsdóttir, María; Skytte, Jacob Lercke

    2017-01-01

    and white varieties of cocoyam roots were thus analysed by low field nuclear magnetic resonance relaxometry, multispectral imaging, uniaxial compression testing, and relevant physicochemical analysis in the current study. Both varieties had similar dry matter content, as well as physical and mechanical...... of that spectral region for rapid analysis of dry matter and water content of the roots. The small, but significant differences in the structural and gelatinization characteristics of the two varieties indicated that they may not be equally suited for further processing, e.g. to flours or starches. Processors thus...

  13. The effects of amylose and starch phosphate on starch gel retrogradation studied by low-field 1H NMR relaxometry

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Blennow, A.; Engelsen, S. B.

    2003-01-01

    Low-field Nuclear Magnetic Resonance (23 MHz) was used to study the effects of the degree of phosphorylation, the amylose content and the amylopectin chain length distribution on gel retrogradation for a set of 26 starches, six of which were of crystal polymorph type A, 18 of type B and two of type......) relaxation curves from the two measurements (day 1 and day 7) could be used as a simple, illustrative way of describing the retrogradation. Three different behaviours were identified: One group of samples (mostly potato starches) slowly changed from a soft to a more rigid gel from day 1 to 7. A second group...

  14. Apparatus and method for nuclear magnetic resonance scanning and mapping

    International Nuclear Information System (INIS)

    Damadian, R.V.

    1983-01-01

    An improved apparatus and method is disclosed for analyzing the chemical and structural composition of a specimen including whole-body specimens which may include, for example, living mammals, utilizing nuclear magnetic resonance (NMR) techniques. A magnetic field space necessary to obtain an NMR signal characteristic of the chemical structure of the specimen is focused to provide a resonance domain of selectable size, which may then be moved in a pattern with respect to the specimen to scan the specimen

  15. Nuclear magnetic resonance spectroscopy in food applications: a critical appraisal

    International Nuclear Information System (INIS)

    Divakar, S.

    1998-01-01

    Usefulness of Nuclear Magnetic Resonance (NMR) spectroscopy in food applications is presented in this review. Some of the basic concepts of NMR pertaining to one-dimensional and two-dimensional techniques, solid-state NMR and Magnetic Resonance Imaging (MRI) are discussed. Food applications dealt with encompass such diverse areas like nature and state of water in foods, detection and quantitation of important constituents of foods, intact food systems and NMR related to food biology. (author)

  16. Method and apparatus for measuring nuclear magnetic properties

    Science.gov (United States)

    Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander

    1987-01-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.

  17. Computer Assisted Instruction (Cain) For Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Jaturonrusmee, Wasna; Arthonvorakul, Areerat; Assateranuwat, Adisorn

    2005-10-01

    A computer assisted instruction program for nuclear magnetic resonance spectroscopy was developed by using Author ware 5.0, Adobe Image Styler 1.0, Adobe Photo shop 7.0 and Flash MX. The contents included the basic theory of 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, the instrumentation of NMR spectroscopy, the two dimensional (2D) NMR spectroscopy and the interpretation of NMR spectra. The program was also provided examples, and exercises, with emphasis on NMR spectra interpretation to determine the structure of unknown compounds and solutions for self study. The questionnaire from students showed that they were very satisfied with the software

  18. Evaluation of nuclear magnetic resonance spectroscopy variability

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia

    2014-11-01

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  19. 6-quark contribution to nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ito, H.

    1985-01-01

    The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes

  20. Quantitative dosing by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Solomon, I.

    1958-01-01

    The measurement of the absolute concentration of a heavy water reference containing approximately 99.8 per cent of D 2 O has been performed, by an original magnetic resonance method ('Adiabatic fast passage method') with a precision of 5.10 -5 on the D 2 O concentration. (author) [fr

  1. Detection of Virgin Olive Oil Adulteration Using Low Field Unilateral NMR

    Directory of Open Access Journals (Sweden)

    Zheng Xu

    2014-01-01

    Full Text Available The detection of adulteration in edible oils is a concern in the food industry, especially for the higher priced virgin olive oils. This article presents a low field unilateral nuclear magnetic resonance (NMR method for the detection of the adulteration of virgin olive oil that can be performed through sealed bottles providing a non-destructive screening technique. Adulterations of an extra virgin olive oil with different percentages of sunflower oil and red palm oil were measured with a commercial unilateral instrument, the profile NMR-Mouse. The NMR signal was processed using a 2-dimensional Inverse Laplace transformation to analyze the transverse relaxation and self-diffusion behaviors of different oils. The obtained results demonstrated the feasibility of detecting adulterations of olive oil with percentages of at least 10% of sunflower and red palm oils.

  2. Study of relaxation times of nanocomposites of starch/montmorillonite employing low field NMR

    International Nuclear Information System (INIS)

    Brito, Luciana M.; Tavares, Maria Ines B.

    2011-01-01

    Due to its various applications and features, especially in therapies for controlled release of pharmaceuticals, polymers are among the most widely used excipients in pharmaceutical technology. One of the most promising nanocomposites is formed from organic polymer and inorganic clay minerals. Nanocomposites of starch/montmorillonite were prepared employing solution intercalation and characterized by proton spin-lattice relaxation time, through NMR relaxometry. The characterization of nanocomposites was done by X-ray diffraction and by nuclear magnetic resonance. The results showed that nanostructured films were obtained by intercalation from solution. Furthermore, the use of low field NMR, T1H, provided more precise information about the movement of materials, being complementary to the results obtained by X-ray diffraction. (author)

  3. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  4. Basic principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Valk, J.; MacLean, C.; Algra, P.R.

    1985-01-01

    The intent of this book is to help clinicians understand the basic physical principles of magnetic resonance (MR) imaging. The book consists of the following: a discussion of elementary considerations; pulse sequencing; localization of MR signals in space; MR equipment; MR contrast agents; clinical applications; MR spectroscopy; and biological effects of MR imaging; a set of appendixes; and a bibliography. Illustrations and images are included

  5. Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.

    1988-01-01

    in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...

  6. Nuclear magnetic resonance of D(-)-α-amino-benzyl penicillin

    International Nuclear Information System (INIS)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S.; Menezes, Sonia M.C.

    1995-01-01

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-α-amino-benzyl penicillin were analysed using 13 C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed

  7. Selection of planes in nuclear magnetic resonance tomography

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1986-01-01

    A prototype aiming to obtain images in nuclear magnetic resonance tomography was developed, by adjusting NMR spectrometer in the IFQSC Laboratory. The techniques for selecting planes were analysed by a set of computer codes, which were elaborated from Bloch equation solutions to simulate the spin system behaviour. Images were obtained using planes with thickness inferior to 1 cm. (M.C.K.)

  8. Communication patterns in the field of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Tomov, D.; Filipov, F.; Kolev, N.

    1986-01-01

    A scientometric analysis of publications presented in four secondary information sources on the problem of nuclear magnetic resonance in physics, biomedicine and technology was carried out. A dynamic growth of the number of articles in biomedicine over 1982 to 1984 was established. Secondary publications play an important role in scientific communications as revealed by citation analysis. (author)

  9. Neutron studies of nuclear magnetism at ultralow temperature

    DEFF Research Database (Denmark)

    Siemensmeyer, K.; Clausen, K.N.; Lefmann, K.

    1997-01-01

    Nuclear magnetic order in copper and silver has been investigated by neutron diffraction. Antiferromagnetic order is observed in these simple, diamagnetic metals at temperatures below 50 nK and 560 pK, respectively. Both crystallize in the FCC-symmetry which is fully frustrated for nearest...

  10. Application of low field intensity joint MRI in ankle injury

    International Nuclear Information System (INIS)

    Zhang Zhenyu; Wang Wei

    2011-01-01

    Objective: To observe the diagnostic value of the low field intensity joint magnetic resonance imaging (MRI) in traumatic ankles. Methods: Through a retrospective examination and collection of 50 cases with complete information and checked by arthroscope or/and operated from Jan 2007 to Jun 2010, the diagnostic value ligament of the ankle joint, bone contusion,occult fracture, talus cartilage, and tendon could be evaluated. Cases of fracture for which could be diagnosed by X rays and CT were not included in this research. Results: The special low field intensity joint MRI had a high diagnostic sensitivity of 88.9% to ligamentum talofibulare anterius, but was only 50% sensitive to ligamentum calcaneofibulare. Its sensitivity to injury of ligamentum deltoideum and distal tibiofibular syndesmosis was up to 100%. Tendon injury, bone contusion and occult fracture could be exactly diagnosed. Its total sensitivity on talus cartilage traumatism was 70.6%. Its diagnosis sensitivity to talus cartilage traumatism at the 3rd-5th period by Mintz was 90%, with a lower one of 42.9% at the 1st-2nd period. Talus cartilage traumatism could be exactly predicted by osseous tissue dropsy below cartilage. Conclusion: The special low field intensity joint MRI is highly applicable to the diagnosis on ankle joint traumatism and facilitates clinical treatment. (authors)

  11. 13. Nuclear magnetic resonance users meeting. Extended abstracts book

    International Nuclear Information System (INIS)

    2011-01-01

    This annual meeting, held in Brazil from May 2 - 6, 2011 comprised seventeen lectures, given by invited speakers from Brazil and other countries, about the use of nuclear magnetic resonance for various analytical purposes; results from ninety five research works, most being carried out by scientific groups from various Brazilian R and D institutions, presented as congress panels/posters. A General Assembly meeting of AUREMN, the Brazilian Association of Nuclear Magnetic Resonance Users, also took place during the event. Main topics of the research works presented at this meeting were thus distributed: 54% in analytical chemistry (mainly organic chemistry, both experimental and theoretical works), 18% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 15% in materials science (including nanostructures, petroleum and alternative fuels), 10% in mathematical methods and computing for the interpretation of NMR data, and the remaining 3% in improvements in instrumentation interfaces or magnetic field configurations.

  12. 13. Nuclear magnetic resonance users meeting. Extended abstracts book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This annual meeting, held in Brazil from May 2 - 6, 2011 comprised seventeen lectures, given by invited speakers from Brazil and other countries, about the use of nuclear magnetic resonance for various analytical purposes; results from ninety five research works, most being carried out by scientific groups from various Brazilian R and D institutions, presented as congress panels/posters. A General Assembly meeting of AUREMN, the Brazilian Association of Nuclear Magnetic Resonance Users, also took place during the event. Main topics of the research works presented at this meeting were thus distributed: 54% in analytical chemistry (mainly organic chemistry, both experimental and theoretical works), 18% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 15% in materials science (including nanostructures, petroleum and alternative fuels), 10% in mathematical methods and computing for the interpretation of NMR data, and the remaining 3% in improvements in instrumentation interfaces or magnetic field configurations.

  13. Nuclear magnetic resonance in cardiology: cardiac MRI

    International Nuclear Information System (INIS)

    Fernandez, Claudio C.

    2003-01-01

    As a new gold standard for mass, volume and flow, the magnetic resonance imaging (MRI) is probably the most rapidly evolving technique in the cardiovascular diagnosis. An integrated cardiac MRI examination allows the evaluation of morphology, global and regional function, coronary anatomy, perfusion, viability and myocardial metabolism, all of them in only one diagnostic test and in a totally noninvasive manner. The surgeons can obtain relevant information on all aspects of diseases of the heart and great vessels, which include anatomical details and relationships with the greatest field of view, and may help to reduce the number of invasive procedures required in pre and postoperative evaluation. However, despite these excellent advantages the present clinical utilization of MRI is still too often restricted to few pathologies or case studies in which other techniques fail to identify the cardiac or cardiovascular abnormalities. If magnetic resonance is an excellent method for diagnosing so many different cardiac conditions, why is so little it used in routine cardiac practice? Cardiologists are still not very familiar with the huge possibilities or cardiovascular MRI utilities. Our intention is to give a comprehensive survey of many of the clinical applications of this challenger technique in the study of the heart and great vessels. Those who continue to ignore this important and mature imaging technique will rightly fail to benefit. (author) [es

  14. Nuclear magnetic resonance studies of biological systems

    International Nuclear Information System (INIS)

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T 1 relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by 31 P NMR

  15. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Johnson, K.W.; Lowers, R.H.

    1976-01-01

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  16. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe

    2015-01-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields

  17. Nuclear magnetic relaxation in aqueous praseodymium and europium solutions

    International Nuclear Information System (INIS)

    Lopez, J.L.; Diaz, D.

    1991-01-01

    A general theory for the relaxation of the nuclear spin in paramagnetic complexes where the electronic spin is within a slow-movement regime was presented by Benetis et al. and applied to d-group elements (Ni 2+ , Co 2+ ). This paper show the possibility to apply such formalism to f-group elements and it was developed for S=3(Eu 3+ ). A group of magnitudes characterizing the microstructure and dynamics of these solutions is reported with the approximations used. The dispersion of the nuclear magnetic relaxation (NMRD) for the proton of the variable field was also assessed which had a similar behaviour to what was experimentally reported

  18. Magnetic stirring welding method applied to nuclear power plant

    International Nuclear Information System (INIS)

    Hirano, Kenji; Watando, Masayuki; Morishige, Norio; Enoo, Kazuhide; Yasuda, Yuuji

    2002-01-01

    In construction of a new nuclear power plant, carbon steel and stainless steel are used as base materials for the bottom linear plate of Reinforced Concrete Containment Vessel (RCCV) to achieve maintenance-free requirement, securing sufficient strength of structure. However, welding such different metals is difficult by ordinary method. To overcome the difficulty, the automated Magnetic Stirring Welding (MSW) method that can demonstrate good welding performance was studied for practical use, and weldability tests showed the good results. Based on the study, a new welding device for the MSW method was developed to apply it weld joints of different materials, and it practically used in part of a nuclear power plant. (author)

  19. Proceedings of the nuclear magnetic resonance user meeting. Anais do Encontro de Usuarios de Ressonancia Magnetica Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    Studies on utilization of nuclear magnetic resonance, such as: chemical analysis in complexes and organic compounds; structures and magnetic properties of solids; construction of images and; spectrometer designs, are presented. (M.C.K.).

  20. Nuclear magnetic resonance of randomly diluted magnetic materials; Ressonancia nuclear magnetica em materiais magneticos diluidos aleatoriamente

    Energy Technology Data Exchange (ETDEWEB)

    Magon, C J

    1986-12-31

    The temperature dependence of the nuclear relaxation rates and line shapes of the F{sub O} resonance in the diluted antiferromagnet Fe{sub x} Zn{sub 1-x} F{sub 2} and Mn{sub x} Zn{sub 1-x} F{sub 2} are studied over a large temperature range T{sub N} < {approx} T {<=} 300 K. The high (room) temperature spin-lattice relaxation rates (1/T{sub 1}) of the F{sub O} nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 {<=} x {<=} 0.8. The temperature dependence of 1/T{sub 1} for T{sub N}magnetization. (author).

  1. The origins and future of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wehrli, F.W.

    1992-01-01

    What began as a curiosity of physics has become the preeminent method of diagnostic medical imaging and may displace x-ray-based techniques in the 21st century. During the past two decades nuclear magnetic resonance has revolutionized chemistry, biochemistry, biology and, more recently, diagnostic medicine. Nuclear magnetic resonance imaging, (MRI) as it is commonly called, is fundamentally different from x-ray-based techniques in terms of the principles of spatial encoding and mechanisms of signal and contrast generation involved. MRI has a far richer ultimate potential than any other imaging technique known today, and its technology and applications are still far from maturation, which may not occur until early in the 21st century. 23 refs., 6 figs

  2. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    International Nuclear Information System (INIS)

    Newman, R.J.

    1984-01-01

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin. (U.K.)

  3. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.J. (Glasgow Western Infirmary (UK))

    1984-09-01

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin.

  4. Display of cross sectional anatomy by nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hinshaw, W.S.; Andrew, E.R.; Bottomley, P.A.; Holland, G.N.; Moore, W.S.; Worthington, B.S.

    1978-01-01

    High definition cross-sectional images produced by a new nuclear magnetic resonace (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique. (author)

  5. Nuclear magnetic resonance imaging and brain functional exploration

    International Nuclear Information System (INIS)

    Le Bihan, D.; CEA, 91 - Orsay

    1997-01-01

    The utilization of nuclear magnetic resonance imaging for functional analysis of the brain is presented: the oxygenated and deoxygenated blood flowing in the brain do not have the same effect on NMR images; the oxygenated blood, related to brain activity, may be detected and the corresponding activity zone in the brain, identified; functional NMR imaging could be used to gain a better understanding of functional troubles linked to neurological or psychiatric diseases

  6. Nuclear magnetic resonance studies of epithelial metabolism and function

    International Nuclear Information System (INIS)

    Balaban, R.S.

    1982-01-01

    Nuclear magnetic resonance (NMR) is a noninvasive technique for studying cellular metabolism and function. In this review the general applications and advantages of NMR will be discussed with specific reference to epithelial tissues. Phosphorus NMR investigations have been performed on epithelial tissues in vivo and in vitro; however, other detectable nuclei have not been utilized to date. Several new applications of phosphorus NMR to epithelial tissues are also discussed, including studies on isolated renal tubules and sheet epithelia

  7. Nuclear Magnetic Resonance, a Powerful Tool in Cultural Heritage

    OpenAIRE

    Noemi Proietti; Donatella Capitani; Valeria Di Tullio

    2018-01-01

    In this paper five case studies illustrating applications of NMR (Nuclear Magnetic Resonance) in the field of cultural heritage, are reported. Different issues were afforded, namely the investigation of advanced cleaning systems, the quantitative mapping of moisture in historic walls, the investigation and evaluation of restoration treatments on porous stones, the stratigraphy of wall paintings, and the detection of CO2 in lapis lazuli. Four of these case studies deal with the use of portable...

  8. Display of cross sectional anatomy by nuclear magnetic resonance imaging.

    Science.gov (United States)

    Hinshaw, W S; Andrew, E R; Bottomley, P A; Holland, G N; Moore, W S

    1978-04-01

    High definition cross-sectional images produced by a new nuclear magnetic resonance (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique.

  9. Nuclear magnetic resonance tomography in Hallervorden-Spatz's syndrome

    International Nuclear Information System (INIS)

    Vogl, T.; Bauer, M.; Seiderer, M.; Rath, M.

    1984-01-01

    Two patients (mother and son) with Hallervorden-Spatz's syndrome were examined both via CT and Nuclear Magnetic Resonance (NMR), using different measuring modes. In the patient with progressing disease pathological findings were seen in the right and left putamen with CT and NMR. All examinations in the mother with a less progressive syndrome were without any result. Information obtained via NMR did not yield significantly more relevant data than computed tomography. (orig.) [de

  10. Nuclear relaxation in semiconductors doped with magnetic impurities

    International Nuclear Information System (INIS)

    Mel'nichuk, S.V.; Tovstyuk, N.K.

    1984-01-01

    The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time

  11. Nuclear Magnetic Resonance Imaging of Li-ion Battery

    Directory of Open Access Journals (Sweden)

    D. Ohno

    2010-12-01

    Full Text Available Nuclear magnetic resonance (NMR imaging has high sensitivity to proton (1H and lithium (7Li. It is a useful measurement for electrolyte in Li-ion battery. 1H NMR images of lithium ion battery which is composed of LiMn2O4 / LiClO4 + propylene carbonate (PC / Li-metal have been studied. 1H NMR images of electrolyte near cathode material (LiMn2O4 showed anomalous intensity distribution, which was quite inhomogeneous. From NMR images as a function of repetition time (TR, it was concluded that the anomalous intensity distribution was not due to change of relaxation time but an indirect (spatial para-magnetization effect from cathode material. The paramagnetization induced by high magnetic field distorts linearity of magnetic gradient field, leading to apparent intensity variance. This functional image is an easy diagnostic measurement for magnetization of cathode material, which allows the possibility to check uniformity of cathode material and change of magnetization under electrochemical process.

  12. Application of dynamic and transition magnetic fields for determination of magnetic moments of short-lived nuclear states

    International Nuclear Information System (INIS)

    Burgov, N.A.

    1986-01-01

    Problem of measuring magnetic momenta of short-living nuclear states is discussed. Different methods for measuring magnetic momenta using interionic and transient magnetic fields were considered. Possibility for determining a value g by means of measuring correlation attenuation is investigated as well as measuring magnetic momenta by means of inclined foils. At present 2 + level magnetic momenta for many odd-odd nuclei have been determined by means of the above methods. The methods are only ones for determining magnetic momenta of nuclear levels with small lifetimes up to tenth and hundredth of shares of picoseconds

  13. Dynamic Nuclear Polarization and other magnetic ideas at EPFL.

    Science.gov (United States)

    Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey

    2012-01-01

    Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.

  14. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng

    2015-12-10

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  15. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng; Xia, Chuan; Zheng, Dongxing; Wang, Ping; Jin, Chao; Bai, Haili

    2015-01-01

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  16. Nuclear magnetic resonance method and apparatus for reducing motion artifacts

    International Nuclear Information System (INIS)

    Bailes, D.R.

    1988-01-01

    A nuclear magnetic resonance apparatus for imaging a region of a body in which part of the region is moving with a motion such that its displacement with respect to time is a nonmonotonic function during a time period over which a plurality of NMR data signals, which together define an image, are collected. The apparatus is described comprising: excitation means arranged to excite nuclear magnetic spins preferentially in the region; encoding means arranged to encode the magnetic spins; data collection means arranged to collect data signals representative of encoded magnetic spins; display means responsive to collected data signals to display an image of the region; measuring means arranged to produce an output indicative of the displacement of the moving part of the region; and control means for controlling the encoding means during the time period in dependence on the output of the measuring means so that data signals collected during the time period are collected in an order dependent on the motion such that motion artifacts are reduced

  17. Nuclear magnetic and electric dipole moments of neon-19

    International Nuclear Information System (INIS)

    MacArthur, D.W.

    1983-01-01

    This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19 Ne. The 19 Ne is generated in the reaction 19 F(p,n) 19 Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19 Ne measured to be μ( 19 Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19 Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19 Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19 Ne atom was measured to (7.2 +/- 6.2 X 10 -22 e-cm. This experiment and possible improvements are discussed in detail

  18. A magnetic tunnel to shelter hyperpolarized fluids

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Jonas, E-mail: jonas.milani@epfl.ch; Vuichoud, Basile; Bornet, Aurélien; Miéville, Pascal; Mottier, Roger [Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne (Switzerland); Jannin, Sami [Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne (Switzerland); Bruker BioSpin AG, Industriestrasse 26, CH-8117 Fällanden (Switzerland); Bodenhausen, Geoffrey [Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne (Switzerland); Département de Chimie, École Normale Supérieure-PSL Research University, 24 rue Lhomond, F-75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris (France); CNRS, UMR 7203 LBM, F-75005 Paris (France)

    2015-02-15

    To shield solutions carrying hyperpolarized nuclear magnetization from rapid relaxation during transfer through low fields, the transfer duct can be threaded through an array of permanent magnets. The advantages are illustrated for solutions containing hyperpolarized {sup 1}H and {sup 13}C nuclei in a variety of molecules.

  19. A magnetic tunnel to shelter hyperpolarized fluids

    International Nuclear Information System (INIS)

    Milani, Jonas; Vuichoud, Basile; Bornet, Aurélien; Miéville, Pascal; Mottier, Roger; Jannin, Sami; Bodenhausen, Geoffrey

    2015-01-01

    To shield solutions carrying hyperpolarized nuclear magnetization from rapid relaxation during transfer through low fields, the transfer duct can be threaded through an array of permanent magnets. The advantages are illustrated for solutions containing hyperpolarized 1 H and 13 C nuclei in a variety of molecules

  20. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rümenapp, Christine, E-mail: ruemenapp@tum.de [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Gleich, Bernhard [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Mannherz, Hans Georg [Abteilung für Anatomie und Molekulare Embryologie, Ruhr Universität Bochum, Bochum (Germany); Haase, Axel [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany)

    2015-04-15

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5–7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T{sub 2} relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T{sub 2} relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 10{sup 7} cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  2. Novel uses of magnetic separation in the nuclear industry

    International Nuclear Information System (INIS)

    Coe, B.T.

    1999-08-01

    High Gradient Magnetic Separation (HGMS) has been investigated in the nuclear industry, for the application of advanced technology in present and future nuclear environments within BNFL. Previous applications of HGMS have been reviewed and future novel applications investigated. The two most promising applications were then chosen as the focus of the PhD. In the first project, HGMS has been used to selectively recover biologically precipitated iron sulphide (Fe 1-x S) particles containing heavy metal ions, from a BNFL soil remediation effluent stream. The uptake of the ions is believed to be a consequence of the bacterial metabolism and the adsorptive properties of the iron sulphide. Biologically precipitated iron sulphide is known to differ in structure to its chemically precipitated equivalent and as such has certain advantages, for example, increased adsorbent properties and magnetic properties. The HGMS system was optimised and its performance investigated as a function of the magnetic field, the flow rate and the concentration of the biological particles in solution, with time. Results have shown that an efficiency of over 95% can be obtained, proving that HGMS is a valuable method for the concentration of metal ions from contaminated soils, especially when the adsorbed heavy metals are toxic or even radioactive and difficult to handle by other means. In the second project, the removal out of solution of radioactive technetium, in the form of the pertechnate ion [TcO 4 - ] was investigated. This was achieved using ion exchange techniques, Liquid Scintillation Counting LSC and HGMS. (author)

  3. Condromalácia de patela: comparação entre os achados em aparelhos de RM de alto e baixo campo magnético Chondromalacia patellae: comparison of high-field strength versus low-field strength magnetic resonance imaging findings

    Directory of Open Access Journals (Sweden)

    Maxime Figueiredo de Oliveira Freire

    2006-06-01

    Full Text Available OBJETIVO: Comparar os aparelhos de ressonância magnética de baixo campo e de alto campo para estudo da cartilagem articular da patela. MATERIAIS E MÉTODOS: Foi realizado estudo usando as seqüências GRE 2D, GRE 3D, FSE T2 e STIR (baixo campo e TSE T2 SPIR. Cada seqüência foi analisada separadamente para o estudo da cartilagem, sem o conhecimento dos dados do paciente e do resultado das outras seqüências, sendo atribuído grau de lesão de 0 a 3 e descrita a sua localização. Os resultados de concordância e discordância foram analisados pelos testes de Kappa e McNemar. RESULTADOS: Na faceta medial houve baixas concordâncias e as discordâncias mostraram significativa superestimação. Na faceta lateral houve boas concordâncias e as discordâncias não foram significativas. No ápice houve boas concordâncias e as discordâncias mostraram significativa subestimação. CONCLUSÃO: A seqüência STIR teve a melhor concordância com a seqüência TSE T2 SPIR. Lesões de alto grau são mais bem caracterizadas pelas seqüências do aparelho de baixo campo. Áreas de aumento de sinal dificultam o estudo da cartilagem da faceta medial da patela no aparelho de baixo campo.OBJECTIVE: To compare the performance of low-field-strength and high-field-strength magnetic resonance imaging equipments for evaluation of the patella articular cartilage. MATERIALS AND METHODS: The study was developed using GRE 2D, GRE 3D, FSE T2, STIR sequences (low-field and TSE T2 SPIR sequence. Each sequence has been separately analyzed for evaluation of the cartilage without knowledge of other sequences results or any patients data; the lesion was assigned a grade from 0 to 3 and had its location defined. Agreement and disagreement results were analyzed by Kappa and McNemar tests. RESULTS: Medial facet has presented low agreement index and disagreements showed to be significantly overestimated. Lateral facet has presented a reasonable agreement index and disagreement

  4. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    Science.gov (United States)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  5. Study of biological fluids by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Kriat, M.; Vion-Dury, J.; Confort-Gouny, S.; Sciaky, M.; Cozzone, P.J.

    1991-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy in the study of biofluids is rapidly developing and might soon constitute a new major medical application of this technique which benefits from technological and methodological progress such as higher magnetic fields, new probe design, solvent suppression sequences and advanced data processing routines. In this overview, the clinical and pharmacological impact of this new approach is examined, with emphasis on the NMR spectroscopy of plasma, cerebrospinal fluid and urine. Applications to pharmacokinetics and toxicology are illustrated. Interestingly, a number of biochemical components of fluids which are not usually assayed by conventional biochemical methods are readily detected by NMR spectroscopy which is clearly a new competitive entrant among the techniques used in clinical biology. Its ease-of-use, cost effectiveness and high informational content might turn it into a major diagnostic tool in the years to come [fr

  6. A personal computer-based nuclear magnetic resonance spectrometer

    Science.gov (United States)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  7. Enhanced nuclear magnetic resonance in a non-magnetic cubic doublet

    International Nuclear Information System (INIS)

    Veenendaal, E.J.

    1982-01-01

    In this thesis two lanthanide compounds are studied which show enhanced nuclear magnetism at low temperatures: Rb 2 NaHoF 6 and CsNaHoF 6 . Chapter II gives a description of the 4 He-circulating refrigerator, which was built to provide the low temperatures required for the polarization of the enhanced nuclear moments. This type of dilution refrigerator was chosen because of its simple design and large cooling power. Chapter III is devoted to a comparison of the different types of dilution refrigerators. A theoretical discussion is given of their performance, starting from the differential equations, which govern the temperature distribution in the refrigerator. In chapter IV the actual performance of the refrigerator, described in chapter II is discussed. In chapter V a description of the NMR-apparatus, developed for very-low-temperature NMR experiments is given. In chapter VI experimental results on the compound Rb 2 NaHoF 6 are presented. The CEF-ground state of this compound is probably the non-magnetic doublet GAMMA 3 , but at a temperature of 170 K a structural phase transition lowers the crystal symmetry from cubic to tetragonal and the doublet is split into two singlets. In chapter VII specific heat, (enhanced) nuclear magnetic resonance and magnetization measurements on the compound Cs 2 NaHoF 6 are presented which also has a GAMMA 3 -doublet ground state. In zero magnetic field the degeneracy of the doublet is removed at a temperature of 393 mK, where a phase transition is induced by quadrupolar interactions. (Auth.)

  8. Nuclear-magnetic-resonance quantum calculations of the Jones polynomial

    International Nuclear Information System (INIS)

    Marx, Raimund; Spoerl, Andreas; Pomplun, Nikolas; Schulte-Herbrueggen, Thomas; Glaser, Steffen J.; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Myers, John M.

    2010-01-01

    The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition, we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.

  9. Magnetic imaging: a new tool for UK national nuclear security.

    Science.gov (United States)

    Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-22

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  10. Mechanism of nuclear cross-relaxation in magnetically ordered media

    Energy Technology Data Exchange (ETDEWEB)

    Buishvili, L L; Volzhan, E B; Giorgadze, N P [AN Gruzinskoj SSR, Tbilisi. Inst. Fiziki

    1975-09-01

    A mechanism of two-step nuclear relaxation in magnetic ordered dielectrics is proposed. The case is considered where the energy conservation in the cross relaxation (CR) process is ensured by the lattice itself without spin-spin interactions. Expressions have been obtained describing the temperature dependence of the CR rate. For a nonuniform broadened NMR line it has been shown that the spin-lattice relaxation time for a spin packet taken out from the equilibrium may be determined by the CR time owing to the mechanism suggested. When the quantization axes for electron and nuclear spins coincide, the spin-lattice relaxation is due to the three-magnon mechanism. The cross-relaxation stage has been shown to play a significant role in the range of low temperatures (T<10 deg K) and to become negligible with a temperature increase.

  11. Magnetic Imaging: a New Tool for UK National Nuclear Security

    Science.gov (United States)

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  12. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Univ. of California, Berkeley, CA (United States)

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  13. Applications of nuclear magnetic resonance spectroscopy to certifiable food colors

    International Nuclear Information System (INIS)

    Marmion, D.M.

    Nuclear magnetic resonance spectroscopy was found suitable for the identification of individual colours, for distinguishing individual colours from colour mixtures, for the identification and semi-quantitative determination of the individual colours in mixtures and for proofs of the adulteration of certified colours adding noncertified colours. The method is well suited for observing the purity of colours and may also be used as the control method in the manufacture of colours and in assessing their stability and their resistance to increased temperature and light. (M.K.)

  14. Nuclear magnetic resonance characterization of apple juice containing enzyme preparations

    International Nuclear Information System (INIS)

    Prestes, Rosilene A.; Almeida, Denise Milleo; Barison, Andersson; Pinheiro, Luis Antonio; Wosiacki, Gilvan

    2012-01-01

    In this work, 1 H nuclear magnetic resonance ( 1 H NMR) was employed to evaluate changes in apple juice in response to the addition of Panzym Yieldmash and Ultrazym AFP-L enzymatic complexes and compare it with premium apple juice. The juice was processed at different temperatures and concentrations of enzymatic complexes. The differences in the results were attributed mainly to the enzyme concentrations, since temperature did not cause any variation. A quantitative analysis indicated that the concentration of fructose increased while the concentrations of sucrose and glucose decreased in response to increasing concentrations of the enzymatic complexes. (author)

  15. Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Wang Chuan; Hao Liang; Zhao Lian-Jie

    2011-01-01

    We present a modified protocol for the realization of a quantum private query process on a classical database. Using one-qubit query and CNOT operation, the query process can be realized in a two-mode database. In the query process, the data privacy is preserved as the sender would not reveal any information about the database besides her query information, and the database provider cannot retain any information about the query. We implement the quantum private query protocol in a nuclear magnetic resonance system. The density matrix of the memory registers are constructed. (general)

  16. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2011-04-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  17. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2014-02-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  18. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Noemi Proietti

    2014-04-01

    Full Text Available In recent years nuclear magnetic resonance (NMR sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  19. Nuclear Magnetic Resonance, a Powerful Tool in Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Noemi Proietti

    2018-01-01

    Full Text Available In this paper five case studies illustrating applications of NMR (Nuclear Magnetic Resonance in the field of cultural heritage, are reported. Different issues were afforded, namely the investigation of advanced cleaning systems, the quantitative mapping of moisture in historic walls, the investigation and evaluation of restoration treatments on porous stones, the stratigraphy of wall paintings, and the detection of CO2 in lapis lazuli. Four of these case studies deal with the use of portable NMR sensors which allow non-destructive and non-invasive investigation in situ. The diversity among cases reported demonstrates that NMR can be extensively applied in the field of cultural heritage.

  20. Nuclear magnetic resonance. Applications to medicine and biology

    International Nuclear Information System (INIS)

    Berdugo, M.; Fauchet, M.; Menasche, P.; Grall, Y.; Piwnica, A.

    1982-01-01

    Nuclear magnetic resonance (NMR) is a non-invasive exploratory technique based on a principle radically different from those of radiography, radionuclide exploration and ultrasonography. Signals coming from atomic nuclei and reflecting their density and chemical/biochemical environment are collected, thus providing information on the physiological and pathological state of tissues. The technique has multiple applications, either practical (tomographic imaging of the brain, thyroid gland and liver) or in the field of research, e.g. investigating ischaemic myocardial areas and pathological fluid composition, measuring intracellular pH, diagnosing the nature of a tumour and, broadly speaking, understanding the biochemical changes associated with malignant degeneration [fr

  1. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Science.gov (United States)

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  2. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    International Nuclear Information System (INIS)

    Prabhu Gaunkar, N.; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-01-01

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors

  3. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  4. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    OpenAIRE

    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.

    2015-01-01

    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  5. USING MAGNETIC MOMENTS TO UNVEIL THE NUCLEAR STRUCTURE OF LOW-SPIN NUCLEAR STATES

    Directory of Open Access Journals (Sweden)

    Diego A. Torres

    2011-07-01

    Full Text Available The experimental study of magnetic moments for nuclear states near the ground state, I ≤ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions has been used to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≤ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  6. Low-field NMR logging sensor for measuring hydraulic parameters of model soils

    Science.gov (United States)

    Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard

    2011-08-01

    SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average with decreasing saturation speaks for a enhancement of the surface relaxation as the soil dries, in

  7. Ultra-low field MRI food inspection system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Satoshi, E-mail: s133413@edu.tut.ac.jp; Toyota, Hirotomo; Hatta, Junichi; Ariyoshi, Seiichiro; Tanaka, Saburo, E-mail: tanakas@ens.tut.ac.jp

    2016-11-15

    Highlights: • We have developed a ULF-MRI system using HTS-SQUID for food inspection. • We developed a compact magnetically shielded box to attenuate environmental noise. • The 2D-MR image was reconstructed from the grid processing data using 2D-FFT method. • The 2D-MR images of a disk-shaped and a multiple cell water sample were obtained. • The results showed the possibility of applying the ULF-MRI system to food inspection. - Abstract: We develop an ultra-low field (ULF) magnetic resonance imaging (MRI) system using a high-temperature superconducting quantum interference device (HTS-SQUID) for food inspection. A two-dimensional (2D)-MR image is reconstructed from the grid processing raw data using the 2D fast Fourier transform method. In a previous study, we combined an LC resonator with the ULF-MRI system to improve the detection area of the HTS-SQUID. The sensitivity was improved, but since the experiments were performed in a semi-open magnetically shielded room (MSR), external noise was a problem. In this study, we develop a compact magnetically shielded box (CMSB), which has a small open window for transfer of a pre-polarized sample. Experiments were performed in the CMSB and 2D-MR images were compared with images taken in the semi-open MSR. A clear image of a disk-shaped water sample is obtained, with an outer dimension closer to that of the real sample than in the image taken in the semi-open MSR. Furthermore, the 2D-MR image of a multiple cell water sample is clearly reconstructed. These results show the applicability of the ULF-MRI system in food inspection.

  8. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    Science.gov (United States)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  9. Development of moving alternating magnetic filter using permanent magnet for removal of radioactive corrosion product from nuclear power plant

    International Nuclear Information System (INIS)

    Song, M. C.; Kim, S. I.; Lee, K. J.

    2002-01-01

    Radioactive Corrosion Products (CRUD) which are generated by the neutron activation of general corrosion products at the nuclear power plant are the major source of occupational radiation exposure. Most of the CRUD has a characteristic of showing strong ferrimagnetisms. Along with the new development and production of permanent magnet (rare earth magnet) which generates much stronger magnetic field than the conventional magnet, new type of magnetic filter that can separate CRUD efficiently and eventually reduce radiation exposure of personnel at nuclear power plant is suggested. This separator consists of inner and outer magnet assemblies, coolant channel and container surrounding the outer magnet assembly. The rotational motion of the inner and outer permanent magnet assemblies surrounding the coolant channel by driving motor system produces moving alternating magnetic fields in the coolant channel. The CRUD can be separated from the coolant by the moving alternating magnetic field. This study describes the results of preliminary experiment performed with the different flow rates of coolant and rotation velocities of magnet assemblies. This new magnetic filter shows better performance results of filtering the magnetite at coolant (water). Flow rates, rotating velocities of magnet assemblies and particle sizes turn out to be very important design parameters

  10. Use of the image by nuclear magnetic resonance (nucleography) in obstetrical aspects. Part 1. Emprego da imagem por ressonancia magnetica nuclear (nucleografia) em obstetricia. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Lacreta, O [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina

    1987-09-01

    Nuclear magnetic resonance (nucleography) is a new method to study human body. In this paper the physical principles on nuclear magnetic resonance and its applications to the pregnant women are presented. (author).

  11. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  12. T1 nuclear magnetic relaxation dispersion of hyperpolarized sodium and cesium hydrogencarbonate-13 C.

    Science.gov (United States)

    Martínez-Santiesteban, Francisco M; Dang, Thien Phuoc; Lim, Heeseung; Chen, Albert P; Scholl, Timothy J

    2017-09-01

    In vivo pH mapping in tissue using hyperpolarized hydrogencarbonate- 13 C has been proposed as a method to study tumor growth and treatment and other pathological conditions related to pH changes. The finite spin-lattice relaxation times (T 1 ) of hyperpolarized media are a significant limiting factor for in vivo imaging. Relaxation times can be measured at standard magnetic fields (1.5 T, 3.0 T etc.), but no such data are available at low fields, where T 1 values can be significantly shorter. This information is required to determine the potential loss of polarization as the agent is dispensed and transported from the polarizer to the MRI scanner. The purpose of this study is to measure T 1 dispersion from low to clinical magnetic fields (0.4 mT to 3.0 T) of different hyperpolarized hydrogencarbonate formulations previously proposed in the literature for in vivo pH measurements. 13 C-enriched cesium and sodium hydrogencarbonate preparations were hyperpolarized using dynamic nuclear polarization, and the T 1 values of different samples were measured at different magnetic field strengths using a fast field-cycling relaxometer and a 3.0 T clinical MRI system. The effects of deuterium oxide as a dissolution medium for sodium hydrogencarbonate were also analyzed. This study finds that the cesium formulation has slightly shorter T 1 values compared with the sodium preparation. However, the higher solubility of cesium hydrogencarbonate- 13 C means it can be polarized at greater concentration, using less trityl radical than sodium hydrogencarbonate- 13 C. This study also establishes that the preparation and handling of sodium hydrogencarbonate formulations in relation to cesium hydrogencarbonate is more difficult, due to the higher viscosity and lower achievable concentrations, and that deuterium oxide significantly increases the T 1 of sodium hydrogencarbonate solutions. Finally, this work also investigates the influence of pH on the spin-lattice relaxation of cesium

  13. Correlation between magnetic properties and nuclear magnetic resonance observations in Sr2FeMoO6 double perovskite

    International Nuclear Information System (INIS)

    Colis, S.; Pourroy, G.; Panissod, P.; Meny, C.; Dinia, A.

    2004-01-01

    We present the influence of the sintering temperature on the magnetic properties of Sr 2 FeMoO 6 double perovskite, on the basis of magnetization and nuclear magnetic resonance (NMR) measurements. Interestingly, the saturation magnetization originating mainly from the Fe moments is correlated with the amount of Mo magnetic moments observed by NMR measurements. We show that there is an optimum temperature of 1000 deg. C for which the reaction leading to the double perovskite becomes more advanced and/or the number of antisite defects is minimum

  14. Nuclear magnetic resonance. Present results and its application to renal pathology. Experimental study of hydronephrosis

    International Nuclear Information System (INIS)

    Bertrand, P.

    1987-01-01

    Results of proton nuclear magnetic resonance imaging and relaxation time measurement of experimental hydronephrosis in mice are presented. The study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of its biomedical applications and with a review of the clinical use of NMR imaging in renal pathology [fr

  15. Water in Brain Edema : Observations by the Pulsed Nuclear Magnetic Resonance Technique

    NARCIS (Netherlands)

    GO, KG; Edzes, HT

    The state of water in three types of brain edema and in normal brain of the rat was studied by the pulsed nuclear magnetic resonance (NMR) technique. In cold-induced edema and in osmotic edema both in cortex and in white matter, the water protons have longer nuclear magnetic relaxation times than in

  16. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    CERN Document Server

    MacKenzie, Kenneth J D

    2002-01-01

    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  17. Evaluation of human thyroid tumors by proton nuclear magnetic resonance

    International Nuclear Information System (INIS)

    deCertaines, J.; Herry, J.Y.; Lancien, G.; Benoist, L.; Bernard, A.M.; LeClech, G.

    1982-01-01

    Proton nuclear magnetic resonance (NMR) was used in a study of 40 patients with thyroid tumors following partial or total thyroidectomy. Three patient groups were considered: those with nodules showing increased uptake, those with solitary nodules with decreased uptake, and those with multinodular goiters. Spin-lattice and spin-spin relaxation times (T 1 and T 2 ) were measured on samples of nodular and extranodular tissue from each patient. Increased T 1 and T 2 were observed for benign cold nodules, an increase in T 1 alone for nodules with increased uptake, and a wide fluctuation in T 1 and T 2 for multinodular goiters. The four cancers in the series did not show a distinctive proton NMR pattern in comparison with the other nodular structures studied. The results point to the feasibility of applying NMR techniques to the detection of thyroid disease

  18. Programmable quantum-state discriminator by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Gopinath, T.; Das, Ranabir; Kumar, Anil

    2005-01-01

    A programmable quantum-state discriminator is implemented by using nuclear magnetic resonance. We use a two-qubit spin-1/2 system, one for the data qubit and one for the ancilla (program) qubit. This device does the unambiguous (error-free) discrimination of a pair of states of the data qubit that are symmetrically located about a fixed state. The device is used to discriminate both linearly polarized states and elliptically polarized states. The maximum probability of successful discrimination is achieved by suitably preparing the ancilla qubit. It is also shown that the probability of discrimination depends on the angle of the unitary operator of the protocol and ellipticity of the data qubit state

  19. NUCLEAR MAGNETIC RESONANCE THE GELLED PRODUCT OF CANNIZZARO REACTION

    Directory of Open Access Journals (Sweden)

    Lilia Fernández-Sánchez

    2015-03-01

    Full Text Available The paper presents the nuclear magnetic resonance (NMR of proton 1H, carbon 13C and two dimensional spectrums, product of a green organic synthesis of redox on the Cannizzaro reaction. The product was reported as a tribochemical gel (heterogeneous mixture and confirmed by Infrared Spectroscopy IR, X-ray and scanning electron microscope (SEM. The results in this paper confirm its structure through various techniques of NMR and evaluate the content of sodium benzoate and benzyl alcohol in the spectroscopy sample, examining the values of the integrals on 1H NMR signals. The result of analysis indicates that benzyl alcohol (dispersed phase is in 33.44% mol in comparison with sodium benzoate content (continuous phase. These results confirm that the gel structure over time loses the dispersed phase of the benzyl alcohol producing a xerogel.

  20. High field nuclear magnetic resonance application to polysaccharide chemistry

    International Nuclear Information System (INIS)

    Vincendon, Marc

    1972-01-01

    Nuclear magnetic resonance has been applied to polysaccharide chemistry using time averaging technique and high fields (100 and 250 MHz). The three methyl signals of methyl cellulose and cellulose triacetate are separated, and the C-6 substituent has been identified. Biosynthesis of bacterial cellulose has been performed using deuterium labelled D-glucose and Acetobacter xylinum. Per-acetylated derivative of bacterial cellulose has been studied by NMR; this study permitted us to determine the quantity of deuterium on each position of the anhydro-glucose unit in the polymer. NMR has also been used to see the anomeric end chain of cellulose and amylose derivatives and to show the fixation of bromine and t-butyl group on the free anomeric end chain of cellulose triacetate. (author) [fr

  1. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  2. Nuclear magnetic resonance imaging characteristics of gallstones in vitro

    International Nuclear Information System (INIS)

    Moon, K.L. Jr.; Hricak, H.; Margulis, A.R.; Bernhoft, R.; Way, L.W.; Filly, R.A.; Crooks, L.E.

    1983-01-01

    The nuclear magnetic resonance (NMR) imaging characteristics of gallstones of various composition from 36 patients were studied in vitro using a spin-echo imaging technique. The majority of gallstones (83%) produced no measurable NMR signal despite having a mean water content of 12% and a mean cholesterol content of 61%. Six (17%) of the stones had a weak but measurable signal in the center of the stone, which was thought to represent signal from water in clefts or pores within the stones. The mean water and cholesterol content of the stones with measurable signal did not differ significantly from that of stones with no signal. A possible explanation for these findings, based on the known NMR characteristics of solid materials, is offered

  3. Nuclear magnetic resonance tomography of the cervical canal

    Energy Technology Data Exchange (ETDEWEB)

    Terwey, B.; Koschorek, F.; Jensen, H.P.

    1985-12-01

    170 patients with suspected lesions of the cervical part of the medulla were examined using nuclear magnetic resonance (NMR) tomography. 27 cases revealed no pathological changes in the regions of the cervical medulla, the cervical canal and of the cervical spine. 143 cases produced pathological findings whose diagnoses determined therapeutical approach. Verified pathological changes comprised anomalies of the cranio-cervical junction like basilar impression and Arnold-Chiari malformation, various types of cavity formation in the cervical medulla (syringomyelia, hydromyelia), demyelinization processes, intramedullary and extramedullary tumours, intervertebral disk degeneration processes, dislocation of intervertebral disks and spondylophytes with spinal stenoses. Sagittal sections in different functional positions allowed to demonstrate the biomechanical effects of extramedullary masses on the cervical medulla. However, proven tumours could not be differentiated successfully using histological methods. Nevertheless, NMR tomography will replace invasive methods like conventional cervical myelography and CT myelography in diagnostic clarification of diseases of the cervical medulla.

  4. Structural and conformational study of polysaccharides by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bossennec, Veronique

    1989-01-01

    As some natural polysaccharides are involved in important biological processes, the use of nuclear magnetic resonance appears to be an adapted mean to determine their structure-activity relationship and is therefore the object of this research thesis. By using bi-dimensional proton-based NMR techniques, it is possible to identify minority saccharide units, to determine their conformation, and to identify units which they are bound to. The author reports the application of these methods to swine mucosa heparin, and to heparins displaying a high and low anticoagulant activity. The dermatan sulphate has also been studied, and the NMR analysis allowed some polymer structure irregularities to be identified. A molecular modelling of dermatan sulphate has been performed [fr

  5. Nuclear magnetic resonance tomography of the cervical canal

    International Nuclear Information System (INIS)

    Terwey, B.; Koschorek, F.; Jensen, H.P.

    1985-01-01

    170 patients with suspected lesions of the cervical part of the medulla were examined using nuclear magnetic resonance (NMR) tomography. 27 cases revealed no pathological changes in the regions of the cervical medulla, the cervical canal and of the cervical spine. 143 cases produced pathological findings whose diagnoses determined therapeutical approach. Verified pathological changes comprised anomalies of the cranio-cervical junction like basilar impression and Arnold-Chiari malformation, various types of cavity formation in the cervical medulla (syringomyelia, hydromyelia), demyelinization processes, intramedullary and extramedullary tumours, intervertebral disk degeneration processes, dislocation of intervertebral disks and spondylophytes with spinal stenoses. Sagittal sections in different functional positions allowed to demonstrate the biomechanical effects of extramedullary masses on the cervical medulla. However, proven tumours could not be differentiated successfully using histological methods. Nevertheless, NMR tomography will replace invasive methods like conventional cervical myelography and CT myelography in diagnostic clarification of diseases of the cervical medulla. (orig.) [de

  6. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  7. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  8. Determining phenols in coal conversion products by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kanitskaya, L.V.; Kushnarev, D.F.; Polonov, V.M.; Kalabin, G.A.

    1985-03-01

    Possibility of using nuclear magnetic resonance spectra of the hydrogen 1 (/sup 1/H) isotope for a qualitative and quantitative evaluation of the hydroxyl groups in the products of coal processing is investigated. The basis of the method is the fact that in NMR spectra of the /sup 1/H in organic compounds with acid protons, the latter are unprotected when strong bases are used as solvents because of intermolecular hydrogen bonds. The resin from the medium-temperature semicoking of Cheremkhovskii coals, its hydrogenate, and phenol fraction of the hydrogenate were used for the investigation. The results were compared with the results of other NMR spectroscopy methods. The high solubility of hexamethanol and the fact that the products can be analyzed in the natural state, are some advantages of the method. 18 references.

  9. Characterization of polyurethane/organophilic montmorillonite nanocomposites by low field NMR

    International Nuclear Information System (INIS)

    Silva, Marcos Anacleto da; Tavares, Maria I.B.; Nascimento, Suelen A.M.; Rodrigues, Elton J. da R

    2012-01-01

    Polyurethanes are important and versatile materials, mainly due to some of their properties, such as high resistance to abrasion and tearing, excellent absorption of mechanical shocks and good flexibility and elasticity. However, they have some drawbacks as well, such as low thermal stability and barrier properties. To overcome these disadvantages, various studies have been conducted involving organophilic polyurethane/montmorillonite nanocomposites. The investigation of the structure of polyurethane/clay nanocomposites has mainly been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In this work, PU/clay nanocomposite films obtained by solution intercalation were studied. The nanocomposites were characterized by XRD and low-field nuclear magnetic resonance (LF-NMR). The LF-NMR measurements, with determination of the spin-lattice relaxation time of the hydrogen nucleus, supplied important information about the molecular dynamics of these nanocomposites. The X-ray diffraction measurements validated the results found by NMR. The thermal stability of the material was also determined by thermogravimetric analysis (TGA) under an inert atmosphere. A slight improvement in this stability was observed in the nanocomposite in comparison with polyurethane (author)

  10. Software Defined Radio (SDR and Direct Digital Synthesizer (DDS for NMR/MRI Instruments at Low-Field

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2013-11-01

    Full Text Available A proof-of-concept of the use of a fully digital radiofrequency (RF electronics for the design of dedicated Nuclear Magnetic Resonance (NMR systems at low-field (0.1 T is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS for pulse generation, a Software Defined Radio (SDR for a digital receiving of NMR signals and a Digital Signal Processor (DSP for system control and for the generation of the gradient signals (pulse programmer. The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…. The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed.

  11. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI Instruments at Low-Field

    Science.gov (United States)

    Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul

    2013-01-01

    A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed. PMID:24287540

  12. Low-field susceptibilities of rare-earth spin glass alloys

    International Nuclear Information System (INIS)

    Sarkissian, B.V.B.

    1978-01-01

    The low-field AC susceptibilities of the dilute rare-earth spin glass alloys Sc-Gd, Sc-Tb, Pr-Tb and Pr-Gd are reported and compared with low-field DC susceptibilities of the same samples. The similarities between their behaviour and that of Au-Fe spin glass alloys is also considered. When single-ion anisotropy is important, this can cause a dramatic broadening of the sharp peak. Broadening in the AC peak has also observed as the frequency of the deriving field is increased. These data can be qualitatively discussed in terms of a recent magnetic-cluster model for spin glasses. (author)

  13. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Takahashi, Masato; Maeda, Hideaki; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Nakagome, Hideki; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Kiyoshi, Tsukasa; Yamazaki, Toshio

    2012-01-01

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb 3 Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a 7 Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  14. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    International Nuclear Information System (INIS)

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1988-01-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25 degree C). 31 P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P i ) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P i increased. At that time, the P i resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 μM acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly

  15. Determination of herb authenticity by low-field NMR.

    Science.gov (United States)

    Preto, M S M; Tavares, M I B; Sebastião, P J O; Azeredo, R B V

    2013-02-15

    The safe use of herbal medicines requires prior authentication of the raw materials used to make them. This is an important step, since the ingestion of herbal preparations or extracts can cause serious health problems. Among the different analytical techniques, nuclear magnetic resonance (NMR) spectroscopy has the advantage of being non-invasive and therefore suitable for the characterization of natural products such as medicinal plants. This work presents a characterisation study of the samples of the popular plant Maytenus ilicifolia, obtained from different commercial producers. This plant is used for the treatment of gastrointestinal disorders, as it possesses antitumorigenic, analgesic, anti-inflammatory and antioxidant properties. The differences in the chemical structure and molecular organisation detected by thermogravimetric analysis (TGA), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR) were also investigated by proton nuclear magnetic resonance relaxometry, in particular by fast field cycling (FFC) relaxometry, and relaxometry in the rotating frame. All results confirmed the similarity between the control sample and only one of the plant investigated. The differences detected between the samples could be related to their non-authenticity, due to the non recognise the plant due to the leaves similarity among plants from the same family and/or contamination, due to addition of similar other plants parts to the commercial ones, as they are mixed together this difficulties the acceptation of the plant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films

    International Nuclear Information System (INIS)

    Tarasenko, S.V.

    1995-01-01

    It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs

  17. The effect of a neutrino magnetic moment on nuclear excitation processes

    International Nuclear Information System (INIS)

    Dodd, A.C.; Papageorgiu, E.; Ranfone, S.

    1991-01-01

    We discuss the sensitivity of magnetic transitions in nuclei like 12 C, to a small neutrino magnetic moment, and its implications for current and future experiments. We also point out that coherent neutrino-nuclear elastic scattering in low-temperature detectors, might improve the present laboratory bounds on the neutrino magnetic moment by an order of magnitude. (orig.)

  18. Principles of nuclear magnetic resonance imaging using an inhomogeneous polarizing field

    International Nuclear Information System (INIS)

    Briguet, A.; Chaillout, J.; Goldman, M.

    1985-01-01

    In this paper, it is indicated how to reconstruct nuclear magnetic resonance images acquired in an inhomogeneous static magnetic field without the previous knowledge of its spatial distribution. The method provides also the map of the static magnetic field through the sample volume; furthermore it allows the use of non uniform but spatially controlled encoding gradients [fr

  19. Spherical torus, compact fusion at low field

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1985-02-01

    A spherical torus is obtained by retaining only the indispensable components on the inboard side of a tokamak plasma, such as a cooled, normal conductor that carries current to produce a toroidal magnetic field. The resulting device features an exceptionally small aspect ratio (ranging from below 2 to about 1.3), a naturally elongated D-shaped plasma cross section, and ramp-up of the plasma current primarily by noninductive means. As a result of the favorable dependence of the tokamak plasma behavior to decreasing aspect ratio, a spherical torus is projected to have small size, high beta, and modest field. Assuming Mirnov confinement scaling, an ignition spherical torus at a field of 2 T features a major radius of 1.5 m, a minor radius of 1.0 m, a plasma current of 14 MA, comparable toroidal and poloidal field coil currents, an average beta of 24%, and a fusion power of 50 MW. At 2 T, a Q = 1 spherical torus will have a major radius of 0.8 m, a minor radius of 0.5 m, and a fusion power of a few megawatts

  20. A study of the suitability of ferrite for use in low-field insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.; Hassenzahl, W.V.

    1995-02-01

    Most insertion devices built to date use rare-earth permanent-magnet materials, which have a high remanent field and are more expensive than many other permanent-magnet materials. Low-field insertion devices could use less-expensive, lower performance magnetic materials if they had suitable magnetic characteristics. These materials must be resistant to demagnetization during construction and operation of the insertion device, have uniform magnetization, possess low minor-axis magnetic moments, and have small minor field components on the surfaces. This paper describes an investigation to determine if ferrite possesses magnetic qualities suitable for insertion device applications. The type of ferrite investigated, MMPA Ceramic 8 from Stackpole Inc., was found to be acceptable for insertion device applications.

  1. Nuclear magnetic resonance. Advanced concepts and applications to quantum materials

    International Nuclear Information System (INIS)

    Kohlrautz, Jonas

    2017-01-01

    In this thesis, three separate topics were presented. These include the development of novel experimental NMR methods and data analysis, as well as their application to current topics of condensed matter research. The first part concerns NMR at the highest magnetic fields, i.e., in time-dependent pulsed high-field magnets. After a discussion of consequences for NMR, a method to acquire broad spectra was presented. Here, an intensity-correction for off-resonance effects was applied and the Fourier transform was modified to use time-dependent base functions. Subsequently, the method was tested with a Knight shift measurement of metallic aluminum using a second compound as a shift reference. It could be shown that signal averaging of a weak signal is possible, even across multiple field pulses. Thus, in principle, the signal-to-noise ratio can always be increased at the cost of measurement time, despite the inherently limited reproducibility of subsequent field high-field pulses. In another set of experiments, the feasibility of T 1 measurements was shown. Here, a weak radio frequency field was used to perform an adiabatic inversion of the spin system in the time-dependent field. Ensuing small-angle RF pulses monitored the relaxation process. Using a mathematical model, T 1 was then determined. Finally, this method was applied for the investigation of the spin-dimer antiferromagnet SrCu 2 (BO 3 ) 2 . Evidence for a field-induced change in the ground state of the material was found. This appears to be the first convincing observation of a field-induced phenomenon with pulsed field NMR. It proves that nuclear magnetic resonance spectroscopy at the highest fields is able to produce unique insights into quantum materials. The second part of the thesis concerns NMR investigations and analysis of cuprate high-temperature superconductors in conventional static field measurements. Results on HgBa 2 CuO 4+δ for underdoped, optimally doped, and overdoped materials revealed

  2. Nuclear magnetic resonance. Advanced concepts and applications to quantum materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohlrautz, Jonas

    2017-05-22

    In this thesis, three separate topics were presented. These include the development of novel experimental NMR methods and data analysis, as well as their application to current topics of condensed matter research. The first part concerns NMR at the highest magnetic fields, i.e., in time-dependent pulsed high-field magnets. After a discussion of consequences for NMR, a method to acquire broad spectra was presented. Here, an intensity-correction for off-resonance effects was applied and the Fourier transform was modified to use time-dependent base functions. Subsequently, the method was tested with a Knight shift measurement of metallic aluminum using a second compound as a shift reference. It could be shown that signal averaging of a weak signal is possible, even across multiple field pulses. Thus, in principle, the signal-to-noise ratio can always be increased at the cost of measurement time, despite the inherently limited reproducibility of subsequent field high-field pulses. In another set of experiments, the feasibility of T{sub 1} measurements was shown. Here, a weak radio frequency field was used to perform an adiabatic inversion of the spin system in the time-dependent field. Ensuing small-angle RF pulses monitored the relaxation process. Using a mathematical model, T{sub 1} was then determined. Finally, this method was applied for the investigation of the spin-dimer antiferromagnet SrCu{sub 2}(BO{sub 3}){sub 2}. Evidence for a field-induced change in the ground state of the material was found. This appears to be the first convincing observation of a field-induced phenomenon with pulsed field NMR. It proves that nuclear magnetic resonance spectroscopy at the highest fields is able to produce unique insights into quantum materials. The second part of the thesis concerns NMR investigations and analysis of cuprate high-temperature superconductors in conventional static field measurements. Results on HgBa{sub 2}CuO{sub 4+δ} for underdoped, optimally doped, and

  3. Nuclear orientation experiments on the magnetic moments of europium and gadolinium nuclei

    International Nuclear Information System (INIS)

    Berg, F.G. van den.

    1984-01-01

    In this thesis, experimental results on the ground state nuclear magnetic moments of europium and gadolinium isotopes are presented. The nuclear orientation experiments were performed on europium and gadolinium nuclei embedded in several host lattices. Attention is paid to the hyperfine interactions of the ions. Nuclear moments are discussed in the context of nuclear shell model. The theoretical framework is described for nuclear structure and low temperature nuclear orientation. Furthermore, the experimental techniques, the technical arrangement of the orientation apparatus, the methods for radiative detection and the use of nuclear orientation thermometry are described. (Auth.)

  4. Characterization of PHB, zinc oxide and organophilic clay nanocomposites with low field; Caracterizacao de nanocompositos de PHB com oxido de zinco e argila organofilica por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mariana B.R.; Tavares, Maria Ines B.; Junior, Alberto W.M.; Neto, Roberto P.C. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Nanoparticles of zinc oxide and organophilic clay (Viscogel B8) were added to PHB matrix in some different proportions. The nanocomposites containing both nanoparticles were obtained from solution casting method using chloroform as solvent. The films obtained were analyzed with X-ray diffraction and low field nuclear magnetic resonance to obtain answers about the interactions, dispersion and homogeneity of nanoparticles in the polymer matrix, just like the synergistic effects and the influence of them over some characteristics of the polymer. The synergistic effect achieved from the addition of both nanoparticles was also observed through hydrogen nuclear relaxation time values. (author)

  5. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    International Nuclear Information System (INIS)

    Heaney, M.B.

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al 2 O 3 /Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 10 17 in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO 3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies

  6. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  7. Nuclear Magnetic Resonance: new applications in the quantification and assessment of polysaccharide-based vaccine intermediates

    International Nuclear Information System (INIS)

    Garrido, Raine; Velez, Herman; Verez, Vicente

    2013-01-01

    Nuclear Magnetic Resonance has become the choice for structural studies, identity assays and simultaneous quantification of active pharmaceutical ingredient of different polysaccharide-based vaccine. In the last two decades, the application of quantitative Nuclear Magnetic Resonance had an increasing impact to support several quantification necessities. The technique involves experiments with several modified parameters in order to obtain spectra with quantifiable signals. The present review is supported by some recent relevant reports and it discusses several applications of NMR in carbohydrate-based vaccines. Moreover, it emphasizes and describes several parameters and applications of quantitative Nuclear Magnetic Resonance

  8. Thales: an instrument to measure the low field magnetophoretic mobility of microscopic objects

    International Nuclear Information System (INIS)

    Hackett, S L; St Pierre, T G

    2005-01-01

    An instrument, Thales, was designed and constructed to measure the induce motion of magnetic microspheres in a low magnetic field strength environment. Results show that Thales can be used to precisely measure the speed of microspheres (± 0.08 μm.s -1 ). We evaluated the motion of magnetic microspheres induced by an inhomogeneous magnetic field, and developed models for the microsphere magnetophoretic mobility, a parameter determining the speed attained by the microsphere in a given static low strength magnetic field environment. The data suggested that the magnetic material was located at the surfaces of the microspheres rather than being distributed evenly through the microspheres. With suitable calibration microspheres, Thales will be capable of directly measuring the low field magnetophoretic mobility of microscopic objects

  9. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils; Detección de la adulteración de aceite de oliva mediante relaxometría magnética nuclear de campo bajo y espectroscopía UV-Vis sobre mezcla de aceite de oliva con diversos aceites comestibles.

    Energy Technology Data Exchange (ETDEWEB)

    Ok, S.

    2017-07-01

    Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. [Spanish] La adulteración del aceite de oliva con sustituyentes menos saludables es una amenaza para la salud pública. En este trabajo, la detección de la adulteración del aceite de oliva se demuestra utilizando tanto relaxometría magnética nuclear de campo bajo (LF) de protones (1H) (RMN) y espectroscopía visible y ultra-violeta (UV). Tres muestras de aceites de oliva con diferentes contenidos en oleico se mezclaron con aceites de almendra, ricino, maíz y sésamo con tres relaciones volumétricas. Además, el de arbequina de California se mezcló con cánola, lino, semilla de uva, cacahuete, soja y aceites de girasol con tres relaciones volumétricas. Las curvas de

  10. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-01-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique

  11. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  12. Characterization of Canadian coals by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Ripmeester, J.

    1983-06-01

    Apparent aromaticities of a series of Canadian coals of different rank were estimated by solid state nuclear magnetic resonance spectroscopy. The aromaticities varied from 0.57 for a lignite up to 0.86 for a semi-anthracite coal. The aromaticities correlated well with fixed carbon and oxygen content of the coals as well as with the mean reflectance of the coals. Correlations were also established between aromaticities and the H/C and H/SUB/a/SUB/r/SUB/u/C/SUB/a/SUB/r ratios of the coals. Uncertainties in calculation of the hypothetical H/SUB/a/SUB/r/SUB/u/C/SUB/a/SUB/r ratios, from experimental data were pointed out. Structural parameters of the chars derived from the coals by pyrolysis at 535 C were, also, estimated. The H/C and H/SUB/a/SUB/r/SUB/u/C/SUB/a/SUB/r ratios of the chars were markedly lower than those of coals. This was complemented by higher apparent aromaticities of the chars compared with the coals. (21 refs.)

  13. Phosphorus nuclear magnetic resonance imaging in solid bone

    International Nuclear Information System (INIS)

    Li, Limin.

    1990-01-01

    Phosphorus ( 31 P) nuclear magnetic resonance (NMR) double-pulse transient experiments of solid bone have shown that the spins dephased by the dipolar spin-spin interactions can be refocused with a 90 degree-β pulse sequence so that an echo is observable at some time following the second pulse. The decay time constant of the maximum echo amplitude is larger than that of the free induction decay (FID) signal from a single 90 degree pulse. Depending on the nutation angle of the second pulse, the former decay time constant is about three-five times as long as the latter one. The dipolar-echo properties of the bone may be relevant with the interpair dipolar interactions. The experiments have also show that, in general, the time for the transient signal from the double pulses to reach the maximum amplitude is not equal to the pulse separation. This can be attributed to the effect of the heteronuclear dipolar interactions. In addition, it is found experimentally that refocused gradients applied only in a time interval of the formation of an echo have the capability of phase-encoding spatial information. Based on this, a new imaging method was proposed. With the method, several 31 P images of the solid bone samples have been obtained. The picture element size is 1-1.5 mm with very good signal-to-noise ratios. The imaging ability of the refocused gradients may be relevant with the inhomogeneous local field produced by the interpair dipolar interactions

  14. Electron and nuclear magnetic resonances in compounds and metallic hydrides

    International Nuclear Information System (INIS)

    Brasil Filho, N.

    1985-11-01

    Proton pulsed Nuclear Magnetic Resonance measurements were performed on the metallic hydrides ZrCr 2 H x (x = 2, 3, 4) and ZrV 2 H y (y = 2, 3, 4, 5) as a function of temperature between 180 and 400K. The ultimate aim was the investigation of the relaxation mechanisms in these systems by means of the measurement of both the proton ( 1 H) spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times and to use these data to obtain information about the diffusive motion of the hydrogen atoms. The diffusional activation energies, the jump frequencies and the Korringa constant, C k , related with the conduction electron contribution to the 1 H relaxation were determined for the above hydrides as a function of hydrogen concentration. Our results were analysed in terms of the relaxation models described by Bloembergen, Purcell and Pound (BPP model) and by Torrey. The Korringa type relaxation due to the conduction electrons in metallic systems was also used to interpret the experimental results. We also present the Electron Paramagnetic Ressonance (EPR) study of Gd 3+ , Nd 3+ and Er 3+ ions as impurities in several AB 3 intermetallic compounds where A = LA, Ce, Y, Sc, Th, Zr and B = Rh, Ir, Pt. The results were analysed in terms of the multiband model previously suggested to explain the behaviour of the resonance parameter in AB 2 Laves Phase compounds. (author) [pt

  15. Visualization of cerebellopontine angle lesions by nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ochiai, Chikayuki; Takakura, Kintomo; Machida, Tohru; Araki, Tsutomu; Iio, Masahiro; Basugi, Norihiko.

    1983-01-01

    The preliminary results from the clinical use a prototype whole body nuclear magnetic resonance (NMR) machine constructed by Toshiba Inc. are presented. Cranial NMR scans were performed on more than 30 cases with broad spectrum of neurologic diseases using saturation-recovery and inversion-recovery sequences with a field strength of 1500 Gauss. Selective excitation sequence was used for the slice selection and filtered backprojection was used to reconstruct the images. They were displayed on a 256 x 256 matrix as 12 mm thick sections. Data aquisition time varied between 3 and 12 minutes. Our initial experiences with six cases harboring cerebellopontine angle lesions discolsed advantages and disadvantages of NMR imaging in comparison with X-ray CT. The advantages were the absence of linear artifacts from the surrounding bone, the marked gray-white matter differentiation, and the variety of tomographic planes available. The disadvantages included the lack of bone detail, the lack of visualization of the major intracranial vessels, and the long time required for scanning (several minutes per slice). Although much continued evaluation is necessary, NMR seems to have vast potential as a diagnostic tool. (author)

  16. Proton nuclear magnetic resonance studies on brain edema

    International Nuclear Information System (INIS)

    Naruse, S.; Horikawa, Y.; Tanaka, C.; Hirakawa, K.; Nishikawa, H.; Yoshizaki, K.

    1982-01-01

    The water in normal and edematous brain tissues of rats was studied by the pulse nuclear magnetic resonance (NMR) technique, measuring the longitudinal relaxation time (T1) and the transverse relaxation time (T2). In the normal brain, T1 and T2 were single components, both shorter than in pure water. Prolongation and separation of T2 into two components, one fast and one slow, were the characteristic findings in brain edema induced by both cold injury and triethyl tin (TET), although some differences between the two types of edema existed in the content of the lesion and in the degree of changes in T1 and T2 values. Quantitative analysis of T1 and T2 values in their time course relating to water content demonstrated that prolongation of T1 referred to the volume of increased water in tissues examined, and that two phases of T2 reflected the distribution and the content of the edema fluid. From the analysis of the slow component of T2 versus water content during edema formation, it was demonstrated that the increase in edema fluid was steady, and its content was constant during formation of TET-induced edema. On the contrary, during the formation of cold-injury edema, water-rich edema fluid increased during the initial few hours, and protein-rich edema fluid increased thereafter. It was concluded that proton NMR relaxation time measurements may provide new understanding in the field of brain edema research

  17. Determination of reservoir effective porosity using nuclear magnetic logging data

    International Nuclear Information System (INIS)

    Aksel'rod, S.M.; Danevich, V.I.; Sadykov, D.M.

    1979-01-01

    In connection with the development of nuclear magnetic logging (NML) the possibility has occurred to determine the effective porosity coefficient for rocks directly under the conditions of their occurrence. The initial amplitude of a signal of free precession of NML is proportional to the quantity of free fluid in the rock volume, which is determined by the index of free fluid (IFF). On the basis of the laboratory studies it is shown that the relation between IFF and free water content is always linear and doesn't depend on lithological characteristics of rocks, porous dimensions and distribution. Using this relation it's possible to estimate bound water content. While filling the reservoir with weakly mineralized water the IFF value coincides numerically with the effective porosity coefficient. Otherwise the content of hydrogen nuclei in a volume unit is much less; while calculating the effective porosity coefficient this fact is recorded by the index of the amplitude decrease which depends on temperature and increases with its growth (for oils). In strata containing intercalations of reservoirs and non-reservoirs the averaged according to stratum IFF value determines the mean-weighted values of effective porosity

  18. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  19. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    Science.gov (United States)

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  20. Nuclear magnetic relaxation of methyl group in liquids

    International Nuclear Information System (INIS)

    Blicharska, B.

    1986-01-01

    The theoretical description of the relaxation process of methyl group in liquids and some results of the measurements of relaxation function and relaxation times for cryoprotective solutions are presented. Starting from the application of the operator formalism the general equation for spin operators e.g. components of the nuclear spin and magnetization is founded. Next, the spin Hamiltonian is presented as contraction of the symmetry adapted spherical tensors as well as the correlation functions and spectral densities. On the basis of extended and modified Woessner model of motion the correlation functions and spectral densities are calculated for methyl group in liquids. Using these functions the relaxation matrix elements, the spin-spin and spin-lattice relaxation times can be expressed. The prediction of the theory agrees with author's previous experiments on cryoprotective solutions. The observed dependence on temperature, frequency and isotopic dilution in methanol-water, methanol-dimethyl sulfoxide (DMSO) and DMSO-water solutions is in a satisfactory agreement with theoretical equations. 34 refs. (author)

  1. Work in progress: nuclear magnetic resonance imaging of the gallbladder

    International Nuclear Information System (INIS)

    Hricak, H.; Filly, R.A.; Margulis, A.R.; Moon, K.L.; Crooks, L.E.; Kaufman, L.

    1983-01-01

    A preliminary study of the relation between food intake and intensity of gallbladder bile on nuclear magnetic resonance (NMR) images was made. Twelve subjects (seven volunteers, five patients) were imaged following a minimum of 14 hours of fasting. Six of seven volunteers were reimaged one hour after stimulation by either a fatty meal or an alcoholic beverage. An additional seven patients were imaged two hours after a hospital breakfast. It was found that concentrated bile emits a high-intensity spin echo signal (SE), while hepatic bile in the gallbladder produces a low-intensity SE signal. Following ingestion of cholecystogogue, dilute hepatic bile settles on top of the concentrated bile, each emitting SE signals of different intensity. The average T1 value of concentrated bile was 594 msec, while the T1 vaue of dilute hepatic bile was 2,646 msec. The average T2 values were 104 msec for concentrated bile and 126 msec for dilute bile. The most likely cause for the different SE intensities of bile is the higher water content, and therefore longer T1 or T2 relaxation times, of hepatic bile. It is suggested that NMR imaging has the ability to provide physiological information about the gallbladder and that it may prove to be a simple and safe clinical test of gallbladder function

  2. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  3. Gradient coil system for nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Frese, G.; Siebold, H.

    1984-01-01

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry

  4. Proton nuclear magnetic resonance spectroscopy of plasma lipoproteins in malignancy

    International Nuclear Information System (INIS)

    Nabholtz, J.M.; Rossignol, A.; Farnier, M.; Gambert, P.; Tremeaux, J.C.; Friedman, S.; Guerrin, J.

    1988-01-01

    A recent study described a method of detecting malignant tumors by water-supressed proton nuclear magnetic resonance (1 H NMR) study of plasma. We performed a similar study of the W 1/2, a mean of the full width at half height of the resonances of the methyl and methylene groups of the lipids of plasma lipoproteins which is inversely related to the spin-spin apparent relaxation time (T 2 * ). W 1/2 values were measured at a fixed baseline width of 310 Hz. The study was prospective and blinded and comprised 182 subjects consisting of 40 controls, 68 patients with untreated malignancies, 45 with malignant tumors undergoing therapy and 29 benign tumor patients. No differences were seen between any groups that could serve as a basis for a useful clinical test. The major difficulty in the determination of W 1/2 was due to interference of metabolite protons (particularly lactate) within the lipoprotein resonance signal. Triglyceride level was seen to correlate inversely with W 1/2 within malignant patient groups. These discrepant results may be related to differing triglyceride-rich very low density lipoprotein (VLDL) levels in the ;atient populations of each study. We conclude that the water-suppressed 1H NMR of plasma lipoproteins is not a valid measurement for assessing malignancy. (orig.)

  5. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation

    International Nuclear Information System (INIS)

    Brown, Keith A.; Vassiliou, Christophoros C.; Issadore, David; Berezovsky, Jesse; Cima, Michael J.; Westervelt, R.M.

    2010-01-01

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T 2 CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T 2 CP and details of the aggregate. We find that in the motional averaging regime T 2 CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T 2 CP ∝Ν -0.44 for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T 2 CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.

  6. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Colvin, M; Krishnan, V V

    2003-01-01

    The power of a quantum computer (QC) relies on the fundamental concept of the superposition in quantum mechanics and thus allowing an inherent large-scale parallelization of computation. In a QC, binary information embodied in a quantum system, such as spin degrees of freedom of a spin-1/2 particle forms the qubits (quantum mechanical bits), over which appropriate logical gates perform the computation. In classical computers, the basic unit of information is the bit, which can take a value of either 0 or 1. Bits are connected together by logic gates to form logic circuits to implement complex logical operations. The expansion of modern computers has been driven by the developments of faster, smaller and cheaper logic gates. As the size of the logic gates become smaller toward the level of atomic dimensions, the performance of such a system is no longer considered classical but is rather governed by quantum mechanics. Quantum computers offer the potentially superior prospect of solving computational problems that are intractable to classical computers such as efficient database searches and cryptography. A variety of algorithms have been developed recently, most notably Shor's algorithm for factorizing long numbers into prime factors in polynomial time and Grover's quantum search algorithm. The algorithms that were of only theoretical interest as recently, until several methods were proposed to build an experimental QC. These methods include, trapped ions, cavity-QED, coupled quantum dots, Josephson junctions, spin resonance transistors, linear optics and nuclear magnetic resonance. Nuclear magnetic resonance (NMR) is uniquely capable of constructing small QCs and several algorithms have been implemented successfully. NMR-QC differs from other implementations in one important way that it is not a single QC, but a statistical ensemble of them. Thus, quantum computing based on NMR is considered as ensemble quantum computing. In NMR quantum computing, the spins with

  7. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskikh, Sergey V.; Furo, Istvan (Industrial NMR Centre and Div. of Physical Chemistry, Dept. of Chemistry, Royal Institute of Technology, Stockholm (Sweden))

    2009-09-15

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl{sub 2} in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  8. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    International Nuclear Information System (INIS)

    Dvinskikh, Sergey V.; Furo, Istvan

    2009-09-01

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl 2 in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  9. Homogeneity characterization of ethylene-co-vinyl acetate copolymer (EVA) and hydrophobic silica nanocomposite by low field NMR; Caracterizacao da homogeneidade de nanocomposito do copolimero etileno acetato de vinila (EVA) e silica hidrofobica atraves de ressonancia magnetica nuclear de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Stael, Giovanni Chaves [Observatorio Nacional, Rio de Janeiro, RJ (Brazil). Dept. de Geofisica (DGE); Tavares, Maria I.B. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    2005-07-01

    This project proposes the characterization of a polymeric matrix composite material using nanometric scale hydrophobic silica as charge element, with the ethylene-vinyl acetate (EVA), by using the spin-lattice relaxation time measurement applying the low field NMR.

  10. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  11. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  12. Nuclear magnetic resonance data of C36H30Br2OSb2

    Science.gov (United States)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  13. Nuclear magnetic resonance data of C36H30Cl2OSb2

    Science.gov (United States)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  14. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  15. Measurement and Quantification of Heterogeneity, Flow, and Mass Transfer in Porous Media Using NMR Low-Field Techiques

    Science.gov (United States)

    Paciok, E.; Olaru, A. M.; Haber, A.; van Landeghem, M.; Haber-Pohlmeier, S.; Sucre, O. E.; Perlo, J.; Casanova, F.; Blümich, B.; RWTH Aachen Mobile Low-Field NMR

    2011-12-01

    Nuclear magnetic resonance (NMR) is renowned for its unique potential to both reveal and correlate spectroscopic, relaxometric, spatial and dynamic properties in a large variety of organic and inorganic systems. NMR has no restrictions regarding sample opacity and is an entirely non-invasive method, which makes it the ideal tool for the investigation of porous media. However, for years NMR research of soils was limited by the use of high-field NMR devices, which necessitated elaborate NMR experiments and were not applicable to bulky samples or on-site field measurements. The evolution of low-field NMR devices during the past 20 years has brought forth portable, small-scale NMR systems with open and closed magnet arrangements specialized to specific NMR applications. In combination with recent advances in 2D-NMR Laplace methodology [1], low-field NMR has opened up the possibility to study real-life microporous systems ranging from granular media to natural soils and oil well boreholes. Thus, information becomes available, which before has not been accessible with high-field NMR. In this work, we present our recent progress in mobile low-field NMR probe design for field measurements of natural soils: a slim-line logging tool, which can be rammed into the soil of interest on-site. The performance of the device is demonstrated in measurements of moisture profiles of model soils [2] and field measurements of relaxometric properties and moisture profiles of natural soils [3]. Moreover, an improved concept of the slim-line logging tool is shown, with a higher excitation volume and a better signal-to-noise due to an improved coil design. Furthermore, we present our recent results in 2D exchange relaxometry and simulation. These include relaxation-relaxation experiments on natural soils with varying degree of moisture saturation, where we could draw a connection between the relaxometric properties of the soil to its pore size-related diffusivity and to its clay content

  16. Effect of chopping time and heating on 1 H nuclear magnetic resonance and rheological behavior of meat batter matrix.

    Science.gov (United States)

    Zhou, Fen; Dong, Hui; Shao, Jun-Hua; Zhang, Jun-Long; Liu, Deng-Yong

    2018-04-01

    The effect of chopping time and heating on physicochemical properties of meat batters was investigated by low-field nuclear magnetic resonance and rheology technology. Cooking loss and L* increased while texture profile analysis index decreased between chopping 5 and 6 min. The relaxation time T 21 (bound water) and its peak area ratio decreased, while the ratio of T 22 peak area (immobilized water) in raw meat batters gradually increased with the extension of chopping time. However, T 22 was opposite after being heated and a new component T 23 (free water) appeared (T 2i is the spin - spin relaxation time for the ith component.). The initial damping factor (Tan δ) gradually decreased and there were significant difference between 4 and 5 min of chopping time. There were significantly positive correlations between the ratio of peak area of T 22 and chopping time, the storage modulus (G'), cooking loss, and L*, respectively. Continued chopping time could improve the peak area proportion of T 22 in raw meat batters. Further, the higher the peak area proportion of T 22 in raw meat batters, the cooking loss of heated meat gel was higher. Also, the stronger the mobility of immobilized water in meat batter, the higher the L* of the fresh meat batters. Thus, it is revealed that the physicochemical properties of meat batter are significantly influenced by chopping time which further affects the water holding capacity and the texture of emulsification gel. © 2017 Japanese Society of Animal Science.

  17. Science and history explored by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baias, Maria Antoaneta

    2009-01-01

    Nuclear Magnetic Resonance was chosen as the main tool for investigating different biological and chemical systems, as it is unique in providing the information details about the morphology and molecular structures and conformations by which the fundamental properties of these biological and chemical systems can be understood. Proton spin-diffusion experiments combined with 13 C CPMAS spectroscopy were successfully applied to characterize the changes that occur during the thermal denaturation of keratin fibers from wool and hair. A model describing both the effect of thermal denaturation and the effect of different chemical treatments on keratin fibers is presented. Proton NMR spectroscopy was used for studying the proton exchange in Sulfonated Polyether Ether Ketone proton exchange membranes revealing that the water exchange processes in hydrated SPEEK-silica membranes are more efficient when low concentrations of polyethoxysiloxane (PEOS) are used for the membrane preparation. Proton 1D exchange spectroscopy combined with transverse relaxation measurements offered good insight in the state of water in hydrated SPEEK/SiO 2 membranes revealing that concentrations of 5%-10% wt. PEOS could enhance the electrical conductivity of PEM. Hyperpolarized 129 Xe NMR spectroscopy was successfully applied for monitoring the free radical polymerization reactions of methyl methacrylate, methyl acrylate and the copolymerization of methyl methacrylate and methyl acrylate. The observation of Xe chemical shift and linewidths during the reactions reveal information about the polymer chain growths during the polymerizations. The successful application of the NMR-MOUSE to visualise the different anatomical layers with varying proton densities opens the possibility of its use in clinical studies such as osteoporosis for bone density measurements. The NMR-MOUSE was also successfully applied for the analysis of violins and bows and a classification of the violins and bows as a function of

  18. Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance

    Science.gov (United States)

    Santiago, C. J. S.; Solatpour, R.; Kantzas, A.

    2017-12-01

    The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing

  19. Resolution Improvement in Multidimensional Nuclear Magnetic Resonance Spectroscopy of Proteins

    International Nuclear Information System (INIS)

    Duma, L.

    2004-01-01

    The work presented in this thesis is concerned with both liquid-state and solid-state nuclear magnetic resonance (NMR) spectroscopy. Most of this work is devoted to the investigation by solid-state NMR of C 13 -enriched compounds with the principal aim of presenting techniques devised for further improving the spectral resolution in multidimensional NMR of microcrystalline proteins. In fully C 13 -labelled compounds, the J-coupling induces a broadening of the carbon lineshapes. We show that spin-state-selective technique called IPAP can be successfully combined with standard polarisation transfer schemes in order to remove the J-broadening in multidimensional solid-state NMR correlation experiments of fully C 13 -enriched proteins. We present subsequently two techniques tailored for liquid-state NMR spectroscopy. The carbon directly detected techniques provide chemical shift information for all backbone hetero-nuclei. They are very attracting for the study of large bio-molecular systems or for the investigation of paramagnetic proteins. In the last part of this thesis, we study the spin-echo J-modulation for homonuclear two-spin 1/2 systems. Under magic-angle spinning, the theory of J-induced spin-echo modulation allows to derive a set of modulation regimes which give a spin-echo modulation exactly equal to the J-coupling. We show that the chemical-shift anisotropy and the dipolar interaction tend to stabilize the spin-echo J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing C 13 spin pairs. (author)

  20. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    International Nuclear Information System (INIS)

    Barrall, G.A.; Lawrence Berkeley Lab., CA

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample's density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques

  1. Principles of nuclear magnetic resonance (NMR) - current state of the art

    International Nuclear Information System (INIS)

    Lerski, R.A.

    1985-01-01

    Nuclear magnetic resonance (NMR) imaging has progressed rapidly from laboratory curiosity to commercial exploitation and clinical application in the space of only three years. The physical principles underlying the technique are described and the equipment requirements outlined. The question of optimal magnetic field strength is discussed. (author)

  2. Ga nuclear magnetic resonance study of UTGa5(T = Ni,Pt)

    International Nuclear Information System (INIS)

    Kato, Harukazu; Sakai, Hironori; Tokunaga, Yo; Tokiwa, Yoshihumi; Ikeda, Shugo; Onuki, Yoshichika; Kambe, Shinsaku; Walstedt, Russell E

    2003-01-01

    Ga nuclear magnetic resonance measurements have been carried out for the 5f antiferromagnets UNiGa 5 and UPtGa 5 . The transferred field at the Ga nuclei has been evaluated. The magnetic structure in the antiferromagnetic region has been confirmed from the microscopic point of view. The mechanism of the hyperfine interaction is discussed

  3. Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse.

    Science.gov (United States)

    Tsuchida, Jefferson Esquina; Rezende, Camila Alves; de Oliveira-Silva, Rodrigo; Lima, Marisa Aparecida; d'Eurydice, Marcel Nogueira; Polikarpov, Igor; Bonagamba, Tito José

    2014-01-01

    Enzymatic hydrolysis is a crucial step of biomass conversion into biofuels and different pretreatments have been proposed to improve the process efficiency. Amongst the various factors affecting hydrolysis yields of biomass samples, porosity and water accessibility stand out due to their intimate relation with enzymes accessibility to the cellulose and hemicellulose fractions of the biomass. In this work, sugarcane bagasse was subjected to acid and alkali pretreatments. The changes in the total surface area, hydrophilicity, porosity and water accessibility of cellulose were investigated by scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR). Changes in chemical and physical properties of the samples, caused by the partial removal of hemicellulose and lignin, led to the increase in porosity of the cell walls and unwinding of the cellulose bundles, as observed by SEM. (1)H NMR relaxation data revealed the existence of water molecules occupying the cores of wide and narrow vessels as well as the cell wall internal structure. Upon drying, the water molecules associated with the structure of the cell wall did not undergo significant dynamical and partial moisture changes, while those located in the cores of wide and narrow vessels kept continuously evaporating until reaching approximately 20% of relative humidity. This indicates that water is first removed from the cores of lumens and, in the dry sample, the only remaining water molecules are those bound to the cell walls. The stronger interaction of water with pretreated bagasse is consistent with better enzymes accessibility to cellulose and higher efficiency of the enzymatic hydrolysis. We were able to identify that sugarcane bagasse modification under acid and basic pretreatments change the water accessibility to different sites of the sample, associated with both bagasse structure (lumens and cell walls) and hydrophilicity (lignin removal). Furthermore, we show that the substrates with increased

  4. Superconducting magnets for model ship propulsion and for material tests of a nuclear fusion reactor

    International Nuclear Information System (INIS)

    Horiuchi, T.; Matsumoto, K.; Monju, Y.; Tatara, I.; Hamada, M.

    1982-01-01

    Nuclear fusion reactors, magnetically levitated trains, and MHD generators, etc., all need a very high magnetic field; which in order to be attained a means the application of superconductors is inevitable. This paper describes the development of ''CRYOZITT'', a superconductor featuring high current density and high mechanical strength. CRYOZITT has already been used in the manufacture of two race-track shaped superconducting magnets, and delivered to highly satisfied customers. (author)

  5. Nuclear magnetic relaxation and origins of RMN signals from GdAl2

    International Nuclear Information System (INIS)

    Santos Oliveira Junior, I. dos.

    1988-12-01

    The intermetallic compound GdAl 2 crystallizes in the cubic Laves phase C15. It is a simple ferromagnet below 176K. The easy direction of magnetization in this compound is such that the Al ions are distributed among two magnetically inequivalent sites. The pulsed NMR technique was used to study the origin of the signals from these two sites and the nuclear magnetic relaxation. (author) [pt

  6. Low-field MR arthrography of the shoulder joint: technique, indications, and clinical results

    International Nuclear Information System (INIS)

    Kreitner, K.-F.; Thelen, M.; Loew, R.; Runkel, M.; Zoellner, J.

    2003-01-01

    In the age of cost containment and urgent reductions in health care expenditures, new options have to be explored to satisfy both diagnostic requirements and economic limitations. The introduction of low-field MR systems for assessment of joint disorders seemed to be an option for lower costs. The purpose of this article is to summarize available experiences with low-field MR arthrography of the glenohumeral joint with respect to image quality and diagnostic accuracy in detecting labral and rotator cuff lesions. Up to now, there has been only a limited number of studies available dealing with low-field MR arthrography of the glenohumeral joint. They reveal that, despite a minor image quality in comparison with high-field imaging, low-field MR arthrography of the shoulder allows for sufficient evaluation of intra- and extra-articular structures in the detection of major abnormalities such as glenohumeral instability or rotator cuff disease. Furthermore, open-configured MR scanners enable kinematic studies: Besides the analysis of normal motion, pathological findings in patients with instabilities and impingement syndrome can be delineated. They further offer the possibility for performing MR imaging-guided arthrography of the shoulder. This was first described using an open C-arm scanner with a vertically oriented magnetic field so that MR arthrography may be performed in one setting. (orig.)

  7. Nuclear magnetic shielding tensors of 207Pb2+ in Pb(NO3)2

    International Nuclear Information System (INIS)

    Lutz, O.; Nolle, A.

    1980-01-01

    The NMR signals of 207 Pb were observed in a single crystal of Pb(NO 3 ) 2 and could be assigned to the four different Pb 2+ sites by the dependence of the linewidths on the orientation. Four different nuclear magnetic shielding tensors with equal principal values but with different characteristic vectors could be determined. The symmetry of the shielding tensors is in agreement with the symmetry at the Pb 2+ sites. It is shown, that intermolecular contributions can not account for the anisotropy of the nuclear magnetic shielding, which is 3 0 / 00 of the isotropic absolute magnetic shielding. (orig.)

  8. Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance

    Science.gov (United States)

    Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.

    2018-05-01

    A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.

  9. The measurement of magnetic moments of nuclear states of high angular momentum

    International Nuclear Information System (INIS)

    Goldring, G.

    1978-01-01

    Two problems related to the measurement of the g-factor of relevant nuclear levels and their circumvention are discussed: a) the very high magnetic fields required for the measurements, available only as a hyperfine field of electrons or other charged particles moving very close to the nucleus; b) the large angular momentum of those nuclear states. The nuclei considered are those recoiling from a nuclear reaction at high speeds in either vacuum or gas. The environment of these nuclei are the isolated ions with which they are associated. The hyperfine interaction with such ions is primarily magnetic. (B.G.)

  10. Analysis of oil content and oil quality in oilseeds by low-field NMR; Analise do teor e da qualidade dos lipideos presentes em sementes de oleaginosas por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Constantino, Andre F.; Lacerda Junior, Valdemar; Santos, Reginaldo B. dos; Greco, Sandro J.; Silva, Renzo C.; Neto, Alvaro C.; Barbosa, Lucio L.; Castro, Eustaquio V.R. de [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Quimica; Freitas, Jair C.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Fisica

    2014-07-01

    To choose among the variety of oleaginous plants for biodiesel production, the oil content of several matrices was determined through different low-field {sup 1}H nuclear magnetic resonance (NMR) experiments with varied pulse sequences, namely single-pulse, spin-echo, CPMG, and CWFP. The experiments that involved the first three sequences showed high correlation with each other and with the solvent extraction method. The quality of the vegetable oils was also evaluated on the basis of the existing correlation between the T{sub 2} values of the oils and their properties, such as viscosity, iodine index, and cetane index. These analyses were performed using HCA and PCA chemometric tools. The results were sufficiently significant to allow separation of the oleaginous matrices according to their quality. Thus, the low-field {sup 1}H NMR technique was confirmed as an important tool to aid in the selection of oleaginous matrices for biodiesel production. (author)

  11. Nuclear magnetic resonance of D(-)-{alpha}-amino-benzyl penicillin; Ressonancia magnetica nuclear da D(-)-{alpha}-amino-benzil penicilina

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1995-12-31

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-{alpha}-amino-benzyl penicillin were analysed using {sup 13} C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed 7 figs., 4 tabs.

  12. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    Science.gov (United States)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix

  13. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  14. Nuclear reorientation in static and radio-frequency electro-magnetic fields

    International Nuclear Information System (INIS)

    Dubbers, D.

    1976-01-01

    Nuclear reorientation by external electromagnetic fields is treated using Fano's irreducible tensor formulation of the problem. Although the main purpose of this paper is the description of the effects of nuclear magnetic resonance (NMR) on an ensemble of oriented nuclei in the presence of a crystal electric field gradient (efg), the results are applicable to all types of nuclear or atomic orientation or angular correlation work. The theory is applied to a number of exemplary cases: magnetic field dependence of nuclear orientation in the presence of quadrupole interactions; sign determination in electric quadrupole coupling; line shapes of nuclear acoustic resonance (NAR) signals; quadrupole splitting and multiquantum transitions in NMR with oriented nuclei. (orig./WBU) [de

  15. Properties of K,Rb-intercalated C60 encapsulated inside carbon nanotubes called peapods derived from nuclear magnetic resonance

    KAUST Repository

    Mahfouz, Remi; Bouhrara, M.; Kim, Y.; Wå gberg, T.; Goze-Bac, C.; Abou-Hamad, Edy

    2015-01-01

    We present a detailed experimental study on how magnetic and electronic properties of Rb,K-intercalated C60 encapsulated inside carbon nanotubes called peapods can be derived from 13C nuclear magnetic resonance investigations. Ring currents do play

  16. Threedimensional imaging of organ structures by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Waters, W.; Smolorz, J.; Wellner, U.

    1985-01-01

    A simple method for threedimensional imaging of organ structures is presented. The method is based on a special acquisition mode in a nuclear resonance tomograph, exciting layers of 20 cm thickness at different angulations. The display is done by cinematography (which is usually used in nuclear cardiology) projecting the structures in a rotating movement. (orig.) [de

  17. Nuclear Magnetic Resonance and Unstable Rare-Earth Magnetism in CERIUM-ALUMINUM(3)

    Science.gov (United States)

    Lysak, Michael Jerry

    ('27)Al nuclear magnetic resonance (NMR) experiments have been carried out in the unstable-moment compound CeAl(,3) to probe the nature of the hyperfine field at the ('27)Al site, and to obtain effective Ce-4f spin fluctuation rates. From the reported Fermi-fluid-like properties of CeAl(,3) at low temperatures, a characteristic temperature T(,char)(TURN)0.5K is estimated, below which electron-electron correlations are strong. A change of slope in a plot of the ('27)Al isotropic frequency shift K(,i) versus the susceptibility (chi) in the temperature range 1.5-20K is therefore probably not associated with a change in the hyperfine interaction at T(,char). NMR absorption spectra of CeAl(,3) qualitatively indicate a considerable anisotropy in the ('27)Al shift below 20K, which increases with decreasing temperature or increasing applied field. Since these K((chi)) anomalies begin to occur at a temperature of the order of the lowest crystal-electric-field (CEF) splitting of the Ce-ion states as derived from neutron quasielastic scattering, they are tentatively attributed to CEF effects which can cause anisotropy in the hyperfine interaction. The observed increase in the ('27)Al spin-lattice relaxation rate 1/T(,1) from 300K to a broad mximum near 10K is ascribed to possible electron-spin pair-correlation and/or CEF effects. The behavior of the effective 4f-spin fluctuation rate indicates the onset of short-range spatial correlations between the Ce-4f spins at low temperatures, but the nature of these correlations is uncertain due to difficulties in reconciling the NMR and neutron data. If such short -range correlations are assumed to be absent at 300K comparison of NMR and neutron results indicates that an effective number n(,eff) = 7(2) of Ce neighbors are hyperfine coupled to a given ('27)Al nucleus. A paramagnon theory of the susceptibility as proposed by Beal-Monod and Lawrence suggested that CeAl(,3) might be an exchange-enhanced system. A susceptibility

  18. Radioimmunotherapy of human lymphoma in athymic, nude mice as monitored by 31P nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Adams, D.A.; DeNardo, G.L.; DeNardo, S.J.; Matson, G.B.; Epstein, A.L.; Bradbury, E.M.

    1985-01-01

    Human B cell lymphoma (Raji) growing in athymic, nude mice has been successfully treated with a single pulse dose of 131 I-labeled monoclonal antibody (Lym-1) specific for this tumor. Sequential in vivo measurements of phosphate metabolites in the tumors by 31 P surface coil nuclear magnetic resonance showed a significant initial decrease of phosphocreatine following radioimmunotherapy. Diminution of relative ATP to Pi peak area ratio suggesting tissue damage occurred within 3-4 days. The sequence of alterations of nuclear magnetic resonance spectra from tumors of treated mice were strikingly different from sequential nuclear magnetic resonance spectra obtained from tumors of control mice. These observations lead us to conclude that 31 P surface coil nuclear magnetic resonance is a promising non-invasive method for assessing and predicting the efficacy of radioimmunotherapy. Further spatial discrimination of the region of tissue observed by the surface coil nuclear magnetic resonance experiment is under exploration in an effort to increase the utility of these methods

  19. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    Science.gov (United States)

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  20. Contribution to the study of nuclear resonance in magnetic media (1963)

    International Nuclear Information System (INIS)

    Hartmann-Boutron, F.

    1963-06-01

    An attempt is made to interpret the results of nuclear magnetic resonance experiments made by various workers on ferro and ferrimagnetic compounds of the iron group. The problems encountered are the following: effects of the dipolar fields and the hyperfine structure anisotropy; signal intensity; frequency pulling due to the Suhl-Nakamura interaction between nuclear spins ; nuclear relaxation and ferrimagnetic resonance in single domain samples of impure YIG; nuclear relaxation in the Bloch walls of insulators. The results of our calculations are generally in good agreement with experiment. (author) [fr

  1. Superconducting magnets in nuclear and high energy physics

    International Nuclear Information System (INIS)

    Hamelin, J.; Parain, J.; Perot, J.; Lesmond, C.

    1976-01-01

    A few examples of superconducting magnets developped at Saclay for high energy physics are presented. The OGA doublet is a large acceptance optical system consisting of two quadrupoles with maximum field gradients of 35 and 23 teslas per meter giving an increase of the beam acceptance by a factor 4. The ALEC dipole is a synchrotron magnet with a length of 1.5 meter and a field of 5 teslas, operating in pulse made at a frequency of 0.1 Hertz and entirely constructed in industry. The ECO project is a demonstration of electrical energy saving by means of superconductors. It consists in the replacement of conventional copper of a classical beam transport magnet by superconducting windings. The use of superconductors for polarized target magnets allows a large variety of configurations to be obtained in order to satisfy the acceptance and space requirements to the detectors around the targets [fr

  2. Introduction to the controlled nuclear fusion (magnetic containment systems)

    International Nuclear Information System (INIS)

    Cabrera, J.A.; Guasp, J.; Martin, R.

    1975-01-01

    The magnetic containment systems, their more important features, and their potentiality to became thermonuclear reactors is described. The work is based upon the first part of a set of lectures dedicated to Plasma and Fusion Physics. (author)

  3. Application of the DSP in the nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bartusek, K.; Jflek, B.; Dokoupil, Z.

    1995-01-01

    The digital signal processor systems for the NMR tomography are presented and different processors are compared. The generation of magnetic field gradient control system as well as the fast NMR tomography data processing based on these processors are discussed

  4. Nuclear charge and magnetization densities of single particle states

    International Nuclear Information System (INIS)

    Frois, B.

    1985-01-01

    High energy electron scattering data have recently determined the spatial distributions of nucleons in the center of nuclei with amazing accuracy. For the first time we have access to the structure of the nuclear interior throughout the periodic table. The spatial resolution achieved by high momentum transfer measurements is now sufficient to define clearly the present limits of nuclear theory. The experimental situation is briefly reviewed and the results interpreted in the framework of self-consistent field theory. The shapes of single particle distributions in the nuclear interior are found to be in surprisingly good agreement with the predictions of mean field theory. The effects of correlations are discussed. (orig.)

  5. Nuclear charge and magnetization densities of single particle states

    International Nuclear Information System (INIS)

    Frois, B.

    1985-05-01

    High energy electron scattering data have recently determined the spatial distributions of nucleons in the center of nuclei with amazing accuracy. For the first time we have access to the structure of the nuclear interior throughout the periodic table. The spatial resolution achieved by high momentum transfer measurements is now sufficient to define clearly the present limits of nuclear theory. The experimental situation is briefly reviewed and the results interpreted in the framework of self-consistent field theory. The shapes of single particle distributions in the nuclear interior are found to be in surprisingly good agreement with the predictions of mean field theory. The effects of correlations are discussed

  6. Solid state nuclear magnetic resonance investigations of advanced energy materials

    Science.gov (United States)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  7. Acute peripheral joint injury: cost and effectiveness of low-field-strength MR imaging--results of randomized controlled trial.

    NARCIS (Netherlands)

    Nikken, J.J.; Oei, E.H.; Ginai, A.Z.; Krestin, G.P.; Verhaar, J.A.N.; Vugt, A.B. van; Hunink, M.G.M.

    2005-01-01

    PURPOSE: To assess prospectively if a short imaging examination performed with low-field-strength dedicated magnetic resonance (MR) imaging in addition to radiography is effective and cost saving compared with the current diagnostic imaging strategy (radiography alone) in patients with recent acute

  8. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    Science.gov (United States)

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. Copyright © 2016, American Association for the Advancement of Science.

  9. Fluorine nuclear magnetic resonance study of enrichment effects in gaseous, liquid and solid uranium hexafluoride

    International Nuclear Information System (INIS)

    Ursu, I.; Demco, D.E.; Simplaceanu, V.; Valcu, N.

    1977-01-01

    The nuclear magnetic resonance method is able to provide information concerning the isotopic content of 235 U in UF 6 by means of measuring the nuclear magnetic transverse relaxation time (T,L2) of 19 F nuclei in liquid UF 6 . In this work, the sources of errors in the T 2 measurements have been analysed and methods for reducing them are dicussed. Typical errors in T 2 determinations are below 2%. The enrichment estimations made by using the linear calibration curves had a deviation of less than 2% with some exceptions. It was found that the chemical impurities may significantly affect the enrichment estimations. 19 F NMR spectra of liquid and gaseous UF 6 at low pressures did not reveal any structure or enrichment effect. The longitudinal nuclear magnetic relaxation of 19 F nuclei in low pressure, gaseous and solid UF 6 showed no enrichment dependence, nor the dipolar relaxation time in solid UF 6 did. (author)

  10. 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Report consist of abstracts of 63 communications presented during the 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 1-2, 2008 in Cracow. Presentations cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters.

  11. Nuclear magnetic resonance imaging of the knee: examples of normal anatomy and pathology.

    Science.gov (United States)

    Kean, D M; Worthington, B S; Preston, B J; Roebuck, E J; McKim-Thomas, H; Hawkes, R C; Holland, G N; Moore, W S

    1983-06-01

    Nuclear magnetic resonance images of the knee were obtained from three normal volunteers and from two patients. The pathology included an osteosarcoma of the distal femur and a fracture of the tibia. Steady State Free Precession (SSFP) techniques were used with a 0.15 Tesla resistive type magnet. Normal anatomy was well displayed and the size of the osteosarcoma was accurately predicted. Using SSFP techniques, the blood in the knee joint was not visualised, but the underlying tibial fracture was clearly outlined.

  12. Materials of the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    The Report comprises abstracts of 78 communications presented during the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on November, 30 - December, 2006 in Cracow (PL). They cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  13. 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    2008-01-01

    The Report consist of abstracts of 63 communications presented during the 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 1-2, 2008 in Cracow. Presentations cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  14. Consideration on nuclear fusion in plasma by the magnetic confinement as a heat engine

    International Nuclear Information System (INIS)

    Tsuji, Yoshio

    1990-01-01

    In comparing nuclear fusion in plasma by the magnetic confinement with nuclear fission and chemical reactions, the power density and the function of a heat engine are discussed using a new parameter G introduced as an eigenvalue of a reaction and the value of q introduced to estimate the thermal efficiency of a heat engine. It is shown that the fusion reactor by the magnetic confinement is very difficult to be a modern heat engine because of the lack of some indispensable functions as a modern heat engine. The value of G and q have the important role in the consideration. (author)

  15. Proceedings of the 9. Meeting of the nuclear magnetic resonance users. Abstracts

    International Nuclear Information System (INIS)

    2003-01-01

    Nuclear magnetic resonance spectroscopy has been one of the methods more powerful for characterizing and identifying substances, because it allows a detailed evaluation on internal molecular dynamics as well as clarifying its molecular and electronic structures. This meeting has presented a widespread variety of NMR techniques, as well as, advances in the use of this techniques in studies of the structure of liquids and solids. Theoretical and experimental papers are presented, covering the following subjects: nuclear magnetic resonance, structural chemical analysis, chemical shift and NMR spectrometers

  16. Nuclear magnetic resonance imaging in patients with hypertrophic and dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Boisvieux, A.

    1987-01-01

    Patients with hypertrophic and dilated cardiomyopathy and normal subjects were investigated with nuclear magnetic resonance imaging. To evaluate the NMR scanner possibilities, the results were compared with the echocardiographic investigation of the same patients. The capabilities of NMR imaging to provide information about intracardiac anatomy are emphasized. This study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of the techniques used to obtain NMR images and a review of the clinical use of NMR imaging for cardiac diagnosis [fr

  17. The design of photoelectric signal processing system for a nuclear magnetic resonance gyroscope based on FPGA

    Science.gov (United States)

    Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng

    2017-10-01

    Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.

  18. Neutron Diffraction Studies of Nuclear Magnetic Ordering in Copper

    DEFF Research Database (Denmark)

    Jyrkkiö, T.A.; Huiku, M.T.; Siemensmeyer, K.

    1989-01-01

    for measurements in the ordered state; both our calculations and the experiments yield 1 nW beam heating. Polarized neutron experiments show that the scattered intensities from the strong fcc reflections are severely reduced by extinction. This makes the sample not very suitable for further studies with polarized...... to depend strongly on the external magnetic field between zero and the critical fieldB c=0.25 mT, indicating the existence of at least two antiferromagnetic phases. The results are compared to previous measurements of the magnetic susceptibility. Theoretical calculations do not provide a full explanation...

  19. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  20. Nuclear magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    Knaap, M.S. van der; Valk, J.

    1989-01-01

    In this article a review is given of the use of magnetic resonance imaging for the central nervous system. An example of the screening of the population for multiple scelerosis is given. A good preliminary examination and the supply of relevant information to the person which performs the imaging is necessary. (R.B.). 9 figs.; 4 tabs

  1. Ferromagnetic nuclear resonance investigation of the surface magnetization in iron sheets

    International Nuclear Information System (INIS)

    Varga, L.; Tompa, K.

    1977-09-01

    The role of the domain structure and domain properties in ferromagnetic nuclear resonance (FNR) experiments is reconsidered. Using the FNR signal intensity as a measure of surface domain wall volume, it is found that the behaviour of the surface magnetization differs from that of the bulk magnetization of iron sheets. Namely, a critical field below which the FNR signal remains unchanqed is observed in the surface magnetization. This lag of surface domain wall annihilation is sensitive to the given surface conditions and in particular to the rolling deformation. Considering the small skin depth, FNR as a surface testing method is discussed. (D.P.)

  2. The effect of a neutrino magnetic moment on nuclear excitation processes

    International Nuclear Information System (INIS)

    Dodd, A.C.; Papageorgiu, E.; Ranfone, S.

    1991-01-01

    It is shown that the MeV-range neutrinos with a magnetic moment of ≅ 10 -11 Bohr magnetons would excite nuclei, like 12 C, with cross sections comparable to those obtained in the Standard Model. This implies the possibility of improving the present experimental bounds on the magnetic moment of any flavour of neutrinos by one order of magnitude. Such a magnetic moment would also enhance the coherent neutrino-nuclear scattering in low-temperature detectors, enabling them to set comparable limits. (author)

  3. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  4. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  5. Proton nuclear magnetic resonance in paramagnetic CoCl2.6H2O

    International Nuclear Information System (INIS)

    Oravcova, J.; Murin, J.; Rakos, M.; Olcak, D.

    1978-01-01

    Nuclear magnetic resonance (NMR) is studied of protons of the crystal water of paramagnetic CoCl 2 .6H 2 O. The measurements were carried out on powdered samples at room temperature, for values of the external magnetic field ranging from 0.3 to 1.0 T. The NMR signals of protons of the crystal water exhibit asymmetric shape which changes with the applied external magnetic field. We found that the second moment of the resonance line shows a linear dependence on the square of the induction of the externally applied magnetic field. The cause of the asymmetry of the NMR line of protons of the crystal water and the dependence of the second moment of the resonance line on the induction of external magnetic field are interpreted. (author)

  6. Nuclear magnetic imaging for MTRA. Spinal canal and spinal cord

    International Nuclear Information System (INIS)

    Fritzsch, Dominik; Hoffmann, Karl-Titus

    2011-01-01

    The booklet covers the following topics: (1) Clinical indications for NMR imaging of spinal cord and spinal canal; (2) Methodic requirements: magnets and coils, image processing, contrast media: (3) Examination technology: examination conditions, sequences, examination protocols; (4) Disease pattern and indications: diseases of the myelin, the spinal nerves and the spinal canal (infections, tumors, injuries, ischemia and bleedings, malformations); diseases of the spinal cord and the intervertebral disks (degenerative changes, infections, injuries, tumors, malformations).

  7. Value of nuclear magnetic resonance imaging in cardiology

    International Nuclear Information System (INIS)

    Cabon-Martin, C.

    1987-01-01

    The present study summarizes an experience with Magnetic Resonance Imaging (MRI) in the evaluation of twelve patients with a variety of cardiac abnormalities (myocardial infarction, mural thrombi, obstructive cardiomyopathy, pericarditis). The results are compared with clinical data, with measurements from other techniques such as two-dimensional echocardiography and with the images in normal subjects. An anticipated advantage of MRI is the ability to provide better tissue characterization, than has been attained with other imaging techniques, by relaxation time measurement [fr

  8. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  9. Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes

    KAUST Repository

    Mroué , Kamal H.; Emwas, Abdul-Hamid M.; Power, William P.

    2010-01-01

    on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry

  10. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  11. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Gomez, Sergio S.

    2006-01-01

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown

  12. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  13. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in vito

    Science.gov (United States)

    1994-01-06

    L. Narayanan. and B. M. Jamot. ’Effects of Peulluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus Metabolism in...pathways and examined the impact of perfluorocarboxylic acid exposure. This investigative strategy will delineate the metabolic effices exerted by...Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo Principal Investigator: Nicholas V. Reo

  14. Nuclear magnetic resonance and the question of 5F electron localization in the actinides

    International Nuclear Information System (INIS)

    Fradin, F.Y.

    1976-01-01

    Nuclear magnetic resonance results are presented for a number of NaCl-type compounds and cubic Laves-phase type compounds of uranium, neptunium, and plutonium. Special emphasis is placed on the Knight shift and spin-lattice relaxation time measurements and their interpretation in terms of localized or itinerant pictures of the 5Line integral electrons

  15. Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids

    International Nuclear Information System (INIS)

    Callaghan, Paul T.

    1999-01-01

    The application of nuclear magnetic resonance methods to the study of complex fluids under shearing and extensional flows is reviewed. Both NMR velocimetry and spectroscopy approaches are discussed while specific systems studied include polymer melts, rigid rod and random coil polymers in solution, lyotropic and thermotropic liquid crystals and liquid crystalline polymers, and wormlike micelles. Reference is made to food systems. (author)

  16. Aspects of the engineering design of whole-body nuclear magnetic resonance machines

    International Nuclear Information System (INIS)

    Young, I.R.; Collins, A.G.; Hall, A.S.; Harman, R.R.; Butson, P.C.; Gilderdale, D.J.

    1987-01-01

    The paper on whole-body nuclear magnetic resonance machines reviews the basic physics very briefly, then examines the design requirements and engineering constraints for the major components of such a system. The paper concludes with a brief resume of the techniques used, and a short presentation of the type of results that are achieved. (author)

  17. In situ nuclear magnetic resonance study of defect dynamics during deformation of materials

    NARCIS (Netherlands)

    Murty, K.L.; Detemple, K.; Kanert, O.; Peters, G; de Hosson, J.T.M.

    1996-01-01

    Nuclear magnetic resonance techniques can be used to monitor in situ the dynamical behaviour of point and line defects in materials during deformation. These techniques are non-destructive and non-invasive. We report here the atomic transport, in particular the enhanced diffusion during deformation

  18. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    Science.gov (United States)

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  19. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  20. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  1. Nuclear magnetic resonance analogs of the Greenberger-Horne-Zeilinger experiment

    International Nuclear Information System (INIS)

    Lloyd, S.

    1998-01-01

    It has been recently shown that analogs of the Greenberger-Horne-Zeilinger experiment, which demonstrates the impossibility of certain types of local hidden variable theories in quantum mechanics, can be performed using nuclear magnetic resonance on spins in molecules at finite temperature. This paper examines the role of decoherence in the microscopic 'measurements' used to perform the NMR experiments. (author)

  2. Sc-45 nuclear magnetic resonance analysis of precipitation in dilute Al-Sc alloys

    NARCIS (Netherlands)

    Celotto, S; Bastow, TJ

    Nuclear magnetic resonance (NMR) with Sc-45 is used to determine the solid solubility of scandium in aluminium and to follow the precipitation of Al3Sc during the ageing of an Al-0.06 at.% Sc alloy via the two fully resolved peaks, corresponding to Sc in the solid solution Al matrix and to Sc in the

  3. Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis

    DEFF Research Database (Denmark)

    Aru, Violetta; Lam, Chloie; Khakimov, Bekzod

    2017-01-01

    Lipoproteins and their subfraction profiles have been associated to diverse diseases including Cardio Vascular Disease (CVD). There is thus a great demand for measuring and quantifying the lipoprotein profile in an efficient and accurate manner. Nuclear Magnetic Resonance (NMR) spectroscopy is un...

  4. Interaction between adrenaline and dibenzo-18-crown-6: Electrochemical, nuclear magnetic resonance, and theoretical study

    Science.gov (United States)

    Yu, Zhang-Yu; Liu, Tao; Wang, Xue-Liang

    2014-12-01

    The interaction between adrenaline (Ad) and dibenzo-18-crown-6 (DB18C6) was studied by cyclic voltammetry, nuclear magnetic resonance spectroscopy, and the theoretical calculations, respectively. The results show that DB18C6 will affect the electron transfer properties of Ad. DB18C6 can form stable supramolecular complexes with Ad through ion-dipole and hydrogen bond interactions.

  5. 19F-nuclear magnetic resonance spectroscopy as a tool to ...

    African Journals Online (AJOL)

    19F-nuclear magnetic resonance spectroscopy as a tool to investigate host-guest complexation of some antidepressant drugs with natural and modified cyclodextrins. Leila Shafiee Dastjerdi1* and Mojtaba Shamsipur2. 1Faculty of Science, Roudehen Branch, Islamic Azad University, Tehran, 2Department of Chemistry, ...

  6. Nuclear magnetic resonance spectroscopy of living systems : Applications in comparative physiology

    NARCIS (Netherlands)

    VanDenThillart, G; VanWaarde, A

    The most attractive feature of nuclear magnetic resonance spectroscopy (MRS) is the noninvasive and nondestructive measurement of chemical compounds in intact tissues. MRS already has many applications in comparative physiology, usually based on observation of P-31, since the levels of phosphorus

  7. Shimming a superconducting nuclear-magnetic-resonance imaging magnet with steel

    International Nuclear Information System (INIS)

    Hoult, D.I.; Lee, D.

    1985-01-01

    Using a recently published paper as a basis, the magnetic field produced by steel bars inserted in a superconducting NMR imaging magnet is analyzed in a spherically harmonic basis set. A description is then given of how such bars were used to improve the homogeneity of the field within the magnet's imaging volume from 1.2 parts per thousand to about 10 ppm. The poor homogeneity was caused by the magnet's being placed in a steel-laden environment, a situation normally shunned by investigators, and it is the author's contention that the results obtained abrogate the main objection to NMR equipment's being installed in an ordinary hospital building. To facilitate the latter, the equations developed may also be used to estimate, prior to installation, the effects of the proposed environment on field homogeneity

  8. Permanently magnetized high gradient magnetic air filters for the nuclear industry

    International Nuclear Information System (INIS)

    Watson, J.H.P.

    1995-01-01

    This paper describes the structure and testing of two novel permanently magnetized magnetic filters for fine radioactive material. In the first filter the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for composite particles which can be broken by mechanical forces. The second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted capture in which coarse particles aid the capture of the fine fragments. These filters have the following characteristics: (1) no external magnet is required, (2) no external power is required, (3) small in size and portable, (4) easily interchangeable, and (5) can be cleaned without demagnetizing by using a magnetic fluid which matches the susceptibility of the captured particles

  9. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  10. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  11. Microcomputer simulation of nuclear magnetic resonance imaging contrasts

    International Nuclear Information System (INIS)

    Le Bihan, D.

    1985-01-01

    The high information content of magnetic resonance images is due to the multiplicity of its parameters. However, this advantage introduces a difficulty in the interpretation of the contrast: an image is strongly modified according to the visualised parameters. The author proposes a micro-computer simulation program. After recalling the main intrinsic and extrinsic parameters, he shows how the program works and its interest as a pedagogic tool and as an aid for contrast optimisation of images as a function of the suspected pathology [fr

  12. Nuclear structure studies by means of magnetic moments of excited states

    International Nuclear Information System (INIS)

    Kaeubler, L.; Prade, H.; Schneider, L.; Brinckmann, H.F.; Stary, F.

    1981-09-01

    Experimental arrangements installed at the cyclotron U-120 and the tandem accelerator EGP-10 for the in-beam measurement of magnetic moments of excited nuclear states are discribed. The Perturbed-Angular-Distribution-method (PAD) has been used. A new evaluation method has been developed for the unique determination of the Larmor frequency from spin-procession spectra R(t) with less than half of an oscillation period between consecutive particle pulses. Magnetic moments in transitional nuclei or in nuclei near closed shells ( 103 Pd, 105 Ag, 117 Sb, 117 Te, 121 Te, 121 I, 143 Pm and 207 Bi) were measured. The results are discussed with the aim to get information about the nuclear structure of the corresponding isomeric states in connection with complex spectroscopic investigations. Therefore, the experimental values are compared to the results of model calculations (core-polarization, core-particle-coupling, Nilsson, particle-rotation-coupling or shell-model) or to the estimates on the basis of the additivity of effective magnetic moments. Single-particle aspects are discussed in connection with the magnetic moments of hsub(11/2)-, dsub(5/2)- and gsub(7/2)-neutron (ν) and proton (π) states in the nuclei 103 Pd, 117 Te, 121 Te and 143 Pm, respectively. The configurations of (π) 3 and (π)(ν) 2 -three-particle states in 105 Ag, 117 Sb, 121 I and 207 Bi could be determined using the additivity rule. The experimental magnetic moments of states in 143 Pm agree very well with the results of shell-model calculations, which have firstly been carried out also for negative-parity states in this mass region. Considering magnetic moments in 117 Te and 121 Te we could demonstrate the influence of different nuclear deformations on the magnetic moments in transitional nuclei. (author)

  13. Nuclear magnetic resonance system with continuous flow of polarized water to obtain the traceability to static magnetic fields; Sistema de ressonancia magnetica nuclear com fluxo continuo de agua polarizada para obtencao da rastreabilidade para campos magneticos estaticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ramon Valls; Nazarre, Diego Joriro, E-mail: ramon@ipt.br [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2013-07-01

    We have developed a system to obtain the traceability of field or magnetic induction intensity in the range of 2 μT up to 2 T, even in the presence of magnetic field gradients or noisy environments. The system is based on a nuclear magnetic resonance magnetometer, built in streaming water. The calibration procedure of a coil for magnetic field generation is described, as well as the results obtained and the estimated uncertainty (author)

  14. Antisite disorder-induced low-field magnetoresistance in some frustrated Sr2FeMoO6

    International Nuclear Information System (INIS)

    Cai Tianyi; Ju Sheng; Li Zhenya

    2006-01-01

    Considering the existence of antiferromagnetic patches induced by the antisite disorder in ferrimagnetic Sr 2 FeMoO 6 , we have developed a resistor network model to account for the effects of the antisite disorder on the magnetoresistance in this material. It is proposed that the magnetic disorder resulting from the existence of frustration around the antiferromagnetic patches will be suppressed under the applied magnetic field and low-field magnetoresistance will be observed. For samples with low levels of antisite defects, the magnetoresistive behaviour may be strongly affected by the different degrees of magnetic inhomogeneity. Our calculated results are in agreement with experimental observations

  15. MR equipment acquisition strategies: low-field or high-field scanners

    International Nuclear Information System (INIS)

    Marti-Bonmati, L.; Kormano, M.

    1997-01-01

    Magnetic resonance (MR) field strength is one of the key aspects to consider when purchasing MR equipment. Other aspects include the gradient system, coil design, computer and pulse sequence availability, purchase cost, local reimbursement policies, and current opinion within the medical community. Our objective here is to evaluate the decision-influencing aspects of the MR market, with a focus on some specific areas such as high resolution studies, examination times, special techniques, instrumentation, open design magnets, costs and reimbursement policies, academic and industrial interests, contrast media, clinical efficacy, and finally, clinicians' preferences. Certainly the advantage of high-field is a higher signal-to-noise ratio and improved resolution. With a high-field unit, higher spatial resolution images and higher temporal resolution images can be obtained. Typical imaging times needed to produce clinically diagnostic images are about 3 times longer at 0.1 T than at 1.0 or 1.5 T. High-field-related advanced techniques, such as functional imaging, spectroscopy and microscopy, may become clinically useful in the near future. As long as there is an unlimited demand for MR examinations, it appears financially profitable to run a high-field system, despite the associated higher costs. However, if demand for MR becomes saturated, low-field systems will cause less financial strain on the reimbursement organisation and service provider. Recent emphasis on cost containment, the development of interventional techniques, the increased use of MR for patients in intensive care and operating suites, the deployment of magnets in office suites, and the development of new magnet configurations, all favour the supplementary use of low-field systems. Hence, MR units of all field strengths have a role in radiology. (orig.)

  16. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  17. Nuclear resonant scattering of synchrotron radiation: Applications in magnetism of layered structures

    International Nuclear Information System (INIS)

    Schlage, Kai; Röhlsberger, Ralf

    2013-01-01

    Highlights: •Depth-resolved determination of magnetic spin structures. •Isotopic probe layers allow for probing selected depths in the sample. •High sensitivity to magnetic domain patterns via diffuse scattering. -- Abstract: Nuclear resonant scattering of synchrotron radiation has become an established tool within condensed-matter research. Synchrotron radiation with its outstanding brilliance, transverse coherence and polarization has opened this field for many unique studies, for fundamental research in the field of light-matter interaction as well as for materials science. This applies in particular for the electronic and magnetic structure of very small sample volumes like micro- and nano-structures and samples under extreme conditions of temperature and pressure. This article is devoted to the application of the technique to nanomagnetic systems such as thin films and multilayers. After a basic introduction into the method, a number of our experiments are presented to illustrate how magnetic spin structures within such layer systems can be revealed

  18. A nuclear magnetic resonance study of (TMTSF) 2PF 6

    Science.gov (United States)

    McBrierty, V. J.; Douglass, D. C.; Wudl, F.

    1982-09-01

    Inverse linewidths and spin-lattice relaxation times of fluorine and proton magnetic resonance spectra are used to examine molecular motion in the organic superconductor (TMTSF) 2PF 6. The results clearly show that rotation of the PF 6- anion is the principal agent for the observed relaxation of fluorine contrary to some suggestions in the current literature. This interpretation is based upon qualitative comparison with relaxation in plastic crystals, where molecular rotation is well characterized, and upon the quantitative agreement between the calculated and observed linewidth change near 90K and the maximum spin-lattice relaxation rate at 140K. There is also motional evidence, supported by X-ray structure measurements, that a phase transition occurs in the vicinity of 160K.

  19. Nuclear dipolar magnetism around one microkelvin in calciumhydroxide

    International Nuclear Information System (INIS)

    Marks, J.

    1985-01-01

    This thesis is devoted to a study of dipolar magnetism of the proton spins in Ca(OH) 2 . First, cooling techniques are described. The energy of different spin configurations are calculated in the Weiss-field approximation. Crystallographic characteristics of Ca(OH) 2 are described, as well as a method to produce monocrystals and a method for crystal doping using 1.5 MeV electron beams. It is shown that the polarization mechanism of the proton spins in Ca(OH) 2 doped with O 2 - centra is the 'Solid Effect'. Susceptibility measurements are presented as a function of the polarization. Results imply that both at positive and at negative temperatures state ordering sets in, characterized by a plateau in the susceptibility. (Auth/G.J.P.)

  20. Development of nuclear magnetic resonance tomography technology - TORM

    International Nuclear Information System (INIS)

    Tannus, A.

    1987-01-01

    The development of hardware and software necessary to implement the Magnetic Resonance Imaging (MRI) techniques is described. The major subjects were the construction of an aquisition and control system which allowed the operation of a pulsed Fourier NMR spectrometer as a NMR Tomograph; further it was oriented the developing of a NMR spectrometer whose parameters could be easily reconfigured by the controlling system. As a result a sofisticated equipment which allows, more than the proposed, working with high resolution spectroscopic techniques and spectroscopy in solids, was obtained. Since the basic techniques employed in NMR and CT Tomographs are well known, a great emphasis was also given on the understanding of the image reconstruction techniques that constitutes today the frontier of research in this area. The results obtained with the system described here are considered good, comparable to the results from commercial units developed in cooperation with imaging groups located in universities abroad. (author) [pt

  1. On the Fer expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: esm041@mail.harvard.edu

    2016-01-18

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Fer expansion that is helpful to describe the evolution of the spin system in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics based on the Fer expansion which provides procedures to control and describe the spin dynamics in solid-state NMR. Significant applications of the Fer expansion are illustrated in NMR and in physics such as classical physics, nonlinear dynamics systems, celestial mechanics and dynamical astronomy, hydrodynamics, nuclear, atomic, molecular physics, and quantum mechanics, quantum field theory, high energy physics, electromagnetism. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics.

  2. On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: emananga@gradcenter.cuny.edu [Harvard Medical School and Massachusetts General Hospital, Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging Physics, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Charpentier, Thibault, E-mail: thibault.charpentier@cea.fr [Commissariat à l’Energie Atomique, IRAMIS, Service interdisciplinaire sur les systèmes moléculaires et matériaux, CEA/CNRS UMR 3299, 91191, Gif-sur-Yvette (France)

    2016-01-22

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Floquet–Magnus expansion that is helpful to describe the time evolution of the spin system at all times in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics, based on promising and useful theory of Floquet–Magnus expansion. This theory provides procedures to control and describe the spin dynamics in solid-state NMR. Major applications of the Floquet–Magnus expansion are illustrated by simple solid-state NMR and physical applications such as in nuclear, atomic, molecular physics, and quantum mechanics, NMR, quantum field theory and high energy physics, electromagnetism, optics, general relativity, search of periodic orbits, and geometric control of mechanical systems. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics. This review article also discusses future potential theoretical directions in solid-state NMR.

  3. On the Fer expansion: Applications in solid-state nuclear magnetic resonance and physics

    International Nuclear Information System (INIS)

    Mananga, Eugene Stephane

    2016-01-01

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Fer expansion that is helpful to describe the evolution of the spin system in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics based on the Fer expansion which provides procedures to control and describe the spin dynamics in solid-state NMR. Significant applications of the Fer expansion are illustrated in NMR and in physics such as classical physics, nonlinear dynamics systems, celestial mechanics and dynamical astronomy, hydrodynamics, nuclear, atomic, molecular physics, and quantum mechanics, quantum field theory, high energy physics, electromagnetism. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics.

  4. Spinal meningeal cyst: analysis with low-field MRI

    International Nuclear Information System (INIS)

    Wu Hongzhou; Chen Yejia; Chen Ronghua; Chen Yanping

    2010-01-01

    Objective: To analyze the characteristics of spinal meningeal cyst in low-field MRI and to discuss its classification, subtype, clinical presentation, and differential diagnosis. Methods: Forty-two patients (20 male, 22 female) were examined with sagittal T 1 -and T 2 -, axial T 2 -weighted MR imaging. Twelve patients were also examined with contrast-enhanced MRI. Results: The cysts were classified using Nakors' classification as type Ia extradural meningeal cysts (4 patients), type Ib sacral meningeal cysts (32), type II extradural meningeal cysts with spinal nerve root fibers (4), and type III spinal intradural meningeal cysts (2). All 42 spinal meningeal cysts had well-defined boundaries with low T 1 and high T 2 signal intensities similar to cerebral spinal fluid. In type Ia, the lesions were often on the dorsum of mid-lower thoracic spinal cord compressing the spinal cord and displacing the extradural fat. In type Ib, the lesions were in the sacral canal with fat plane between the cyst and dural sac. In type II, the lesions contained nerve roots and were lateral to the dural sac. In type III, the lesions were often on the dorsum of spinal cord compressing and displacing the spinal cord anteriorly. Conclusion: Low-field MRI can clearly display the spinal meningeal cyst. Types Ia and Ib spinal meningeal cysts had typical features and can be easily diagnosed. Types II and III should be differentiated from cystic schwannomas and enterogenous cysts, respectively. (authors)

  5. 43. Polish Seminar on Nuclear Magnetic Resonance and its Applications. Cracow. Abstracts

    International Nuclear Information System (INIS)

    2010-12-01

    42 Polish Seminar on Nuclear Magnetic Resonance and its Applications, held on 1-2 December 2010 in Cracow (Poland), was devoted to the development of different magnetic resonance techniques and application of such techniques as crucial part of the studies. The Report contains 58 short descriptions of the contributions submitted by the participants of the Seminar. They cover all areas of the NMR application in major branches of basic chemistry, structural biology, medicine and materials science. Also recent results of the quantum chemical calculations of the NMR parameters are presented.

  6. Electromagnetic properties of inner double walled carbon nanotubes investigated by nuclear magnetic resonance

    KAUST Repository

    Bouhrara, M.; Abou-Hamad, E.; Alabedi, G.; Al-Taie, I.; Kim, Y.; Wagberg, T.; Goze-Bac, C.

    2013-01-01

    The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C 60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  7. Second Born approximation in elastic-electron scattering from nuclear static electro-magnetic multipoles

    International Nuclear Information System (INIS)

    Al-Khamiesi, I.M.; Kerimov, B.K.

    1988-01-01

    Second Born approximation corrections to electron scattering by nuclei with arbitrary spin are considered. Explicit integral expressions for the charge, magnetic dipole and interference differential cross sections are obtained. Magnetic and interference relative corrections are then investigated in the case of backward electron scattering using shell model form factors for nuclear targets 9 Be, 10 B, and 14 N. To understand exponential growth of these corrections with square of the electron energy K 0 2 , the case of electron scattering by 6 Li is considered using monopole model charge form factor with power-law asymptotics. 11 refs., 2 figs. (author)

  8. Nuclear Magnetic Resonance Imaging in Endodontics: A Review.

    Science.gov (United States)

    Di Nardo, Dario; Gambarini, Gianluca; Capuani, Silvia; Testarelli, Luca

    2018-04-01

    This review analyzes the increasing role of magnetic resonance imaging (MRI) in dentistry and its relevance in endodontics. Limits and new strategies to develop MRI protocols for endodontic purposes are reported and discussed. Eligible studies were identified by searching the PubMed databases. Only original articles on dental structures, anatomy, and endodontics investigated by in vitro and in vivo MRI were included in this review. Original articles on MRI in dentistry not concerning anatomy and endodontics were excluded. All the consulted studies showed well-defined images of pathological conditions such as caries and microcracks. The enhanced contrast of pulp provided a high-quality reproduction of the tooth shape and root canal in vitro and in vivo. Assessment of periapical lesions is possible even without the use of contrast medium. MRI is a nonionizing technique characterized by high tissue contrast and high image resolution of soft tissues; it could be considered a valid and safe diagnostic investigation in endodontics because of its potential to identify pulp tissues, define root canal shape, and locate periapical lesions. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Flow imaging by means of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Wedeen, V.J.; Rosen, B.R.

    1986-01-01

    To form an image (velocity profile) of fluid flowing in a vessel, the fluid is stimulated to produce a time-dependent magnetic resonance signal which is subjected to Fourier-transform. The stimulating is done so as to introduce spatially-dependent phase information indicative of the velocity profile of the fluid. Thus, for measuring velocity in the x-direction within a z-slice, after selective oxidation of the slice, a long gradient bsub(x), is applied, followed by a π pulse. A second frequency dispersing bsub(x) gradient bsub(x) is present in a period embracing the echo signal, following a phase encoding gradient bsub(y). Slice section may be omitted for projection imaging, and an image of fluid flow can be obtained by generating two data sets encoded with phase information indicative of two different velocity profiles of the fluid (taken at different times), combining the data sets, and displaying the resulting data set as an image. By analysing the signal over a period not centred at the middle of the echo signal, a frequency offset is introduced giving the image a striped appearance, the strips being curved in the presence of fluid flow. (author)

  10. Mechanical design parameters for detection of nuclear signals by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Moore, G.J.; Hanlon, J.A.; Lamartine, B.; Hawley, M.; Solem, J.C.; Signer, S.; Jarmer, J.J.; Penttila, S.; Sillerud, L.O.; Pryputniewicz, R.J.

    1993-01-01

    Recent theoretical work has shown that mechanical detection of magnetic resonance from a single nuclear spin is in principle possible. This theory has recently been experimentally validated by the mechanical detection of electron spin resonance signals using microscale cantilevers. Currently we are extending this technology in an attempt to detect nuclear signals which are extending this technology in an attempt to detect nuclear signals which are three orders of magnitude lower in intensity than electron signals. In order to achieve the needed thousand-fold improvement in sensitivity we have undertaken the development of optimized mechanical cantilevers and highly polarized samples. Finite element modeling is used as a tool to simulate cantilever beam dynamics and to optimize the mechanical properties including Q, resonant frequency, amplitude of vibration and spring constant. Simulations are compared to experiments using heterodyne hologram interferometry. Nanofabrication of optimized cantilevers via ion milling will be directed by the outcome of these simulations and experiments. Highly polarized samples are developed using a three-fold approach: (1) high magnetic field strength (2.5T), (2) low temperature (1K), and (3) use of samples polarized by dynamic nuclear polarization. Our recent experiments have demonstrated nuclear polarizations in excess of 50% in molecules of toulene

  11. Nuclear magnetic resonance in low-symmetry superconductors

    Science.gov (United States)

    Cavanagh, D. C.; Powell, B. J.

    2018-01-01

    We consider the nuclear spin-lattice relaxation rate 1 /T1 in superconductors with accidental nodes, i.e., zeros of the order parameter that are not enforced by its symmetries. Such nodes in the superconducting gap are not constrained by symmetry to a particular position on the Fermi surface. We show, analytically and numerically, that a Hebel-Slichter-like peak occurs even in the absence of an isotropic component of the superconducting gap. For a gap with symmetry-required nodes the Fermi velocity at the node must point along the node. For accidental nodes this is not, in general, the case. This leads to additional terms in spectral function and hence the density of states. These terms lead to a logarithmic divergence in 1 /T1T at T →Tc- in models neglecting disorder and interactions [except for those leading to superconductivity; here T is temperature, Tc-=limδ→0(Tc-δ ) , and Tc is the critical temperature]. This contrasts with the usual Hebel-Slichter peak which arises from the coherence factors due to the isotropic component of the gap and leads to a divergence in 1 /T1T somewhat below Tc. The divergence in superconductors with accidental nodes is controlled by either disorder or additional electron-electron interactions. However, for reasonable parameters, neither of these effects removes the peak altogether. This provides a simple experimental method to distinguish between symmetry-required and accidental nodes.

  12. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  13. Energy Moment Method Applied to Nuclear Quadrupole Splitting of Nuclear Magnetic Resonance Lines

    DEFF Research Database (Denmark)

    Frank, V

    1962-01-01

    Expressions giving the sum of the energy values, raised to the second and third power, for a nucleus interacting with a static magnetic field and a static electric field gradient are derived. Several applications of this method for obtaining the values of the components of the electric field...

  14. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iles, R A; Hind, A J; Chalmers, R A

    1986-12-15

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.). 18 refs.; 4 figs.; 3 tabs.

  15. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Iles, R.A.; Hind, A.J.; Chalmers, R.A.

    1986-01-01

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.)

  16. Low-field magnetotransport in graphene cavity devices

    Science.gov (United States)

    Zhang, G. Q.; Kang, N.; Li, J. Y.; Lin, Li; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.

    2018-05-01

    Confinement and edge structures are known to play significant roles in the electronic and transport properties of two-dimensional materials. Here, we report on low-temperature magnetotransport measurements of lithographically patterned graphene cavity nanodevices. It is found that the evolution of the low-field magnetoconductance characteristics with varying carrier density exhibits different behaviors in graphene cavity and bulk graphene devices. In the graphene cavity devices, we observed that intravalley scattering becomes dominant as the Fermi level gets close to the Dirac point. We associate this enhanced intravalley scattering to the effect of charge inhomogeneities and edge disorder in the confined graphene nanostructures. We also observed that the dephasing rate of carriers in the cavity devices follows a parabolic temperature dependence, indicating that the direct Coulomb interaction scattering mechanism governs the dephasing at low temperatures. Our results demonstrate the importance of confinement in carrier transport in graphene nanostructure devices.

  17. Nuclear magnetic resonance applied to the study of polymeric nano composites

    International Nuclear Information System (INIS)

    Tavares, Maria Ines Bruno

    2011-01-01

    Polymers and nanoparticles based nano composites were prepared by intercalation by solution. The obtained nano composites were characterized mainly by the nuclear magnetic spectroscopy (NMR), applying the analysis of carbon-13 (polymeric matrix), silicon-29 (nanoparticle), and by determination of spin-lattice relaxation of the hydrogen nucleus (T 1 H) (polymeric matrix). The NMR have presented a promising technique in the characterization of the nano charge dispersion in the studied polymeric matrixes.

  18. In situ nuclear magnetic response of permafrost and active layer soil in boreal and tundra ecosystems

    DEFF Research Database (Denmark)

    Kass, Mason Andrew; Irons, Trevor; Minsley, Burke J.

    2017-01-01

    Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience...... of the nuclear magnetic resonance (NMR) response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show...

  19. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  20. Proceedings of the 37. Polish Seminar on Nuclear Magnetic Resonance and its Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-01

    37. Polish Seminar on Nuclear Magnetic Resonance and Its Applications is Cyclically organised forum for discussing the actual problems, achievements and perspectives of methodology and interpretation of NMR. At presenting edition the problems of NMR imaging in medicine diagnostics, studies of biologically important organic molecules as well as inorganic compounds being interesting for microelectronics and catalysis have been especially emphasized. The progress in computerized simulation for NMR spectra interpretation has been also performed in numerous presentations.

  1. S100 lathe bed pulse generator applied to pulsed nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cernicchiaro, G.R.C.; Rudge, M.G.; Albuquerque, M.P.

    1989-01-01

    The project and construction of four channel pulse generator in the S100 standard plate and its control software for microcomputer are described. The microcomputer has total control on the pulse generator, which has seven programable parameters, defining the position of four pulses and the width for the three first ones. This pulse generator is controlled by a software developed in c language, and is used in pulsed nuclear magnetic resonance experiences. (M.C.K.) [pt

  2. Characterisation by nuclear magnetic resonance of the β catalytic subunit of the chloroplastic coupling factor

    International Nuclear Information System (INIS)

    Andre, Francois

    1986-09-01

    This academic work addressed the use of nuclear magnetic resonance (NMR) for the structural and dynamic study of the catalytic sub-unit of the extrinsic section of a membrane complex, the chloroplastic H+-ATPase. This work included the development of a protocol of preparation and quantitative purification of β subunits isolated from the CF1 for the elaboration of a concentrated sample for NMR, and then the study of the β subunit by using proton NMR

  3. Magnetic moments in present relativistic nuclear theories: a mean-field problem

    International Nuclear Information System (INIS)

    Desplanques, B.

    1986-07-01

    We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs

  4. A nuclear magnetic relaxation study of hydrogen exchange and water dynamics in aqueous systems

    International Nuclear Information System (INIS)

    Lankhorst, D.

    1983-01-01

    In this thesis exchange of water protons in solutions of some weak electrolytes and polyelectrolytes is studied. Also the dynamical behaviour of water molecules in pure water is investigated. For these purposes nuclear magnetic resonance relaxation measurements, in solutions of oxygen-17 enriched water, are interpreted. The exchange rate of the water protons is derived from the contribution of 1 H- 17 O scalar coupling to the proton transverse relaxation rate. This rate is measured by the Carr-Purcell technique. (Auth.)

  5. Proceedings of the 37. Polish Seminar on Nuclear Magnetic Resonance and its Applications

    International Nuclear Information System (INIS)

    2004-11-01

    37. Polish Seminar on Nuclear Magnetic Resonance and Its Applications is Cyclically organised forum for discussing the actual problems, achievements and perspectives of methodology and interpretation of NMR. At presenting edition the problems of NMR imaging in medicine diagnostics, studies of biologically important organic molecules as well as inorganic compounds being interesting for microelectronics and catalysis have been especially emphasized. The progress in computerized simulation for NMR spectra interpretation has been also performed in numerous presentations

  6. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1994-01-05

    Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus L...Carboxylic Acids and 4Polychiorotrifluoroethylene: A Nuclear Magnetic Resonance G-AFOSR-90-0148 Investigation in Vivo ,IIC 6. AUTHOR(S a Nicholas V. Reo...Maxim um 200 words) This report outlines our research progress regarding toxicological investigations of perifluoro- n-octanoic acid (PFOA) and

  7. Hepatic Metabolism of Perfluorinated Carboxylic Acids: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1995-01-17

    Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic...SUBTITLE 7C 5. FUNDING NUMBERS" Hepatic Metabolism of Perfluorinated Carboxylic Acids : A Nuclear Magnetic Resonance Investigation in Vivo G-AFOSR-90-0148 6...octanoic acid (PFOA) and perfluoro-n-decanoic acid (PFDA). These Air Force chemicals belong to a class of CU’. compounds known as peroxisome

  8. Advantages and disadvantages of nuclear magnetic resonance spectroscopy as a hyphenated technique

    International Nuclear Information System (INIS)

    Silva Elipe, Maria Victoria

    2003-01-01

    A general overview of the advancements and applications of nuclear magnetic resonance (NMR) hyphenated with other analytical techniques is given from a practical point of view. Details on the advantages and disadvantages of the hyphenation of NMR with liquid chromatography as LC-NMR and also with mass spectrometry as LC-MS-NMR are demonstrated with two examples. Current developments of NMR with other analytical separation techniques, especially with capillary liquid chromatography (capLC) are discussed

  9. Zero Quantum Nuclear Magnetic Resonance experiments utilizing a toroid cell and coil

    OpenAIRE

    Bebout, William Roach

    1989-01-01

    Over the past ten to fifteen years the area of Nuclear Magnetic Resonance (NMR) Spectroscopy has seen tremendous growth. For example, in conjunction with multiple quantum NMR, molecular structural mapping of a compound can be easily performed in a two dimensional (2D) experiment. However, only two kinds of detector coils have been typically used in NMR studies. These are the solenoid coil and the Helmholtz coil. The solenoid coil was very popular with the permanent and e...

  10. Immediate analysis of the oil content of seeds by carbon-13 nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Leal, K Z; Costa, V E.U.; Seidl, P R; Campos, M P.A.; Colnago, L A [Instituto Militar de Engenharia, Rio de Janeiro (Brazil). Secao de Quimica

    1981-11-01

    The carbon 13 nuclear magnetic resonance (CMR) spectra of a series of Brazilian oilseeds was registered. The main constituents of the oils are identified and signals for each carbon atom are assigned. Chemical shifts are estimated for the free fatty acids and compared to those observed from the seeds, with good results. Besides being non-destructive, the RMC method proves to be fast and is useful in the determination of the principal components of the oil fraction of different types of seeds.

  11. Solid state nuclear magnetic resonance studies of prion peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Jonathan [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).

  12. Display of cross sectional anatomy by nuclear magnetic resonance imaging. 1978.

    Science.gov (United States)

    Hinshaw, W S; Andrew, E R; Bottomley, P A; Holland, G N; Moore, W S

    1995-12-01

    High definition cross-sectional images produced by a new nuclear magnetic resonance (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique.

  13. Theory and applications of maps on SO(3) in nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cho, H.M.

    1987-02-01

    Theoretical approaches and experimental work in the design of multiple pulse sequences in Nuclear Magnetic Resonance (NMR) are the subjects of this dissertation. Sequences of discrete pulses which reproduce the nominal effect of single pulses, but over substantially broader, narrower, or more selective ranges of transition frequencies, radiofrequency field amplitudes, and spin-spin couplings than the single pulses they replace, are developed and demonstrated. 107 refs., 86 figs., 6 tabs

  14. Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts

    Czech Academy of Sciences Publication Activity Database

    Kortunov, P.; Vasenkov, S.; Kärger, J.; Fé Elía, M.; Perez, M.; Stöcker, M.; Papadopoulos, G. K.; Theodorou, D.; Drescher, B.; McElhiney, G.; Bernauer, B.; Krystl, V.; Kočiřík, Milan; Zikánová, Arlette; Jirglová, Hana; Berger, C.; Gläser, R.; Weitkamp, J.; Hansen, E. W.

    2005-01-01

    Roč. 23, č. 2 (2005), s. 233-237 ISSN 0730-725X Grant - others:TROCAT project - European Community(DE) G5RD-CT-2001-00520 Institutional research plan: CEZ:AV0Z40400503 Keywords : pulsed-field gradient * nuclear magnetic resonance * fluid catalytic cracking catalyst Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.361, year: 2005

  15. Two-dimensional J-resolved nuclear magnetic resonance spectral study of two bromobenzene glutathione conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, J.A.; Highet, R.J.; Pohl, L.R.; Monks, T.J.; Hinson, J.A.

    1985-09-01

    The application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to determine the structure of two bile metabolites isolated from rats injected interperitoneally with bromobenzene is described. The structures of the two molecules are obtained unambiguously from the proton-proton spin coupling constants. The paper discusses the fundamentals of the technique and demonstrates the resolution of small long-range coupling constants.

  16. 1H and 31P nuclear magnetic resonance spectroscopy of erythrocyte extracts in myotonic muscular dystrophy

    International Nuclear Information System (INIS)

    Gadoth, N.; Grinblat, J.; Tel Aviv Univ.; Shvo, H.; Navon, G.

    1984-01-01

    Extracts freshly prepared from erythrocytes of patients with myotonic muscular dystrophy, their unaffected siblings, and normal control subjects were examined with both 1 H and 31 P nuclear magnetic resonance spectroscopy. A moderate variability was found in the relative amounts of various nonphosphorylated compounds among patients and control subjects; however, no significant differences were found between the groups. As for the phosphorylated compounds, the sum of ADP+ATP was found significantly elevated in the myotonic muscular dystrophy patients

  17. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  18. Application of electronic paramagnetic, nuclear magnetic, γ-nuclear magnetic resonance, and defibrillation in experimental biology and medecine

    Science.gov (United States)

    Piruzyan, L. A.

    2005-08-01

    Nowadays an attention is paid to pathbreaking approaches to the therapy of different pathologies with EPR, NMR and NGR dialysis and mechanisms of physical factors influence in prophylactics and therapy of a number of diseases. Any pathology is evidently begins its development in atomic-molecular levels earlier then any morphologic alterations in tissues can be detected. We have studied the alterations of FR content in liver, spleen and brain in hypoxia and hyperoxia conditions. Under hypoxia and hyperoxia the FR concentrations are equal in all organs and tissues. However this ratio is different for some forms of leucosis. For different leucosis types gas mixtures the most adequate for the current pathology should be developed. Then we represent the method of biologic objects treatment with the energy of super-high frequency field (SIT) and the instrument for its performance. The study of magnetic heterogeneity of biologic systems proposes the new approach and a set of methods for medical and scientific purpose. Application of combined with chemotherapy extraction of anionic and cationic radicals from bloodstream using EPRD, NMRD and NGRD influence and also the single ions separate extraction using NGRD are able to detect and perhaps to cure their appearance in a period before neoformation. These studies should be carried out experimentally and clinically.

  19. Stress relaxation technique of high magnetic field superconducting magnet for the nuclear fusion

    International Nuclear Information System (INIS)

    Kamimoto, Masayuki; Tateishi, Hiroshi; Agatsuma, Ko; Arai, Kazuaki; Umeda, Masaichi

    1999-01-01

    Here were attempted not only to prove effectiveness of a stress self-supporting type wire material for magnet constituting technique, but also to develop a fiber reinforcing type superconducting wire material used by materials with excellent strain resistance to expand usable range of the stress self-supporting type with material. In 1997 fiscal year, superconductive features of the wire material produced by using composite processing method were evaluated, actual applicability for superconducting wire material was inspected, and investigation on manufacturing parameter of NbN thin films on trial production at present apparatus was conducted. (G.K.)

  20. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Suter, J. D., E-mail: pradeep.ramuhalli@pnnl.gov; Ramuhalli, P., E-mail: pradeep.ramuhalli@pnnl.gov; Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R. [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); McCloy, J. S., E-mail: john.mccloy@wsu.edu; Xu, K., E-mail: john.mccloy@wsu.edu [Washington State University, PO Box 642920, Pullman, WA 99164 (United States)

    2015-03-31

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the “state of health” of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  1. NUCLEAR-MAGNETIC MINI-RELAXOMETER FOR LIQUID AND VISCOUS MEDIA CONTROL

    Directory of Open Access Journals (Sweden)

    V. V. Davydov

    2015-01-01

    Full Text Available The paper deals with a new method for registration of nuclear magnetic resonance signal of small volume liquid and viscous media being studied (0.5 ml in a weak magnetic field (0.06 –0.08 T, and measuring of longitudinal T1 and transverse T2 relaxation constants. A new construction of NMR mini-relaxometer magnetic system is developed for registration of NMR signal. The nonuniformity of a magnetic field in a pole where registration coil is located is 0,410–3 sm–1 (the induction is В0 = 0.079 T. An electrical circuit of autodyne receiver (weak fluctuations generator has been developed with usage of low noise differential amplifier and NMR signal operating and control scheme (based on microcontroller STM32 for measuring of relaxation constants of liquid and viscous media in automatic operating mode. New technical decisions made it possible to improve relaxometer response time and dynamic range of measurements for relaxation constants T1 and T2 in comparison with small sized nuclear-magnetic spectrometer developed by the authors earlier (with accuracy characteristics conservation. The developed schemes for self-tuning of registration frequency, generating amplitude of magnetic field H1 in registration coil, and amplitude and frequency of modulating field provide measuring of T1 and T2 with error less than 0.5 % and signal to noise ratio about 1.2 in temperature range from 3 to 400 C. A new construction of mini-relaxometer reduced the weight of the device to 4 kg (with independent supply unit and increased transportability and operating convenience.

  2. Measurement of specific heat and specific absorption rate by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, David H., E-mail: david.gultekin@aya.yale.edu [Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States); Gore, John C. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 (United States); Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232 (United States); Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States)

    2010-05-20

    We evaluate a nuclear magnetic resonance (NMR) method of calorimetry for the measurement of specific heat (c{sub p}) and specific absorption rate (SAR) in liquids. The feasibility of NMR calorimetry is demonstrated by experimental measurements of water, ethylene glycol and glycerol using any of three different NMR parameters (chemical shift, spin-spin relaxation rate and equilibrium nuclear magnetization). The method involves heating the sample using a continuous wave laser beam and measuring the temporal variation of the spatially averaged NMR parameter by non-invasive means. The temporal variation of the spatially averaged NMR parameter as a function of thermal power yields the ratio of the heat capacity to the respective nuclear thermal coefficient, from which the specific heat can be determined for the substance. The specific absorption rate is obtained by subjecting the liquid to heating by two types of radiation, radiofrequency (RF) and near-infrared (NIR), and by measuring the change in the nuclear spin phase shift by a gradient echo imaging sequence. These studies suggest NMR may be a useful tool for measurements of the thermal properties of liquids.

  3. Problems of the processing of nuclear magnetic logging signals (identification of fluid-containing strata from a number of measurements)

    International Nuclear Information System (INIS)

    Aliev, T.M.; Orlov, G.L.; Lof, V.M.; Mityushin, E.M.; Ragimova, E.K.

    1978-01-01

    Problems of the processing of nuclear magnetic logging signals to identification of fluid-containing strata from a number of measurements. Problems of application statistical decision theory to discovery of fluid-containing beds from a number of measurements are considered. Using the technique possibilities of nuclear magnetic logging method the necessary volume of samples is motivated, the rational algorithm for processing of sequential measurements is obtained

  4. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    Directory of Open Access Journals (Sweden)

    S. Ok

    2017-03-01

    Full Text Available Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF proton (1H nuclear magnetic resonance (NMR relaxometry and ultra-violet (UV visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2 curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively.

  5. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    International Nuclear Information System (INIS)

    Ok, S.

    2017-01-01

    Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. [es

  6. Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer.

    Science.gov (United States)

    Oida, Takenori; Kobayashi, Tetsuo

    2013-01-01

    Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.

  7. Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers.

    Science.gov (United States)

    Fukuda, Takamitsu; Matsumura, Kazuya; Ishikawa, Naoto

    2013-10-10

    Nuclear spin driven quantum tunneling of magnetization (QTM) phenomena, which arise from admixture of more than two orthogonal electronic spin wave functions through the couplings with those of the nuclear spins, are one of the important magnetic relaxation processes in lanthanide single molecule magnets (SMMs) in the low temperature range. Although recent experimental studies have indicated that the presence of the intramolecular f-f interactions affects their magnetic relaxation processes, little attention has been given to their mechanisms and, to the best of our knowledge, no rational theoretical models have been proposed for the interpretations of how the nuclear spin driven QTMs are influenced by the f-f interactions. Since quadruple-decker phthalocyanine complexes with two terbium or dysprosium ions as the magnetic centers show moderate f-f interactions, these are appropriate to investigate the influence of the f-f interactions on the dynamic magnetic relaxation processes. In the present paper, a theoretical model including ligand field (LF) potentials, hyperfine, nuclear quadrupole, magnetic dipolar, and the Zeeman interactions has been constructed to understand the roles of the nuclear spins for the QTM processes, and the resultant Zeeman plots are obtained. The ac susceptibility measurements of the magnetically diluted quadruple-decker monoterbium and diterbium phthalocyanine complexes, [Tb-Y] and [Tb-Tb], have indicated that the presence of the f-f interactions suppresses the QTMs in the absence of the external magnetic field (H(dc)) being consistent with previous reports. On the contrary, the faster magnetic relaxation processes are observed for [Tb-Tb] than [Tb-Y] at H(dc) = 1000 Oe, clearly demonstrating that the QTMs are rather enhanced in the presence of the external magnetic field. Based on the calculated Zeeman diagrams, these observations can be attributed to the enhanced nuclear spin driven QTMs for [Tb-Tb]. At the H(dc) higher than 2000 Oe, the

  8. Low field MR imaging of sellar and parasellar lesions: Experience in a developing country hospital

    International Nuclear Information System (INIS)

    Ogbole, G.I.; Adeyinka, O.A.; Okolo, C.A.; Ogun, A.O.; Atalabi, O.M.

    2012-01-01

    Background: Magnetic resonance imaging (MRI), an advancement which followed computed tomography (CT) is expensive and inaccessible in most developing countries. However it is the procedure of choice in evaluating sellar and parasellar lesions. Its major advantages are its superior soft tissue contrast differentiation, its capacity for multiplanar imaging and nonexistence of ionising radiation. Its use is relatively new in Nigeria, a developing economy in Africa. Since its introduction in 2005, it has been utilised extensively for neuroimaging at the University College Hospital (UCH), Ibadan; a large hospital in south-western Nigeria. Objective: To review the role and pattern of low field MR Imaging in sellar and parasellar lesions presenting to a tertiary care centre in Nigeria. Methods: All 62 patients with clinically suspected sellar and parasellar masses, referred to the Department of Radiology, UCH Ibadan for MRI between December 2006 and January 2010 were retrospectively analysed. The examinations were performed using an open 0.2 T permanent magnet MR unit. T1W, T2W, T2/FLAIR, TOF and T1W post gadolinium DTPA sequences of the sellar region were obtained. Results: Of the 62 patients, there were 27 males and 35 females. The modal age group was 40–49 years with a mean age of 39.94 years (±16.65 years). Twenty-four cases (38.7%) had histological diagnosis, of which 20 (83.3%) were consistent with initial MRI diagnosis. Pituitary adenomas were the commonest (58.06%) lesions of the sellar and parasellar regions. Others include parasellar meningiomas, cranipharyngiomas, and giant aneurysms. Headache and visual impairment were the major presenting features and showed no significant correlation with tumour size. Conclusion: The use of low field MRI in the diagnostic evaluation of patients with suspected sellar or parasellar lesions in developing countries of low economic resource is commendable as it provides beneficial outcomes in management.

  9. Exploring a carbonate reef reservoir - nuclear magnetic resonance and computed microtomography confronted with narrow channel and fracture porosity

    Science.gov (United States)

    Fheed, Adam; Krzyżak, Artur; Świerczewska, Anna

    2018-04-01

    The complexity of hydrocarbon reservoirs, comprising numerous moulds, vugs, fractures and channel porosity, requires a specific set of methods to be used in order to obtain plausible petrophysical information. Both computed microtomography (μCT) and nuclear magnetic resonance (NMR) are nowadays commonly utilized in pore space investigation. The principal aim of this paper is to propose an alternative, quick and easily executable approach, enabling a thorough understanding of the complicated interiors of the carbonate hydrocarbon reservoir rocks. Highly porous and fractured Zechstein bioclastic packstones from the Brońsko Reef, located in West Poland were studied. Having examined 20 thin sections coming from two different well bores, 10 corresponding core samples were subjected to both μCT and NMR experiments. After a preliminary μCT-based image analysis, 9.4 [T] high-field zero echo time (ZTE) imaging, using a very short repetition time (RT) of 2 [μs] was conducted. Taking into consideration the risk of internal gradients' generation, the reliability of ZTE was verified by 0.6 [T] Single Point Imaging (SPI), during which such a phenomenon is much less probable. Both narrow channels and fractures of different apertures appeared to be common within the studied rocks. Their detailed description was therefore undertaken based on an additional tool - the spatially-resolved 0.05 [T] T2 profiling. According to the obtained results, ZTE seems to be especially suitable for studying porous and fractured carbonate rocks, as little disturbance to the signal appears. This can be confirmed by the SPI, indicating the negligible impact of the internal gradients on the registered ZTE images. Both NMR imaging and μCT allowed for locating the most porous intervals including well-developed mouldic porosity, as well as the contrasting impermeable structures, such as the stylolites and anhydrite veins. The 3D low-field profiling, in turn, showed the fracture aperture variations

  10. Small-scale instrumentation for nuclear magnetic resonance of porous media

    International Nuclear Information System (INIS)

    Bluemich, Bernhard; Casanova, Federico; Dabrowski, Martin; Danieli, Ernesto; Haber, Agnes; Van Landeghem, Maxime; Haber-Pohlmeier, Sabina; Olaru, Alexandra; Perlo, Juan; Sucre, Oscar; Evertz, Loribeth

    2011-01-01

    The investigation of fluids confined to porous media is the oldest topic of investigation with small-scale nuclear magnetic resonance (NMR) instruments, as such instruments are mobile and can be moved to the site of the object, such as the borehole of an oil well. While the analysis was originally restricted by the inferior homogeneity of the employed magnets to relaxation measurements, today, portable magnets are available for all types of NMR measurements concerning relaxometry, imaging and spectroscopy in two types of geometries. These geometries refer to closed magnets that surround the sample and open magnets, which are brought close to the object for measurement. The current state of the art of portable, small-scale NMR instruments is reviewed and recent applications of such instruments are featured. These include the porosity analysis and description of diesel particulate filters, the determination of the moisture content in walls from gray concrete, new approaches to analyze the pore space and moisture migration in soil, and the constitutional analysis of the mortar base of ancient wall paintings.

  11. Method and apparatus for imaging substances in biological samples by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Shaw, D.

    1984-01-01

    A method of determining the distribution of non-proton nuclei having a magnetic moment in a biological sample is described. It comprises subjecting the sample to a magnetic field, irradiating the sample with RF radiation at a proton magnetic resonance frequency and deriving a first NMR signal, indicative of electromagnetic absorption of the sample at the proton magnetic resonance frequency. A second such NMR signal at the proton resonance frequency is then derived from the sample in the presence of RF radiation at the nuclear magnetic resonance frequency of the non-proton nuclei so as to decouple protons in the sample from the non-proton nuclei. By applying an imaging technique, an image indicative of the spatial variation of the difference between the first and second signals can be produced. Imaging may be performed on the difference between the two NMR signals, or on each NMR signal followed by subtraction of the images. The method can be used to trace how a 13 C-labelled material introduced into a patient, and its breakdown products, become distributed. (author)

  12. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  13. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    International Nuclear Information System (INIS)

    Urban, Jeffry Todd

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding

  14. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  15. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  16. New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle

    Science.gov (United States)

    Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.

    2018-03-01

    A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  17. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    Science.gov (United States)

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  18. Application of nuclear magnetic resonance in osteoporosis evaluation; Aplicacoes de ressonancia magnetica nuclear na avaliacao de osteoporose

    Energy Technology Data Exchange (ETDEWEB)

    Giannoni, Ricardo A., E-mail: giannoni@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Montrazi, Elton T.; Bonagamba, Tito J., E-mail: elton.montrazi@gmail.com, E-mail: tito@ifsc.usp.br [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Cesar, Reinaldo, E-mail: reinaldofisica@gmail.com [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia

    2013-07-01

    In this work, initially ceramic samples of known porosity were used. These ceramic samples were saturated with water. The nuclear magnetic resonance signal due to relaxation processes that the hydrogen nucleus water contained in the pores of this ceramic material was measured. Then these samples were subjected to a process of drying and measures successively. As the water contained in pores greater evaporates the intensity of signal decreases and shows the sign because of the smaller pores. The analysis of this drying process gives a qualitative assessment of the pore size of the material. In a second step, bones of animals of unknown porosity underwent the same methodology for evaluating osteoporosis. Also a sample of human vertebra in a unique manner, with the same purpose was measured. Combined with other techniques is a quantitative evaluation of the possible porosity.

  19. High resolution spectroscopy in solids by nuclear magnetic resonance; Espectroscopia de alta resolucao em solidos por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Bonagamba, T J

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120{sup 0} C to +160{sup 0} C, and is fully controlled by a Macintosh IIci microcomputer. (author).

  20. Enhancement of Giant Magneto-Impedance in Series Co-Rich Microwires for Low-Field Sensing Applications

    Science.gov (United States)

    Jiang, S. D.; Eggers, T.; Thiabgoh, O.; Xing, D. W.; Fang, W. B.; Sun, J. F.; Srikanth, H.; Phan, M. H.

    2018-02-01

    Two soft ferromagnetic Co68.25Fe4.25Si12.25B15.25 microwires with the same diameter of 50 ± 1 μm but different fabrication processes were placed in series and in parallel circuit configurations to investigate their giant magneto-impedance (GMI) responses in a frequency range of 1-100 MHz for low-field sensing applications. We show that, while the low-field GMI response is significantly reduced in the parallel configuration, it is greatly enhanced in the series connection. These results suggest that a highly sensitive GMI sensor can be designed by arranging multi-wires in a saw-shaped fashion to optimize the sensing area, and soldered together in series connection to maintain the excellent magnetic field sensitivity.

  1. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    Science.gov (United States)

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  2. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  3. Use of nuclear magnetic resonance of hydrogen in the characterization of saturated hydrocarbonic chains

    International Nuclear Information System (INIS)

    Costa Neto, A.; Soares, V.L.P.; Costa Neto, C.

    1979-01-01

    Alkanes and cycloalkanes are characterized by a methyl-methylene-methine groups proportion, the percentual absorption in prefixed regions and the pattern of the spectrum of nuclear magnetic resonance of hydrogen. The GPI is calculated from the contribution of the areas corresponding to prefixed regions of the hydrogen magnetic resonance spectra (60 Mc). These regions are (for the saturated hydrocarbons): 0,5-1,05ppm (X), 1,05ppm (Y) and 1,50-2,00ppm (Z). The validity of the index was verified for the homologous series of linear hydrocarbons and methyl-, dimethyl-, ethyl-, cyclopentyl- and cyclohexyl-branched hydrocarbons. Its application to shale oil chemistry (xistoquimica) is discussed. (author) [pt

  4. Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen

    2012-01-01

    The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies

  5. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  6. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  7. A nuclear magnetic relaxation study on internal motion of polyelectrolytes in solution

    International Nuclear Information System (INIS)

    Schriever, J.

    1977-01-01

    The aim of this thesis is to investigate the significance and the amount of information which can be extracted from the study of frequency dependence of magnetic relaxation rates in solutions of a synthetic macromolecule. Solutions of poly(methacrylic acid), PMA, in water were chosen as the object of the present work. A short survey of nuclear magnetic relaxation in solutions of simple macromolecules is presented. Results obtained by continuous wave experiments on PMA solutions are shown (viz. the information about the transverse relaxation from line width analysis of 60 MHz proton spectra). Water enriched in 17 O is used in magnetic relaxation studies; the results of the determination of hydrogen lifetimes in aqueous solutions of acetic acid and poly(methacrylic acid) are given. The possibility of obtaining information about the dynamics of deuterons in the acid side groups of weak polyacids by measuring deuteron relaxation in heavy water solutions of those acids is considered. The use of deuteron relaxation rate experiments on solutions of selectively methylene deuterated poly(methacrylic acid), [-CD 2 -CCH 3 COOH-]n, is demonstrated and the backbone methylene C-atom motion is charachterized. The magne-tic relaxation of nuclei in the side groups of methylene deuterated PMA, viz. protons in the methyland deuterons in the acid side groups is presented

  8. Study on VCSEL laser heating chip in nuclear magnetic resonance gyroscope

    Science.gov (United States)

    Liang, Xiaoyang; Zhou, Binquan; Wu, Wenfeng; Jia, Yuchen; Wang, Jing

    2017-10-01

    In recent years, atomic gyroscope has become an important direction of inertial navigation. Nuclear magnetic resonance gyroscope has a stronger advantage in the miniaturization of the size. In atomic gyroscope, the lasers are indispensable devices which has an important effect on the improvement of the gyroscope performance. The frequency stability of the VCSEL lasers requires high precision control of temperature. However, the heating current of the laser will definitely bring in the magnetic field, and the sensitive device, alkali vapor cell, is very sensitive to the magnetic field, so that the metal pattern of the heating chip should be designed ingeniously to eliminate the magnetic field introduced by the heating current. In this paper, a heating chip was fabricated by MEMS process, i.e. depositing platinum on semiconductor substrates. Platinum has long been considered as a good resistance material used for measuring temperature The VCSEL laser chip is fixed in the center of the heating chip. The thermometer resistor measures the temperature of the heating chip, which can be considered as the same temperature of the VCSEL laser chip, by turning the temperature signal into voltage signal. The FPGA chip is used as a micro controller, and combined with PID control algorithm constitute a closed loop control circuit. The voltage applied to the heating resistor wire is modified to achieve the temperature control of the VCSEL laser. In this way, the laser frequency can be controlled stably and easily. Ultimately, the temperature stability can be achieved better than 100mK.

  9. Remote detection of oil spilled under ice and snow using nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Nedwed, T.; Srnka, L.; Thomann, H.

    2008-01-01

    The technical challenge of detecting oil that has been accidentally spilled under ice and snow was discussed with particular reference to the tools used to characterize the molecular composition of liquids and solids. One such tool is nuclear magnetic resonance (NMR) which works by releasing electromagnetic energy. The NMR signals from oil and water can be differentiated based on the inherent differences in the NMR signal responses from different fluid types. The method can also use the Earth's magnetic field as the static magnetic field and thereby eliminate the complexity and cost of generating an independent magnetic field for remotely detecting fluids below a surface. This study examined the feasibility of altering existing surface-based instruments and placing them in a helicopter for aerial monitoring. The goal of this research was to develop a tool for remote detection of oil under ice in a marine environment, or for detection of oil under snow on land using an inexpensive tool that can quickly inspect large areas. The proposed tool and technique produces a direct hydrocarbon signal that may not have interference from ice and snow. 9 refs., 6 figs

  10. Billion-Fold Enhancement in Sensitivity of Nuclear Magnetic Resonance Spectroscopy for Magnesium Ions in Solution

    CERN Document Server

    Gottberg, Alexander; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-01-01

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg β-NMR spectra are measured for as few as 107 magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.

  11. Substitution effect in nuclear magnetic resonance of C-13: α methoxicyclohexanones

    International Nuclear Information System (INIS)

    Lopez Holland, M.A.G.

    1984-01-01

    Eletronic and steric interactions between the carbonyl and methoxyl groups in α-methoxicyclohexanones by H-1 and C-13 nuclear magnetic resonance spectroscopy (n.m.r) is studied. Interpretation of H-1 n.m.r measurements based on the carbonyl group anisotropy is made. The asigment of spectral lines to specific nuclear by Lanthanide Shift Reagent Experiments is confirmed. Interpretation of C-13 n.m.r. spectra with respect to molecular effects and emphirical relationships associated with the substituent was analysed. The C-13 chemical shift asignment by comparison with results of partially (SFORD) and fully decompled spectra and also by relating the measured chemical shift with values cited in the literature for similar compounds are made. A qualitative study using I.R. spectroscopy in attempt to evaluate the predominance of one the conformers of the studied compounds in solutions of n-hexan and chloroform is made. (M.J.C.) [pt

  12. 13C nuclear magnetic resonance study of the complexation of calcium by taurine

    International Nuclear Information System (INIS)

    Irving, C.S.; Hammer, B.E.; Danyluk, S.S.; Klein, P.D.

    1980-01-01

    13 C Nuclear magnetic resonance chemical shifts, 1 J/sub c-c/ scalar coupling constants, spin-lattice relaxation times, and nuclear Overhauser effects were determined for taurine-[1, 2 13 C] and a taurine-[1 13 C] and taurine-[2 13 C] mixture in the presence and absence of calcium. Comparison of taurine titration shifts to values for related compounds reveals some unusual electronic properties of the taurine molecule. Stability constants of 1:1 calcium complexes with taurine zwitterions and anions, as well as their 13 C chemical shifts, were obtained by least squares analysis of titration curves measured in the presence of calcium. The stability constants of calcium-taurine complexes were significantly lower than previous values and led to estimates that only approximately one percent of intracellular calcium of mammalian myocardial cells would exist in a taurine complex

  13. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... is obtained for d and ?s in Xe2. For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other...

  14. Immediate analysis of the oil content of seeds by carbon-13 nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Leal, K.Z.; Costa, V.E.U.; Seidl, P.R.; Campos, M.P.A.; Colnago, L.A.

    1981-01-01

    The carbon 13 nuclear magnetic resonance (CMR) spectra of a series of Brazilian oilseeds was registered. The main constituents of the oils are identified and signals for each carbon atom are assigned. Chemical shifts are estimated for the free fatty acids and compared to those observed from the seeds, with good results. Besides being non-destructive, the RMC method proves to be fast and is useful in the determination of the principal components of the oil fraction of different types of seeds. (Author) [pt

  15. Study and realisation of a programmable generator of pulse sequences, for nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Lambert, Daniel

    1974-01-01

    After having recalled the operation of pulse-based nuclear magnetic resonance and the use of pulse sequences in NMR-based measurements, and outlined the need for a pulse sequence generator, the author reports the design and realisation of such a device. He describes its general organisation with its base sequence, base clock, sequence start, duration, displays, data transfers, data processing, and signal distribution. He presents the chosen technology (ECL logics), the sequence base set, time bases, multiplexers, comparison sets, the distribution set, the sequence programming, the sampling and output set. He reports tests and the use of the so-designed generator [fr

  16. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori, E-mail: kaji@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyusyu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Hirata, Osamu; Shibano, Yuki [Nissan Chemical Industries, LTD, 722-1 Tsuboi, Funabashi 274-8507 (Japan)

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  17. Educational simulator app and web page for exploring Nuclear and Compass Magnetic Resonance

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    experimentation that improves understanding of basic MR phenomena. The simulator is used to introduce and explore electromagnetism, magnetic dipoles, static and radiofrequency fields, Compass MR, the free induction decay (FID), relaxation, the Fourier transform (FFT), the resonance condition, spin, precession......, the Larmor equation, Nuclear MR, resonant excitation (linear and quadrature), and off-resonance effects. Methods and implementation: The simulator is a complete HTML5/JavaScript[1,2] rewrite of the JavaCompass[3] so it now executes in modern browsers with no additional software needed. Spin dynamics...

  18. Cranial anatomy and detection of ischemic stroke in the cat by nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Buonanno, F.S.; Pykett, I.L.; Kistler, J.P.; Vielma, J.; Brady, T.J.; Hinshaw, W.S.; Goldman, M.R.; Newhouse, J.H.; Pohost, G.M.

    1982-01-01

    Proton nuclear magnetic resonance (NMR) images of cat heads were obtained using a small, experimental imaging system. As a prelude to the study of experimental ischemic brain infarction, the normal cat head was imaged for identification of anatomical features. Images of one cat which had undergone ligation of the middle cerebral artery three weeks previously showed brain changes associated with chronic ischemic stroke and compared favorably with findings on computed tomography (CT). The NMR images have millimetric spatial resolution. NMR parameters inherent in the tissues provide intensity variations and are sufficiently sensitive to yield contrast resolution surpassing that of CT

  19. The role of nuclear magnetic resonance imaging in the diagnosis of intracranial vascular malformation

    International Nuclear Information System (INIS)

    Ford, C.S.; Buonanno, F.S.; Kistler, J.P.; Johnson, K.A.

    1987-01-01

    Intracranial vascular malformations (ICVMs) usually present with seizures or intracranial hemorrhage. Less commonly, they cause headaches and transient or progressive focal neurologic deficits. Consecutive autopsy data show, however, that asymptomatic ICVMs are actually many times more common than symptomatic ones. Asymptomatic ICVMs are often never detected. Recognition of ICVMs is further hindered by the fact that cerebral angiography and computed tomography are normal in many cases. A review is given of the cerebral angiograms, and the CT and nuclear magnetic resonance (NMR) scans in a group of patients with ICVM to study the role of NMR in making the diagnosis. 5 refs.; 1 figure

  20. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, David K [State Univ. of New York (SUNY), Geneseo, NY (United States)

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.