WorldWideScience

Sample records for low-fat diet supplemented

  1. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    Science.gov (United States)

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  2. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial.

    Science.gov (United States)

    Yancy, William S; Olsen, Maren K; Guyton, John R; Bakst, Ronna P; Westman, Eric C

    2004-05-18

    Low-carbohydrate diets remain popular despite a paucity of scientific evidence on their effectiveness. To compare the effects of a low-carbohydrate, ketogenic diet program with those of a low-fat, low-cholesterol, reduced-calorie diet. Randomized, controlled trial. Outpatient research clinic. 120 overweight, hyperlipidemic volunteers from the community. Low-carbohydrate diet (initially, carbohydrate daily) plus nutritional supplementation, exercise recommendation, and group meetings, or low-fat diet (fat, low-carbohydrate diet group than the low-fat diet group completed the study (76% vs. 57%; P = 0.02). At 24 weeks, weight loss was greater in the low-carbohydrate diet group than in the low-fat diet group (mean change, -12.9% vs. -6.7%; P fat mass (change, -9.4 kg with the low-carbohydrate diet vs. -4.8 kg with the low-fat diet) than fat-free mass (change, -3.3 kg vs. -2.4 kg, respectively). Compared with recipients of the low-fat diet, recipients of the low-carbohydrate diet had greater decreases in serum triglyceride levels (change, -0.84 mmol/L vs. -0.31 mmol/L [-74.2 mg/dL vs. -27.9 mg/dL]; P = 0.004) and greater increases in high-density lipoprotein cholesterol levels (0.14 mmol/L vs. -0.04 mmol/L [5.5 mg/dL vs. -1.6 mg/dL]; P low-density lipoprotein cholesterol level did not differ statistically (0.04 mmol/L [1.6 mg/dL] with the low-carbohydrate diet and -0.19 mmol/L [-7.4 mg/dL] with the low-fat diet; P = 0.2). Minor adverse effects were more frequent in the low-carbohydrate diet group. We could not definitively distinguish effects of the low-carbohydrate diet and those of the nutritional supplements provided only to that group. In addition, participants were healthy and were followed for only 24 weeks. These factors limit the generalizability of the study results. Compared with a low-fat diet, a low-carbohydrate diet program had better participant retention and greater weight loss. During active weight loss, serum triglyceride levels decreased more and high

  3. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    Science.gov (United States)

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  4. Nutrient adequacy of a very low-fat vegan diet.

    Science.gov (United States)

    Dunn-Emke, Stacey R; Weidner, Gerdi; Pettengill, Elaine B; Marlin, Ruth O; Chi, Christine; Ornish, Dean M

    2005-09-01

    This study assessed the nutrient adequacy of a very low-fat vegan diet. Thirty-nine men (mean age=65 years) with early stage prostate cancer who chose the "watchful waiting" approach to disease management, were instructed by a registered dietitian and a chef on following a very low-fat (10%) vegan diet with the addition of a fortified soy protein powdered beverage. Three-day food diaries, excluding vitamin and mineral supplements, were analyzed and nutrient values were compared against Dietary Reference Intakes (DRI). Mean dietary intake met the recommended DRIs. On the basis of the Adequate Intake standard, a less than adequate intake was observed for vitamin D. This demonstrates that a very low-fat vegan diet with comprehensive nutrition education emphasizing nutrient-fortified plant foods is nutritionally adequate, with the exception of vitamin D. Vitamin D supplementation, especially for those with limited sun exposure, can help assure nutritional adequacy.

  5. Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract.

    Directory of Open Access Journals (Sweden)

    Shinichi Meguro

    Full Text Available Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat and green tea extract, which has anti-obesity properties, on body fat accumulation in zebrafish. Adult zebrafish were allocated to four diet groups and over 6 weeks were fed a high-fat diet containing basal diet plus two types of fat or a low-fat diet containing basal diet plus carbohydrate or protein. Another group of adult zebrafish was fed a high-fat diet with or without 5% green tea extract supplementation. Zebrafish fed the high-fat diets had nearly twice the body fat (visceral, subcutaneous, and total fat volume and body fat volume ratio (body fat volume/body weight of those fed low-fat diets. There were no differences in body fat accumulation between the two high-fat groups, nor were there any differences between the two low-fat groups. Adding green tea extract to the high-fat diet significantly suppressed body weight, body fat volume, and body fat volume ratio compared with the same diet lacking green tea extract. 3-Hydroxyacyl-coenzyme A dehydrogenase and citrate synthase activity in the liver and skeletal muscle were significantly higher in fish fed the diet supplemented with green tea extract than in those fed the unsupplemented diet. Our results suggest that a diet rich in fat, instead of protein or carbohydrate, induced body fat accumulation in zebrafish with mechanisms that might be similar to those in mammals. Consequently, zebrafish might serve as a good animal model for research into obesity induced by high-fat diets.

  6. Effects of Inulin Supplementation in Low- or High-Fat Diets on Reproductive Performance of Sows and Antioxidant Defence Capacity in Sows and Offspring.

    Science.gov (United States)

    Wang, Y S; Zhou, P; Liu, H; Li, S; Zhao, Y; Deng, K; Cao, D D; Che, L Q; Fang, Z F; Xu, S Y; Lin, Y; Feng, B; Li, J; Wu, D

    2016-08-01

    This experiment was conducted to investigate the effects of inulin supplementation in low- or high-fat diets on both the reproductive performance of sow and the antioxidant defence capacity in sows and offspring. Sixty Landrace × Yorkshire sows were randomly allocated to four treatments with low-fat diet (L), low-fat diet containing 1.5% inulin (LI), high-fat diet (H) and high-fat diet containing 1.5% inulin (HI). Inulin-rich diets lowered the within-litter birth weight coefficient of variation (CV, p = 0.05) of piglets, increased the proportion of piglets weighing 1.0-1.5 kg at farrowing (p Inulin-rich diets fed to sow during gestation had beneficial effects on within-litter uniformity of piglet birthweight and enhanced the antioxidant defence capacity of sows and piglets. © 2016 Blackwell Verlag GmbH.

  7. The low-AGE content of low-fat vegan diets could benefit diabetics - though concurrent taurine supplementation may be needed to minimize endogenous AGE production.

    Science.gov (United States)

    McCarty, Mark F

    2005-01-01

    Increased endogenous generation of advanced glycation endproducts (AGEs) contributes importantly to the vascular complications of diabetes, in part owing to activation of the pro-inflammatory RAGE receptor. However, AGE-altered oligopeptides with RAGE-activating potential can also be absorbed from the diet, and indeed make a significant contribution to the plasma and tissue pool of AGEs; this contribution is especially prominent when compromised renal function impairs renal clearance of AGEs. Perhaps surprisingly, foods rich in both protein and fat, and cooked at high heat, tend to be the richest dietary sources of AGEs, whereas low-fat carbohydrate-rich foods tend to be relatively low in AGEs. Conceivably, this reflects the fact that the so-called "AGEs" in the diet are generated primarily, not by glycation reactions, but by interactions between oxidized lipids and protein; such reactions are known to give rise to certain prominent AGEs, such as epsilonN-carboxymethyl-lysine and methylglyoxal. Although roasted nuts and fried or broiled tofu are relatively high in AGEs, low-fat plant-derived foods, including boiled or baked beans, typically are low in AGEs. Thus, a low-AGE content may contribute to the many benefits conferred to diabetics by a genuinely low-fat vegan diet. Nonetheless, the plasma AGE content of healthy vegetarians has been reported to be higher than that of omnivores - suggesting that something about vegetarian diets may promote endogenous AGE production. Some researchers have proposed that the relatively high-fructose content of vegetarian diets may explain this phenomenon, but there so far is no clinical evidence that normal intakes of fructose have an important impact on AGE production. An alternative or additional possibility is that the relatively poor taurine status of vegetarians up-regulates the physiological role of myeloperoxidase-derived oxidants in the generation of AGEs - in which case, taurine supplementation might be expected to

  8. Effect of supplementing a high-fat, low-carbohydrate enteral formula in COPD patients.

    Science.gov (United States)

    Cai, Baiqiang; Zhu, Yuanjue; Ma, Y i; Xu, Zuojun; Zao, Y i; Wang, Jinglan; Lin, Yaoguang; Comer, Gail M

    2003-03-01

    One of the goals in treating patients with chronic obstructive pulmonary disease (COPD) who suffer from hypoxemia, hypercapnia, and malnutrition is to correct the malnutrition without increasing the respiratory quotient and minimize the production of carbon dioxide. This 3-wk study evaluated the efficacy of feeding a high-fat, low-carbohydrate (CHO) nutritional supplement as opposed to a high-carbohydrate diet in COPD patients on parameters of pulmonary function.S METHODS: Sixty COPD patients with low body weight (diet (15% protein, 20% to 30% fat, and 60% to 70% CHO), or the experimental group, which received two to three cans (237 mL/can) of a high-fat, low-CHO oral supplement (16.7% protein, 55.1% fat, and 28.2% CHO) in the evening as part of the diet. Measurements of lung function (forced expiratory volume in 1 s or volume of air exhaled in 1 s of maximal expiration, minute ventilation, oxygen consumption per unit time, carbon dioxide production in unit time, and respiratory quotient) and blood gases (pH, arterial carbon dioxide tension, and arterial oxygen tension) were taken at baseline and after 3 wk. Lung function measurements decreased significantly and forced expiratory volume increased significantly in the experimental group. This study demonstrates that pulmonary function in COPD patients can be significantly improved with a high-fat, low-CHO oral supplement as compared with the traditional high-CHO diet.

  9. Fad diets and obesity--Part IV: Low-carbohydrate vs. low-fat diets.

    Science.gov (United States)

    Moyad, Mark A

    2005-02-01

    The first three parts of this series of articles covered the basics of some of the more popular low-carbohydrate diets, and the theories behind them. In the fourth and final part of this series, some of the more popular low-fat and low-calorie diets, such as the Ornish diet and Weight Watchers, are covered briefly. Recently, several clinical trials of longer duration that compared low-carbohydrate versus low-fat diets have been published. These studies demonstrate that some of the low-carbohydrate diets result in reduced weight in the short-term, but their ability to reduce weight long-term any better than low-fat or other diets has been questioned. Most popular or fad diets have some positive messages contained within them and some preliminary positive short-term results, but overall the compliance rates with any fad diet are very poor over the long-term. The decision to go on any diet should be made with a health professional who can monitor the patient closely.

  10. Liver Fat Scores Moderately Reflect Interventional Changes in Liver Fat Content by a Low-Fat Diet but Not by a Low-Carb Diet.

    Science.gov (United States)

    Kabisch, Stefan; Bäther, Sabrina; Dambeck, Ulrike; Kemper, Margrit; Gerbracht, Christiana; Honsek, Caroline; Sachno, Anna; Pfeiffer, Andreas F H

    2018-01-31

    Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder all over the world, mainly being associated with a sedentary lifestyle, adiposity, and nutrient imbalance. The increasing prevalence of NAFLD accommodates similar developments for type 2 diabetes and diabetes-related comorbidities and complications. Therefore, early detection of NAFLD is an utmost necessity. Potentially helpful tools for the prediction of NAFLD are liver fat indices. The fatty liver index (FLI) and the NAFLD-liver fat score (NAFLD-LFS) have been recently introduced for this aim. However, both indices have been shown to correlate with liver fat status, but there is neither sufficient data on the longitudinal representation of liver fat change, nor proof of a diet-independent correlation between actual liver fat change and change of index values. While few data sets on low-fat diets have been published recently, low-carb diets have not been yet assessed in this context. We aim to provide such data from a highly effective short-term intervention to reduce liver fat, comparing a low-fat and a low-carb diet in subjects with prediabetes. Anthropometric measurements, magnetic resonance (MR)-based intrahepatic lipid (IHL) content, and several serum markers for liver damage have been collected in 140 subjects, completing the diet phase in this trial. Area-under-the-responder-operator-curves (AUROC) calculations as well as cross-sectional and longitudinal Spearman correlations were used. Both FLI and NAFLD-LFS predict liver fat with moderate accuracy at baseline (AUROC 0.775-0.786). These results are supported by correlation analyses. Changes in liver fat, achieved by the dietary intervention, correlate moderately with changes in FLI and NAFLD-LFS in the low-fat diet, but not in the low-carb diet. A correlation analysis between change of actual IHL content and change of single elements of the liver fat indices revealed diet-specific moderate to strong correlations between ΔIHL and

  11. Egg quality of quails fed low methionine diet supplemented with betaine

    Science.gov (United States)

    Ratriyanto, A.; Indreswari, R.; Dewanti, R.; Wahyuningsih, S.

    2018-03-01

    This experiment investigated the effect of betaine supplementation to low methionine diet on egg quality of quails. A total of 340 laying quails (Coturnix coturnix japonica) was divided into 4 dietary treatments with 5 replicates of 17 quails each. The experiment was assigned in a completely randomized design. The four dietary treatments were the low methionine diet (0.3% methionine) without betaine supplementation and the low methionine diet supplemented with 0.07, 0.14, and 0.21% betaine. The experimental diets were applied for 8 weeks and the egg quality traits were measured at the age of 16 and 20 weeks. The data were subjected to analysis of variance, and when the treatment indicated significant effect, it was continued to orthogonal polynomial test to determine the optimum level of betaine. Increasing dietary levels of betaine increased the fat content of the egg with the linear regression of y = 11.0949 + 4.1914x (R2 = 0.18). However, supplementation of betaine did not affect protein content, yolk, albumen, and eggshell percentage. It can be concluded that betaine supplementation up to 0.21% to low methionine diet only had little effect in improving the quality traits of quail eggs.

  12. Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Cláudio A. Cunha

    2013-01-01

    Full Text Available The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water; CG (chow diet and water + green tea extract; HW (high-fat diet and water; HG (high-fat diet and water + green tea extract. The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.. The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.

  13. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology.

    Directory of Open Access Journals (Sweden)

    Jesselea Carlin

    Full Text Available Maternal consumption of a high fat diet during pregnancy increases the offspring risk for obesity. Using a mouse model, we have previously shown that maternal consumption of a high fat (60% diet leads to global and gene specific decreases in DNA methylation in the brain of the offspring. The present experiments were designed to attempt to reverse this DNA hypomethylation through supplementation of the maternal diet with methyl donors, and to determine whether methyl donor supplementation could block or attenuate phenotypes associated with maternal consumption of a HF diet. Metabolic and behavioral (fat preference outcomes were assessed in male and female adult offspring. Expression of the mu-opioid receptor and dopamine transporter mRNA, as well as global DNA methylation were measured in the brain. Supplementation of the maternal diet with methyl donors attenuated the development of some of the adverse effects seen in offspring from dams fed a high fat diet; including weight gain, increased fat preference (males, changes in CNS gene expression and global hypomethylation in the prefrontal cortex. Notable sex differences were observed. These findings identify the importance of balanced methylation status during pregnancy, particularly in the context of a maternal high fat diet, for optimal offspring outcome.

  14. Effects of L-carnitine supplementation into diets with two different fat ...

    African Journals Online (AJOL)

    sevilay

    or without supplemental L-carnitine (0 or 50 mg/kg diet) on growth ... The cold carcass yield of quails fed the diet containing .... Temperature was kept at ...... crude fat content in breast muscle of male broilers increased significantly upon the ...

  15. Effect of supplemental fat in low energy diets on some blood ...

    African Journals Online (AJOL)

    Food intake and body weight gain both increased significantly with supplemental level of both fat sources, the rate in food intake being higher with soyabean oil than with beef tallow. Feed conversion ratio decreased significantly with both sources in the period 29 – 42 d. Serum triglyceride and very low density lipoprotein ...

  16. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet.

    Science.gov (United States)

    Shai, Iris; Schwarzfuchs, Dan; Henkin, Yaakov; Shahar, Danit R; Witkow, Shula; Greenberg, Ilana; Golan, Rachel; Fraser, Drora; Bolotin, Arkady; Vardi, Hilel; Tangi-Rozental, Osnat; Zuk-Ramot, Rachel; Sarusi, Benjamin; Brickner, Dov; Schwartz, Ziva; Sheiner, Einat; Marko, Rachel; Katorza, Esther; Thiery, Joachim; Fiedler, Georg Martin; Blüher, Matthias; Stumvoll, Michael; Stampfer, Meir J

    2008-07-17

    Trials comparing the effectiveness and safety of weight-loss diets are frequently limited by short follow-up times and high dropout rates. In this 2-year trial, we randomly assigned 322 moderately obese subjects (mean age, 52 years; mean body-mass index [the weight in kilograms divided by the square of the height in meters], 31; male sex, 86%) to one of three diets: low-fat, restricted-calorie; Mediterranean, restricted-calorie; or low-carbohydrate, non-restricted-calorie. The rate of adherence to a study diet was 95.4% at 1 year and 84.6% at 2 years. The Mediterranean-diet group consumed the largest amounts of dietary fiber and had the highest ratio of monounsaturated to saturated fat (Pcarbohydrate group consumed the smallest amount of carbohydrates and the largest amounts of fat, protein, and cholesterol and had the highest percentage of participants with detectable urinary ketones (Ploss was 2.9 kg for the low-fat group, 4.4 kg for the Mediterranean-diet group, and 4.7 kg for the low-carbohydrate group (Plosses were 3.3 kg, 4.6 kg, and 5.5 kg, respectively. The relative reduction in the ratio of total cholesterol to high-density lipoprotein cholesterol was 20% in the low-carbohydrate group and 12% in the low-fat group (P=0.01). Among the 36 subjects with diabetes, changes in fasting plasma glucose and insulin levels were more favorable among those assigned to the Mediterranean diet than among those assigned to the low-fat diet (Pcarbohydrate diets may be effective alternatives to low-fat diets. The more favorable effects on lipids (with the low-carbohydrate diet) and on glycemic control (with the Mediterranean diet) suggest that personal preferences and metabolic considerations might inform individualized tailoring of dietary interventions. (ClinicalTrials.gov number, NCT00160108.) 2008 Massachusetts Medical Society

  17. Effects of a low-fat vegan diet and a Step II diet on macro- and micronutrient intakes in overweight postmenopausal women.

    Science.gov (United States)

    Turner-McGrievy, Gabrielle M; Barnard, Neal D; Scialli, Anthony R; Lanou, Amy J

    2004-09-01

    This study investigated the nutrient intake of overweight postmenopausal women assigned to a low-fat vegan diet or a Step II diet. Fifty-nine overweight (body mass index, 26 to 44 kg/m2) postmenopausal women were randomly assigned to a self-selected low-fat vegan or a National Cholesterol Education Program Step II diet in a 14-wk controlled trial on weight loss and metabolism. Nutrient intake, which was measured per 1000 kcal, was the main outcome measure. Statistical analyses included within-group and between-group t tests examining changes associated with each diet. Consumption of a low-fat vegan diet was associated with greater decreases in fat, saturated fat, protein, and cholesterol intakes and greater increases in carbohydrate, fiber, beta-carotene, and total vitamin A intakes than was a Step II diet. The low-fat vegan group also increased thiamin, vitamin B6, and magnesium intakes more than the Step II group, and both groups increased folic acid, vitamin C, and potassium intakes. If considering only food sources of micronutrients, the low-fat vegan group decreased vitamin D, vitamin B12, calcium, selenium, phosphorous, and zinc intakes compared with baseline. However, with incidental supplements included, decreases were evident only in phosphorous and selenium intakes. No micronutrient decreases were found in the Step II group. Individuals on a low-fat vegan or Step II diet should take steps to meet the recommended intakes of vitamin D, vitamin K, folic acid, calcium, magnesium, and zinc. Individuals on a low-fat vegan diet should also ensure adequate intakes of vitamin B12, phosphorous, and selenium.

  18. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    Science.gov (United States)

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  19. Effect of Dietary Cocoa Tea (Camellia ptilophylla Supplementation on High-Fat Diet-Induced Obesity, Hepatic Steatosis, and Hyperlipidemia in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Rong Yang

    2013-01-01

    Full Text Available Recent studies suggested that green tea has the potential to protect against diet-induced obesity. The presence of caffeine within green tea has caused limitations. Cocoa tea (Camellia ptilophylla is a naturally decaffeinated tea plant. To determine whether cocoa tea supplementation results in an improvement in high-fat diet-induced obesity, hyperlipidemia and hepatic steatosis, and whether such effects would be comparable to those of green tea extract, we studied six groups of C57BL/6 mice that were fed with (1 normal chow (N; (2 high-fat diet (21% butterfat + 0.15% cholesterol, wt/wt (HF; (3 a high-fat diet supplemented with 2% green tea extract (HFLG; (4 a high-fat diet supplemented with 4% green tea extract (HFHG; (5 a high-fat diet supplemented with 2% cocoa tea extract (HFLC; and (6 a high-fat diet supplemented with 4% cocoa tea extract (HFHC. From the results, 2% and 4% dietary cocoa tea supplementation caused a dose-dependent decrease in (a body weight, (b fat pad mass, (c liver weight, (d total liver lipid, (e liver triglyceride and cholesterol, and (f plasma lipids (triglyceride and cholesterol. These data indicate that dietary cocoa tea, being naturally decaffeinated, has a beneficial effect on high-fat diet-induced obesity, hepatomegaly, hepatic steatosis, and elevated plasma lipid levels in mice, which are comparable to green tea. The present findings have provided the proof of concept that dietary cocoa tea might be of therapeutic value and could therefore provide a safer and cost effective option for patients with diet-induced metabolic syndrome.

  20. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Huang, Haiqiu; Jiang, Xiaojing; Xiao, Zhenlei; Yu, Lu; Pham, Quynhchi; Sun, Jianghao; Chen, Pei; Yokoyama, Wallace; Yu, Liangli Lucy; Luo, Yaguang Sunny; Wang, Thomas T Y

    2016-12-07

    Cardiovascular disease (CVD) is the leading cause of death in the United States, and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risk through modulation of hypercholesterolemia. Microgreens of a variety of vegetables and herbs have been reported to be more nutrient dense compared to their mature counterparts. However, little is known about the effectiveness of microgreens in affecting lipid and cholesterol levels. The present study used a rodent diet-induced obesity (DIO) model to address this question. C57BL/6NCr mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat diet; (2) high-fat diet; (3) low-fat diet + 1.09% red cabbage microgreens; (4) low-fat diet + 1.66% mature red cabbage; (5) high-fat diet + 1.09% red cabbage microgreens; (6) high-fat diet + 1.66% mature red cabbage. The animals were on their respective diets for 8 weeks. We found microgreen supplementation attenuated high-fat diet induced weight gain. Moreover, supplementation with microgreens significantly lowered circulating LDL levels in animals fed the high-fat diet and reduced hepatic cholesterol ester, triacylglycerol levels, and expression of inflammatory cytokines in the liver. These data suggest that microgreens can modulate weight gain and cholesterol metabolism and may protect against CVD by preventing hypercholesterolemia.

  1. Effect of weight loss by a low-fat diet and a low-carbohydrate diet on peptide YY levels.

    Science.gov (United States)

    Essah, P A; Levy, J R; Sistrun, S N; Kelly, S M; Nestler, J E

    2010-08-01

    To compare the effects of weight loss by an energy-restricted low-fat diet vs low-carbohydrate diet on serum peptide YY (PYY) levels. 8-Week prospective study of 30 obese adults (mean age: 42.8+/-2.0 years, mean body mass index 35.5+/-0.6 kg m(-2)). After 8 weeks, subjects on the low-carbohydrate diet lost substantially more weight than those on the low-fat diet (5.8 vs 0.99 kg, Plow-fat or low-carbohydrate diet likely represents a compensatory response to maintain energy homeostasis and contributes to difficulty in weight loss during energy-restricted diets.

  2. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  3. Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice.

    Science.gov (United States)

    Kim, Misung; Na, Woori; Sohn, Cheongmin

    2013-09-01

    Several reports suggest that obesity is a risk factor for osteoporosis. Vitamin K plays an important role in improving bone metabolism. This study examined the effects of vitamin K1 and vitamin K2 supplementation on the biochemical markers of bone turnover and morphological microstructure of the bones by using an obese mouse model. Four-week-old C57BL/6J male mice were fed a 10% fat normal diet group or a 45% kcal high-fat diet group, with or without 200 mg/1000 g vitamin K1 (Normal diet + K1, high-fat diet + K1) and 200 mg/1000 g vitamin K2 (Normal diet + K2, high-fat diet + K2) for 12 weeks. Serum levels of osteocalcin were higher in the high-fat diet + K2 group than in the high-fat diet group. Serum OPG level of the high-fat diet group, high-fat diet + K1 group, and high-fat diet + K2 group was 2.31 ± 0.31 ng/ml, 2.35 ± 0.12 ng/ml, and 2.90 ± 0.11 ng/ml, respectively. Serum level of RANKL in the high-fat diet group was significantly higher than that in the high-fat diet + K1 group and high-fat diet + K2 group (p<0.05). Vitamin K supplementation seems to tend to prevent bone loss in high-fat diet induced obese state. These findings suggest that vitamin K supplementation reversed the high fat diet induced bone deterioration by modulating osteoblast and osteoclast activities and prevent bone loss in a high-fat diet-induced obese mice.

  4. Psyllium husk fibre supplementation to soybean and coconut oil diets of humans: effect on fat digestibility and faecal fatty acid excretion.

    Science.gov (United States)

    Ganji, V; Kies, C V

    1994-08-01

    The effects of psyllium fibre supplementation to polyunsaturated fatty acid rich soybean oil and saturated fatty acid rich coconut oil diets on fat digestibility and faecal fatty acid excretion were investigated in healthy humans. The study consisted of four 7-day experimental periods. Participants consumed soybean oil (SO), soybean oil plus psyllium fibre (20 g/day) (SO+PF), coconut oil (CO) and coconut oil plus psyllium fibre (20 g/day) (CO+PF) diets. Laboratory diet provided 30% calories from fat (20% from test oils and 10% from basal diet), 15% calories from protein and 55% calories from carbohydrate. Fat digestibility was significantly lower and faecal fat excretion was significantly higher with SO+PF diet than SO diet and with CO+PF diet than CO diet. Faecal excretion of myristic and lauric acids was not affected by test diets. Percent faecal palmitic acid excretion was significantly higher during psyllium supplementation periods. Higher faecal linoleic acid excretion was observed with soybean oil diets compared with coconut oil diets. Increased faecal fat loss, decreased fat digestibility and increased faecal palmitic acid excretion with psyllium supplementation may partly explain the hypocholesterolaemic action of psyllium fibre.

  5. Long-term dietary supplementation with low-dose nobiletin ameliorates hepatic steatosis, insulin resistance, and inflammation without altering fat mass in diet-induced obesity.

    Science.gov (United States)

    Kim, Young-Je; Choi, Myung-Sook; Woo, Je Tae; Jeong, Mi Ji; Kim, Sang Ryong; Jung, Un Ju

    2017-08-01

    We evaluated the long-term effect of low-dose nobiletin (NOB), a polymethoxylated flavone, on diet-induced obesity and related metabolic disturbances. C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without NOB (0.02%, w/w) for 16 weeks. NOB did not alter food intake or body weight. Despite increases in fatty acid oxidation-related genes expression and enzymes activity in adipose tissue, NOB did not affect adipose tissue weight due to simultaneous increases in lipogenic genes expression and fatty acid synthase activity. However, NOB significantly decreased not only pro-inflammatory genes expression in adipose tissue but also proinflammatory cytokine levels in plasma. NOB-supplemented mice also showed improved glucose tolerance and insulin resistance, along with decreased levels of plasma insulin, free fatty acids, total cholesterol, non-HDL-cholesterol, and apolipoprotein B. In addition, NOB caused significant decreases in hepatic lipid droplet accumulation and triglyceride content by activating hepatic fatty acid oxidation-related enzymes. Hepatic proinflammatory TNF-α mRNA expression, collagen accumulation, and plasma levels of aminotransferases, liver damage indicators, were also significantly lower in NOB-supplemented mice. These findings suggest that long-term supplementation with low-dose NOB can protect against HFD-induced inflammation, insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease, without ameliorating adiposity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors.

    Science.gov (United States)

    Claessens, M; van Baak, M A; Monsheimer, S; Saris, W H M

    2009-03-01

    High-protein (HP) diets are often advocated for weight reduction and weight loss maintenance. The aim was to compare the effect of low-fat, high-carbohydrate (HC) and low-fat, HP ad libitum diets on weight maintenance after weight loss induced by a very low-calorie diet, and on metabolic and cardiovascular risk factors in healthy obese subjects. Forty-eight subjects completed the study that consisted of an energy restriction period of 5-6 weeks followed by a weight maintenance period of 12 weeks. During weight maintenance subjects received maltodextrin (HC group) or protein (HP group) (casein (HPC subgroup) or whey (HPW subgroup)) supplements (2 x 25 g per day), respectively and consumed a low-fat diet. Subjects in the HP diet group showed significantly better weight maintenance after weight loss (2.3 kg difference, P=0.04) and fat mass reduction (2.2 kg difference, P=0.02) than subjects in the HC group. Triglyceride (0.6 mM difference, P=0.01) and glucagon (9.6 pg ml(-1) difference, P=0.02) concentrations increased more in the HC diet group, while glucose (0.3 mM difference, P=0.02) concentration increased more in the HP diet group. Changes in total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, insulin, HOMAir index, HbA1c, leptin and adiponectin concentrations did not differ between the diets. No differences were found between the casein- or whey-supplemented HP groups. These results show that low-fat, high-casein or whey protein weight maintenance diets are more effective for weight control than low-fat, HC diets and do not adversely affect metabolic and cardiovascular risk factors in weight-reduced moderately obese subjects without metabolic or cardiovascular complications.

  7. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  8. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice.

    Science.gov (United States)

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin

    2014-12-01

    Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.

  9. Effect of weight loss by a low-fat diet and a low-carbohydrate diet on peptide YY levels

    OpenAIRE

    Essah, P. A.; Levy, J. R.; Sistrun, S. N.; Kelly, S. M.; Nestler, J. E.

    2010-01-01

    Objective To compare the effects of weight loss by an energy-restricted low-fat diet versus low-carbohydrate diet on serum peptide YY (PYY) levels. Design 8-week prospective study of 30 obese adults (mean age: 42.8 ± 2.0 years, mean BMI 35.5 ± 0.6 kg/m2). Results After 8 weeks, subjects on the low-carbohydrate diet lost substantially more weight than those on the low-fat diet (5.8 kg vs. 0.99 kg, p

  10. High fat, low carbohydrate diet limit fear and aggression in Göttingen minipigs

    DEFF Research Database (Denmark)

    Haagensen, Annika Maria Juul; Sørensen, Dorte Bratbo; Sandøe, Peter

    2014-01-01

    High fat, low carbohydrate diets have become popular, as short-term studies show that such diets are effective for reducing body weight, and lowering the risk of diabetes and cardiovascular disease. There is growing evidence from both humans and other animals that diet affects behaviour and intake...... of fat has been linked, positively and negatively, with traits such as exploration, social interaction, anxiety and fear. Animal models with high translational value can help provide relevant and important information in elucidating potential effects of high fat, low carbohydrate diets on human behaviour....... Twenty four young, male Göttingen minipigs were fed either a high fat/cholesterol, low carbohydrate diet or a low fat, high carbohydrate/sucrose diet in contrast to a standard low fat, high carbohydrate minipig diet. Spontaneous behaviour was observed through video recordings of home pens and test...

  11. Dietary supplementation of organic selenium could improve performance, antibody response, and yolk oxidative stability in laying hens fed on diets containing oxidized fat.

    Science.gov (United States)

    Laika, M; Jahanian, R

    2015-06-01

    The present study was carried out to investigate the effect of dietary supplementation of organic selenium (Se) on performance, egg quality indices, and yolk oxidative stability in laying hens fed diets with different fat sources. A total of 270 Hy-line W-36 Leghorn hens of 47 weeks of age were randomly distributed into the 5 replicate cages of 9 dietary treatments. Experimental diets consisted of a 3 × 3 factorial arrangement of treatments with three different fat sources (soybean oil, SO; yellow grease, YG; and palm fat powder, PFP) and three different levels of supplemental Se (0, 0.2, and 0.4 mg/kg of diet) as supplied by zinc-L-selenomethionine (ZnSeMet) complex, which fed during a 77-day feeding trial including 7 days for adaptation and 70 days as the main recording period. Results showed that the highest (P hens fed on SO-supplemented diets. Hen-day egg production was affected by both dietary fat source (P feed intake was not affected by experimental diets during the first 35-day period, dietary inclusion of PFP reduced feed intake during both second 35-day (P feed conversion ratio during the first 35-day period was assigned to the birds fed on SO-diets, followed by those fed YG-diets. Dietary supplementation of ZnSeMet improved (P feed efficiency during the first 35-day period. Supplementation of ZnSeMet into the diets increased yolk index, with more impact in hens fed on YG-diets. The highest concentration of yolk malondialdehyde was observed in YG-fed groups, and ZnSeMet supplementation of diets decreased (P hens fed on diets supplemented by YG, followed by those on SO-diets. Although different fat sources had no effect on antibody titer against Newcastle disease virus, supplemental ZnSeMet improved (P hens, with the highest impact in diets containing oxidized (high peroxide values) fat sources.

  12. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  13. The Effects of a Low-Carbohydrate Diet vs. a Low-Fat Diet on Novel Cardiovascular Risk Factors: A Randomized Controlled Trial.

    Science.gov (United States)

    Hu, Tian; Yao, Lu; Reynolds, Kristi; Whelton, Paul K; Niu, Tianhua; Li, Shengxu; He, Jiang; Bazzano, Lydia A

    2015-09-17

    Increasing evidence supports a low-carbohydrate diet for weight loss and improvement in traditional cardiovascular disease (CVD) markers. Effects on novel CVD markers remain unclear. We examined the effects of a low-carbohydrate diet (low-fat diet (fat, fat; n = 73) on biomarkers representing inflammation, adipocyte dysfunction, and endothelial dysfunction in a 12 month clinical trial among 148 obese adults free of diabetes and CVD. Participants met with a study dietitian on a periodic basis and each diet group received the same behavioral curriculum which included dietary instruction and supportive counseling. Eighty percent of participants completed the intervention. At 12 months, participants on the low-carbohydrate diet had significantly greater increases in adiponectin (mean difference in change, 1336 ng/mL (95% CI, 342 to 2330 ng/mL); p = 0.009) and greater decreases in intercellular adhesion molecule-1 concentrations (-16.8 ng/mL (-32.0 to -1.6 ng/mL); p = 0.031) than those on the low-fat diet. Changes in other novel CVD markers were not significantly different between groups. In conclusion, despite the differences in weight changes on diets, a low-carbohydrate diet resulted in similar or greater improvement in inflammation, adipocyte dysfunction, and endothelial dysfunction than a standard low-fat diet among obese persons.

  14. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    Directory of Open Access Journals (Sweden)

    Hilda Vargas-Robles

    2015-01-01

    Full Text Available Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD. Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  15. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Su-Kyung Shin

    2016-02-01

    Full Text Available Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w, high-fat diet (HFD, 20% fat, w/w, or HFD supplemented with phlorizin (PH, 0.02%, w/w. The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  16. Adherence to low-carbohydrate and low-fat diets in relation to weight loss and cardiovascular risk factors.

    Science.gov (United States)

    Hu, Tian; Yao, Lu; Reynolds, Kristi; Niu, Tianhua; Li, Shengxu; Whelton, Paul K; He, Jiang; Steffen, Lyn M; Bazzano, Lydia A

    2016-03-01

    A low-carbohydrate diet can reduce body weight and some cardiovascular disease (CVD) risk factors more than a low-fat diet, but differential adherence may play a role in these effects. Data were used from 148 adults who participated in a 12-month clinical trial examining the effect of a low-carbohydrate diet (fat diet (fat, fat) on weight and CVD risk factors. We compared attendance at counseling sessions, deviation from nutrient goals, urinary ketone presence, and composite scores representing the overall adherence based on the distribution of these individual indicators between two interventions. Composite scores were similar between the two groups. A one-interquartile-range increase in composite score representing better adherence to a low-carbohydrate diet was associated with 2.2 kg or 2.3 % greater weight loss, 1.1 greater reduction in percent fat mass, and 1.3 greater increase in proportion of lean mass. Indicators of adherence to a low-fat diet was not associated with changes in weight, fat mass or lean mass. Despite comparable adherence between groups, a low-carbohydrate diet was associated with greater reductions in body weight and improvement in body composition, while a low-fat diet was not associated with weight loss.

  17. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by

  18. High fat, low carbohydrate diet limit fear and aggression in Göttingen minipigs.

    Directory of Open Access Journals (Sweden)

    Annika Maria Juul Haagensen

    Full Text Available High fat, low carbohydrate diets have become popular, as short-term studies show that such diets are effective for reducing body weight, and lowering the risk of diabetes and cardiovascular disease. There is growing evidence from both humans and other animals that diet affects behaviour and intake of fat has been linked, positively and negatively, with traits such as exploration, social interaction, anxiety and fear. Animal models with high translational value can help provide relevant and important information in elucidating potential effects of high fat, low carbohydrate diets on human behaviour. Twenty four young, male Göttingen minipigs were fed either a high fat/cholesterol, low carbohydrate diet or a low fat, high carbohydrate/sucrose diet in contrast to a standard low fat, high carbohydrate minipig diet. Spontaneous behaviour was observed through video recordings of home pens and test-related behaviours were recorded during tests involving animal-human contact and reaction towards a novel object. We showed that the minipigs fed a high fat/cholesterol, low carbohydrate diet were less aggressive, showed more non-agonistic social contact and had fewer and less severe skin lesions and were less fearful of a novel object than minipigs fed low fat, high carbohydrate diets. These results found in a porcine model could have important implications for general health and wellbeing of humans and show the potential for using dietary manipulations to reduce aggression in human society.

  19. The Effects of a Low-Carbohydrate Diet vs. a Low-Fat Diet on Novel Cardiovascular Risk Factors: A Randomized Controlled Trial

    Science.gov (United States)

    Hu, Tian; Yao, Lu; Reynolds, Kristi; Whelton, Paul K.; Niu, Tianhua; Li, Shengxu; He, Jiang; Bazzano, Lydia A.

    2015-01-01

    Increasing evidence supports a low-carbohydrate diet for weight loss and improvement in traditional cardiovascular disease (CVD) markers. Effects on novel CVD markers remain unclear. We examined the effects of a low-carbohydrate diet (low-fat diet (low-carbohydrate diet had significantly greater increases in adiponectin (mean difference in change, 1336 ng/mL (95% CI, 342 to 2330 ng/mL); p = 0.009) and greater decreases in intercellular adhesion molecule-1 concentrations (−16.8 ng/mL (−32.0 to −1.6 ng/mL); p = 0.031) than those on the low-fat diet. Changes in other novel CVD markers were not significantly different between groups. In conclusion, despite the differences in weight changes on diets, a low-carbohydrate diet resulted in similar or greater improvement in inflammation, adipocyte dysfunction, and endothelial dysfunction than a standard low-fat diet among obese persons. PMID:26393645

  20. [The effects of a low-fat versus a low carbohydrate diet in obese adults].

    Science.gov (United States)

    De Luis, Daniel A; Aller, Rocio; Izaola, Olatz; González Sagrado, Manuel; Conde, Rosa

    2009-02-21

    The aim of our study was to compare the effect of a high fat and a high protein diet vs a fat restricted diet on weight loss in obese patients. A population of 74 obesity non diabetic outpatients was analyzed in a prospective way. Patients were randomly allocated to two groups: a) diet I (low fat diet: 1500kcal/day, 52% carbohydrates, 20% proteins, 27% fats) with a distribution of fats and b) diet II (high fat and high protein diet: 1507kcal/day, 38% carbohydrates, 26% proteins, 36% fats). After three months with diet, weight, blood pressure, glucose, C reactive protein, insulin, insulin resistance, total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides were evaluated. There were randomized 35 patients (4 males and 31 females) in the group I and 39 patients (6 males and 33 females) in diet group II. In group I, systolic pressure, BMI, weight, fat free mass, fat mass total body water, intracellular body water and waist circumference decreased significantly. In group II, glucose, total cholesterol, LDL cholesterol, systolic blood, BMI, weight, fat mass, total body water and waist circumference decreased significantly. Differences among averages of parameters before treatment with both diets were not detected. No differences were detected on weight loss between a fat-restricted diet and a high fat and high protein enhanced diet.

  1. Low salt and low calorie diet does not reduce more body fat than same calorie diet: a randomized controlled study.

    Science.gov (United States)

    Kang, Hye Jin; Jun, Dae Won; Lee, Seung Min; Jang, Eun Chul; Cho, Yong Kyun

    2018-02-02

    Recent several observational studies have reported that high salt intake is associated with obesity. But it is unclear whether salt intake itself induce obesity or low salt diet can reduce body fat mass. We investigated whether a low salt diet can reduce body weight and fat amount. The randomized, open-label pilot trial was conducted at a single institution. A total of 85 obese people were enrolled. All participants were served meals three times a day, and provided either a low salt diet or control diet with same calorie. Visceral fat was measured with abdominal computer tomography, while body fat mass and total body water was measured with bio-impedance. Reductions in body weight (-6.3% vs. -5.0%, p = 0.05) and BMI (-6.6% vs. -5.1%, p = 0.03) were greater in the low salt group than in the control group. Extracellular water and total body water were significantly reduced in the low salt group compared to the control group. However, changes in body fat mass, visceral fat area, and skeletal muscle mass did not differ between the two groups. Changes in lipid profile, fasting glucose, and HOMA-IR did not differ between the two groups. A two-month low salt diet was accompanied by reduction of body mass index. However, the observed decrease of body weight was caused by reduction of total body water, not by reduction of body fat mass or visceral fat mass.

  2. Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet.

    Science.gov (United States)

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Kadouh, Hoda; Zhou, Kequan

    2011-04-13

    Dietary antioxidants may provide a cost-effective strategy to promote health in obesity by targeting oxidative stress and inflammation. We recently found that the antioxidant-rich grape skin extract (GSE) also exerts a novel anti-hyperglycemic activity. This study investigated whether 3-month GSE supplementation can improve oxidative stress, inflammation, and hyperglycemia associated with a Western diet-induced obesity. Young diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a standard diet (S group), a Western high fat diet (W group), and the Western diet plus GSE (2.4 g GSE/kg diet, WGSE group). By week 12, DIO mice in the WGSE group gained significantly more weight (24.6 g) than the W (20.2 g) and S groups (11.2 g); the high fat diet groups gained 80% more weight than the standard diet group. Eight of 12 mice in the W group, compared to only 1 of 12 mice in the WGSE group, had fasting blood glucose levels above 140 mg/dL. Mice in the WGSE group also had 21% lower fasting blood glucose and 17.1% lower C-reactive protein levels than mice in the W group (P < 0.05). However, the GSE supplementation did not affect oxidative stress in diet-induced obesity as determined by plasma oxygen radical absorbance capacity, glutathione peroxidase, and liver lipid peroxidation. Collectively, the results indicated a beneficial role of GSE supplementation for improving glycemic control and inflammation in diet-induced obesity.

  3. Dietary fat intake, supplements, and weight loss

    Science.gov (United States)

    Dyck, D. J.

    2000-01-01

    Although there remains controversy regarding the role of macronutrient balance in the etiology of obesity, the consumption of high-fat diets appears to be strongly implicated in its development. Evidence that fat oxidation does not adjust rapidly to acute increases in dietary fat, as well as a decreased capacity to oxidize fat in the postprandial state in the obese, suggest that diets high in fat may lead to the accumulation of fat stores. Novel data is also presented suggesting that in rodents, high-fat diets may lead to the development of leptin resistance in skeletal muscle and subsequent accumulations of muscle triacylglycerol. Nevertheless, several current fad diets recommend drastically reduced carbohydrate intake, with a concurrent increase in fat content. Such recommendations are based on the underlying assumption that by reducing circulating insulin levels, lipolysis and lipid oxidation will be enhanced and fat storage reduced. Numerous supplements are purported to increase fat oxidation (carnitine, conjugated linoleic acid), increase metabolic rate (ephedrine, pyruvate), or inhibit hepatic lipogenesis (hydroxycitrate). All of these compounds are currently marketed in supplemental form to increase weight loss, but few have actually been shown to be effective in scientific studies. To date, there is little or no evidence supporting that carnitine or hydroxycitrate supplementation are of any value for weight loss in humans. Supplements such as pyruvate have been shown to be effective at high dosages, but there is little mechanistic information to explain its purported effect or data to indicate its effectiveness at lower dosages. Conjugated linoleic acid has been shown to stimulate fat utilization and decrease body fat content in mice but has not been tested in humans. The effects of ephedrine, in conjunction with methylxanthines and aspirin, in humans appears unequivocal but includes various cardiovascular side effects. None of these compounds have been

  4. Effects of Low-Carbohydrate Diets Versus Low-Fat Diets on Metabolic Risk Factors: A Meta-Analysis of Randomized Controlled Clinical Trials

    Science.gov (United States)

    Hu, Tian; Mills, Katherine T.; Yao, Lu; Demanelis, Kathryn; Eloustaz, Mohamed; Yancy, William S.; Kelly, Tanika N.; He, Jiang; Bazzano, Lydia A.

    2012-01-01

    The effects of low-carbohydrate diets (≤45% of energy from carbohydrates) versus low-fat diets (≤30% of energy from fat) on metabolic risk factors were compared in a meta-analysis of randomized controlled trials. Twenty-three trials from multiple countries with a total of 2,788 participants met the predetermined eligibility criteria (from January 1, 1966 to June 20, 2011) and were included in the analyses. Data abstraction was conducted in duplicate by independent investigators. Both low-carbohydrate and low-fat diets lowered weight and improved metabolic risk factors. Compared with participants on low-fat diets, persons on low-carbohydrate diets experienced a slightly but statistically significantly lower reduction in total cholesterol (2.7 mg/dL; 95% confidence interval: 0.8, 4.6), and low density lipoprotein cholesterol (3.7 mg/dL; 95% confidence interval: 1.0, 6.4), but a greater increase in high density lipoprotein cholesterol (3.3 mg/dL; 95% confidence interval: 1.9, 4.7) and a greater decrease in triglycerides (−14.0 mg/dL; 95% confidence interval: −19.4, −8.7). Reductions in body weight, waist circumference and other metabolic risk factors were not significantly different between the 2 diets. These findings suggest that low-carbohydrate diets are at least as effective as low-fat diets at reducing weight and improving metabolic risk factors. Low-carbohydrate diets could be recommended to obese persons with abnormal metabolic risk factors for the purpose of weight loss. Studies demonstrating long-term effects of low-carbohydrate diets on cardiovascular events were warranted. PMID:23035144

  5. The Effects of a Low-Carbohydrate Diet vs. a Low-Fat Diet on Novel Cardiovascular Risk Factors: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Tian Hu

    2015-09-01

    Full Text Available Increasing evidence supports a low-carbohydrate diet for weight loss and improvement in traditional cardiovascular disease (CVD markers. Effects on novel CVD markers remain unclear. We examined the effects of a low-carbohydrate diet (<40 g/day; n = 75 versus a low-fat diet (<30% kcal/day from total fat, <7% saturated fat; n = 73 on biomarkers representing inflammation, adipocyte dysfunction, and endothelial dysfunction in a 12 month clinical trial among 148 obese adults free of diabetes and CVD. Participants met with a study dietitian on a periodic basis and each diet group received the same behavioral curriculum which included dietary instruction and supportive counseling. Eighty percent of participants completed the intervention. At 12 months, participants on the low-carbohydrate diet had significantly greater increases in adiponectin (mean difference in change, 1336 ng/mL (95% CI, 342 to 2330 ng/mL; p = 0.009 and greater decreases in intercellular adhesion molecule-1 concentrations (−16.8 ng/mL (−32.0 to −1.6 ng/mL; p = 0.031 than those on the low-fat diet. Changes in other novel CVD markers were not significantly different between groups. In conclusion, despite the differences in weight changes on diets, a low-carbohydrate diet resulted in similar or greater improvement in inflammation, adipocyte dysfunction, and endothelial dysfunction than a standard low-fat diet among obese persons.

  6. The Effects of a Low-Carbohydrate Diet vs. a Low-Fat Diet on Novel Cardiovascular Risk Factors: A Randomized Controlled Trial

    OpenAIRE

    Hu, Tian; Yao, Lu; Reynolds, Kristi; Whelton, Paul K.; Niu, Tianhua; Li, Shengxu; He, Jiang; Bazzano, Lydia A.

    2015-01-01

    Increasing evidence supports a low-carbohydrate diet for weight loss and improvement in traditional cardiovascular disease (CVD) markers. Effects on novel CVD markers remain unclear. We examined the effects of a low-carbohydrate diet (<40 g/day; n = 75) versus a low-fat diet (<30% kcal/day from total fat, <7% saturated fat; n = 73) on biomarkers representing inflammation, adipocyte dysfunction, and endothelial dysfunction in a 12 month clinical trial among 148 obese adults free of d...

  7. Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet.

    Science.gov (United States)

    da Silva, Robin P; Leonard, Kelly-Ann; Jacobs, René L

    2017-12-01

    Recent studies have shown that dietary creatine supplementation can prevent lipid accumulation in the liver. Creatine is a small molecule that plays a large role in energy metabolism, but since the enzyme creatine kinase is not present in the liver, the classical role in energy metabolism does not hold in this tissue. Fat accumulation in the liver can lead to the development of nonalcoholic fatty liver disease (NAFLD), a progressive disease that is prevalent in humans. We have previously reported that creatine can directly influence lipid metabolism in cell culture to promote lipid secretion and oxidation. Our goal in the current study was to determine whether similar mechanisms that occur in cell culture were present in vivo. We also sought to determine whether dietary creatine supplementation could be effective in reversing steatosis. Sprague-Dawley rats were fed a high-fat diet or a high-fat diet supplemented with creatine for 5 weeks. We found that rats supplemented with creatine had significantly improved rates of lipoprotein secretion and alterations in mitochondrial function that were consistent with greater oxidative capacity. We also find that introducing creatine into a high-fat diet halted hepatic lipid accumulation in rats with fatty liver. Our results support our previous report that liver cells in culture with creatine secrete and oxidize more oleic acid, demonstrating that dietary creatine can effectively change hepatic lipid metabolism by increasing lipoprotein secretion and oxidation in vivo. Our data suggest that creatine might be an effective therapy for NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effects of N,N-dimethylglycine sodium salt on apparent digestibility, vitamin E absorption, and serum proteins in broiler chickens fed a high- or low-fat diet.

    Science.gov (United States)

    Prola, L; Nery, J; Lauwaerts, A; Bianchi, C; Sterpone, L; De Marco, M; Pozzo, L; Schiavone, A

    2013-05-01

    The objective of this study was to assess the effect of supplementation with sodium salt of N,N-dimethylglycine (DMG-Na) on apparent digestibility (AD) in broiler chickens fed low- and high-fat diets. Twenty-eight 1-d-old broiler chickens were fed one of the dietary treatments: a low-fat diet (LF) or a high-fat diet (HF) supplemented with or without 1,000 mg/kg of DMG-Na. Body weight and feed consumption were recorded at 14 and 35 d of age. Average daily growth, daily feed intake, and feed conversion ratio were calculated. The AD of DM, organic matter (OM), CP, total fat (TF), and α-tocopheryl-acetate were assessed by 2 digestibility trials (at 18-21 and 32-35 d, respectively). Serum protein and plasma α-tocopherol concentrations were assessed at 35 d of age. Final BW, feed intake, carcass, breast, and spleen weight were higher in groups fed LF than HF diets (P = 0.048, P = 0.002, P = 0.039, P DMG-Na-unsupplemented groups (P = 0.011) for both fat levels. During the first digestibility trial (18-21 d), the AD of DM (P = 0.023), OM (P = 0.033), CP (P = 0.030), and α-tocopheryl-acetate (P = 0.036) was higher in the DMG-Na-supplemented group than control. Digestibility of total fat was increased by DMG-Na supplementation in the LF groups (P = 0.038). A trend for improvement of digestibility was observed during the second digestibility trial (32-35 d) for DM (P = 0.089), OM (P = 0.051), and CP (P = 0.063) in DMG-Na groups. Total serum proteins (and relative fractions) were positively influenced by DMG-Na supplementation both in LF and HF diets (P = 0.029). Plasma α-tocopherol concentration was higher in groups fed LF than HF diets (P < 0.001).

  9. Proteomics identifies molecular networks affected by tetradecylthioacetic acid and fish oil supplemented diets

    DEFF Research Database (Denmark)

    Wrzesinski, Krzysztof; León, Ileana R.; Kulej, Katarzyna

    2013-01-01

    - high fat diet that is thought to contribute to the development of metabolic syndrome - a condition that is strongly associated with diabetes, obesity and heart failure. Fish oil and TTA are known to have beneficial effects for the fatty acid metabolism and have been shown to alleviate some...... expression in a long-term study (50weeks) in male Wistar rats fed 5 different diets. The diets were as follows: low fat diet; high fat diet; and three diets that combined high fat diet with fish oil, TTA or combination of those two as food supplements. We used two different proteomics techniques: a protein...... antioxidant properties of TTA. BIOLOGICAL SIGNIFICANCE: This study for the first time explores the effect of fish oil and TTA - tetradecyl-thioacetic acid and the combination of those two as diet supplements on mitochondria metabolism in a comprehensive and systematic manner. We show that fish oil and TTA...

  10. Addition of arginine and leucine to low or normal protein diets: performance, carcass characteristics and intramuscular fat of finishing pigs

    Energy Technology Data Exchange (ETDEWEB)

    Tous, N.; Lizardo, R.; Vilà, B.; Gispert, M.; Font-i-Furnols, M.; Esteve-Garcia, E.

    2016-07-01

    The effect of dietary crude protein (CP) reduction, supplementation with arginine or leucine on intramuscular fat (IMF) content was evaluated in (Landrace × Duroc) × Pietrain pigs. One-hundred and eight barrows (67 ± 4 kg) were assigned to six diets (n=6 pens of 3 pigs each): four normal CP diets containing 16% CP from 60 to 90 kg and 13% CP from 90 to 115 kg live weight (normal protein; normal protein high Arg, normal protein high Leu or normal protein high Arg and Leu) and two low CP diets containing 14% CP from 60 to 90 kg and 11.8% CP from 90 to 115 kg live weight (with or without supplementation of both amino acids). The high Leu and Arg diets were supplemented to obtain ratios of standard ileal digestible Leu/Lys and Arg/Lys of 4 and 2, respectively. While feed to gain ratio tended to increase (p<0.05), final weight (p<0.01), average daily feed intake (ADFI) (p<0.05) and average daily gain (ADG) (p<0.01) were reduced in animals fed low-protein diets supplemented with Arg and Leu compared to the ones fed low-protein diet unsupplemented. Marbling and IMF content in loin were reduced when Arg was supplemented (p<0.05) in normal protein diets. Supplementing these diets with Arg also reduced belly weight (p<0.01) and increased lean meat percentage (p<0.05). Contrary to the initial hypothesis, reduction of CP or dietary supplementation with Leu had no effect on IMF content and supplementation with Arg reduced it.

  11. Addition of arginine and leucine to low or normal protein diets: performance, carcass characteristics and intramuscular fat of finishing pigs

    International Nuclear Information System (INIS)

    Tous, N.; Lizardo, R.; Vilà, B.; Gispert, M.; Font-i-Furnols, M.; Esteve-Garcia, E.

    2016-01-01

    The effect of dietary crude protein (CP) reduction, supplementation with arginine or leucine on intramuscular fat (IMF) content was evaluated in (Landrace × Duroc) × Pietrain pigs. One-hundred and eight barrows (67 ± 4 kg) were assigned to six diets (n=6 pens of 3 pigs each): four normal CP diets containing 16% CP from 60 to 90 kg and 13% CP from 90 to 115 kg live weight (normal protein; normal protein high Arg, normal protein high Leu or normal protein high Arg and Leu) and two low CP diets containing 14% CP from 60 to 90 kg and 11.8% CP from 90 to 115 kg live weight (with or without supplementation of both amino acids). The high Leu and Arg diets were supplemented to obtain ratios of standard ileal digestible Leu/Lys and Arg/Lys of 4 and 2, respectively. While feed to gain ratio tended to increase (p<0.05), final weight (p<0.01), average daily feed intake (ADFI) (p<0.05) and average daily gain (ADG) (p<0.01) were reduced in animals fed low-protein diets supplemented with Arg and Leu compared to the ones fed low-protein diet unsupplemented. Marbling and IMF content in loin were reduced when Arg was supplemented (p<0.05) in normal protein diets. Supplementing these diets with Arg also reduced belly weight (p<0.01) and increased lean meat percentage (p<0.05). Contrary to the initial hypothesis, reduction of CP or dietary supplementation with Leu had no effect on IMF content and supplementation with Arg reduced it.

  12. Effects of a low-fat versus a low-carbohydrate diet on adipocytokines in obese adults.

    Science.gov (United States)

    de Luis, D A; Aller, R; Izaola, O; Gonzalez Sagrado, M; Bellioo, D; Conde, R

    2007-01-01

    There are few studies addressing the effect of weight loss on circulating levels of adipocytokines. The aim of our study was to determine whether different diets would have different weight loss effects and to examine the changes in adipocytokine levels. A population of 90 obesity non-diabetic outpatients was analyzed in a prospective way. The patients were randomly allocated to two groups: (a) diet I (low-fat diet), and (b) diet II (low-carbohydrate diet). At baseline and after 3 months on the diet, adipocytokines were evaluated. 43 patients were randomized to group I and 47 patients to diet group II. No differences were detected between weight loss in either group (3.3 +/- 0.51 vs. 4.4 +/- 0.6 kg; n.s.). In group I, a significant decrease in leptin levels was found. In group II, leptin and C-reactive protein (CRP) levels also decreased. The decrease in leptin levels was lower with diet I than II (16.4 vs. 22.8%; p low-fat and low-carbohydrate diets, without changes in other adipocytokines. The decrease in leptin and CRP levels were higher with a low-carbohydrate diet than a low-fat diet. Copyright 2007 S. Karger AG, Basel.

  13. Effect of short-term low- and high-fat diets on low-density lipoprotein particle size in normolipidemic subjects.

    Science.gov (United States)

    Guay, Valérie; Lamarche, Benoît; Charest, Amélie; Tremblay, André J; Couture, Patrick

    2012-01-01

    High-fat, low-carbohydrate diets have been shown to raise plasma cholesterol levels, an effect associated with the formation of large low-density lipoprotein (LDL) particles. However, the impact of dietary intervention on time-course changes in LDL particle size has not been investigated. To test whether a short-term dietary intervention affects LDL particle size, we conducted a randomized, double-blind, crossover study using an intensive dietary modification in 12 nonobese healthy men with normal plasma lipid profile. Participants were subjected to 2 isocaloric 3-day diets: high-fat diet (37% energy from fat and 50% from carbohydrates) and low-fat diet (25% energy from fat and 62% from carbohydrates). Plasma lipid levels and LDL particle size were assessed on fasting blood samples after 3 days of feeding on each diet. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis. Compared with the low-fat diet, plasma cholesterol, LDL cholesterol, and high-density lipoprotein cholesterol were significantly increased (4.45 vs 4.78 mmol/L, P = .04; 2.48 vs 2.90 mmol/L, P = .005; and 1.29 vs 1.41 mmol/L, P = .005, respectively) following the 3-day high-fat diet. Plasma triglycerides and fasting apolipoprotein B-48 levels were significantly decreased after the high-fat diet compared with the low-fat diet (1.48 vs 1.01 mmol/L, P = .0003 and 9.6 vs 5.5 mg/L, P = .008, respectively). The high-fat diet was also associated with a significant increase in LDL particle size (255.0 vs 255.9 Å;P = .01) and a significant decrease in the proportion of small LDL particle (vs 44.6%, P = .01). As compared with a low-fat diet, the cholesterol-raising effect of a high-fat diet is associated with the formation of large LDL particles after only 3 days of feeding. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity

    Science.gov (United States)

    We studied the effects of weight loss induced by either a low-fat normal diet or restriction of high-fat diet on hepatic steatosis, inflammation in the liver and adipose tissue, and blood monocytes of obese mice. In mice with high-fat diet-induced obesity, weight loss was achieved by switching from ...

  15. A low-carbohydrate as compared with a low-fat diet in severe obesity.

    Science.gov (United States)

    Samaha, Frederick F; Iqbal, Nayyar; Seshadri, Prakash; Chicano, Kathryn L; Daily, Denise A; McGrory, Joyce; Williams, Terrence; Williams, Monica; Gracely, Edward J; Stern, Linda

    2003-05-22

    The effects of a carbohydrate-restricted diet on weight loss and risk factors for atherosclerosis have been incompletely assessed. We randomly assigned 132 severely obese subjects (including 77 blacks and 23 women) with a mean body-mass index of 43 and a high prevalence of diabetes (39 percent) or the metabolic syndrome (43 percent) to a carbohydrate-restricted (low-carbohydrate) diet or a calorie- and fat-restricted (low-fat) diet. Seventy-nine subjects completed the six-month study. An analysis including all subjects, with the last observation carried forward for those who dropped out, showed that subjects on the low-carbohydrate diet lost more weight than those on the low-fat diet (mean [+/-SD], -5.8+/-8.6 kg vs. -1.9+/-4.2 kg; P=0.002) and had greater decreases in triglyceride levels (mean, -20+/-43 percent vs. -4+/-31 percent; P=0.001), irrespective of the use or nonuse of hypoglycemic or lipid-lowering medications. Insulin sensitivity, measured only in subjects without diabetes, also improved more among subjects on the low-carbohydrate diet (6+/-9 percent vs. -3+/-8 percent, P=0.01). The amount of weight lost (Plow-carbohydrate diet (P=0.01) were independent predictors of improvement in triglyceride levels and insulin sensitivity. Severely obese subjects with a high prevalence of diabetes or the metabolic syndrome lost more weight during six months on a carbohydrate-restricted diet than on a calorie- and fat-restricted diet, with a relative improvement in insulin sensitivity and triglyceride levels, even after adjustment for the amount of weight lost. This finding should be interpreted with caution, given the small magnitude of overall and between-group differences in weight loss in these markedly obese subjects and the short duration of the study. Future studies evaluating long-term cardiovascular outcomes are needed before a carbohydrate-restricted diet can be endorsed. Copyright 2003 Massachusetts Medical Society

  16. Effect of inulin supplementation in male mice fed with high fat diet on ...

    African Journals Online (AJOL)

    Purpose: To evaluate the preventive and therapeutic effects of inulin supplementation in Naval Medical Research Institute (NMRI) male mice fed with high fat diet. Methods: NMRI male mice (n = 36) were divided into three groups. Control (C1), obese (O1) and experimental mice (E1) were fed during 8 weeks as follows: C1 ...

  17. Addition of arginine and leucine to low or normal protein diets: performance, carcass characteristics and intramuscular fat of finishing pigs

    Directory of Open Access Journals (Sweden)

    Núria Tous

    2016-12-01

    Full Text Available The effect of dietary crude protein (CP reduction, supplementation with arginine or leucine on intramuscular fat (IMF content was evaluated in (Landrace × Duroc × Pietrain pigs. One-hundred and eight barrows (67 ± 4 kg were assigned to six diets (n=6 pens of 3 pigs each: four normal CP diets containing 16% CP from 60 to 90 kg and 13% CP from 90 to 115 kg live weight (normal protein; normal protein high Arg, normal protein high Leu or normal protein high Arg and Leu and two low CP diets containing 14% CP from 60 to 90 kg and 11.8% CP from 90 to 115 kg live weight (with or without supplementation of both amino acids. The high Leu and Arg diets were supplemented to obtain ratios of standard ileal digestible Leu/Lys and Arg/Lys of 4 and 2, respectively. While feed to gain ratio tended to increase (p<0.05, final weight (p<0.01, average daily feed intake (ADFI (p<0.05 and average daily gain (ADG (p<0.01 were reduced in animals fed low-protein diets supplemented with Arg and Leu compared to the ones fed low-protein diet unsupplemented. Marbling and IMF content in loin were reduced when Arg was supplemented (p<0.05 in normal protein diets. Supplementing these diets with Arg also reduced belly weight (p<0.01 and increased lean meat percentage (p<0.05. Contrary to the initial hypothesis, reduction of CP or dietary supplementation with Leu had no effect on IMF content and supplementation with Arg reduced it.

  18. Factors associated with choice of a low-fat or low-carbohydrate diet during a behavioral weight loss intervention.

    Science.gov (United States)

    McVay, Megan A; Voils, Corrine I; Coffman, Cynthia J; Geiselman, Paula J; Kolotkin, Ronette L; Mayer, Stephanie B; Smith, Valerie A; Gaillard, Leslie; Turner, Marsha J; Yancy, William S

    2014-12-01

    Individuals undertaking a weight loss effort have a choice among proven dietary approaches. Factors contributing to choice of either a low-fat/low-calorie diet or a low-carbohydrate diet, two of the most studied and popular dietary approaches, are unknown. The current study used data from participants randomized to the 'choice' arm of a trial examining whether being able to choose a diet regimen yields higher weight loss than being randomly assigned to a diet. At study entry, participants attended a group session during which they were provided tailored feedback indicating which diet was most consistent with their food preferences using the Geiselman Food Preference Questionnaire (FPQ), information about both diets, and example meals for each diet. One week later, they indicated which diet they chose to follow during the 48-week study, with the option of switching diets after 12 weeks. Of 105 choice arm participants, 44 (42%) chose the low-fat/low-calorie diet and 61 (58%) chose the low-carbohydrate diet. In bivariate analyses, diet choice was not associated with age, race, sex, education, BMI, or diabetes (all p > 0.05). Low-carbohydrate diet choice was associated with baseline higher percent fat intake (p = 0.007), lower percent carbohydrate intake (p = 0.02), and food preferences consistent with a low-carbohydrate diet according to FPQ (p model, only FPQ diet preference was associated with diet choice (p = 0.001). Reported reasons for diet choice were generally similar for those choosing either diet; however, concerns about negative health effects of the unselected diet was rated as more influential among participants selecting the low-fat diet. Only three low-carbohydrate and two low-fat diet participants switched diets at 12 weeks. Results suggest that when provided a choice between two popular weight loss dietary approaches, an individual's selection is likely influenced by baseline dietary intake pattern, and especially by his or her

  19. Acceptability of a low-fat vegan diet compares favorably to a step II diet in a randomized, controlled trial.

    Science.gov (United States)

    Barnard, Neal D; Scialli, Anthony R; Turner-McGrievy, Gabrielle; Lanou, Amy J

    2004-01-01

    This study aimed to assess the acceptability of a low-fat vegan diet, as compared with a more typical fat-modified diet, among overweight and obese adults. Through newspaper advertisements, 64 overweight, postmenopausal women were recruited, 59 of whom completed the study. The participants were assigned randomly to a low-fat vegan diet or, for comparison, to a National Cholesterol Education Program Step II (NCEP) diet. At baseline and 14 weeks later, dietary intake, dietary restraint, disinhibition, and hunger, as well as the acceptability and perceived benefits and adverse effects of each diet were assessed. Dietary restraint increased in the NCEP group (P vegan group. Disinhibition and hunger scores fell in each group (P vegan group participants rated their diet as less easy to prepare than their usual diets (P vegan diet is high and not demonstrably different from that of a more moderate low-fat diet among well-educated, postmenopausal women in a research environment.

  20. Effects of a low-glycemic load vs low-fat diet in obese young adults: a randomized trial.

    Science.gov (United States)

    Ebbeling, Cara B; Leidig, Michael M; Feldman, Henry A; Lovesky, Margaret M; Ludwig, David S

    2007-05-16

    The results of clinical trials involving diet in the treatment of obesity have been inconsistent, possibly due to inherent physiological differences among study participants. To determine whether insulin secretion affects weight loss with 2 popular diets. Randomized trial of obese young adults (aged 18-35 years; n = 73) conducted from September 2004 to December 2006 in Boston, Mass, and consisting of a 6-month intensive intervention period and a 12-month follow-up period. Serum insulin concentration at 30 minutes after a 75-g dose of oral glucose was determined at baseline as a measure of insulin secretion. Outcomes were assessed at 6, 12, and 18 months. Missing data were imputed conservatively. A low-glycemic load (40% carbohydrate and 35% fat) vs low-fat (55% carbohydrate and 20% fat) diet. Body weight, body fat percentage determined by dual-energy x-ray absorptiometry, and cardiovascular disease risk factors. Change in body weight and body fat percentage did not differ between the diet groups overall. However, insulin concentration at 30 minutes after a dose of oral glucose was an effect modifier (group x time x insulin concentration at 30 minutes: P = .02 for body weight and P = .01 for body fat percentage). For those with insulin concentration at 30 minutes above the median (57.5 microIU/mL; n = 28), the low-glycemic load diet produced a greater decrease in weight (-5.8 vs -1.2 kg; P = .004) and body fat percentage (-2.6% vs -0.9%; P = .03) than the low-fat diet at 18 months. There were no significant differences in these end points between diet groups for those with insulin concentration at 30 minutes below the median level (n = 28). Insulin concentration at 30 minutes after a dose of oral glucose was not a significant effect modifier for cardiovascular disease risk factors. In the full cohort, plasma high-density lipoprotein cholesterol and triglyceride concentrations improved more on the low-glycemic load diet, whereas low-density lipoprotein cholesterol

  1. A low-fat Diet improves insulin sensitivity in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Rosenfalck, AM; Almdal, Thomas Peter; Viggers, Lone

    2006-01-01

    diet (P = 0.039). The daily protein and carbohydrate intake increased (+4.4% of total energy intake, P = 0.0049 and +2.5%, P = 0.34, respectively), while alcohol intake decreased (-3.2% of total energy intake, P = 0.02). There was a significant improvement in insulin sensitivity on the isocaloric, low-fat......AIMS: To compare the effects on insulin sensitivity, body composition and glycaemic control of the recommended standard weight-maintaining diabetes diet and an isocaloric low-fat diabetes diet during two, 3-month periods in patients with Type 1 diabetes. METHODS: Thirteen Type 1 patients were...... by the insulin clamp technique at baseline and after each of the diet intervention periods. RESULTS: On an isocaloric low-fat diet, Type 1 diabetic patients significantly reduced the proportion of fat in the total daily energy intake by 12.1% (or -3.6% of total energy) as compared with a conventional diabetes...

  2. A very-low-fat vegan diet increases intake of protective dietary factors and decreases intake of pathogenic dietary factors.

    Science.gov (United States)

    Dewell, Antonella; Weidner, Gerdi; Sumner, Michael D; Chi, Christine S; Ornish, Dean

    2008-02-01

    There is increasing evidence that dietary factors in plant-based diets are important in the prevention of chronic disease. This study examined protective (eg, antioxidant vitamins, carotenoids, and fiber) and pathogenic (eg, saturated fatty acids and cholesterol) dietary factors in a very-low-fat vegan diet. Ninety-three early-stage prostate cancer patients participated in a randomized controlled trial and were assigned to a very-low-fat (10% fat) vegan diet supplemented with soy protein and lifestyle changes or to usual care. Three-day food records were collected at baseline (n=42 intervention, n=43 control) and after 1 year (n=37 in each group). Analyses of changes in dietary intake of macronutrients, vitamins, minerals, carotenoids, and isoflavones from baseline to 1 year showed significantly increased intake of most protective dietary factors (eg, fiber increased from a mean of 31 to 59 g/day, lycopene increased from 8,693 to 34,464 mug/day) and significantly decreased intake of most pathogenic dietary factors (eg, saturated fatty acids decreased from 20 to 5 g/day, cholesterol decreased from 200 to 10 mg/day) in the intervention group compared to controls. These results suggest that a very-low-fat vegan diet can be useful in increasing intake of protective nutrients and phytochemicals and minimizing intake of dietary factors implicated in several chronic diseases.

  3. Iatrogenic lipodystrophy in HIV patients - the need for very-low-fat diets.

    Science.gov (United States)

    McCarty, M F

    2003-01-01

    In HIV patients, chronic treatment with protease inhibitors often precipitates a peripheral lipodystrophy associated with insulin resistance syndrome and premature coronary disease. In vitro studies demonstrate that these drugs can compromise the ability of adipocytes to store triglycerides; in vivo, peripheral subcutaneous adipocytes appear to be most affected, such that body fat often redistributes to visceral or truncal adipose stores. Dysfunction of peripheral subcutaneous adipocytes - ordinarily quite efficient for storing fat - can be expected to give rise to an excessive flux of free fatty acids (FFAs) following fatty meals; chronic overexposure of tissues to FFAs is a likely explanation for the insulin resistance syndrome associated with lipodystrophy. These considerations suggest that a very-low-fat diet - less than 15% fat calories - may ameliorate the cardiovascular risk associated with lipodystrophy; such diets are known to have a favorable effect on the insulin sensitivity of healthy subjects. Very-low-fat whole-food vegan diets are particularly recommendable in this context, as they may help to shrink visceral fat depots while markedly reducing LDL cholesterol. Appropriate adjunctive measures may include aerobic exercise training - beneficial both for insulin sensitivity and weight control - as well as administration of statins or policosanol, and of fibrates or fish oil, to decrease LDL and triglycerides, respectively. Despite perceptions to the contrary, very-low-fat diets can meet with good compliance in well-motivated subjects given appropriate instruction.

  4. Effect of Low Protein-Methionine-and-Lysine-Supplemented Diets ...

    African Journals Online (AJOL)

    Two experiments were conducted to investigate the effect of supplementing low CP diets with methionine and lysine on broiler performance, carcass measure and their immune response against Infectious Bursa Disease (IBD) virus. In Experiment 1, ten diets were formulated. Diet 1 (control diet) contained 23.0% CP and ...

  5. Systematic review of randomized controlled trials of low-carbohydrate vs. low-fat/low-calorie diets in the management of obesity and its comorbidities.

    Science.gov (United States)

    Hession, M; Rolland, C; Kulkarni, U; Wise, A; Broom, J

    2009-01-01

    There are few studies comparing the effects of low-carbohydrate/high-protein diets with low-fat/high-carbohydrate diets for obesity and cardiovascular disease risk. This systematic review focuses on randomized controlled trials of low-carbohydrate diets compared with low-fat/low-calorie diets. Studies conducted in adult populations with mean or median body mass index of > or =28 kg m(-2) were included. Thirteen electronic databases were searched and randomized controlled trials from January 2000 to March 2007 were evaluated. Trials were included if they lasted at least 6 months and assessed the weight-loss effects of low-carbohydrate diets against low-fat/low-calorie diets. For each study, data were abstracted and checked by two researchers prior to electronic data entry. The computer program Review Manager 4.2.2 was used for the data analysis. Thirteen articles met the inclusion criteria. There were significant differences between the groups for weight, high-density lipoprotein cholesterol, triacylglycerols and systolic blood pressure, favouring the low-carbohydrate diet. There was a higher attrition rate in the low-fat compared with the low-carbohydrate groups suggesting a patient preference for a low-carbohydrate/high-protein approach as opposed to the Public Health preference of a low-fat/high-carbohydrate diet. Evidence from this systematic review demonstrates that low-carbohydrate/high-protein diets are more effective at 6 months and are as effective, if not more, as low-fat diets in reducing weight and cardiovascular disease risk up to 1 year. More evidence and longer-term studies are needed to assess the long-term cardiovascular benefits from the weight loss achieved using these diets.

  6. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    Science.gov (United States)

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  7. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Seung Hwan Hwang

    2017-01-01

    Full Text Available The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE and Nopal dry power (NADP in low-dose streptozotocin- (STZ- induced diabetic rats fed a high-fat diet (HFD. The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1 nondiabetic rats fed a regular diet (RD-Control; (2 low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control; (3 low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE; and (4 low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone. In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P<0.05. Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P<0.05 than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  8. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Hwang, Seung Hwan; Kang, Il-Jun; Lim, Soon Sung

    2017-01-01

    The objective of the present study was to evaluate α -glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC 50 values of 67.33 and 86.68  μ g/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05  μ g/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model ( P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower ( P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  9. Dietary Intervention for Overweight and Obese Adults: Comparison of Low-Carbohydrate and Low-Fat Diets. A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Jonathan Sackner-Bernstein

    Full Text Available Reduced calorie, low fat diet is currently recommended diet for overweight and obese adults. Prior data suggest that low carbohydrate diets may also be a viable option for those who are overweight and obese.Compare the effects of low carbohydrate versus low fats diet on weight and atherosclerotic cardiovascular disease risk in overweight and obese patients.Systematic literature review via PubMed (1966-2014.Randomized controlled trials with ≥8 weeks follow up, comparing low carbohydrate (≤120gm carbohydrates/day and low fat diet (≤30% energy from fat/day.Data were extracted and prepared for analysis using double data entry. Prior to identification of candidate publications, the outcomes of change in weight and metabolic factors were selected as defined by Cochrane Collaboration. Assessment of the effects of diets on predicted risk of atherosclerotic cardiovascular disease risk was added during the data collection phase.1797 patients were included from 17 trials with 99% while the reduction in predicted risk favoring low carbohydrate was >98%.Lack of patient-level data and heterogeneity in dropout rates and outcomes reported.This trial-level meta-analysis of randomized controlled trials comparing LoCHO diets with LoFAT diets in strictly adherent populations demonstrates that each diet was associated with significant weight loss and reduction in predicted risk of ASCVD events. However, LoCHO diet was associated with modest but significantly greater improvements in weight loss and predicted ASCVD risk in studies from 8 weeks to 24 months in duration. These results suggest that future evaluations of dietary guidelines should consider low carbohydrate diets as effective and safe intervention for weight management in the overweight and obese, although long-term effects require further investigation.

  10. Low-fat versus low-carbohydrate weight reduction diets: effects on weight loss, insulin resistance, and cardiovascular risk: a randomized control trial.

    Science.gov (United States)

    Bradley, Una; Spence, Michelle; Courtney, C Hamish; McKinley, Michelle C; Ennis, Cieran N; McCance, David R; McEneny, Jane; Bell, Patrick M; Young, Ian S; Hunter, Steven J

    2009-12-01

    Low-fat hypocaloric diets reduce insulin resistance and prevent type 2 diabetes in those at risk. Low-carbohydrate, high-fat diets are advocated as an alternative, but reciprocal increases in dietary fat may have detrimental effects on insulin resistance and offset the benefits of weight reduction. We investigated a low-fat (20% fat, 60% carbohydrate) versus a low-carbohydrate (60% fat, 20% carbohydrate) weight reduction diet in 24 overweight/obese subjects ([mean +/- SD] BMI 33.6 +/- 3.7 kg/m(2), aged 39 +/- 10 years) in an 8-week randomized controlled trial. All food was weighed and distributed, and intake was calculated to produce a 500 kcal/day energy deficit. Insulin action was assessed by the euglycemic clamp and insulin secretion by meal tolerance test. Body composition, adipokine levels, and vascular compliance by pulse-wave analysis were also measured. Significant weight loss occurred in both groups (P loss with no difference between groups (P = 0.71). The change in overall systemic arterial stiffness was, however, significantly different between diets (P = 0.04); this reflected a significant decrease in augmentation index following the low-fat diet, compared with a nonsignificant increase within the low-carbohydrate group. This study demonstrates comparable effects on insulin resistance of low-fat and low-carbohydrate diets independent of macronutrient content. The difference in augmentation index may imply a negative effect of low-carbohydrate diets on vascular risk.

  11. High-protein, low-fat diets are effective for weight loss and favorably alter biomarkers in healthy adults.

    Science.gov (United States)

    Johnston, Carol S; Tjonn, Sherrie L; Swan, Pamela D

    2004-03-01

    Although popular and effective for weight loss, low-carbohydrate, high-protein, high-fat (Atkins) diets have been associated with adverse changes in blood and renal biomarkers. High-protein diets low in fat may represent an equally appealing diet plan but promote a more healthful weight loss. Healthy adults (n = 20) were randomly assigned to 1 of 2 low-fat (vs. the high-carbohydrate diet (3.9 +/- 1.4 and 0.7 +/- 1.7 g N/d, respectively, P low-fat, energy-restricted diets of varying protein content (15 or 30% energy) promoted healthful weight loss, but diet satisfaction was greater in those consuming the high-protein diet.

  12. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Alice Chaplin

    Full Text Available The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat or a high-fat (HF, 43% kJ content as fat diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  13. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Science.gov (United States)

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  14. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet-fed dams.

    Science.gov (United States)

    McKee, Sarah E; Grissom, Nicola M; Herdt, Christopher T; Reyes, Teresa M

    2017-06-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)-fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life-particularly within the prefrontal cortex (PFC), a brain region critical for executive function-we examined whether early life methyl donor supplementation ( e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.-McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation alters

  15. Modulatory effects of dietary supplementation by Vernonia amygdalina on high-fat-diet-induced obesity in Wistar rats.

    Science.gov (United States)

    Ekeleme-Egedigwe, Chima A; Ijeh, Ifeoma I; Okafor, Polycarp N

    2017-01-01

    Obesity is a growing public health problem arising from energy imbalance. The effect of 10% dietary incorporation of Vernonia amygdalina (VA) leaves into high-fat diets on some biological markers of adiposity and dyslipidaemia was investigated. Experimental diets consisted of the following – CD (control diet); HFD (high-fat diet); and HFD- VA (HFD containing 10% Vernonia amygdalina leaves) supplementation. Fifteen male Wistar rats were randomly divided into three groups of five animals each. After twelve weeks of feeding, serum lipid profile, blood glucose concentrations, body weight, adiposity index, feed intake, fecal loss and relative organ weight were investigated. Vernonia amygdalina (VA) inhibited HFD-induced weight gain and adiposity in rats. HFD-induced obese rats showed a significant increase in the levels of serum TG and TC compared to rats on a normal diet. However, the levels of serum TG, TC, LDL-C in HFDVA rats reduced significantly relative to the levels in HFD rats. Our results indicate that HFDVA reversed fatty infiltration leading to decreased body weight and fat tissue mass in the rats. These results suggested that incorporation of Vernonia amygdalina into high-fat diets may have therapeutic potentials for obesity and related metabolic disorders. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted.

  16. A mineral-rich red algae extract inhibits polyp formation and inflammation in the gastrointestinal tract of mice on a high-fat diet.

    Science.gov (United States)

    Aslam, Muhammad N; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; Varani, James

    2010-03-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for chemoprevention against colon polyp formation. A total of 60 C57bl/6 mice were divided into 3 groups based on diet. One group received a low-fat, rodent chow diet (AIN76A). The second group received a high-fat "Western-style" diet (HFWD). The third group was fed the same HFWD with the mineral-rich extract included as a dietary supplement. Mice were maintained on the respective diets for 15 months. Autopsies were performed at the time of death or at the completion of the study. To summarize, the cumulative mortality rate was higher in mice on the HFWD during the 15-month period (55%) than in mice from the low-fat diet or the extract-supplemented high-fat diet groups (20% and 30%, respectively; P < .05 with respect to both). Autopsies revealed colon polyps in 20% of the animals on the HFWD and none in animals of the other 2 groups (P < .05). In addition to the grossly visible polyps, areas of hyperplasia in the colonic mucosa and inflammatory foci throughout the gastrointestinal tract were observed histologically in animals on the high-fat diet. Both were significantly reduced in animals on the low-fat diet and animals on the extract-supplemented HFWD.These data suggest that the mineral-rich algae extract may provide a novel approach to chemoprevention in the colon.

  17. Dietary supplementation with fish oil prevents high fat diet-induced enhancement of sensitivity to the locomotor stimulating effects of cocaine in adolescent female rats.

    Science.gov (United States)

    Serafine, Katherine M; Labay, Caitlin; France, Charles P

    2016-08-01

    Eating a diet high in fat can lead to obesity, chronic metabolic disease, and increased inflammation in both the central and peripheral nervous systems. Dietary supplements that are high in omega-3 polyunsaturated fatty acids can reduce or prevent these negative health consequences in rats. Eating high fat chow also increases the sensitivity of rats to behavioral effects of drugs acting on dopamine systems (e.g., cocaine), and this effect is greatest in adolescent females. The present experiment tested the hypothesis that dietary supplementation with fish oil prevents high fat chow induced increases in sensitivity to cocaine in adolescent female rats. Female Sprague-Dawley rats (post-natal day 25-27) ate standard laboratory chow (5.7% fat), high fat chow (34.4% fat), or high fat chow supplemented with fish oil (20% w/w). Cocaine dose dependently (1-17.8mg/kg) increased locomotion and induced sensitization across 6 weeks of once-weekly testing in all rats; however, these effects were greatest in rats eating high fat chow. Dietary supplementation with fish oil prevented enhanced locomotion and sensitization in rats eating high fat chow. There were no differences in inflammatory markers in plasma or the hypothalamus among dietary conditions. These results demonstrate that dietary supplementation with fish oil can prevent high fat diet-induced sensitization to cocaine, but they fail to support the view that these effects are due to changes in proinflammatory cytokines. These data add to a growing literature on the relationship between diet and drug abuse and extend the potential health benefits of fish oil to stimulant drug abuse prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Effect of bacterial or porcine lipase with low- or high-fat diets on nutrient absorption in pancreatic-insufficient dogs.

    Science.gov (United States)

    Suzuki, A; Mizumoto, A; Rerknimitr, R; Sarr, M G; DiMango, E P

    1999-02-01

    Treatment of human exocrine pancreatic insufficiency is suboptimal. This study assessed the effects of bacterial lipase, porcine lipase, and diets on carbohydrate, fat, and protein absorption in pancreatic-insufficient dogs. Dogs were given bacterial or porcine lipase and 3 diets: a 48% carbohydrate, 27% fat, and 25% protein standard diet; a high-carbohydrate, low-fat, and low-protein diet; or a low-carbohydrate, high-fat, and high-protein diet (66%/18%/16% and 21%/43%/36% calories). With the standard diet, coefficient of fat absorption increased dose-dependently with both lipases (P vs. low-fat and -protein diet). There were no interactions among carbohydrate, fat, and protein absorption. Correcting steatorrhea requires 75 times more porcine than bacterial lipase (18 vs. 240 mg). High-fat and high-protein diets optimize fat absorption with both enzymes. High-fat diets with bacterial or porcine lipase should be evaluated in humans with pancreatic steatorrhea.

  19. A low-fat high-carbohydrate diet reduces plasma total adiponectin concentrations compared to a moderate-fat diet with no impact on biomarkers of systemic inflammation in a randomized controlled feeding study.

    Science.gov (United States)

    Song, Xiaoling; Kestin, Mark; Schwarz, Yvonne; Yang, Pamela; Hu, Xiaojun; Lampe, Johanna W; Kratz, Mario

    2016-02-01

    We compared the effects of a eucaloric moderate-fat diet (18% protein, 36% fat, and 46% carbohydrate), a eucaloric low-fat high-carbohydrate diet (18% protein, 18% fat, and 64% carbohydrate), and a low-calorie (33% reduced) low-fat high-carbohydrate diet on biomarkers of systemic inflammation. We randomly assigned 102 participants (age 21-76 years and BMI 19.2-35.5 kg/m(2)) to the three different diets for 6 weeks in a parallel design intervention trial. All foods were provided. Ninety-three participants completed all study procedures; 92 were included in the analyses. Endpoints included plasma C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor receptors I and II (sTNFRI and II), and adiponectin. In the unadjusted primary analyses, none of the endpoints were differentially affected by the dietary interventions despite the significantly greater reductions in body weight and fat mass in participants consuming the low-calorie low-fat diet compared to the eucaloric diets (p loss (time × weight change interaction, p = 0.051). Adjusted for weight change, adiponectin was reduced in the groups consuming the low-fat diets relative to the moderate-fat diet (p = 0.008). No effect of the intervention diets or weight loss on CRP, IL-6, or sTNFRI and II was seen in these secondary analyses. In relatively healthy adults, moderate weight loss had minimal effects on systemic inflammation, and raised plasma adiponectin only modestly. A lower dietary fat and higher carbohydrate content had little impact on measures of systemic inflammation, but reduced adiponectin concentrations compared to a moderate-fat diet. The latter may be of concern given the consistent and strong inverse association of plasma adiponectin with many chronic diseases.

  20. Effects of a very low-fat, vegan diet in subjects with rheumatoid arthritis.

    Science.gov (United States)

    McDougall, John; Bruce, Bonnie; Spiller, Gene; Westerdahl, John; McDougall, Mary

    2002-02-01

    To demonstrate the effects of a very low-fat, vegan diet on patients with rheumatoid arthritis (RA). Single-blind dietary intervention study. SUBJECTS AND STUDY INTERVENTIONS: This study evaluated the influence of a 4-week, very low-fat (approximately 10%), vegan diet on 24 free-living subjects with RA, average age, 56 +/- 11 years old. Prestudy and poststudy assessment of RA symptomatology was performed by a rheumatologist blind to the study design. Biochemical measures and 4-day diet data were also collected. Subjects met weekly for diet instruction, compliance monitoring, and progress assessments. There were significant (p 0.05). Weight also decreased significantly (p 0.05), RA factor decreased 10% (ns, p > 0.05), while erythrocyte sedimentation rate was unchanged (p > 0.05). This study showed that patients with moderate-to-severe RA, who switch to a very low-fat, vegan diet can experience significant reductions in RA symptoms.

  1. DHEA supplementation in ovariectomized rats reduces impaired glucose-stimulated insulin secretion induced by a high-fat diet

    Directory of Open Access Journals (Sweden)

    Katherine Veras

    2014-01-01

    Full Text Available Dehydroepiandrosterone (DHEA and the dehydroepiandrosterone sulfate (DHEA-S are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX female rats fed a high-fat diet would maintain glucose-induced insulin secretion (GSIS and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations, a phenotype similar to that of the post-menopausal period.

  2. Factors associated with choice of a low-fat or low-carbohydrate diet during a behavioral weight loss intervention☆, ☆☆

    Science.gov (United States)

    McVay, Megan A.; Voils, Corrine I.; Coffman, Cynthia J.; Geiselman, Paula J.; Kolotkin, Ronette L.; Mayer, Stephanie B.; Smith, Valerie A.; Gaillard, Leslie; Turner, Marsha J.; Yancy, William S.

    2016-01-01

    Individuals undertaking a weight loss effort have a choice among proven dietary approaches. Factors contributing to choice of either a low-fat/low-calorie diet or a low-carbohydrate diet, two of the most studied and popular dietary approaches, are unknown. The current study used data from participants randomized to the ‘choice’ arm of a trial examining whether being able to choose a diet regimen yields higher weight loss than being randomly assigned to a diet. At study entry, participants attended a group session during which they were provided tailored feedback indicating which diet was most consistent with their food preferences using the Geiselman Food Preference Questionnaire (FPQ), information about both diets, and example meals for each diet. One week later, they indicated which diet they chose to follow during the 48-week study, with the option of switching diets after 12 weeks. Of 105 choice arm participants, 44 (42%) chose the low-fat/low-calorie diet and 61 (58%) chose the low-carbohydrate diet. In bivariate analyses, diet choice was not associated with age, race, sex, education, BMI, or diabetes (all p > 0.05). Low-carbohydrate diet choice was associated with baseline higher percent fat intake (p = 0.007), lower percent carbohydrate intake (p = 0.02), and food preferences consistent with a low-carbohydrate diet according to FPQ (p diet preference was associated with diet choice (p = 0.001). Reported reasons for diet choice were generally similar for those choosing either diet; however, concerns about negative health effects of the unselected diet was rated as more influential among participants selecting the low-fat diet. Only three low-carbohydrate and two low-fat diet participants switched diets at 12 weeks. Results suggest that when provided a choice between two popular weight loss dietary approaches, an individual's selection is likely influenced by baseline dietary intake pattern, and especially by his or her dietary preferences. Research is

  3. Dietary Shiitake Mushroom (Lentinus edodes Prevents Fat Deposition and Lowers Triglyceride in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    D. Handayani

    2011-01-01

    Full Text Available High-fat diet (HFD induces obesity. This study examined the effects of Shiitake mushroom on the prevention of alterations of plasma lipid profiles, fat deposition, energy efficiency, and body fat index induced by HFD. Rats were given a low, medium, and high (7, 20, 60 g/kg = LD-M, MD-M, HD-M Shiitake mushroom powder in their high-fat (50% in kcal diets for 6 weeks. The results showed that the rats on the HD-M diet had the lowest body weight gain compared to MD-M and LD-M groups (P<0.05. The total fat deposition was significantly lower (−35%, P<0.05 in rats fed an HD-M diet than that of HFD group. Interestingly, plasma triacylglycerol (TAG level was significantly lower (−55%, P<0.05 in rats on HD-M than HFD. This study also revealed the existence of negative correlations between the amount of Shiitake mushroom supplementation and body weight gain, plasma TAG, and total fat masses.

  4. The role of energy expenditure in the differential weight loss in obese women on low-fat and low-carbohydrate diets.

    Science.gov (United States)

    Brehm, Bonnie J; Spang, Suzanne E; Lattin, Barbara L; Seeley, Randy J; Daniels, Stephen R; D'Alessio, David A

    2005-03-01

    We have recently reported that obese women randomized to a low-carbohydrate diet lost more than twice as much weight as those following a low-fat diet over 6 months. The difference in weight loss was not explained by differences in energy intake because women on the two diets reported similar daily energy consumption. We hypothesized that chronic ingestion of a low-carbohydrate diet increases energy expenditure relative to a low-fat diet and that this accounts for the differential weight loss. To study this question, 50 healthy, moderately obese (body mass index, 33.2 +/- 0.28 kg/m(2)) women were randomized to 4 months of an ad libitum low-carbohydrate diet or an energy-restricted, low-fat diet. Resting energy expenditure (REE) was measured by indirect calorimetry at baseline, 2 months, and 4 months. Physical activity was estimated by pedometers. The thermic effect of food (TEF) in response to low-fat and low-carbohydrate breakfasts was assessed over 5 h in a subset of subjects. Forty women completed the trial. The low-carbohydrate group lost more weight (9.79 +/- 0.71 vs. 6.14 +/- 0.91 kg; P fat (6.20 +/- 0.67 vs. 3.23 +/- 0.67 kg; P low-fat group. There were no differences in energy intake between the diet groups as reported on 3-d food records at the conclusion of the study (1422 +/- 73 vs. 1530 +/- 102 kcal; 5954 +/- 306 vs. 6406 +/- 427 kJ). Mean REE in the two groups was comparable at baseline, decreased with weight loss, and did not differ at 2 or 4 months. The low-fat meal caused a greater 5-h increase in TEF than did the low-carbohydrate meal (53 +/- 9 vs. 31 +/- 5 kcal; 222 +/- 38 vs. 130 +/- 21 kJ; P = 0.017). Estimates of physical activity were stable in the dieters during the study and did not differ between groups. These results confirm that short-term weight loss is greater in obese women on a low-carbohydrate diet than in those on a low-fat diet even when reported food intake is similar. The differential weight loss is not explained by differences

  5. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet.

    Science.gov (United States)

    Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R

    2006-07-01

    Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.

  6. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Ulla, Anayt; Alam, Md Ashraful; Sikder, Biswajit; Sumi, Farzana Akter; Rahman, Md Mizanur; Habib, Zaki Farhad; Mohammed, Mostafe Khalid; Subhan, Nusrat; Hossain, Hemayet; Reza, Hasan Mahmud

    2017-06-02

    Obesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome. This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats. Male Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats. Supplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats. Our investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin

  7. A low-fat diet improves peripheral insulin sensitivity in patients with Type 1 diabetes

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Almdal, T; Viggers, L

    2006-01-01

    To compare the effects on insulin sensitivity, body composition and glycaemic control of the recommended standard weight-maintaining diabetes diet and an isocaloric low-fat diabetes diet during two, 3-month periods in patients with Type 1 diabetes.......To compare the effects on insulin sensitivity, body composition and glycaemic control of the recommended standard weight-maintaining diabetes diet and an isocaloric low-fat diabetes diet during two, 3-month periods in patients with Type 1 diabetes....

  8. Development of hepatocellular cancer induced by long term low fat-high carbohydrate diet in a NAFLD/NASH mouse model.

    Science.gov (United States)

    Tessitore, Alessandra; Mastroiaco, Valentina; Vetuschi, Antonella; Sferra, Roberta; Pompili, Simona; Cicciarelli, Germana; Barnabei, Remo; Capece, Daria; Zazzeroni, Francesca; Capalbo, Carlo; Alesse, Edoardo

    2017-08-08

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease. It can progress to nonalcoholic steatohepatitis (NASH) and, in a percentage of cases, to hepatocarcinogenesis. The strong incidence in western countries of obesity and metabolic syndrome, whose NAFLD is the hepatic expression, is thought to be correlated to consumption of diets characterized by processed food and sweet beverages. Previous studies described high-fat diet-induced liver tumors. Conversely, the involvement of low-fat/high-carbohydrate diet in the progression of liver disease or cancer initiation has not been described yet. Here we show for the first time hepatic cancer formation in low-fat/high-carbohydrate diet fed NAFLD/NASH mouse model. Animals were long term high-fat, low-fat/high-carbohydrate or standard diet fed. We observed progressive liver damage in low-fat/high-carbohydrate and high-fat animals after 12 and, more, 18 months. Tumors were detected in 20% and 50% of high-fat diet fed mice after 12 and 18 months and, interestingly, in 30% of low-fat/high-carbohydrate fed animals after 18 months. No tumors were detected in standard diet fed mice. Global increase of hepatic interleukin-1β, interleukin-6, tumor necrosis factor-α and hepatocyte growth factor was detected in low-fat/high-carbohydrate and high-fat with respect to standard diet fed mice as well as in tumor with respect to non-tumor bearing mice. A panel of 15 microRNAs was analyzed: some of them revealed differential expression in low-fat/high-carbohydrate with respect to high-fat diet fed groups and in tumors. Data here shown provide the first evidence of the involvement of low-fat/high-carbohydrate diet in hepatic damage leading to tumorigenesis.

  9. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats.

    Science.gov (United States)

    Seyfried, Florian; Miras, Alexander D; Bueter, Marco; Prechtl, Christina G; Spector, Alan C; le Roux, Carel W

    2013-11-01

    The consumption of high fat and sugar diets is decreased after gastric bypass surgery (GB). The mechanisms remain unclear, with tests of motivated behavior toward fat and sugar producing conflicting results in a rat model. These discrepancies may be due to differences in presurgical maintenance diets. The authors used their GB rat model to determine whether the fat content of preoperative maintenance diets affects weight loss, calorie intake, and macronutrient selection after surgery. Male Wistar rats were either low-fat diet fed (LFDF) with normal chow or high-fat diet fed (HFDF) before randomization to GB or sham surgery. In food preference test 1, the animals were offered the choice of a vegetable drink (V8) or a high-calorie liquid (Ensure), and in food preference test 2, they could choose normal chow or a solid high-fat diet. The GB groups did not differ significantly in terms of body weight loss or caloric intake. In food preference test 1, both groups responded similarly by reducing their preference for Ensure and increasing their preference for V8. In food preference test 2, the HFDF-GB rats reduced their preference for a solid high-fat diet gradually compared with the immediate reduction observed in the LFDF-GB rats. The consumption of presurgical maintenance diets with different fat contents did not affect postoperative weight loss outcomes. Both the LFDF-GB and HFDF-GB rats exhibited behaviors consistent with the possible expression of a conditioned taste aversion to a high-fat stimulus. These results suggest that for some physiologic parameters, low-fat-induced obesity models can be used for the study of changes after GB and have relevance to many obese humans who consume high-calorie but low-fat diets.

  10. Comparison of efficacy of low-carbohydrate and low-fat diet education programs in non-alcoholic fatty liver disease: A randomized controlled study.

    Science.gov (United States)

    Jang, Eun Chul; Jun, Dae Won; Lee, Seung Min; Cho, Yong Kyun; Ahn, Sang Bong

    2018-02-01

    Composition of macronutrients is important in non-alcoholic fatty liver disease (NAFLD). Diet education programs that mainly emphasize reducing fat consumption have been used for NAFLD patients. We compared the efficacy of conventional low-fat diet education with low-carbohydrate diet education in Korean NAFLD patients. One hundred and six NAFLD patients were randomly allocated to low-fat diet education or low-carbohydrate education groups for 8 weeks. Liver chemistry, liver / spleen ratio, and visceral fat using abdominal tomography were measured. Intrahepatic fat accumulation decreased significantly in the low-carbohydrate group compared to low-fat group (liver/spleen 0.85 vs. 0.92, P low-carbohydrate and 16.7% for the low-fat group (P = 0.016). Not only liver enzyme, but also low density lipoprotein cholesterol and blood pressure levels significantly decreased in the low-carbohydrate group. Total energy intake was also further decreased in the low-carbohydrate group compared to the low-fat group. Although body weight changes were not different between the two groups, the carbohydrate group had a lower total abdominal fat amount. A low-carbohydrate diet program is more realistic and effective in reducing total energy intake and hepatic fat content in Korean NAFLD patients. This trial is registered with the National Research Institute of Health: KCT0000970 (https://cris.nih.go.kr/cris/index.jsp). © 2017 The Japan Society of Hepatology.

  11. Short-term changes in lipoprotein subclasses and C-reactive protein levels of hypertriglyceridemic adults on low-carbohydrate and low-fat diets.

    Science.gov (United States)

    Stoernell, Colene K; Tangney, Christy C; Rockway, Susie W

    2008-07-01

    Diets designed to promote weight loss and improve atherogenic lipid profiles traditionally include a reduction in total fat and, in particular, saturated fats. This study was designed to test the efficacy of a low-fat diet vs a carbohydrate (CHO)-restricted (low-CHO) diet in hypertriglyceridemic patients on lipid profile, weight loss, high-sensitivity C-reactive protein (hs-CRP), and satiety. Twenty-eight hypertriglyceridemic subjects (based on fasting triacylglycerol [TG] levels exceeding 1.69 mmol/L) were randomized to either the low-CHO or low-fat diet for 8 weeks. Fasting bloods were acquired at weeks 0 and 8 and analyzed for lipids and hs-CRP. Body weight and other anthropometric measures were also obtained. Three random 24-hour food recalls were used to assess compliance during the trial and 2 recalls before randomization to permit individualized dietary education. A significant time-by-treatment interaction was observed (P = .045), wherein the small low-density lipoprotein cholesterol concentrations were reduced by 46% in the low-CHO-assigned subjects and increased by 36% for those assigned the low-fat plan. The observed decrease in TG (18%) among low-CHO subjects, in contrast to the 4% increase for low-fat group, was not significant, nor were there significant differences in hs-CRP, overall dietary compliance, satiety, or the magnitude of body weight loss between groups (low-CHO group, -3.8% vs low-fat group, -1.6%). Favorable reductions in small low-density lipoprotein concentrations after 8 weeks suggest that a moderately restricted carbohydrate diet (20% CHO as energy) can promote a less atherogenic lipid profile when compared to the low-fat diet.

  12. Differential effects of low-carbohydrate and low-fat diets on inflammation and endothelial function in diabetes.

    Science.gov (United States)

    Davis, Nichola J; Crandall, Jill P; Gajavelli, Srikanth; Berman, Joan W; Tomuta, Nora; Wylie-Rosett, Judith; Katz, Stuart D

    2011-01-01

    To characterize acute (postprandial) and chronic (after a 6-month period of weight loss) effects of a low-carbohydrate vs. a low-fat diet on subclinical markers of cardiovascular disease (CVD) in adults with type 2 diabetes. At baseline and 6 months, measures of C-reactive protein (CRP), interleukin-6 (IL-6), soluble intercellular adhesion molecule (sICAM) and soluble E-selectin were obtained from archived samples (n = 51) of participants randomized in a clinical trial comparing a low-carbohydrate and a low-fat diet. In a subset of participants (n = 27), postprandial measures of these markers were obtained 3 h after a low-carbohydrate or low-fat liquid meal. Endothelial function was also measured by reactive hyperemic peripheral arterial tonometry during the meal test. Paired t tests and unpaired t tests compared within- and between-group changes. There were no significant differences observed in postprandial measures of inflammation or endothelial function. After 6 months, CRP (mean ± S.E.) decreased in the low-fat arm from 4.0 ± 0.77 to 3.0 ± 0.77 (P = .01). In the low-carbohydrate arm, sICAM decreased from 234 ± 22 to 199 ± 23 (P = .001), and soluble E-selectin decreased from 93 ± 10 to 82 ± 10 (P = .05.) A significant correlation between change in high-density lipoprotein and change in soluble E-selectin (r = -0.33, P = .04) and with the change in ICAM (r = -0.43, P = .01) was observed. Low-carbohydrate and low-fat diets both have beneficial effects on CVD markers. There may be different mechanisms through which weight loss with these diets potentially reduces CVD risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Low density lipoprotein subclasses and response to a low-fat diet in healthy men

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M.; Dreon, D.M. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.

    1994-11-01

    Lipid and lipoprotein response to reduced dietary fat intake was investigated in relation to differences in distribution of LDL subclasses among 105 healthy men consuming high-fat (46%) and low-fat (24%) diets in random order for six weeks each. On high-fat, 87 subjects had predominantly large, buoyant LDL as measured by gradient gel electrophoresis and confirmed by analytic ultracentrifugation (pattern A), while the remainder had primarily smaller, denser LDL (pattern B). On low-fat, 36 men changed from pattern A to B. Compared with the 51 men in the stable A group, men in the stable B group (n = 18) had a three-fold greater reduction in LDL cholesterol and significantly greater reductions in plasma apoB and mass of intermediate (LDL II) and small (LDL III) LDL subtractions measured by analytic ultracentrifugation. In both stable A and change groups, reductions in LDL-cholesterol were not accompanied by reduced plasma apoB, consistent with the observation of a shift in LDL particle mass from larger, lipid-enriched (LDL I and II) to smaller, lipid-depleted (LDL III and IV) subfractions, without significant change in particle number. Genetic and environmental factors influencing LDL subclass distributions thus may also contribute substantially to interindividual variation in response to a low-fat diet.

  14. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    Science.gov (United States)

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  15. Randomized, multi-center trial of two hypo-energetic diets in obese subjects: high- versus low-fat content

    DEFF Research Database (Denmark)

    Petersen, M; Taylor, M A; Saris, W H M

    2006-01-01

    :Obese (BMI >or=30 kg/m(2)) adult subjects (n = 771), from eight European centers. MEASUREMENTS: Body weight loss, dropout rates, proportion of subjects who lost more than 10% of initial body weight, blood lipid profile, insulin and glucose. RESULTS: The dietary fat energy percent was 25% in the low-fat group...... and 40% in the high-fat group (mean difference: 16 (95% confidence interval (CI) 15-17)%). Average weight loss was 6.9 kg in the low-fat group and 6.6 kg in the high-fat group (mean difference: 0.3 (95% CI -0.2 to 0.8) kg). Dropout was 13.6% (n = 53) in the low-fat group and 18.3% (n = 70) in the high......-fat group than in the high-fat group. Fasting plasma insulin and glucose were lowered equally by both diets. CONCLUSIONS: The low-fat diet produced similar mean weight loss as the high-fat diet, but resulted in more subjects losing >10% of initial body weight and fewer dropouts. Both diets produced...

  16. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women.

    Science.gov (United States)

    Brehm, Bonnie J; Seeley, Randy J; Daniels, Stephen R; D'Alessio, David A

    2003-04-01

    Untested alternative weight loss diets, such as very low carbohydrate diets, have unsubstantiated efficacy and the potential to adversely affect cardiovascular risk factors. Therefore, we designed a randomized, controlled trial to determine the effects of a very low carbohydrate diet on body composition and cardiovascular risk factors. Subjects were randomized to 6 months of either an ad libitum very low carbohydrate diet or a calorie-restricted diet with 30% of the calories as fat. Anthropometric and metabolic measures were assessed at baseline, 3 months, and 6 months. Fifty-three healthy, obese female volunteers (mean body mass index, 33.6 +/- 0.3 kg/m(2)) were randomized; 42 (79%) completed the trial. Women on both diets reduced calorie consumption by comparable amounts at 3 and 6 months. The very low carbohydrate diet group lost more weight (8.5 +/- 1.0 vs. 3.9 +/- 1.0 kg; P fat (4.8 +/- 0.67 vs. 2.0 +/- 0.75 kg; P low fat diet group. Mean levels of blood pressure, lipids, fasting glucose, and insulin were within normal ranges in both groups at baseline. Although all of these parameters improved over the course of the study, there were no differences observed between the two diet groups at 3 or 6 months. beta- Hydroxybutyrate increased significantly in the very low carbohydrate group at 3 months (P = 0.001). Based on these data, a very low carbohydrate diet is more effective than a low fat diet for short-term weight loss and, over 6 months, is not associated with deleterious effects on important cardiovascular risk factors in healthy women.

  17. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman-Lindén

    2016-04-01

    Full Text Available Background: The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF-induced metabolic alterations. Methods: Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2 during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results: HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions: Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain.

  18. Dietary supplementation of Chardonnay grape seed flour reduces plasma cholesterol concentration, hepatic steatosis, and abdominal fat content in high-fat diet-induced obese hamsters

    Science.gov (United States)

    The mechanisms for the hypocholesterolemic and anti-obesity effects of grape seed flours derived from white and red winemaking processing were investigated. Male Golden Syrian hamsters were fed high-fat (HF) diets supplemented with 10% partially defatted grape seed flours from Chardonnay (ChrSd), Ca...

  19. Phytosterols inhibit the tumor growth and lipoprotein oxidizability induced by a high-fat diet in mice with inherited breast cancer.

    Science.gov (United States)

    Llaverias, Gemma; Escolà-Gil, Joan Carles; Lerma, Enrique; Julve, Josep; Pons, Cristina; Cabré, Anna; Cofán, Montserrat; Ros, Emilio; Sánchez-Quesada, José Luis; Blanco-Vaca, Francisco

    2013-01-01

    Dietary phytosterol supplements are readily available to consumers since they effectively reduce plasma low-density lipoprotein cholesterol. Several studies on cell cultures and xenograft mouse models suggest that dietary phytosterols may also exert protective effects against common cancers. We examined the effects of a dietary phytosterol supplement on tumor onset and progression using the well-characterized mouse mammary tumor virus polyoma virus middle T antigen transgenic mouse model of inherited breast cancer. Both the development of mammary hyperplastic lesions (at age 4 weeks) and total tumor burden (at age 13 weeks) were reduced after dietary phytosterol supplementation in female mice fed a high-fat, high-cholesterol diet. A blind, detailed histopathologic examination of the mammary glands (at age 8 weeks) also revealed the presence of less-advanced lesions in phytosterol-fed mice. This protective effect was not observed when the mice were fed a low-fat, low-cholesterol diet. Phytosterol supplementation was effective in preventing lipoprotein oxidation in mice fed the high-fat diet, a property that may explain - at least in part - their anticancer effects since lipoprotein oxidation/inflammation has been shown to be critical for tumor growth. In summary, our study provides preclinical proof of the concept that dietary phytosterols could prevent the tumor growth associated with fat-rich diet consumption. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A decade of developments in the area of fat supplementation research with beef cattle and sheep.

    Science.gov (United States)

    Hess, B W; Moss, G E; Rule, D C

    2008-04-01

    Supplementing ruminant animal diets with fat has been investigated as a means to influence a variety of physiological processes or to alter fatty acid composition of food products derived from ruminant animals. Several digestion experiments have been conducted with beef cattle and sheep to elucidate the effects of supplemental fat on utilization of other dietary components. Negative associative effects are not likely to be observed in ruminants consuming forage-based diets with supplemental fat at forage diets. For ruminants fed high-concentrate diets, supplementing fat at 6% of diet DM is expected to have minimal impacts on utilization of other dietary components. Although there is greater potential to supply the ruminant animal with unsaturated fatty acids from dietary origin if fat is added to high-concentrate diets, incomplete ruminal biohydrogenation of C18 unsaturated fatty acids results in an increase in duodenal flow of 18:1 trans fatty acids regardless of basal diet consumed by the animal. The biohydrogenation intermediate 18:1 trans-11 (trans-vaccenic acid) is the likely precursor to cis-9, trans-11 CLA because the magnitude of increase in CLA content in tissues or milk of ruminants fed fat is much greater than the increase in CLA presented to the small intestine of ruminants fed fat supplements. Duodenal flow of trans-vaccenic acid is also substantially greater than CLA. Increasing unsaturated fatty acids status of ruminants imparts physiological responses that are separate than the energy value of supplemental fat. Manipulating maternal diet to improve unsaturated fatty acid status of the neonate has practical benefits for animals experiencing stress due to exposure to cold environments or conditions which mount an immune response. Supplementing fat to provide an additional 16 to 18 g/d of 18:2n-6 to the small intestine of beef cows for the first 60 to 90 d of lactation will have negative impacts on reproduction and may impair immune function of the

  1. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Alessandra Ferramosca

    2015-01-01

    Full Text Available In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group, a diet with 35% fat (HF group, or a high-fat diet supplemented with 2.5% krill oil (HF+KO group. The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  2. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  3. Psyllium husk fiber supplementation to the diets rich in soybean or coconut oil: hypocholesterolemic effect in healthy humans.

    Science.gov (United States)

    Ganji, V; Kies, C V

    1996-03-01

    The objective of this study was to investigate the effect of psyllium husk fiber supplementation to the diets of soybean and coconut oil on serum lipids in normolipidemic humans. A 28-day study was divided into four 7-day experimental periods. Dietary periods were soybean oil (SO), soybean oil plus psyllium fiber (SO + PF), coconut oil (CO) and coconut oil plus psyllium fiber (CO + PF), and were arranged to a randomized cross over design. Ten subjects consumed controlled diet containing 30% fat calories (20% from test oils and 10% from controlled diet) and 20 g per day of psyllium during fiber supplementation periods. SO + PF diet significantly reduced serum cholesterol compared with SO diet (P < 0.001). CO + PF diet significantly reduced serum cholesterol compared with CO diet (P < 0.014). Hypocholesterolemic response was greater with SO + PF compared with CO + PF (0.36 mmol 1(-1) vs 0.31 mmol 1(-1)). Reductions in low-density lipoprotein (LDL) cholesterol and apolipoprotein (apo) B were parallel to reductions of serum cholesterol. SO diet decreased, while CO diet increased serum cholesterol, LDL cholesterol and apo B. Very-low density lipoprotein cholesterol, high-density lipoprotein cholesterol and apo A-1 were unaffected by psyllium fiber and saturation of fat. Reduction of serum cholesterol was due to reduction of LDL cholesterol. Psyllium fiber supplementation lowered serum cholesterol regardless of saturation level of dietary fat.

  4. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chung, Young-Mee; Hyun Lee, Joo; Youl Kim, Deuk; Hwang, Se-Hee; Hong, Young-Ho; Kim, Seong-Bo; Jin Lee, Song; Hye Park, Chi

    2012-02-01

    D-Psicose, a C-3 epimer of D-fructose, has shown promise in reducing body fat accumulation in normal rats and plasma glucose level in genetic diabetic mice. Effects of D-psicose on diet-induced obesity are not clearly elucidated, and we investigated food intake, body weight, and fat accumulation in rats fed high-fat (HF) diet. Sprague-Dawley rats became obese by feeding HF diet for 4 wk, and were assigned either to normal or HF diet supplemented with or without D-psicose, sucrose, or erythritol for 8 wk. Changing HF to normal diet gained less body weight and adipose tissue due to different energy intake. D-psicose-fed rats exhibited lower weight gain, food efficiency ratio, and fat accumulation than erythritol- and sucrose-fed rats. This effect was more prominent in D-psicose-fed rats with normal diet than with HF diet, suggesting combination of psicose and calorie restriction further reduced obesity. There was no difference in serum cholesterol/high-density lipoprotein (HDL)-C and low-density lipoprotein (LDL)-C/HDL-C ratios between D-psicose group and other groups. Liver weight in 5% psicose group with normal diet was higher than in other groups, but histopathological examination did not reveal any psicose-related change. D-Psicose inhibited the differentiation of mesenchymal stem cell (MSC) to adipose tissue in a concentration-dependent manner. These results demonstrate that D-psicose produces a marked decrease, greater than erythritol, in weight gain and visceral fat in an established obesity model by inhibiting MSC differentiation to adipocyte. Thus, D-psicose can be useful in preventing and reducing obesity as a sugar substitute and food ingredient. We can develop D-psicose as a sugar substitute and food ingredient since it can prevent obesity in normal people, but also suppress adiposity as a sugar substitute or food ingredients with antiobesity effect in obese people. D-psicose can be unique functional sweetener because of its function of reducing visceral

  6. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance

    OpenAIRE

    Bosse, John D.; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E. Dale; Pereira, Troy J.; Dolinsky, Vernon W.; Symons, J. David; Jalili, Thunder

    2013-01-01

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-...

  7. Reproductive performance of Santa Inês ewes fed protected fat diet

    Directory of Open Access Journals (Sweden)

    Ricardo Lopes Dias da Costa

    2011-06-01

    Full Text Available The objective of this work was to evaluate the reproductive performance of Santa Inês ewes fed a diet supplemented with protected fat. Intervals from lambing to first clinical estrus and to conception, conception rate, prolificacy, live weight and body condition were determined. After lambing, 60 ewes and their offsprings were weighted and randomly assigned to three treatments, based on age, body weight and number of born lambs. Treatments consisted of: control diet, or control diet plus 30 g of protected fat, from lambing to day 25 of post-lambing (Sup25, or to day 60 of post-lambing (Sup60. Out of 60 evaluated ewes, 93.3% returned to estrus, and 74.5% got pregnant, with 73.53% lambing rate and 196.5 days lambing interval. The average periods from lambing to first estrus were 32.4, 27.2 and 35.5 days for ewes fed the control diet, Sup25, and Sup60, respectively. The intervals from lambing to conception were 45.2, 46.5 and 45.2 days, and the supplemented diets did not show differences in comparison to the control diet. Supplementation with protected fat to well-nourished Santa Inês ewes does not improve their reproductive performance.

  8. A very low-carbohydrate, low-saturated fat diet for type 2 diabetes management: a randomized trial.

    Science.gov (United States)

    Tay, Jeannie; Luscombe-Marsh, Natalie D; Thompson, Campbell H; Noakes, Manny; Buckley, Jon D; Wittert, Gary A; Yancy, William S; Brinkworth, Grant D

    2014-11-01

    To comprehensively compare the effects of a very low-carbohydrate, high-unsaturated/low-saturated fat diet (LC) with those of a high-unrefined carbohydrate, low-fat diet (HC) on glycemic control and cardiovascular disease (CVD) risk factors in type 2 diabetes (T2DM). Obese adults (n = 115, BMI 34.4 ± 4.2 kg/m(2), age 58 ± 7 years) with T2DM were randomized to a hypocaloric LC diet (14% carbohydrate [fat [fat]) or an energy-matched HC diet (53% carbohydrate, 17% protein, and 30% fat [fat]) combined with structured exercise for 24 weeks. The outcomes measured were as follows: glycosylated hemoglobin (HbA1c), glycemic variability (GV; assessed by 48-h continuous glucose monitoring), antiglycemic medication changes (antiglycemic medication effects score [MES]), and blood lipids and pressure. A total of 93 participants completed 24 weeks. Both groups achieved similar completion rates (LC 79%, HC 82%) and weight loss (LC -12.0 ± 6.3 kg, HC -11.5 ± 5.5 kg); P ≥ 0.50. Blood pressure (-9.8/-7.3 ± 11.6/6.8 mmHg), fasting blood glucose (-1.4 ± 2.3 mmol/L), and LDL cholesterol (-0.3 ± 0.6 mmol/L) decreased, with no diet effect (P ≥ 0.10). LC achieved greater reductions in triglycerides (-0.5 ± 0.5 vs. -0.1 ± 0.5 mmol/L), MES (-0.5 ± 0.5 vs. -0.2 ± 0.5), and GV indices; P ≤ 0.03. LC induced greater HbA1c reductions (-2.6 ± 1.0% [-28.4 ± 10.9 mmol/mol] vs. -1.9 ± 1.2% [-20.8 ± 13.1 mmol/mol]; P = 0.002) and HDL cholesterol (HDL-C) increases (0.2 ± 0.3 vs. 0.05 ± 0.2 mmol/L; P = 0.007) in participants with the respective baseline values HbA1c >7.8% (62 mmol/mol) and HDL-C low saturated fat may be an effective dietary approach for T2DM management if effects are sustained beyond 24 weeks. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Low-fat diet with omega-3 fatty acids increases plasma insulin-like growth factor concentration in healthy postmenopausal women.

    Science.gov (United States)

    Young, Lindsay R; Kurzer, Mindy S; Thomas, William; Redmon, J Bruce; Raatz, Susan K

    2013-07-01

    The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in healthy individuals are not well defined. Three test diets-high-fat diet (40% energy as fat), low-fat diet (LF; 20% energy as fat), and a diet with low fat and high omega-3 fatty acid (LFn3; 23% energy as fat)--were tested in a randomized crossover designed controlled feeding trial in healthy postmenopausal women. Plasma IGF-I, IGF binding protein-3 (IGFBP-3), insulin, glucose, and ratio of IGF-I/IGFBP-3 concentrations were measured in response to diets. Insulin sensitivity was calculated using the homeostatic model assessment of insulin resistance We hypothesized that IGF-I, insulin, and glucose concentrations would decrease and IGFBP-3 concentration would increase in response to the low-fat diets. Eight weeks of the LFn3 diet increased circulating IGF-I (P diet increased IGFBP-3 (P = .04), resulting in trends toward an increased IGF-I/IGFBP-3 ratio with the LFn3 diet and a decreased IGF-I/IGFBP-3 ratio with the LF diet (P = .13 for both comparisons). No statistically significant differences were detected between treatments at baseline or 8 weeks for IGF-1, IGFBP-3, or the ratio of IGF-1/IGFBP-3. Insulin, glucose, and the homeostatic model assessment of insulin resistance were not altered by the interventions. Low-fat diet with high n-3 fatty acids may increase circulating IGF-I concentrations without adversely affecting insulin sensitivity in healthy individuals. Published by Elsevier Inc.

  10. Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.

    Science.gov (United States)

    Kamei, Asuka; Watanabe, Yuki; Shinozaki, Fumika; Yasuoka, Akihito; Shimada, Kousuke; Kondo, Kaori; Ishijima, Tomoko; Toyoda, Tsudoi; Arai, Soichi; Kondo, Takashi; Abe, Keiko

    2017-02-01

    Maple syrup contains various polyphenols and we investigated the effects of a polyphenol-rich maple syrup extract (MSXH) on the physiology of mice fed a high-fat diet (HFD). The mice fed a low-fat diet (LFD), an HFD, or an HFD supplemented with 0.02% (002MSXH) or 0.05% MSXH (005MSXH) for 4 weeks. Global gene expression analysis of the liver was performed, and the differentially expressed genes were classified into three expression patterns; pattern A (LFD 002MSXH = 005MSXH, LFD > HFD 005MSXH, LFD > HFD = 002MSXH 002MSXH HFD 005MSXH). Pattern A was enriched in glycolysis, fatty acid metabolism, and folate metabolism. Pattern B was enriched in tricarboxylic acid cycle while pattern C was enriched in gluconeogenesis, cholesterol metabolism, amino acid metabolism, and endoplasmic reticulum stress-related event. Our study suggested that the effects of MSXH ingestion showed (i) dose-dependent pattern involved in energy metabolisms and (ii) reversely pattern involved in stress responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adherence to a low-fat vs. low-carbohydrate diet differs by insulin resistance status.

    Science.gov (United States)

    McClain, A D; Otten, J J; Hekler, E B; Gardner, C D

    2013-01-01

    Previous research shows diminished weight loss success in insulin-resistant (IR) women assigned to a low-fat (LF) diet compared to those assigned to a low-carbohydrate (LC) diet. These secondary analyses examined the relationship between insulin-resistance status and dietary adherence to either a LF-diet or LC-diet among 81 free-living, overweight/obese women [age = 41.9 ± 5.7 years; body mass index (BMI) = 32.6 ± 3.6 kg/m(2)]. This study found differential adherence by insulin-resistance status only to a LF-diet, not a LC-diet. IR participants were less likely to adhere and lose weight on a LF-diet compared to insulin-sensitive (IS) participants assigned to the same diet. There were no significant differences between IR and IS participants assigned to LC-diet in relative adherence or weight loss. These results suggest that insulin resistance status may affect dietary adherence to weight loss diets, resulting in higher recidivism and diminished weight loss success of IR participants advised to follow LF-diets for weight loss. © 2012 Blackwell Publishing Ltd.

  12. A randomized trial of a low-carbohydrate diet vs orlistat plus a low-fat diet for weight loss.

    Science.gov (United States)

    Yancy, William S; Westman, Eric C; McDuffie, Jennifer R; Grambow, Steven C; Jeffreys, Amy S; Bolton, Jamiyla; Chalecki, Allison; Oddone, Eugene Z

    2010-01-25

    Two potent weight loss therapies, a low-carbohydrate, ketogenic diet (LCKD) and orlistat therapy combined with a low-fat diet (O + LFD), are available to the public but, to our knowledge, have never been compared. Overweight or obese outpatients (n = 146) from the Department of Veterans Affairs primary care clinics in Durham, North Carolina, were randomized to either LCKD instruction (initially, carbohydrate daily) or orlistat therapy, 120 mg orally 3 times daily, plus low-fat diet instruction (fat, 500-1000 kcal/d deficit) delivered at group meetings over 48 weeks. Main outcome measures were body weight, blood pressure, fasting serum lipid, and glycemic parameters. The mean age was 52 years and mean body mass index was 39.3 (calculated as weight in kilograms divided by height in meters squared); 72% were men, 55% were black, and 32% had type 2 diabetes mellitus. Of the study participants, 57 of the LCKD group (79%) and 65 of the O + LFD group (88%) completed measurements at 48 weeks. Weight loss was similar for the LCKD (expected mean change, -9.5%) and the O + LFD (-8.5%) (P = .60 for comparison) groups. The LCKD had a more beneficial impact than O + LFD on systolic (-5.9 vs 1.5 mm Hg) and diastolic (-4.5 vs 0.4 mm Hg) blood pressures (P Low-density lipoprotein cholesterol levels improved within the O + LFD group only, whereas glucose, insulin, and hemoglobin A(1c) levels improved within the LCKD group only; comparisons between groups, however, were not statistically significant. In a sample of medical outpatients, an LCKD led to similar improvements as O + LFD for weight, serum lipid, and glycemic parameters and was more effective for lowering blood pressure. clinicaltrials.gov Identifier: NCT00108524.

  13. Goat Milk Kefir Supplemented with Porang Glucomannan Improves Lipid Profile and Haematological Parameter in Rat Fed High Fat and High Fructose Diet

    Directory of Open Access Journals (Sweden)

    Nurliyani

    2018-03-01

    Full Text Available Background and Aims: Diet with a high fat and high sugar is associated with an increased incindence of the metabolic syndrome. Kefir has been known as a natural probiotic, while glucomannan from porang (Amorphophallus oncophyllus tuber was demonstrated as prebiotic in vivo. Probiotics and prebiotics can be used adjuvant nutritional therapy for metabolic syndrome. The aim of this study was to evaluate the effect of goat milk kefir supplemented with porang glucomannan on the lipid profile and haematological parameters in rats fed with a high-fat/high-fructose (HFHF diet.

  14. Supplementation of protease, alone and in combination with fructooligosaccharide to low protein diet for finishing pigs.

    Science.gov (United States)

    Lei, Xin Jian; Cheong, Jin Young; Park, Jae Hong; Kim, In Ho

    2017-12-01

    Effects of adding protease with or without fructooligosaccharide (FOS) to low protein diet on growth performance, nutrient digestibility and fecal noxious gas emission were evaluated in 160 finishing pigs (57.70 ± 1.16 kg) in a 9-week study. Pigs were randomly divided into four dietary treatments, PC: positive control diet (15.97% crude protein (CP)); NC: negative control diet (12.94% CP); PRO: NC supplemented with 0.05% protease; PROFOS: NC supplemented with 0.05% protease and 0.1% FOS. During weeks 4-9 and weeks 0-9, gain : feed ratio was impaired (P diet compared with those fed PC, PRO and PROFOS diets. Pigs fed PC, PRO and PROFOS diets had higher (P diet. Pigs fed PROFOS diet had reduced (P diets. These data indicate that reducing dietary CP concentrations impaired growth performance, decreased ATTD of CP and reduced ammonia emissions. Supplementation of protease in low CP diet improved growth performance and increased ATTD of CP. Dietary supplementation with protease and FOS in low CP diet improved growth performance, increased ATTD of CP and decreased fecal ammonia emission. © 2017 Japanese Society of Animal Science.

  15. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects.

    Directory of Open Access Journals (Sweden)

    Greta Jakobsdottir

    Full Text Available Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs, particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation.To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks.Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin - acetic acid; guar gum - propionic acid; or a mixture - butyric acid. At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks.Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.

  16. Minimal nutrition intervention with high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement improves body composition and exercise benefits in overweight adults: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Cramer Joel T

    2008-04-01

    Full Text Available Abstract Background Exercise and high-protein/reduced-carbohydrate and -fat diets have each been shown separately, or in combination with an energy-restricted diet to improve body composition and health in sedentary, overweight (BMI > 25 adults. The current study, instead, examined the physiological response to 10 weeks of combined aerobic and resistance exercise (EX versus exercise + minimal nutrition intervention designed to alter the macronutrient profile, in the absence of energy restriction, using a commercially available high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement (EXFS; versus control (CON. Methods Thirty-eight previously sedentary, overweight subjects (female = 19; male = 19 were randomly assigned to either CON (n = 10, EX (n = 14 or EXFS (n = 14. EX and EXFS participated in supervised resistance and endurance training (2× and 3×/wk, respectively; EXFS consumed 1 shake/d (weeks 1 and 2 and 2 shakes/d (weeks 3–10. Results EXFS significantly decreased total energy, carbohydrate and fat intake (-14.4%, -27.2% and -26.7%, respectively; p p p p p p 2max improved in both exercise groups (EX = +5.0% and EXFS = +7.9%; p 2max (+6.2%; p = 0.001. Time-to-exhaustion during treadmill testing increased in EX (+9.8% but was significantly less (p p p Conclusion Absent energy restriction or other dietary controls, provision of a high-protein/low-carbohydrate and -fat, nutrient-dense food supplement significantly, 1 modified ad libitum macronutrient and energy intake (behavior effect, 2 improved physiological adaptations to exercise (metabolic advantage, and 3 reduced the variability of individual responses for fat mass, muscle mass and time-to-exhaustion – all three variables improving in 100% of EXFS subjects.

  17. Effects of macronutrient composition and cyclooxygenase-inhibition on diet-induced obesity, low grade inflammation and glucose homeostasis

    DEFF Research Database (Denmark)

    Fjære, Even

    - or protein based background, and supplemented with either corn- or fish oil. These experiments were conducted to determine whether macronutrient composition and type of dietary fat can modulate diet-induced obesity, and associated metabolic consequences. The use of non-steroidal anti-inflammatory drugs...... was combined with a low fat diet. This further highlights the importance of the background diet and macronutrient composition of experimental diets. Conclusions: In summary, our results demonstrate that the composition of background diet modulates the obesogenic effect of the high fat diet. The obesogenic...

  18. No Additive Effects of Polyphenol Supplementation and Exercise Training on White Adiposity Determinants of High-Fat Diet-Induced Obese Insulin-Resistant Rats

    Directory of Open Access Journals (Sweden)

    Karen Lambert

    2018-01-01

    Full Text Available One of the major insulin resistance instigators is excessive adiposity and visceral fat depots. Individually, exercise training and polyphenol intake are known to exert health benefits as improving insulin sensitivity. However, their combined curative effects on established obesity and insulin resistance need further investigation particularly on white adipose tissue alterations. Therefore, we compared the effects on different white adipose tissue depot alterations of a combination of exercise and grape polyphenol supplementation in obese insulin-resistant rats fed a high-fat diet to the effects of a high-fat diet alone or a nutritional supplementation of grape polyphenols (50 mg/kg/day or exercise training (1 hr/day to 5 days/wk consisting of treadmill running at 32 m/min for a 10% slope, for a total duration of 8 weeks. Separately, polyphenol supplementation and exercise decreased the quantity of all adipose tissue depots and mesenteric inflammation. Exercise reduced adipocytes’ size in all fat stores. Interestingly, combining exercise to polyphenol intake presents no more cumulative benefit on adipose tissue alterations than exercise alone. Insulin sensitivity was improved at systemic, epididymal, and inguinal adipose tissues levels in trained rats thus indicating that despite their effects on adipocyte morphological/metabolic changes, polyphenols at nutritional doses remain less effective than exercise in fighting insulin resistance.

  19. Effects of dietary carbohydrate restriction versus low-fat diet on flow-mediated dilation.

    Science.gov (United States)

    Volek, Jeff S; Ballard, Kevin D; Silvestre, Ricardo; Judelson, Daniel A; Quann, Erin E; Forsythe, Cassandra E; Fernandez, Maria Luz; Kraemer, William J

    2009-12-01

    We previously reported that a carbohydrate-restricted diet (CRD) ameliorated many of the traditional markers associated with metabolic syndrome and cardiovascular risk compared with a low-fat diet (LFD). There remains concern how CRD affects vascular function because acute meals high in fat have been shown to impair endothelial function. Here, we extend our work and address these concerns by measuring fasting and postprandial vascular function in 40 overweight men and women with moderate hypertriacylglycerolemia who were randomly assigned to consume hypocaloric diets (approximately 1500 kcal) restricted in carbohydrate (percentage of carbohydrate-fat-protein = 12:59:28) or LFD (56:24:20). Flow-mediated dilation of the brachial artery was assessed before and after ingestion of a high-fat meal (908 kcal, 84% fat) at baseline and after 12 weeks. Compared with the LFD, the CRD resulted in a greater decrease in postprandial triacylglycerol (-47% vs -15%, P = .007), insulin (-51% vs -6%, P = .009), and lymphocyte (-12% vs -1%, P = .050) responses. Postprandial fatty acids were significantly increased by the CRD compared with the LFD (P = .033). Serum interleukin-6 increased significantly over the postprandial period; and the response was augmented in the CRD (46%) compared with the LFD (-13%) group (P = .038). After 12 weeks, peak flow-mediated dilation at 3 hours increased from 5.1% to 6.5% in the CRD group and decreased from 7.9% to 5.2% in the LFD group (P = .004). These findings show that a 12-week low-carbohydrate diet improves postprandial vascular function more than a LFD in individuals with atherogenic dyslipidemia.

  20. Effect of fat supplementation on leptin, insulin-like growth factor I, growth hormone, and insulin in cattle.

    Science.gov (United States)

    Becú-Villalobos, Damasia; García-Tornadú, Isabel; Shroeder, Guillermo; Salado, Eloy E; Gagliostro, Gerardo; Delavaud, Carole; Chilliard, Yves; Lacau-Mengido, Isabel M

    2007-07-01

    We investigated the effect of fat supplementation on plasma levels of hormones related to metabolism, with special attention to leptin, in cows in early lactation and in feedlot steers. In experiment 1, 34 lactating cows received no fat or else 0.5 or 1.0 kg of partially hydrogenated oil per day in addition to their basal diet from day 20 before the expected calving date to day 70 postpartum. In experiment 2, part of the corn in the basal concentrate was replaced with 0.7 kg of the same oil such that the diets were isocaloric; 18 cows received the fat-substituted diet and 18 a control diet from day 20 before the expected calving date to day 75 postpartum. In experiment 3, calcium salts of fatty acids were added to the basal diet of 14 feedlot steers for 80 d; another 14 steers received a control diet. The basal plasma levels of leptin were higher in the cows than in the steers. Dietary fat supplementation did not affect the leptin levels in the lactating cows but lowered the levels in the feedlot steers despite greater energy intake and body fatness (body weight) in the steers receiving the supplement than in those receiving the control diet. The levels of insulin-like growth factor I and insulin were decreased with dietary fat supplementation in the lactating cows but were unaffected in the steers, suggesting that responses to fat ingestion depend on the physiological state of the animal, including age and sex. Finally, no effects of supplementary fat on the level of growth hormone were demonstrated in any of the models.

  1. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis.

    Science.gov (United States)

    Schwingshackl, Lukas; Hoffmann, Georg

    2013-12-01

    Dietary fat plays an important role in the primary prevention of cardiovascular disease, but long-term (≥12 months) effects of different percentages of fat in the diet on blood lipid levels remain to be established. Our systematic review and meta-analysis focused on randomized controlled trials assessing the long-term effects of low-fat diets compared with diets with high amounts of fat on blood lipid levels. Relevant randomized controlled trials were identified searching MEDLINE, EMBASE, and the Cochrane Trial Register until March 2013. Thirty-two studies were included in the meta-analysis. Decreases in total cholesterol (weighted mean difference -4.55 mg/dL [-0.12 mmol/L], 95% CI -8.03 to -1.07; P=0.01) and low-density lipoprotein (LDL) cholesterol (weighted mean difference -3.11 mg/dL [-0.08 mmol/L], 95% CI -4.51 to -1.71; Plow-fat diets, whereas rise in high-density lipoprotein (HDL) cholesterol (weighted mean difference 2.35 mg/dL [0.06 mmol/L], 95% CI 1.29 to 3.42; Pfat diet groups. Including only hypocaloric diets, the effects of low-fat vs high-fat diets on total cholesterol and LDL cholesterol levels were abolished. Meta-regression revealed that lower total cholesterol level was associated with lower intakes of saturated fat and higher intakes of polyunsaturated fat, and increases in HDL cholesterol levels were related to higher amounts of total fat largely derived from monounsaturated fat (of either plant or animal origin) in high-fat diets (composition of which was ~17% of total energy content in the form of monounsaturated fatty acids, ~8% of total energy content in the form of polyunsaturated fatty acids), whereas increases in triglyceride levels were associated with higher intakes of carbohydrates. In addition, lower LDL cholesterol level was marginally associated with lower saturated fat intake. The results of our meta-analysis do not allow for an unequivocal recommendation of either low-fat or high-fat diets in the primary prevention of

  2. Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women

    Directory of Open Access Journals (Sweden)

    Silvestre R

    2004-11-01

    Full Text Available Abstract Objective To compare the effects of isocaloric, energy-restricted very low-carbohydrate ketogenic (VLCK and low-fat (LF diets on weight loss, body composition, trunk fat mass, and resting energy expenditure (REE in overweight/obese men and women. Design Randomized, balanced, two diet period clinical intervention study. Subjects were prescribed two energy-restricted (-500 kcal/day diets: a VLCK diet with a goal to decrease carbohydrate levels below 10% of energy and induce ketosis and a LF diet with a goal similar to national recommendations (%carbohydrate:fat:protein = ~60:25:15%. Subjects 15 healthy, overweight/obese men (mean ± s.e.m.: age 33.2 ± 2.9 y, body mass 109.1 ± 4.6 kg, body mass index 34.1 ± 1.1 kg/m2 and 13 premenopausal women (age 34.0 ± 2.4 y, body mass 76.3 ± 3.6 kg, body mass index 29.6 ± 1.1 kg/m2. Measurements Weight loss, body composition, trunk fat (by dual-energy X-ray absorptiometry, and resting energy expenditure (REE were determined at baseline and after each diet intervention. Data were analyzed for between group differences considering the first diet phase only and within group differences considering the response to both diets within each person. Results Actual nutrient intakes from food records during the VLCK (%carbohydrate:fat:protein = ~9:63:28% and the LF (~58:22:20% were significantly different. Dietary energy was restricted, but was slightly higher during the VLCK (1855 kcal/day compared to the LF (1562 kcal/day diet for men. Both between and within group comparisons revealed a distinct advantage of a VLCK over a LF diet for weight loss, total fat loss, and trunk fat loss for men (despite significantly greater energy intake. The majority of women also responded more favorably to the VLCK diet, especially in terms of trunk fat loss. The greater reduction in trunk fat was not merely due to the greater total fat loss, because the ratio of trunk fat/total fat was also significantly reduced during

  3. Fish Oil and Microalga Omega-3 as Dietary Supplements: A Comparative Study on Cardiovascular Risk Factors in High-Fat Fed Rats.

    Science.gov (United States)

    Haimeur, Adil; Mimouni, Virginie; Ulmann, Lionel; Martineau, Anne-Sophie; Messaouri, Hafida; Pineau-Vincent, Fabienne; Tremblin, Gérard; Meskini, Nadia

    2016-09-01

    Dietary supplementation with marine omega-3 polyunsaturated fatty acids (n-3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n-3 PUFA rich food supplements (freeze-dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high-fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high-fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high-fat diet supplemented with 12 % of freeze-dried O. aurita. After 8 weeks rats fed with the high-fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high-fat diet-induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze-dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n-3 PUFA but also other bioactive compounds of the microalgae.

  4. Inulin supplementation reduces the negative effect of a high-fat diet rich in SFA on bone health of growing pigs.

    Science.gov (United States)

    Sobol, Monika; Raj, Stanisława; Skiba, Grzegorz

    2018-05-01

    Consumption of a high-fat diet, rich in SFA, causes deterioration of bone properties. Some studies suggest that feeding inulin to animals may increase mineral absorption and positively affect bone quality; however, these studies have been carried out only on rodents fed a standard diet. The primary objective of this study was to determine the effect of inulin on bone health of pigs (using it as an animal model for humans) fed a high-fat diet rich in SFA, having an unbalanced ratio of lysine:metabolisable energy. It was hypothesised that inulin reduces the negative effects of such a diet on bone health. At 50 d of age, twenty-one pigs were randomly allotted to three groups: the control (C) group fed a standard diet, and two experimental (T and TI) groups fed a high-fat diet rich in SFA. Moreover, TI pigs consumed an extra inulin supply (7 % of daily feed intake). After 10 weeks, whole-body bone mineral content (P=0·0054) and bone mineral density (P=0·0322) were higher in pigs of groups TI and C compared with those of group T. Femur bone mineral density was highest in pigs in group C, lower in group TI and lowest in group T (P=0·001). Femurs of pigs in groups TI and C had similar, but higher, maximum strength compared with femurs of pigs in group T (P=0·0082). In conclusion, consumption of a high-fat diet rich in SFA adversely affected bone health, but inulin supplementation in such a diet diminishes this negative effect.

  5. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Science.gov (United States)

    Betz, Matthias J; Bielohuby, Maximilian; Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc

    2012-01-01

    Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7). Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive thermogenesis in BAT.

  6. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Directory of Open Access Journals (Sweden)

    Matthias J Betz

    Full Text Available UNLABELLED: Low-carbohydrate, high-fat (LC-HF diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT morphology and function following exposure to different LC-HF diets. METHODS: Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein: control (64.3/16.7/19, LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5, LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1, and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7. RESULTS: Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience and measurement of inducible thermogenesis in vivo (primary endpoint, explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. CONCLUSION: All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by

  7. Low carbohydrate, high fat diet increases C-reactive protein during weight loss.

    Science.gov (United States)

    Rankin, Janet W; Turpyn, Abigail D

    2007-04-01

    Chronic inflammation is associated with elevated risk of heart disease and may be linked to oxidative stress in obesity. Our objective was to evaluate the effect of weight loss diet composition (low carbohydrate, high fat, LC or high carbohydrate, low fat, HC) on inflammation and to determine whether this was related to oxidative stress. Twenty nine overweight women, BMI 32.1 +/- 5.4 kg/m(2), were randomly assigned to a self-selected LC or HC diet for 4 wks. Weekly group sessions and diet record collections helped enhance compliance. Body weight, markers of inflammation (serum interleukin-6, IL-6; C-reactive protein, CRP) oxidative stress (urinary 8-epi-prostaglandin F2alpha, 8-epi) and fasting blood glucose and free fatty acids were measured weekly. The diets were similar in caloric intake (1357 kcal/d LC vs. 1361 HC, p=0.94), but differed in macronutrients (58, 12, 30 and 24, 59, 18 for percent of energy as fat, carbohydrate, and protein for LC and HC, respectively). Although LC lost more weight (3.8 +/- 1.2 kg LC vs. 2.6 +/- 1.7 HC, p=0.04), CRP increased 25%; this factor was reduced 43% in HC (p=0.02). For both groups, glucose decreased with weight loss (85.4 vs. 82.1 mg/dl for baseline and wk 4, p<0.01), while IL-6 increased (1.39 to 1.62 pg/mL, p=0.04). Urinary 8-epi varied differently over time between groups (p<0.05) with no consistent pattern. Diet composition of the weight loss diet influenced a key marker of inflammation in that LC increased while HC reduced serum CRP but evidence did not support that this was related to oxidative stress.

  8. Effects of fat adaptation on glucose kinetics and substrate oxidation during low-intensity exercise.

    Science.gov (United States)

    Pagan, J D; Geor, R J; Harris, P A; Hoekstra, K; Gardner, S; Hudson, C; Prince, A

    2002-09-01

    This study was designed to determine the effects of fat adaptation on carbohydrate and fat oxidation in conditioned horses during low-intensity exercise. Five mature Arabians were studied. The study was conducted as a crossover design with 2 dietary periods, each of 10 week's duration: a) a control (CON) diet, and b) a fat-supplemented (FAT) diet. The total amount of digestible energy (DE) supplied by the fat in the CON and FAT diets was 7% and 29%, respectively. During each period, the horses completed exercise tests at the beginning of the period (Week 0) and after 5 and 10 weeks on the diet. Tests consisted of 90 min of exercise at a speed calculated to elicit 35% VO2max on a treadmill inclined to 3 degrees. Oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured at 15-min intervals. For determination of glucose kinetics, a stable isotope ([6-6-d2] glucose) technique was used. Compared to the CON diet, FAT diet consumption for 5-10 weeks was associated with an altered metabolic response to low-intensity exercise, as evidenced by a more than 30% reduction in the production and utilisation of glucose; a decrease in RER; a decrease in the estimated rate of whole-body carbohydrate utilisation; and an increase in the whole-body rate of lipid oxidation during exercise.

  9. Antihyperlipidemic Effects of Sesamum indicum L. in Rabbits Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Sedigheh Asgary

    2013-01-01

    Full Text Available The present study aimed to investigate the anti-hyperlipidemic effects of sesame in a high-fat fed rabbit model. Animals were randomly divided into four groups of eight animals each for 60 days as follows: normal diet, hypercholesterolemic diet (1% cholesterol, hypercholesterolemic diet (1% cholesterol + sesame seed (10%, and hypercholesterolemic diet (1% cholesterol + sesame oil (5%. Serum concentrations of total cholesterol, LDL-C, HDL-C, triglycerides, apoA and apoB, SGOT, SGPT, glucose and insulin were measured at the end of supplementation period in all studied groups. Hypercholesterolemic feeding resulted in a significant elevation of TC, TG, LDL-C, HDL-C, SGOT and SGPT as compared to the normocholesterolemic diet group (P0.05. In contrast, rabbits supplemented with sesame oil were found to have lower circulating concentrations of TC, LDL-C, HDL-C, SGOT and SGPT (P0.05. Supplementation with sesame oil, but not sesame seed, can ameliorate serum levels of lipids and hepatic enzymes in rabbits under a high-fat diet.

  10. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  11. Perceived hunger is lower and weight loss is greater in overweight premenopausal women consuming a low-carbohydrate/high-protein vs high-carbohydrate/low-fat diet.

    Science.gov (United States)

    Nickols-Richardson, Sharon M; Coleman, Mary Dean; Volpe, Joanne J; Hosig, Kathy W

    2005-09-01

    The impact of a low-carbohydrate/high-protein diet compared with a high-carbohydrate/low-fat diet on ratings of hunger and cognitive eating restraint were examined. Overweight premenopausal women consumed a low-carbohydrate/high-protein (n=13) or high-carbohydrate/low-fat diet (n=15) for 6 weeks. Fasting body weight (BW) was measured and the Eating Inventory was completed at baseline, weeks 1 to 4, and week 6. All women experienced a reduction in BW (Plow-carbohydrate/high-protein vs high-carbohydrate/low-fat group at week 6 (Plow-carbohydrate/high-protein but not in the high-carbohydrate/low-fat group from baseline to week 6. In both groups, self-rated cognitive eating restraint increased (Plow-carbohydrate/high-protein group may have contributed to a greater percentage of BW loss.

  12. Dietary supplementation with Agaricus blazei murill extract prevents diet-induced obesity and insulin resistance in rats.

    Science.gov (United States)

    Vincent, Mylène; Philippe, Erwann; Everard, Amandine; Kassis, Nadim; Rouch, Claude; Denom, Jessica; Takeda, Yorihiko; Uchiyama, Shoji; Delzenne, Nathalie M; Cani, Patrice D; Migrenne, Stéphanie; Magnan, Christophe

    2013-03-01

    Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin-resistance and low-grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet-induced obesity in rats. Wistar rats were fed with control diet (CD) or high-fat diet (HF) and either with or without supplemented ABM for 20 weeks. HF diet-induced body weight gain and increased fat mass compared to CD. In addition HF-fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF-fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet-induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM-treated rats suggesting a decrease in lipid absorption. Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system. Copyright © 2012 The Obesity Society.

  13. Magnetic resonance spectroscopy detects differential lipid composition in mammary glands on low fat, high animal fat versus high fructose diets.

    Directory of Open Access Journals (Sweden)

    Dianning He

    Full Text Available The effects of consumption of different diets on the fatty acid composition in the mammary glands of SV40 T-antigen (Tag transgenic mice, a well-established model of human triple-negative breast cancer, were investigated with magnetic resonance spectroscopy and spectroscopic imaging. Female C3(1 SV40 Tag transgenic mice (n = 12 were divided into three groups at 4 weeks of age: low fat diet (LFD, high animal fat diet (HAFD, and high fructose diet (HFruD. MRI scans of mammary glands were acquired with a 9.4 T scanner after 8 weeks on the diet. 1H spectra were acquired using point resolved spectroscopy (PRESS from two 1 mm3 boxes on each side of inguinal mammary gland with no cancers, lymph nodes, or lymph ducts. High spectral and spatial resolution (HiSS images were also acquired from nine 1-mm slices. A combination of Gaussian and Lorentzian functions was used to fit the spectra. The percentages of poly-unsaturated fatty acids (PUFA, mono-unsaturated fatty acids (MUFA, and saturated fatty acids (SFA were calculated from each fitted spectrum. Water and fat peak height images (maps were generated from HiSS data. The results showed that HAFD mice had significantly lower PUFA than both LFD (p < 0.001 and HFruD (p < 0.01 mice. The mammary lipid quantity calculated from 1H spectra was much larger in HAFD mice than in LFD (p = 0.03 but similar to HFruD mice (p = 0.10. The average fat signal intensity over the mammary glands calculated from HiSS fat maps was ~60% higher in HAFD mice than in LFD (p = 0.04 mice. The mean or median of calculated parameters for the HFruD mice were between those for LFD and HAFD mice. Therefore, PRESS spectroscopy and HiSS MRI demonstrated water and fat composition changes in mammary glands due to a Western diet, which was low in potassium, high in sodium, animal fat, and simple carbohydrates. Measurements of PUFA with MRI could be used to evaluate cancer risk, improve cancer detection and diagnosis, and guide preventative

  14. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects.

    Science.gov (United States)

    Haufe, Sven; Engeli, Stefan; Kast, Petra; Böhnke, Jana; Utz, Wolfgang; Haas, Verena; Hermsdorf, Mario; Mähler, Anja; Wiesner, Susanne; Birkenfeld, Andreas L; Sell, Henrike; Otto, Christoph; Mehling, Heidrun; Luft, Friedrich C; Eckel, Juergen; Schulz-Menger, Jeanette; Boschmann, Michael; Jordan, Jens

    2011-05-01

    Obesity-related hepatic steatosis is a major risk factor for metabolic and cardiovascular disease. Fat reduced hypocaloric diets are able to relieve the liver from ectopically stored lipids. We hypothesized that the widely used low carbohydrate hypocaloric diets are similarly effective in this regard. A total of 170 overweight and obese, otherwise healthy subjects were randomized to either reduced carbohydrate (n = 84) or reduced fat (n = 86), total energy restricted diet (-30% of energy intake before diet) for 6 months. Body composition was estimated by bioimpedance analyses and abdominal fat distribution by magnetic resonance tomography. Subjects were also submitted to fat spectroscopy of liver and oral glucose tolerance testing. In all, 102 subjects completed the diet intervention with measurements of intrahepatic lipid content. Both hypocaloric diets decreased body weight, total body fat, visceral fat, and intrahepatic lipid content. Subjects with high baseline intrahepatic lipids (>5.56%) lost ≈7-fold more intrahepatic lipids compared with those with low baseline values (diet composition. In contrast, changes in visceral fat mass and insulin sensitivity were similar between subgroups, with low and high baseline intrahepatic lipids. A prolonged hypocaloric diet low in carbohydrates and high in fat has the same beneficial effects on intrahepatic lipid accumulation as the traditional low-fat hypocaloric diet. The decrease in intrahepatic lipids appears to be independent of visceral fat loss and is not tightly coupled with changes in whole body insulin sensitivity during 6 months of an energy restricted diet. Copyright © 2011 American Association for the Study of Liver Diseases.

  15. Performance of broiler chicken fed multicarbohydrases supplemented low energy diet

    Directory of Open Access Journals (Sweden)

    Kumar Govil

    2017-07-01

    Full Text Available Aim: Objective of this study was to investigate the effect of multicarbohydrases supplementation on performance of broilers fed low energy diet. Materials and Methods: A total of 75 days old chicks were selected and randomly divided into three treatments groups (T1, T2, and T3; each group contained 25 chicks distributed in five replicates of five chicks each. T1 group (positive control was offered control ration formulated as per Bureau of Indian Standards recommendations. In T2 group (negative control ration, metabolizable energy (ME was reduced by 100 kcal/kg diet. T3 group ration was same as that of T2 except that it was supplemented with multicarbohydrases (xylanase at 50 g/ton+mannanase at 50 g/ton+amylase at 40 g/ton. Feed intake and body weight of all experimental birds were recorded weekly. Metabolic trial was conducted for 3 days at the end of experiment to know the retention of nutrients. Results: Significant improvement (p<0.01 was observed in total weight gain, feed conversion efficiency, and performance index in broilers under supplementary group T3 as compared to T1 and T2 groups. Retention of crude protein and ether extract was significantly increased (p<0.05 in T3 group supplemented with multicarbohydrases as compared to other groups. Retention of dry matter, crude fiber, and nitrogen-free extract was comparable in all the three groups. Significantly highest dressed weight, eviscerated weight, and drawn weight (% of live body weight were observed in multicarbohydrases supplemented T3 group, however it was comparable in T1 and T2 groups. Conclusion: It was concluded that the supplementation of multicarbohydrases (xylanase at 50 g/ton+mannanase at 50 g/ton+amylase at 40 g/ton in low energy diet improved overall performance of broilers.

  16. Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ramli, Nurul Shazini; Brown, Lindsay; Ismail, Patimah; Rahmat, Asmah

    2014-06-12

    The fruit of Hylocereus polyrhizus, also known as red pitaya, and buah naga in Malay, is one of the tropical fruits of the cactus family, Cactaceae. Red pitaya has been shown to protect aorta from oxidative damage and improve lipid profiles in hypercholesterolemic rats probably due to phytochemicals content including phenolics and flavonoids. The aim of this study was to investigate the changes in cardiac stiffness, hepatic and renal function in high-carbohydrate, high-fat diet-induced obese rats following supplementation of red pitaya juice. Total 48 male Wistar rats were divided into 4 groups: corn-starch group (CS), corn-starch+red pitaya juice group (CRP), high-carbohydrate, high fat group (HCHF) and high-carbohydrate, high fat+red pitaya juice (HRP). The intervention with 5% red pitaya juice was started for 8 weeks after 8 weeks initiation of the diet. Heart function was determined ex vivo with Langendorff hearts while plasma liver enzymes, uric acid and urea were measured using commercial kits. Total fat mass was determined with Dual-energy X-ray absorptiometry (DXA) scan. Glucose uptake was measured with Oral Glucose Tolerance Test (OGTT). Liver and cardiac structures were defined by histology. Supplementation of red pitaya juice for 8 weeks increased energy intake and abdominal circumference but no change in body fat and lean mass respectively. Also, there were a trend of uric acid and glucose normalization for HRP as compared to H-fed rats. Red pitaya juice treatment reduced ALP and ALT but caused significant increment in AST. Diastolic stiffness of the heart was reduced after supplementation of red pitaya juice in corn starch fed rats. However, the reduction was not significant in HRP rats in comparison with H rats. The present study concluded that red pitaya juice may serve as a complimentary therapy for attenuating some signs of metabolic syndrome.

  17. Low-fat, high-carbohydrate (low-glycaemic index) diet induces weight loss and preserves lean body mass in obese healthy subjects: results of a 24-week study.

    Science.gov (United States)

    Bahadori, B; Yazdani-Biuki, B; Krippl, P; Brath, H; Uitz, E; Wascher, T C

    2005-05-01

    The traditional treatment for obesity which is based on a reduced caloric diet has only been partially successful. Contributing factors are not only a poor long-term dietary adherence but also a significant loss of lean body mass and subsequent reduction in energy expenditure. Both low-fat, high-carbohydrate diets and diets using low-glycaemic index (GI) foods are capable of inducing modest weight loss without specific caloric restriction. The purpose of this study was to investigate the feasibility and medium-term effect of a low-fat diet with high (low GI) carbohydrates on weight loss, body composition changes and dietary compliance. Obese patients were recruited from two obesity outpatient clinics. Subjects were given advise by a dietician, then they attended biweekly for 1-hour group meetings. Bodyweight and body composition were measured at baseline and after 24 weeks. One hundred and nine (91%) patients completed the study; after 24 weeks the average weight loss was 8.9 kg (98.6 vs. 89.7 kg; p fat mass (42.5 vs. 36.4 kg; p vs. 53.3 kg; p low-fat, low-GI diet led to a significant reduction of fat mass; adherence to the diet was very good. Our results suggest that such a diet is feasible and should be evaluated in randomized controlled trials.

  18. Changes in renal function during weight loss induced by high vs low-protein low-fat diets in overweight subjects

    DEFF Research Database (Denmark)

    Skov, A. R.; Toubro, S.; Bülow, J.

    1999-01-01

    BACKGROUND: Due to the high satiating effect of protein, a high-protein diet may be desirable in the treatment of obesity. However the long-term effect of different levels of protein intake on renal function is unclear. OBJECTIVE: To assess the renal effects of high vs low protein contents in fat......-reduced diets. DESIGN: Randomized 6 months dietary intervention study comparing two controlled ad libitum diets with 30 energy (E%) fat content: high-protein (HP; 25 E%) or low-protein, (LP, 12 E% protein). All food was provided by self-selection in a shop at the department, and high compliance to the diet...... composition was confirmed by measurements of urinary nitrogen excretion. SUBJECTS: 65 healthy, overweight and obese (25protein intake changed from 91.1 g/d to a 6 months intervention average of 70.4 g/d (P

  19. Effects of Ad libitum Low-Carbohydrate High-Fat Dieting in Middle-Age Male Runners.

    Science.gov (United States)

    Heatherly, Alexander J; Killen, Lauren G; Smith, Ashton F; Waldman, Hunter S; Seltmann, Christie L; Hollingsworth, Angela; O'Neal, Eric K

    2018-03-01

    This study examined the effects of a 3-wk ad libitum, low-carbohydrate (fat (~70% of calories) (LCHF) diet on markers of endurance performance in middle-age, recreationally competitive male runners. All subjects (n = 8) after their normal high-carbohydrate (HC) diet had anthropometric measures assessed and completed five 10-min running bouts at multiple individual race paces in the heat while physiological variables, metabolic variables, and perceptual responses were recorded. After 20 min of rest, participants completed a 5-km time trial on a road course. Subjects then consumed an LCHF diet for 3 wk and returned for repeat testing. Body mass and seven-site skinfold thickness sum decreased by approximately 2.5 kg (P vs 37.3°C ± 0.2°C) in the HC diet but did not differ at any other time with LCHF diet. Heart rate and perceptual measures did not display any consistent differences between treatments excluding thirst sensation for LCHF diet. RER and carbohydrate oxidation declined significantly, whereas fat oxidation increased after LCHF diet for every pace (P fat oxidation from LCHF diet potentially negate expected performance decrement from reduced carbohydrate use late in exercise for nonelite runners. An acute decrease in training capacity is expected; however, if performance improvement is not exhibited after 3 wk, diet cessation is suggested for negative responders.

  20. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Nordmann, Alain J; Nordmann, Abigail; Briel, Matthias; Keller, Ulrich; Yancy, William S; Brehm, Bonnie J; Bucher, Heiner C

    2006-02-13

    Low-carbohydrate diets have become increasingly popular for weight loss. However, evidence from individual trials about benefits and risks of these diets to achieve weight loss and modify cardiovascular risk factors is preliminary. We used the Cochrane Collaboration search strategy to identify trials comparing the effects of low-carbohydrate diets without restriction of energy intake vs low-fat diets in individuals with a body mass index (calculated as weight in kilograms divided by the square of height in meters) of at least 25. Included trials had to report changes in body weight in intention-to-treat analysis and to have a follow-up of at least 6 months. Two reviewers independently assessed trial eligibility and quality of randomized controlled trials. Five trials including a total of 447 individuals fulfilled our inclusion criteria. After 6 months, individuals assigned to low-carbohydrate diets had lost more weight than individuals randomized to low-fat diets (weighted mean difference, -3.3 kg; 95% confidence interval [CI], -5.3 to -1.4 kg). This difference was no longer obvious after 12 months (weighted mean difference, -1.0 kg; 95% CI, -3.5 to 1.5 kg). There were no differences in blood pressure. Triglyceride and high-density lipoprotein cholesterol values changed more favorably in individuals assigned to low-carbohydrate diets (after 6 months, for triglycerides, weighted mean difference, -22.1 mg/dL [-0.25 mmol/L]; 95% CI, -38.1 to -5.3 mg/dL [-0.43 to -0.06 mmol/L]; and for high-density lipoprotein cholesterol, weighted mean difference, 4.6 mg/dL [0.12 mmol/L]; 95% CI, 1.5-8.1 mg/dL [0.04-0.21 mmol/L]), but total cholesterol and low-density lipoprotein cholesterol values changed more favorably in individuals assigned to low-fat diets (weighted mean difference in low-density lipoprotein cholesterol after 6 months, 5.4 mg/dL [0.14 mmol/L]; 95% CI, 1.2-10.1 mg/dL [0.03-0.26 mmol/L]). Low-carbohydrate, non-energy-restricted diets appear to be at least as

  1. Low Carbohydrate and Moderately Fat-Reduced Diets Similarly Affected Early Weight Gain in Varenicline-Treated Overweight or Obese Smokers.

    Science.gov (United States)

    Heggen, Eli; Svendsen, Mette; Klemsdal, Tor Ole; Tonstad, Serena

    2016-06-01

    Weight gain is common when stopping smoking. This study compared the effect of advising smokers to follow a diet low in carbohydrates versus a usual fat-reduced diet on weight gain and nicotine withdrawal. In a randomized clinical trial, 122 men and women smokers with body mass index 25-40kg/m(2) were assigned low-carbohydrate versus moderately fat-reduced diets. Within a week thereafter all participants started treatment with a 12-week course of varenicline 10 days prior to the target quit date. Brief dietary and motivational counseling was given at all visits. Self-reported abstinence was validated. Protein intake in the low-carbohydrate versus fat-reduced diets was 26.4% of total energy versus 20.0%, fat 38.2% versus 30.1%, and carbohydrates 29.0% versus 41.7% (all P carbohydrate versus fat-reduced groups were -1.2 (SD 2.2) versus -0.5 (SD 2.0) kg, -0.2 (SD 3.3) versus 0.5 (SD 2.6) kg, and 2.2 (SD 4.5) versus 2.1 (SD 3.9) kg at 4, 12, and 24 weeks after the target quit date, respectively (not statistically significant). Smoking abstinence rates did not differ between diets. In the combined groups, point prevalence abstinence rates were 71.0% at 12 weeks and 46.3% at 24 weeks. The Minnesota Nicotine Withdrawal Symptoms score was lower in the fat-reduced group compared with the low-carbohydrate group at weeks 4 and 12. In overweight or obese smokers using varenicline a low-carbohydrate diet was no better than a fat-reduced diet in reducing weight gain but may result in more severe nicotine withdrawal symptoms. Compared to previous studies, cessation rates with varenicline were not impaired by dietary counseling. The study implies that a popular low-carbohydrate diet does not result in greater weight loss than a moderately fat-reduced diet in overweight and obese smokers who are attempting to quit smoking with the aid of varenicline. Dietary counseling combined with varenicline treatment did not appear to unfavorably influence quit rates compared to previous

  2. Effect of supplementation of lecithin and carnitine on growth performance and nutrient digestibility in pigs fed high-fat diet

    Directory of Open Access Journals (Sweden)

    Arathy Saseendran

    2017-02-01

    Full Text Available Aim: To study the effect of dietary supplementation of lecithin and carnitine on growth performance and nutrient digestibility in pigs fed high-fat diet. Materials and Methods: A total of 30 weaned female large white Yorkshire piglets of 2 months of age were selected and randomly divided into three groups allotted to three dietary treatments, T1 - Control ration as per the National Research Council nutrient requirement, T2 - Control ration plus 5% fat, and T3 - T2 plus 0.5% lecithin plus 150 mg/kg carnitine. The total dry matter (DM intake, fortnightly body weight of each individual animal was recorded. Digestibility trial was conducted toward the end of the experiment to determine the digestibility coefficient of various nutrients. Results: There was a significant improvement (p0.05 among the three treatments on average daily gain, feed conversion efficiency, and nutrient digestibility during the overall period. Conclusion: It was concluded that the dietary inclusion of animal fat at 5% level or animal fat along with lecithin (0.5% and carnitine (150 mg/kg improved the growth performance in pigs than non-supplemented group and from the economic point of view, dietary incorporation of animal fat at 5% would be beneficial for improving growth in pigs without dietary modifiers.

  3. Effects of a low-intensity intervention that prescribed a low-carbohydrate vs. a low-fat diet in obese, diabetic participants.

    Science.gov (United States)

    Iqbal, Nayyar; Vetter, Marion L; Moore, Reneé H; Chittams, Jesse L; Dalton-Bakes, Cornelia V; Dowd, Monique; Williams-Smith, Catherine; Cardillo, Serena; Wadden, Thomas A

    2010-09-01

    Low-carbohydrate diets have been associated with significant reductions in weight and HbA(1c) in obese, diabetic participants who received high-intensity lifestyle modification for 6 or 12 months. This investigation sought to determine whether comparable results to those of short-term, intensive interventions could be achieved over a 24-month study period using a low-intensity intervention that approximates what is feasible in outpatient practice. A total of 144 obese, diabetic participants were randomly assigned to a low-carbohydrate diet (low fat diet (fat with a deficit of 500 kcal/day). Participants were provided weekly group nutrition education sessions for the first month, and monthly sessions thereafter through the end of 24 months. Weight, HbA(1c), glucose, and lipids were measured at baseline and 6, 12, and 24 months. Of the 144 enrolled participants, 68 returned for the month 24 assessment visit. Weights were retrieved from electronic medical records for an additional 57 participants (total, 125 participants) at month 24. All participants with a baseline measurement and at least one of the three other measurements were included in the mixed-model analyses (n = 138). The low-intensity intervention resulted in modest weight loss in both groups at month 24. At this time, participants in the low-carbohydrate group lost 1.5 kg, compared to 0.2 kg in the low-fat group (P = 0.147). Lipids, glycemic indexes, and dietary intake did not differ between groups at month 24 (or at months 6 or 12) (ClinicalTrials.gov number, NCT00108459).

  4. Association of low-protein supplemented diets with fetal growth in pregnant women with CKD.

    Science.gov (United States)

    Piccoli, Giorgina B; Leone, Filomena; Attini, Rossella; Parisi, Silvia; Fassio, Federica; Deagostini, Maria Chiara; Ferraresi, Martina; Clari, Roberta; Ghiotto, Sara; Biolcati, Marilisa; Giuffrida, Domenica; Rolfo, Alessandro; Todros, Tullia

    2014-05-01

    Women affected by CKD increasingly choose to get pregnant. Experience with low-protein diets is limited. The aim of this study was to review results obtained from pregnant women with CKD on supplemented vegan-vegetarian low-protein diets. This was a single-arm, open intervention study between 2000-2012 of a low-protein diet in pregnant patients with stages 3-5 CKD or severe proteinuria (>1 g/d in the first trimester or nephrotic at any time). Stages 3-5 CKD patients who were not on low-protein diets for clinical, psychologic, or logistic reasons served as controls. The setting was the Obstetrics-Nephrology Unit dedicated to kidney diseases in pregnancy. The treated group included 24 pregnancies--21 singleton deliveries, 1 twin pregnancy, 1 abortion, and 1 miscarriage. Additionally, there were 21 controls (16 singleton deliveries, 5 miscarriages). The diet was a vegan-vegetarian low-protein diet (0.6-0.8 g/kg per day) with keto-acid supplementation and 1-3 protein-unrestricted meals allowed per week. Treated patients and controls were comparable at baseline for median age (35 versus 34 years), referral week (7 versus 8), eGFR (59 versus 54 ml/min), and hypertension (43.5% versus 33.3%); median proteinuria was higher in patients on the low-protein diet (1.96 [0.1-6.3] versus 0.3 [0.1-2.0] g/d; Pdiet group. Incidence of small for gestational age babies was significantly lower in the diet group (3/21) versus controls (7/16; chi-squared test; P=0.05). Throughout follow-up (6 months to 10 years), hospitalization rates and prevalence of children below the third percentile were similar in both groups. Vegan-vegetarian supplemented low-protein diets in pregnant women with stages 3-5 CKD may reduce the likelihood of small for gestational age babies without detrimental effects on kidney function or proteinuria in the mother.

  5. Supplementation of broiler diets with high levels of microbial protease and phytase enables partial replacement of commercial soybean meal with raw, full-fat soybean.

    Science.gov (United States)

    Erdaw, M M; Perez-Maldonado, R A; Iji, P A

    2018-02-22

    A 3 × 3 + 1 factorial, involving three levels of protease (0, 15,000 or 30,000 PROT/kg) and three levels of phytase (1,000, 2,000 or 3,000 FYT/kg), was used to evaluate the effect of replacing commercial soybean meal (SBM) with raw, full-fat soybean (RFSB) at 75 g/kg of diet for broilers. A control diet was used for comparison. Each treatment was replicated six times, with nine birds per replicate. The concentration of trypsin inhibitors (TIs) in the test diets was approximately 10,193.4 TIU/kg. Regardless of enzyme supplementation, feed intake (FI) and body weight gain (BWG) of birds in the control group were superior to those on the test diets. Birds that received the protease-free test diets had reduced FI and BWG, but when supplemented with protease, were similar to the control diet in BWG, FI (except 0-35 days) and feed conversion ratio (FCR). When the test diet was supplemented with elevated levels (extradose) of protease and phytase, the BWG was improved during 0-10 days (p = .05) and 0-24 days (p replace SBM in broiler diets, provided the diets are supplemented with elevated levels of protease and phytase. © 2018 Blackwell Verlag GmbH.

  6. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial.

    Science.gov (United States)

    Barnard, Neal D; Cohen, Joshua; Jenkins, David J A; Turner-McGrievy, Gabrielle; Gloede, Lise; Green, Amber; Ferdowsian, Hope

    2009-05-01

    Low-fat vegetarian and vegan diets are associated with weight loss, increased insulin sensitivity, and improved cardiovascular health. We compared the effects of a low-fat vegan diet and conventional diabetes diet recommendations on glycemia, weight, and plasma lipids. Free-living individuals with type 2 diabetes were randomly assigned to a low-fat vegan diet (n = 49) or a diet following 2003 American Diabetes Association guidelines (conventional, n = 50) for 74 wk. Glycated hemoglobin (Hb A(1c)) and plasma lipids were assessed at weeks 0, 11, 22, 35, 48, 61, and 74. Weight was measured at weeks 0, 22, and 74. Weight loss was significant within each diet group but not significantly different between groups (-4.4 kg in the vegan group and -3.0 kg in the conventional diet group, P = 0.25) and related significantly to Hb A(1c) changes (r = 0.50, P = 0.001). Hb A(1c) changes from baseline to 74 wk or last available values were -0.34 and -0.14 for vegan and conventional diets, respectively (P = 0.43). Hb A(1c) changes from baseline to last available value or last value before any medication adjustment were -0.40 and 0.01 for vegan and conventional diets, respectively (P = 0.03). In analyses before alterations in lipid-lowering medications, total cholesterol decreased by 20.4 and 6.8 mg/dL in the vegan and conventional diet groups, respectively (P = 0.01); LDL cholesterol decreased by 13.5 and 3.4 mg/dL in the vegan and conventional groups, respectively (P = 0.03). Both diets were associated with sustained reductions in weight and plasma lipid concentrations. In an analysis controlling for medication changes, a low-fat vegan diet appeared to improve glycemia and plasma lipids more than did conventional diabetes diet recommendations. Whether the observed differences provide clinical benefit for the macro- or microvascular complications of diabetes remains to be established. This trial was registered at clinicaltrials.gov as NCT00276939.

  7. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  8. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Falcone, Italia; Tsalouhidou, Sofia; Yepuri, Gayathri; Mougios, Vassilis; Dulloo, Abdul G; Liverini, Giovanna; Iossa, Susanna

    2012-09-01

    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.

  9. Comparative proteomic analyses of the parietal lobe from rhesus monkeys fed a high-fat/sugar diet with and without resveratrol supplementation, relative to a healthy diet: Insights into the roles of unhealthy diets and resveratrol on function.

    Science.gov (United States)

    Swomley, Aaron M; Triplett, Judy C; Keeney, Jeriel T; Warrier, Govind; Pearson, Kevin J; Mattison, Julie A; de Cabo, Rafael; Cai, Jian; Klein, Jon B; Butterfield, D Allan

    2017-01-01

    A diet consisting of a high intake of saturated fat and refined sugars is characteristic of a Western-diet and has been shown to have a substantial negative effect on human health. Expression proteomics were used to investigate changes to the parietal lobe proteome of rhesus monkeys consuming either a high fat and sugar (HFS) diet, a HFS diet supplemented with resveratrol (HFS+RSV), or a healthy control diet for 2 years. Here we discuss the modifications in the levels of 12 specific proteins involved in various cellular systems including metabolism, neurotransmission, structural integrity, and general cellular signaling following a nutritional intervention. Our results contribute to a better understanding of the mechanisms by which resveratrol functions through the up- or down-regulation of proteins in different cellular sub-systems to affect the overall health of the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comparison of a low carbohydrate and low fat diet for weight maintenance in overweight or obese adults enrolled in a clinical weight management program

    Directory of Open Access Journals (Sweden)

    Curry Chelsea

    2007-11-01

    Full Text Available Abstract Background Recent evidence suggests that a low carbohydrate (LC diet may be equally or more effective for short-term weight loss than a traditional low fat (LF diet; however, less is known about how they compare for weight maintenance. The purpose of this study was to compare body weight (BW for participants in a clinical weight management program, consuming a LC or LF weight maintenance diet for 6 months following weight loss. Methods Fifty-five (29 low carbohydrate diet; 26 low fat diet overweight/obese middle-aged adults completed a 9 month weight management program that included instruction for behavior, physical activity (PA, and nutrition. For 3 months all participants consumed an identical liquid diet (2177 kJ/day followed by 1 month of re-feeding with solid foods either low in carbohydrate or low in fat. For the remaining 5 months, participants were prescribed a meal plan low in dietary carbohydrate (~20% or fat (~30%. BW and carbohydrate or fat grams were collected at each group meeting. Energy and macronutrient intake were assessed at baseline, 3, 6, and 9 months. Results The LC group increased BW from 89.2 ± 14.4 kg at 3 months to 89.3 ± 16.1 kg at 9 months (P = 0.84. The LF group decreased BW from 86.3 ± 12.0 kg at 3 months to 86.0 ± 14.0 kg at 9 months (P = 0.96. BW was not different between groups during weight maintenance (P = 0.87. Fifty-five percent (16/29 and 50% (13/26 of participants for the LC and LF groups, respectively, continued to decrease their body weight during weight maintenance. Conclusion Following a 3 month liquid diet, the LC and LF diet groups were equally effective for BW maintenance over 6 months; however, there was significant variation in weight change within each group.

  11. Clinical trial experience with fat-restricted vs. carbohydrate-restricted weight-loss diets.

    Science.gov (United States)

    Klein, Samuel

    2004-11-01

    It is unlikely that one diet is optimal for all overweight or obese persons. Both low-fat and low-carbohydrate diets have been shown to induce weight loss and reduce obesity-related comorbidities. Low-carbohydrate diets cause greater short-term (up to 6 months) weight loss than low-fat diets, but the long-term clinical safety and efficacy of these diets has not been studied.

  12. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    The present study was to assess the effect of feeding low protein diet with or without supplemental lysine to meet NRC (1998) requirement on growth performance, carcass trait, meat composition, and meat quality of pigs. An experiment of 126 days was conducted on 21 crossbred Landrace pigs (average weight 11.72 ...

  13. Supplementing an energy adequate, higher protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance.

    Science.gov (United States)

    Berryman, C E; Sepowitz, J J; McClung, H L; Lieberman, H R; Farina, E K; McClung, J P; Ferrando, A A; Pasiakos, S M

    2017-06-01

    Negative energy balance during military operations can be severe and result in significant reductions in fat-free mass (FFM). Consuming supplemental high-quality protein following such military operations may accelerate restoration of FFM. Body composition (dual-energy X-ray absorptiometry) and whole body protein turnover (single-pool [ 15 N]alanine method) were determined before (PRE) and after 7 days (POST) of severe negative energy balance during military training in 63 male US Marines (means ± SD, 25 ± 3 yr, 84 ± 9 kg). After POST measures were collected, volunteers were randomized to receive higher protein (HIGH: 1,103 kcal/day, 133 g protein/day), moderate protein (MOD: 974 kcal/day, 84 g protein/day), or carbohydrate-based low protein control (CON: 1,042 kcal/day, 7 g protein/day) supplements, in addition to a self-selected, ad libitum diet, for the 27-day intervention (REFED). Measurements were repeated POST-REFED. POST total body mass (TBM; -5.8 ± 1.0 kg, -7.0%), FFM (-3.1 ± 1.6 kg, -4.7%), and net protein balance (-1.7 ± 1.1 g protein·kg -1 ·day -1 ) were lower and proteolysis (1.1 ± 1.9 g protein·kg -1 ·day -1 ) was higher compared with PRE ( P energy (4,498 ± 725 kcal/day). All volunteers, independent of group assignment, achieved positive net protein balance (0.4 ± 1.0 g protein·kg -1 ·day -1 ) and gained TBM (5.9 ± 1.7 kg, 7.8%) and FFM (3.6 ± 1.8 kg, 5.7%) POST-REFED compared with POST ( P energy-adequate, higher protein diets with additional protein may not be necessary to restore FFM after short-term severe negative energy balance. NEW & NOTEWORTHY This article demonstrates 1 ) the majority of physiological decrements incurred during military training (e.g., total and fat-free mass loss), with the exception of net protein balance, resolve and return to pretraining values after 27 days and 2 ) protein supplementation, in addition to an ad libitum, higher protein (~2.0 g·kg -1 ·day -1 ), energy adequate diet, is not necessary to

  14. Association between High Fat-low Carbohydrate Diet Score and Newly Diagnosed Type 2 Diabetes in Chinese Population

    NARCIS (Netherlands)

    Na, Y.; Feskens, E.J.M.; Li, Y.P.; Zhang, J.; Fu, P.; Ma, G.S.; Yang, X.G.

    2012-01-01

    Objective To study the association between high fat-low carbohydrate diet score and newly diagnosed type 2 diabetes in Chinese population. Methods Data about 20 717 subjects aged 45-59 years from the cross-sectional 2002 China National Nutrition and Health Survey were analyzed. High fat-low

  15. Fat Quality Influences the Obesogenic Effect of High Fat Diets

    Directory of Open Access Journals (Sweden)

    Raffaella Crescenzo

    2015-11-01

    Full Text Available High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids.

  16. Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Stephen Wanyonyi

    2017-11-01

    Full Text Available The red seaweed, Kappaphycus alvarezii, was evaluated for its potential to prevent signs of metabolic syndrome through use as a whole food supplement. Major biochemical components of dried Kappaphycus are carrageenan (soluble fiber ~34.6% and salt (predominantly potassium (K 20% with a low overall energy content for whole seaweed. Eight to nine week old male Wistar rats were randomly divided into three groups and fed for 8 weeks on a corn starch diet, a high-carbohydrate, high-fat (H diet, alone or supplemented with a 5% (w/w dried and milled Kappaphycus blended into the base diet. H-fed rats showed symptoms of metabolic syndrome including increased body weight, total fat mass, systolic blood pressure, left ventricular collagen deposition, plasma triglycerides, and plasma non-esterified fatty acids along with fatty liver. Relative to these obese rats, Kappaphycus-treated rats showed normalized body weight and adiposity, lower systolic blood pressure, improved heart and liver structure, and lower plasma lipids, even in presence of H diet. Kappaphycus modulated the balance between Firmicutes and Bacteroidetes in the gut, which could serve as the potential mechanism for improved metabolic variables; this was accompanied by no damage to the gut structure. Thus, whole Kappaphycus improved cardiovascular, liver, and metabolic parameters in obese rats.

  17. The effects of feeding triacylglcerols on milk fat composition ...

    African Journals Online (AJOL)

    concentrations of C18:1 - C18:3 acids compared to the low-fat diet, chow, or the coconut oil-supplemented diets. Compared with the low-fat control diet, all the other dietary regimes suppressed overall fatty acid synthesis in both the lactating mammary gland and liver, with the highest suppression being produced by the olive ...

  18. Effects of Yogurt Containing Fermented Pepper Juice on the Body Fat and Cholesterol Level in High Fat and High Cholesterol Diet Fed Rat.

    Science.gov (United States)

    Yeon, Su-Jung; Hong, Go-Eun; Kim, Chang-Kyu; Park, Woo Joon; Kim, Soo-Ki; Lee, Chi-Ho

    2015-01-01

    This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.

  19. Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein.

    Science.gov (United States)

    Bielohuby, Maximilian; Menhofer, Dominik; Kirchner, Henriette; Stoehr, Barbara J M; Müller, Timo D; Stock, Peggy; Hempel, Madlen; Stemmer, Kerstin; Pfluger, Paul T; Kienzle, Ellen; Christ, Bruno; Tschöp, Matthias H; Bidlingmaier, Martin

    2011-01-01

    Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.

  20. Influence of post hatch dietary supplementation of fat on performance, carcass cuts and biochemical profile in Ven Cobb broiler

    Directory of Open Access Journals (Sweden)

    Komal Prasad Rai

    2015-02-01

    Full Text Available Aim: The present experiment was conducted to study the effect of post hatch dietary fat supplementation on performance of broiler chicken. Materials and Methods: A total of 120 day-old Ven Cobb broiler chicks were randomly assigned to 4 treatment groups of 30 chicks in each (three replicates of 10 birds/treatment. The trial lasted for 35 days. The experimental design was a completely randomized design. Four types of diet were formulated for 1st week: T1, T2, T3 and T4 contained control diet with no added fat, 2.5, 5 and 7.5% fat, respectively. After 1st week post-hatch period chicks were fed ad libitum with the normal basal diet as per Bureau of Indian Standard recommendations till completion of the experiment (8-35 days. Results: Significantly higher (p<0.05 body weight and improved feed conversion ratio (FCR was recorded in birds fed 5% dietary fat at the end of the experiment whereas, feed intake was not significantly affected. Significantly (p<0.05 higher dressed weight was observed due to 5% fat supplementation than other groups whereas, it was not significant for other carcass cuts. No significant differences were observed in moisture, protein and lipid content of breast and thigh muscle of broiler due to supplemented fat whereas, 2.5% dietary fat significantly (p<0.05 increase the serum HI titer on day 28th. In biochemical profile, higher serum albumin (g/dl was recorded due to 5% fat supplementation whereas other biochemical components did not show any significance difference among treatments. Conclusion: It may be concluded that supplementation of fat in broilers diet improves the overall FCR, dressing percentage and gain more body weight.

  1. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers

    Science.gov (United States)

    Ross, Megan L.; Garvican‐Lewis, Laura A.; Welvaert, Marijke; Heikura, Ida A.; Forbes, Sara G.; Mirtschin, Joanne G.; Cato, Louise E.; Strobel, Nicki; Sharma, Avish P.; Hawley, John A.

    2017-01-01

    Key points Three weeks of intensified training and mild energy deficit in elite race walkers increases peak aerobic capacity independent of dietary support.Adaptation to a ketogenic low carbohydrate, high fat (LCHF) diet markedly increases rates of whole‐body fat oxidation during exercise in race walkers over a range of exercise intensities.The increased rates of fat oxidation result in reduced economy (increased oxygen demand for a given speed) at velocities that translate to real‐life race performance in elite race walkers.In contrast to training with diets providing chronic or periodised high carbohydrate availability, adaptation to an LCHF diet impairs performance in elite endurance athletes despite a significant improvement in peak aerobic capacity. Abstract We investigated the effects of adaptation to a ketogenic low carbohydrate (CHO), high fat diet (LCHF) during 3 weeks of intensified training on metabolism and performance of world‐class endurance athletes. We controlled three isoenergetic diets in elite race walkers: high CHO availability (g kg−1 day−1: 8.6 CHO, 2.1 protein, 1.2 fat) consumed before, during and after training (HCHO, n = 9); identical macronutrient intake, periodised within or between days to alternate between low and high CHO availability (PCHO, n = 10); LCHF (diets providing chronic or periodised high‐CHO availability, and despite a significant improvement in V˙O2 peak , adaptation to the topical LCHF diet negated performance benefits in elite endurance athletes, in part due to reduced exercise economy. PMID:28012184

  2. Plasma glycosylphosphatidylinositol-specific phospholipase D predicts the change in insulin sensitivity in response to a low-fat but not a low-carbohydrate diet in obese women.

    Science.gov (United States)

    Gray, Dona L; O'Brien, Kevin D; D'Alessio, David A; Brehm, Bonnie J; Deeg, Mark A

    2008-04-01

    Although circulating glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD), a minor high-density lipoprotein-associated protein, is elevated in patients with insulin resistance or high triglycerides, no information is available on the effect of weight loss or changes in insulin sensitivity on circulating GPI-PLD levels. The objective of the study was to determine the effect of weight loss and changes in insulin sensitivity on plasma GPI-PLD levels. Forty-two nondiabetic obese women were included in the study, which involved a 3-month dietary intervention randomizing patients to a low-fat or a low-carbohydrate diet. The study's main outcome measures were plasma GPI-PLD levels and insulin sensitivity as estimated by the homeostasis model assessment. The very low carbohydrate diet group lost more weight after 3 months (-7.6 +/- 3.2 vs -4.2 +/- 3.5 kg, P low-fat diet, whereas baseline insulin sensitivity correlated with the change in insulin sensitivity in response to the low-carbohydrate diet. Plasma GPI-PLD may serve as a clinical tool to determine the effect of a low-fat diet on insulin sensitivity.

  3. Effect of supplementation with methionine and different fat sources on the glutathione redox system of growing chickens.

    Science.gov (United States)

    Németh, Katalin; Mézes, M; Gaál, T; Bartos, A; Balogh, K; Husvéth, F

    2004-01-01

    The effect of supplementary methionine and fats of different saturation levels on the glutathione redox system of growing broiler cockerels was studied. The diet of three groups of chicks was supplemented with corn germ oil, beef tallow and fish oil at the levels of 30 g/kg and 50 g/kg of feed, respectively. The diet of further three groups was supplemented with methionine (5 g/kg of feed) in addition to the different fat sources. Control chicks were fed with a compound feed without methionine and fat supplementation. Reduced glutathione (GSH) and glutathione disulphide (GSSG) content as well as glutathione peroxidase activity in the liver were determined and GSH/GSSG ratio was calculated at day old and then at one and three weeks of age. Our results indicate that supplementary methionine stimulates both the synthesis of the glutathione redox system and glutathione peroxidase activity in growing chickens in the first period of postnatal life, when the risk of lipid peroxidation is high due to feeding unsaturated fats in the diet.

  4. Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet.

    Directory of Open Access Journals (Sweden)

    Sonja N Heinritz

    Full Text Available The intestinal microbiota and its metabolites appear to be an important factor for gastrointestinal function and health. However, research is still needed to further elaborate potential relationships between nutrition, gut microbiota and host's health by means of a suitable animal model. The present study examined the effect of two different diets on microbial composition and activity by using the pig as a model for humans. Eight pigs were equally allotted to two treatments, either fed a low-fat/high-fiber (LF, or a high-fat/low-fiber (HF diet for 7 weeks. Feces were sampled at day 7 of every experimental week. Diet effects on fecal microbiota were assessed using quantitative real-time PCR, DNA fingerprinting and metaproteomics. Furthermore, fecal short-chain fatty acid (SCFA profiles and ammonia concentrations were determined. Gene copy numbers of lactobacilli, bifidobacteria (P0.05. Results provide evidence that beginning from the start of the experiment, the LF diet stimulated beneficial bacteria and SCFA production, especially butyrate (P<0.05, while the HF diet fostered those bacterial groups which have been associated with a negative impact on health conditions. These findings correspond to results in humans and might strengthen the hypothesis that the response of the porcine gut microbiota to a specific dietary modulation is in support of using the pig as suitable animal model for humans to assess diet-gut-microbiota interactions. Data are available via ProteomeXchange with identifier PXD003447.

  5. Treatment Of Chronic Kidney Disease Patients With A Supplemented Low Protein Diet And A Supplemented Very Low Protein Diet

    Directory of Open Access Journals (Sweden)

    SV Subhramanyam

    2012-06-01

    Full Text Available The primary results of the Modification of Diet in Renal Disease were inconclusive and did confuse a lot of physicians about the dietary approach to CKD management. The study design was flawed and thus compromised the results and conclusions. Re-analysis of the MDRD study however clearly showed the benefits of dietary protein restriction and also more importantly an additional benefit by ketoanalogue supplementation in delaying progression of CKD. Despite the obvious benefits of protein restriction, concern has been raised recently especially patients on very low dietary protein (very-low-protein diets; VLPDs, which could lead to deterioration in the nutritional status of CKD patients. To address this particular issue of whether a sVLPD diet induces malnutrition the present study has been taken up 132 adult patients with Stage 3 to Stage 5 (Predialysis were initiated on a protein restricted ketoanalogue supplemented diet after informed consent and the necessary Institutional Ethics Committee approvals. Based on their affordability, 92 patients randomly were assigned to the sLPD group whereby they received 0.6 G/Kg BW of dietary proteins supplemented by ketoanalogues at a dosage of one tablet per 10 Kg body weight. 40 patients received 0.3 G/Kg BW supplemented by ketoanalogues at a dose of one tablet per 5 Kg body weight. Renolog® tablets manufactured by La Renon Healthcare Ltd, Ahmebabad, India were prescribed as the ketoanalogue supplements. Renal, Metabolic, Nutritional parameters and Anthropometric analysis were done in both groups at the start of the study and at the end of 6 months of follow up. The mean blood urea in the SLPD group showed a decrease from 81.17+_ 00 mg/dl to 74.45+_30.75 mg/dl (p0.05 at the end of six months indicating an improvement in renal function . The serum creatinine also showed a decrease from 3.52+_00 mg/dl to 3.30 +_1.63 mg/dl(p>0.05 in the SLPD group and a decrease from 3.74+_00 mg/dl to 3.55+_1.67

  6. Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats

    DEFF Research Database (Denmark)

    Zengin, Ayse; Kropp, Benedikt; Chevalier, Yan

    2016-01-01

    the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC-HF diets on bone health exist. METHODS: Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), "Atkins-style" protein-matched diet (LC-HF-1), or ketogenic......PURPOSE: Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC-HF) could be detrimental for growth and bone health. In young male rats, LC-HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while...... low-protein diet (LC-HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography-tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay...

  7. Genetic Polymorphisms and Weight Loss in Obesity: A Randomised Trial of Hypo-Energetic High- versus Low-Fat Diets

    Science.gov (United States)

    Sørensen, Thorkild I. A; Boutin, Philippe; Taylor, Moira A; Larsen, Lesli H; Verdich, Camilla; Petersen, Liselotte; Holst, Claus; Echwald, Søren M; Dina, Christian; Toubro, Søren; Petersen, Martin; Polak, Jan; Clément, Karine; Martínez, J. Alfredo; Langin, Dominique; Oppert, Jean-Michel; Stich, Vladimir; Macdonald, Ian; Arner, Peter; Saris, Wim H. M; Pedersen, Oluf; Astrup, Arne; Froguel, Philippe

    2006-01-01

    Objectives: To study if genes with common single nucleotide polymorphisms (SNPs) associated with obesity-related phenotypes influence weight loss (WL) in obese individuals treated by a hypo-energetic low-fat or high-fat diet. Design: Randomised, parallel, two-arm, open-label multi-centre trial. Setting: Eight clinical centres in seven European countries. Participants: 771 obese adult individuals. Interventions: 10-wk dietary intervention to hypo-energetic (−600 kcal/d) diets with a targeted fat energy of 20%–25% or 40%–45%, completed in 648 participants. Outcome Measures: WL during the 10 wk in relation to genotypes of 42 SNPs in 26 candidate genes, probably associated with hypothalamic regulation of appetite, efficiency of energy expenditure, regulation of adipocyte differentiation and function, lipid and glucose metabolism, or production of adipocytokines, determined in 642 participants. Results: Compared with the noncarriers of each of the SNPs, and after adjusting for gender, age, baseline weight and centre, heterozygotes showed WL differences that ranged from −0.6 to 0.8 kg, and homozygotes, from −0.7 to 3.1 kg. Genotype-dependent additional WL on low-fat diet ranged from 1.9 to −1.6 kg in heterozygotes, and from 3.8 kg to −2.1 kg in homozygotes relative to the noncarriers. Considering the multiple testing conducted, none of the associations was statistically significant. Conclusions: Polymorphisms in a panel of obesity-related candidate genes play a minor role, if any, in modulating weight changes induced by a moderate hypo-energetic low-fat or high-fat diet. PMID:16871334

  8. High Phenolics Rutgers Scarlet Lettuce Improves Glucose Metabolism in High Fat Diet-Induced Obese Mice

    Science.gov (United States)

    Cheng, Diana M.; Roopchand, Diana E.; Poulev, Alexander; Kuhn, Peter; Armas, Isabel; Johnson, William D.; Oren, Andrew; Ribnicky, David; Zelzion, Ehud; Bhattacharya, Debashish; Raskin, Ilya

    2016-01-01

    Scope The ability of high phenolic Rutgers Scarlet Lettuce (RSL) to attenuate metabolic syndrome and gut dysbiosis was studied in very high fat diet (VHFD)-fed mice. Phenolic absorption was assessed in vivo and in a gastrointestinal tract model. Methods and results Mice were fed VHFD, VHFD supplemented with RSL (RSL-VHFD) or store-purchased green lettuce (GL-VHFD), or low-fat diet (LFD) for 13 weeks. Compared to VHFD or GL-VHFD-fed groups, RSL-VHFD group showed significantly improved oral glucose tolerance (p<0.05). Comparison of VHFD, RSL-VHFD, and GL-VHFD groups revealed no significant differences with respect to insulin tolerance, hepatic lipids, body weight gain, fat mass, plasma glucose, triglycerides, free fatty acid, and lipopolysaccharide levels, as well as relative abundances of major bacterial phyla from 16S rDNA amplicon data sequences (from fecal and cecal samples). However, RSL and GL-supplementation increased abundance of several taxa involved in plant polysaccharide degradation/fermentation. RSL phenolics chlorogenic acid, quercetin-3-glucoside, and quercetin-malonyl-glucoside were bioaccessible in the TIM-1 digestion model, but had relatively low recovery. Conclusions RSL phenolics contributed to attenuation of postprandial hyperglycemia. Changes in gut microbiota were likely due to microbiota accessible carbohydrates in RSL and GL rather than RSL phenolics, which may be metabolized, absorbed, or degraded before reaching the colon. PMID:27529448

  9. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance.

    Science.gov (United States)

    Bosse, John D; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E Dale; Pereira, Troy J; Dolinsky, Vernon W; Symons, J David; Jalili, Thunder

    2013-06-15

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved (P vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced (P vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower (P vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased (P vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.

  10. Significant suppression of myocardial (18)F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet.

    Science.gov (United States)

    Kobayashi, Yasuhiro; Kumita, Shin-ichiro; Fukushima, Yoshimitsu; Ishihara, Keiichi; Suda, Masaya; Sakurai, Minoru

    2013-11-01

    (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is a useful tool for evaluating inflammation. Because, myocardial-FDG uptake occurs with diverse physiology, it should be suppressed during evaluation of myocardial inflammation by FDG-PET/CT. Diets inducing fat-based metabolism, such as a low-carbohydrate, high-fat diet (LCHF), are used in uptake-suppression protocols. However, a complete suppression of myocardial-FDG uptake has not been established. Hence, we assessed the efficacy of 24-h carbohydrate restriction along with an LCHF diet compared to that of the conventional protocol in suppressing myocardial-FDG uptake and also compared fat and glucose metabolism between these protocols. Fourteen healthy volunteers agreed to undergo >24-h carbohydrate restriction (glucose, vs. 2.98 [1.76-6.43], p=0.001). Target-to-background ratios [myocardium-to-blood ratio (MBR), myocardium-to-lung ratio (MLR), and myocardium-to-liver ratio (MLvR)] were also significantly lower with the diet-preparation protocol [MBR: 0.75 (0.68-0.84) vs. 1.63 (0.98-4.09), pvs. 4.54 (2.53-12.78), p=0.004; MLvR: 0.48 (0.44-0.56) vs. 1.11 (0.63-2.32), p=0.002]. Only insulin levels were significantly different between the subjects in each protocol group (11.3 [6.2-15.1] vs. 3.9 [2.9-6.2]). Carbohydrate restriction together with an LCHF supplement administered 1h before FDG significantly suppressed myocardial-FDG uptake. FFAs and insulin might not directly affect myocardial-FDG uptake. Copyright © 2013 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  11. Omega-3 fatty acids revert high-fat diet-induced neuroinflammation but not recognition memory impairment in rats.

    Science.gov (United States)

    de Andrade, Aline Marcelino; Fernandes, Marilda da Cruz; de Fraga, Luciano Stürmer; Porawski, Marilene; Giovenardi, Márcia; Guedes, Renata Padilha

    2017-12-01

    Neuroinflammation is a consequence of overeating and may predispose to the development of cognitive decline and neurological disorders. This study aimed to evaluate the impact of omega-3 supplementation on memory and neuroinflammatory markers in rats fed a high-fat diet. Male Wistar rats were divided into four groups: standard diet (SD); standard diet + omega-3 (SD + O); high fat diet (HFD); and high fat diet + omega-3 (HFD + O). Diet administration was performed for 20 weeks and omega-3 supplementation started at the 16th week. HFD significantly increased body weight, while omega-3 supplementation did not modify the total weight gain. However, animals from the HFD + O group showed a lower level of visceral fat along with an improvement in insulin sensitivity following HFD. Thus, our results demonstrate a beneficial metabolic role of omega-3 following HFD. On the other hand, HFD animals presented an impairment in object recognition memory, which was not recovered by omega-3. In addition, there was an increase in GFAP-positive cells in the cerebral cortex of the HFD group, showing that omega-3 supplementation can be effective to decrease astrogliosis. However, no differences in GFAP number of cells were found in the hippocampus. We also demonstrated a significant increase in gene expression of pro-inflammatory cytokines IL-6 and TNF-α in cerebral cortex of the HFD group, reinforcing the anti-inflammatory role of this family of fatty acids. In summary, omega-3 supplementation was not sufficient to reverse the memory deficit caused by HFD, although it played an important role in reducing the neuroinflammatory profile. Therefore, omega-3 fatty acids may play an important role in the central nervous system, preventing the progression of neuroinflammation in obesity.

  12. Thermogenic Blend Alone or in Combination with Whey Protein Supplement Stimulates Fat Metabolism and Improves Body Composition in Mice

    Science.gov (United States)

    Vieira-Brock, Paula de Lima; Vaughan, Brent M.; Vollmer, David L.

    2018-01-01

    Background: Certain food ingredients promote thermogenesis and fat loss. Similarly, whey protein improves body composition. Due to this potential synergistic effect, a blend of thermogenic food ingredients containing African mango, citrus fruit extract, Coleus forskohlii, dihydrocapsiate, and red pepper was tested alone and in combination with a whey protein supplement for its effects on body composition in sedentary mice during high-fat diet. Objective: The objective of this study was to evaluate the interaction of thermogenic foods on improving body composition during consumption of an unhealthy diet. Materials and Methods: C57BL/6J young adult male mice (n = 12) were placed on a 60% high-fat diet for 4 weeks and subsequently randomly assigned to receive daily dosing by oral gavage of vehicle, the novel blend alone or with whey protein supplement for another 4 weeks. Body composition, thermal imaging of brown adipose tissue (BAT), mitochondrial BAT uncoupling protein 1 (UCP1), and plasma levels of leptin were assessed. Results: Novel blend alone and in combination with protein supplement attenuated body weight gain, fat, and increased surface BAT temperature in comparison to vehicle control and to baseline (P blend and whey protein supplement also significantly increased UCP1 protein expression in BAT mitochondria in comparison to vehicle control and novel blend alone (P blend stimulates thermogenesis and attenuates the gain in body weight and fat in response to high-fat diet in mice and these effects were improved when administered in combination with whey protein supplement. SUMMARY 30 days oral administration to mice of a novel blend containing African mango seed extract, citrus fruits extract, Coleus forskohlii root extract, dihydrocapsiate and red pepper fruit extract reduced body weight and fat gain in response to high-fat diet without impairing muscle mass.The novel blend stimulated thermogenesis as shown by the increased thermal imaging and UCP1 protein

  13. Long-term effects of weight loss with a very-low carbohydrate, low saturated fat diet on flow mediated dilatation in patients with type 2 diabetes: A randomised controlled trial.

    Science.gov (United States)

    Wycherley, Thomas P; Thompson, Campbell H; Buckley, Jonathan D; Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Brinkworth, Grant D

    2016-09-01

    Very-low carbohydrate diets can improve glycaemic control in patients with type 2 diabetes (T2DM). However, compared to traditional higher carbohydrate, low fat (HighCHO) diets, they have been associated with impaired endothelial function (measured by flow mediated dilatation [FMD]) that is possibly related to saturated fat. This study aimed to examine the effects of a 12-month hypocaloric very-low carbohydrate, low saturated fat (LowCHO) diet compared to an isocaloric HighCHO diet. One hundred and fifteen obese patients with T2DM (age:58.4 ± 0.7 [SEM] yr, BMI:34.6 ± 0.4 kg/m(2), HbA1c:7.33 [56.3 mmol/mol] ± 0.10%) were randomised to consume an energy restricted LowCHO diet (Carb:Pro:Fat:Sat-Fat 14:28:58: < 10% energy; n = 58) or isocaloric HighCHO diet (53:17:30: < 10%; n = 57) whilst undertaking exercise (60 min, 3/wk). Bodyweight, HbA1c and FMD were assessed. Seventy eight participants completed the intervention (LowCHO = 41, HighCHO = 37). Both groups experienced similar reductions in weight and HbA1c (-10.6 ± 0.7 kg, -1.05 ± 0.10%; p < 0.001 time, p ≥ 0.48 time × diet). FMD did not change (p = 0.11 time, p = 0.20 time × diet). In patients with obesity and T2DM, HighCHO diet and LowCHO diet have similar effects on endothelial function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Use of enzymes in diets with different percentages of added fat for broilers

    Directory of Open Access Journals (Sweden)

    F.G.P. Costa

    2013-06-01

    Full Text Available We assessed the extent to which the removal of fat source, and consequently its compounds, such as linoleic acid, can affect the performance of broilers. We used 600 male Cobb 500 day old chicks. The birds were distributed in a completely randomized experimental design, with five treatments and six replicates of 20 birds each. The treatments were: (T1 diet - positive control (PC, which met the nutritional needs; (T2 diet - negative control (CN, a reduction of 100kcal/kg and low linoleic acid content; (T3: diet - negative control reformulated for low linoleic acid content and a set of Quantum phytase XT and Econase XT 25 (BAL + QFit-Eco, (T4: diet - negative control reformulated, with the percentage of linoleic acid adjusted to an intermediate value between the value of the diet and diet CP and CN to use a set of Quantum phytase XT and XT Econase 25 (IAL + QFit-Eco and (T5: diet - negative control reformulated, with the percentage of linoleic acid adjusted to a value similar to that of the positive control diet and joint use of Quantum phytase XT and XT Econase 25 (AAL + QFit-Eco. The joint use of Quantum Phytase and Econase promoted improvement in the performance of broilers from 1 to 21 days. The greatest weight gain was obtained with diets containing percentages of total fat and linoleic acids. Dietary supplementation with enzymes resulted in higher levels of calcium in the tibia, whatever the percentage of linoleic studied.

  15. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial1234

    Science.gov (United States)

    Barnard, Neal D; Cohen, Joshua; Jenkins, David JA; Turner-McGrievy, Gabrielle; Gloede, Lise; Green, Amber; Ferdowsian, Hope

    2009-01-01

    Background: Low-fat vegetarian and vegan diets are associated with weight loss, increased insulin sensitivity, and improved cardiovascular health. Objective: We compared the effects of a low-fat vegan diet and conventional diabetes diet recommendations on glycemia, weight, and plasma lipids. Design: Free-living individuals with type 2 diabetes were randomly assigned to a low-fat vegan diet (n = 49) or a diet following 2003 American Diabetes Association guidelines (conventional, n = 50) for 74 wk. Glycated hemoglobin (Hb A1c) and plasma lipids were assessed at weeks 0, 11, 22, 35, 48, 61, and 74. Weight was measured at weeks 0, 22, and 74. Results: Weight loss was significant within each diet group but not significantly different between groups (−4.4 kg in the vegan group and −3.0 kg in the conventional diet group, P = 0.25) and related significantly to Hb A1c changes (r = 0.50, P = 0.001). Hb A1c changes from baseline to 74 wk or last available values were −0.34 and −0.14 for vegan and conventional diets, respectively (P = 0.43). Hb A1c changes from baseline to last available value or last value before any medication adjustment were −0.40 and 0.01 for vegan and conventional diets, respectively (P = 0.03). In analyses before alterations in lipid-lowering medications, total cholesterol decreased by 20.4 and 6.8 mg/dL in the vegan and conventional diet groups, respectively (P = 0.01); LDL cholesterol decreased by 13.5 and 3.4 mg/dL in the vegan and conventional groups, respectively (P = 0.03). Conclusions: Both diets were associated with sustained reductions in weight and plasma lipid concentrations. In an analysis controlling for medication changes, a low-fat vegan diet appeared to improve glycemia and plasma lipids more than did conventional diabetes diet recommendations. Whether the observed differences provide clinical benefit for the macro- or microvascular complications of diabetes remains to be established. This trial was registered at clinicaltrials

  16. Supplementation with fish oil and coconut fat prevents prenatal stress-induced changes in early postnatal development.

    Science.gov (United States)

    Borsonelo, Elizabethe C; Suchecki, Deborah; Calil, Helena Maria; Galduróz, José Carlos F

    2011-08-01

    Adequate development of the central nervous system depends on prenatal and postnatal factors. On one hand, prenatal stress (PNS) has been implicated in impaired development of the offspring. On other hand, nutritional factors during pregnancy and lactation can influence fetal and postnatal growth. This study assessed the postnatal development of rat offspring exposed to PNS, which consisted of restraint and bright lights, 3 times/day, from days 14 to 20 of pregnancy, whose mothers were fed different diets during pregnancy and lactation: regular diet, diet supplemented with coconut fat or fish oil. When pregnancy was confirmed, they were distributed into control (CTL) or PNS groups. At birth, PNS males and females weighed less than those in the group CTL. At 21 days of age, this alteration was no longer observed with fish oil and coconut fat groups. PNS and coconut fat diet induced increased locomotor activity in 13 day old male and female pups, and this effect was prevented by fish oil supplementation only in females. In conclusion, postnatal development from birth to weaning was influenced by PNS and diet and some of those alterations were prevented by coconut fat and fish oil. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. High-protein, low-fat, short-term diet results in less stress and fatigue than moderate-protein moderate-fat diet during weight loss in male weightlifters: a pilot study.

    Science.gov (United States)

    Helms, Eric R; Zinn, Caryn; Rowlands, David S; Naidoo, Ruth; Cronin, John

    2015-04-01

    Athletes risk performance and muscle loss when dieting. Strategies to prevent losses are unclear. This study examined the effects of two diets on anthropometrics, strength, and stress in athletes. This double-blind crossover pilot study began with 14 resistance-trained males (20-43 yr) and incurred one dropout. Participants followed carbohydrate-matched, high-protein low-fat (HPLF) or moderate-protein moderate-fat (MPMF) diets of 60% habitual calories for 2 weeks. Protein intakes were 2.8g/kg and 1.6g/kg and mean fat intakes were 15.4% and 36.5% of calories, respectively. Isometric midthigh pull (IMTP) and anthropometrics were measured at baseline and completion. The Daily Analysis of Life Demands of Athletes (DALDA) and Profile of Mood States (POMS) were completed daily. Outcomes were presented statistically as probability of clinical benefit, triviality, or harm with effect sizes (ES) and qualitative assessments. Differences of effect between diets on IMTP and anthropometrics were likely or almost certainly trivial, respectively. Worse than normal scores on DALDA part A, part B and the part A "diet" item were likely more harmful (ES 0.32, 0.4 and 0.65, respectively) during MPMF than HPLF. The POMS fatigue score was likely more harmful (ES 0.37) and the POMS total mood disturbance score (TMDS) was possibly more harmful (ES 0.29) during MPMF than HPLF. For the 2 weeks observed, strength and anthropometric differences were minimal while stress, fatigue, and diet-dissatisfaction were higher during MPMF. A HPLF diet during short-term weight loss may be more effective at mitigating mood disturbance, fatigue, diet dissatisfaction, and stress than a MPMF diet.

  18. Maternal High Folic Acid Supplement Promotes Glucose Intolerance and Insulin Resistance in Male Mouse Offspring Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Yifan Huang

    2014-04-01

    Full Text Available Maternal nutrition may influence metabolic profiles in offspring. We aimed to investigate the effect of maternal folic acid supplement on glucose metabolism in mouse offspring fed a high-fat diet (HFD. Sixty C57BL/6 female mice were randomly assigned into three dietary groups and fed the AIN-93G diet containing 2 (control, 5 (recommended folic acid supplement, RFolS or 40 (high folic acid supplement, HFolS mg folic acid/kg of diet. All male offspring were fed HFD for eight weeks. Physiological, biochemical and genetic variables were measured. Before HFD feeding, developmental variables and metabolic profiles were comparable among each offspring group. However, after eight weeks of HFD feeding, the offspring of HFolS dams (Off-HFolS were more vulnerable to suffer from obesity (p = 0.009, glucose intolerance (p < 0.001 and insulin resistance (p < 0.001, compared with the controls. Off-HFolS had reduced serum adiponectin concentration, accompanied with decreased adiponectin mRNA level but increased global DNA methylation level in white adipose tissue. In conclusion, our results suggest maternal HFolS exacerbates the detrimental effect of HFD on glucose intolerance and insulin resistance in male offspring, implying that HFolS during pregnancy should be adopted cautiously in the general population of pregnant women to avoid potential deleterious effect on the metabolic diseases in their offspring.

  19. PROP Nontaster Women Lose More Weight Following a Low-Carbohydrate Versus a Low-Fat Diet in a Randomized Controlled Trial.

    Science.gov (United States)

    Burgess, Brenda; Raynor, Hollie A; Tepper, Beverly J

    2017-10-01

    Taste blindness to 6-n-propylthiouracil (PROP) associates with increased fat preference and intake. No studies have matched a diet to a woman's PROP phenotype to improve weight loss. This study investigated (1) whether PROP nontaster (NT) women would lose more weight following a low-carbohydrate (LC) diet than a low-fat (LF) diet, and (2) whether PROP supertaster (ST) women would lose more weight following a LF diet than a LC diet. One hundred seven women (BMI = 34.8 ± 0.5 kg/m 2 ), classified as PROP NTs (n = 47) and STs (n = 60), were randomized to a LC or LF diet within a 6-month lifestyle intervention. Assessments included 4-day dietary recalls and biobehavioral and psychosocial questionnaires. At 6 months, NTs lost more weight following the LC than the LF diet (-8.5 ± 0.5 kg vs. -6.6 ± 0.5 kg, P = 0.008); there was no difference between STs following either diet (-8.8 ± 0.4 vs. -8.9 ± 0.5, P = 0.35). Dietary self-reports were unrelated to weight loss, and prescription of a LC diet associated with greater self-efficacy. NT women lost more weight following the LC diet compared to the LF diet. Screening for PROP phenotype may help personalize diet therapy for NT women to optimize their short-term weight loss. © 2017 The Authors. Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  20. A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of 'faecal water'

    DEFF Research Database (Denmark)

    Rieger, Martin A.; Parlesak, Alexandr; Pool-Zobel, Beatrice

    1999-01-01

    To determine the effects of different diets on the genotoxicity of human faecal water, a diet rich in fat, meat and sugar but poor in vegetables and free of wholemeal products (diet 1) was consumed by seven healthy volunteers over a period of 12 days. One week after the end of this period......, the volunteers started to consume a diet enriched with vegetables and wholemeal products but poor in fat and meat (diet 2) over a second period of 12 days. The genotoxic effect of faecal waters obtained after both diets was assessed with the single cell gel electrophoresis (Comet assay) using the human colon...... and purine bases revealed no differences after pretreatment with both types of faecal water. The results indicate that diets high in fat and meat but low in dietary fibre increase the genotoxicity of faecal water to colonic cells and may contribute to an enhanced risk of colorectal cancer....

  1. Effects of low-fat or full-fat fermented and non-fermented dairy foods on selected cardiovascular biomarkers in overweight adults.

    Science.gov (United States)

    Nestel, Paul J; Mellett, Natalie; Pally, Suzana; Wong, Gerard; Barlow, Chris K; Croft, Kevin; Mori, Trevor A; Meikle, Peter J

    2013-12-01

    The association between consumption of full-fat dairy foods and CVD may depend partly on the nature of products and may not apply to low-fat dairy foods. Increased circulating levels of inflammatory biomarkers after consumption of dairy product-rich meals suggest an association with CVD. In the present study, we tested the effects of low-fat and full-fat dairy diets on biomarkers associated with inflammation, oxidative stress or atherogenesis and on plasma lipid classes. Within full-fat dairy diets, we also compared fermented v. non-fermented products. In a randomised cross-over study, twelve overweight/obese subjects consumed during two 3-week periods two full-fat dairy diets containing either yogurt plus cheese (fermented) or butter, cream and ice cream (non-fermented) or a low-fat milk plus yogurt diet, with the latter being consumed between and at the end of the full-fat dairy dietary periods. The concentrations of six inflammatory and two atherogenic biomarkers known to be raised in CVD were measured as well as those of plasma F2-isoprostanes and lipid classes. The concentrations of six of the eight biomarkers tended to be higher on consumption of the low-fat dairy diet than on that of the fermented dairy diet and the concentrations of two plasmalogen lipid classes reported to be associated with increased oxidisability were also higher on consumption of the low-fat dairy diet than on that of the fermented dairy diet (Pfermented dairy diet than on that of the low-fat dairy diet (Pdairy products did not lead to a more favourable biomarker profile associated with CVD risk compared with the full-fat dairy products, suggesting that full-fat fermented dairy products may be the more favourable.

  2. Lack of suppression of circulating free fatty acids and hypercholesterolemia during weight loss on a high-fat, low-carbohydrate diet.

    Science.gov (United States)

    Hernandez, Teri L; Sutherland, Julie P; Wolfe, Pamela; Allian-Sauer, Marybeth; Capell, Warren H; Talley, Natalie D; Wyatt, Holly R; Foster, Gary D; Hill, James O; Eckel, Robert H

    2010-03-01

    Little is known about the comparative effect of weight-loss diets on metabolic profiles during dieting. The purpose of this study was to compare the effect of a low-carbohydrate diet (carbohydrate diet (55% of total energy intake) on fasting and hourly metabolic variables during active weight loss. Healthy, obese adults (n = 32; 22 women, 10 men) were randomly assigned to receive either a carbohydrate-restricted diet [High Fat; mean +/- SD body mass index (BMI; in kg/m(2)): 35.8 +/- 2.9] or a calorie-restricted, low-fat diet (High Carb; BMI: 36.7 +/- 4.6) for 6 wk. A 24-h in-patient feeding study was performed at baseline and after 6 wk. Glucose, insulin, free fatty acids (FFAs), and triglycerides were measured hourly during meals, at regimented times. Remnant lipoprotein cholesterol was measured every 4 h. Patients lost a similar amount of weight in both groups (P = 0.57). There was an absence of any diet treatment effect between groups on fasting triglycerides or on remnant lipoprotein cholesterol, which was the main outcome. Fasting insulin decreased (P = 0.03), and both fasting (P = 0.040) and 24-h FFAs (P Fat group. Twenty-four-hour insulin decreased (P loss was similar between diets, but only the high-fat diet increased LDL-cholesterol concentrations. This effect was related to the lack of suppression of both fasting and 24-h FFAs.

  3. Saturated fat supplementation interacts with dietary forage neutral detergent fiber content during the immediate postpartum and carryover periods in Holstein cows: Production responses and digestibility of nutrients.

    Science.gov (United States)

    Piantoni, P; Lock, A L; Allen, M S

    2015-05-01

    Forty-eight multiparous cows were used in a randomized complete block design experiment with a 2×2 factorial arrangement of treatments to determine the interaction between a highly saturated free FA supplement (SFFA) and dietary forage neutral detergent fiber (fNDF) content on production responses and nutrient digestibility of dairy cows in the postpartum period. Treatment diets were offered from 1 to 29d postpartum (postpartum period; PP) and contained 20 or 26% fNDF (50:50 corn silage:alfalfa silage and hay, dry matter basis) and 0 or 2% SFFA [Energy Booster 100 (Milk Specialties Global, Eden Prairie, MN); 96.1% FA: 46.2% C18:0 and 37.0% C16:0]. From 30 to 71d postpartum (carryover period), a common diet (~23% fNDF, 0% SFFA) was offered to all cows to evaluate carryover effects of the treatment diets early in lactation. During the PP, higher fNDF decreased dry matter intake (DMI) by 2.0 kg/d, whereas SFFA supplementation increased it by 1.4kg/d. In addition, high fNDF with 0% SFFA decreased DMI compared with the other diets and this difference increased throughout the PP. Treatments did not affect 3.5% fat-corrected milk yield during the PP but did during the carryover period when SFFA supplementation decreased 3.5% fat-corrected milk yield for the low-fNDF diet (51.1 vs. 58.7kg/d), but not for the high-fNDF diet (58.5 vs. 58.0kg/d). During the PP, lower fNDF and SFFA supplementation decreased body condition score loss. A tendency for an interaction between fNDF and SFFA indicated that low fNDF with 2% SFFA decreased body condition score loss compared with the other diets (-0.49 vs. -0.89). During the PP, lower fNDF and 2% SFFA supplementation decreased feed efficiency (3.5% fat-corrected milk/DMI) by 0.30 and 0.23 units, respectively. The low-fNDF diet with 2% SFFA decreased feed efficiency compared with other diets early in the PP, but this difference decreased over time. Supplementation of SFFA in the PP favored energy partitioning to body reserves and

  4. Role of glycogen-lowering exercise in the change of fat oxidation in response to a high-fat diet.

    NARCIS (Netherlands)

    Schrauwen, P.; van Marken Lichtenbelt, W.D.; Saris, W.H.M.; Westerterp, K.R.

    1997-01-01

    Department of Human Biology, Maastricht University, The Netherlands. One of the candidate factors for determining the increase of fat oxidation after a switch from a reduced-fat diet to a high-fat diet is the size of the glycogen storage. Therefore, we studied the effect of low glycogen stores on

  5. Both dietary supplementation with monosodium L-glutamate and fat modify circulating and tissue amino acid pools in growing pigs, but with little interactive effect.

    Directory of Open Access Journals (Sweden)

    Zemeng Feng

    Full Text Available The Chinese population has undergone rapid transition to a high-fat diet. Furthermore, monosodium L-glutamate (MSG is widely used as a daily food additive in China. Little information is available on the effects of oral MSG and dietary fat supplementation on the amino acid balance in tissues. The present study aimed to determine the effects of both dietary fat and MSG on amino acid metabolism in growing pigs, and to assess any possible interactions between these two nutrients.Four iso-nitrogenous and iso-caloric diets (basal diet, high fat diet, basal diet with 3% MSG and high fat diet with 3% MSG were provided to growing pigs. The dietary supplementation with fat and MSG used alone and in combination were found to modify circulating and tissue amino acid pools in growing pigs. Both dietary fat and MSG modified the expression of gene related to amino acid transport in jejunum.Both dietary fat and MSG clearly influenced amino acid content in tissues but in different ways. Both dietary fat and MSG enhance the absorption of amino acids in jejunum. However, there was little interaction between the effects of dietary fat and MSG.

  6. Supplementation with antioxidant-rich extra virgin olive oil prevents hepatic oxidative stress and reduction of desaturation capacity in mice fed a high-fat diet: Effects on fatty acid composition in liver and extrahepatic tissues.

    Science.gov (United States)

    Rincón-Cervera, Miguel Angel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Marambio, Macarena; Espinosa, Alejandra; Mayer, Susana; Romero, Nalda; Barrera M Sc, Cynthia; Valenzuela, Alfonso; Videla, Luis A

    2016-01-01

    The aim of this study was to assess the effect of dietary supplementation with extra virgin olive oil (EVOO) in mice on the reduction of desaturase and antioxidant enzymatic activities in liver, concomitantly with long-chain polyunsaturated fatty acids (LCPUFA) profiles in liver and extrahepatic tissues induced by a high-fat diet (HFD). Male mice C57 BL/6 J were fed with a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or an HFD (60% fat, 20% protein, 20% carbohydrates) for 12 wk. Animals were supplemented with 100 mg/d EVOO with different antioxidant contents (EVOO I, II, and III). After the intervention, blood and several tissues were analyzed. Dietary supplementation with EVOO with the highest antioxidant content and antioxidant capacity (EVOO III) significantly reduced fat accumulation in liver and the plasmatic metabolic alterations caused by HFD and produced a normalization of oxidative stress-related parameters, desaturase activities, and LCPUFA content in tissues. Data suggest that dietary supplementation with EVOO III may prevent oxidative stress and reduction of biosynthesis and accretion of ω-3 LCPUFA in the liver of HFD-fed mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Production of Bio-omega-3 eggs through the supplementation of extruded flaxseed meal in hen diet.

    Science.gov (United States)

    Imran, Muhammad; Anjum, Faqir Muhammad; Nadeem, Muhammad; Ahmad, Nazir; Khan, Muhammad Kamran; Mushtaq, Zarina; Hussain, Shahzad

    2015-10-09

    The full-fat flaxseed meal has obtained relatively new flourished concept as staple chicken feedstuff for the production of designer eggs. However, unprocessed flaxseed also encloses well documented anti-nutritional factors which are associated with growth depression of laying hens. The present research work was carried out to evaluate the impact of full-fat extruded flaxseed meal supplemented diets on productivity performance of hens and production of modified ω-3 fatty acids-enriched eggs. The full-fat flaxseed meal was extruded at barrel exit temperature (140 °C), screw speed (160 rpm) and feed rate (25 kg/h) for reduction of anti-nutritional compounds. One hundred and sixty, Babcock hens (age 24 weeks old) were selected at random from a large flock and ten hens were placed in each of 16 wire-mesh pens. The experimental diets prepared by supplementation of extruded flaxseed at 10%, 20% and 30% level were fed to hens along with control. The extruded flaxseed contained 86% and 76% less hydrocyanic compounds and tannin, respectively than the initial material. The hens fed with control diet consumed more feed, possessed heavy body weight and showed higher egg production as compared to hens fed on extruded flaxseed supplemented diets. The loss in body weight and egg production was recorded less for hens fed on 10% extruded flaxseed supplemented diets as compared to those fed on 30% extruded flaxseed supplemented diets. None of the experimental diets resulted in significant increase or decrease the total lipids and cholesterol content in egg yolk of hens. The extruded flaxseed supplemented diets resulted in a significant improvement of α-linolenic and docosahexaenoic acid in egg yolk with a concomitant reduction in arachidonic acid. The sensory scores were assigned higher to control eggs. Increasing level of extruded flaxseed in experimental diets decreased the scores for all sensory attributes of eggs. The present study suggested that extruded flaxseed meal up to

  8. A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults.

    Science.gov (United States)

    von Frankenberg, Anize D; Marina, Anna; Song, Xiaoling; Callahan, Holly S; Kratz, Mario; Utzschneider, Kristina M

    2017-02-01

    We sought to determine the effects of dietary fat on insulin sensitivity and whether changes in insulin sensitivity were explained by changes in abdominal fat distribution or very low-density lipoprotein (VLDL) fatty acid composition. Overweight/obese adults with normal glucose tolerance consumed a control diet (35 % fat/12 % saturated fat/47 % carbohydrate) for 10 days, followed by a 4-week low-fat diet (LFD, n = 10: 20 % fat/8 % saturated fat/62 % carbohydrate) or high-fat diet (HFD, n = 10: 55 % fat/25 % saturated fat/27 % carbohydrate). All foods and their eucaloric energy content were provided. Insulin sensitivity was measured by labeled hyperinsulinemic-euglycemic clamps, abdominal fat distribution by MRI, and fasting VLDL fatty acids by gas chromatography. The rate of glucose disposal (Rd) during low- and high-dose insulin decreased on the HFD but remained unchanged on the LFD (Rd-low: LFD: 0.12 ± 0.11 vs. HFD: -0.37 ± 0.15 mmol/min, mean ± SE, p vs. HFD: -0.71 ± 0.26 mmol/min, p = 0.08). Hepatic insulin sensitivity did not change. Changes in subcutaneous fat were positively associated with changes in insulin sensitivity on the LFD (r = 0.78, p fat. The LFD led to an increase in VLDL palmitic (16:0), stearic (18:0), and palmitoleic (16:1n7c) acids, while no changes were observed on the HFD. Changes in VLDL n-6 docosapentaenoic acid (22:5n6) were strongly associated with changes in insulin sensitivity on both diets (LFD: r = -0.77; p fat and saturated fat adversely affects insulin sensitivity and thereby might contribute to the development of type 2 diabetes. CLINICALTRIALS. NCT00930371.

  9. Effect of Low-Fat vs. Other Diet Interventions on Long-Term Weight Change in Adults: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Tobias, Deirdre K.; Chen, Mu; Manson, JoAnn E.; Ludwig, David S.; Willett, Walter; Hu, Frank B.

    2015-01-01

    Background The effectiveness of low-fat diets for long-term weight loss has been debated for decades, with dozens of randomized trials (RCTs) and recent reviews giving mixed results. Methods We conducted a random effects meta-analysis of RCTs to estimate the long-term effect of low-fat vs. higher fat dietary interventions on weight loss. Our search included RCTs conducted in adult populations reporting weight change outcomes at ≥1 year, comparing low-fat with higher fat interventions, published through July 2014. The primary outcome measure was mean difference in weight change between interventions. Findings Fifty-three studies met inclusion criteria representing 68,128 participants. In the setting of weight loss trials, low-carbohydrate interventions led to significantly greater weight loss than low-fat interventions (n comparisons=18; weighted mean difference [WMD]=1.15 kg, 95% CI=0.52 to 1.79; I2=10%). Low-fat did not lead to differences in weight change compared with other moderate fat weight loss interventions (n=19; WMD=0.36, 95% CI=-0.66 to 1.37; I2=82%), and were superior only when compared with “usual diet” (n=8; WMD=-5.41, 95% CI=-7.29 to −3.54; I2=68%). Similarly, non-weight loss trials and weight maintenance trials, for which there were no low-carbohydrate comparisons, had similar effects for low-fat vs moderate fat interventions, and were superior compared with “usual diet”. Weight loss trials achieving a greater difference in fat intake at follow-up significantly favored the higher fat dietary interventions, as indicated by difference of ≥5% of calories from fat (n=18; WMD=1.04, 95% CI=0.06 to 2.03; I2=78%) or by difference in change serum triglycerides of ≥5 mg/dL (n=17; WMD=1.38, 95% CI=0.50 to 2.25; I2=62%). Interpretation These findings suggest that the long-term effect of low-fat diets on body weight depends on the intensity of intervention in the comparison group. When compared to dietary interventions of similar intensity

  10. In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2017-09-01

    Full Text Available Background Food selection and ingestion both in humans and rodents, often is a critical factor in determining excess energy intake and its related disorders. Methods Two different concepts of high-fat diets were tested for their obesogenic effects in rats; in both cases, lipids constituted about 40% of their energy intake. The main difference with controls fed standard lab chow, was, precisely, the lipid content. Cafeteria diets (K were self-selected diets devised to be desirable to the rats, mainly because of its diverse mix of tastes, particularly salty and sweet. This diet was compared with another, more classical high-fat (HF diet, devised not to be as tasty as K, and prepared by supplementing standard chow pellets with fat. We also analysed the influence of sex on the effects of the diets. Results K rats grew faster because of a high lipid, sugar and protein intake, especially the males, while females showed lower weight but higher proportion of body lipid. In contrast, the weight of HF groups were not different from controls. Individual nutrient’s intake were analysed, and we found that K rats ingested large amounts of both disaccharides and salt, with scant differences of other nutrients’ proportion between the three groups. The results suggest that the key differential factor of the diet eliciting excess energy intake was the massive presence of sweet and salty tasting food. Conclusions The significant presence of sugar and salt appears as a powerful inducer of excess food intake, more effective than a simple (albeit large increase in the diet’s lipid content. These effects appeared already after a relatively short treatment. The differential effects of sex agree with their different hedonic and obesogenic response to diet.

  11. Leucine supplementation improves adiponectin and total cholesterol concentrations despite the lack of changes in adiposity or glucose homeostasis in rats previously exposed to a high-fat diet

    Directory of Open Access Journals (Sweden)

    Donato Jose

    2011-09-01

    Full Text Available Abstract Background Studies suggest that leucine supplementation (LS has a therapeutic potential to prevent obesity and to promote glucose homeostasis. Furthermore, regular physical exercise is a widely accepted strategy for body weight maintenance and also for the prevention of obesity. The aim of this study was to determine the effect of chronic LS alone or combined with endurance training (ET as potential approaches for reversing the insulin resistance and obesity induced by a high-fat diet (HFD in rats. Methods Forty-seven rats were randomly divided into two groups. Animals were fed a control diet-low fat (n = 10 or HFD (n = 37. After 15 weeks on HFD, all rats received the control diet-low fat and were randomly divided according to treatment: reference (REF, LS, ET, and LS+ET (n = 7-8 rats per group. After 6 weeks of treatment, the animals were sacrificed and body composition, fat cell volume, and serum concentrations of total cholesterol, HDL-cholesterol, triacylglycerol, glucose, adiponectin, leptin and tumor necrosis factor-alpha (TNF-α were analyzed. Results At the end of the sixth week of treatment, there was no significant difference in body weight between the REF, LS, ET and LS+ET groups. However, ET increased lean body mass in rats (P = 0.019. In addition, ET was more effective than LS in reducing adiposity (P = 0.019, serum insulin (P = 0.022 and TNF-α (P = 0.044. Conversely, LS increased serum adiponectin (P = 0.021 levels and reduced serum total cholesterol concentration (P = 0.042. Conclusions The results showed that LS had no beneficial effects on insulin sensitivity or adiposity in previously obese rats. On the other hand, LS was effective in increasing adiponectin levels and in reducing total cholesterol concentration.

  12. Low trans structured fat from flaxseed oil improves plasma and hepatic lipid metabolism in apo E(-/-) mice.

    Science.gov (United States)

    Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Park, Yong-Bok; Lee, Ki-Teak; Park, Taesun; Choi, Myung-Sook

    2009-07-01

    The objective of this study was to explicate the effects of feeding low trans structured fat from flaxseed oil (LF) on plasma and hepatic lipid metabolism involved in apo E(-/-) mice. The animals were fed a commercial shortening (CS), commercial low trans fat (CL) and LF diet based on AIN-76 diet (10% fat) for 12 weeks. LF supplementation exerted a significant suppression in hepatic lipid accumulation with the concomitant decrease in liver weight. The LF significantly lowered plasma total cholesterol and free fatty acid whereas it significantly increased HDL-C concentration and the HDL-C/total-C ratio compared to the CS group. Reduction of hepatic lipid levels in the LF group was related with the suppression of hepatic enzyme activities for fatty acid and triglyceride synthesis, and cholesterol regulating enzyme activity compared to the CS and CL groups. Accordingly, low trans structured fat from flaxseed oil is highly effective for improving hyperlipidemia and hepatic lipid accumulation in apo E(-/-) mice.

  13. The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chang, Tien-Chia; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-10-01

    The present study investigated the regulatory effects of fish oil and chitosan on the signals of hepatic lipid metabolism and the postulated mechanism in high-fat diet-induced obese rats. Diet supplementation of chitosan and fish oil efficiently suppressed the increased weights in body and livers of high-fat diet-fed rats. Supplementation of chitosan and fish oil significantly decreased the activities of hepatic lipid biosynthesis-related enzymes and efficiently regulated plasma lipoprotein homeostasis. Both chitosan and fish oil significantly ameliorated the alterations in the protein expressions of hepatic lipogenic transcription factors (LXRα and PPARα), and could also significantly regulate the downstream hepatic lipogenic genes (FAS, HMGCR, CYP7A1, FATP, FABP, AOX, and ABCA) expressions in high-fat diet-fed rats. These results suggest that both fish oil and chitosan exerts downregulative effects on hepatic lipid metabolism in high-fat diet-induced obese rats via the LXRα inhibition and PPARα activation, which further affect the expressions of hepatic lipogenesis-associated genes. Copyright © 2017. Published by Elsevier B.V.

  14. The effect of a high-MUFA, low-glycaemic index diet and a low-fat diet on appetite and glucose metabolism during a 6-month weight maintenance period

    DEFF Research Database (Denmark)

    Sloth, Birgitte; Due, Anette Pia; Larsen, Thomas Meinert

    2008-01-01

    We aimed to test the effects of three different weight maintenance diets on appetite, glucose and fat metabolism following an initial low-energy diet (LED) induced body weight loss. Following an 8-week LED and a 2-3-week refeeding period, 131 subjects were randomized to three diets for 6 months: ...... and 2-3-week refeeding period, suggest that strategies for physiological appetite control following a LED period are needed, in order to prevent weight regain....

  15. Change in proportional protein intake in a 10-week energy-restricted low- or high-fat diet, in relation to changes in body size and metabolic factors

    DEFF Research Database (Denmark)

    Stocks, Tanja; Taylor, Moira A; Ängquist, Lars

    2013-01-01

    Objective: To investigate in a secondary analysis of a randomised trial the effects of a low-/high-fat diet and reported change from baseline in energy% from protein (prot%), in relation to changes in body size and metabolic factors. Methods: Obese adults (n = 771) were randomised to a 600 kcal...... while not considering prot% change. The high-fat group reduced plasma triglycerides more than the low-fat group, but not compared to those in the low-fat group with >2 units prot% increase (p fat-protein interaction = 0.01). Conclusions: Under energy restriction, participants on a low-fat diet who had...... increased the percentage energy intake from protein showed the greatest reduction in weight and cholesterol, and a triglyceride reduction equally large to that of participants on a high-fat diet. Copyright © 2013 S. Karger GmbH, Freiburg....

  16. [Comparison of the effects of alpha-keto/ amino acid supplemented low protein diet and diabetes diet in patients with diabetic nephropathy].

    Science.gov (United States)

    Qiu, Hong-yu; Liu, Fang; Zhao, Li-jun; Huang, Song-min; Zuo, Chuan; Zhong, Hui; Chen, Feng

    2012-05-01

    To investigate if a-keto/amino acid supplemented low protein diet can slow down the progression of diabetic nephrophathy in comparison with non-supplemented diabetes diet. A prospective, randomized, controlled clinical study was conducted. Twenty three cases of type 2 diabetic nephropathy in IV stage were randomly divided into alpha-keto/amino acid supplemented diet group (trial group) and conventional diabetes diet group (control group), The treatment duration was 52 weeks. 24 h urine protein was measured at 0, 12, 20, 36 and 52 weeks. Before and after the 52 weeks treatment, all the patients received the measurement of glomerular filtration rate (GFR), blood glucose, blood lipids, inflammatory markers, as well as nutritional status. After the treatment for 20, 36, 52 weeks, mean 24 h urine protein decreased significantly in trial groups (P keto/amino acid can reduce proteinuria more effectively, while improve renal function and nutritional status in diabetic nephropathy patients with well-toleration.

  17. Potential of essential fatty acid deficiency with extremely low fat diet in lipoprotein lipase deficiency during pregnancy: A case report

    Directory of Open Access Journals (Sweden)

    Anderson Gregory J

    2004-12-01

    Full Text Available Abstract Background Pregnancy in patients with lipoprotein lipase deficiency is associated with high risk of maternal pancreatitis and fetal death. A very low fat diet ( Case presentation A 23 year-old gravida 1 woman with primary lipoprotein lipase deficiency was seen at 7 weeks of gestation in the Lipid Clinic for management of severe hypertriglyceridemia that had worsened with pregnancy. While on her habitual fat intake of 10% of total calories, her pregnancy resulted in an exacerbation of the hypertriglyceridemia, which prompted further restriction of fat intake to Conclusions An extremely low fat diet in combination with topical sunflower oil and gemfibrozil administration was safely implemented in pregnancy associated with the severe hypertriglyceridemia of lipoprotein lipase deficiency.

  18. The effect of sugar-sweetened beverage intake on energy intake in an ad libitum 6-month low-fat high-carbohydrate diet.

    Science.gov (United States)

    Munsters, Marjet J M; Saris, Wim H M

    2010-01-01

    The increased incidence of obesity coincides with an increased consumption of sugar-sweetened beverages (SSBs). This study investigated the effect of SSB intake on energy intake in an ad libitum 6-month low-fat high-carbohydrate diet in a reanalysis of the CARMEN data. Forty-seven overweight-to-obese men and women participated in the Maastricht centre of the randomized controlled CARMEN study. They were allocated to a control (habitual) diet group (CD), a low-fat (-10 energy percent, En%) high simple carbohydrate (SCHO) or low-fat high complex carbohydrate group (CCHO) (SCHO vs. CCHO: 1.5 vs. 0.5) using a controlled laboratory shop system. Reanalyses were made for the energy, amount and density of all drinks and in particular of sweetened beverages (SBs). The SCHO and CD group could select non-diet SBs, including soft drinks and fruit juices, while the CCHO group received SB alternatives. Energy intake decreased in the CCHO and SCHO groups versus the CD group (-2.7 ± 0.4 MJ/day CCHO group vs. -0.2 ± 0.5 MJ/day CD group, p carbohydrate intake increased significantly in the SCHO group versus the CCHO and CD groups (+10.8 ± 1.6 vs. -2.0 ± 0.9 and -0.5 ± 1.1 En%; p carbohydrate intake increased through enhanced intake of non-diet SBs in the SCHO group. Fat reduction combined with only diet SBs in an ad libitum situation has a greater impact on energy intake than fat reduction combined with non-diet SBs. Copyright © 2010 S. Karger AG, Basel.

  19. Effects of high-fat diet on somatic growth, metabolic parameters and function of peritoneal macrophages of young rats submitted to a maternal low-protein diet.

    Science.gov (United States)

    Alheiros-Lira, Maria Cláudia; Jurema-Santos, Gabriela Carvalho; da-Silva, Helyson Tomaz; da-Silva, Amanda Cabral; Moreno Senna, Sueli; Ferreira E Silva, Wylla Tatiana; Ferraz, José Candido; Leandro, Carol Góis

    2017-03-01

    This study evaluated the effects of a post-weaning high-fat (HF) diet on somatic growth, food consumption, metabolic parameters, phagocytic rate and nitric oxide (NO) production of peritoneal macrophages in young rats submitted to a maternal low-protein (LP) diet. Male Wistar rats (aged 60 d) were divided in two groups (n 22/each) according to their maternal diet during gestation and lactation: control (C, dams fed 17 % casein) and LP (dams fed 8 % casein). At weaning, half of the groups were fed HF diet and two more groups were formed (HF and low protein-high fat (LP-HF)). Somatic growth, food and energy intake, fat depots, serum glucose, cholesterol and leptin concentrations were evaluated. Phagocytic rate and NO production were analysed in peritoneal macrophages under stimulation of zymosan and lipopolysaccharide (LPS)+interferon γ (IFN-γ), respectively. The maternal LP diet altered the somatic parameters of growth and development of pups. LP and LP-HF pups showed a higher body weight gain and food intake than C pups. HF and LP-HF pups showed increased retroperitoneal and epididymal fat depots, serum level of TAG and total cholesterol compared with C and LP pups. After LPS+IFN-γ stimulation, LP and LP-HF pups showed reduced NO production when compared with their pairs. Increased phagocytic activity and NO production were seen in LP but not LP-HF peritoneal macrophages. However, peritoneal macrophages of LP pups were hyporesponsive to LPS+IFN-γ induced NO release, even after a post-weaning HF diet. Our data demonstrated that there was an immunomodulation related to dietary fatty acids after the maternal LP diet-induced metabolic programming.

  20. Effect of high fat and high sugar diet on insulin binding and insulin action in isolated rat adipocytes

    OpenAIRE

    岡﨑,悟

    1987-01-01

    To clarify on a cellular basis the mechanism of the diabetogenic effect of the westernized diet, insulin binding, insulin stimulated 3-o-methylglucose uptake and glucose oxidation were studied in isolated adipocytes from rats fed experimental diets : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the westernized diet), low fat-high sugar diet (10% fat, 50% starch, 20% s...

  1. Long-term outcome on renal replacement therapy in patients who previously received a keto acid-supplemented very-low-protein diet.

    Science.gov (United States)

    Chauveau, Philippe; Couzi, Lionel; Vendrely, Benoit; de Précigout, Valérie; Combe, Christian; Fouque, Denis; Aparicio, Michel

    2009-10-01

    The consequences of a supplemented very-low-protein diet remain a matter of debate with regard to patient outcome before or after the onset of renal replacement therapy. We evaluated the long-term clinical outcome during maintenance dialysis and/or transplantation in patients who previously received a supplemented very-low-protein diet. We assessed the outcome of 203 patients who received a supplemented very-low-protein diet for >3 mo (inclusion period: 1985-2000) and started dialysis after a mean diet duration of 33.1 mo (4-230 mo). The survival rate in the whole cohort was 79% and 63% at 5 and 10 y, respectively. One hundred two patients continued with chronic dialysis during the entire follow-up, and 101 patients were grafted at least once. Patient outcomes were similar to those of the French Dialysis Registry patients for the dialysis group and similar to the 865 patients who were transplanted in Bordeaux during the same period for the transplant group. There was no correlation between death rate and duration of diet. The lack of correlation between death rate and duration of diet and the moderate mortality rate observed during the first 10 y of renal replacement therapy confirm that a supplemented very-low-protein diet has no detrimental effect on the outcome of patients with chronic kidney disease who receive renal replacement therapy.

  2. Comparison of a low-fat diet to a low-carbohydrate diet on weight loss, body composition, and risk factors for diabetes and cardiovascular disease in free-living, overweight men and women.

    Science.gov (United States)

    Meckling, Kelly A; O'Sullivan, Caitriona; Saari, Dayna

    2004-06-01

    Overweight and obese men and women (24-61 yr of age) were recruited into a randomized trial to compare the effects of a low-fat (LF) vs. a low-carbohydrate (LC) diet on weight loss. Thirty-one subjects completed all 10 wk of the diet intervention (retention, 78%). Subjects on the LF diet consumed an average of 17.8% of energy from fat, compared with their habitual intake of 36.4%, and had a resulting energy restriction of 2540 kJ/d. Subjects on the LC diet consumed an average of 15.4% carbohydrate, compared with habitual intakes of about 50% carbohydrate, and had a resulting energy restriction of 3195 kJ/d. Both groups of subjects had significant weight loss over the 10 wk of diet intervention and nearly identical improvements in body weight and fat mass. LF subjects lost an average of 6.8 kg and had a decrease in body mass index of 2.2 kg/m2, compared with a loss of 7.0 kg and decrease in body mass index of 2.1 kg/m2 in the LC subjects. The LF group better preserved lean body mass when compared with the LC group; however, only the LC group had a significant decrease in circulating insulin concentrations. Group results indicated that the diets were equally effective in reducing systolic blood pressure by about 10 mm Hg and diastolic pressure by 5 mm Hg and decreasing plasminogen activator inhibitor-1 bioactivity. Blood beta-hydroxybutyrate concentrations were increased in the LC only, at the 2- and 4-wk time points. These data suggest that energy restriction achieved by a very LC diet is equally effective as a LF diet strategy for weight loss and decreasing body fat in overweight and obese adults.

  3. New insights into the effects on blood pressure of diets low in salt and high in fruits and vegetables and low-fat dairy products

    Directory of Open Access Journals (Sweden)

    Sacks Frank M

    2001-04-01

    Full Text Available Abstract Results from the recent Dietary Approaches to Stop Hypertension (DASH-Sodium trial provide the latest evidence concerning the effects of dietary patterns and sodium intake on blood pressure. Participants ate either the DASH diet (high in fruits, vegetables and low-fat dairy products, and reduced in saturated and total fat or a typical US diet. Within each diet arm, participants ate higher, intermediate, and lower sodium levels, each for 30 days. The results indicated lower blood pressure with lower sodium intake for both diet groups. Although some critics would argue otherwise, these findings provide important new evidence for the value of the DASH diet and sodium reduction in controlling blood pressure.

  4. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring

    Science.gov (United States)

    Zaidi, Rabab; Shah, Shyam; Oakley, M. Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M.

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes. PMID:29447215

  5. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring.

    Science.gov (United States)

    Keleher, Madeline Rose; Zaidi, Rabab; Shah, Shyam; Oakley, M Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.

  6. Effect of Low-Fat vs. Other Diet Interventions on Long-Term Weight Change in Adults: A Systematic Review and Meta-Analysis

    OpenAIRE

    Tobias, Deirdre K.; Chen, Mu; Manson, JoAnn E.; Ludwig, David S.; Willett, Walter; Hu, Frank B.

    2015-01-01

    Background: The effectiveness of low-fat diets for long-term weight loss has been debated for decades, with dozens of randomized trials (RCTs) and recent reviews giving mixed results. Methods: We conducted a random effects meta-analysis of RCTs to estimate the long-term effect of low-fat vs. higher fat dietary interventions on weight loss. Our search included RCTs conducted in adult populations reporting weight change outcomes at ≥1 year, comparing low-fat with higher fat interventions, publi...

  7. Non-fasting factor VII coagulant activity (FVII:C) increased by high-fat diet

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Marckmann, P; Sandström, B

    1994-01-01

    :Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII:Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet....... The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis. Udgivelsesdato: 1994-Jun......Preliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20...

  8. A high-fat diet and NAD+ activate sirt1 to rescue premature aging in cockayne syndrome

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Mitchell, Sarah J.; Fang, Evandro F.

    2014-01-01

    -fat, caloric-restricted, or resveratrol-supplemented diet. High-fat feeding rescued the metabolic, transcriptomic, and behavioral phenotypes of Csbm/m mice. Furthermore, premature aging in CS mice, nematodes, and human cells results from aberrant PARP activation due to deficient DNA repair leading to decreased......Cockayne syndrome (CS) is an accelerated aging disorder characterized by progressive neurodegeneration caused by mutations in genes encoding the DNA repair proteins CS group A or B (CSA or CSB). Since dietary interventions can alter neurodegenerative processes, Csbm/m mice were given a high...... SIRT1 activity and mitochondrial dysfunction. Notably, β-hydroxybutyrate levels are increased by the high-fat diet, and β-hydroxybutyrate, PARP inhibition, or NAD+ supplementation can activate SIRT1 and rescue CS-associated phenotypes. Mechanistically, CSB can displace activated PARP1 from damaged DNA...

  9. Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet.

    Science.gov (United States)

    Yang, Tsung-Han; Yao, Hsien-Tsung; Chiang, Meng-Tsan

    2017-10-01

    The purpose of this study was to investigate the effects of Gelidium amansii (GA) hot-water extracts (GHE) on lipid metabolism in hamsters. Six-week-old male Syrian hamsters were used as the experimental animals. Hamsters were divided into four groups: (1) control diet group (CON); (2) high-fat diet group (HF); (3) HF with GHE diet group (HF + GHE); (4) HF with probucol diet group (HF + PO). All groups were fed the experimental diets and drinking water ad libitum for 6 weeks. The results showed that GHE significantly decreased body weight, liver weight, and adipose tissue (perirenal and paraepididymal) weight. The HF diet induced an increase in plasma triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein cholesterol and very-low-density lipoprotein cholesterol levels. However, GHE supplementation reversed the increase of plasma lipids caused by the HF diet. In addition, GHE increased fecal cholesterol, TG and bile acid excretion. Lower hepatic TC and TG levels were found with GHE treatment. GHE reduced hepatic sterol regulatory element-binding proteins (SREBP) including SREBP 1 and SREBP 2 protein expressions. The phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) protein expression in hamsters was decreased by the HF diet; however, GHE supplementation increased the phosphorylation of AMPK protein expression. Our results suggest that GHE may ameliorate lipid metabolism in hamsters fed a HF diet. Copyright © 2017. Published by Elsevier B.V.

  10. Red algae (Gelidium amansii hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Tsung-Han Yang

    2017-10-01

    Full Text Available The purpose of this study was to investigate the effects of Gelidium amansii (GA hot-water extracts (GHE on lipid metabolism in hamsters. Six-week-old male Syrian hamsters were used as the experimental animals. Hamsters were divided into four groups: (1 control diet group (CON; (2 high-fat diet group (HF; (3 HF with GHE diet group (HF + GHE; (4 HF with probucol diet group (HF + PO. All groups were fed the experimental diets and drinking water ad libitum for 6 weeks. The results showed that GHE significantly decreased body weight, liver weight, and adipose tissue (perirenal and paraepididymal weight. The HF diet induced an increase in plasma triacylglycerol (TG, total cholesterol (TC, low-density lipoprotein cholesterol and very-low-density lipoprotein cholesterol levels. However, GHE supplementation reversed the increase of plasma lipids caused by the HF diet. In addition, GHE increased fecal cholesterol, TG and bile acid excretion. Lower hepatic TC and TG levels were found with GHE treatment. GHE reduced hepatic sterol regulatory element-binding proteins (SREBP including SREBP 1 and SREBP 2 protein expressions. The phosphorylation of adenosine monophosphate (AMP-activated protein kinase (AMPK protein expression in hamsters was decreased by the HF diet; however, GHE supplementation increased the phosphorylation of AMPK protein expression. Our results suggest that GHE may ameliorate lipid metabolism in hamsters fed a HF diet.

  11. Improved plasma amino acids pattern following 12 months of supplemented low-protein diet in peritoneal dialysis patients.

    Science.gov (United States)

    Jiang, Na; Qian, Jiaqi; Lin, Aiwu; Fang, Wei; Cao, Liou; Wang, Qin; Ni, Zhaohui; Lindholm, Bengt; Axelsson, Jonas; Yao, Qiang

    2010-07-01

    Decreased plasma essential amino acid (EAA) levels, increased nonessential amino acid (NEAA) levels, and low EAA to NEAA ratio (E/NEAA) are common in peritoneal dialysis (PD) patients and may impact uremic complications. In the present study, we investigate the impact of keto acids-supplemented low-protein (sLP) diet on plasma amino acids (AAs) patterns in stable PD patients. This is a supplemental analysis of a previously published prospective and randomized trial. Thirty-nine PD patients selected from the original population were divided to receive either low (LP: 0.6-0.8 g/kg ideal body weight [IBW]/d, n = 13), keto acids-supplemented low- (sLP: 0.6-0.8 g/kg IBW/d + 0.12 g/kg IBW/d of keto acids, n = 12), or high- (HP: 1.0-1.2 g/kg IBW/d, n = 14) protein diets and followed for 1 year. Plasma AA patterns were assessed at baseline and 12 months using high-performance liquid chromatography. Whereas there were no significant differences between the three groups at baseline, following 12 months, the E/NEAA had increased significantly in group sLP (0.58 +/- 0.16 to 0.83 +/- 0.20, p diet supplemented with keto acids significantly improved the pattern of plasma AA in prevalent PD patients.

  12. Green tea (-)-epigallocatechin-3-gallate counteracts daytime overeating induced by high-fat diet in mice.

    Science.gov (United States)

    Li, Hongyu; Kek, Huiling Calvina; Lim, Joy; Gelling, Richard Wayne; Han, Weiping

    2016-12-01

    High-fat diet (HFD) induces overeating and obesity. Green tea (-)-epigallocatechin-3-gallate (EGCG) reduces HFD-induced body weight and body fat gain mainly through increased lipid metabolism and fat oxidation. However, little is known about its effect on HFD-induced alterations in feeding behavior. Three diet groups of wildtype C57B/6j male mice at 5 months old were fed on normal chow diet, 1 week of HFD (60% of energy) and 3 months of HFD (diet-induced obesity (DIO)) prior to EGCG supplement in respective diet. EGCG had no effect on feeding behavior in normal chow diet group. Increased daytime feeding induced by HFD was selectively corrected by EGCG treatment in HFD groups, including reversed food intake, feeding frequency and meal size in HFD + EGCG group, and reduced food intake and feeding frequency in DIO + EGCG group. Moreover, EGCG treatment altered diurnally oscillating expression pattern of key appetite-regulating genes, including AGRP, POMC, and CART, and key circadian genes Clock and Bmal1 in hypothalamus of DIO mice, indicating its central effect on feeding regulation. Our study demonstrates that EGCG supplement specifically counteracts daytime overeating induced by HFD in mice, suggesting its central role in regulating feeding behavior and energy homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A shift in myocardial substrate, improved endothelial function, and diminished sympathetic activity may contribute to the anti-anginal impact of very-low-fat diets.

    Science.gov (United States)

    McCarty, M F

    2004-01-01

    A new category of anti-anginal drug - exemplified by ranolazine - is believed to work by partially inhibiting cardiac oxidation of fatty acids; oxidation of glucose requires less oxygen per mol of ATP generated, and thus is preferable to fat oxidation when oxygen availability is limiting in underperfused cardiac tissue. Unfortunately, there is no reason to believe that these drugs inhibit fat oxidation selectively in the heart; thus, chronic use of these drugs can be expected to increase body fat stores until the original rate of fat oxidation is restored by mass action - presumably negating the therapeutic benefit in angina, while exacerbating the manifold adverse effects of insulin resistance syndrome. The rational way to decrease cardiac metabolic reliance on fatty acids is to consume a very-low-fat quasi-vegan diet (i.e., 10% fat calories). Indeed, such diets are known to have a rapid and substantial therapeutic impact on anginal symptoms, while concurrently benefiting insulin sensitivity, markedly improving serum lipid profile, promoting leanness, and lessening coronary risk. A reduction in diurnal insulin secretion might also be achieved, which would be expected to decrease sympathetic activity. While reduced myocardial demand for oxygen doubtless contributes to the beneficial impact of such diets on angina, it is likely that improved cardiac perfusion consequent to improved endothelium-dependent vasodilation also plays a role in this regard. Supplemental carnitine, also beneficial in angina, appears to improve utilization of glucose in the ischemic myocardium by lowering elevated acetyl-coA levels and thereby disinhibiting pyruvate dehydrogenase. Certain other nutraceuticals may aid control of angina by improving endothelial function. In the longer term, these measures have the potential to slow or reverse the progression of stenotic lesions that underlie most cases of angina. These safe and relatively inexpensive nutritional strategies for coping with

  14. Clinical trial evaluating cholestyramine to prevent diarrhea in patients maintained on low-fat diets during pelvic radiation therapy

    International Nuclear Information System (INIS)

    Chary, S.; Thomson, D.H.

    1984-01-01

    A prospective randomized trial to determine the value of a low fat diet with or without cholestyramine in the treatment of acute intestinal complications of pelvic irradiation is presented. A total of 35 patients receiving pelvic irradiation were entered in the study and all patients had received a 40 gm fat diet. The group was then randomized to receive either placebo (17 patients) or cholestyramine (18 patients). Diarrhea occurred in six out of 16 evaluable patients in the control group and only one of the 17 evaluable patients in the cholestyramine group. The frequency of diarrhea and the diarrhea scale remained high in the placebo group in the entire observation period. Statistical analysis had revealed better diarrhea control in the cholestyramine group. In this report mechanism by which diarrhea occurs following pelvic irradiation is discussed. The adverse effects associated with the use of cholestyramine have been presented. It was concluded that cholestyramine is effective in preventing acute diarrhea induced by pelvic irradiation in patients receiving a low fat diet but is associated with side effects

  15. Antidiabetic effects of Mangifera indica Kernel Flour?supplemented diet in streptozotocin?induced type 2 diabetes in rats

    OpenAIRE

    Irondi, Emmanuel A.; Oboh, Ganiyu; Akindahunsi, Afolabi A.

    2016-01-01

    Abstract Our previous report showed that Mangifera indica kernel flour (MIKF) is a rich source of pharmacologically important flavonoids and phenolic acids; and that its methanolic extract inhibits some key enzymes linked to the pathology and complications of type 2 diabetes (T2D) in vitro. Hence, this study evaluated the antidiabetic effects of 10% and 20% MIKF?supplemented diets in T2D in rats. T2D was induced in rats using a high?fat diet (HFD), low?dose streptozotocin (HFD/STZ) model, by ...

  16. Ruminal, Intestinal, and Total Digestibilities of Nutrients in Cows Fed Diets High in Fat and Undegradable Protein

    DEFF Research Database (Denmark)

    Palmquist, D.L.; Weisbjerg, Martin Riis; Hvelplund, Torben

    1993-01-01

    To study relationships of high undegradable intake protein and dietary fat on intestinal AA supply, the ruminal, intestinal, and total digestibilities of diets with or without added fat (5% of DM) and animal protein (blood meal: hydrolyzed feather meal, 1:1; 8% of DM) were examined with four cows...... with cows cannulated 100-cm distal to the pylorus, but only when cows were fed protein-supplemented diets; the estimates from those diets caused calculated microbial protein efficiency to exceed theoretical values. We postulated that blood meal and feather meal segregated near the pylorus, yielding high...... estimates of duodenal AA N flow. Removal of data for protein-supplemented diets obtained from cows cannulated at the pylorus yielded estimates of microbial protein synthetic efficiency consistent with literature values. Microbial synthesis of AA N was related linearly to ruminal digestion of carbohydrate...

  17. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet

    Directory of Open Access Journals (Sweden)

    Suganya Venkateshan

    2016-08-01

    Full Text Available Objective: Dietary changes playmajor risk roles in oxidative stress andcardiovascular disease and modulate normal metabolic function. The present study was designed to investigate the ameliorative potential of different extracts of Hemidesmus indicus to experimental high-fat diet in wistar rats, and their possible mechanism of action.  Materials and Methods: Male wistar rats were divided into 6 groups (n=6/group andfed with a standard diet (control, high-fat diet (HFD, high-fat diet supplemented with different extracts and positive control for 9 weeks. High-fat diet induced changes in average body weight andoxidative stress and elevated levels of plasma lipid profilein rats. Results: Oral administration of methanolic extract of H. indicus(200 mg/kg offered a significant dose-dependent protection against HFD-induced oxidative stress, as reflected in the levels of catalase (pConclusion: The present study revealed that the methanolic extract of H.indicus protects against oxidative stress, hyperlipidemia and liver damage.

  18. Dietary supplementation with flaxseed mucilage alone or in combination with calcium in dogs: effects on apparent digestibility of fat and energy and fecal characteristics.

    Science.gov (United States)

    Nybroe, S; Astrup, A; Bjørnvad, C R

    2016-12-01

    In humans, dietary supplementation with flaxseed mucilage and calcium decrease apparent digestibility of fat and energy. These supplements could prove useful for weight management in dogs. To examine dry matter, energy and fat apparent digestibility, and fecal characteristics following dietary flaxseed mucilage supplementation alone or in combination with calcium. A single-blinded crossover feeding trial was conducted on 11 privately owned dogs. During three consecutive 14-day periods, dogs where fed commercial dog food supplemented with potato starch (control diet), flaxseed mucilage or flaxseed mucilage and calcium. Feces from the past 2 days of each period were collected for analysis. Owners recorded fecal score (1-7: 1=very hard/dry feces, 2-3=ideal and 7=diarrhea). Apparent digestibility of fat was lower in both flaxseed mucilage diet (94.5±0.8%), and flaxseed mucilage and calcium diet (92.9±0.9%) compared with control diet (96.9±0.2%, Pdigestibility in flaxseed mucilage and calcium diet being significantly lower than the diet supplemented with only flaxseed mucilage. Dry matter and energy digestibility was not significantly affected by diet. Fecal wet weight, dry weight and dry matter percentage was not affected by diet despite a higher fecal score for test diets (3.7±0.3) compared with control (2.8±0.2, Pdigestibility and this effect was enhanced when combined with calcium. Dry matter and energy apparent digestibility was not affected. Decreased fecal quality may limit the acceptable level of supplementation. Further studies on incorporating flaxseed mucilage in pet food products for weight management are needed.

  19. Effects of fat supplementations on milk production and composition, ruminal and plasma parameters of dairy cows

    Directory of Open Access Journals (Sweden)

    L. Bailoni

    2010-04-01

    Full Text Available The effects on milk yield and quality caused by the same amount (325 g/d/cow of lipids provided by 3 different fat sources (hydrogenate palm fat, HF; calcium salt palm fat, CaSF; full-fat toasted soybean, TS, top dressed to a common total mixed ration, were investigated. Supplementations did not affect feed intake and milk yield, but markedly changed the acidic profile of milk fat. CaSF and TS significantly increased the proportions of unsaturated fatty acids of milk fat with respect to control and to HF. The 3 fat sources did not affect the concentrations of ammonia and VFA of rumen fluid. TS only slightly increased (P<0.10 plasma urea content because of a higher dietary protein supply, with respect to the other treatments. The use of a low amount of toasted and cracked full fat soybean seem to be interesting to increase the energy concentration of diets in replacement to commercial fat products and it can be use to modify the milk fat quality increasing the fraction with benefit effects on human health.

  20. Food quality and motivation: a refined low-fat diet induces obesity and impairs performance on a progressive ratio schedule of instrumental lever pressing in rats.

    Science.gov (United States)

    Blaisdell, Aaron P; Lau, Yan Lam Matthew; Telminova, Ekatherina; Lim, Hwee Cheei; Fan, Boyang; Fast, Cynthia D; Garlick, Dennis; Pendergrass, David C

    2014-04-10

    Purified high-fat diet (HFD) feeding causes deleterious metabolic and cognitive effects when compared with unrefined low-fat diets in rodent models. These effects are often attributed to the diet's high content of fat, while less attention has been paid to other mechanisms associated with the diet's highly refined state. Although the effects of HFD feeding on cognition have been explored, little is known about the impact of refined vs. unrefined food on cognition. We tested the hypothesis that a refined low-fat diet (LFD) increases body weight and adversely affects cognition relative to an unrefined diet. Rats were allowed ad libitum access to unrefined rodent chow (CON, Lab Diets 5001) or a purified low-fat diet (REF, Research Diets D12450B) for 6 months, and body weight and performance on an instrumental lever pressing task were recorded. After six months on their respective diets, group REF gained significantly more weight than group CON. REF rats made significantly fewer lever presses and exhibited dramatically lower breaking points than CON rats for sucrose and water reinforcement, indicating a chronic reduction of motivation for instrumental performance. Switching the rats' diet for 9 days had no effect on these measures. Diet-induced obesity produces a substantial deficit in motivated behavior in rats, independent of dietary fat content. This holds implications for an association between obesity and motivation. Specifically, behavioral traits comorbid with obesity, such as depression and fatigue, may be effects of obesity rather than contributing causes. To the degree that refined foods contribute to obesity, as demonstrated in our study, they may play a significant contributing role to other behavioral and cognitive disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. An 8-Week Ketogenic Low Carbohydrate, High Fat Diet Enhanced Exhaustive Exercise Capacity in Mice.

    Science.gov (United States)

    Ma, Sihui; Huang, Qingyi; Yada, Koichi; Liu, Chunhong; Suzuki, Katsuhiko

    2018-05-25

    Current fueling tactics for endurance exercise encourage athletes to ingest a high carbohydrate diet. However, athletes are not generally encouraged to use fat, the largest energy reserve in the human body. A low carbohydrate, high fat ketogenic diet (KD) is a nutritional approach ensuring that the body utilizes lipids. Although KD has been associated with weight-loss, enhanced fat utilization in muscle and other beneficial effects, there is currently no clear proof whether it could lead to performance advantage. To evaluate the effects of KD on endurance exercise capacity, we studied the performance of mice subjected to a running model after consuming KD for eight weeks. Weight dropped dramatically in KD-feeding mice, even though they ate more calories. KD-feeding mice showed enhanced running time without aggravated muscle injury. Blood biochemistry and correlation analysis indicated the potential mechanism is likely to be a keto-adaptation enhanced capacity to transport and metabolize fat. KD also showed a potential preventive effect on organ injury caused by acute exercise, although KD failed to exert protection from muscle injury. Ultimately, KD may contribute to prolonged exercise capacity.

  2. An 8-Week Ketogenic Low Carbohydrate, High Fat Diet Enhanced Exhaustive Exercise Capacity in Mice

    Directory of Open Access Journals (Sweden)

    Sihui Ma

    2018-05-01

    Full Text Available Current fueling tactics for endurance exercise encourage athletes to ingest a high carbohydrate diet. However, athletes are not generally encouraged to use fat, the largest energy reserve in the human body. A low carbohydrate, high fat ketogenic diet (KD is a nutritional approach ensuring that the body utilizes lipids. Although KD has been associated with weight-loss, enhanced fat utilization in muscle and other beneficial effects, there is currently no clear proof whether it could lead to performance advantage. To evaluate the effects of KD on endurance exercise capacity, we studied the performance of mice subjected to a running model after consuming KD for eight weeks. Weight dropped dramatically in KD-feeding mice, even though they ate more calories. KD-feeding mice showed enhanced running time without aggravated muscle injury. Blood biochemistry and correlation analysis indicated the potential mechanism is likely to be a keto-adaptation enhanced capacity to transport and metabolize fat. KD also showed a potential preventive effect on organ injury caused by acute exercise, although KD failed to exert protection from muscle injury. Ultimately, KD may contribute to prolonged exercise capacity.

  3. Ad libitum Mediterranean and Low Fat Diets both Significantly Reduce Hepatic Steatosis: a Randomized Controlled Trial.

    Science.gov (United States)

    Properzi, Catherine; O'Sullivan, Therese A; Sherriff, Jill L; Ching, Helena L; Jeffrey, Garry P; Buckley, Rachel F; Tibballs, Jonathan; MacQuillan, Gerry C; Garas, George; Adams, Leon A

    2018-05-05

    Although diet induced weight loss is first-line treatment for patients with non-alcoholic fatty liver disease (NAFLD), long-term maintenance is difficult. The optimal diet for either improvement in NAFLD or associated cardio-metabolic risk factors regardless of weight loss, is unknown. We examined the effect of two ad libitum isocaloric diets [Mediterranean (MD) or Low Fat (LF)] on hepatic steatosis and cardio-metabolic risk factors. Subjects with NAFLD were randomized to a 12-week blinded dietary intervention (MD vs LF). Hepatic steatosis was determined via magnetic resonance spectroscopy (MRS). From a total of 56 subjects enrolled, 49 subjects completed the intervention and 48 were included for analysis. During the intervention, subjects on the MD had significantly higher total and monounsaturated fat but lower carbohydrate and sodium intakes compared to LF subjects (pfat reduction between the groups (p=0.32), with mean (SD) relative reductions of 25.0% (±25.3%) in LF and 32.4% (±25.5%) in MD. Liver enzymes also improved significantly in both groups. Weight loss was minimal and not different between groups [-1.6 (±2.1)kg in LF vs -2.1 (±2.5)kg in MD, (p=0.52)]. Within-group improvements in the Framingham risk score, total cholesterol, serum triglyceride, and HbA1c were observed in the MD (all pvs. 64%, p=0.048). Ad libitum low fat and Mediterranean diets both improve hepatic steatosis to a similar degree. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  4. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    Science.gov (United States)

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. © 2016 Society for Endocrinology.

  5. Impairment of fat oxidation under high- vs. low-glycemic index diet occurs before the development of an obese phenotype.

    Science.gov (United States)

    Isken, F; Klaus, S; Petzke, K J; Loddenkemper, C; Pfeiffer, A F H; Weickert, M O

    2010-02-01

    Exposure to high vs. low glycemic index (GI) diets increases fat mass and insulin resistance in obesity-prone C57BL/6J mice. However, the longer-term effects and potentially involved mechanisms are largely unknown. We exposed four groups of male C57BL/6J mice (n = 10 per group) to long-term (20 wk) or short-term (6 wk) isoenergetic and macronutrient matched diets only differing in starch type and as such GI. Body composition, liver fat, molecular factors of lipid metabolism, and markers of insulin sensitivity and metabolic flexibility were investigated in all four groups of mice. Mice fed the high GI diet showed a rapid-onset (from week 5) marked increase in body fat mass and liver fat, a gene expression profile in liver consistent with elevated lipogenesis, and, after long-term exposure, significantly reduced glucose clearance following a glucose load. The long-term high-GI diet also led to a delayed switch to both carbohydrate and fat oxidation in the postprandial state, indicating reduced metabolic flexibility. In contrast, no difference in carbohydrate oxidation was observed after short-term high- vs. low-GI exposure. However, fatty acid oxidation was significantly blunted as early as 3 wk after beginning of the high-GI intervention, at a time where most measured phenotypic markers including body fat mass were comparable between groups. Thus long-term high-GI feeding resulted in an obese, insulin-resistant, and metabolically inflexible phenotype in obesity-prone C57BL/6J mice. Early onset and significantly impaired fatty acid oxidation preceded these changes, thereby indicating a potentially causal involvement.

  6. l-Leucine Supplementation Worsens the Adiposity of Already Obese Rats by Promoting a Hypothalamic Pattern of Gene Expression that Favors Fat Accumulation

    Directory of Open Access Journals (Sweden)

    Thais T. Zampieri

    2014-04-01

    Full Text Available Several studies showed that l-leucine supplementation reduces adiposity when provided before the onset of obesity. We studied rats that were exposed to a high-fat diet (HFD for 10 weeks before they started to receive l-leucine supplementation. Fat mass was increased in l-leucine-supplemented rats consuming the HFD. Accordingly, l-leucine produced a hypothalamic pattern of gene expression that favors fat accumulation. In conclusion, l-leucine supplementation worsened the adiposity of rats previously exposed to HFD possibly by central mechanisms.

  7. Red pitaya juice supplementation ameliorates energy balance homeostasis by modulating obesity-related genes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ramli, Nurul Shazini; Ismail, Patimah; Rahmat, Asmah

    2016-07-26

    Red pitaya (Hylocereus polyrhizus) or known as buah naga merah in Malay belongs to the cactus family, Cactaceae. Red pitaya has been shown to give protection against liver damage and may reduce the stiffness of the heart. Besides, the beneficial effects of red pitaya against obesity have been reported; however, the mechanism of this protection is not clear. Therefore, in the present study, we have investigated the red pitaya-targeted genes in obesity using high-carbohydrate, high-fat diet-induced metabolic syndrome rat model. A total of four groups were tested: corn-starch (CS), corn-starch + red pitaya juice (CRP), high-carbohydrate, high-fat (HCHF) and high-carbohydrate, high-fat + red pitaya juice (HRP). The intervention with 5 % red pitaya juice was continued for 8 weeks after 8 weeks initiation of the diet. Retroperitoneal, epididymal and omental fat pads were collected and weighed. Plasma concentration of IL-6 and TNF-α were measured using commercial kits. Gene expression analysis was conducted using RNA extracted from liver samples. A total of eighty-four genes related to obesity were analyzed using PCR array. The rats fed HCHF-diet for 16 weeks increased body weight, developed excess abdominal fat deposition and down-regulated the expression level of IL-1α, IL-1r1, and Cntfr as compared to the control group. Supplementation of red pitaya juice for 8 weeks increased omental and epididymal fat but no change in retroperitoneal fat was observed. Red pitaya juice reversed the changes in energy balance homeostasis in liver tissues by regulation of the expression levels of Pomc and Insr. The increased protein expression levels of IL-6 and TNF-α in HCHF group and red pitaya treated rats confirmed the results of gene expression. Collectively, this study revealed the usefulness of this diet-induced rat model and the beneficial effects of red pitaya on energy balance homeostasis by modulating the anorectic, orexigenic and energy expenditure related

  8. Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet.

    Science.gov (United States)

    Pehleman, Tanya L; Peters, Sandra J; Heigenhauser, George J F; Spriet, Lawrence L

    2005-01-01

    Whole body glucose disposal and skeletal muscle hexokinase, glycogen synthase (GS), pyruvate dehydrogenase (PDH), and PDH kinase (PDK) activities were measured in aerobically trained men after a standardized control diet (Con; 51% carbohydrate, 29% fat, and 20% protein of total energy intake) and a 56-h eucaloric, high-fat, low-carbohydrate diet (HF/LC; 5% carbohydrate, 73% fat, and 22% protein). An oral glucose tolerance test (OGTT; 1 g/kg) was administered after the Con and HF/LC diets with vastus lateralis muscle biopsies sampled pre-OGTT and 75 min after ingestion of the oral glucose load. The 90-min area under the blood glucose and plasma insulin concentration vs. time curves increased by 2-fold and 1.25-fold, respectively, after the HF/LC diet. The pre-OGTT fraction of GS in its active form and the maximal activity of hexokinase were not affected by the HF/LC diet. However, the HF/LC diet increased PDK activity (0.19 +/- 0.05 vs. 0.08 +/- 0.02 min(-1)) and decreased PDH activation (0.38 +/- 0.08 vs. 0.79 +/- 0.10 mmol acetyl-CoA.kg wet muscle(-1).min(-1)) before the OGTT vs. Con. During the OGTT, GS and PDH activation increased by the same magnitude in both diets, such that PDH activation remained lower during the HF/LC OGTT (0.60 +/- 0.11 vs. 1.04 +/- 0.09 mmol acetyl-CoA.kg(-1).min(-1)). These data demonstrate that the decreased glucose disposal during the OGTT after the 56-h HF/LC diet was in part related to decreased oxidative carbohydrate disposal in skeletal muscle and not to decreased glycogen storage. The rapid increase in PDK activity during the HF/LC diet appeared to account for the reduced potential for oxidative carbohydrate disposal.

  9. Low-Fat Diet With Caloric Restriction Reduces White Matter Microglia Activation During Aging

    Directory of Open Access Journals (Sweden)

    Zhuoran Yin

    2018-03-01

    Full Text Available Rodent models of both aging and obesity are characterized by inflammation in specific brain regions, notably the corpus callosum, fornix, and hypothalamus. Microglia, the resident macrophages of the central nervous system, are important for brain development, neural support, and homeostasis. However, the effects of diet and lifestyle on microglia during aging are only partly understood. Here, we report alterations in microglia phenotype and functions in different brain regions of mice on a high-fat diet (HFD or low-fat diet (LFD during aging and in response to voluntary running wheel exercise. We compared the expression levels of genes involved in immune response, phagocytosis, and metabolism in the hypothalamus of 6-month-old HFD and LFD mice. We also compared the immune response of microglia from HFD or LFD mice to peripheral inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS. Finally, we investigated the effect of diet, physical exercise, and caloric restriction (40% reduction compared to ad libitum intake on microglia in 24-month-old HFD and LFD mice. Changes in diet caused morphological changes in microglia, but did not change the microglia response to LPS-induced systemic inflammation. Expression of phagocytic markers (i.e., Mac-2/Lgals3, Dectin-1/Clec7a, and CD16/CD32 in the white matter microglia of 24-month-old brain was markedly decreased in calorically restricted LFD mice. In conclusion, LFD resulted in reduced activation of microglia, which might be an underlying mechanism for the protective role of caloric restriction during aging-associated decline.

  10. Low-Fat Diet With Caloric Restriction Reduces White Matter Microglia Activation During Aging.

    Science.gov (United States)

    Yin, Zhuoran; Raj, Divya D; Schaafsma, Wandert; van der Heijden, Roel A; Kooistra, Susanne M; Reijne, Aaffien C; Zhang, Xiaoming; Moser, Jill; Brouwer, Nieske; Heeringa, Peter; Yi, Chun-Xia; van Dijk, Gertjan; Laman, Jon D; Boddeke, Erik W G M; Eggen, Bart J L

    2018-01-01

    Rodent models of both aging and obesity are characterized by inflammation in specific brain regions, notably the corpus callosum, fornix, and hypothalamus. Microglia, the resident macrophages of the central nervous system, are important for brain development, neural support, and homeostasis. However, the effects of diet and lifestyle on microglia during aging are only partly understood. Here, we report alterations in microglia phenotype and functions in different brain regions of mice on a high-fat diet (HFD) or low-fat diet (LFD) during aging and in response to voluntary running wheel exercise. We compared the expression levels of genes involved in immune response, phagocytosis, and metabolism in the hypothalamus of 6-month-old HFD and LFD mice. We also compared the immune response of microglia from HFD or LFD mice to peripheral inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS). Finally, we investigated the effect of diet, physical exercise, and caloric restriction (40% reduction compared to ad libitum intake) on microglia in 24-month-old HFD and LFD mice. Changes in diet caused morphological changes in microglia, but did not change the microglia response to LPS-induced systemic inflammation. Expression of phagocytic markers (i.e., Mac-2/Lgals3, Dectin-1/Clec7a, and CD16/CD32) in the white matter microglia of 24-month-old brain was markedly decreased in calorically restricted LFD mice. In conclusion, LFD resulted in reduced activation of microglia, which might be an underlying mechanism for the protective role of caloric restriction during aging-associated decline.

  11. Long-term effects on haemostatic variables of three ad libitum diets differing in type and amount of fat and carbohydrate

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Larsen, Thomas Meinert; Due, Anette Pia

    2010-01-01

    Diet is important in the prevention of CVD, and it has been suggested that a diet high in MUFA is more cardioprotective than a low-fat diet. We hypothesised that the thrombotic risk profile is improved most favourably by a high-MUFA diet compared with a low-fat diet. This was tested in a parallel...... randomised intervention trial on overweight individuals (aged 28·2 (sd 4·6) years) randomly assigned to a diet providing a moderate amount of fat (35-45 % of energy; >20 % of fat as MUFA) (MUFA diet; n 39), to a low-fat (LF; 20-30 % of energy) diet (n 43), or to a control diet (35 % of energy as fat; n 24...

  12. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes.

    Science.gov (United States)

    Barnard, Neal D; Cohen, Joshua; Jenkins, David J A; Turner-McGrievy, Gabrielle; Gloede, Lise; Jaster, Brent; Seidl, Kim; Green, Amber A; Talpers, Stanley

    2006-08-01

    We sought to investigate whether a low-fat vegan diet improves glycemic control and cardiovascular risk factors in individuals with type 2 diabetes. Individuals with type 2 diabetes (n = 99) were randomly assigned to a low-fat vegan diet (n = 49) or a diet following the American Diabetes Association (ADA) guidelines (n = 50). Participants were evaluated at baseline and 22 weeks. Forty-three percent (21 of 49) of the vegan group and 26% (13 of 50) of the ADA group participants reduced diabetes medications. Including all participants, HbA(1c) (A1C) decreased 0.96 percentage points in the vegan group and 0.56 points in the ADA group (P = 0.089). Excluding those who changed medications, A1C fell 1.23 points in the vegan group compared with 0.38 points in the ADA group (P = 0.01). Body weight decreased 6.5 kg in the vegan group and 3.1 kg in the ADA group (P vegan group and 10.7% in the ADA group (P = 0.02). After adjustment for baseline values, urinary albumin reductions were greater in the vegan group (15.9 mg/24 h) than in the ADA group (10.9 mg/24 h) (P = 0.013). Both a low-fat vegan diet and a diet based on ADA guidelines improved glycemic and lipid control in type 2 diabetic patients. These improvements were greater with a low-fat vegan diet.

  13. Vegan-vegetarian low-protein supplemented diets in pregnant CKD patients: fifteen years of experience.

    Science.gov (United States)

    Attini, Rossella; Leone, Filomena; Parisi, Silvia; Fassio, Federica; Capizzi, Irene; Loi, Valentina; Colla, Loredana; Rossetti, Maura; Gerbino, Martina; Maxia, Stefania; Alemanno, Maria Grazia; Minelli, Fosca; Piccoli, Ettore; Versino, Elisabetta; Biolcati, Marilisa; Avagnina, Paolo; Pani, Antonello; Cabiddu, Gianfranca; Todros, Tullia; Piccoli, Giorgina B

    2016-09-20

    Pregnancy in women with advanced CKD becoming increasingly common. However, experience with low-protein diets in CKD patients in pregnancy is still limited. Aim of this study is to review the results obtained over the last 15 years with moderately restricted low-protein diets in pregnant CKD women (combining: CKD stages 3-5, proteinuria: nephrotic at any time, or > =1 g/24 at start or referral; nephrotic in previous pregnancy). CKD patients on unrestricted diets were employed for comparison. January, 2000 to September, 2015: 36 on-diet pregnancies (31 singleton deliveries, 3 twin deliveries, 1 pregnancy termination, 1 miscarriage); 47 controls (42 singleton deliveries, 5 miscarriages). The diet is basically vegan; since occasional milk and yoghurt are allowed, we defined it vegan-vegetarian; protein intake (0.6-0.8 g/Kg/day), keto-acid supplementation, protein-unrestricted meals (1-3/week) are prescribed according to CKD stage and nutritional status. Statistical analysis was performed as implemented on SPSS. Patients and controls were similar (p: ns) at baseline with regard to age (33 vs 33.5), referral week (7 vs 9), kidney function (CKD 3-5: 48.4 % vs 64.3 %); prevalence of hypertension (51.6 % vs 40.5 %) and proteinuria >3 g/24 h (16.1 % vs 12.2 %). There were more diabetic nephropathies in on-diet patients (on diet: 31.0 % vs controls 5.3 %; p 0.007 (Fisher)) while lupus nephropathies were non-significantly higher in controls (on diet: 10.3 % vs controls 23.7 %; p 0.28 (Fisher)). The incidence of preterm delivery was similar (vegan-vegetarian supplemented diet is confirmed as a safe option in the management of pregnant CKD patients.

  14. Assessment of Grewia oppositifolia leaves as crude protein supplement to low-quality forage diets of sheep.

    Science.gov (United States)

    Khan, Nazir Ahmad; Habib, Ghulam

    2012-10-01

    In the tropical arid and semi-arid regions of many developing countries, sheep are predominantly grazed on low-quality pastures and stall-fed on crop residues. This study evaluated the potential of Grewia oppositifolia tree leaves as crude protein (CP) supplement to the low-quality diets of sheep in comparison with cottonseed cake (CSC). Changes in the chemical composition of the leaves with progressive maturation (December to March) were studied. The leaves maintained a high CP content (>164 g/kg dry matter (DM)) during the prolonged maturation in the winter feed scarcity period. The leaves were rich in Ca (41 g/kg DM) and K (89 g/kg DM). The rate of degradation and effective degradability of CP were consistently higher (P < 0.001) in CSC than in G. oppositifolia. A balance trial in a 4 × 4 Latin square design with four mature Ramghani wethers showed that DM intake, DM and CP digestibility, and N retention did not differ with the substitution of CSC with G. oppositifolia leaves, as a supplement to a basal diet of sorghum hay. Body weight (BW) gain and wool yield responses to the supplements were examined with 36 lambs (27 ± 3 kg BW; age 11 ± 1 months) for 15 weeks. The lambs were only grazed on local pasture (control group) or supplemented with CSC, G. oppositifolia leaves, and their mixture on iso-N basis. Addition of the supplements increased (P < 0.05) BW gain and wool yield, and the leaves were as effective as CSC. These results demonstrated that G. oppositifolia leaves provide good quality green fodder during the prolonged winter feed scarcity period, and that the leaves can be efficiently utilized as a CP supplement to the low-quality diets of sheep.

  15. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials.

    Science.gov (United States)

    Bueno, Nassib Bezerra; de Melo, Ingrid Sofia Vieira; de Oliveira, Suzana Lima; da Rocha Ataide, Terezinha

    2013-10-01

    The role of very-low-carbohydrate ketogenic diets (VLCKD) in the long-term management of obesity is not well established. The present meta-analysis aimed to investigate whether individuals assigned to a VLCKD (i.e. a diet with no more than 50 g carbohydrates/d) achieve better long-term body weight and cardiovascular risk factor management when compared with individuals assigned to a conventional low-fat diet (LFD; i.e. a restricted-energy diet with less than 30% of energy from fat). Through August 2012, MEDLINE, CENTRAL, ScienceDirect,Scopus, LILACS, SciELO, ClinicalTrials.gov and grey literature databases were searched, using no date or language restrictions, for randomised controlled trials that assigned adults to a VLCKD or a LFD, with 12 months or more of follow-up. The primary outcome was bodyweight. The secondary outcomes were TAG, HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), systolic and diastolic blood pressure,glucose, insulin, HbA1c and C-reactive protein levels. A total of thirteen studies met the inclusion/exclusion criteria. In the overall analysis,five outcomes revealed significant results. Individuals assigned to a VLCKD showed decreased body weight (weighted mean difference 20·91 (95% CI 21·65, 20·17) kg, 1415 patients), TAG (weighted mean difference 20·18 (95% CI 20·27, 20·08) mmol/l, 1258 patients)and diastolic blood pressure (weighted mean difference 21·43 (95% CI 22·49, 20·37) mmHg, 1298 patients) while increased HDL-C(weighted mean difference 0·09 (95% CI 0·06, 0·12) mmol/l, 1257 patients) and LDL-C (weighted mean difference 0·12 (95% CI 0·04,0·2) mmol/l, 1255 patients). Individuals assigned to a VLCKD achieve a greater weight loss than those assigned to a LFD in the longterm; hence, a VLCKD may be an alternative tool against obesity.

  16. RNA-Sequencing of Drosophila melanogaster Head Tissue on High-Sugar and High-Fat Diets

    Directory of Open Access Journals (Sweden)

    Wayne Hemphill

    2018-01-01

    Full Text Available Obesity has been shown to increase risk for cardiovascular disease and type-2 diabetes. In addition, it has been implicated in aggravation of neurological conditions such as Alzheimer’s. In the model organism Drosophila melanogaster, a physiological state mimicking diet-induced obesity can be induced by subjecting fruit flies to a solid medium disproportionately higher in sugar than protein, or that has been supplemented with a rich source of saturated fat. These flies can exhibit increased circulating glucose levels, increased triglyceride content, insulin-like peptide resistance, and behavior indicative of neurological decline. We subjected flies to variants of the high-sugar diet, high-fat diet, or normal (control diet, followed by a total RNA extraction from fly heads of each diet group for the purpose of Poly-A selected RNA-Sequencing. Our objective was to identify the effects of obesogenic diets on transcriptome patterns, how they differed between obesogenic diets, and identify genes that may relate to pathogenesis accompanying an obesity-like state. Gene ontology analysis indicated an overrepresentation of affected genes associated with immunity, metabolism, and hemocyanin in the high-fat diet group, and CHK, cell cycle activity, and DNA binding and transcription in the high-sugar diet group. Our results also indicate differences in the effects of the high-fat diet and high-sugar diet on expression profiles in head tissue of flies, despite the reportedly similar phenotypic impacts of the diets. The impacted genes, and how they may relate to pathogenesis in the Drosophila obesity-like state, warrant further experimental investigation.

  17. Body condition score at parturition and postpartum supplemental fat effects on cow and calf performance.

    Science.gov (United States)

    Lake, S L; Scholljegerdes, E J; Atkinson, R L; Nayigihugu, V; Paisley, S I; Rule, D C; Moss, G E; Robinson, T J; Hess, B W

    2005-12-01

    Three-year-old Angus x Gelbvieh beef cows nutritionally managed to achieve a BCS of 4 +/- 0.07 (479.3 +/- 36.3 kg of BW) or 6 +/- 0.07 (579.6 +/- 53.1 kg of BW) at parturition were used in a 2-yr experiment (n = 36/yr) to determine the effects of prepartum energy balance and postpartum lipid supplementation on cow and calf performance. Beginning 3 d postpartum, cows within each BCS were assigned randomly to be fed hay and a low-fat control supplement or supplements with either high-linoleate cracked safflower seeds or high-oleate cracked safflower seeds until d 60 of lactation. Diets were formulated to be isonitrogenous and isocaloric, and safflower seed supplements were provided to achieve 5% of DMI as fat. Ultrasonic 12th rib fat and LM area were lower (P condition over the course of the study, whereas cows in BCS 6 lost condition. No differences (P = 0.44 to 0.71) were detected for milk yield, milk energy, milk fat percentage, or milk lactose percentage because of BCS; however, milk protein percentage was less (P = 0.03) for BCS 4 cows. First-service conception rates did not differ (P = 0.22) because of BCS at parturition, but overall pregnancy rate was greater (P = 0.02) in BCS 6 cows. No differences (P = 0.48 to 0.83) were detected in calf birth weight or ADG because of BCS at parturition. Dietary lipid supplementation did not influence (P = 0.23 to 0.96) cow BW change, BCS change, 12th rib fat, LM area, milk yield, milk energy, milk fat percentage, milk lactose percentage, first service conception, overall pregnancy rates, or calf performance. Although cows in BCS of 4 at parturition seemed capable of maintaining BCS during lactation, the overall decrease in pregnancy rate indicates cows should be managed to achieve a BCS >4 before parturition to improve reproductive success.

  18. Obesity treatment by very low-calorie-ketogenic diet at two years: reduction in visceral fat and on the burden of disease.

    Science.gov (United States)

    Moreno, Basilio; Crujeiras, Ana B; Bellido, Diego; Sajoux, Ignacio; Casanueva, Felipe F

    2016-12-01

    The long-term effect of therapeutic diets in obesity treatment is a challenge at present. The current study aimed to evaluate the long-term effect of a very low-calorie-ketogenic (VLCK) diet on excess adiposity. Especial focus was set on visceral fat mass, and the impact on the individual burden of disease. A group of obese patients (n = 45) were randomly allocated in two groups: either the very low-calorie-ketogenic diet group (n = 22), or a standard low-calorie diet group; (n = 23). Both groups received external support. Adiposity parameters and the cumulative number of months of successful weight loss (5 or 10 %) over a 24-month period were quantified. The very low-calorie-ketogenic diet induced less than 2 months of mild ketosis and significant effects on body weight at 6, 12, and 24 months. At 24 months, a trend to regress to baseline levels was observed; however, the very low-calorie-ketogenic diet induced a greater reduction in body weight (-12.5 kg), waist circumference (-11.6 cm), and body fat mass (-8.8 kg) than the low-calorie diet (-4.4 kg, -4.1 cm, and -3.8 kg, respectively; p ketogenic diet group experienced a reduction in the individual burden of obesity because reduction in disease duration. Very low-calorie-ketogenic diet patients were 500 months with 5 % weight lost vs. the low-calorie diet group (350 months; p ketogenic diet was effective 24 months later, with a decrease in visceral adipose tissue and a reduction in the individual burden of disease.

  19. Changes in nutrient intake and dietary quality among participants with type 2 diabetes following a low-fat vegan diet or a conventional diabetes diet for 22 weeks.

    Science.gov (United States)

    Turner-McGrievy, Gabrielle M; Barnard, Neal D; Cohen, Joshua; Jenkins, David J A; Gloede, Lise; Green, Amber A

    2008-10-01

    Although vegan diets improve diabetes management, little is known about the nutrient profiles or diet quality of individuals with type 2 diabetes who adopt a vegan diet. To assess the changes in nutrient intake and dietary quality among participants following a low-fat vegan diet or the 2003 American Diabetes Association dietary recommendations. A 22-week randomized, controlled clinical trial examining changes in nutrient intake and diet quality. Participants with type 2 diabetes (n=99) in a free-living setting. Participants were randomly assigned to a low-fat vegan diet or a 2003 American Diabetes Association recommended diet. Nutrient intake and Alternate Healthy Eating Index (AHEI) scores were collected at baseline and 22 weeks. Between-group t tests were calculated for changes between groups and paired comparison t tests were calculated for changes within-group. Pearson's correlation assessed relationship of AHEI score to hemoglobin A1c and body weight changes. Both groups reported significant decreases in energy, protein, fat, cholesterol, vitamin D, selenium, and sodium intakes. The vegan group also significantly reduced reported intakes of vitamin B-12 and calcium, and significantly increased carbohydrate, fiber, total vitamin A activity, beta carotene, vitamins K and C, folate, magnesium, and potassium. The American Diabetes Association recommended diet group also reported significant decreases in carbohydrate and iron, but reported no significant increases. The vegan group significantly improved its AHEI score (PVegan diets increase intakes of carbohydrate, fiber, and several micronutrients, in contrast with the American Diabetes Association recommended diet. The vegan group improved its AHEI score whereas the American Diabetes Association recommended diet group's AHEI score remained unchanged.

  20. Comparison of the effects on insulin resistance and glucose tolerance of 6-mo high-monounsaturated-fat, low-fat, and control diets

    DEFF Research Database (Denmark)

    Due, Anette; Larsen, Thomas M; Hermansen, Kjeld

    2008-01-01

    and after the 6-mo dietary intervention. All foods were provided by a purpose-built supermarket. RESULTS: After 6 mo, the MUFA diet reduced fasting glucose (-3.0%), insulin (-9.4%), and the homeostasis model assessment of insulin resistance score (-12.1%). Compared with the MUFA diet, the control diet......BACKGROUND: The effect of dietary fat and carbohydrate on glucose metabolism has been debated for decades. OBJECTIVE: The objective was to compare the effect of 3 ad libitum diets, different in type and amount of fat and carbohydrate, on insulin resistance and glucose tolerance subsequent to weight...... loss. DESIGN: Forty-six nondiabetic, obese [mean (+/-SEM) body mass index (in kg/m(2)): 31.2 +/- 0.3] men (n = 20) and premenopausal women (n = 26) aged 28.0 +/- 0.7 y were randomly assigned to 1 of 3 diets after > or = 8% weight loss: 1) MUFA diet (n = 16): moderate in fat (35-45% of energy) and high...

  1. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    Science.gov (United States)

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Decreases in high-fat and/or high added sugar food group intake occur when a hypocaloric, low-fat diet is prescribed within a lifestyle intervention: a secondary cohort analysis

    Science.gov (United States)

    Keshani, Vaishali Deepak; Sheikh, Vaishali Keshani; Raynor, Hollie Anne

    2016-01-01

    Background When a hypocaloric, low-fat diet is prescribed, intake of currently consumed foods can decrease, foods naturally low in fat and/or added sugar may increase, or fat- or sugar-modified foods may increase. Objective Examine food group intake change and its relation to reductions in energy and fat intake, and weight during a lifestyle intervention. Design Secondary cohort analysis. Participants One hundred sixty-nine participants (52.0 ± 8.6 years, 34.9 ± 4.5 kg/m2, 92% white, 97.6% non-Hispanic, and 56.8% female) with complete data at 0 and 6 months collected in a research setting. Main Outcome Measures From 3, 24-hr phone dietary recalls, 165 food groups from NDSR software were coded into 25 larger food groups assessing intake of higher fat and/or added sugar food groups vs. naturally lower fat and/or added sugar food groups and into 17 larger food groups assessing intake of non-modified vs. fat- and/or sugar-modified food groups. Statistical Analyses Performed Repeated measures analyses of covariance (intervention group: covariate) assessed changes from 0 to 6 months. Hierarchical regressions examined changes in food group intake and changes in energy intake, percent energy from fat intake, and weight from 0 to 6 months. Results Significant reductions (p hypocaloric, low-fat diet is prescribed, reductions in high-fat and/or high-added sugar food groups occur. Targeting reductions in high-fat meats may improve outcomes. PMID:27436530

  3. Dietary yeast-derived mannan oligosaccharides have immune-modulatory properties but do not improve high fat diet-induced obesity and glucose intolerance.

    Directory of Open Access Journals (Sweden)

    Lisa R Hoving

    Full Text Available The indigestible mannan oligosaccharides (MOS derived from the outer cell wall of yeast Saccharomyces cerevisiae have shown potential to reduce inflammation. Since inflammation is one of the underlying mechanisms involved in the development of obesity-associated metabolic dysfunctions, we aimed to determine the effect of dietary supplementation with MOS on inflammation and metabolic homeostasis in lean and diet-induced obese mice. Male C57BL/6 mice were fed either a low fat diet (LFD or a high fat diet (HFD with, respectively, 10% or 45% energy derived from lard fat, with or without 1% MOS for 17 weeks. Body weight and composition were measured throughout the study. After 12 weeks of intervention, whole-body glucose tolerance was assessed and in week 17 immune cell composition was determined in mesenteric white adipose tissue (mWAT and liver by flow cytometry and RT-qPCR. In LFD-fed mice, MOS supplementation induced a significant increase in the abundance of macrophages and eosinophils in mWAT. A similar trend was observed in hepatic macrophages. Although HFD feeding induced a classical shift from the anti-inflammatory M2-like macrophages towards the pro-inflammatory M1-like macrophages in both mWAT and liver from control mice, MOS supplementation had no effect on this obesity-driven immune response. Finally, MOS supplementation did not improve whole-body glucose homeostasis in both lean and obese mice.Altogether, our data showed that MOS had extra-intestinal immune modulatory properties in mWAT and liver. However these effects were not substantial enough to significantly ameliorate HFD-induced glucose intolerance or inflammation.

  4. Gluconeogenesis during endurance exercise in cyclists habituated to a long‐term low carbohydrate high‐fat diet

    Science.gov (United States)

    Webster, Christopher C.; Noakes, Timothy D.; Chacko, Shaji K.; Swart, Jeroen; Kohn, Tertius A.

    2016-01-01

    Key points Blood glucose is an important fuel for endurance exercise. It can be derived from ingested carbohydrate, stored liver glycogen and newly synthesized glucose (gluconeogenesis).We hypothesized that athletes habitually following a low carbohydrate high fat (LCHF) diet would have higher rates of gluconeogenesis during exercise compared to those who follow a mixed macronutrient diet.We used stable isotope tracers to study glucose production kinetics during a 2 h ride in cyclists habituated to either a LCHF or mixed macronutrient diet.The LCHF cyclists had lower rates of total glucose production and hepatic glycogenolysis but similar rates of gluconeogenesis compared to those on the mixed diet.The LCHF cyclists did not compensate for reduced dietary carbohydrate availability by increasing glucose synthesis during exercise but rather adapted by altering whole body substrate utilization. Abstract Endogenous glucose production (EGP) occurs via hepatic glycogenolysis (GLY) and gluconeogenesis (GNG) and plays an important role in maintaining euglycaemia. Rates of GLY and GNG increase during exercise in athletes following a mixed macronutrient diet; however, these processes have not been investigated in athletes following a low carbohydrate high fat (LCHF) diet. Therefore, we studied seven well‐trained male cyclists that were habituated to either a LCHF (7% carbohydrate, 72% fat, 21% protein) or a mixed diet (51% carbohydrate, 33% fat, 16% protein) for longer than 8 months. After an overnight fast, participants performed a 2 h laboratory ride at 72% of maximal oxygen consumption. Glucose kinetics were measured at rest and during the final 30 min of exercise by infusion of [6,6‐2H2]‐glucose and the ingestion of 2H2O tracers. Rates of EGP and GLY both at rest and during exercise were significantly lower in the LCHF group than the mixed diet group (Exercise EGP: LCHF, 6.0 ± 0.9 mg kg−1 min−1, Mixed, 7.8 ± 1.1 mg kg−1 min−1, P Exercise GLY

  5. Effect of low-carbohydrate diets high in either fat or protein on thyroid function, plasma insulin, glucose, and triglycerides in healthy young adults.

    Science.gov (United States)

    Ullrich, I H; Peters, P J; Albrink, M J

    1985-01-01

    A low-carbohydrate diet, frequently used for treatment of reactive hypoglycemia, hypertriglyceridemia, and obesity may affect thyroid function. We studied the effects of replacing the deleted carbohydrate with either fat or protein in seven healthy young adults. Subjects were randomly assigned to receive seven days of each of two isocaloric liquid-formula, low-carbohydrate diets consecutively. One diet was high in polyunsaturated fat (HF), with 10%, 55%, and 35% of total calories derived from protein, fat, and carbohydrate, respectively. The other was high in protein (HP) with 35%, 30%, and 35% of total calories derived from protein, fat, and carbohydrate. Fasting blood samples were obtained at baseline and on day 8 of each diet. A meal tolerance test representative of each diet was given on day 7. The triiodothyronine (T3) declined more (P less than .05) following the HF diet than the HP diet (baseline 198 micrograms/dl, HP 138, HF 113). Thyroxine (T4) and reverse T3 (rT3) did not change significantly. Thyroid-stimulating hormone (TSH) declined equally after both diets. The insulin level was significantly higher 30 minutes after the HP meal (148 microU/ml) than after the HF meal (90 microU/ml). The two-hour glucose level for the HP meal was less, 85 mg/dl, than after the HF meal (103 mg/dl). Serum triglycerides decreased more after the HF diet (HF 52 mg/dl, HP 67 mg/dl). Apparent benefits of replacing carbohydrate with polyunsaturated fat rather than protein are less insulin response and less postpeak decrease in blood glucose and lower triglycerides. The significance of the lower T3 level is unknown.

  6. High Caloric Diet for ALS Patients: High Fat, High Carbohydrate or High Protein

    Directory of Open Access Journals (Sweden)

    Sarvin Sanaie

    2015-01-01

    Full Text Available ALS is a fatal motor neurodegenerative disease characterized by muscle atrophy and weakness, dysarthria, and dysphagia. The mean survival of ALS patients is three to five years, with 50% of those diagnosed dying within three years of onset (1. A multidisciplinary approach is crucial to set an appropriate plan for metabolic and nutritional support in ALS. Nutritional management incorporates a continuous assessment and implementation of dietary modifications throughout the duration of the disease. The nutritional and metabolic approaches to ALS should start when the diagnosis of ALS is made and should become an integral part of the continuous care to the patient, including nutritional surveillance, dietary counseling, management of dysphagia, and enteral nutrition when needed. Malnutrition and lean body mass loss are frequent findings in ALS patients necessitating comprehensive energy requirement assessment for these patients. Malnutrition is an independent prognostic factor for survival in ALS with a 7.7 fold increase in risk of death. Malnutrition is estimated to develop in one quarter to half of people with ALS (2. Adequate calorie and protein provision would diminish muscle loss in this vulnerable group of patients. Although appropriate amount of energy to be administered is yet to be established, high calorie diet is expected to be effective for potential improvement of survival; ALS patients do not normally receive adequate  intake of energy. A growing number of clinicians suspect that a high calorie diet implemented early in their disease may help people with ALS meet their increased energy needs and extend their survival. Certain high calorie supplements appear to be safe and well tolerated by people with ALS according to studies led by Universitäts klinikum Ulm's and, appear to stabilize body weight within 3 months. In a recent study by Wills et al., intake of high-carbohydrate low-fat supplements has been recommended in ALS patients (3

  7. Characterization of fat metabolism in the fatty liver caused by a high-fat, low-carbohydrate diet: A study under equal energy conditions.

    Science.gov (United States)

    Kurosaka, Yuka; Shiroya, Yoko; Yamauchi, Hideki; Kitamura, Hiromi; Minato, Kumiko

    2017-05-20

    The pathology of fatty liver due to increased percentage of calories derived from fat without increased overall caloric intake is largely unclear. In this study, we aimed to characterize fat metabolism in rats with fatty liver resulting from consumption of a high-fat, low-carbohydrate (HFLC) diet without increased caloric intake. Four-week-old male Sprague-Dawley rats were randomly assigned to the control (Con) and HFLC groups, and rats were fed the corresponding diets ad libitum. Significant decreases in food intake per gram body weight were observed in the HFLC group compared with that in the Con group. Thus, there were no significant differences in body weights or caloric intake per gram body weight between the two groups. Marked progressive fat accumulation was observed in the livers of rats in the HFLC group, accompanied by suppression of de novo lipogenesis (DNL)-related proteins in the liver and increased leptin concentrations in the blood. In addition, electron microscopic observations revealed that many lipid droplets had accumulated within the hepatocytes, and mitochondrial numbers were reduced in the hepatocytes of rats in the HFLC group. Our findings confirmed that consumption of the HFLC diet induced fatty liver, even without increased caloric intake. Furthermore, DNL was not likely to be a crucial factor inducing fatty liver with standard energy intake. Instead, ultrastructural abnormalities found in mitochondria, which may cause a decline in β-oxidation, could contribute to the development of fatty liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A two-year randomized weight loss trial comparing a vegan diet to a more moderate low-fat diet.

    Science.gov (United States)

    Turner-McGrievy, Gabrielle M; Barnard, Neal D; Scialli, Anthony R

    2007-09-01

    The objective was to assess the effect of a low-fat, vegan diet compared with the National Cholesterol Education Program (NCEP) diet on weight loss maintenance at 1 and 2 years. Sixty-four overweight, postmenopausal women were randomly assigned to a vegan or NCEP diet for 14 weeks, and 62 women began the study. The study was done in two replications. Participants in the first replication (N = 28) received no follow-up support after the 14 weeks, and those in the second replication (N = 34) were offered group support meetings for 1 year. Weight and diet adherence were measured at 1 and 2 years for all participants. Weight loss is reported as median (interquartile range) and is the difference from baseline weight at years 1 and 2. Individuals in the vegan group lost more weight than those in the NCEP group at 1 year [-4.9 (-0.5, -8.0) kg vs. -1.8 (0.8, -4.3); p vegan diet was associated with significantly greater weight loss than the NCEP diet at 1 and 2 years. Both group support and meeting attendance were associated with significant weight loss at follow-up.

  9. Low-carbohydrate, high-protein, high-fat diet alters small peripheral artery reactivity in metabolic syndrome patients.

    Science.gov (United States)

    Merino, Jordi; Kones, Richard; Ferré, Raimon; Plana, Núria; Girona, Josefa; Aragonés, Gemma; Ibarretxe, Daiana; Heras, Mercedes; Masana, Luis

    2014-01-01

    Low carbohydrate diets have become increasingly popular for weight loss. Although they may improve some metabolic markers, particularly in type 2 diabetes mellitus (T2D) or metabolic syndrome (MS), their net effect on vascular function remains unclear. Evaluate the relation between dietary macronutrient composition and the small artery reactive hyperaemia index (saRHI), a marker of small artery vascular function, in a cohort of MS patients. This cross-sectional study included 160 MS patients. Diet was evaluated by a 3-day food-intake register and reduced to a novel low-carbohydrate diet score (LCDS). Physical examination, demographic, biochemical and anthropometry parameters were recorded, and saRHI was measured in each patient. Individuals in the lowest LCDS quartile (Q1; 45% carbohydrate, 19% protein, 31% fat) had higher saRHI values than those in the top quartile (Q4; 30% carbohydrate, 25% protein, 43% fat) (1.84±0.42 vs. 1.55±0.25, P=.012). These results were similar in T2D patients (Q1=1.779±0.311 vs. Q4=1.618±0.352, P=.011) and also in all of the MS components, except for low HDLc. Multivariate analysis demonstrated that individuals in the highest LCDS quartile, that is, consuming less carbohydrates, had a significantly negative coefficient of saRHI which was independent of confounders (HR: -0.747; 95%CI: 0.201, 0.882; P=.029). These data suggest that a dietary pattern characterized by a low amount of carbohydrate, but reciprocally higher amounts of fat and protein, is associated with poorer vascular reactivity in patients with MS and T2D. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  10. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change.

    Science.gov (United States)

    Rinnankoski-Tuikka, Rita; Hulmi, Juha J; Torvinen, Sira; Silvennoinen, Mika; Lehti, Maarit; Kivelä, Riikka; Reunanen, Hilkka; Kujala, Urho M; Kainulainen, Heikki

    2014-08-01

    The relation between lipid accumulation and influence of exercise on insulin sensitivity is not straightforward. A proper balance between lipid droplet synthesis, lipolysis, and oxidative metabolism would ensure low local intramyocellular fatty acid levels, thereby possibly protecting against lipotoxicity-associated insulin resistance. This study investigated whether the accumulation of triglycerides and lipid droplets in response to high availability of fatty acids after high-fat feeding would parallel the abundance of intramyocellular perilipin proteins, especially PLIN5. The effects on these variables after diet change or voluntary running exercise intervention in skeletal muscle were also investigated. During a 19-week experiment, C57BL/6J mice were studied in six different groups: low-fat diet sedentary, low-fat diet active, high-fat diet sedentary, high-fat diet active and two groups which were high-fat sedentary for nine weeks, after which divided into low-fat sedentary or low-fat active groups. Myocellular triglyceride concentration and perilipin protein expression levels were assessed. We show that, concurrently with impaired insulin sensitivity, the expression level of PLIN5 and muscular triglyceride concentration increased dramatically after high-fat diet. These adaptations were reversible after the diet change intervention with no additional effect of exercise. After high-fat diet, lipid droplets become larger providing more surface area for PLIN5. We suggest that PLIN5 is an important regulator of lipid droplet turnover in altered conditions of fatty acid supply and consumption. Imbalances in lipid droplet metabolism and turnover might lead to lipotoxicity-related insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Changes in body weight and metabolic indexes in overweight breast cancer survivors enrolled in a randomized trial of low-fat vs. reduced carbohydrate diets.

    Science.gov (United States)

    Thomson, Cynthia A; Stopeck, Alison T; Bea, Jennifer W; Cussler, Ellen; Nardi, Emily; Frey, Georgette; Thompson, Patricia A

    2010-01-01

    Overweight status is common among women breast cancer survivors and places them at greater risk for metabolic disorders, cardiovascular morbidity, and breast cancer recurrence than nonoverweight survivors. Efforts to promote weight control in this population are needed. The objective of this research was to evaluate the effect of low-fat or low-carbohydrate diet counseling on weight loss, body composition, and changes in metabolic indexes in overweight postmenopausal breast cancer survivors. Survivors (n = 40) were randomized to receive dietitian counseling for a low-fat or a reduced carbohydrate diet for 6 mo. Weight and metabolic measures, including glucose, insulin, HbA1c, HOMA, lipids, hsCRP, as well as blood pressure were measured at baseline, 6, 12 and 24 wk. Dietary intake of fat and carbohydrate was reduced by 24 and 76 g/day, respectively. Weight loss averaged 6.1 (± 4.8 kg) at 24 wk and was not significantly different by diet group; loss of lean mass was also demonstrated. All subjects demonstrated improvements in total/HDL cholesterol ratio, and significant reductions in HbA1c, insulin, and HOMA. Triglycerides levels were significantly reduced only in the low-carbohydrate diet group (-31.1 ± 36.6; P = 0.01). Significant improvements in weight and metabolic indexes can be demonstrated among overweight breast cancer survivors adherent to either a carbohydrate- or fat-restricted diet.

  12. The effects of high-fat diets composed of different animal and vegetable fat sources on the health status and tissue lipid profiles of male Japanese quail (

    Directory of Open Access Journals (Sweden)

    Janine Donaldson

    2017-05-01

    Full Text Available Objective The current study aimed to investigate the impact of high-fat diets composed of different animal and vegetable fat sources on serum metabolic health markers in Japanese quail, as well as the overall lipid content and fatty acid profiles of the edible bird tissues following significantly increased dietary lipid supplementation. Methods Fifty seven male quail were divided into six groups and fed either a standard diet or a diet enriched with one of five different fats (22% coconut oil, lard, palm oil, soybean oil, or sunflower oil for 12 weeks. The birds were subjected to an oral glucose tolerance test following the feeding period, after which they were euthanized and blood, liver, breast, and thigh muscle samples collected. Total fat content and fatty acid profiles of the tissue samples, as well as serum uric acid, triglyceride, cholesterol, total protein, albumin, aspartate transaminase, and total bilirubin concentrations were assessed. Results High-fat diet feeding had no significant effects on the glucose tolerance of the birds. Dietary fatty acid profiles of the added fats were reflected in the lipid profiles of both the liver and breast and thigh muscle tissues, indicating successful transfer of dietary fatty acids to the edible bird tissues. The significantly increased level of lipid inclusion in the diets of the quail used in the present study was unsuccessful in increasing the overall lipid content of the edible bird tissues. Serum metabolic health markers in birds on the high-fat diets were not significantly different from those observed in birds on the standard diet. Conclusion Thus, despite the various high-fat diets modifying the fatty acid profile of the birds’ tissues, unlike in most mammals, the birds maintained a normal health status following consumption of the various high-fat diets.

  13. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet.

    Science.gov (United States)

    Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J

    2010-07-01

    Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (Pbone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity. (c) 2010 Elsevier Inc. All rights reserved.

  14. Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes

    Directory of Open Access Journals (Sweden)

    Hualin Wang

    2018-04-01

    Full Text Available The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON, a high-fat diet (HFD group or a HFD supplemented with fish oil (FO group for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes’ expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.

  15. Adiponectin,leptin: focus on low-protein diet supplemented with keto acids in chronic glomerulonephritis with hbv patients

    OpenAIRE

    Mou, Shan; Li, Jialin; Ni, Zhaohui; Yu, Zanzhe; Wang, Qin; Xu, Weijia

    2012-01-01

    Leptin and adiponectin come from adipose tissue, which can reflect patients' inflammation and status of lipid metabolism. Our study is aim to evaluate the effects of short-term restriction of dietary protein intake (DPI) supplemented with keto acids on nutrition and lipid metabolic disturbance in chronic glomeruloneph-ritis with HBV patients. 17 patients were randomized to either low DPI with keto acid-supplemented (sLP) or low DPI (LP) group for 12 weeks. Low-protein diet (LPD) wasindividual...

  16. Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients.

    Science.gov (United States)

    De Natale, Claudia; Annuzzi, Giovanni; Bozzetto, Lutgarda; Mazzarella, Raffaella; Costabile, Giuseppina; Ciano, Ornella; Riccardi, Gabriele; Rivellese, Angela A

    2009-12-01

    To search for a better dietary approach to treat postprandial lipid abnormalities and improve glucose control in type 2 diabetic patients. According to a randomized crossover design, 18 type 2 diabetic patients (aged 59 +/- 5 years; BMI 27 +/- 3 kg/m(2)) (means +/- SD) in satisfactory blood glucose control on diet or diet plus metformin followed a diet relatively rich in carbohydrates (52% total energy), rich in fiber (28 g/1,000 kcal), and with a low glycemic index (58%) (high-carbohydrate/high-fiber diet) or a diet relatively low in carbohydrate (45%) and rich in monounsaturated fat (23%) (low-carbohydrate/high-monounsaturated fat diet) for 4 weeks. Thereafter, they shifted to the other diet for 4 more weeks. At the end of each period, plasma glucose, insulin, lipids, and lipoprotein fractions (separated by discontinuous density gradient ultracentrifugation) were determined on blood samples taken at fasting and over 6 h after a test meal having a similar composition as the corresponding diet. In addition to a significant decrease in postprandial plasma glucose, insulin responses, and glycemic variability, the high-carbohydrate/high-fiber diet also significantly improved the primary end point, since it reduced the postprandial incremental areas under the curve (IAUCs) of triglyceride-rich lipoproteins, in particular, chylomicrons (cholesterol IAUC: 0.05 +/- 0.01 vs. 0.08 +/- 0.02 mmol/l per 6 h; triglycerides IAUC: 0.71 +/- 0.35 vs. 1.03 +/- 0.58 mmol/l per 6 h, P carbohydrate and fiber, essentially based on legumes, vegetables, fruits, and whole cereals, may be particularly useful for treating diabetic patients because of its multiple effects on different cardiovascular risk factors, including postprandial lipids abnormalities.

  17. In Vitro Digestibilities of Six Rumen Protected Fat-Protein Supplement Formulas

    Directory of Open Access Journals (Sweden)

    Lilis Hartati

    2012-01-01

    Full Text Available Abstract. The aim of the research was to evaluate the efficacy of protection method of rumen protected fat-protein supplements. In vitro digestibility test was carried out to examine nutrients digestibility of different supplement formula based on the sources of protein and oil. The research used two sources of fat namely crude palm oil (CPO and fish oil (FO and three sources of protein namely milk skim, soy flour, and soybean meal. Thus there were 6 combinations that subjected in the in vitro digestibility test. The observed variables were the digestibility of dry matter (DM, organic matter (OM, crude fat (CF, and crude protein (CP. Results indicated that the method for protecting protein and fat was effective. This was showed by low nutrients digestibility in the rumen and high nutrients digestibility in the post rumen. In conclusion the combination between skim milk and CPO gave the best results among the other supplement formula. Keywords: rumen protected nutrient, fat-protein supplement, rumen digestibility, in vitro Animal Production 14(1:1-5, January 2012

  18. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.

    Science.gov (United States)

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung

    2016-10-01

    Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.

  19. Dietary β-conglycinin prevents fatty liver induced by a high-fat diet by a decrease in peroxisome proliferator-activated receptor γ2 protein.

    Science.gov (United States)

    Yamazaki, Tomomi; Kishimoto, Kyoko; Miura, Shinji; Ezaki, Osamu

    2012-02-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). Mice fed a high-fat diet, especially that of saturated-fat-rich oil, develop fatty liver with an increase in peroxisome proliferator-activated receptor (PPAR) γ2 protein in liver. The fatty liver induced by a high-fat diet is improved by knockdown of liver PPARγ2. In this study, we investigated whether β-conglycinin (a major protein of soy protein) could reduce PPARγ2 protein and prevent high-fat-diet-induced fatty liver in ddY mice. Mice were fed a high-starch diet (70 energy% [en%] starch) plus 20% (wt/wt) sucrose in their drinking water or a high-safflower-oil diet (60 en%) or a high-butter diet (60 en%) for 11 weeks, by which fatty liver is developed. As a control, mice were fed a high-starch diet with drinking water. Either β-conglycinin or casein (control) was given as dietary protein. β-Conglycinin supplementation completely prevented fatty liver induced by each type of diet, along with a reduction in adipose tissue weight. β-Conglycinin decreased sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP) messenger RNAs (mRNAs) in sucrose-supplemented mice, whereas it decreased PPARγ2 mRNA (and its target genes CD36 and FSP27), but did not decrease SREBP-1c and ChREBP mRNAs, in mice fed a high-fat diet. β-Conglycinin decreased PPARγ2 protein and liver triglyceride (TG) concentration in a dose-dependent manner in mice fed a high-butter diet; a significant decrease in liver TG concentration was observed at a concentration of 15 en%. In conclusion, β-conglycinin effectively prevents fatty liver induced by a high-fat diet through a decrease in liver PPARγ2 protein. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet.

    Science.gov (United States)

    Ferreira, Paula S; Spolidorio, Luis C; Manthey, John A; Cesar, Thais B

    2016-06-15

    The flavanones hesperidin, eriocitrin and eriodictyol were investigated for their prevention of the oxidative stress and systemic inflammation caused by high-fat diet in C57BL/6J mice. The mice received a standard diet (9.5% kcal from fat), high-fat diet (45% kcal from fat) or high-fat diet supplemented with hesperidin, eriocitrin or eriodictyol for a period of four weeks. Hesperidin, eriocitrin and eriodictyol increased the serum total antioxidant capacity, and restrained the elevation of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and C-reactive protein (hs-CRP). In addition, the liver TBARS levels and spleen mass (g per kg body weight) were lower for the flavanone-treated mice than in the unsupplemented mice. Eriocitrin and eriodictyol reduced TBARS levels in the blood serum, and hesperidin and eriodictyol also reduced fat accumulation and liver damage. The results showed that hesperidin, eriocitrin and eriodictyol had protective effects against inflammation and oxidative stress caused by high-fat diet in mice, and may therefore prevent metabolic alterations associated with the development of cardiovascular diseases in other animals.

  1. Oral supplementations with L-glutamine or L-alanyl-L-glutamine do not change metabolic alterations induced by long-term high-fat diet in the B6.129F2/J mouse model of insulin resistance.

    Science.gov (United States)

    Bock, Patricia Martins; Krause, Mauricio; Schroeder, Helena Trevisan; Hahn, Gabriela Fernandes; Takahashi, Hilton Kenji; Schöler, Cinthia Maria; Nicoletti, Graziella; Neto, Luiz Domingos Zavarize; Rodrigues, Maria Inês Lavina; Bruxel, Maciel Alencar; Homem de Bittencourt, Paulo Ivo

    2016-01-01

    In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.

  2. Carcass and cut yields of broiler chickens fed diet containing purslane meal rich in omega-3 fats

    Science.gov (United States)

    Kartikasari, LR; Hertanto, B. S.; Nuhriawangsa, A. MP

    2018-01-01

    The aim of the research was to investigate the effect of diets containing Portulaca oleraceae (purslane) as a source of omega-3 fats on carcass and cut yields of broiler chickens. One-day old unsexed Lohmann broiler chickens (n = 180) were used and randomly allocated into 30 pens (each pen contained 6 birds). The pens were randomly assigned to five experimental diets with 6 replicates (36 birds per treatment). The diets were formulated by supplementing a basal diet with purslane meal at a level of 0, 1.5, 3.0, 4.5 and 6.0%. For a period of 42 days, water and diets were provided ad libitum. Feed intake and body weight gain were collected weekly to determine feed conversion ratio. The collected data were analysed using analysis of variance. If there were significant differences between treatment means, the analysis was continued by Duncan’s New Multiple Range Test. Findings showed that diets enriched with omega-3 fats, alpha-linolenic acid did not change body weight and carcass percentage of broilers. In terms of cuts yield, there was no significant different on the percentage of breast, back and wings by feeding diets supplemented with purslane meal. However, the inclusion levels of dietary purslane meal significantly affected the percentage of thighs (P<0.05) with the highest weight achieved for diets supplemented with 3% purslane meal. Drumsticks tended to increase (P = 0.056) by feeding the experimental diets. It was concluded that the inclusion level of 6% purslane meal didn’t have negative effect on carcass and cut yields of broiler chickens.

  3. A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis.

    Science.gov (United States)

    Allick, Gideon; Bisschop, Peter H; Ackermans, Mariette T; Endert, Erik; Meijer, Alfred J; Kuipers, Folkert; Sauerwein, Hans P; Romijn, Johannes A

    2004-12-01

    The aim of this study was to examine the mechanisms by which dietary carbohydrate and fat modulate fasting glycemia. We compared the effects of an eucaloric high-carbohydrate (89% carbohydrate) and high-fat (89% fat) diet on fasting glucose metabolism and insulin sensitivity in seven obese patients with type 2 diabetes using stable isotopes and euglycemic hyperinsulinemic clamps. At basal insulin levels glucose concentrations were 148 +/- 11 and 123 +/- 11 mg/dl (8.2 +/- 0.6 and 6.8 +/- 0.6 mmol/liter) on the high-carbohydrate and high-fat diet, respectively (P carbohydrate diet (1.88 +/- 0.06 vs. 1.55 +/- 0.05 mg/kg.min (10.44 +/- 0.33 vs. 8.61 +/- 0.28 micromol/kg.min) (P carbohydrate and high-fat diet, respectively. We conclude that short-term variations in dietary carbohydrate to fat ratios affect basal glucose metabolism in people with type 2 diabetes merely through modulation of the rate of glycogenolysis, without affecting insulin sensitivity of glucose metabolism.

  4. Decreases in High-Fat and/or High-Added-Sugar Food Group Intake Occur when a Hypocaloric, Low-Fat Diet Is Prescribed Within a Lifestyle Intervention: A Secondary Cohort Analysis.

    Science.gov (United States)

    Sheikh, Vaishali Keshani; Raynor, Hollie A

    2016-10-01

    When a hypocaloric, low-fat diet is prescribed, intake of currently consumed foods can decrease, foods naturally low in fat and/or added sugar may increase, or fat- or sugar-modified foods may increase. To examine food group intake change and its relation to reductions in energy and fat intake and weight during a lifestyle intervention. Secondary cohort analysis. One hundred sixty-nine participants (aged 52.0±8.6 years, body mass index 34.9±4.5, 92% white, 97.6% non-Hispanic, and 56.8% women) with complete data at 0 and 6 months collected in a research setting. From three 24-hour telephone dietary recalls, 165 food groups from Nutrition Data System for Research software were coded into 25 larger food groups assessing intake of higher-fat and/or added-sugar food groups vs naturally lower-fat and/or added-sugar food groups and into 17 larger food groups assessing intake of nonmodified vs fat- and/or sugar-modified food groups. Repeated measures analyses of covariance (intervention group: covariate) assessed changes from 0 to 6 months. Hierarchical regressions examined changes in food group intake and changes in energy intake, percent energy from fat intake, and weight from 0 to 6 months. Significant reductions (Phypocaloric, low-fat diet is prescribed, reductions in high-fat and/or high-added-sugar food groups occur. Targeting reductions in high-fat meats may improve outcomes. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  5. [Effect of indole-3-carbinol and rutin on rats' provision by vitamins' A and E with different fat content in its diet].

    Science.gov (United States)

    Beketova, N A; Kravchenko, L V; Kosheleva, O V; Vrzhesinskaia, O A; Kodentsova, V M

    2013-01-01

    Effect of indole-3-carbinol (I-3-C) and rutin (R) supplementation on vitamins A and E status of growing Wistar rats, receiving for 6 or 4 week semi-synthetic diets with different levels (1, 11 and 31%) of fat (lard and sunflower oil at a ratio of 1:1) has been studied. The content of vitamin E was 6, 9 and 15 IU, vitamin A - 400 IU in 100 g of ration. Against the various fat content during the last 7 or 14 days of the experiment rats received respectively I-3-C (20 mg per 1 kg of body weight per day) or R (0.4% of the feed weight). Rat tissues were analyzed for vitamins A (retinol and retinyol palmitate) and E (alpha-tocopherol) by HPLC. Reducing fat content in diet from 11 to 1% was associated with significant (pvitamin E in rats, regardless of the fat content in the diet. With excess fat content (31%) in the diet, supplementation of I-3-C and R lowered hepatic RP by 22-52% (pvitamin A concentration in blood plasma by 12% (p=0.024) and in liver by 37% (p=0.002).

  6. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial.

    Science.gov (United States)

    Gardner, Christopher D; Trepanowski, John F; Del Gobbo, Liana C; Hauser, Michelle E; Rigdon, Joseph; Ioannidis, John P A; Desai, Manisha; King, Abby C

    2018-02-20

    Dietary modification remains key to successful weight loss. Yet, no one dietary strategy is consistently superior to others for the general population. Previous research suggests genotype or insulin-glucose dynamics may modify the effects of diets. To determine the effect of a healthy low-fat (HLF) diet vs a healthy low-carbohydrate (HLC) diet on weight change and if genotype pattern or insulin secretion are related to the dietary effects on weight loss. The Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) randomized clinical trial included 609 adults aged 18 to 50 years without diabetes with a body mass index between 28 and 40. The trial enrollment was from January 29, 2013, through April 14, 2015; the date of final follow-up was May 16, 2016. Participants were randomized to the 12-month HLF or HLC diet. The study also tested whether 3 single-nucleotide polymorphism multilocus genotype responsiveness patterns or insulin secretion (INS-30; blood concentration of insulin 30 minutes after a glucose challenge) were associated with weight loss. Health educators delivered the behavior modification intervention to HLF (n = 305) and HLC (n = 304) participants via 22 diet-specific small group sessions administered over 12 months. The sessions focused on ways to achieve the lowest fat or carbohydrate intake that could be maintained long-term and emphasized diet quality. Primary outcome was 12-month weight change and determination of whether there were significant interactions among diet type and genotype pattern, diet and insulin secretion, and diet and weight loss. Among 609 participants randomized (mean age, 40 [SD, 7] years; 57% women; mean body mass index, 33 [SD, 3]; 244 [40%] had a low-fat genotype; 180 [30%] had a low-carbohydrate genotype; mean baseline INS-30, 93 μIU/mL), 481 (79%) completed the trial. In the HLF vs HLC diets, respectively, the mean 12-month macronutrient distributions were 48% vs 30% for carbohydrates

  7. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    Science.gov (United States)

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  8. Effect of phytase supplementation on apparent phosphorus digestibility and phosphorus output in broiler chicks fed low-phosphorus diets

    Directory of Open Access Journals (Sweden)

    Xian-Ren Jiang

    2015-04-01

    Full Text Available This study was conducted to evaluate the effect of supplemental phytase in broiler chicks fed different low levels of total phosphorus (P on the apparent phosphorus digestibility (APD and phosphorus output (PO in the faeces and ileal digesta. After fed a standard broiler starter diet from day 0 to 14 post-hatch, a total of 144 male broiler chicks were allocated to 6 groups for a 7-d experiment with a 2 × 3 factorial design comparing phytase (supplemented without (CTR or with 400 FTU/kg phytase (PHY and total P levels (2.0, 2.5 and 3.0 g/kg. The faecal samples were collected from day 17 to 21 post-hatch. At 22 days of age, all the chicks were slaughtered and collected the ileal digesta. Phytase supplementation significantly (P < 0.01 increased APD and decreased PO in the faeces and ileal digesta in comparison with the CTR group. In addition, PO in the faeces expressed as g/kg DM diets and faeces (Diet × P level, P = 0.047 and < 0.01, respectively as well as PO in the ileal digesta expressed as g/kg DM digesta (Diet × P level, P = 0.04 were affected by diet and P level, which were due to the significant reduction (P < 0.01 by PHY supplementation to the diets with 3.0 g/kg total P. The results evidenced that supplemental phytase improved the APD and PO when chicks was fed 3.0 g/kg total P diet, while lower total P levels may limit exogenous phytase efficacy.

  9. Assessment of Grewia oppositifolia leaves as crude protein supplement to low-quality forage diets of sheep

    NARCIS (Netherlands)

    Khan, N.A.; Habib, G.

    2012-01-01

    In the tropical arid and semi-arid regions of many developing countries, sheep are predominantly grazed on low-quality pastures and stall-fed on crop residues. This study evaluated the potential of Grewia oppositifolia tree leaves as crude protein (CP) supplement to the low-quality diets of sheep in

  10. Effects of diet macronutrient composition on body composition and fat distribution during weight maintenance and weight loss.

    Science.gov (United States)

    Goss, Amy M; Goree, Laura Lee; Ellis, Amy C; Chandler-Laney, Paula C; Casazza, Krista; Lockhart, Mark E; Gower, Barbara A

    2013-06-01

    Qualitative aspects of diet may affect body composition and propensity for weight gain or loss. We tested the hypothesis that consumption of a relatively low glycemic load (GL) diet would reduce total and visceral adipose tissue under both eucaloric and hypocaloric conditions. Participants were 69 healthy overweight men and women. Body composition was assessed by DXA and fat distribution by CT scan at baseline, after 8 weeks of a eucaloric diet intervention, and after 8 weeks of a hypocaloric (1000 kcal/day deficit) diet intervention. Participants were provided all food for both phases, and randomized to either a low GL diet (75 points per 1000 kcal, n = 29). After the eucaloric phase, participants who consumed the low GL diet had 11% less intra-abdominal fat (IAAT) than those who consumed the high GL diet (P lean mass and baseline fat mass). Consumption of a relatively low GL diet may affect energy partitioning, both inducing reduction in IAAT independent of weight change, and enhancing loss of fat relative to lean mass during weight loss. Copyright © 2012 The Obesity Society.

  11. The effect of mannan oligosaccharide supplementation on body weight gain and fat accrual in C57Bl/6J mice.

    Science.gov (United States)

    Smith, Daniel L; Nagy, Tim R; Wilson, Landon S; Dong, Shengli; Barnes, Stephen; Allison, David B

    2010-05-01

    The prevalence of obesity in industrialized societies has become markedly elevated. In contrast, model organism research shows that reducing caloric intake below ad libitum levels provides many health and longevity benefits. Despite these benefits, few people are willing and able to reduce caloric intake over prolonged periods. Prior research suggests that mannooligosaccharide (MOS or mannan) supplementation can increase lifespan of some livestock and in rodents can reduce visceral fat without reducing caloric intake. Hence, we tested the effect of MOS supplementation as a possible calorie restriction (CR) mimetic (CRM) in mice. C57Bl/6J male mice were fed a high-fat "western" type diet with or without 1% MOS (by weight) supplementation (n = 24/group) from 8 to 20 weeks of age. Animals were housed individually and provided 95% of ad libitum food intake throughout the study. Body weight was measured weekly and body composition (lean and fat mass) measured noninvasively every 3 weeks. Individual fat depot weights were acquired by dissection at study completion. Supplementation of a high-fat diet with 1% MOS tended to reduce total food intake (mean +/- s.d.; control (CON): 293.69 +/- 10.53 g, MOS: 288.10 +/- 11.82 g; P = 0.09) during the study. Moreover, MOS supplementation had no significant effect on final body weight (CON: 25.21 +/- 2.31 g, MOS: 25.28 +/- 1.49 g; P = 0.91), total fat (CON: 4.72 +/- 0.90 g, MOS: 4.82 +/- 0.83 g; P = 0.69), or visceral fat (CON: 1.048 +/- 0.276 g, MOS: 1.004 +/- 0.247 g; P = 0.57). Contrary to previous research, MOS supplementation had no discernable effect on body weight gain or composition during this 12-week study, challenging the potential use of MOS as a CRM or body composition enhancer.

  12. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet.

    Science.gov (United States)

    Webster, Christopher C; Noakes, Timothy D; Chacko, Shaji K; Swart, Jeroen; Kohn, Tertius A; Smith, James A H

    2016-08-01

    Blood glucose is an important fuel for endurance exercise. It can be derived from ingested carbohydrate, stored liver glycogen and newly synthesized glucose (gluconeogenesis). We hypothesized that athletes habitually following a low carbohydrate high fat (LCHF) diet would have higher rates of gluconeogenesis during exercise compared to those who follow a mixed macronutrient diet. We used stable isotope tracers to study glucose production kinetics during a 2 h ride in cyclists habituated to either a LCHF or mixed macronutrient diet. The LCHF cyclists had lower rates of total glucose production and hepatic glycogenolysis but similar rates of gluconeogenesis compared to those on the mixed diet. The LCHF cyclists did not compensate for reduced dietary carbohydrate availability by increasing glucose synthesis during exercise but rather adapted by altering whole body substrate utilization. Endogenous glucose production (EGP) occurs via hepatic glycogenolysis (GLY) and gluconeogenesis (GNG) and plays an important role in maintaining euglycaemia. Rates of GLY and GNG increase during exercise in athletes following a mixed macronutrient diet; however, these processes have not been investigated in athletes following a low carbohydrate high fat (LCHF) diet. Therefore, we studied seven well-trained male cyclists that were habituated to either a LCHF (7% carbohydrate, 72% fat, 21% protein) or a mixed diet (51% carbohydrate, 33% fat, 16% protein) for longer than 8 months. After an overnight fast, participants performed a 2 h laboratory ride at 72% of maximal oxygen consumption. Glucose kinetics were measured at rest and during the final 30 min of exercise by infusion of [6,6-(2) H2 ]-glucose and the ingestion of (2) H2 O tracers. Rates of EGP and GLY both at rest and during exercise were significantly lower in the LCHF group than the mixed diet group (Exercise EGP: LCHF, 6.0 ± 0.9 mg kg(-1)  min(-1) , Mixed, 7.8 ± 1.1 mg kg(-1)  min(-1) , P < 0.01; Exercise GLY

  13. Weight Loss on Low-Fat vs. Low-Carb Diets by Insulin Resistance Status Among Overweight Adults & Adults with Obesity: A Randomized Pilot Trial

    Science.gov (United States)

    Gardner, Christopher D.; Offringa, Lisa; Hartle, Jennifer; Kapphahn, Kris; Cherin, Rise

    2018-01-01

    OBJECTIVE To test for differential weight loss response to Low-Fat (LF) vs. Low-Carbohydrate (LC) diets by insulin resistance status with emphasis on overall quality of both diets. METHODS Sixty-one adults, BMI 28-40 kg/m2, were randomized in a 2X2 design to LF or LC by insulin resistance status in this pilot study. Primary outcome was 6-month weight change. Participants were characterized as more insulin resistant (IR) or more insulin sensitive (IS) by median split of baseline insulin-area-under-the-curve from an oral glucose tolerance test. Intervention consisted of 14 one-hour class-based educational sessions. RESULTS Baseline % carb:% fat:% protein was 44:38:18. At 6m the LF group reported 57:21:22 and the LC group reported 22:53:25 (IR and IS combined). Six-month weight loss (kg) was 7.4 ± 6.0 (LF-IR), 10.4 ± 7.8 (LF-IS), 9.6 ± 6.6 (LC-IR), and 8.6 ± 5.6 (LC-IS). No significant main effects were detected for weight loss by diet group or IR status; no significant diet X IR interaction. Significant differences in several secondary outcomes were observed. CONCLUSION Substantial weight loss was achieved overall, but a significant diet X IR status interaction was not observed. Opportunity to detect differential response may have been limited by the focus on high diet quality for both diet groups and sample size. PMID:26638192

  14. Effect of inulin supplementation in male mice fed with high fat diet on ...

    African Journals Online (AJOL)

    A slight decrease in hepatic α-amylase gene expression was observed only in. E1. Conclusion: Besides its sweetening properties, inulin may also find use as a potential anti-obesity compound. Keywords: High-fat diet, Inulin, Obesity, Blood glucose, Biochemical profile. Tropical Journal of Pharmaceutical Research is ...

  15. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring.

    Directory of Open Access Journals (Sweden)

    Linglin Xie

    Full Text Available Adipose tissue macrophages (ATM are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. The study aims to answer whether maternal undernutrition by protein restriction affects the ATM M1 or M2 phenotype under postnatal high fat diet in F1 offspring. Using a rat model of prenatal low protein (LP, 8% protein diet followed by a postnatal high fat energy diet (HE, 45% fat or low fat normal energy diet (NE, 10% fat for 12 weeks, we investigated the effects of these diets on adiposity, programming of the offspring ATM phenotype, and the associated inflammatory response in adipose tissue. Fat mass in newborn and 12-week old LP fed offspring was lower than that of normal protein (20%; NP fed offspring; however, the adipose tissue growth rate was higher compared to the NP fed offspring. While LP did not affect the number of CD68+ or CD206+ cells in adipose tissue of NE offspring, it attenuated the number of these cells in offspring fed HE. In offspring fed HE, LP offspring had a lower percentage of CD11c+CD206+ ATMs, whose abundancy was correlated with the size of the adipocytes. Noteworthy, similar to HE treatment, LP increased gene expression of IL-6 within ATMs. Two-way ANOVA showed an interaction of prenatal LP and postnatal HE on IL-6 and IL-1β transcription. Overall, both LP and HE diets impact ATM phenotype by affecting the ratio of CD11c+CD206+ ATMs and the expression of IL-6.

  16. Effects on markers of inflammation and endothelial cell function of three ad libitum diets differing in type and amount of fat and carbohydrate

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Larsen, Thomas Meinert; Due, Anette Pia

    2011-01-01

    Diet is important for the prevention of CVD, and diets high in MUFA might be more cardioprotective than low-fat diets. We hypothesise that inflammation and endothelial cell function will be improved most favourably by a high-MUFA diet compared with a low-fat diet. This was tested in a parallel...... randomised intervention trial on overweight individuals (aged 28·2 (sd 4·6) years) assigned to a diet moderate in the amount of fat (35-45% of energy; >20% of fat as MUFA; MUFA diet, n 39), a low-fat (20-30% of energy) diet (LF diet, n 43) or a control diet (35 % of energy as fat, n 24) for 6 months after...

  17. A randomized trial of a low-carbohydrate diet for obesity.

    Science.gov (United States)

    Foster, Gary D; Wyatt, Holly R; Hill, James O; McGuckin, Brian G; Brill, Carrie; Mohammed, B Selma; Szapary, Philippe O; Rader, Daniel J; Edman, Joel S; Klein, Samuel

    2003-05-22

    Despite the popularity of the low-carbohydrate, high-protein, high-fat (Atkins) diet, no randomized, controlled trials have evaluated its efficacy. We conducted a one-year, multicenter, controlled trial involving 63 obese men and women who were randomly assigned to either a low-carbohydrate, high-protein, high-fat diet or a low-calorie, high-carbohydrate, low-fat (conventional) diet. Professional contact was minimal to replicate the approach used by most dieters. Subjects on the low-carbohydrate diet had lost more weight than subjects on the conventional diet at 3 months (mean [+/-SD], -6.8+/-5.0 vs. -2.7+/-3.7 percent of body weight; P=0.001) and 6 months (-7.0+/-6.5 vs. -3.2+/-5.6 percent of body weight, P=0.02), but the difference at 12 months was not significant (-4.4+/-6.7 vs. -2.5+/-6.3 percent of body weight, P=0.26). After three months, no significant differences were found between the groups in total or low-density lipoprotein cholesterol concentrations. The increase in high-density lipoprotein cholesterol concentrations and the decrease in triglyceride concentrations were greater among subjects on the low-carbohydrate diet than among those on the conventional diet throughout most of the study. Both diets significantly decreased diastolic blood pressure and the insulin response to an oral glucose load. The low-carbohydrate diet produced a greater weight loss (absolute difference, approximately 4 percent) than did the conventional diet for the first six months, but the differences were not significant at one year. The low-carbohydrate diet was associated with a greater improvement in some risk factors for coronary heart disease. Adherence was poor and attrition was high in both groups. Longer and larger studies are required to determine the long-term safety and efficacy of low-carbohydrate, high-protein, high-fat diets. Copyright 2003 Massachusetts Medical Society

  18. Liver protein expression in young pigs in response to a high-fat diet and diet restriction

    DEFF Research Database (Denmark)

    Sejersen, Henrik; Sørensen, Martin Tang; Larsen, Torben

    2013-01-01

    We investigated the liver response in young pigs to a high-fat diet (containing 25% animal fat) and diet restriction (equivalent to 60% of maintenance) using differential proteome analysis. The objective was to investigate whether young pigs can be used to model the liver response in adolescents...... to a high-fat diet and diet restriction-induced BW loss. The high-fat diet increased (P high-fat diet had normal glucose tolerance and liver lipid content despite a general increase (P ...-density lipoprotein decreased (P high-fat diet in young pigs is similar to that of humans in terms of increased fatty acid oxidation whereas the liver response to diet restriction is similar to humans...

  19. Gut microbiota are linked to increased susceptibility to hepatic steatosis in low aerobic capacity rats fed an acute high fat diet

    Science.gov (United States)

    Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that low capacity running (LCR) rats fed acute high fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with...

  20. The Effect of a Three-Week Adaptation to a Low Carbohydrate/High Fat Diet on Metabolism and Cognitive Performance

    Science.gov (United States)

    1990-04-11

    similar to that seen in starvation (5,21), hypocaloric weight loss diets (4, 29) and carbohydrate deprivation (12, 27, 28). Our subjects exhibited a...E.A.H. Sims. Comparison of carbohydrate-containing and carbohydrate-restricted hypocaloric diets in the treatment of obesity. J Clin Invest. 68:399-404...D-A247 575 . THE EFFECT OF A THREE-WEEK ADAPTATION TO A LOW CARBOHYDRATE / HIGH FAT DIET ON METABOLISM AND COGNITIVE PERFORMANCE C. G. GRAY 0. G

  1. Effects of low-fat high-fibre diet and mitratapide on body weight reduction, blood pressure and metabolic parameters in obese dogs.

    Science.gov (United States)

    Peña, Cristina; Suarez, Lourdes; Bautista-Castaño, Inmaculada; Juste, M Candelaria; Carretón, Elena; Montoya-Alonso, José Alberto

    2014-09-01

    The aim of the present study was to compare the impact on blood pressure and different metabolic parameters of a weight-loss program on obese dogs fed on a low-fat high-fibre diet and treated with and without mitratapide. The study sample consisted of 36 obese dogs, randomly assigned to a control group (n=17), which were fed on a low-fat high-fibre diet, and an intervention group (n=19), fed on the same diet and treated with mitratapide. Variables measured included body condition score, body weight, heart rate, systolic and diastolic blood pressures; total cholesterol, triglycerides and glucose levels; alanine aminotransferase and alkaline phosphatase activity, measured both at baseline (day 0) and at the end of the weight loss program (day 85). All the studied parameters had decreased in both groups at the end of the study; these being diastolic blood pressure, total cholesterol and alanine aminotransferase, significantly lower in dogs treated with mitratapide. The use of mitrapide in addition to low-fat high-fibre diet does not seem to offer any further useful effect in the loss of weight during the treatment of canine obesity. On the other hand, mitratapide seems to present certain beneficial effects on pathologies associated with obesity, these being mainly related to blood pressure, lipids and hepatic parameters.

  2. Indomethacin treatment prevents high fat diet-induced obesity and insulin resistance but not glucose intolerance in C57BL/6J Mice

    DEFF Research Database (Denmark)

    Fjære, Even; Aune, Ulrike Liisberg; Røen, Kristin

    2014-01-01

    Chronic low grade inflammation is closely linked to obesity-associated insulin resistance. To examine how administration of the anti-inflammatory compound indomethacin, a general cyclooxygenase inhibitor, affected obesity development and insulin sensitivity, we fed obesity-prone male C57BL/6J mice...... a high fat/high sucrose (HF/HS) diet or a regular diet supplemented or not with indomethacin (±INDO) for 7 weeks. Development of obesity, insulin resistance, and glucose intolerance was monitored, and the effect of indomethacin on glucose-stimulated insulin secretion (GSIS) was measured in vivo...... and in vitro using MIN6 β-cells. We found that supplementation with indomethacin prevented HF/HS-induced obesity and diet-induced changes in systemic insulin sensitivity. Thus, HF/HS+INDO-fed mice remained insulin-sensitive. However, mice fed HF/HS+INDO exhibited pronounced glucose intolerance. Hepatic glucose...

  3. Effect of low-protein diet supplemented with keto acids on progression of chronic kidney disease.

    Science.gov (United States)

    Garneata, Liliana; Mircescu, Gabriel

    2013-05-01

    Hypoproteic diets are most often discussed for patients with chronic kidney disease (CKD) who do not receive dialysis. A very low-protein diet supplemented with ketoanalogues of essential amino acids (keto-diet) proved effective in ameliorating metabolic disturbances of advanced CKD and delaying the initiation of dialysis without deleterious effects on nutritional status. Several recent studies report that the keto-diet could also slow down the rate of decline in renal function, with better outcomes after the initiation of dialysis. Results of a single-center randomized controlled trial addressing the rate of CKD progression revealed a 57% slower decline in renal function with the keto-diet compared with a conventional low-protein diet (LPD). The keto-diet allowed the safe management of selected patients with stage 4-5 CKD, delaying dialysis for almost 1 year, with a major impact on patient quality of life and health expenditures. Therefore, the keto-diet could be a link in the integrated care model. Careful selection of patients, nutritional monitoring, and dietary counseling are required. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. Weight loss on low-fat vs. low-carbohydrate diets by insulin resistance status among overweight adults and adults with obesity: A randomized pilot trial.

    Science.gov (United States)

    Gardner, Christopher D; Offringa, Lisa C; Hartle, Jennifer C; Kapphahn, Kris; Cherin, Rise

    2016-01-01

    To test for differential weight loss response to low-fat (LF) vs. low-carbohydrate (LC) diets by insulin resistance status with emphasis on overall quality of both diets. Sixty-one adults, BMI 28-40 kg/m(2) , were randomized in a 2 × 2 design to LF or LC by insulin resistance status in this pilot study. Primary outcome was 6-month weight change. Participants were characterized as more insulin resistant (IR) or more insulin sensitive (IS) by median split of baseline insulin-area-under-the-curve from an oral glucose tolerance test. Intervention consisted of 14 one-hour class-based educational sessions. Baseline % carbohydrate:% fat:% protein was 44:38:18. At 6 months, the LF group reported 57:21:22 and the LC group reported 22:53:25 (IR and IS combined). Six-month weight loss (kg) was 7.4 ± 6.0 (LF-IR), 10.4 ± 7.8 (LF-IS), 9.6 ± 6.6 (LC-IR), and 8.6 ± 5.6 (LC-IS). No significant main effects were detected for weight loss by diet group or IR status; there was no significant diet × IR interaction. Significant differences in several secondary outcomes were observed. Substantial weight loss was achieved overall, but a significant diet × IR status interaction was not observed. Opportunity to detect differential response may have been limited by the focus on high diet quality for both diet groups and sample size. © 2015 The Obesity Society.

  5. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    Science.gov (United States)

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  6. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2016-01-01

    Full Text Available Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD. The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD supplement with perilla oil (POH for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  7. Effects of High Fat Diet and Physical Exercise on Glucose Tolelance and Insulin Sensitivity in Rats

    OpenAIRE

    福田,哲也

    1987-01-01

    To investigate the interrelationships between the westernized diet and physical exercise as they affect the development of non-insulin-dependent diabetes mellitus (NIDDM), adiposity, glucose tolerance and insulin response to an intraperitoneal glucose load (1.5g/kg bw) and insulin sensitivity to exogenous insulin (0.2U/kg bw) were studied in spontaneously exercised and sedentary rats fed either a high fat diet (40% fat, modern western type) or a low fat diet (10% fat, traditional Japanese typ...

  8. Effects of supplemental coated or crystalline methionine in low-fishmeal diet on the growth performance and body composition of juvenile cobia Rachycentron canadum (Linnaeus)

    Science.gov (United States)

    Chi, Shuyan; Tan, Beiping; Dong, Xiaohui; Yang, Qihui; Liu, Hongyu

    2014-11-01

    We evaluated the effects of supplemental coated and crystalline methionine (Met) on the growth performance and feed utilization of juvenile cobia ( Rachycentron canadum Linnaeus) in a 60-d feeding trial. Fish groups were fed one of six isonitrogenous and isolipidic diets: 1) fishmeal control; 2) un-supplemented experimental (low-fish-meal diet deficient in Met); or 3) one of four Met diets supplemented with crystalline L-Met, cellulose-acetate-phthalate coated L-Met, acrylic-resin coated L-Met, or tripalmitin-polyvinyl alcohol coated L-Met. The test diets were fed to triplicate groups of cobia (initial body weight 5.40±0.07 g) twice a day. The weight gain and specific growth rate of the fish fed the RES diet were highest among the Met-supplemented groups and were 23.64% and 7.99%, respectively, higher than those of the fish fed with the un-supplemented experimental diet ( Pcobia.

  9. A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation.

    Science.gov (United States)

    Cuthbert, Candace E; Foster, Jerome E; Ramdath, D Dan

    2017-10-01

    A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (Pinsulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.

  10. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Jing, Li; Zhang, Yu; Fan, Shengjie; Gu, Ming; Guan, Yu; Lu, Xiong; Huang, Cheng; Zhou, Zhiqin

    2013-09-05

    D-limonene is a major constituent in citrus essential oil, which is used in various foods as a flavoring agent. Recently, d-limonene has been reported to alleviate fatty liver induced by a high-fat diet. Here we determined the preventive and therapeutic effects of d-limonene on metabolic disorders in mice with high-fat diet-induced obesity. In the preventive treatment, d-limonene decreased the size of white and brown adipocytes, lowered serum triglyceride (TG) and fasting blood glucose levels, and prevented liver lipid accumulations in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, d-limonene reduced serum TG, low-density lipoprotein cholesterol (LDL-c) and fasting blood glucose levels and glucose tolerance, and increased serum high-density lipoprotein cholesterol (HDL-c) in obese mice. Using a reporter assay and gene expression analysis, we found that d-limonene activated peroxisome proliferator-activated receptor (PPAR)-α signaling, and inhibited liver X receptor (LXR)-β signaling. Our data suggest that the intake of d-limonene may benefit patients with dyslipidemia and hyperglycemia and is a potential dietary supplement for preventing and ameliorating metabolic disorders. © 2013 Elsevier B.V. All rights reserved.

  11. Low-Protein Diet Supplemented with Keto Acids Is Associated with Suppression of Small-Solute Peritoneal Transport Rate in Peritoneal Dialysis Patients

    OpenAIRE

    Jiang, Na; Qian, Jiaqi; Lin, Aiwu; Fang, Wei; Zhang, Weiming; Cao, Liou; Wang, Qin; Ni, Zhaohui; Yao, Qiang

    2011-01-01

    Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD) patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6–0.8 g/kg/d), keto-acid-supplemented low- (sLP: 0.6–0.8 g/kg/d with 0.12 g/kg/d of keto acids), or high- (HP: 1.0–1.2 g/kg/d) protein diet and lasted for one year. In this study, the variat...

  12. Effects of diet macronutrient composition on body composition and fat distribution during weight maintenance and weight loss

    Science.gov (United States)

    Goss, Amy M.; Goree, Laura Lee; Ellis, Amy C.; Chandler-Laney, Paula C.; Casazza, Krista; Lockhart, Mark E.; Gower, Barbara A.

    2012-01-01

    Qualitative aspects of diet may affect body composition and propensity for weight gain or loss. We tested the hypothesis that consumption of a relatively low glycemic load (GL) diet would reduce total and visceral adipose tissue under both eucaloric and hypocaloric conditions. Participants were 69 healthy overweight men and women. Body composition was assessed by DXA and fat distribution by CT scan at baseline, after 8 weeks of a eucaloric diet intervention, and after 8 weeks of a hypocaloric (1000 kcal/d deficit) diet intervention. Participants were provided all food for both phases, and randomized to either a low GL diet (≤45 points per 1000 kcal; n=40) or high GL diet (>75 points per 1000 kcal, n=29). After the eucaloric phase, participants who consumed the low GL diet had 11% less intra-abdominal fat (IAAT) than those who consumed the high GL diet (Phypocaloric phase, with no differences in the amount of weight loss with diet assignment (P=0.39). Following weight loss, participants who consumed the low GL diet had 4.4% less total fat mass than those who consumed the high GL diet (Pdiet may affect energy partitioning, both inducing reduction in IAAT independent of weight change, and enhancing loss of fat relative to lean mass during weight loss. PMID:23671029

  13. Effect of Ethanolic Extract of Emblica officinalis (Amla on Glucose Homeostasis in Rats Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Pallavi S. Kanthe

    2017-07-01

    Full Text Available Background: Emblica officinalis contains many biological active components which are found to have some medicinal properties against diseases. Aim and Objectives: To assess hypolipidemic and glucose regulatory actions of Ethanolic Extract of Emblica officinalis (EEO on High Fat Diet (HFD fed experimental rats. Material and Methods: Twenty four rats were divided into four groups, having six rats in each group as following; Group I- Control (20% fat; Group II (EEO 100 mg/kg/b w; Group III (30% fat and Group IV (30% fat + EEO 100 mg/kg/b w. The treatment was continued for 21 days. Gravimetric parameters and lipid profiles of all the groups were measured. Oral Glucose Tolerance Test (OGTT, fasting and postprandial glucose and fasting insulin levels were estimated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated. Statistical analysis was done. Results: Significant alteration in serum lipid profile, fasting and post prandial blood glucose levels and fasting insulin level were observed in rats of Group III fed with high fat diet. Supplementation of EEO improved both of glycemic and lipid profiles in rats of Group IV fed with high fat diet. Conclusion: Results from the study indicate the beneficial role of EEO on dyslipidemia and glucose homeostasis in rats treated with high fat diet.

  14. Clinical observations on the effects of elemental diet supplementation during irradiation

    International Nuclear Information System (INIS)

    Brown, M.S.

    1980-01-01

    A study has been conducted to assess the effects of adding an elemental diet as a supplement to a standard low-roughage diet recommended to a group of patients receiving a fractionated course of abdominal irradiation. The supplement was not found to modify patient experience of radiotherapy-induced complications. (author)

  15. A low-fat vegan diet elicits greater macronutrient changes, but is comparable in adherence and acceptability, compared with a more conventional diabetes diet among individuals with type 2 diabetes.

    Science.gov (United States)

    Barnard, Neal D; Gloede, Lise; Cohen, Joshua; Jenkins, David J A; Turner-McGrievy, Gabrielle; Green, Amber A; Ferdowsian, Hope

    2009-02-01

    Although therapeutic diets are critical to diabetes management, their acceptability to patients is largely unstudied. To quantify adherence and acceptability for two types of diets for diabetes. Controlled trial conducted between 2004 and 2006. Individuals with type 2 diabetes (n=99) at a community-based research facility. Participants were randomly assigned to a diet following 2003 American Diabetes Association guidelines or a low-fat, vegan diet for 74 weeks. Attrition, adherence, dietary behavior, diet acceptability, and cravings. For nutrient intake and questionnaire scores, t tests determined between-group differences. For diet-acceptability measures, the related samples Wilcoxon sum rank test assessed within-group changes; the independent samples Mann-Whitney U test compared the diet groups. Changes in reported symptoms among the groups was compared using chi(2) for independent samples. All participants completed the initial 22 weeks; 90% (45/50) of American Diabetes Association guidelines diet group and 86% (42/49) of the vegan diet group participants completed 74 weeks. Fat and cholesterol intake fell more and carbohydrate and fiber intake increased more in the vegan group. At 22 weeks, group-specific diet adherence criteria were met by 44% (22/50) of members of the American Diabetes Association diet group and 67% (33/49) of vegan-group participants (P=0.019); the American Diabetes Association guidelines diet group reported a greater increase in dietary restraint; this difference was not significant at 74 weeks. Both groups reported reduced hunger and reduced disinhibition. Questionnaire responses rated both diets as satisfactory, with no significant differences between groups, except for ease of preparation, for which the 22-week ratings marginally favored the American Diabetes Association guideline group. Cravings for fatty foods diminished more in the vegan group at 22 weeks, with no significant difference at 74 weeks. Despite its greater influence on

  16. Organisation of Dietary Control for Nutrition-Training Intervention Involving Periodized Carbohydrate (CHO) Availability and Ketogenic Low CHO High Fat (LCHF) Diet.

    Science.gov (United States)

    Mirtschin, Joanne G; Forbes, Sara F; Cato, Louise E; Heikura, Ida A; Strobel, Nicki; Hall, Rebecca; Burke, Louise M

    2018-02-12

    We describe the implementation of a 3-week dietary intervention in elite race walkers at the Australian Institute of Sport, with a focus on the resources and strategies needed to accomplish a complex study of this scale. Interventions involved: traditional guidelines of high carbohydrate (CHO) availability for all training sessions (HCHO); a periodized CHO diet which integrated sessions with low CHO and high CHO availability within the same total CHO intake, and a ketogenic low-CHO high-fat diet (LCHF). 7-day menus and recipes were constructed for a communal eating setting to meet nutritional goals as well as individualized food preferences and special needs. Menus also included nutrition support pre, during and post-exercise. Daily monitoring, via observation and food checklists, showed that energy and macronutrient targets were achieved: diets were matched for energy (~14.8 MJ/d) and protein (~2.1 g.kg/d), and achieved desired differences for fat and CHO: HCHO and PCHO: CHO = 8.5 g/kg/d, 60% energy; fat = 20% of energy; LCHF: 0.5 g/kg/d CHO, fat = 78% energy. There were no differences in micronutrient intakes or density between HCHO and PCHO diets; however, the micronutrient density of LCHF was significantly lower. Daily food costs per athlete were similar for each diet (~AUDS$27 ± 10). Successful implementation and monitoring of dietary interventions in sports nutrition research of the scale of the present study require meticulous planning and the expertise of chefs and sports dietitians. Different approaches to sports nutrition support raise practical challenges around cost, micronutrient density, accommodation of special needs and sustainability.

  17. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings.

    Science.gov (United States)

    Shamseldeen, Asmaa Mohammed; Ali Eshra, Mohammed; Ahmed Rashed, Laila; Fathy Amer, Marwa; Elham Fares, Amal; Samir Kamar, Samaa

    2018-05-09

    Maternal diet composition could influence fetal organogenesis. We investigated effects of high fat diet (HFD) intake alone or combined with omega 3 during pregnancy, lactation and early days of weaning on nephrogenesis of pups and maternal renal function and morphology. Mothers and their pups included in each group were supplied with the same diet composition. Rats were divided into group I, II and III supplied with chow of either 10 kcal%, 45 kcal% or 45 kcal% from fat together with omega-3 respectively. Group II showed increased serum urea and creatinine, renal TNF-α, IL1β. Structural injury was observed in mothers and their pups as Bowman's capsule and tubular dilatation and increased expression of PCNA that were decreased following omega-3 supplementation added to down regulation of Wnt4, Pax2 gene and podocin expression. Omega-3 supplementation improves lipid nephrotoxicity observed in mothers and their pups.

  18. Metabolic aspects of low carbohydrate diets and exercise

    Directory of Open Access Journals (Sweden)

    Peters Sandra

    2004-01-01

    Full Text Available Abstract Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these changes relate to the capacity for carbohydrate oxidation during exercise.

  19. A PUFA-rich diet improves fat oxidation following saturated fat-rich meal.

    Science.gov (United States)

    Stevenson, Jada L; Miller, Mary K; Skillman, Hannah E; Paton, Chad M; Cooper, Jamie A

    2017-08-01

    To determine substrate oxidation responses to saturated fatty acid (SFA)-rich meals before and after a 7-day polyunsaturated fatty acid (PUFA)-rich diet versus control diet. Twenty-six, normal-weight, adults were randomly assigned to either PUFA or control diet. Following a 3-day lead-in diet, participants completed the pre-diet visit where anthropometrics and resting metabolic rate (RMR) were measured, and two SFA-rich HF meals (breakfast and lunch) were consumed. Indirect calorimetry was used to determine fat oxidation (Fox) and energy expenditure (EE) for 4 h after each meal. Participants then consumed a PUFA-rich diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 21 % of total energy was PUFA) or control diet (50 % carbohydrate, 15 % protein, 35 % fat, of which 7 % of total energy was PUFA) for the next 7 days. Following the 7-day diet, participants completed the post-diet visit. From pre- to post-PUFA-rich diet, there was no change in RMR (16.3 ± 0.8 vs. 16.4 ± 0.8 kcal/20 min) or in incremental area under the curve for EE (118.9 ± 20.6-126.9 ± 14.1 kcal/8h, ns). Fasting respiratory exchange ratio increased from pre- to post-PUFA-rich diet only (0.83 ± 0.1-0.86 ± 0.1, p diet (0.03 ± 0.1-0.23 ± 0.1 g/15 min for cumulative Fox; p diet initiates greater fat oxidation after eating occasional high SFA meals compared to a control diet, an effect achieved in 7 days.

  20. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats.

    Science.gov (United States)

    Kim, Hye Jin; Lee, Won Jun

    2017-09-30

    Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition

  1. Diet and dietary supplement intervention trials for the prevention of prostate cancer recurrence: a review of the randomized controlled trial evidence.

    Science.gov (United States)

    Van Patten, Cheri L; de Boer, Johan G; Tomlinson Guns, Emma S

    2008-12-01

    We review the effect of diet and dietary supplement interventions on prostate cancer progression, recurrence and survival. A literature search was conducted in MEDLINE, EMBASE and CINAHL to identify diet and dietary supplement intervention studies in men with prostate cancer using prostate specific antigen or prostate specific antigen doubling time as a surrogate serum biomarker of prostate cancer recurrence and/or survival. Of the 32 studies identified 9 (28%) were randomized controlled trials and the focus of this review. In these studies men had confirmed prostate cancer and elevated or increasing prostate specific antigen. Only 1 trial included men with metastatic disease. When body mass index was reported, men were overweight or obese. A significant decrease in prostate specific antigen was observed in some studies using a low fat vegan diet, soy beverage or lycopene supplement. While not often reported as an end point, a significant increase in prostate specific antigen doubling time was observed in a study on lycopene supplementation. In only 1 randomized controlled trial in men undergoing orchiectomy was a survival end point of fewer deaths with lycopene supplementation reported. A limited number of randomized controlled trials were identified in which diet and dietary supplement interventions appeared to slow disease progression in men with prostate cancer, although results vary. Studies were limited by reliance on the surrogate biomarker prostate specific antigen, sample size and study duration. Well designed trials are warranted to expand knowledge, replicate findings and further assess the impact of diet and dietary supplement interventions on recurrence and treatment associated morbidities.

  2. ACE Reduces Metabolic Abnormalities in a High-Fat Diet Mouse Model

    Directory of Open Access Journals (Sweden)

    Seong-Jong Lee

    2015-01-01

    Full Text Available The medicinal plants Artemisia iwayomogi (A. iwayomogi and Curcuma longa (C. longa radix have been used to treat metabolic abnormalities in traditional Korean medicine and traditional Chinese medicine (TKM and TCM. In this study we evaluated the effect of the water extract of a mixture of A. iwayomogi and C. longa (ACE on high-fat diet-induced metabolic syndrome in a mouse model. Four groups of C57BL/6N male mice (except for the naive group were fed a high-fat diet freely for 10 weeks. Among these, three groups (except the control group were administered a high-fat diet supplemented with ACE (100 or 200 mg/kg or curcumin (50 mg/kg. Body weight, accumulation of adipose tissues in abdomen and size of adipocytes, serum lipid profiles, hepatic steatosis, and oxidative stress markers were analyzed. ACE significantly reduced the body and peritoneal adipose tissue weights, serum lipid profiles (total cholesterol and triglycerides, glucose levels, hepatic lipid accumulation, and oxidative stress markers. ACE normalized lipid synthesis-associated gene expressions (peroxisome proliferator-activated receptor gamma, PPARγ; fatty acid synthase, FAS; sterol regulatory element-binding transcription factor-1c, SREBP-1c; and peroxisome proliferator-activated receptor alpha, PPARα. The results from this study suggest that ACE has the pharmaceutical potential reducing the metabolic abnormalities in an animal model.

  3. Effect of a low-fat or low-carbohydrate weight-loss diet on markers of cardiovascular risk among premenopausal women: a randomized trial.

    Science.gov (United States)

    Foraker, Randi E; Pennell, Michael; Sprangers, Peter; Vitolins, Mara Z; DeGraffinreid, Cecilia; Paskett, Electra D

    2014-08-01

    Low-fat and low-carbohydrate weight-loss diets can have a beneficial effect on longitudinal measures of blood pressure and blood lipids. We aimed to assess longitudinal changes in blood pressure and blood lipids in a population of premenopausal women. We hypothesized that results may differ by level of adherence to the respective diet protocol and baseline presence of hypertension or hyperlipidemia. Overweight or obese premenopausal women were randomized to a low-fat (n=41) or low-carbohydrate (n=38) diet. As part of the 52-week Lifestyle Eating and Fitness (LEAF) intervention trial, we fit linear mixed models to determine whether a change in outcome differed by treatment arm. Within-group trends in blood pressure and blood lipids did not differ (p>0.30). Across study arms, there was a significant decrease in systolic blood pressure (SBP, 3 mm Hg, p=0.01) over time, but diastolic blood pressure (DBP) did not change significantly over the course of the study. Blood lipids (total cholesterol [TC], low-density lipoproteins [LDL], and high-density lipoproteins [HDL]) all exhibited nonlinear trends over time (p0.20). We observed a decline in SBP among women who were hypertensive at baseline (p0.40). Our results support that dietary interventions may be efficacious for lowering blood pressure and blood lipids among overweight or obese premenopausal women. However, a decrease in SBP was the only favorable change that was sustained in this study population. These changes can be maintained over the course of a 1-year intervention, yet changes in blood lipids may be less sustainable.

  4. Diet as a Trigger or Therapy for Inflammatory Bowel Diseases.

    Science.gov (United States)

    Lewis, James D; Abreu, Maria T

    2017-02-01

    The most common question asked by patients with inflammatory bowel disease (IBD) is, "Doctor, what should I eat?" Findings from epidemiology studies have indicated that diets high in animal fat and low in fruits and vegetables are the most common pattern associated with an increased risk of IBD. Low levels of vitamin D also appear to be a risk factor for IBD. In murine models, diets high in fat, especially saturated animal fats, also increase inflammation, whereas supplementation with omega 3 long-chain fatty acids protect against intestinal inflammation. Unfortunately, omega 3 supplements have not been shown to decrease the risk of relapse in patients with Crohn's disease. Dietary intervention studies have shown that enteral therapy, with defined formula diets, helps children with Crohn's disease and reduces inflammation and dysbiosis. Although fiber supplements have not been shown definitively to benefit patients with IBD, soluble fiber is the best way to generate short-chain fatty acids such as butyrate, which has anti-inflammatory effects. Addition of vitamin D and curcumin has been shown to increase the efficacy of IBD therapy. There is compelling evidence from animal models that emulsifiers in processed foods increase risk for IBD. We discuss current knowledge about popular diets, including the specific carbohydrate diet and diet low in fermentable oligo-, di-, and monosaccharides and polyols. We present findings from clinical and basic science studies to help gastroenterologists navigate diet as it relates to the management of IBD. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    Science.gov (United States)

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  6. Zinc and Selenium Co-supplementation Reduces Some Lipid Peroxidation and Angiogenesis Markers in a Rat Model of NAFLD-Fed High Fat Diet.

    Science.gov (United States)

    Mousavi, Seyedeh Neda; Faghihi, Amirhosein; Motaghinejad, Majid; Shiasi, Maryam; Imanparast, Fatemeh; Amiri, Hamid Lorvand; Shidfar, Farzad

    2018-02-01

    Studies have shown that non-alcoholic fatty liver disease (NAFLD) patients are more prone to cardiovascular disease (CVD). Zinc and selenium deficiency are common in NAFLD. But the effects of zinc and selenium co-supplementation before and/or after disease progression on CVD markers are not clear in NAFLD patients. This study aimed to compare the effects of zinc and selenium co-supplementation before and/or after disease progression on some of the CVD markers in an experimental model of NAFLD. Forty male Sprague Dawley rats (197 ± 4 g) were randomly assigned into four dietary groups: control group (C; received 9% of calorie as fat), model group (M; received 82% of calorie as fat), and supplementation before (BS) or after (AS) disease progression. Animals were fed diets for 20 weeks in all groups. Fasting plasma glucose (FPG), insulin, HOMA-IR, ALT, AST, lipid profile, malondialdehyde (MDA) and vascular endothelial growth factor (VEGF) levels were measured as CVD indices. Serum ALT, AST, FPG, insulin, MDA, VEGF and HOMA-IR were significantly higher in the M than C group. Co-supplementation reduced serum ALT and AST levels in the BS and AS groups compared with the M group. FPG, insulin, HOMA-IR, VEGF, MDA, LDL/HDL-c and TC/HDL-c ratio were significantly reduced in the AS compared with the M group. TG/HDL-c ratio was significantly reduced in the BS and AS compared with the M group. Serum MDA, VEGF, Insulin and HOMA-IR were significantly lowered in the AS than BS group (p < 0.05). Zinc and selenium co-supplementation after NAFLD progression reduced CVD risk indices in an experimental model.

  7. Supplementation of Lactobacillus plantarum K68 and Fruit-Vegetable Ferment along with High Fat-Fructose Diet Attenuates Metabolic Syndrome in Rats with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hui-Yu Huang

    2013-01-01

    Full Text Available Lactobacillus plantarum K68 (isolated from fu-tsai and fruit-vegetable ferment (FVF have been tested for antidiabetic, anti-inflammatory, and antioxidant properties in a rat model of insulin resistance, induced by chronic high fat-fructose diet. Fifty rats were equally assigned into control (CON, high fat-fructose diet (HFFD, HFFD plus K68, HFFD plus FVF, and HFFD plus both K68 and FVF (MIX groups. Respective groups were orally administered with K68 (1×109 CFU/0.5 mL or FVF (180 mg/kg or MIX for 8 weeks. We found that HFFD-induced increased bodyweights were prevented, and progressively increased fasting blood glucose and insulin levels were reversed (P<0.01 by K68 and FVF treatments. Elevated glycated hemoglobin (HbA1c and HOMA-IR values were controlled in supplemented groups. Furthermore, dyslipidemia, characterized by elevated total cholesterol (TC, triglyceride (TG, and low-density lipoproteins (LDLs with HFFD, was significantly (P<0.01 attenuated with MIX. Elevated pro-inflammatory cytokines, interleukin-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α, were controlled (P<0.01 by K68, FVF, and MIX treatments. Moreover, decreased superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx activities were substantially (P<0.01 restored by all treatments. Experimental evidences demonstrate that K68 and FVF may be effective alternative medicine to prevent HFFD-induced hyperglycemia, hyperinsulinemia, and hyperlipidemia, possibly associated with anti-inflammatory and antioxidant efficacies.

  8. High-Fat Diet Induces Oxidative Stress and MPK2 and HSP83 Gene Expression in Drosophila melanogaster

    OpenAIRE

    Trindade de Paula, Mariane; Poetini Silva, M?rcia R?sula; Machado Araujo, St?fani; Cardoso Bortolotto, Vandreza; Barreto Meichtry, Luana; Zemolin, Ana Paula Pegoraro; Wallau, Gabriel L.; Jesse, Cristiano Ricardo; Franco, Jeferson Lu?s; Posser, Tha?s; Prigol, Marina

    2016-01-01

    The consumption of a high-fat diet (HFD) causes alteration in normal metabolism affecting lifespan of flies; however molecular mechanism associated with this damage in flies is not well known. This study evaluates the effects of ingestion of a diet supplemented with 10% and 20% of coconut oil, which is rich in saturated fatty acids, on oxidative stress and cells stress signaling pathways. After exposure to the diet for seven days, cellular and mitochondrial viability, lipid peroxidation and a...

  9. Evaluation of Beneficial Metabolic Effects of Berries in High-Fat Fed C57BL/6J Mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman

    2014-01-01

    Full Text Available Objective. The aim of the study was to screen eight species of berries for their ability to prevent obesity and metabolic abnormalities associated with type 2 diabetes. Methods. C57BL/6J mice were assigned the following diets for 13 weeks: low-fat diet, high-fat diet or high-fat diet supplemented (20% with lingonberry, blackcurrant, bilberry, raspberry, açai, crowberry, prune or blackberry. Results. The groups receiving a high-fat diet supplemented with lingonberries, blackcurrants, raspberries or bilberries gained less weight and had lower fasting insulin levels than the control group receiving high-fat diet without berries. Lingonberries, and also blackcurrants and bilberries, significantly decreased body fat content, hepatic lipid accumulation, and plasma levels of the inflammatory marker PAI-1, as well as mediated positive effects on glucose homeostasis. The group receiving açai displayed increased weight gain and developed large, steatotic livers. Quercetin glycosides were detected in the lingonberry and the blackcurrant diets. Conclusion. Lingonberries were shown to fully or partially prevent the detrimental metabolic effects induced by high-fat diet. Blackcurrants and bilberries had similar properties, but to a lower degree. We propose that the beneficial metabolic effects of lingonberries could be useful in preventing obesity and related disorders.

  10. Meal pattern alterations associated with intermittent fasting for weight loss are normalized after high-fat diet re-feeding.

    Science.gov (United States)

    Gotthardt, Juliet D; Bello, Nicholas T

    2017-05-15

    Alternate day, intermittent fasting (IMF) can be an effective weight loss strategy. However, the effects of IMF on eating behaviors are not well characterized. We investigated the acute and residual effects of IMF for weight loss on meal patterns in adult obese male C57BL/6 mice. After 8weeks of ad libitum high-fat diet to induce diet-induced obesity (DIO), mice were either continued on ad libitum high-fat diet (HFD) or placed on one of 5 diet strategies for weight loss: IMF of high-fat diet (IMF-HFD), pair-fed to IMF-HFD group (PF-HFD), ad libitum low-fat diet (LFD), IMF of low-fat diet (IMF-LFD), or pair-fed to IMF-LFD group (PF-LFD). After the 4-week diet period, all groups were refed the high-fat diet for 6weeks. By the end of the diet period, all 5 groups had lost weight compared with HFD group, but after 6weeks of HFD re-feeding all groups had similar body weights. On (Day 2) of the diet period, IMF-HFD had greater first meal size and faster eating rate compared with HFD. Also, first meal duration was greater in LFD and IMF-LFD compared with HFD. At the end of the diet period (Day 28), the intermittent fasting groups (IMF-HFD and IMF-LFD) had greater first meal sizes and faster first meal eating rate compared with their respective ad libitum fed groups on similar diets (HFD and LFD). Also, average meal duration was longer on Day 28 in the low-fat diet groups (LFD and IMF-LFD) compared with high-fat diet groups (HFD and IMF-HFD). After 6weeks of HFD re-feeding (Day 70), there were no differences in meal patterns in groups that had previously experienced intermittent fasting compared with ad libitum fed groups. These findings suggest that meal patterns are only transiently altered during alternate day intermittent fasting for weight loss in obese male mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Changes of Insulin Resistance and Adipokines Following Supplementation with Glycyrrhiza Glabra L. Extract in Combination with a Low-Calorie Diet in Overweight and Obese Subjects: a Randomized Double Blind Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mohammad Alizadeh

    2018-03-01

    Full Text Available Purpose: Adipose tissue is a highly active endocrine organ which plays a key role in energy homeostasis. The aim of this study was to determine the effects of dried licorice extract along with a calorie restricted diet on body composition, insulin resistance and adipokines in overweight and obese subjects. Methods: Sixty-four overweight and obese volunteers (27 men, 37 women were recruited into this double-blind, placebo-controlled, randomized, clinical trial. Participants were randomly allocated to the Licorice (n=32 or the placebo group (n=32, and each group received a low-calorie diet with either 1.5 g/day of Licorice extract or placebo for 8 weeks. Biochemical parameters, anthropometric indices, body composition and dietary intake were measured at baseline and at the end of the study. Results: A total of 58 subjects completed the trial. No side effects were observed following licorice supplementation. At the end of the study, waist circumference, fat mass, serum levels of vaspin, zinc-α2 glycoprotein, insulin and HOMA-IR were significantly decreased in the intervention group, but only the reduction in serum vaspin levels in the licorice group was significant when compared to the placebo group (p<0.01. Conclusion: Supplementation with dried licorice extract plus a low-calorie diet can increase vaspin levels in obese subjects. However, the anti-obesity effects of the intervention were not stronger than a low-calorie diet alone in the management of obesity.

  12. A taurine-supplemented vegan diet may blunt the contribution of neutrophil activation to acute coronary events.

    Science.gov (United States)

    McCarty, Mark F

    2004-01-01

    Neutrophils are activated in the coronary circulation during acute coronary events (unstable angina and myocardial infarction), often prior to the onset of ischemic damage. Moreover, neutrophils infiltrate coronary plaque in these circumstances, and may contribute to the rupture or erosion of this plaque, triggering thrombosis. Activated neutrophils secrete proteolytic enzymes in latent forms which are activated by the hypochlorous acid (HOCl) generated by myeloperoxidase. These phenomena may help to explain why an elevated white cell count has been found to be an independent coronary risk factor. Low-fat vegan diets can decrease circulating leukocytes--neutrophils and monocytes--possibly owing to down-regulation of systemic IGF-I activity. Thus, a relative neutropenia may contribute to the coronary protection afforded by such diets. However, vegetarian diets are devoid of taurine - the physiological antagonist of HOCl--and tissue levels of this nutrient are relatively low in vegetarians. Taurine has anti-atherosclerotic activity in animal models, possibly reflecting a role for macrophage-derived myeloperoxidase in the atherogenic process. Taurine also has platelet-stabilizing and anti-hypertensive effects that presumably could reduce coronary risk. Thus, it is proposed that a taurine-supplemented low-fat vegan diet represents a rational strategy for diminishing the contribution of activated neutrophils to acute coronary events; moreover, such a regimen would work in a number of other complementary ways to promote cardiovascular health. Moderate alcohol consumption, the well-tolerated drug pentoxifylline, and 5-lipoxygenase inhibitors--zileuton, boswellic acids, fish oil--may also have potential in this regard. Copyright 2004 Elsevier Ltd.

  13. Long-term fat diet adaptation effects on performance, training capacity, and fat utilization

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff

    2002-01-01

    It is well known that adaptation to a fat-rich carbohydrate-poor diet results in lower resting muscle glycogen content and a higher rate of fat oxidation during exercise when compared with a carbohydrate-rich diet. The net effect of such an adaptation could potentially be a sparing of muscle...... glycogen, and because muscle glycogen storage is coupled to endurance performance, it is possible that adaptation to a high-fat diet potentially could enhance endurance performance. Therefore, the first issue in this review is to critically evaluate the available evidence for a potential endurance...... performance enhancement after long-term fat-rich diet adaptation. Attainment of optimal performance is among other factors dependent also on the quality and quantity of the training performed. When exercise intensity is increased, there is an increased need for carbohydrates. On the other hand, consumption...

  14. Do Fat Supplements Increase Physical Performance?

    Directory of Open Access Journals (Sweden)

    Valentina Di Felice

    2013-02-01

    Full Text Available Fish oil and conjugated linoleic acid (CLA belong to a popular class of food supplements known as “fat supplements”, which are claimed to reduce muscle glycogen breakdown, reduce body mass, as well as reduce muscle damage and inflammatory responses. Sport athletes consume fish oil and CLA mainly to increase lean body mass and reduce body fat. Recent evidence indicates that this kind of supplementation may have other side-effects and a new role has been identified in steroidogenensis. Preliminary findings demonstrate that fish oil and CLA may induce a physiological increase in testosterone synthesis. The aim of this review is to describe the effects of fish oil and CLA on physical performance (endurance and resistance exercise, and highlight the new results on the effects on testosterone biosynthesis. In view of these new data, we can hypothesize that fat supplements may improve the anabolic effect of exercise.

  15. A 3-day high-fat/low-carbohydrate diet does not alter exercise-induced growth hormone response in healthy males.

    Science.gov (United States)

    Sasaki, Hiroto; Ishibashi, Aya; Tsuchiya, Yoshihumi; Shimura, Nobuhiro; Kurihara, Toshiyuki; Ebi, Kumiko; Goto, Kazushige

    2015-12-01

    The purpose of the present study was to examine the effects of 3 days isoenergetic high-fat/low-carbohydrate diet (HF-LC) relative to low-fat/high-carbohydrate diet (LF-HC) on the exercise-induced growth hormone (GH) response in healthy male subjects. Ten healthy young males participated in this study. Each subject consumed the HF-LC (18±1% protein, 61±2% fat, 21±1% carbohydrate, 2720 kcal per day) for 3 consecutive days after consuming the LF-HC (18±1% protein, 20±1% fat, 62±1% carbohydrate, 2755 kcal per day) for 3 consecutive days. After each dietary intervention period, the hormonal and metabolic responses to an acute exercise (30 min of continuous pedaling at 60% of V˙O2max) were compared. The intramyocellular lipid (IMCL) contents in the vastus lateralis, soleus, and tibialis anterior were evaluated by proton magnetic resonance spectroscopy. Serum GH concentrations increased significantly during the exercise after both the HF-LC and LF-HC periods (Pexercise-induced GH response was not significantly different between the two periods. Fat utilization and lipolytic responses during the exercise were enhanced significantly after the HF-LC period compared with the LF-HC period. IMCL content did not differ significantly in any portion of muscle after the dietary interventions. We could not show that short-term HF-LC consumption changed significantly exercise-induced GH response or IMCL content in healthy young males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Background diet and fat type alters plasma lipoprotein response but not aortic cholesterol accumulation in F1B Golden Syrian hamsters.

    Science.gov (United States)

    Dillard, Alice; Matthan, Nirupa R; Spartano, Nicole L; Butkowski, Ann E; Lichtenstein, Alice H

    2013-12-01

    Dietary modification alters plasma lipoprotein profiles and atherosclerotic lesion progression in humans and some animal models. Variability in response to diet induced atherosclerosis has been reported in hamsters. Assessed was the interaction between background diet composition and dietary fat type on aortic cholesterol accumulation, lipoprotein profiles, hepatic lipids and selected genes. F1B Golden Syrian hamsters (20/group) were fed (12 weeks) semi-purified or non-purified diets containing either 10 % (w/w) coconut oil or safflower oil and 0.15 % (w/w) cholesterol. The non-purified diets relative to semi-purified diets resulted in significantly higher TC (72 % [percent difference] and 38 %, coconut oil and safflower oil, respectively) and nHDL-C (84 and 61 %, coconut oil and safflower oil, respectively), and lower HDL-C (-47 and -45 %, coconut oil and safflower oil, respectively) concentrations. Plasma triacylglycerol concentrations in the hamsters fed the non-purified coconut oil-supplemented diets were three- to fourfold higher than non-purified safflower oil-supplemented, and both semi-purified diets. With the exception of HDL-C, a significant effect of fat type was observed in TC, nHDL-C and triacylglycerol (all P < 0.05) concentrations. Regardless of diet induced differences in lipoprotein profiles, there was no significant effect on aortic cholesterol accumulation. There was an inverse relationship between plasma nHDL-C and triacylglycerol, and hepatic cholesteryl ester content (P < 0.001). Diet induced differences in hepatic gene transcription (LDL receptor, apoB-100, microsomal transfer protein) were not reflected in protein concentrations. Although hamsters fed non-purified and/or saturated fatty acid-supplemented diets had more atherogenic lipoprotein profiles compared to hamsters fed semi-purified and/or polyunsaturated fatty acid-supplemented diets these differences were not reflected in aortic cholesterol accumulation.

  17. The effects of chromium complex and level on glucose metabolism and memory acquisition in rats fed high-fat diet.

    Science.gov (United States)

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Agca, Can A; Sahin, Nurhan; Guvenc, Mehmet; Krejpcio, Zbigniew; Staniek, Halina; Hayirli, Armagan

    2011-11-01

    Conditions in which glucose metabolism is impaired due to insulin resistance are associated with memory impairment. It was hypothesized that supplemental chromium (Cr) may alleviate insulin resistance in type 2 diabetes and consequently improve memory acquisition, depending upon its source and level. In a complete randomized design experiment, male Wistar rats (n=60; weighing 200-220 g) were fed either normal (8%, normal diet (ND)) or high-fat (40%, high-fat diet (HFD)) diet and supplemented with Cr as either chromium-glycinate (CrGly) or chromium-acetate (CrAc) at doses of 0, 40, or 80 μg/kg body weight (BW) via drinking water from 8 to 20 weeks of age. Feeding HFD induced type 2 diabetes, as reflected by greater glucose/insulin ratio (2.98 vs. 2.74) comparing to feeding ND. Moreover, HFD rats had greater BW (314 vs. 279 g) and less serum (53 vs. 68 μg/L) and brain (14 vs. 24 ng/g) Cr concentrations than ND rats. High-fat diet caused a 32% reduction in expressions of glucose transporters 1 and 3 (GLUTs) in brain tissue and a 27% reduction in mean percentage time spent in the target quadrant and a 38% increase in spatial memory acquisition phase (SMAP) compared with ND. Compared with supplemental Cr as CrAc, CrGly was more effective to ameliorate response variables (i.e., restoration of tissue Cr concentration, enhancement of cerebral GLUTs expressions, and reduction of the glucose/insulin ratio and SMAP) in a dose-response manner, especially in rats fed HFD. Supplemental Cr as CrGly may have therapeutic potential to enhance insulin action and alleviate memory acquisition in a dose-dependent manner, through restoring tissue Cr reserve and enhancing cerebral GLUTs expressions.

  18. Low-carbohydrate diets for the treatment of obesity and type 2 diabetes.

    Science.gov (United States)

    Hall, Kevin D; Chung, Stephanie T

    2018-04-18

    Summarize the physiological effects of low-carbohydrate diets as they relate to weight loss, glycemic control, and metabolic health. Low-carbohydrate diets are at least as effective for weight loss as other diets, but claims about increased energy expenditure and preferential loss of body fat are unsubstantiated. Glycemic control and hyperinsulinemia are improved by low-carbohydrate diets, but insulin sensitivity and glucose-stimulated insulin secretion may be impaired, especially in the absence of weight loss. Fasting lipid parameters are generally improved, but such improvements may depend on the quality of dietary fat and the carbohydrates they replaced. Postprandial hyperlipemia is a potential concern given the high fat content typical of low-carbohydrate diets. Low-carbohydrate diets have several potential benefits for treatment of obesity and type 2 diabetes, but more research is required to better understand their long-term consequences as well as the variable effects on the endocrine control of glucose, lipids, and metabolism.

  19. Impact of liver fat on the differential partitioning of hepatic triacylglycerol into VLDL subclasses on high and low sugar diets.

    Science.gov (United States)

    Umpleby, A Margot; Shojaee-Moradie, Fariba; Fielding, Barbara; Li, Xuefei; Marino, Andrea; Alsini, Najlaa; Isherwood, Cheryl; Jackson, Nicola; Ahmad, Aryati; Stolinski, Michael; Lovegrove, Julie A; Johnsen, Sigurd; Jeewaka R Mendis, A S; Wright, John; Wilinska, Malgorzata E; Hovorka, Roman; Bell, Jimmy D; Thomas, E Louise; Frost, Gary S; Griffin, Bruce A

    2017-11-01

    Dietary sugars are linked to the development of non-alcoholic fatty liver disease (NAFLD) and dyslipidaemia, but it is unknown if NAFLD itself influences the effects of sugars on plasma lipoproteins. To study this further, men with NAFLD ( n = 11) and low liver fat 'controls' ( n = 14) were fed two iso-energetic diets, high or low in sugars (26% or 6% total energy) for 12 weeks, in a randomised, cross-over design. Fasting plasma lipid and lipoprotein kinetics were measured after each diet by stable isotope trace-labelling.There were significant differences in the production and catabolic rates of VLDL subclasses between men with NAFLD and controls, in response to the high and low sugar diets. Men with NAFLD had higher plasma concentrations of VLDL 1 -triacylglycerol (TAG) after the high ( P sugar ( P diets, a lower VLDL 1 -TAG fractional catabolic rate after the high sugar diet ( P sugar diet ( P sugar diet, was to channel hepatic TAG into a higher production of VLDL 1 -TAG ( P sugars. © 2017 The Author(s).

  20. Consuming a low-fat diet from weaning to adulthood reverses the programming of food preferences in male, but not in female, offspring of 'junk food'-fed rat dams.

    Science.gov (United States)

    Ong, Z Y; Muhlhausler, B S

    2014-01-01

    This study aimed to determine whether the negative effects of maternal 'junk food' feeding on food preferences and gene expression in the mesolimbic reward system could be reversed by weaning the offspring onto a low-fat diet. Offspring of control (n = 11) and junk food-fed (JF, n = 12) dams were weaned onto a standard rodent chow until 6 weeks (juvenile) or 3 months (adult). They were then given free access to both chow and junk food for 3 weeks and food preferences determined. mRNA expression of key components of the mesolimbic reward system was determined by qRT-PCR at 6 weeks, 3 and 6 months of age. In the juvenile group, both male and female JF offspring consumed more energy and carbohydrate during the junk food exposure at 6 weeks of age and had a higher body fat mass at 3 months (P junk food; however, female JF offspring had a higher body fat mass at 6 months (P junk food exposure on food preferences and fat mass can be reversed by consuming a low-fat diet from weaning to adulthood in males. Females, however, retain a higher propensity for diet-induced obesity even after consuming a low-fat diet for an extended period after weaning. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  1. Effect of the supplementation linseed oil, inulin and horse chestnut into a high fat diet on the fatty acid profile of pigs

    Directory of Open Access Journals (Sweden)

    Matej Brestenský

    Full Text Available ABSTRACT: In the present study it was evaluated the effect of the addition of linseed oil, inulin and horse chestnut added to a high fat (HF diet on the content of fatty acids (FAs in musculuss longissimus dorsi (MLD of pigs. A 5d with adaptation period was followed by a 70 d experimental period, during which the pigs were fed with a HF basal diet. The HF basal diet which served as a control (group CG was supplemented either with linseed oil (group LG or with inulin and horse chestnut (group IG. All of the pigs were slaughtered at the end of the experiment and samples of MLD were taken for FA analysis. The concentration of α-linolenic acid in MLD of the LG group was 58 % and 61 % higher (P˂0.05 compared to CG and IG groups, respectively. The content of eicosapentaenoic acid (EPA was 0.03 and docosahexaenoic acid (DHA 0.07 in LG treatment. These FAs were not detected in CG and IG. The ratio of MUFA and PUFA n-6/n-3 in the MLD was the lowest (P˂0.05 in the LG (8.84 compared to CG (14.07 or IG (14.74 groups, representing a difference of 31.2%. The n-3/saturated FA ratio was highest (P˂0.05 in LG group (0.04 when compared to CG and IG groups (0.02. The supplementation of linseed oil, into the HF diet resulted in a higher concentration of α-linolenic acid, EPA, DHA and lower ratio of n-6/n-3 FA in MLD. Inulin and horse chestnut had no effect on FA profile of MLD.

  2. Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    2013-12-01

    Full Text Available Methods: This study sought to evaluate the impact of oat beta-glucan on insulin resistance in mice fed on high-fat and high-fructose diet with fructose (10%, w/v added in drinking water for 10 weeks. Results: The results showed that supplementation with oat beta-glucan could significantly reduce the insulin resistance both in low-dose (200 mg/kg−1 body weight and high-dose (500 mg/kg−1 body weight groups, but the high-dose group showed a more significant improvement in insulin resistance (P<0.01 compared with model control (MC group along with significant improvement in hepatic glycogen level, oral glucose, and insulin tolerance. Moreover, hepatic glucokinase activity was markedly enhanced both in low-dose and high-dose groups compared with that of MC group (P<0.05. Conclusion: These results suggested that supplementation of oat beta-glucan alleviated insulin resistance and the effect was dose dependent.

  3. Phenolics composition and antidiabetic property of Brachystegia eurycoma seed flur in high-fat diet, low-dose streptozotocin-induced type 2 diabetes in rats

    Directory of Open Access Journals (Sweden)

    Emmanuel Anyachukwu Irondi

    2015-06-01

    Full Text Available Objective: To quantify some major pharmacologically important flavonoids and phenolic acids in Brachystegia eurycoma seed flour (BESF and evaluate its antidiabetic activity in type 2 diabetic rats. Method: Flavonoids and phenolic acids were quantified using a reverse-phase high pressure liquid chromatrography coupled with diode array detection. Type 2 diabetes was induced in rats using high-fat diet, low-dose streptozotocin (HFD/STZ model, by feeding the rats with HFD for 2 weeks followed by single dose administration of STZ (40 mg/kg body weight, intraperitoneally. The diabetic rats were later fed BESF-supplemented (10% and 20% diets, or administered with metformin (25 mg/kg b.w. for 21 days; the control rats were fed basal diet during this period. After the dietary regimen, the rats were sacrificed, and their blood, liver and pancreas samples were collected for biochemical assays. Results: The flavonoids (catechin, rutin, quercitrin, quercetin and kaempferol and phenolic acids (gallic acid, caffeic, chlorogenic and ellagic acid were abundant in BESF. BESFsupplemented diets (BESF-SD significantly (P 0.05 with metformin administration in some of the biomarkers. Conclusion: The flavonoids and phenolic acids in BESF may have acted synergistically to produce the observed antidiabetic effects. BESF could therefore be an effective and affordable dietary therapy for the management of T2DM; and an excellent source for drug discovery.

  4. The case for low carbohydrate diets in diabetes management

    Directory of Open Access Journals (Sweden)

    McFarlane Samy I

    2005-07-01

    Full Text Available Abstract A low fat, high carbohydrate diet in combination with regular exercise is the traditional recommendation for treating diabetes. Compliance with these lifestyle modifications is less than satisfactory, however, and a high carbohydrate diet raises postprandial plasma glucose and insulin secretion, thereby increasing risk of CVD, hypertension, dyslipidemia, obesity and diabetes. Moreover, the current epidemic of diabetes and obesity has been, over the past three decades, accompanied by a significant decrease in fat consumption and an increase in carbohydrate consumption. This apparent failure of the traditional diet, from a public health point of view, indicates that alternative dietary approaches are needed. Because carbohydrate is the major secretagogue of insulin, some form of carbohydrate restriction is a prima facie candidate for dietary control of diabetes. Evidence from various randomized controlled trials in recent years has convinced us that such diets are safe and effective, at least in short-term. These data show low carbohydrate diets to be comparable or better than traditional low fat high carbohydrate diets for weight reduction, improvement in the dyslipidemia of diabetes and metabolic syndrome as well as control of blood pressure, postprandial glycemia and insulin secretion. Furthermore, the ability of low carbohydrate diets to reduce triglycerides and to increase HDL is of particular importance. Resistance to such strategies has been due, in part, to equating it with the popular Atkins diet. However, there are many variations and room for individual physician planning. Some form of low carbohydrate diet, in combination with exercise, is a viable option for patients with diabetes. However, the extreme reduction of carbohydrate of popular diets (

  5. Efficacy of phytosterols and fish-oil supplemented high-oleic-sunflower oil rich diets in hypercholesterolemic growing rats.

    Science.gov (United States)

    Alsina, Estefania; Macri, Elisa V; Lifshitz, Fima; Bozzini, Clarisa; Rodriguez, Patricia N; Boyer, Patricia M; Friedman, Silvia M

    2016-06-01

    Phytosterols (P) and fish-oil (F) efficacy on high-oleic-sunflower oil (HOSO) diets were assessed in hypercholesterolemic growing rats. Controls (C) received a standard diet for 8 weeks; experimental rats were fed an atherogenic diet (AT) for 3 weeks, thereafter were divided into four groups fed for 5 weeks a monounsaturated fatty acid diet (MUFA) containing either: extra virgin olive oil (OO), HOSO or HOSO supplemented with P or F. The diets did not alter body weight or growth. HOSO-P and HOSO-F rats showed reduced total cholesterol (T-chol), non-high-density lipoprotein-cholesterol (non-HDL-chol) and triglycerides and increased HDL-chol levels, comparably to the OO rats. Total body fat (%) was similar among all rats; but HOSO-F showed the lowest intestinal, epididymal and perirenal fat. However, bone mineral content and density, and bone yield stress and modulus of elasticity were unchanged. Growing hypercholesterolemic rats fed HOSO with P or F improved serum lipids and fat distribution, but did not influence material bone quality.

  6. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-02

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  7. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-02-01

    Full Text Available Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO and Derbesia tenuissima (DT, in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  8. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. PMID:25648511

  9. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  11. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  12. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows.

    Science.gov (United States)

    Amanlou, H; Maheri-Sis, N; Bassiri, S; Mirza-Aghazadeh, A; Salamatdust, R; Moosavi, A; Karimi, V

    2012-01-01

    Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight) were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (Pfat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; PMilk fat yield and percentage of cows fed fat-supplemented diets were significantly (Pfat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (Pfat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein) sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  13. The case for low carbohydrate diets in diabetes management.

    Science.gov (United States)

    Arora, Surender K; McFarlane, Samy I

    2005-07-14

    A low fat, high carbohydrate diet in combination with regular exercise is the traditional recommendation for treating diabetes. Compliance with these lifestyle modifications is less than satisfactory, however, and a high carbohydrate diet raises postprandial plasma glucose and insulin secretion, thereby increasing risk of CVD, hypertension, dyslipidemia, obesity and diabetes. Moreover, the current epidemic of diabetes and obesity has been, over the past three decades, accompanied by a significant decrease in fat consumption and an increase in carbohydrate consumption. This apparent failure of the traditional diet, from a public health point of view, indicates that alternative dietary approaches are needed. Because carbohydrate is the major secretagogue of insulin, some form of carbohydrate restriction is a prima facie candidate for dietary control of diabetes. Evidence from various randomized controlled trials in recent years has convinced us that such diets are safe and effective, at least in short-term. These data show low carbohydrate diets to be comparable or better than traditional low fat high carbohydrate diets for weight reduction, improvement in the dyslipidemia of diabetes and metabolic syndrome as well as control of blood pressure, postprandial glycemia and insulin secretion. Furthermore, the ability of low carbohydrate diets to reduce triglycerides and to increase HDL is of particular importance. Resistance to such strategies has been due, in part, to equating it with the popular Atkins diet. However, there are many variations and room for individual physician planning. Some form of low carbohydrate diet, in combination with exercise, is a viable option for patients with diabetes. However, the extreme reduction of carbohydrate of popular diets (<30 g/day) cannot be recommended for a diabetic population at this time without further study. On the other hand, the dire objections continually raised in the literature appear to have very little scientific

  14. Importance of low carbohydrate diets in diabetes management

    Directory of Open Access Journals (Sweden)

    Hall RM

    2016-03-01

    Full Text Available Rosemary M Hall, Amber Parry Strong, Jeremy D KrebsCentre for Endocrine, Diabetes and Obesity Research, Capital and Coast District Health Board, Wellington, New Zealand Abstract: Dietary strategies are fundamental in the management of diabetes. Historically, strict dietary control with a low carbohydrate diet was the only treatment option. With increasingly effective medications, the importance of dietary change decreased. Recommendations focused on reducing dietary fat to prevent atherosclerotic disease, with decreasing emphasis on the amount and quality of carbohydrate. As the prevalence of obesity and diabetes escalates, attention has returned to the macronutrient composition of the diet. Very low carbohydrate diets (VLCD's have demonstrated effective initial weight loss and improvement in glycemic control, but difficult long-term acceptability and worsening lipid profile. Modifications to the very low carbohydrate (VLC have included limiting saturated fat and increasing carbohydrate (CHO and protein. Reducing saturated fat appears pivotal in reducing low-density lipoprotein (LDL cholesterol and may mitigate adverse effects of traditional VLCD's. Increased dietary protein enhances satiety, reduces energy intake, and improves glycemic homeostasis, but without sustained improvements in glycemic control or cardiovascular risk over and above the effect of weight loss. Additionally, recent studies in type 1 diabetes mellitus suggest promising benefits to diabetes control with low carbohydrate diets, without concerning effects on ketosis or hypoglycemia. Dietary patterns may highlight pertinent associations. For example, Mediterranean-style and paleolithic-type diets, low in fat and carbohydrate, are associated with reduced body weight and improved glycemic and cardiovascular outcomes in type 2 diabetes mellitus (T2DM. A feature of these dietary patterns is low refined CHO and sugar and higher fiber, and it is possible that increasing sugar

  15. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    Directory of Open Access Journals (Sweden)

    Kim Hye-Jin

    2011-01-01

    Full Text Available Abstract Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC, compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS or a low trans fat (LC diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR. Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC.

  16. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    Science.gov (United States)

    2011-01-01

    Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC), compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS)) or a low trans fat (LC) diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC. PMID:21247503

  17. Feed efficiency of diets with different energy and protein concentrations supplemented with methionine in laying quails

    Science.gov (United States)

    Ratriyanto, A.; Indreswari, R.; Nuhriawangsa, A. M. P.; Purwanti, E.

    2018-03-01

    The study was conducted to evaluate the feed efficiency of quail diets containing different concentrations of metabolizable energy (ME) and crude protein (CP) with constant ratio and supplemented with methionine. Four hundred laying quails (Coturnix coturnix japonica) were randomly assigned to four experimental diets in a 2×2 factorial arrangement. Each dietary treatment used 5 replicates of 20 quails. Two basal diets were formulated to contain 2,800 kcal kg-1 ME and 18.7% CP (High ME-CP) and 2,600 kcal kg-1 ME and 17.3% CP (Low ME-CP). Each basal diet was supplemented with 0 and 0.12% methionine. The High ME-CP diets generated lower feed consumption but higher egg mass and feed efficiency (Pprotein efficiency ratio (PHigh ME-CP supplemented with methionine resulted the highest feed efficiency followed by the Low ME-CP supplemented with methionine, while both High ME-CP and Low ME-CP without methionine supplementation resulted the lowest feed efficiency (PHigh ME-CP supplemented with 0.12% methionine provided benefit to improve the feed efficiency in laying quails.

  18. HPMC supplementation reduces fatty liver, intestinal permeability, and insulin resistance with altered hepatic gene expression in diet-induced obese mice

    Science.gov (United States)

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous nonfermentable soluble dietary fiber, were evaluated on global hepatic gene profiles, steatosis and insulin resistance in high-fat (HF) diet-induced obese (DIO) mice. DIO C57BL/6J mice were fed a HF diet supplemented with either ...

  19. Carbohydrate-restricted diets high in either monounsaturated fat or protein are equally effective at promoting fat loss and improving blood lipids.

    Science.gov (United States)

    Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Keogh, Jennifer B; Foster, Paul; Clifton, Peter M

    2005-04-01

    When substituted for carbohydrate in an energy-reduced diet, dietary protein enhances fat loss in women. It is unknown whether the effect is due to increased protein or reduced carbohydrate. We compared the effects of 2 isocaloric diets that differed in protein and fat content on weight loss, lipids, appetite regulation, and energy expenditure after test meals. This was a parallel, randomized study in which subjects received either a low-fat, high-protein (LF-HP) diet (29 +/- 1% fat, 34 +/- 0.8% protein) or a high-fat, standard-protein (HF-SP) diet (45 +/- 0.6% fat, 18 +/- 0.3% protein) during 12 wk of energy restriction (6 +/- 0.1 MJ/d) and 4 wk of energy balance (7.4 +/- 0.3 MJ/d). Fifty-seven overweight and obese [mean body mass index (in kg/m(2)): 33.8 +/- 0.9] volunteers with insulin concentrations >12 mU/L completed the study. Weight loss (LF-HP group, 9.7 +/- 1.1 kg; HF-SP group, 10.2 +/- 1.4 kg; P = 0.78) and fat loss were not significantly different between diet groups even though the subjects desired less to eat after the LF-HP meal (P = 0.02). The decrease in resting energy expenditure was not significantly different between diet groups (LF-HP, -342 +/- 185 kJ/d; HF-SP, -349 +/- 220 kJ/d). The decrease in the thermic effect of feeding with weight loss was smaller in the LF-HP group than in the HF-SP group (-0.3 +/- 1.0% compared with -3.6 +/- 0.7%; P = 0.014). Glucose and insulin responses to test meals improved after weight loss (P loss and the improvements in insulin resistance and cardiovascular disease risk factors did not differ significantly between the 2 diets, and neither diet had any detrimental effects on bone turnover or renal function.

  20. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects.

    Science.gov (United States)

    Ruth, Megan R; Port, Ava M; Shah, Mitali; Bourland, Ashley C; Istfan, Nawfal W; Nelson, Kerrie P; Gokce, Noyan; Apovian, Caroline M

    2013-12-01

    High fat, low carbohydrate (HFLC) diets have become popular tools for weight management. We sought to determine the effects of a HFLC diet compared to a low fat high carbohydrate (LFHC) diet on the change in weight loss, cardiovascular risk factors and inflammation in subjects with obesity. Obese subjects (29.0-44.6 kg/m2) recruited from Boston Medical Center were randomized to a hypocaloric LFHC (n=26) or HFLC (n=29) diet for 12 weeks. The age range of subjects was 21-62 years. As a percentage of daily calories, the HFLC group consumed 33.5% protein, 56.0% fat and 9.6% carbohydrate and the LFHC group consumed 22.0% protein, 25.0% fat and 55.7% carbohydrate. The change in percent body weight, lean and fat mass, blood pressure, flow mediated dilation, hip:waist ratio, hemoglobin A1C, fasting insulin and glucose, and glucose and insulin response to a 2h oral glucose tolerance test did not differ (P>0.05) between diets after 12 weeks. The HFLC group had greater mean decreases in serum triglyceride (P=0.07), and hs-CRP (P=0.03), and greater mean increases in HDL cholesterol (P=0.004), and total adiponectin (P=0.045) relative to the LFHC. Secreted adipose tissue adiponectin or TNF-α did not differ after weight loss for either diet. Relative to the LFHC group, the HFLC group had greater improvements in blood lipids and systemic inflammation with similar changes in body weight and composition. This small-scale study suggests that HFLC diets may be more beneficial to cardiovascular health and inflammation in free-living obese adults compared to LFHC diets. © 2013.

  1. Perinatal western-type diet and associated gestational weight gain alter postpartum maternal mood.

    Science.gov (United States)

    Bolton, Jessica L; Wiley, Melanie G; Ryan, Bailey; Truong, Samantha; Strait, Melva; Baker, Dana Creighton; Yang, Nancy Y; Ilkayeva, Olga; O'Connell, Thomas M; Wroth, Shelley W; Sánchez, Cristina L; Swamy, Geeta; Newgard, Christopher; Kuhn, Cynthia; Bilbo, Staci D; Simmons, Leigh Ann

    2017-10-01

    The role of perinatal diet in postpartum maternal mood disorders, including depression and anxiety, remains unclear. We investigated whether perinatal consumption of a Western-type diet (high in fat and branched-chain amino acids [BCAA]) and associated gestational weight gain (GWG) cause serotonin dysregulation in the central nervous system (CNS), resulting in postpartum depression and anxiety (PPD/A). Mouse dams were fed one of four diets (high-fat/high BCAA, low-fat/high BCAA, high-fat, and low-fat) prior to mating and throughout gestation and lactation. Postpartum behavioral assessments were conducted, and plasma and brain tissues assayed. To evaluate potential clinical utility, we conducted preliminary human studies using data from an extant sample of 17 primiparous women with high GWG, comparing across self-reported postpartum mood symptoms using the Edinburgh Postnatal Depression Scale (EPDS) for percent GWG and plasma amino acid levels. Mouse dams fed the high-fat/high BCAA diet gained more weight per kcal consumed, and BCAA-supplemented dams lost weight more slowly postpartum. Dams on BCAA-supplemented diets exhibited increased PPD/A-like behavior, decreased dopaminergic function, and decreased plasma tyrosine and histidine levels when assessed on postnatal day (P)8. Preliminary human data showed that GWG accounted for 29% of the variance in EPDS scores. Histidine was also lower in women with higher EPDS scores. These findings highlight the role of perinatal diet and excess GWG in the development of postpartum mood disorders.

  2. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge.

    Science.gov (United States)

    Hua, Ning; Takahashi, Hirokazu; Yee, Grace M; Kitajima, Yoichiro; Katagiri, Sayaka; Kojima, Motoyasu; Anzai, Keizo; Eguchi, Yuichiro; Hamilton, James A

    2017-01-01

    To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.

  3. Diets with high-fat cheese, high-fat meat, or carbohydrate on cardiovascular risk markers in overweight postmenopausal women

    DEFF Research Database (Denmark)

    Thorning, Tanja Kongerslev; Raziani, Farinaz; Bendsen, Nathalie Tommerup

    2015-01-01

    BACKGROUND: Heart associations recommend limited intake of saturated fat. However, effects of saturated fat on low-density lipoprotein (LDL)-cholesterol concentrations and cardiovascular disease risk might depend on nutrients and specific saturated fatty acids (SFAs) in food. OBJECTIVE: We explored...... the effects of cheese and meat as sources of SFAs or isocaloric replacement with carbohydrates on blood lipids, lipoproteins, and fecal excretion of fat and bile acids. DESIGN: The study was a randomized, crossover, open-label intervention in 14 overweight postmenopausal women. Three full-diet periods of 2-wk...... duration were provided separated by 2-wk washout periods. The isocaloric diets were as follows: 1) a high-cheese (96-120-g) intervention [i.e., intervention containing cheese (CHEESE)], 2) a macronutrient-matched nondairy, high-meat control [i.e., nondairy control with a high content of high-fat processed...

  4. n-3 PUFA added to high-fat diets affect differently adiposity and inflammation when carried by phospholipids or triacylglycerols in mice

    Directory of Open Access Journals (Sweden)

    Awada Manar

    2013-02-01

    Full Text Available Abstract Background Dietary intake of n-3 polyunsaturated fatty acids (PUFA is primarily recognized to protect against cardiovascular diseases, cognitive dysfunctions and the onset of obesity and associated metabolic disorders. However, some of their properties such as bioavailability can depend on their chemical carriers. The objective of our study was to test the hypothesis that the nature of n-3 PUFA carrier results in different metabolic effects related to adiposity, oxidative stress and inflammation. Methods 4 groups of C57BL/6 mice were fed for 8 weeks low fat (LF diet or high-fat (HF, 20% diets. Two groups of high-fat diets were supplemented with long-chain n-3 PUFA either incorporated in the form of phospholipids (HF-ω3PL or triacylglycerols (HF-ω3TG. Results Both HF-ω3PL and HF-ω3TG diets reduced the plasma concentrations of (i inflammatory markers such as monocyte chemoattractant protein-1 (MCP-1 and interleukin 6 (IL-6, (ii leptin and (iii 4-hydroxy-2-nonenal (4-HNE, a marker of n-6 PUFA-derived oxidative stress compared with the control HF diet. Moreover, in both HF-ω3PL and HF-ω3TG groups, MCP-1 and IL-6 gene expressions were decreased in epididymal adipose tissue and the mRNA level of gastrointestinal glutathione peroxidase GPx2, an antioxidant enzyme, was decreased in the jejunum compared with the control HF diet. The type of n-3 PUFA carrier affected other outcomes. The phospholipid form of n-3 PUFA increased the level of tocopherols in epididymal adipose tissue compared with HF-ω3TG and resulted in smaller adipocytes than the two others HF groups. Adipocytes in the HF-ω3PL and LF groups were similar in size distribution. Conclusion Supplementation of mice diet with long-chain n-3 PUFA during long-term consumption of high-fat diets had the same lowering effects on inflammation regardless of triacyglycerol or phospholipid carrier, whereas the location of these fatty acids on a PL carrier had a major effect on decreasing

  5. Effects of high-fat diet exposure on learning & memory.

    Science.gov (United States)

    Cordner, Zachary A; Tamashiro, Kellie L K

    2015-12-01

    The associations between consumption of a high-fat or 'Western' diet and metabolic disorders such as obesity, diabetes, and cardiovascular disease have long been recognized and a great deal of evidence now suggests that diets high in fat can also have a profound impact on the brain, behavior, and cognition. Here, we will review the techniques most often used to assess learning and memory in rodent models and discuss findings from studies assessing the cognitive effects of high-fat diet consumption. The review will then consider potential underlying mechanisms in the brain and conclude by reviewing emerging literature suggesting that maternal consumption of a high-fat diet may have effects on the learning and memory of offspring. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  7. Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major.

    Science.gov (United States)

    Khosravi, Sanaz; Rahimnejad, Samad; Herault, Mikaël; Fournier, Vincent; Lee, Cho-Rong; Dio Bui, Hien Thi; Jeong, Jun-Bum; Lee, Kyeong-Jun

    2015-08-01

    This study was conducted to evaluate the supplemental effects of three different types of protein hydrolysates in a low fish meal (FM) diet on growth performance, feed utilization, intestinal morphology, innate immunity and disease resistance of juvenile red sea bream. A FM-based diet was used as a high fish meal diet (HFM) and a low fish meal (LFM) diet was prepared by replacing 50% of FM by soy protein concentrate. Three other diets were prepared by supplementing shrimp, tilapia or krill hydrolysate to the LFM diet (designated as SH, TH and KH, respectively). Triplicate groups of fish (4.9 ± 0.1 g) were fed one of the test diets to apparent satiation twice daily for 13 weeks and then challenged by Edwardsiella tarda. At the end of the feeding trial, significantly (P red sea bream. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Acquired intestinal lymphangiectasia successfully treated with a low-fat and medium-chain triacylglycerol-enriched diet in a patient with liver transplantation.

    Science.gov (United States)

    Biselli, Maurizio; Andreone, Pietro; Gramenzi, Annagiulia; Cursaro, Carmela; Lorenzini, Stefania; Bonvicini, Fiorenza; Bernardi, Mauro

    2006-05-01

    Intestinal lymphangiectasia is defined as a dilatation of small bowel lymphatic capillaries and a loss of lymph into the bowel lumen. Clinically it is characterized by hypoproteinaemia and oedema. We present here a case of protein-losing enteropathy due to intestinal lymphangiectasia after liver transplantation in a 57-year-old man who was transplanted for hepatitis C virus. Four years after liver transplantation, the patient developed hypoalbuminaemia and ascites associated with recurrence of cirrhosis. The sudden fall in serum albumin led us to look for a cause of reduction other than or in addition to cirrhosis. Duodenal biopsies showed tall villi with dilated lymphatic vessels and widening of the villi caused by oedema, demonstrating intestinal lymphangiectasia. In this case a low-fat diet supplemented with medium-chain triacylglycerols achieved an early clinical improvement with increased serum albumin levels and ascites disappearance. Intestinal lymphangiectasia should be suspected in liver-transplanted patients developing hypoproteinaemia and hypoalbuminaemia after the recurrence of cirrhosis.

  9. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    Science.gov (United States)

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi

    2018-04-27

    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  10. Nonprotein calorie supplement improves adherence to low-protein diet and exerts beneficial responses on renal function in chronic kidney disease.

    Science.gov (United States)

    Wu, Hung-Lien; Sung, Junne-Ming; Kao, Mei-Ding; Wang, Ming-Cheng; Tseng, Chin-Chung; Chen, Shu-Tzu

    2013-07-01

    Malnutrition is common in patients with chronic kidney disease (CKD) who are on low-protein diets and is a powerful predictor of morbidity and mortality in CKD. Studies have shown that patients on low-protein diets often have difficulty meeting nutritional energy requirements. Our study evaluated the effects of a nonprotein calorie (NPC) supplement on renal function and nutritional status in patients on a low-protein diet. This was a prospective, randomized, open-label, controlled clinical trial. A total of 109 patients with CKD (men, 67%; mean age, 54.5 ± 13 years) with stage 3 to 4 disease were randomly assigned to the intervention group (n = 55) or the control group (n = 54). All participants received individualized dietary counseling aimed at achieving a daily protein intake of 0.6 to 0.8 g and a daily energy intake of 30 to 35 kcal/kg. The intervention group consumed a 200-kcal NPC supplement daily. The control group received dietary counseling only. The estimated glomerular filtration rate (eGFR) was calculated using the 4-variable Modification of Diet in Renal Disease (MDRD) Study equation. Urine protein excretion, dietary protein and energy intake, and serum levels of creatinine, urea nitrogen, cholesterol, triglycerides, and albumin were assessed at baseline, at 12 weeks, and at 24 weeks. Dietary protein intake and urine protein excretion levels decreased significantly in the intervention group and were significantly lower than those of the control group. In addition, serum levels of creatinine and urea nitrogen decreased significantly, and eGFR increased significantly in the intervention group compared with baseline assessments. No significant differences were observed in the control group. The NPC supplement improved patient adherence to the low-protein diet and reduced urine protein excretion in patients with CKD. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  11. Reduction of plasma asymmetric dimethylarginine in obese patients with chronic kidney disease after three years of a low-protein diet supplemented with keto-amino acids: a randomized controlled trial.

    Science.gov (United States)

    Teplan, Vladimir; Schück, Otto; Racek, Jaroslav; Mareckova, Olga; Stollova, Milena; Hanzal, Vladimir; Malý, Jan

    2008-01-01

    Levels of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) are elevated in chronic kidney disease (CKD) and may contribute to vascular complications. In this study we tested the hypothesis that elevated ADMA can be reduced in obese CKD patients by long-term administration of a low-protein diet supplemented with keto-amino acids. In a long-term prospective double-blind placebo-controlled randomized trial, we evaluated for a period of 36 months a total of 111 CKD patients (54 men, 57 women) aged 22-76 years with obesity (BMI >or= 30 kg/m(2)) and an inulin clearance rate (C(in)) of 22-40 ml/min/1.73 m(2). All patients were on a low-protein diet containing 0.6 g protein/kg BW per day and 120-125 kJ/kg BW per day. The diet was randomly supplemented with keto-amino acids at a dosage of 100 mg/kg BW per day (66 patients, Group I); 65 patients received placebo (Group II). During the study period, the glomerular filtration rate decreased slightly in Group I (C(in) from 32.4 +/- 12.6 to 29.8 +/- 8.6 ml/min/1.73 m(2)) and more markedly in Group II (from 33.2 +/- 12.6 to 23.2 +/- 98.4 ml/min/1.73 m(2), P diet and keto-amino acids in CKD patients with obesity led to decreases of ADMA, visceral body fat and proteinuria. Concomitant decreases of glycated hemoglobin, LDL-cholesterol and pentosidine may also contribute to the delay in progression of renal failure.

  12. Impact of DDGS-supplemented diet with or without vitamin E and selenium supplementation on the fatty acid profile of beef

    Directory of Open Access Journals (Sweden)

    Holló I.

    2016-12-01

    Full Text Available The impact of supplementation of vitamin E or organic selenium in DDGS (dried distillers grains with solubles diet on fatty acid composition in two meat cuts of finishing Holstein bulls was investigated. Twenty-four Holstein bulls were allotted to treatments in three groups of eight bulls per group for a 100-day trial. The treatments were adequate Se and vitamin E supplementation in control group (C, supranutritional vitamin E supplementation in vitamin Group E (E, supranutritional Se supplementation in selenium group (Se. At similar age, slaughtering Group C had higher slaughter/carcass weight and EUROP fat score than Se counterparts. The killing out percentage and proximate composition of muscles differed among treatments. Inclusion of the vitamin E or Se supplement led to expected increases (P < 0.05 in vitamin E and Se contents of the brisket and loin. Higher vitamin E concentration caused significant lower SFA and greater PUFA. Higher Se level influenced significant SFA in brisket and PUFA in both muscles. Vitamin E or Se dietary treatments in DDGS-supplemented diet resulted in beef meat cuts considerably beneficial PUFA/SFA but markedly higher n-6/n-3 PUFA ratio and even higher health index in both meat samples opposite to Group C.

  13. Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats

    Science.gov (United States)

    Adam, Clare L.; Thomson, Lynn M.; Williams, Patricia A.; Ross, Alexander W.

    2015-01-01

    Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity. PMID:26447990

  14. Long-term effects on haemostatic variables of three ad libitum diets differing in type and amount of fat and carbohydrate: a 6-month randomised study in obese individuals

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Larsen, Thomas M; Due, Anette

    2010-01-01

    Diet is important in the prevention of CVD, and it has been suggested that a diet high in MUFA is more cardioprotective than a low-fat diet. We hypothesised that the thrombotic risk profile is improved most favourably by a high-MUFA diet compared with a low-fat diet. This was tested in a parallel...... randomised intervention trial on overweight individuals (aged 28·2 (sd 4·6) years) randomly assigned to a diet providing a moderate amount of fat (35-45 % of energy; >20 % of fat as MUFA) (MUFA diet; n 39), to a low-fat (LF; 20-30 % of energy) diet (n 43), or to a control diet (35 % of energy as fat; n 24...

  15. Acetone as biomarker for ketosis buildup capability--a study in healthy individuals under combined high fat and starvation diets.

    Science.gov (United States)

    Prabhakar, Amlendu; Quach, Ashley; Zhang, Haojiong; Terrera, Mirna; Jackemeyer, David; Xian, Xiaojun; Tsow, Francis; Tao, Nongjian; Forzani, Erica S

    2015-04-22

    Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy. A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual's energy expenditure. On Day 7, ketone buildup from FK was measured. A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R(2) = 0.92), and lower body mass index (R(2) = 0.71) was observed during FK.

  16. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates.

    Science.gov (United States)

    Sacks, Frank M; Bray, George A; Carey, Vincent J; Smith, Steven R; Ryan, Donna H; Anton, Stephen D; McManus, Katherine; Champagne, Catherine M; Bishop, Louise M; Laranjo, Nancy; Leboff, Meryl S; Rood, Jennifer C; de Jonge, Lilian; Greenway, Frank L; Loria, Catherine M; Obarzanek, Eva; Williamson, Donald A

    2009-02-26

    The possible advantage for weight loss of a diet that emphasizes protein, fat, or carbohydrates has not been established, and there are few studies that extend beyond 1 year. We randomly assigned 811 overweight adults to one of four diets; the targeted percentages of energy derived from fat, protein, and carbohydrates in the four diets were 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25, and 35%. The diets consisted of similar foods and met guidelines for cardiovascular health. The participants were offered group and individual instructional sessions for 2 years. The primary outcome was the change in body weight after 2 years in two-by-two factorial comparisons of low fat versus high fat and average protein versus high protein and in the comparison of highest and lowest carbohydrate content. At 6 months, participants assigned to each diet had lost an average of 6 kg, which represented 7% of their initial weight; they began to regain weight after 12 months. By 2 years, weight loss remained similar in those who were assigned to a diet with 15% protein and those assigned to a diet with 25% protein (3.0 and 3.6 kg, respectively); in those assigned to a diet with 20% fat and those assigned to a diet with 40% fat (3.3 kg for both groups); and in those assigned to a diet with 65% carbohydrates and those assigned to a diet with 35% carbohydrates (2.9 and 3.4 kg, respectively) (P>0.20 for all comparisons). Among the 80% of participants who completed the trial, the average weight loss was 4 kg; 14 to 15% of the participants had a reduction of at least 10% of their initial body weight. Satiety, hunger, satisfaction with the diet, and attendance at group sessions were similar for all diets; attendance was strongly associated with weight loss (0.2 kg per session attended). The diets improved lipid-related risk factors and fasting insulin levels. Reduced-calorie diets result in clinically meaningful weight loss regardless of which macronutrients they emphasize

  17. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates

    Science.gov (United States)

    Sacks, Frank M.; Bray, George A.; Carey, Vincent J.; Smith, Steven R.; Ryan, Donna H.; Anton, Stephen D.; McManus, Katherine; Champagne, Catherine M.; Bishop, Louise M.; Laranjo, Nancy; Leboff, Meryl S.; Rood, Jennifer C.; de Jonge, Lilian; Greenway, Frank L.; Loria, Catherine M.; Obarzanek, Eva; Williamson, Donald A.

    2009-01-01

    BACKGROUND The possible advantage for weight loss of a diet that emphasizes protein, fat, or carbohydrates has not been established, and there are few studies that extend beyond 1 year. METHODS We randomly assigned 811 overweight adults to one of four diets; the targeted percentages of energy derived from fat, protein, and carbohydrates in the four diets were 20, 15, and 65%; 20, 25, and 55%; 40, 15, and 45%; and 40, 25, and 35%. The diets consisted of similar foods and met guidelines for cardiovascular health. The participants were offered group and individual instructional sessions for 2 years. The primary outcome was the change in body weight after 2 years in two-by-two factorial comparisons of low fat versus high fat and average protein versus high protein and in the comparison of highest and lowest carbohydrate content. RESULTS At 6 months, participants assigned to each diet had lost an average of 6 kg, which represented 7% of their initial weight; they began to regain weight after 12 months. By 2 years, weight loss remained similar in those who were assigned to a diet with 15% protein and those assigned to a diet with 25% protein (3.0 and 3.6 kg, respectively); in those assigned to a diet with 20% fat and those assigned to a diet with 40% fat (3.3 kg for both groups); and in those assigned to a diet with 65% carbohydrates and those assigned to a diet with 35% carbohydrates (2.9 and 3.4 kg, respectively) (P>0.20 for all comparisons). Among the 80% of participants who completed the trial, the average weight loss was 4 kg; 14 to 15% of the participants had a reduction of at least 10% of their initial body weight. Satiety, hunger, satisfaction with the diet, and attendance at group sessions were similar for all diets; attendance was strongly associated with weight loss (0.2 kg per session attended). The diets improved lipid-related risk factors and fasting insulin levels. CONCLUSIONS Reduced-calorie diets result in clinically meaningful weight loss regardless of

  18. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Science.gov (United States)

    Tan, Si; Li, Mingxia; Ding, Xiaobo; Fan, Shengjie; Guo, Lu; Gu, Ming; Zhang, Yu; Feng, Li; Jiang, Dong; Li, Yiming; Xi, Wanpeng; Huang, Cheng; Zhou, Zhiqin

    2014-01-01

    Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  19. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Si Tan

    Full Text Available INTRODUCTION: Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle fruit extract (FME on high-fat diet-induced C57BL/6 obese mice. METHODS: The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow, high-fat diet (HF, and high-fat diet with 1% (w/w extract of kumquat (HF+FME for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. RESULTS: In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC, serum low density lipoprotein cholesterol (LDL-c levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG, serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. CONCLUSION: Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  20. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase expression by Zingiber officinale in the liver of high-fat diet-fed rats.

    Science.gov (United States)

    Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D

    2010-05-01

    Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia.

  1. Increased iron level in phytase-supplemented diets reduces performance and nutrient utilisation in broiler chickens.

    Science.gov (United States)

    Akter, Marjina; Iji, P A; Graham, H

    2017-08-01

    1. The effect of different levels of dietary iron on phytase activity and its subsequent effect on broiler performance were investigated in a 3 × 2 factorial arrangement. A total of 360 day-old Ross 308 male broiler chicks were distributed to 6 experimental diets, formulated with three levels of Fe (60, 80 and 100 mg/kg) and two levels of phytase (0 and 500 FTU/kg). 2. Phytase supplemented to mid-Fe diets increased feed consumption more than the non-supplemented diet at d 24. From hatch to d 35, Fe × phytase interaction significantly influenced the feed intake (FI), body weight gain (BWG) and feed conversion ratio (FCR). The high-Fe diet supplemented with phytase significantly reduced FI and BWG of broilers than those supplemented with low- or mid-Fe diets. The overall FCR was significantly better in birds fed on the mid-Fe diets with phytase supplementation. 3. A significant improvement in ileal digestibility of N, P, Mg and Fe was observed in birds feed diets containing 60 mg Fe/kg, with significant interaction between Fe and phytase. 4. Phytase improved the bone breaking strength when supplemented to low- or mid-Fe diets, compared to the non-supplemented diets. There was a significant Fe × phytase interaction effect. Tibia Fe content was higher in birds fed on phytase-free diets with high Fe but the reverse was the case when phytase was added and their interaction was significant. High dietary Fe significantly increased the accumulation of Fe in liver. 5. Phytase improved Ca-Mg-ATPase, Ca-ATPase and Mg-ATPase activities in jejunum when supplemented to the diet containing 80 mg Fe/kg. 6. This study indicates that high (100 mg/kg) dietary Fe inhibited phytase efficacy and subsequently reduced the overall performance and nutrient utilisation of broilers.

  2. Effect of High Fat and High Sugar Diet on Glucose Tolerance, Insulin Response to Glucose Load and Insulin Sensitivity in Rats

    OpenAIRE

    岡﨑, 悟

    1987-01-01

    To investigate the precipitating effects of the westernized diet on diabetes mellitus, glucose tolerance and insulin response to oral glucose load (1.5g/kg body weight) and insulin sensitivity to exogenous insulin (0.2U/kg) were studied in rats fed an experimental diet for 8 weeks. Four experimental diets were used : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the we...

  3. A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis

    NARCIS (Netherlands)

    Allick, G; Bisschop, PH; Ackermans, MT; Endert, E; Meijer, AJ; Kuipers, F; Sauerwein, HP; Romijn, JA

    2004-01-01

    The aim of this study was to examine the mechanisms by which dietary carbohydrate and fat modulate fasting glycemia. We compared the effects of an eucaloric high-carbohydrate (89% carbohydrate) and high-fat (89% fat) diet on fasting glucose metabolism and insulin sensitivity in seven obese patients

  4. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet–fed dams

    Science.gov (United States)

    McKee, Sarah E.; Grissom, Nicola M.; Herdt, Christopher T.; Reyes, Teresa M.

    2017-01-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)–fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life—particularly within the prefrontal cortex (PFC), a brain region critical for executive function—we examined whether early life methyl donor supplementation (e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.—McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation

  5. A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a Western-style diet.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Kreider, Jaclynn M; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; DaSilva, Marissa; Zernicke, Ronald F; Goldstein, Steven A; Varani, James

    2010-04-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for prevention of bone mineral loss. Sixty C57BL/6 mice were divided into three groups based on diet: the first group received a high-fat Western-style diet (HFWD), the second group was fed the same HFWD along with the mineral-rich extract included as a dietary supplement, and the third group was used as a control and was fed a low-fat rodent chow diet (AIN76A). Mice were maintained on the respective diets for 15 months. Then, long bones (femora and tibiae) from both males and females were analyzed by three-dimensional micro-computed tomography (micro-CT) and (bones from female mice) concomitantly assessed in bone strength studies. Tartrate-resistant acid phosphatase (TRAP), osteocalcin, and N-terminal peptide of type I procollagen (PINP) were assessed in plasma samples obtained from female mice at the time of sacrifice. To summarize, female mice on the HFWD had reduced bone mineralization and reduced bone strength relative to female mice on the low-fat chow diet. The bone defects in female mice on the HFWD were overcome in the presence of the mineral-rich supplement. In fact, female mice receiving the mineral-rich supplement in the HFWD had better bone structure/function than did female mice on the low-fat chow diet. Female mice on the mineral-supplemented HFWD had higher plasma levels of TRAP than mice of the other groups. There were no differences in the other two markers. Male mice showed little diet-specific differences by micro-CT.

  6. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet.

    Science.gov (United States)

    Sampey, Brante P; Vanhoose, Amanda M; Winfield, Helena M; Freemerman, Alex J; Muehlbauer, Michael J; Fueger, Patrick T; Newgard, Christopher B; Makowski, Liza

    2011-06-01

    Obesity has reached epidemic proportions worldwide and reports estimate that American children consume up to 25% of calories from snacks. Several animal models of obesity exist, but studies are lacking that compare high-fat diets (HFD) traditionally used in rodent models of diet-induced obesity (DIO) to diets consisting of food regularly consumed by humans, including high-salt, high-fat, low-fiber, energy dense foods such as cookies, chips, and processed meats. To investigate the obesogenic and inflammatory consequences of a cafeteria diet (CAF) compared to a lard-based 45% HFD in rodent models, male Wistar rats were fed HFD, CAF or chow control diets for 15 weeks. Body weight increased dramatically and remained significantly elevated in CAF-fed rats compared to all other diets. Glucose- and insulin-tolerance tests revealed that hyperinsulinemia, hyperglycemia, and glucose intolerance were exaggerated in the CAF-fed rats compared to controls and HFD-fed rats. It is well-established that macrophages infiltrate metabolic tissues at the onset of weight gain and directly contribute to inflammation, insulin resistance, and obesity. Although both high fat diets resulted in increased adiposity and hepatosteatosis, CAF-fed rats displayed remarkable inflammation in white fat, brown fat and liver compared to HFD and controls. In sum, the CAF provided a robust model of human metabolic syndrome compared to traditional lard-based HFD, creating a phenotype of exaggerated obesity with glucose intolerance and inflammation. This model provides a unique platform to study the biochemical, genomic and physiological mechanisms of obesity and obesity-related disease states that are pandemic in western civilization today.

  7. The social construction of competence: Conceptions of science and expertise among proponents of the low-carbohydrate high-fat diet in Finland.

    Science.gov (United States)

    Jauho, Mikko

    2016-04-01

    The article looks at conceptions of science and expertise among lay proponents of the low-carbohydrate high-fat diet in Finland. The research data consist of comments on a webpage related to a debate on the health dangers of animal fats screened in Finnish national television in autumn 2010. The article shows that contrary to the prevailing image advocated by the national nutritional establishment, which is based on the deficit model of public understanding of science, the low-carbohydrate high-fat proponents are neither ignorant about scientific facts nor anti-science. Rather, they express nuanced viewpoints about the nature of science, the place of individual experience in nutritional recommendations and the reliability of experts. Inspired by discussions on the social construction of ignorance, the article argues that the low-carbohydrate high-fat proponents are engaged in what it callsthe social construction of competencewhen they present their position as grounded in science and stylize themselves as lay experts. © The Author(s) 2014.

  8. Effect of dietary starch concentration and fish oil supplementation on milk yield and composition, diet digestibility, and methane emissions in lactating dairy cows.

    Science.gov (United States)

    Pirondini, M; Colombini, S; Mele, M; Malagutti, L; Rapetti, L; Galassi, G; Crovetto, G M

    2015-01-01

    The aim of this study was to evaluate the effects of diets with different starch concentrations and fish oil (FO) supplementation on lactation performance, in vivo total-tract nutrient digestibility, N balance, and methane (CH4) emissions in lactating dairy cows. The experiment was conducted as a 4×4 Latin square design with a 2×2 factorial arrangement: 2 concentrations of dietary starch [low vs. high: 23.7 and 27.7% on a dry matter (DM) basis; neutral detergent fiber/starch ratios: 1.47 and 1.12], the presence or absence of FO supplement (0.80% on a DM basis), and their interaction were evaluated. Four Italian Friesian cows were fed 1 of the following 4 diets in 4 consecutive 26-d periods: (1) low starch (LS), (2) low starch plus FO (LSO), (3) high starch (HS), and (4) high starch plus FO (HSO). The diets contained the same amount of forages (corn silage, alfalfa and meadow hays). The starch concentration was balanced using different proportions of corn meal and soybean hulls. The cows were housed in metabolic stalls inside open-circuit respiration chambers to allow measurement of CH4 emission and the collection of separate urine and feces. No differences among treatments were observed for DM intake. We observed a trend for FO to increase milk yield: 29.2 and 27.5kg/d, on average, for diets with and without FO, respectively. Milk fat was affected by the interaction between dietary starch and FO: milk fat decreased only in the HSO diet. Energy-corrected milk (ECM) was affected by the interaction between starch and FO, with a positive effect of FO on the LS diet. Fish oil supplementation decreased the n-6:n-3 ratio of milk polyunsaturated fatty acids. High-starch diets negatively influenced all digestibility parameters measured except starch, whereas FO improved neutral detergent fiber digestibility (41.9 vs. 46.1% for diets without and with FO, respectively, and ether extract digestibility (53.7 vs. 67.1% for diets without and with FO, respectively). We observed

  9. The effect of different physical forms of rapeseed as a fat supplement on the activity of some enzymes in the duodenal chyme of dairy cows

    DEFF Research Database (Denmark)

    Moharerry, A.; Brask, Maike; Weisbjerg, Martin Riis

    2014-01-01

    Studies on nutritional regulation of digestive enzymes in ruminants are scarce. Fat supplementation of diets for dairy cows changes the supply of nutrients for absorption and transport. The aim of this experiment was to study the effect of the physical form of rapeseed (Brassica napus) fat......) and three fat-supplemented rations with either rapeseed cake (RSC), whole cracked rape seed (WCR), or rapeseed oil (RSO). The correlation coefficients among duodenal enzyme activities and the relationship between α-amylase and protease activities were examined. Diurnal samples were taken from the duodenum...

  10. Weight Loss at a Cost: Implications of High-Protein, Low- Carbohydrate Diets.

    Science.gov (United States)

    Gabel, Kathe A.; Lund, Robin J.

    2002-01-01

    Addresses three claims of high-protein, low-carbohydrate diets: weight loss is attributed to the composition of the diet; insulin promotes the storage of fat, thereby, by limiting carbohydrates, dieters will decrease levels of insulin and body fat; and weight loss is the result of fat loss. The paper examines relevant scientific reports and notes…

  11. Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet

    OpenAIRE

    Garbow, Joel R.; Doherty, Jason M.; Schugar, Rebecca C.; Travers, Sarah; Weber, Mary L.; Wentz, Anna E.; Ezenwajiaku, Nkiruka; Cotter, David G.; Brunt, Elizabeth M.; Crawford, Peter A.

    2011-01-01

    Low-carbohydrate diets are used to manage obesity, seizure disorders, and malignancies of the central nervous system. These diets create a distinctive, but incompletely defined, cellular, molecular, and integrated metabolic state. Here, we determine the systemic and hepatic effects of long-term administration of a very low-carbohydrate, low-protein, and high-fat ketogenic diet, serially comparing these effects to a high-simple-carbohydrate, high-fat Western diet and a low-fat, polysaccharide-...

  12. A randomized controlled trial comparing a standard postoperative diet with low-volume high-calorie oral supplements following colorectal surgery.

    Science.gov (United States)

    Sharma, M; Wahed, S; O'Dair, G; Gemmell, L; Hainsworth, P; Horgan, A F

    2013-07-01

    Postoperative oral nutritional supplementation is becoming a part of most patient care pathways. This study examined the effects of low-volume high-calorie prescribed supplemental nutrition on patient outcome following elective colorectal surgery. Patients undergoing elective colorectal resections were randomized to a prescribed nutritional supplementation group (SG) [standard diet + 6 × 60 ml/day of Pro-Cal (60 ml = 200 kcal + 4 g protein)] or conventional postoperative diet group (CG) (standard diet alone). Preoperative and daily postoperative hand-grip strengths were measured using a grip dynamometer after randomization. Daily food intake, return of bowel activity, nausea score for the first 3 days and postoperative length of hospital stay (LOS) were prospectively recorded. Micro-diet standardized software was used to analyse food diaries. Nonparametric tests were used to analyse the data. Fifty-five patients were analysed (SG 28, CG 27). There was no difference in median preoperative and postoperative handgrip strengths at discharge within each group (SG 31.7 vs 31.7 kPa, P = 0.932; CG 28 vs 28.1 kPa, P = 0.374). The total median daily calorie intake was higher in SG than CG (SG 818.5 kcal vs CG 528 kcal; P = 0.002). There was no difference in median number of days to first bowel movement (SG 3 days vs CG 4 days, P = 0.096). The median LOS was significantly shorter in SG than CG (6.5 vs 9 days; P = 0.037). Prescribed postoperative high-calorie, low-volume oral supplements in addition to the normal dietary intake are associated with significantly better total daily oral calorie intake and may contribute to a reduced postoperative hospital stay. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  13. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    Science.gov (United States)

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2014-01-01

    A large inter-individual variability in the plasma triglyceride (TG) response to an omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs) within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208) participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA). Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187) and ACOX1 (rs17583163) genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation. PMID:24647074

  14. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    Directory of Open Access Journals (Sweden)

    Annie Bouchard-Mercier

    2014-03-01

    Full Text Available A large inter-individual variability in the plasma triglyceride (TG response to an omega-3 polyunsaturated fatty acid (n-3 PUFA supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208 participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA. Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187 and ACOX1 (rs17583163 genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation.

  15. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats

    NARCIS (Netherlands)

    Chaumontet, C.; Even, P.C.; Schwarz, Jessica; Simonin-Foucault, A.; Piedcoq, J.; Fromentin, G.; Tomé, D.; Azzout-Marniche, D.

    2015-01-01

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the

  16. The supplementation of low-P diets with microbial 6-phytase expressed in Aspergillus oryzae increases P and Ca digestibility in growing pigs.

    Science.gov (United States)

    Torrallardona, D; Salvadó, R; Broz, J

    2012-12-01

    A trial was conducted to evaluate the dose response of a novel microbial 6-phytase expressed in Aspergillus oryzae (Ronozyme HiPhos; DSM Nutritional Products, Basel, Switzerland) in pigs. Forty-eight individually housed pigs (Landrace × Pietrain; 52 kg BW; 24 males and 24 females) were distributed among 6 experimental treatments consisting of a low-P diet (3.5 g P/kg; 1.1 g digestible P/kg), which was supplemented with 500, 1000, 2000, or 4000 units of phytase activity/kg, and a standard-P diet (4.5 g P/kg; 1.8 g digestible P/kg) that was supplemented with CaHPO(4). After 17 d, fresh feces were sampled from all pigs and the apparent total tract digestibility of DM, OM, ash, P, and Ca was measured using TiO(2) as indigestible marker. Blood samples were also obtained from each pig and serum was analyzed for P and Ca concentrations. The nonsupplemented low-P diet increased Ca and reduced P blood serum concentrations (P Phytase supplementation of the low-P diet reduced Ca (from 10.8 to 9.9 mg/dL; linear, P Phytase improved the total tract digestibility of P (from 29.0 to 62.3%; linear and quadratic, P phytase tested improves the apparent total tract digestibility of P in growing pigs and reduces P excretion in feces in a dose-dependent manner.

  17. ANTI-INFLAMMATORY EFFECTS OF LOW PROTEIN DIET SUPPLEMENTED WITH KETO-AMINO ACID IN THE TREATMENT OF TYPE 2 DIABETIC NEPHROPATHY

    Directory of Open Access Journals (Sweden)

    Nan Chen

    2012-06-01

    Full Text Available Recent clinical research strongly approves that low-protein diet supplemented with keto-amino acid can effectively delay progression of type 2 diabetic nephropathy (DN. Anti-inflammation is one of these effects, but the mechanism is still controversial. This study is designed to further explore roles of ketogenic diets in regulation of inflammation status of type 2 DN. Twenty-one patients with type 2 DN (mean age at 65.14±7.34 years, were followed-up for 52 weeks in this study. All patients were in CKD stages 3–4 with glomerular filtration rates 26–55 ml/min/1.73 m2 and were all on a low-protein diet containing 0.8 g protein/kg BW per day and 30–35 Kcal /kg BW per day. The diet was randomly supplemented with keto-amino acids at a dosage of 100 mg/kg BW per day in 10 patients, who were assigned into Group II. Other 11 patients were assigned into Group I. At the end of this study, related clinical data showed there was a significant increase in the serum level of TNF-α which could mediate inflammation systemically in Group I (from 230.25±54.34 to 332.11 pg/ml, P 0.05. The level of CRP, which is produced in response to inflammation, rose greatly in Group I (from 7.5±1.07 to 20.4±3.72 ug/ml, P 0.05. Nutritional markers including serum albumin, hemoglobin and basal metabolic index showed no malnutrition happened during the follow-up period. In conclusion, low-protein diet supplemented with keto-amino acids contribute to ameliorate inflammation in the progression of type 2 diabetic nephropathy through regulating inflammatory factors production, including TNF-α, CRP and adiponectin.

  18. Effects of Unsaturated Fat Dietary Supplements on Blood Lipids, and on Markers of Malnutrition and Inflammation in Hemodialysis Patients

    DEFF Research Database (Denmark)

    Ewers, Bettina; Riserus, Ulf; Marckmann, Peter

    2009-01-01

    OBJECTIVE: We examined the effects of commercially available unsaturated fat dietary supplements on blood lipids, and on markers of malnutrition and inflammation, in an adult population of hemodialysis (HD) patients. DESIGN: This was a restricted, randomized (equal blocks), investigator-blinded 2x6...... as assessed according to C-reactive protein serum concentrations. Adding unsaturated fat to the diet seems to be a safe and effective way to prevent and treat malnutrition in hemodialysis patients....

  19. Bile components and lecithin supplemented to plant based diets do not diminish diet related intestinal inflammation in Atlantic salmon.

    Science.gov (United States)

    Kortner, Trond M; Penn, Michael H; Bjӧrkhem, Ingemar; Måsøval, Kjell; Krogdahl, Åshild

    2016-09-07

    The present study was undertaken to gain knowledge on the role of bile components and lecithin on development of aberrations in digestive functions which seemingly have increased in Atlantic salmon in parallel with the increased use of plant ingredients in fish feed. Post smolt Atlantic salmon were fed for 77 days one of three basal diets: a high fish meal diet (HFM), a low fishmeal diet (LFM), or a diet with high protein soybean meal (HPS). Five additional diets were made from the LFM diet by supplementing with: purified taurocholate (1.8 %), bovine bile salt (1.8 %), taurine (0.4 %), lecithin (1.5 %), or a mix of supplements (suppl mix) containing taurocholate (1.8 %), cholesterol (1.5 %) and lecithin (0.4 %). Two additional diets were made from the HPS diet by supplementing with: bovine bile salt (1.8 %) or the suppl mix. Body and intestinal weights were recorded, and blood, bile, intestinal tissues and digesta were sampled for evaluation of growth, nutrient metabolism and intestinal structure and function. In comparison with fish fed the HFM diet fish fed the LFM and HPS diets grew less and showed reduced plasma bile salt and cholesterol levels. Histological examination of the distal intestine showed signs of enteritis in both LFM and HPS diet groups, though more pronounced in the HPS diet group. The HPS diet reduced digesta dry matter and capacity of leucine amino peptidase in the distal intestine. None of the dietary supplements improved endpoints regarding fish performance, gut function or inflammation in the distal intestine. Some endpoints rather indicated negative effects. Dietary supplementation with bile components or lecithin in general did not improve endpoints regarding performance or gut health in Atlantic salmon, in clear contrast to what has been previously reported for rainbow trout. Follow-up studies are needed to clarify if lower levels of bile salts and cholesterol may give different and beneficial effects, or if other supplements

  20. Fatty acid composition of minced meat, longissimus muscle and omental fat from Small East African goats finished on different levels of concentrate supplementation.

    Science.gov (United States)

    Mushi, D E; Thomassen, M S; Kifaro, G C; Eik, L O

    2010-10-01

    Effects of supplementing Small East African (SEA) goats with concentrate diets on fatty acids composition of minced meat, M. longissimus dorsi (LD) and omental fat were assessed using 23 animals (14.5 months old and 20.1 kg body weight). Goats were subjected to four levels of concentrate supplementation: ad libitum concentrate allowance (T100), 66% (T66), 33% (T33) and 0% (T0) of ad libitum concentrate allowance. All goats were slaughtered after 90 days of experimental period. Minced meat from concentrate-supplemented goats had higher (Pmeat from T00 and T66 goats had similar proportions of polyunsaturated fatty acids (PUFA) and n-6 PUFA that were higher (Pgoats whereas margaric and arachidonic acids were in higher (Pgoats. Overall, LD was associated with PUFA, omental fat with saturated fatty acids (SFA), minced meat with MUFA. It is concluded that finishing SEA goats on concentrate diets will increase the proportion of DFA in meat from them. In addition, the proportion of PUFA in meat from such goats will peak at concentrate supplementation equivalent to 66% of their ad libitum intake. Consumers should avoid high intake of internal fat due to their richness in SFA. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  1. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nut rition and Allergies ) , 2013. Scientific Opinion on the substantiation of a health claim related to the c onsum ption of 2 g/day of plant stanols (as plant stanol ester s ) as part of a diet low in saturated fat and a two - fold greater, reduction in blood LDL - chol esterol concentrations compared to the consumption of a diet low in saturated fat alone pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following an application from McNeil Nutritionals and Raisio Nutrition Ltd, submitted for authorisation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of the United Kingdom, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked...... to deliver an opinion on the scientific substantiation of a health claim related to the consumption of 2 g/day of plant stanols (as plant stanol esters) as part of a diet low in saturated fat and a two-fold greater reduction in blood LDL-cholesterol concentrations compared to the consumption of a diet low...... an evaluation of the quantitative effects of diets low in saturated fat per se on blood LDL-cholesterol concentrations. Therefore, the effect of consuming 2 g/day plant stanols as part of a diet low in saturated fat relative to the effect of consuming a diet low in saturated fat alone cannot be determined...

  2. Ameliorative effect of vitamin E on hepatic oxidative stress and hypoimmunity induced by high-fat diet in turbot (Scophthalmus maximus).

    Science.gov (United States)

    Jia, Yudong; Jing, Qiqi; Niu, Huaxin; Huang, Bin

    2017-08-01

    This study was conducted to examine the effects of vitamin E on growth performance, oxidative stress and non-specific immunity of turbot (Scophthalmus maximus) fed with high-fat diet. Results showed that high-fat diet significantly increased hepatosomatic index, viscerosomatic index, hepatic malondialdehyde level and decreased catalase and superoxide dismutase activities, whereas final weight, specific growth rate and survival rate remained unchanged. Meanwhile, nitro blue tetrazolium positive leucocytes of head kidney, respiratory burst activity in head-kidney macrophage, phagocytic index and serum lysozyme activity were significantly reduced after feeding with high-fat diet. Furthermore, fish fed with high-fat diet promoted higher expression of heat shock protein (hsp70, hsp90), and inhibited expression of complement component 3 (c3) in the liver and tumor necrosis factor-α (tnf-α), interleukine 1β (il-1β), toll like receptor 22 (tlr-22) in the spleen and head-kidney, respectively. However, simultaneous supplementation with 480 mg kg -1 vitamin E protected turbot against high-fat diet-induced hepatic oxidative stress, hypoimmunity through attenuating lipid peroxidation, renewing antioxidant enzymes activities and nonspecific immune responses, and modulating the expression of stress protein (hsp70, hsp90) and immune-related genes (c3, tnf-α, il-1β, tlr-22). In conclusion, the obtained results indicate the vitamin E as a wildly used functional feed additive contributes potentially to alleviate high-fat diet-induced hepatic oxidative stress and hypoimmunity, maintain the health, and improve the broodstock management for turbot. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Low-protein diet supplemented with keto acids is associated with suppression of small-solute peritoneal transport rate in peritoneal dialysis patients.

    Science.gov (United States)

    Jiang, Na; Qian, Jiaqi; Lin, Aiwu; Fang, Wei; Zhang, Weiming; Cao, Liou; Wang, Qin; Ni, Zhaohui; Yao, Qiang

    2011-01-01

    Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD) patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6-0.8 g/kg/d), keto-acid-supplemented low- (sLP: 0.6-0.8 g/kg/d with 0.12 g/kg/d of keto acids), or high- (HP: 1.0-1.2 g/kg/d) protein diet and lasted for one year. In this study, the variations of peritoneal transport rate were assessed. Results. While baseline D/P(cr) (dialysate-to-plasma concentration ratio for creatinine at 4 hour) and D/D0(glu) (dialysate glucose at 4 hour to baseline dialysate glucose concentration ratio) were similar, D/P(cr) in group sLP was lower, and D/D0(glu) was higher than those in the other two groups (P diet with keto acids may benefit PD patients by maintaining peritoneum at a lower transport rate.

  4. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows

    Directory of Open Access Journals (Sweden)

    A. Moosavi

    2012-09-01

    Full Text Available Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (P<0.05 high NEL intakes when compared to control with no fat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; P<0.01 and FCM production (1.05-2.79; P<0.01. Milk fat yield and percentage of cows fed fat-supplemented diets were significantly (P<0.01 and P<0.05 respectively higher than control. Between fat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (P<0.01 higher than control. Body weight, body weight change and BCS (body condition score of cows, as well as energy balance and energy efficiency were similar between treatments. In conclusion, while there was no significant effect of fat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  5. The national cholesterol education program diet vs a diet lower in carbohydrates and higher in protein and monounsaturated fat: a randomized trial.

    Science.gov (United States)

    Aude, Y Wady; Agatston, Arthur S; Lopez-Jimenez, Francisco; Lieberman, Eric H; Marie Almon; Hansen, Melinda; Rojas, Gerardo; Lamas, Gervasio A; Hennekens, Charles H

    2004-10-25

    In the United States, obesity is a major clinical and public health problem causing diabetes, dyslipidemia, and hypertension, as well as increasing cardiovascular and total mortality. Dietary restrictions of calories and saturated fat are beneficial. However, it remains unclear whether replacement of saturated fat with carbohydrates (as in the US National Cholesterol Education Program [NCEP] diet) or protein and monounsaturated fat (as in our isocaloric modified low-carbohydrate [MLC] diet, which is lower in total carbohydrates but higher in protein, monounsaturated fat, and complex carbohydrates) is optimal. We randomized 60 participants (29 women and 31 men) to the NCEP or the MLC diet and evaluated them every 2 weeks for 12 weeks. They were aged 28 to 71 years (mean age, 44 years in the NCEP and 46 years in the MLC group). A total of 36% of participants from the NCEP group and 35% from the MLC group had a body mass index (calculated as weight in kilograms divided by the square of height in meters) greater than 27. The primary end point was weight loss, and secondary end points were blood lipid levels and waist-to-hip ratio. Weight loss was significantly greater in the MLC (13.6 lb) than in the NCEP group (7.5 lb), a difference of 6.1 lb (P = .02). There were no significant differences between the groups for total, low density, and high-density lipoprotein cholesterol, triglycerides, or the proportion of small, dense low-density lipoprotein particles. There were significantly favorable changes in all lipid levels within the MLC but not within the NCEP group. Waist-to-hip ratio was not significantly reduced between the groups (P = .27), but it significantly decreased within the MLC group (P = .009). Compared with the NCEP diet, the MLC diet, which is lower in total carbohydrates but higher in complex carbohydrates, protein, and monounsaturated fat, caused significantly greater weight loss over 12 weeks. There were no significant differences between the groups in

  6. Comparison of the effects on insulin resistance and glucose tolerance of 6-mo high-monounsaturated-fat, low-fat, and control diets

    DEFF Research Database (Denmark)

    Due, Anette; Larsen, Thomas M; Hermansen, Kjeld

    2008-01-01

    loss. DESIGN: Forty-six nondiabetic, obese [mean (+/-SEM) body mass index (in kg/m(2)): 31.2 +/- 0.3] men (n = 20) and premenopausal women (n = 26) aged 28.0 +/- 0.7 y were randomly assigned to 1 of 3 diets after > or = 8% weight loss: 1) MUFA diet (n = 16): moderate in fat (35-45% of energy) and high...

  7. Effect of fat supplementation on leptin, insulin-like growth factor I, growth hormone, and insulin in cattle

    OpenAIRE

    Becú-Villalobos, Damasia; García-Tornadú, Isabel; Shroeder, Guillermo; Salado, Eloy E.; Gagliostro, Gerardo; Delavaud, Carole; Chilliard, Yves; Lacau-Mengido, Isabel M.

    2007-01-01

    We investigated the effect of fat supplementation on plasma levels of hormones related to metabolism, with special attention to leptin, in cows in early lactation and in feedlot steers. In experiment 1, 34 lactating cows received no fat or else 0.5 or 1.0 kg of partially hydrogenated oil per day in addition to their basal diet from day 20 before the expected calving date to day 70 postpartum. In experiment 2, part of the corn in the basal concentrate was replaced with 0.7 kg of the same oil s...

  8. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats

    Directory of Open Access Journals (Sweden)

    Haimeur Adil

    2012-10-01

    Full Text Available Abstract Background Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Methods Male Wistar rats were divided into 4 groups and were fed with a standard diet (control; with the standard diet supplemented with 3% freeze-dried O. aurita (COA; with a high-fat diet (HF; or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. Results After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. Conclusions O. aurita is a marine diatom rich in EPA as well as in other

  9. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Haimeur, Adil; Ulmann, Lionel; Mimouni, Virginie; Guéno, Frédérique; Pineau-Vincent, Fabienne; Meskini, Nadia; Tremblin, Gérard

    2012-10-31

    Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Male Wistar rats were divided into 4 groups and were fed with a standard diet (control); with the standard diet supplemented with 3% freeze-dried O. aurita (COA); with a high-fat diet (HF); or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA) for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets) were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. O. aurita is a marine diatom rich in EPA as well as in other bioactive molecules, such as pigments. The synergistic effect

  10. Effects of protein supplementation on fat-free mass in response to different weight loss programs in obese women

    Directory of Open Access Journals (Sweden)

    Andiara Schwingel

    2006-09-01

    Full Text Available The aim of this study was to investigate whether protein supplementation helps prevent the loss of fat-free mass during weight loss. The sample was composed of seventy-eight obese adult Japanese women, assigned into four different programs: diet-alone (D, n=24, diet-alone with protein supplementation (DP, n=16, diet-plusexercise (DE, n=17, and diet-plus-exercise with protein supplementation (DEP, n=21. All participants restricted their energy intakes to 1200 kcal/day, and participants in DE and DEP had the exercise session including aerobic exercise of approximately 90 min/day, 3 day/week. Participants enrolled in protein supplementation groups received an additional 14 g/day of protein. Measures on body composition were conducted before and after the program by DXA. All programs yielded significant weight (6.9 to 9.5 kg and fat (4.1 to 7.6% reduction. Total fat-free mass significantly decreased in D, DP and DE groups, whereas for DEP group the decrease was not significant. Regionalfat-free mass lowered for D and DP groups in leg, arms and trunk. For those in DE group, fat-free mass in trunk was not significantly decreased, and for those in DEP group, fat-free mass in leg and trunk did not differ significantly after the program. However, no significant differences of changes in fat-free mass were observed in comparisons among all groups. Our results confirmed the efficiency of weight loss intervention on fat-mass reduction through diet and exercise. However, fat-free mass does not appear to be preserved by protein supplementation, suggesting that its influence on a short-term weight reduction program is not apparent. RESUMO O objetivo deste estudo foi investigar a influência da suplementação protéica na preservação da massa magra durante programas de emagrecimento. Setenta e oito mulheres adultas japonesas e obesas foram submetidas a quatro programas diferentes: dieta (D, n=24, dieta com suplementação proteica (DP, n=16, dieta com exerc

  11. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis.

    Science.gov (United States)

    Sarma, Siddhartha Mahadeva; Singh, Dhirendra Pratap; Singh, Paramdeep; Khare, Pragyanshu; Mangal, Priyanka; Singh, Shashank; Bijalwan, Vandana; Kaur, Jaspreet; Mantri, Shrikant; Boparai, Ravneet Kaur; Mazumder, Koushik; Bishnoi, Mahendra; Bhutani, Kamlesh Kumar; Kondepudi, Kanthi Kiran

    2018-01-01

    Arabinoxylan (AX), a non-starch polysaccharide extracted from cereals such as wheat, rice and millets, is known to impart various health promoting effects. Our earlier study suggested that finger millet (FM) could ameliorate high fat diet (HFD)-induced metabolic derangements. The present study is aimed to evaluate the effect of FM-AX supplementation, a key bioactive from finger millet, on HFD-induced metabolic and gut bacterial derangements. Male Swiss albino mice were fed with normal chow diet (NPD) or HFD (60%kcal from fat) for 10 weeks. FM-AX was orally supplemented at doses of 0.5 and 1.0g/kg bodyweight on every alternate day for 10 weeks. Glucose tolerance, serum hormones, hepatic lipid accumulation and inflammation, white adipose tissue marker gene expression, adipocyte size and inflammation; metagenomic alterations in cecal bacteria; cecal short chain fatty acids and colonic tight junction gene expressions were studied. FM-AX supplementation prevented HFD-induced weight gain, alerted glucose tolerance and serum lipid profile, hepatic lipid accumulation and inflammation. Hepatic and white adipose tissue gene expressions were beneficially modulated. Further, AX supplementation prevented metagenomic alterations in cecum; improved ileal and colonic health and overall prevented metabolic endotoxemia. Present work suggests that AX from finger millet can be developed as a nutraceutical for the management of HFD- induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of supplementation diets of slipery fish level fat on performance, milk yield and milk composition of F1 (Landrace X Yorkshire) sows

    NARCIS (Netherlands)

    Pham, K.T.; Nghia, D.H.; Duc, N.L.; Huynh Thi Thanh Thuy,; Verstegen, M.W.A.

    2014-01-01

    Twenty five F1 (Landrace x Yorkshire) sows parity of 2- 4 were used to determine the effect of catfish fat to late-pregnant and lactating sows on sow and their piglets’ performance. Sows were fed trial diets from 107 d of gestation until 21 d of lactation. Diets were: control without fish fat; 2%

  13. Energy utilisation of broiler chickens in response to guanidinoacetic acid supplementation in diets with various energy contents.

    Science.gov (United States)

    Ale Saheb Fosoul, Sayed Sadra; Azarfar, Arash; Gheisari, Abbasali; Khosravinia, Heshmatollah

    2018-07-01

    This experiment was conducted to investigate the effects of guanidinoacetic acid (GAA) on productive performance, intestinal morphometric features, blood parameters and energy utilisation in broiler chickens. A total of 390 male broiler chicks (Ross 308) were assigned to six dietary treatments based on a factorial arrangement (2×3) across 1-15 and 15-35-d periods. Experimental treatments consisted of two basal diets with standard (STD; starter: 12·56 MJ/kg and grower: 12·97 MJ/kg) and reduction (LME; starter: 11·93 MJ/kg and grower: 12·33 MJ/kg) of apparent metabolisable energy (AME) requirement of broiler chickens each supplemented with 0, 0·6 and 1·2 g/kg GAA. Supplemental 1·2 g/kg GAA decreased the negative effects of feed energy reduction on weight gain across starter, growing and the entire production phases (PEnergy retention as fat and total energy retention were increased when birds received LME diets supplemented with 1·2 g/kg GAA (Penergy for production (NEp) and total heat production increased in birds fed LME diets containing 1·2 g/kg GAA (P<0·05). A significant correlation was observed between dietary NEp and weight gain of broilers (r 0·493; P=0·0055), whereas this relationship was not seen with AME. Jejunal villus height and crypt depth were lower in birds fed LME diets (P<0·05). Serum concentration of creatinine increased in broilers fed LME diets either supplemented with 1·2 g/kg GAA or without GAA supplementation (P<0·05). Supplemental GAA improved performance of chickens fed LME diet possibly through enhanced dietary NEp. The NEp could be preferred over the AME to assess response of broiler chickens to dietary GAA supplementation.

  14. The impact of a low glycaemic index (GI diet on simultaneous measurements of blood glucose and fat oxidation: A whole body calorimetric study

    Directory of Open Access Journals (Sweden)

    Bhupinder Kaur

    2016-06-01

    Conclusions: Consumption of LGI meals was capable of attenuating 24-hour blood glucose profiles and decreasing postprandial glucose excursions in healthy Asian males. Additionally, LGI mixed meals were able to promote fat oxidation over carbohydrate oxidation when compared to HGI mixed meals. The consumption of low GI meals may be a strategic approach in improving overall glycaemia and increasing fat oxidation in Asians consuming a high carbohydrate diet.

  15. Increased expression of PPARγ in high fat diet-induced liver steatosis in mice

    International Nuclear Information System (INIS)

    Inoue, Mitsutaka; Ohtake, Takaaki; Motomura, Wataru; Takahashi, Nobuhiko; Hosoki, Yayoi; Miyoshi, Shigeki; Suzuki, Yasuaki; Saito, Hiroyuki; Kohgo, Yutaka; Okumura, Toshikatsu

    2005-01-01

    The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor γ (PPARγ) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARγ and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARγ protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARγ, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARγ signaling pathway may be involved in the high fat diet-induced liver steatosis

  16. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats.

    Science.gov (United States)

    Mitra, Anaya; Alvers, Kristin M; Crump, Erica M; Rowland, Neil E

    2009-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet condition. Female offspring were weaned on either control or "junk food" diets until about 6 mo of age. Rats fed the high-fat junk food diet were hyperphagic relative to their chow-fed controls. The junk food-fed rats were significantly heavier and had greater fat pad mass than those rats maintained on chow alone. Importantly, those rats suckled by high-fat dams had heavier fat pads than those suckled by control diet dams. Fasting serum leptin and insulin levels differed as a function of the gestational, lactational, and postweaning diet histories. Rats gestated in, or suckled by high-fat dams, or maintained on the junk food diet were hyperleptinemic compared with their respective controls. Indirect blood pressure did not differ as a function of postweaning diet, but rats gestated in the high-fat dams had lower mean arterial blood pressures than those gestated in the control diet dams. The postweaning dietary history affected food-motivated behavior; junk food-fed rats earned less food pellets on fixed (FR) and progressive (PR) ratio cost schedules than chow-fed controls. In conclusion, the effects of maternal high-fat diet during gestation or lactation were mostly small and transient. The postweaning effects of junk food diet were evident on the majority of the parameters measured, including body weight, fat pad mass, serum leptin and insulin levels, and operant performance.

  17. Freqüência de consumo de dietas ricas em gordura e pobres em fibra entre adolescentes Frequency of high-fat and low-fiber diets among adolescents

    Directory of Open Access Journals (Sweden)

    Marilda Borges Neutzling

    2007-06-01

    Full Text Available OBJETIVO: Descrever a freqüência e os fatores associados ao consumo de dietas ricas em gordura e pobres em fibra em adolescentes. MÉTODOS: Estudo de delineamento transversal com adolescentes de 10 a 12 anos, realizado em 2004/2005, em Pelotas, RS. A freqüência alimentar no ano anterior à pesquisa foi avaliada pelo questionário de Block, composto por 24 itens alimentares, pontuados de acordo com a freqüência de consumo de alimentos ricos em fibras e gorduras. Na análise bruta, as prevalências de dietas ricas em gordura e pobres em fibra foram comparadas conforme sub-grupos das variáveis independentes (sexo, cor da pele, nível socioeconômico, escolaridade materna e estado nutricional do adolescente. Para controle de fatores de confusão, uma análise multivariável por regressão de Poisson foi realizada para cada desfecho. RESULTADOS: Foram encontrados 4.452 adolescentes, representando 87,5% da coorte original. A maioria dos jovens (83,9% consumia dieta pobre em fibra, e mais de um terço deles (36,6% consumia dieta rica em gordura. O nível socioeconômico e a escolaridade materna mostraram-se diretamente associados com a prevalência de consumo de dietas ricas em gordura. Jovens dos níveis socioeconômicos A+B e C apresentaram menor freqüência de consumo de dietas pobres em fibra. CONCLUSÕES: A prevalência de dietas ricas em gordura e pobres em fibra foi elevada nessa população de adolescentes. Políticas públicas dirigidas aos determinantes dos hábitos alimentares são necessárias e urgentes.OBJECTIVE: To describe the frequency and associated factors of high-fat and low-fiber diets among adolescents. METHODS: A cross-sectional study was carried out in adolescents aged 10-12 years in Pelotas, southern Brazil, in 2004 and 2005. Dietary patterns in the previous 12 months were evaluated using the Block questionnaire comprising 24 food items scored according to the frequency of consumption of high-fat and low-fiber food. In

  18. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  19. A Low Glycaemic Index Diet Incorporating Isomaltulose Is Associated with Lower Glycaemic Response and Variability, and Promotes Fat Oxidation in Asians

    Directory of Open Access Journals (Sweden)

    Christiani Jeyakumar Henry

    2017-05-01

    Full Text Available Low glycaemic index (GI foods minimize large blood glucose fluctuations and have been advocated to enhance fat oxidation and may contribute to weight management. We determined whether the inclusion of isomaltulose compared to sucrose in a low/high GI meal sequence can modulate the glycaemic response and substrate oxidation in an Asian population. Twenty Chinese men (body mass index (BMI: 17–28 kg/m2 followed a 24 h low GI (isomaltulose, PalatinoseTM or high GI (sucrose diet in a randomized double-blind, controlled cross-over design. Treatment meals included dinner (day 1, breakfast, lunch, and snack (day 2. Continuous glucose monitoring provided incremental area under the curve (iAUC and mean amplitude of glycaemic excursion (MAGE and 10 h indirect calorimetry (whole body calorimeter (day 2 provided energy expenditure and substrate oxidation. Our results demonstrated that the low GI diet resulted in lower 24 h glucose iAUC (502.5 ± 231.4 vs. 872.6 ± 493.1 mmol/L; p = 0.002 and lower 24 h glycaemic variability (MAGE: 1.67 ± 0.53 vs. 2.68 ± 1.13 mmol/L; p < 0.001. Simultaneously, 10 h respiratory quotient increased more during high GI (p = 0.014 and fat oxidation was higher after low GI breakfast (p = 0.026, lunch (p < 0.001 and snack (p = 0.013. This indicates that lower GI mixed meals incorporating isomaltulose are able to acutely reduce the glycaemic response and variability and promote fat oxidation.

  20. DASH Diet: Reducing Hypertension through Diet and Lifestyle

    Science.gov (United States)

    ... include soy beans, collard greens and calcium-fortified beverages such as almond milk. Limit Saturated Fat A DASH diet is low in saturated fats, sodium and total fat. Studies have shown that a diet low in saturated ...

  1. Evaluation of total dietary fiber concentration and composition of commercial diets used for management of diabetes mellitus, obesity, and dietary fat-responsive disease in dogs.

    Science.gov (United States)

    Farcas, Amy K; Larsen, Jennifer A; Owens, Tammy J; Nelson, Richard W; Kass, Philip H; Fascetti, Andrea J

    2015-09-01

    To determine total dietary fiber (TDF) concentration and composition of commercial diets used for management of obesity, diabetes mellitus, and dietary fat-responsive disease in dogs. Cross-sectional study. Dry (n = 11) and canned (8) canine therapeutic diets. Insoluble and soluble dietary fiber (IDF and SDF), high-molecular-weight SDF (HMWSDF), and low-molecular-weight SDF (LMWSDF) concentrations were determined. Variables were compared among diets categorized by product guide indication, formulation (dry vs canned), and regulatory criteria for light and low-fat diets. SDF (HMWSDF and LMWSDF) comprised a median of 30.4% (range, 9.4% to 53.7%) of TDF; LMWSDF contributed a median of 11.5% (range, 2.7% to 33.8%) of TDF. Diets for diabetes management had higher concentrations of IDF and TDF with lower proportions of SDF and LMWSDF contributing to TDF, compared with diets for treatment of fat-responsive disease. Fiber concentrations varied within diet categories and between canned and dry versions of the same diet (same name and manufacturer) for all pairs evaluated. Diets classified as light contained higher TDF and IDF concentrations than did non-light diets. All canned diets were classified as low fat, despite providing up to 38% of calories as fat. Diets provided a range of TDF concentrations and compositions; veterinarians should request TDF data from manufacturers, if not otherwise available. Consistent responses to dry and canned versions of the same diet cannot necessarily be expected, and diets with the same indications may not perform similarly. Many diets may not provide adequate fat restriction for treatment of dietary fat-responsive disease.

  2. A randomized controlled trial on the efficacy of carbohydrate-reduced or fat-reduced diets in patients attending a telemedically guided weight loss program.

    Science.gov (United States)

    Frisch, Sabine; Zittermann, Armin; Berthold, Heiner K; Götting, Christian; Kuhn, Joachim; Kleesiek, Knut; Stehle, Peter; Körtke, Heinrich

    2009-07-18

    We investigated whether macronutrient composition of energy-restricted diets influences the efficacy of a telemedically guided weight loss program. Two hundred overweight subjects were randomly assigned to a conventional low-fat diet and a low-carbohydrate diet group (target carbohydrate content: >55% energy and Bluetooth technology by mobile phone. Various fatness and fat distribution parameters, energy and macronutrient intake, and various biochemical risk markers were measured at baseline and after 6, and 12 months. In both groups, energy intake decreased by 400 kcal/d compared to baseline values within the first 6 months and slightly increased again within the second 6 months. Macronutrient composition differed significantly between the groups from the beginning to month 12. At study termination, weight loss was 5.8 kg (SD: 6.1 kg) in the low-carbohydrate group and 4.3 kg (SD: 5.1 kg) in the low-fat group (p = 0.065). In the low-carbohydrate group, triglyceride and HDL-cholesterol levels were lower at month 6 and waist circumference and systolic blood pressure were lower at month 12 compared with the low-fat group (P = 0.005-0.037). Other risk markers improved to a similar extent in both groups. Despite favourable effects of both diets on weight loss, the carbohydrate-reduced diet was more beneficial with respect to cardiovascular risk factors compared to the fat-reduced diet. Nevertheless, compliance with a weight loss program appears to be even a more important factor for success in prevention and treatment of obesity than the composition of the diet. Clinicaltrials.gov as NCT00868387.

  3. Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss.

    Science.gov (United States)

    Hoenig, M; Thomaseth, K; Waldron, M; Ferguson, D C

    2007-01-01

    Obesity is a major health problem in cats and a risk factor for diabetes. It has been postulated that cats are always gluconeogenic and that the rise in obesity might be related to high dietary carbohydrates. We examined the effect of a high-carbohydrate/low-protein (HC) and a high-protein/low-carbohydrate (HP) diet on glucose and fat metabolism during euglycemic hyperinsulinemic clamp, adipocytokines, and fat distribution in 12 lean and 16 obese cats before and after weight loss. Feeding diet HP led to greater heat production in lean but not in obese cats. Regardless of diet, obese cats had markedly decreased glucose effectiveness and insulin resistance, but greater suppression of nonesterified fatty acids during the euglycemic hyperinsulinemic clamp was seen in obese cats on diet HC compared with lean cats on either diet or obese cats on diet HP. In contrast to humans, obese cats had abdominal fat equally distributed subcutaneously and intra-abdominally. Weight loss normalized insulin sensitivity; however, increased nonesterified fatty acid suppression was maintained and fat loss was less in cats on diet HC. Adiponectin was negatively and leptin positively correlated with fat mass. Lean cats and cats during weight loss, but not obese cats, adapted to the varying dietary carbohydrate/protein content with changes in substrate oxidation. We conclude that diet HP is beneficial through maintenance of normal insulin sensitivity of fat metabolism in obese cats, facilitating the loss of fat during weight loss, and increasing heat production in lean cats. These data also show that insulin sensitivity of glucose and fat metabolism can be differentially regulated in cats.

  4. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague–Dawley rats

    Science.gov (United States)

    Heden, Timothy D.; Morris, E. Matthew; Kearney, Monica L.; Liu, Tzu-Wen; Park, Young-min; Kanaley, Jill A.; Thyfault, John P.

    2015-01-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague–Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ~27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ~39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h−1) than in LF- (7.60 ± 0.57 mmol·h−1) fed animals. Hepatic TAG content was ~2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g−1 tissue) than in LF- (0.50 ± 0.16 nmol·g−1 tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression. PMID:24669989

  5. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague-Dawley rats.

    Science.gov (United States)

    Heden, Timothy D; Morris, E Matthew; Kearney, Monica L; Liu, Tzu-Wen; Park, Young-Min; Kanaley, Jill A; Thyfault, John P

    2014-04-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague-Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ∼27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ∼39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h(-1)) than in LF- (7.60 ± 0.57 mmol·h(-1)) fed animals. Hepatic TAG content was ∼2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g(-1) tissue) than in LF- (0.50 ± 0.16 nmol·g(-1) tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression.

  6. Moderate High Fat Diet Increases Sucrose Self-Administration In Young Rats

    OpenAIRE

    Figlewicz, Dianne P.; Jay, Jennifer L.; Acheson, Molly A.; Magrisso, Irwin J.; West, Constance H.; Zavosh, Aryana; Benoit, Stephen C.; Davis, Jon F.

    2012-01-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However...

  7. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    Science.gov (United States)

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  8. Silicon Alleviates Nonalcoholic Steatohepatitis by Reducing Apoptosis in Aged Wistar Rats Fed a High-Saturated Fat, High-Cholesterol Diet.

    Science.gov (United States)

    Garcimartín, Alba; López-Oliva, M Elvira; Sántos-López, Jorge A; García-Fernández, Rosa A; Macho-González, Adrián; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J

    2017-06-01

    Background: Lipoapoptosis has been identified as a key event in the progression of nonalcoholic fatty liver disease (NAFLD), and hence, antiapoptotic agents have been recommended as a possible effective treatment for nonalcoholic steatohepatitis (NASH). Silicon, included in meat as a functional ingredient, improves lipoprotein profiles and liver antioxidant defenses in aged rats fed a high-saturated fat, high-cholesterol diet (HSHCD). However, to our knowledge, the antiapoptotic effect of this potential functional meat on the liver has never been tested. Objective: This study was designed to evaluate the effect of silicon on NASH development and the potential antiapoptotic properties of silicon in aged rats. Methods: One-year-old male Wistar rats weighing ∼500 g were fed 3 experimental diets containing restructured pork (RP) for 8 wk: 1 ) a high-saturated fat diet, as an NAFLD control, with 16.9% total fat, 0.14 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg (control); 2 ) the HSHCD as a model of NASH, with 16.6% total fat, 16.3 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg [high-cholesterol diet (Chol-C)]; and 3 ) the HSHCD with silicon-supplemented RP with amounts of fat and cholesterol identical to those in the Chol-C diet, but with 750 mg SiO 2 /kg (Chol-Si). Detailed histopathological assessments were performed, and the NAFLD activity score (NAS) was calculated. Liver apoptosis and damage markers were evaluated by Western blotting and immunohistochemical staining. Results: Chol-C rats had a higher mean NAS (7.4) than did control rats (1.9; P silicon substantially affects NASH development in aged male Wistar rats fed an HSHCD by partially blocking apoptosis. These results suggest that silicon-enriched RP could be used as an effective nutritional strategy in preventing NASH. © 2017 American Society for Nutrition.

  9. Sida rhomboidea.Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Low-Protein Diet Supplemented with Keto Acids Is Associated with Suppression of Small-Solute Peritoneal Transport Rate in Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Na Jiang

    2011-01-01

    Full Text Available Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6–0.8 g/kg/d, keto-acid-supplemented low- (sLP: 0.6–0.8 g/kg/d with 0.12 g/kg/d of keto acids, or high- (HP: 1.0–1.2 g/kg/d protein diet and lasted for one year. In this study, the variations of peritoneal transport rate were assessed. Results. While baseline D/Pcr (dialysate-to-plasma concentration ratio for creatinine at 4 hour and D/D0glu (dialysate glucose at 4 hour to baseline dialysate glucose concentration ratio were similar, D/Pcr in group sLP was lower, and D/D0glu was higher than those in the other two groups (P<0.05 at 12th month. D/D0glu increased (P<0.05, and D/Pcr tended to decrease, (P=0.071 in group sLP. Conclusions. Low-protein diet with keto acids may benefit PD patients by maintaining peritoneum at a lower transport rate.

  11. Maternal omega-3 supplementation increases fat mass in male and female rat offspring

    Directory of Open Access Journals (Sweden)

    Beverly Sara Muhlhausler

    2011-07-01

    Full Text Available Adipogenesis and lipogenesis are highly sensitive to the nutritional environment in utero and in early postnatal life. Omega-3 long chain polyunsaturated fatty acids (LCPUFA inhibit adipogenesis and lipogenesis in adult rats, however it is not known whether supplementing the maternal diet with omega-3 LCPUFA results in reduced fat deposition in the offspring. Female Albino Wistar rats were fed either a standard chow (Control, n=10 or chow designed to provide ~15mg/kg/day of omega-3 LCPUFA, chiefly as docosahexaenoic acid (DHA, throughout pregnancy and lactation (Omega-3, n=11 and all pups were weaned onto a commercial rat chow. Blood and tissues were collected from pups at 3wks and 6wks of age and weights of visceral and subcutaneous fat depots recorded. The expression of adipogenic and lipogenic genes in the subcutaneous and visceral fat depots were determined using qRT-PCR. Birth weight and postnatal growth were not different between groups. At 6 weeks of age, total percentage body fat was significantly increased in both male (5.09 ± 0.32% vs 4.56 ± 0.2%, P<0.04 and female (5.15 ± 0.37% vs 3.89 ± 0.36%, P<0.04 offspring of omega-3 dams compared to controls. The omega-3 LCPUFA content of erythrocyte phospholipids (as a % of total fatty acids was higher in omega-3 offspring (6.7 ± 0.2 % vs 5.6 ± 0.2%, P<0.001. There was no effect of maternal omega-3 LCPUFA supplementation on the expression of adipogenic or lipogenic genes in the offspring in either the visceral or subcutaneous fat depots. We have therefore established that an omega-3 rich environment during pregnancy and lactation in a rodent model increases fat accumulation in both male and female offspring, particularly in subcutaneous depots, but that this effect is not mediated via upregulation adipogenic/lipogenic gene transcription. These data suggest that maternal n-3 LCPUFA supplementation during pregnancy/lactation may not be an effective strategy for reducing fat deposition in

  12. [Evaluation of influence of diet content and its supplementation with chosen group of B vitamins on lipids and lipoprtoteins concentration in female rat serum].

    Science.gov (United States)

    Friedrich, Mariola; Goluch-Koniuszy, Zuzanna

    2009-01-01

    The influence of diet content and its supplementation with chosen group of B vitamins on the intake of feeding stuff increase, changes of body mass, accumulation of fat tissue, lipids and lipoproteins concentration in the blood of female rats were under research. The animals, aged 5 months, were divided into three groups (8 persons each) and fed ad libitum with granulated Labofeed B type mix. Group I with the basic mix containing among other things whole grain, Group II with a modified mix, where whole grain was replaced by wheat flour and saccharose and Group III with modified mix supplemented in excess with chosen vitamins of B group. This experiment took 6 weeks during which the amount of consumed feed was currently evaluated, and the body mass was controlled weekly. After finishing the experiment in the obtained serum the concentration of triacylglycerols, complete cholesterol with enzyme method and the content of cholesterol fractions with electrophoretic separation method were determined. Analysis of fat content in muscles and livers was conducted and the amount of round the bodily organ fat was determined. It was ascertained that change of the content of the feed and its supplementation with the chosen B group vitamins did not influence in a substantial way its intake and the increase of body mass, however it had influenced substantially, in animals fed with the modified feed the accumulation of round the organ fat and in supplemented the intramuscular fat. Analysis of the results enabled the ascertainment that the diet supplementation with chosen ingredients of the B group vitamins corrects the negative effect of accumulation of the visceral fat tissue as a result of the change of its contents, caused substantial increase in the concentration of triacylglycerols, complete cholesterol and its fractions VLDL- and LDL- with simultaneous decrease of the concentration of cholesterol HDL- fractions.

  13. Serum sterol responses to increasing plant sterol intake from natural foods in the Mediterranean diet.

    Science.gov (United States)

    Escurriol, Verónica; Cofán, Montserrat; Serra, Mercè; Bulló, Mónica; Basora, Josep; Salas-Salvadó, Jordi; Corella, Dolores; Zazpe, Itziar; Martínez-González, Miguel A; Ruiz-Gutiérrez, Valentina; Estruch, Ramón; Ros, Emilio

    2009-09-01

    Phytosterols in natural foods are thought to inhibit cholesterol absorption. The Mediterranean diet is rich in phytosterol-containing plant foods. To assess whether increasing phytosterol intake from natural foods was associated with a cholesterol-lowering effect in a substudy of a randomized trial of nutritional intervention with Mediterranean diets for primary cardiovascular prevention (PREDIMED study). One hundred and six high cardiovascular risk subjects assigned to two Mediterranean diets supplemented with virgin olive oil (VOO) or nuts, which are phytosterol-rich foods, or advice on a low-fat diet. Outcomes were 1-year changes in nutrient intake and serum levels of lipids and non-cholesterol sterols. Average phytosterol intake increased by 76, 158 and 15 mg/day in participants assigned VOO, nuts and low-fat diets, respectively. Compared to participants in the low-fat diet group, changes in outcome variables were observed only in those in the Mediterranean diet with nuts group, with increases in intake of fibre, polyunsaturated fatty acids and phytosterols (P natural foods appear to be bioactive in cholesterol lowering.

  14. A High-Carbohydrate, High-Fiber, Low-Fat Diet Results in Weight Loss among Adults at High Risk of Type 2 Diabetes.

    Science.gov (United States)

    Sylvetsky, Allison C; Edelstein, Sharon L; Walford, Geoffrey; Boyko, Edward J; Horton, Edward S; Ibebuogu, Uzoma N; Knowler, William C; Montez, Maria G; Temprosa, Marinella; Hoskin, Mary; Rother, Kristina I; Delahanty, Linda M

    2017-11-01

    Background: Weight loss is a key factor in reducing diabetes risk. The Diabetes Prevention Program (DPP) is a completed clinical trial that randomly assigned individuals at high risk of diabetes to a placebo (PLBO), metformin (MET), or intensive lifestyle intervention (ILS) group, which included physical activity (PA) and reduced dietary fat intake. Objective: We aimed to evaluate the associations between diet and weight at baseline and to identify specific dietary factors that predicted weight loss among DPP participants. Methods: Diet was assessed by a food frequency questionnaire. The associations between intakes of macronutrients and various food groups and body weight among DPP participants at baseline were assessed by linear regression, adjusted for race/ethnicity, age, sex, calorie intake, and PA. Models that predicted weight loss at year 1 were adjusted for baseline weight, change in calorie intake, and change in PA and stratified by treatment allocation (MET, ILS, and PLBO). All results are presented as estimates ± SEs. Results: A total of 3234 participants were enrolled in the DPP; 2924 had completed dietary data (67.5% women; mean age: 50.6 ± 10.7 y). Adjusted for calorie intake, baseline weight was negatively associated with carbohydrate intake (-1.14 ± 0.18 kg body weight/100 kcal carbohydrate, P fat (1.25 ± 0.21 kg/100 kcal, P fat (1.96 ± 0.46 kg/100 kcal, P loss after 1 y was associated with increases in carbohydrate intake, specifically dietary fiber, and decreases in total fat and saturated fat intake. Conclusions: Higher carbohydrate consumption among DPP participants, specifically high-fiber carbohydrates, and lower total and saturated fat intake best predicted weight loss when adjusted for changes in calorie intake. Our results support the benefits of a high-carbohydrate, high-fiber, low-fat diet in the context of overall calorie reduction leading to weight loss, which may prevent diabetes in high-risk individuals. This trial was registered

  15. A maternal high-protein diet predisposes female offspring to increased fat mass in adulthood whereas a prebiotic fibre diet decreases fat mass in rats.

    Science.gov (United States)

    Hallam, Megan C; Reimer, Raylene A

    2013-11-14

    The negative effects of malnourishment in utero have been widely explored; the effects of increased maternal macronutrient intake are not known in relation to high fibre, and have been inconclusive with regard to high protein. In the present study, virgin Wistar dams were fed either a control (C), high-protein (40 %, w/w; HP) or high-prebiotic fibre (21·6 %, w/w; HF) diet throughout pregnancy and lactation. Pups consumed the C diet from 3 to 14·5 weeks of age, and then switched to a high-fat/sucrose diet for 8 weeks. A dual-energy X-ray absorptiometry scan and an oral glucose tolerance test were performed and plasma satiety hormones measured. The final body weight and the percentage of body fat were significantly affected by the interaction between maternal diet and offspring sex: weight and fat mass were higher in the female offspring of the HP v. HF dams. No differences in body weight or fat mass were seen in the male offspring. There was a significant sex effect for fasting and total AUC for ghrelin and fasting GIP, with females having higher levels than males. Liver TAG content and plasma NEFA were lower in the offspring of high-prebiotic fibre dams (HF1) than in those of high-protein dams (HP1) and control dams (C1). Intestinal expression of GLUT2 was decreased in HF1 and HP1 v. C1. The maternal HP and HF diets had lasting effects on body fat and hepatic TAG accumulation in the offspring, particularly in females. Whereas the HP diet predisposes to an obese phenotype, the maternal HF diet appears to reduce the susceptibility to obesity following a high-energy diet challenge in adulthood.

  16. Kefir prevented excess fat accumulation in diet-induced obese mice.

    Science.gov (United States)

    Choi, Jae-Woo; Kang, Hye Won; Lim, Won-Chul; Kim, Mi-Kyoung; Lee, In-Young; Cho, Hong-Yon

    2017-05-01

    Excessive body fat accumulation can result in obesity, which is a serious health concern. Kefir, a probiotic, has recently shown possible health benefits in fighting obesity. This study investigated the inhibitory effects of 0.1 and 0.2% kefir powder on fat accumulation in adipose and liver tissues of high-fat diet (HFD)-induced obese mice. Kefir reduced body weight and epididymal fat pad weight and decreased adipocyte diameters in HFD-induced obese mice. This was supported by decreased expression of genes related to adipogenesis and lipogenesis as well as reduced proinflammatory marker levels in epididymal fat. Along with reduced hepatic triacylglycerol concentrations and serum alanine transaminase and aspartate transaminase activities, genes related to lipogenesis and fatty acid oxidation were downregulated and upregulated, respectively, in liver tissue. Kefir also decreased serum triacylglycerol, total cholesterol, and low-density lipoprotein-cholesterol concentrations. Overall, kefir has the potential to prevent obesity.

  17. A randomized controlled trial on the efficacy of carbohydrate-reduced or fat-reduced diets in patients attending a telemedically guided weight loss program

    Directory of Open Access Journals (Sweden)

    Stehle Peter

    2009-07-01

    Full Text Available Abstract Background We investigated whether macronutrient composition of energy-restricted diets influences the efficacy of a telemedically guided weight loss program. Methods Two hundred overweight subjects were randomly assigned to a conventional low-fat diet and a low-carbohydrate diet group (target carbohydrate content: >55% energy and ® technology by mobile phone. Various fatness and fat distribution parameters, energy and macronutrient intake, and various biochemical risk markers were measured at baseline and after 6, and 12 months. Results In both groups, energy intake decreased by 400 kcal/d compared to baseline values within the first 6 months and slightly increased again within the second 6 months. Macronutrient composition differed significantly between the groups from the beginning to month 12. At study termination, weight loss was 5.8 kg (SD: 6.1 kg in the low-carbohydrate group and 4.3 kg (SD: 5.1 kg in the low-fat group (p = 0.065. In the low-carbohydrate group, triglyceride and HDL-cholesterol levels were lower at month 6 and waist circumference and systolic blood pressure were lower at month 12 compared with the low-fat group (P = 0.005–0.037. Other risk markers improved to a similar extent in both groups. Conclusion Despite favourable effects of both diets on weight loss, the carbohydrate-reduced diet was more beneficial with respect to cardiovascular risk factors compared to the fat-reduced diet. Nevertheless, compliance with a weight loss program appears to be even a more important factor for success in prevention and treatment of obesity than the composition of the diet. Trial registration Clinicaltrials.gov as NCT00868387

  18. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice.

    Science.gov (United States)

    Wang, Bin; Zhang, Sicong; Wang, Xiaoya; Yang, Shuo; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui

    2017-09-01

    Transcriptome analysis was performed to investigate the alterations in gene expression after chitosan (CS) treatment on the liver of mice fed with high-fat diet (HFD). The results showed that the body weight, the liver weight and the epididymal fat mass of HFD mice, which were 62.98%, 46.51% and 239.37%, respectively, higher than those of control mice, could be significantly decreased by chitosan supplementation. Also, high-fat diet increased both plasma lipid and liver lipid as compared with the control mice. Chitosan supplementation decreased the plasma lipid and liver lipid, increased the lipoprotein lipase (LPL) and hepatic lipase (HL) activity, increased T-AOC and decreased MDA in the liver and the epididymis adipose as compared with the HFD mice. Transcriptome analysis indicated that increased Mups, Lcn2, Gstm3 and CYP2E1 expressions clearly indicated HFD induced lipid metabolism disorder and oxidative damage. Especially, chitosan treatment decreased the Mup17 and Lcn2 expressions by 64.32% and 82.43% respectively as compared with those of HFD mice. These results indicated that chitosan possess the ability to improve the impairment of lipid metabolism as strongly associated with increased Mups expressions and gene expressions related to oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial.

    Science.gov (United States)

    Estruch, Ramon; Martínez-González, Miguel Angel; Corella, Dolores; Salas-Salvadó, Jordi; Fitó, Montserrat; Chiva-Blanch, Gemma; Fiol, Miquel; Gómez-Gracia, Enrique; Arós, Fernando; Lapetra, José; Serra-Majem, Lluis; Pintó, Xavier; Buil-Cosiales, Pilar; Sorlí, José V; Muñoz, Miguel A; Basora-Gallisá, Josep; Lamuela-Raventós, Rosa María; Serra-Mir, Mercè; Ros, Emilio

    2016-08-01

    Because of the high density of fat, high-fat diets are perceived as likely to lead to increased bodyweight, hence health-care providers are reluctant to recommend them to overweight or obese individuals. We assessed the long-term effects of ad libitum, high-fat, high-vegetable-fat Mediterranean diets on bodyweight and waist circumference in older people at risk of cardiovascular disease, most of whom were overweight or obese. PREDIMED was a 5 year parallel-group, multicentre, randomised, controlled clinical trial done in primary care centres affiliated to 11 hospitals in Spain. 7447 asymptomatic men (aged 55-80 years) and women (aged 60-80 years) who had type 2 diabetes or three or more cardiovascular risk factors were randomly assigned (1:1:1) with a computer-generated number sequence to one of three interventions: Mediterranean diet supplemented with extra-virgin olive oil (n=2543); Mediterranean diet supplemented with nuts (n=2454); or a control diet (advice to reduce dietary fat; n=2450). Energy restriction was not advised, nor was physical activity promoted. In this analysis of the trial, we measured bodyweight and waist circumference at baseline and yearly for 5 years in the intention-to-treat population. The PREDIMED trial is registered with ISRCTN.com, number ISRCTN35739639. After a median 4·8 years (IQR 2·8-5·8) of follow-up, participants in all three groups had marginally reduced bodyweight and increased waist circumference. The adjusted difference in 5 year changes in bodyweight in the Mediterranean diet with olive oil group was -0·43 kg (95% CI -0·86 to -0·01; p=0·044) and in the nut group was -0·08 kg (-0·50 to 0·35; p=0·730), compared with the control group. The adjusted difference in 5 year changes in waist circumference was -0·55 cm (-1·16 to -0·06; p=0·048) in the Mediterranean diet with olive oil group and -0·94 cm (-1·60 to -0·27; p=0·006) in the nut group, compared with the control group. A long-term intervention with an

  20. Effect of Dietary Supplementation by Irradiated Full-Fat Rapeseed on Biochemical Changes in Rats

    International Nuclear Information System (INIS)

    Farga, D. M. H.; El-Shennawy, H. M.; Soliman, N.A.

    2000-01-01

    Supplementation of 230 gk 1 of raw and irradiated full-fat rapeseed at 20 kGy in the food of male albino rats for ten weeks of age, caused significantly lower total plasma protein concentration as compared with those fed control diet, heated seeds and seeds irradiated at 50 and 70 kGy diets. On the other hand, the highest total plasma protein value was obtained from the control group flowed in descending order by heated and seeds irradiated at 70 kGy, and 50 kGy. Plasma albumin decreased significantly in rats fed either raw or rapeseed irradiated at 20 and 50 kGy as compared with rats fed control diet, heated or irradiated rapeseed at 70 kGy diets. The same result was observed with plasma globulin and A/G ratio. Supplementing the diet of rats with raw and irradiated rapeseed at 20 and 50 kGy caused significantly higher plasma transaminases activities (GOT and GPT) as compared with those fed control diet, heated or rapeseed irradiated at 70 kGy. However, rats fed raw and rapeseed irradiated at 20 kGy caused a significant increase in alkaline phosphatase as compared with those fed control diet, heated or irradiated seeds at 50 or 70 kGy diets. Moreover, there was no significant discrepancy between groups fed heated seed and seeds irradiated at 50 or 70 kGy as compared with those fed control diets. Level of plasma creatinine was significantly higher in groups of rats fed row and irradiated seeds at 20 kGy as compared with those fed heat processed and irradiated seeds at 50 kGy and 70 kGy and control diets. The results confirm that the applied radiation doses are insufficient enough to bring a complete detoxification of processed seeds. Increasing the applied radiation doses might be be beneficial in this respect

  1. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients.

    Science.gov (United States)

    Bozzetto, Lutgarda; Prinster, Anna; Annuzzi, Giovanni; Costagliola, Lucia; Mangione, Anna; Vitelli, Alessandra; Mazzarella, Raffaella; Longobardo, Margaret; Mancini, Marcello; Vigorito, Carlo; Riccardi, Gabriele; Rivellese, Angela A

    2012-07-01

    To evaluate the effects of qualitative dietary changes and the interaction with aerobic exercise training on liver fat content independent of weight loss in patients with type 2 diabetes. With use of a factorial 2 × 2 randomized parallel-group design, 37 men and 8 women, aged 35-70 years, with type 2 diabetes in satisfactory blood glucose control on diet or diet plus metformin treatment were assigned to one of the following groups for an 8-week period: 1) high-carbohydrate/high-fiber/low-glycemic index diet (CHO/fiber group), 2) high-MUFA diet (MUFA group), 3) high-carbohydrate/high-fiber/low-glycemic index diet plus physical activity program (CHO/fiber+Ex group), and 4) high-MUFA diet plus physical activity program (MUFA+Ex group). Before and after intervention, hepatic fat content was measured by (1)H NMR. Dietary compliance was optimal and body weight remained stable in all groups. Liver fat content decreased more in MUFA (-29%) and MUFA+Ex (-25%) groups than in CHO/fiber (-4%) and CHO/fiber+Ex groups (-6%). Two-way repeated-measures ANOVA, including baseline values as covariate, showed a significant effect on liver fat content for diet (P = 0.006), with no effects for exercise training (P = 0.789) or diet-exercise interaction (P = 0.712). An isocaloric diet enriched in MUFA compared with a diet higher in carbohydrate and fiber was associated with a clinically relevant reduction of hepatic fat content in type 2 diabetic patients independent of an aerobic training program and should be considered for the nutritional management of hepatic steatosis in people with type 2 diabetes.

  2. Extra virgin olive oil reduces liver oxidative stress and tissue depletion of long-chain polyunsaturated fatty acids produced by a high saturated fat diet in mice

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, B.R.; Hernandez Rodas, M.C.; Espinosa, A.; Rincon Cervera, M.A.; Romero, N.; Barrera Vazquez, C.; Marambio, M.; Vivero, J.; Valenzuela, B.A.

    2016-07-01

    Long-chain polyunsaturated fatty acids (LCPUFA) which are synthesized mainly in the liver have relevant functions in the organism. A diet high in fat (HFD) generates an increase in the levels of fat and induces oxidative stress (lipo-peroxidation) in the liver, along with a reduction in tissue n-3 and n-6 LCPUFA. Extra virgin olive oil (EVOO) is rich in anti-oxidants (polyphenols and tocopherols) which help to prevent the development of oxidative stress. This study evaluated the role of EVOO in preventing the induction of fat deposition and oxidative stress in the liver and in the depletion of LCPUFA in the liver, erythrocytes and brain generated by a HFD in C57BL/6J mice. Four experimental groups (n = 10/group) were fed a control diet (CD) or a HFD for 12 weeks and were respectively supplemented with EVOO (100 mg/day). The group fed HFD showed a significant increase (p < 0.05) in fat accumulation and oxidative stress in the liver, accompanied by a reduction in the levels of n-3 and n-6 LCPUFA in the liver, erythrocytes and brain. Supplementation with EVOO mitigated the increase in fat and oxidative stress produced by HFD in the liver, along with a normalization of LCPUFA levels in the liver, erythrocytes and brain. It is proposed that EVOO supplementation protects against fat accumulation, and oxidative stress and normalizes n-3 and n-6 LCPUFA depletion induced in mice fed a HFD. (Author)

  3. Effect of different levels of feed restriction and fish oil fatty acid supplementation on fat deposition by using different techniques, plasma levels and mRNA expression of several adipokines in broiler breeder hens.

    Directory of Open Access Journals (Sweden)

    Namya Mellouk

    Full Text Available Reproductive hens are subjected to a restricted diet to limit the decline in fertility associated with change in body mass. However, endocrine and tissue responses to diet restriction need to be documented.We evaluated the effect of different levels of feed restriction, with or without fish oil supplementation, on metabolic parameters and adipokine levels in plasma and metabolic tissues of reproductive hens.We designed an in vivo protocol involving 4 groups of hens; RNS: restricted (Rt unsupplemented, ANS: ad libitum (Ad, receiving an amount of feed 1.7 times greater than animals on the restricted diet unsupplemented, RS: Rt supplemented, and AS: Ad supplemented. The fish oil supplement was used at 1% of the total diet composition.Hens fed with the Rt diet had a significantly (P < 0.0001 lower growth than Ad hens, while the fish oil supplementation had no effect on these parameters. Furthermore, the bioelectrical impedance analysis (BIA and the fat ultrasonographic examinations produced similar results to the other methods that required animals to be killed (carcass analysis and weight of adipose tissue. In addition, the Rt diet significantly (P < 0.05 decreased plasma levels of triglycerides, phospholipids, glucose and ADIPOQ, and fish oil supplementation decreased plasma levels of RARRES2. We also showed a positive correlation between insulin values and ADIPOQ or NAMPT or RARRES2 values, and a negative correlation of fat percentage to RARRES2 values. Moreover, the effects of the Rt diet and fish oil supplementation on the mRNA expression depended on the factors tested and the hen age.Rt diet and fish oil supplementation are able to modulate metabolic parameters and the expression of adipokines and their receptors in metabolic tissue.

  4. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    Directory of Open Access Journals (Sweden)

    Heather L. Vellers

    2017-08-01

    Full Text Available Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels.Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD or high fat/high sugar (HFHS diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males and 17β-estradiol (females to determine if sex hormone augmentation altered diet-induced changes in activity.Results: 117 mice (56♂, 61♀ were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001 and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001. The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28% and female mice (p = 0.02, 57 ± 26%. In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat.Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones.

  5. Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring.

    Science.gov (United States)

    Segovia, Stephanie A; Vickers, Mark H; Zhang, Xiaoyuan D; Gray, Clint; Reynolds, Clare M

    2015-12-01

    Maternal consumption of a high-fat diet significantly impacts the fetal environment and predisposes offspring to obesity and metabolic dysfunction during adulthood. We examined the effects of a high-fat diet during pregnancy and lactation on metabolic and inflammatory profiles and whether maternal supplementation with the anti-inflammatory lipid conjugated linoleic acid (CLA) could have beneficial effects on mothers and offspring. Sprague-Dawley rats were fed a control (CD; 10% kcal from fat), CLA (CLA; 10% kcal from fat, 1% total fat as CLA), high-fat (HF; 45% kcal from fat) or high fat with CLA (HFCLA; 45% kcal from fat, 1% total fat as CLA) diet ad libitum 10days prior to and throughout gestation and lactation. Dams and offspring were culled at either late gestation (fetal day 20, F20) or early postweaning (postnatal day 24, P24). CLA, HF and HFCLA dams were heavier than CD throughout gestation. Plasma concentrations of proinflammatory cytokines interleukin-1β and tumour necrosis factor-α were elevated in HF dams, with restoration in HFCLA dams. Male and female fetuses from HF dams were smaller at F20 but displayed catch-up growth and impaired insulin sensitivity at P24, which was reversed in HFCLA offspring. HFCLA dams at P24 were protected from impaired insulin sensitivity as compared to HF dams. Maternal CLA supplementation normalised inflammation associated with consumption of a high-fat diet and reversed associated programming of metabolic dysfunction in offspring. This demonstrates that there are critical windows of developmental plasticity in which the effects of an adverse early-life environment can be reversed by maternal dietary interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice.

    Science.gov (United States)

    Sun, Quancai; Xiao, Xiao; Kim, Yoo; Kim, Daeyoung; Yoon, Kyoon Sup; Clark, John M; Park, Yeonhwa

    2016-12-14

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice.

  7. Dietary supplementation with phytosterol and ascorbic acid reduces body mass accumulation and alters food transit time in a diet-induced obesity mouse model

    Directory of Open Access Journals (Sweden)

    Kozlowski Petri

    2011-06-01

    Full Text Available Abstract Previous research indicates that animals fed a high fat (HF diet supplemented with disodium ascorbyl phytostanyl phosphate (DAPP exhibit reduced mass accumulation when compared to HF control. This compound is a water-soluble phytostanol ester and consists of a hydrophobic plant stanol covalently bonded to ascorbic acid (Vitamin C. To provide insight into the mechanism of this response, we examined the in vivo effects of a high fat diet supplemented with ascorbic acid (AA in the presence and absence of unesterified phytosterols (PS, and set out to establish whether the supplements have a synergistic effect in a diet-induced obesity mouse model. Our data indicate that HF diet supplementation with a combination of 1% w/w phytosterol and 1% w/w ascorbic acid results in reduced mass accumulation, with mean differences in absolute mass between PSAA and HF control of 10.05%; and differences in mass accumulation of 21.6% (i.e. the PSAA group gained on average 21% less mass each week from weeks 7-12 than the HF control group. In our previous study, the absolute mass difference between the 2% DAPP and HF control was 41%, while the mean difference in mass accumulation between the two groups for weeks 7-12 was 67.9%. Mass loss was not observed in animals supplemented with PS or AA alone. These data suggest that the supplements are synergistic with respect to mass accumulation, and the esterification of the compounds further potentiates the response. Our data also indicate that chronic administration of PS, both in the presence and absence of AA, results in changes to fecal output and food transit time, providing insight into the possibility of long-term changes in intestinal function related to PS supplementation.

  8. Dietary supplementation with phytosterol and ascorbic acid reduces body mass accumulation and alters food transit time in a diet-induced obesity mouse model

    Science.gov (United States)

    2011-01-01

    Previous research indicates that animals fed a high fat (HF) diet supplemented with disodium ascorbyl phytostanyl phosphate (DAPP) exhibit reduced mass accumulation when compared to HF control. This compound is a water-soluble phytostanol ester and consists of a hydrophobic plant stanol covalently bonded to ascorbic acid (Vitamin C). To provide insight into the mechanism of this response, we examined the in vivo effects of a high fat diet supplemented with ascorbic acid (AA) in the presence and absence of unesterified phytosterols (PS), and set out to establish whether the supplements have a synergistic effect in a diet-induced obesity mouse model. Our data indicate that HF diet supplementation with a combination of 1% w/w phytosterol and 1% w/w ascorbic acid results in reduced mass accumulation, with mean differences in absolute mass between PSAA and HF control of 10.05%; and differences in mass accumulation of 21.6% (i.e. the PSAA group gained on average 21% less mass each week from weeks 7-12 than the HF control group). In our previous study, the absolute mass difference between the 2% DAPP and HF control was 41%, while the mean difference in mass accumulation between the two groups for weeks 7-12 was 67.9%. Mass loss was not observed in animals supplemented with PS or AA alone. These data suggest that the supplements are synergistic with respect to mass accumulation, and the esterification of the compounds further potentiates the response. Our data also indicate that chronic administration of PS, both in the presence and absence of AA, results in changes to fecal output and food transit time, providing insight into the possibility of long-term changes in intestinal function related to PS supplementation. PMID:21711516

  9. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats

    OpenAIRE

    Mitra, Anaya; Alvers, Kristin M.; Crump, Erica M.; Rowland, Neil E.

    2008-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet con...

  10. Low-fat diet and regular, supervised physical exercise in patients with symptomatic coronary artery disease: reduction of stress-induced myocardial ischemia

    International Nuclear Information System (INIS)

    Schuler, G.; Schlierf, G.; Wirth, A.

    1988-01-01

    The effects of physical exercise and normalization of serum lipoproteins on stress-induced myocardial ischemia were studied in 18 patients with coronary artery disease, stable angina pectoris, and mild hypercholesterolemia (total serum cholesterol 242 +/- 32 mg/dl). These patients underwent a combined regimen of low-fat/low-cholesterol diet and regular, supervised physical exercise at high intensity for 12 months. At 1 year serum lipoproteins has been lowered to ideal levels (serum cholesterol 202 +/- 31 mg/dl, low-density lipoproteins 130 +/- 30 mg/dl, very low-density lipoproteins 22 +/- 15 mg/dl, serum triglycerides 105 [69 to 304] mg/dl) and physical work capacity was improved by 21% (p less than .01). No significant effect was noted on high-density lipoproteins, probably as a result of the low-fat/high-carbohydrate diet. Stress-induced myocardial ischemia, as assessed by thallium-201 scintigraphy, was decreased by 54% (p less than .05) despite higher myocardial oxygen consumption. Eighteen patients matched for age and severity of coronary artery disease served as a control group and ''usual medical care'' was rendered by their private physicians. No significant changes with respect to serum lipoproteins, physical work capacity, maximal rate-pressure product, or stress-induced myocardial ischemia were observed in this group. These data indicate that regular physical exercise at high intensity, lowered body weight, and normalization of serum lipoproteins may alleviate compromised myocardial perfusion during stress

  11. A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice.

    Science.gov (United States)

    Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo; Bannai, Makoto

    2015-02-15

    Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. Copyright © 2015 the American Physiological Society.

  12. Hypercholesterolemia and hepatic steatosis in mice fed on low-cost high-fat diet - doi: 10.4025/actascihealthsci.v35i1.10871

    Directory of Open Access Journals (Sweden)

    Lívia Bracht

    2013-03-01

    Full Text Available To verify whether high-fat diet prepared from commercial diet plus chocolate, roasted peanuts and corn cookies induces hypercholesterolemia in mice and whether there is any hepatic involvement in this type of animal testing. Swiss mice received a high-fat diet for 15 and 30 days; plasma cholesterol, triglycerides and glucose rates were determined. Hepatic impairment was evaluated by histopathological analysis. Cholesterol levels increased 43% in animals treated with high-fat diet for 30 days. Further, histopathological analysis revealed that treatment of animals for 15 and 30 days produced hepatic steatosis and steatohepatitis, respectively. Experimental model is suitable for assessing the action of anti-hypercholesterolemia and the treatment of steatohepatitis.  

  13. Effect of erva-mate (Ilex paraguariensis A. St.-Hil., Aquifoliaceae on serum cholesterol, triacylglycerides and glucose in Wistar rats fed a diet supplemented with fat and sugar

    Directory of Open Access Journals (Sweden)

    Franciele Przygodda

    2010-11-01

    Full Text Available Ilex paraguariensis A. St.-Hil., Aquifoliaceae, is a species native to the subtropical and temperate regions of South America, used in beverages prepared by infusion such as teas, chimarrão and tererê. To investigate the physiological effects of I. paraguariensis on the metabolism of fats and sugars in Wistar rats, following the ingestion of erva-mate tea, four experimental groups were constructed: Lipid Control Group (receiving water and high-fat diet; Lipid Tea Group (extract of I. paraguariensis and high-fat diet; the Sugar Control Group (water and high-sugar diet; and Sugar Tea Group (extract of I. paraguariensis and high-sugar diet. The animals received their particular diet for 60 days, and were weighed weekly. After this period, the plasma concentrations of cholesterol, glucose and triacylglycerides were determined, together with the weight of visceral fat. The data were subjected to statistical analysis with a significance level of p<0.05. The results show that the ingestion of erva-mate affected body weight, visceral fat and plasma glucose, cholesterol and triacylglyceride levels.

  14. Energy balance and hypothalamic effects of a high-protein/low-carbohydrate diet

    OpenAIRE

    Kinzig, Kimberly P.; Hargrave, Sara L.; Hyun, Jayson; Moran, Timothy H.

    2007-01-01

    Diets high in fat or protein and extremely low in carbohydrate are frequently reported to result in weight loss in humans. We previously reported that rats maintained on a low carbohydrate-high fat diet (LC-HF) consumed similar kcals/day as chow (CH)-fed rats and did not differ in body weight after 7 weeks. LC-HF rats had a 45% decrease in POMC expression in the ARC, decreased plasma insulin, and increased plasma leptin and ghrelin. In the present study we assessed the effects of a low carboh...

  15. Effects of high-fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGF-α mice

    Science.gov (United States)

    Dogan, Soner; Hu, Xin; Zhang, Yan; Maihle, Nita J; Grande, Joseph P; Cleary, Margot P

    2007-01-01

    Introduction Obesity is a risk factor for postmenopausal breast cancer and is associated with shortened mammary tumor (MT) latency in MMTV-TGF-α mice with dietary-induced obesity. One link between obesity and breast cancer is the adipokine, leptin. Here, the focus is on diet-induced obesity and MT and mammary fat pad (MFP) leptin and apoptotic signaling proteins. Methods MMTV-TGF-α mice were fed low-fat or high-fat diets from 10 to 85 weeks of age. High-Fat mice were divided into Obesity-Prone and Obesity-Resistant groups based on final body weights. Mice were followed to assess MT development and obtain serum, MFP, and MT. Results Incidence of palpable MTs was significantly different: Obesity-Prone > Obesity-Resistant > Low-Fat. Serum leptin was significantly higher in Obesity-Prone compared with Obesity-Resistant and Low-Fat mice. Low-Fat mice had higher MFP and MT ObRb (leptin receptor) protein and Jak2 (Janus kinase 2) protein and mRNA levels in comparison with High-Fat mice regardless of body weight. Leptin (mRNA) and pSTAT3 (phosphorylated signal transducer and activator of transcription 3) (mRNA and protein) also were higher in MTs from Low-Fat versus High-Fat mice. Expression of MT and MFP pro-apoptotic proteins was higher in Low-Fat versus High-Fat mice. Conclusion These results confirm a connection between body weight and MT development and between body weight and serum leptin levels. However, diet impacts MT and MFP leptin and apoptosis signaling proteins independently of body weight. PMID:18162139

  16. Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens.

    Science.gov (United States)

    Velasco, S; Ortiz, L T; Alzueta, C; Rebolé, A; Treviño, J; Rodríguez, M L

    2010-08-01

    A study was conducted to evaluate the effect of adding inulin to diets containing 2 different types of fat as energy sources on performance, blood serum metabolites, liver lipids, and fatty acids of abdominal adipose tissue and breast and thigh meat. A total of 240 one-day-old female broiler chicks were randomly allocated into 1 of 6 treatments with 8 replicates per treatment and 5 chicks per pen. The experiment consisted of a 3 x 2 factorial arrangement of treatments including 3 concentrations of inulin (0, 5, and 10 g/kg of diet) and 2 types of fat [palm oil (PO) and sunflower oil (SO)] at an inclusion rate of 90 g/kg of diet. The experimental period lasted from 1 to 34 d. Dietary fat type did not affect BW gain but impaired feed conversion (P abdominal fat deposition and serum lipid and glucose concentrations. Triacylglycerol contents in liver were higher in the birds fed PO diets. Dietary fat type also modified fatty acids of abdominal and i.m. fat, resulting in a higher concentration of C16:0 and C18:1n-9 and a lower concentration of C18:2n-6 in the birds fed PO diets. The addition of inulin to diets modified (P = 0.017) BW gain quadratically without affecting feed conversion. Dietary inulin decreased the total lipid concentration in liver (P = 0.003) and that of triacylglycerols and very low density lipoprotein cholesterol (up to 31%) in blood serum compared with the control groups. The polyunsaturated fatty acid:saturated fatty acid ratio increased in abdominal and i.m. fat when inulin was included in the SO-containing diets. The results from the current study suggest that the addition of inulin to broiler diets has a beneficial effect on blood serum lipids by decreasing triacylglyceride concentrations The results also support the use of inulin to increase the capacity of SO for enhancing polyunsaturated fatty acid:saturated fatty acid ratio of i.m. fat in broilers.

  17. Hypothyroidism Exacerbates Thrombophilia in Female Rats Fed with a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Harald Mangge

    2015-07-01

    Full Text Available Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP, a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66 were grouped into normal diet (ND; n = 30 and high-fat diet (HFD; n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased—and hyperthyroid animals significantly decreased—ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.

  18. Impact of food pantry donations on diet of a low-income population.

    Science.gov (United States)

    Mousa, Tamara Y; Freeland-Graves, Jean H

    2018-04-27

    This cross-sectional study assessed the effect of food donations on total nutrient intake of clients of a food pantry in Central Texas. Nutrient intakes of total, base and food donation diets were estimated for 112 food pantry recipients using specific questionnaires; and then compared to the dietary reference intakes (DRI) and 2015-2020 US Dietary Guidelines. Food donations accounted for more than half of the client's daily intake of energy, carbohydrates, vitamin B 6 , phosphorus, copper and selenium. Yet, daily total intake remained less than their DRIs for carbohydrates, poly-unsaturated fats, dietary fiber, fat soluble vitamins and vitamin C, and was even lower for calcium, magnesium and potassium. Total food intake of clients almost met the US Dietary Guidelines for refined grains, fruits, vegetables, and meat; however, the amount of whole grains and dairy was inadequate. Supplemental foods offered at food pantries are an important resource for improving nutrient intake of low-income populations.

  19. The potential of a high protein-low carbohydrate diet to preserve intrahepatic triglyceride content in healthy humans.

    Science.gov (United States)

    Martens, Eveline A; Gatta-Cherifi, Blandine; Gonnissen, Hanne K; Westerterp-Plantenga, Margriet S

    2014-01-01

    Protein supplementation has been shown to reduce the increases in intrahepatic triglyceride (IHTG) content induced by acute hypercaloric high-fat and high-fructose diets in humans. To assess the effect of a 12-wk iso-energetic high protein-low carbohydrate (HPLC) diet compared with an iso-energetic high carbohydrate-low protein (HCLP) diet on IHTG content in healthy non-obese subjects, at a constant body weight. Seven men and nine women [mean ± SD age: 24 ± 5 y; BMI: 22.9 ± 2.1 kg/m2] were randomly allocated to a HPLC [30/35/35% of energy (En%) from protein/carbohydrate/fat] or a HCLP (5/60/35 En%) diet by stratification on sex, age and BMI. Dietary guidelines were prescribed based on individual daily energy requirements. IHTG content was measured by 1H-magnetic resonance spectroscopy before and after the dietary intervention. IHTG content changed in different directions with the HPLC (CH2H2O: 0.23 ± 0.17 to 0.20 ± 0.10; IHTG%: 0.25 ± 0.20% to 0.22 ± 0.11%) compared with the HCLP diet (CH2H2O: 0.34 ± 0.20 vs. 0.38 ± 0.21; IHTG%: 0.38 ± 0.22% vs. 0.43 ± 0.24%), which resulted in a lower IHTG content in the HPLC compared with the HCLP diet group after 12 weeks, which almost reached statistical significance (P = 0.055). A HPLC vs. a HCLP diet has the potential to preserve vs. enlarge IHTG content in healthy non-obese subjects at a constant body weight. Clinicaltrials.gov NCT01551238.

  20. The potential of a high protein-low carbohydrate diet to preserve intrahepatic triglyceride content in healthy humans.

    Directory of Open Access Journals (Sweden)

    Eveline A Martens

    Full Text Available Protein supplementation has been shown to reduce the increases in intrahepatic triglyceride (IHTG content induced by acute hypercaloric high-fat and high-fructose diets in humans.To assess the effect of a 12-wk iso-energetic high protein-low carbohydrate (HPLC diet compared with an iso-energetic high carbohydrate-low protein (HCLP diet on IHTG content in healthy non-obese subjects, at a constant body weight.Seven men and nine women [mean ± SD age: 24 ± 5 y; BMI: 22.9 ± 2.1 kg/m2] were randomly allocated to a HPLC [30/35/35% of energy (En% from protein/carbohydrate/fat] or a HCLP (5/60/35 En% diet by stratification on sex, age and BMI. Dietary guidelines were prescribed based on individual daily energy requirements. IHTG content was measured by 1H-magnetic resonance spectroscopy before and after the dietary intervention.IHTG content changed in different directions with the HPLC (CH2H2O: 0.23 ± 0.17 to 0.20 ± 0.10; IHTG%: 0.25 ± 0.20% to 0.22 ± 0.11% compared with the HCLP diet (CH2H2O: 0.34 ± 0.20 vs. 0.38 ± 0.21; IHTG%: 0.38 ± 0.22% vs. 0.43 ± 0.24%, which resulted in a lower IHTG content in the HPLC compared with the HCLP diet group after 12 weeks, which almost reached statistical significance (P = 0.055.A HPLC vs. a HCLP diet has the potential to preserve vs. enlarge IHTG content in healthy non-obese subjects at a constant body weight.Clinicaltrials.gov NCT01551238.

  1. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    Science.gov (United States)

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  2. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes.

    Science.gov (United States)

    Nazli, S A; Loeser, R F; Chubinskaya, S; Willey, J S; Yammani, R R

    2017-09-01

    Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    Science.gov (United States)

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Effect of vitamin A depletion on fat deposition in finishing pigs, intramuscular fat content and gene expression in the longissimus muscle

    DEFF Research Database (Denmark)

    Tous, Nuria; Lizardo, R; Theil, Peter Kappel

    2014-01-01

    /kg; n=16). The treatment without supplemental vitamin A did not affect growth performance parameters, only a trend to increase final body weight was observed when compared with animals fed with vitamin A in the diet. However, reduced perirenal fat and a trend to increase muscle depth between the 3th...... and 4th ribs was observed in the animals fed the diet with no supplemental vitamin A. These results suggested a reduction of fatness when vitamin A was omitted in the diet, contrary to the initial hypothesis. Intramuscular fat content was not affected by the reduction of the dietary vitamin A levels...... below the requirements; in fact the trend was opposite to the original hypothesis. The content of retinol in the liver was increased when the animals were fed higher levels of dietary vitamin A but animals fed without vitamin A diet also produced retinol, although in a reduced amount, which could...

  5. Delayed development, death and abnormal thyroglobulin in rats maintained on low-iodine diets

    International Nuclear Information System (INIS)

    Van Middlesworth, L.

    1976-01-01

    Rats weaned on Remington Low Iodine Diet (0.006 to 0.009 μgI/g) grew poorly, were very slow to breed, and 83% of their pups died in the neonatal period. A large iodide supplement (100μgI/d) improved growth of the females to almost normal but did not improve growth of males. With the iodide supplement they bred at an earlier age than rats fed the low iodide Remington diet but still 73% of the pups died before weaning. The addition of a vitamin mixture (biotin, vitamin B 12 , E, patothenic acid, riboflavin, thiamine and pyridoxine) to Remington Diet resulted in delayed pregnancies but 86% survival of offspring. A more nutritious low-iodine diet with a 'complete' mineral and vitamin supplement improved growth and survival, and the litters were delivered at the normal time. However, this more complete diet contained more iodine than the Remington diet. During the neonatal period, all the low iodine diets resulted in offspring that were unable to make T 3 as readily as adults fed the same diet. Pups from dams fed the Remington diet had thyroblobulin with lower sedimentation constants (18S and 12S) than was found in normal newborns. This unfolded and dissociated thyroglobulin may be an inadequate source of thyroid hormones, but it may hydrolyse more rapidly than normal 19S thyroglobulin. It is concluded that rats raised on a diet severely deficient in iodine were unable to litter until they were older than normal rats, and the survival of the offspring was poor unless the diet was supplemented with a vitamin mixture. The synthesis of thyroid hormones in low iodine neonatal rats was more severely impaired than in adults. (author)

  6. Effects of diet type and supplementation of glucosamine, chondroitin, and MSM on body composition, functional status, and markers of health in women with knee osteoarthritis initiating a resistance-based exercise and weight loss program

    Directory of Open Access Journals (Sweden)

    Dugan Kristin

    2011-06-01

    Full Text Available Abstract Background The purpose of this study was to determine whether sedentary obese women with knee OA initiating an exercise and weight loss program may experience more beneficial changes in body composition, functional capacity, and/or markers of health following a higher protein diet compared to a higher carbohydrate diet with or without GCM supplementation. Methods Thirty sedentary women (54 ± 9 yrs, 163 ± 6 cm, 88.6 ± 13 kg, 46.1 ± 3% fat, 33.3 ± 5 kg/m2 with clinically diagnosed knee OA participated in a 14-week exercise and weight loss program. Participants followed an isoenergenic low fat higher carbohydrate (HC or higher protein (HP diet while participating in a supervised 30-minute circuit resistance-training program three times per week for 14-weeks. In a randomized and double blind manner, participants ingested supplements containing 1,500 mg/d of glucosamine (as d-glucosamine HCL, 1,200 mg/d of chondroitin sulfate (from chondroitin sulfate sodium, and 900 mg/d of methylsulfonylmethane or a placebo. At 0, 10, and 14-weeks, participants completed a battery of assessments. Data were analyzed by MANOVA with repeated measures. Results Participants in both groups experienced significant reductions in body mass (-2.4 ± 3%, fat mass (-6.0 ± 6%, and body fat (-3.5 ± 4% with no significant changes in fat free mass or resting energy expenditure. Perception of knee pain (-49 ± 39% and knee stiffness (-42 ± 37% was decreased while maximal strength (12%, muscular endurance (20%, balance indices (7% to 20%, lipid levels (-8% to -12%, homeostasis model assessment for estimating insulin resistance (-17%, leptin (-30%, and measures of physical functioning (59%, vitality (120%, and social function (66% were improved in both groups with no differences among groups. Functional aerobic capacity was increased to a greater degree for those in the HP and GCM groups while there were some trends suggesting that supplementation affected

  7. Interactions between barley grain processing and source of supplemental dietary fat on nitrogen metabolism and urea-nitrogen recycling in dairy cows.

    Science.gov (United States)

    Gozho, G N; Hobin, M R; Mutsvangwa, T

    2008-01-01

    The objective of this study was to determine the effects of methods of barley grain processing and source of supplemental fat on urea-N transfer to the gastrointestinal tract (GIT) and the utilization of this recycled urea-N in lactating dairy cows. Four ruminally cannulated Holstein cows (656.3 +/- 27.7 kg of BW; 79.8 +/- 12.3 d in milk) were used in a 4 x 4 Latin square design with 28-d periods and a 2 x 2 factorial arrangement of dietary treatments. Experimental diets contained dry-rolled barley or pelleted barley in combination with whole canola or whole flaxseed as supplemental fat sources. Nitrogen balance was measured from d 15 to 19, with concurrent measurements of urea-N kinetics using continuous intrajugular infusions of [15N 15N]-urea. Dry matter intake and N intake were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Nitrogen retention was not affected by diet, but fecal N excretion was higher in cows fed dry-rolled barley than in those fed pelleted barley. Actual and energy-corrected milk yield were not affected by diet. Milk fat content and milk fat yield were higher in cows fed dry-rolled barley compared with those fed pelleted barley. Source of supplemental fat did not affect urea-N kinetics. Urea-N production was higher (442.2 vs. 334.3 g of N/d), and urea-N entering the GIT tended to be higher (272.9 vs. 202.0 g of N/d), in cows fed dry-rolled barley compared with those fed pelleted barley. The amount of urea-N entry into the GIT that was returned to the ornithine cycle was higher (204.1 vs. 159.5 g of N/d) in cows fed dry-rolled barley than in pelleted barley-fed cows. The amount of urea-N recycled to the GIT and used for anabolic purposes, and the amounts lost in the urine or feces were not affected by dietary treatment. Microbial nonammonia N supply, estimated using total urinary excretion of purine derivatives, was not affected by diet. These results show that even though barley grain processing altered urea

  8. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver.

    Science.gov (United States)

    Wires, Emily S; Trychta, Kathleen A; Bäck, Susanne; Sulima, Agnieszka; Rice, Kenner C; Harvey, Brandon K

    2017-11-01

    Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during

  9. Case Study: The low FODMAP diet reduced symptoms in a patient ...

    African Journals Online (AJOL)

    makes sense to test the effect of the low FODMAP diet on patients with endometriosis. ... Recurrent abdominal pain or discomfort† at least 3 days a month in the past 3 months ... Bifidobacteria species.12-14 Bifidobacteria are associated with many health benefits ... having trialed the High Fat Low Carbohydrate diet. She had ...

  10. Role of high-fat diet in stress response of Drosophila.

    Directory of Open Access Journals (Sweden)

    Erilynn T Heinrichsen

    Full Text Available Obesity is associated with many diseases, one of the most common being obstructive sleep apnea (OSA, which in turn leads to blood gas disturbances, including intermittent hypoxia (IH. Obesity, OSA and IH are associated with metabolic changes, and while much mammalian work has been done, mechanisms underlying the response to IH, the role of obesity and the interaction of obesity and hypoxia remain unknown. As a model organism, Drosophila offers tremendous power to study a specific phenotype and, at a subsequent stage, to uncover and study fundamental mechanisms, given the conservation of molecular pathways. Herein, we characterize the phenotype of Drosophila on a high-fat diet in normoxia, IH and constant hypoxia (CH using triglyceride and glucose levels, response to stress and lifespan. We found that female flies on a high-fat diet show increased triglyceride levels (p<0.001 and a shortened lifespan in normoxia, IH and CH. Furthermore, flies on a high-fat diet in normoxia and CH show diminished tolerance to stress, with decreased survival after exposure to extreme cold or anoxia (p<0.001. Of interest, IH seems to rescue this decreased cold tolerance, as flies on a high-fat diet almost completely recovered from cold stress following IH. We conclude that the cross talk between hypoxia and a high-fat diet can be either deleterious or compensatory, depending on the nature of the hypoxic treatment.

  11. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    International Nuclear Information System (INIS)

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-01-01

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a ‘2-hit’ paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: ► Characterizes a mouse model of arsenic enhanced NAFLD. ► Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. ► This effect is associated with increased inflammation.

  12. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    Science.gov (United States)

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Consumption of a High-Fat Diet Induces Central Insulin Resistance Independent of Adiposity

    Science.gov (United States)

    Clegg, Deborah J.; Gotoh, Koro; Kemp, Christopher; Wortman, Matthew D.; Benoit, Stephen C.; Brown, Lynda M.; D’Alessio, David; Tso, Patrick; Seeley, Randy J.; Woods, Stephen C.

    2011-01-01

    Plasma insulin enters the CNS where it interacts with insulin receptors in areas that are related to energy homeostasis and elicits a decrease of food intake and body weight. Here, we demonstrate that consumption of a high-fat (HF) diet impairs the central actions of insulin. Male Long-Evans rats were given chronic (70-day) or acute (3-day) ad libitum access to HF, low-fat (LF), or chow diets. Insulin administered into the 3rd-cerebral ventricle (i3vt) decreased food intake and body weight of LF and chow rats but had no effect on HF rats in either the chronic or the acute experiment. Rats chronically pair-fed the HF diet to match the caloric intake of LF rats, and with body weights and adiposity levels comparable to those of LF rats, were also unresponsive to i3vt insulin when returned to ad lib food whereas rats pair-fed the LF diet had reduced food intake and body weight when administered i3vt insulin. Insulin’s inability to reduce food intake in the presence of the high-fat diet was associated with a reduced ability of insulin to activate its signaling cascade, as measured by pAKT. Finally, i3vt administration of insulin increased hypothalamic expression of POMC mRNA in the LF-but not the HF-fed rats. We conclude that consumption of a HF diet leads to central insulin resistance following short exposure to the diet, and as demonstrated by reductions in insulin signaling and insulin-induced hypothalamic expression of POMC mRNA. PMID:21241723

  14. Vegetarian low-protein diets supplemented with keto analogues: a niche for the few or an option for many?

    Science.gov (United States)

    Piccoli, Giorgina B; Ferraresi, Martina; Deagostini, Maria C; Vigotti, Federica Neve; Consiglio, Valentina; Scognamiglio, Stefania; Moro, Irene; Clari, Roberta; Fassio, Federica; Biolcati, Marilisa; Porpiglia, Francesco

    2013-09-01

    Low-protein diets are often mentioned but seldom used to slow chronic kidney disease (CKD) progression. The aim of the study was to investigate the potential for implementation of a simplified low-protein diet supplemented with alpha-keto analogues (LPD-KA) as part of the routine work-up in CKD patients. In an implementation study (December 2007-November 2011), all patients with CKD Stages IV-V not on dialysis, rapidly progressive Stage III and/or refractory proteinuria, were offered either a simplified LPD-KA, or commercially available low-protein food. LPD-KA consisted of proteins 0.6 g/kg/day, supplementation with Ketosteril 1 pill/10 Kg, 1-3 free-choice meals/week and a simplified schema based on 'allowed' and 'forbidden' foods. 'Success' was defined as at least 6 months on LPD-KA. Progression was defined as reduction in glomerular filtration rate (GFR)[(Chronic Kidney Disease Epidemiology Collaboration) formula CKD-EPI] in patients with at least 6 months of follow-up. Of about 2500 patients referred (8% CKD Stages IV-V), 139 started LPD-KA; median age (70 years) and prevalence of comorbidity (79%) were in line with the dialysis population. Start of dialysis was the main reason for discontinuation (40 cases, unplanned in 7); clinical reasons were recorded in 7, personal preference in 14 and improvement and death in 8 each. The low gross mortality (4% per year) and the progression rate (from -8 to 0 mL/min/year at 6 months) are reassuring concerning safety. None of the baseline conditions, including age, educational level, comorbidity or kidney function, discriminated the patients who followed the diet for at least 6 months. Our data suggest a wider offer of LPD-KA to patients with severe and progressive CKD. The promising results in terms of mortality and progression need confirmation with different study designs.

  15. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet.

    Science.gov (United States)

    Schugar, Rebecca C; Huang, Xiaojing; Moll, Ashley R; Brunt, Elizabeth M; Crawford, Peter A

    2013-01-01

    Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.

  16. Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metabolic Dysfunction in MSG-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Josiane Morais Martin

    2016-01-01

    Full Text Available Essential polyunsaturated fatty acids (PUFAs prevent cardiometabolic diseases. We aimed to study whether a diet supplemented with a mixture of n-6/n-3 PUFAs, during perinatal life, attenuates outcomes of long-term metabolic dysfunction in prediabetic and obese mice. Seventy-day-old virgin female mice were mated. From the conception day, dams were fed a diet supplemented with sunflower oil and flaxseed powder (containing an n-6/n-3 PUFAs ratio of 1.2 : 1.0 throughout pregnancy and lactation, while control dams received a commercial diet. Newborn mice were treated with monosodium L-glutamate (MSG, 4 mg g−1 body weight per day for the first 5 days of age. A batch of weaned pups was sacrificed to quantify the brain and pancreas total lipids; another batch were fed a commercial diet until 90 days of age, where glucose homeostasis and glucose-induced insulin secretion (GIIS as well as retroperitoneal fat and Lee index were assessed. MSG-treated mice developed obesity, glucose intolerance, insulin resistance, pancreatic islet dysfunction, and higher fat stores. Maternal flaxseed diet-supplementation decreased n-6/n-3 PUFAs ratio in the brain and pancreas and blocked glucose intolerance, insulin resistance, GIIS impairment, and obesity development. The n-6/n-3 essential PUFAs in a ratio of 1.2 : 1.0 supplemented in maternal diet during pregnancy and lactation prevent metabolic dysfunction in MSG-obesity model.

  17. CLINICAL STUDY OF THE EFFECTS OF LOW-PROTEIN DIET AND SUPPLEMENTED WITH α-KETOACIDS THERAPY ON NUTRITION STATUS AND RESIDUAL RENAL FUNCTION IN CONTINUOUS AMBULATORY PERITONEAL DIALYSIS(CAPD) PATIENTS

    OpenAIRE

    Huang, Juan; Yuan, Weijie; Zhou, Yi; Wang, Xuan; Wang, Ting

    2012-01-01

    It is critical to preserve residual renal function (RRF) in CAPD, as RRF is associated with lower morbidity and mortality. low- protein diet supplemented with α-keto acids was reported to have an important roles in delaying in follow-up period progression of renal failure and relieving malnutritional status in non-dialysis patients with chronic renal failure. We evaluate the effects on the nutritional status and RRF of a low-protein diet supplemented with α-keto acids on CAPD patients prospec...

  18. Effect of restricted protein diet supplemented with keto analogues in chronic kidney disease: a systematic review and meta-analysis.

    Science.gov (United States)

    Jiang, Zheng; Zhang, Xiaoyan; Yang, Lichuan; Li, Zi; Qin, Wei

    2016-03-01

    To evaluate the efficacy and safety of the restricted protein diet (low or very low protein diet) supplemented with keto analogues in the treatment of chronic kidney disease (CKD). The Cochrane library, PubMed, Embase, CBM and CENTRAL databases were searched and reviewed up to April 2015. Clinical trials were analyzed using RevMan 5.3 software. Seven random control trials, one cross-over trial and one non-randomized concurrent control trial were selected and included in this study according to our inclusion and exclusion criteria. The changes of eGFR, BUN, Scr, albumin, PTH, triglyceride, cholesterol, calcium, phosphorus and nutrition indexes (BMI, lean body mass and mid-arm muscular circumference) before and after treatment were analyzed. The meta-analysis results indicated that, comparing with normal protein diet, low protein diet (LPD) or very low protein diet (vLPD) supplemented with keto analogues (s(v)LPD) could significantly prevent the deterioration of eGFR (P diet supplemented with keto analogues (s(v)LPD) could delay the progression of CKD effectively without causing malnutrition.

  19. Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction

    Science.gov (United States)

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy

    2012-01-01

    We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492

  20. Withdrawal from high-carbohydrate, high-saturated-fat diet changes saturated fat distribution and improves hepatic low-density-lipoprotein receptor expression to ameliorate metabolic syndrome in rats.

    Science.gov (United States)

    Hazarika, Ankita; Kalita, Himadri; Kalita, Mohan Chandra; Devi, Rajlakshmi

    2017-06-01

    The "lipid hypothesis" determined that saturated fatty acid (SFA) raises low-density lipoprotein cholesterol, thereby increasing the risk for metabolic syndrome (MetS). The aim of this study was to investigate the effect of subchronic withdrawal from a high-carbohydrate, high-saturated fat (HCHF) diet during MetS with reference to changes in deleterious SFA (C12:0, lauric acid; C14:0, myristic acid; C16:0, palmitic acid; C18:0, stearic acid) distribution in liver, white adipose tissue (WAT), and feces. MetS induced by prolonged feeding of an HCHF diet in Wistar albino rat is used as a model of human MetS. The MetS-induced rats were withdrawn from the HCHF diet and changed to a basal diet for final 4 wk of the total experimental duration of 16 wk. SFA distribution in target tissues and hepatic low-density lipoprotein receptor (LDLr) expression were analyzed. Analyses of changes in SFA concentration of target tissues indicate that C16:0 and C18:0 reduced in WAT and liver after withdrawal of the HCHF diet. There was a significant (P < 0.001) decrease in fecal C12:0 with HCHF feeding, which significantly (P < 0.01) increased after withdrawal of this diet. Also, an improvement in expression of hepatic LDLr was observed after withdrawal of HCHF diet. The prolonged consumption of an HCHF diet leads to increased SFA accumulation in liver and WAT, decreased SFA excretion, and reduced hepatic LDLr expression during MetS, which is prominently reversed after subchronic withdrawal of the HCHF diet. This can contribute to better understanding of the metabolic fate of dietary SFA during MetS and may apply to the potential reversal of complications by the simple approach of nutritional modification. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Dairy-Rich Diets Augment Fat Loss on an Energy-Restricted Diet: A Multicenter Trial

    Directory of Open Access Journals (Sweden)

    Michael B. Zemel

    2009-09-01

    Full Text Available A 12-week randomized controlled multi-center clinical trial was conducted in 106 overweight and obese adults. Diets were designed to produce a 2,093 kJ/day energy deficit with either low calcium (LC; ~600 mg/day, high calcium (HC; ~1,400 mg/day, or high dairy (HD; three dairy servings, diet totaling ~1,400 mg/day. Ninety-three subjects completed the trial, and 68 met all a priori weekly compliance criteria. Both HC and HD contained comparable levels of calcium, but HC was only ~30% as effective as HD in suppressing 1,25-(OH2D and exerted no significant effects on weight loss or body composition compared to LC. In the group that met compliance criteria, HD resulted in ~two-fold augmentation of fat loss compared to LC and HC (HD: -4.43 ± 0.53 kg; LC: -2.69 ± 0.0.53 kg; HC: -2.23 ± 0.73kg, p < 0.025; assessment of all completers and an intent-to-treat analysis produced similar trends. HD augmentated central (trunk fat loss (HD: -2.38 ± 0.30 kg; HC: -1.42 ± 0.30 kg; LC: -1.36 ± 0.42 kg, p < 0.05 and waist circumference (HD: -7.65 ± 0.75 cm; LC: -4.92 ± 0.74 cm; LC: -4.95 ± 1.05 cm, p < 0.025. Similar effects were noted among all subjects completing the study and in an intent-to-treat analysis. These data indicate that dairy-rich diets augment weight loss by targeting the fat compartment during energy restriction.

  2. Fresh meat quality of pigs fed diets with different fatty acid profiles and supplemented with red wine solids

    Directory of Open Access Journals (Sweden)

    Pier Giorgio Peiretti

    2015-01-01

    Full Text Available AbstractThree groups of pigs were fed three different diets, namely a diet rich in saturated fatty acids (palm oil-based, PO, a polyunsaturated fatty acid (PUFA-rich diet (corn oil-based, CO, and a PUFA-rich diet (corn oil-based supplemented with red wine solids (RWS, which was added to the diet (CO+RWS in order to assess the protective effect on the oxidative status of the pork meat. The addition of corn oil favourably modulates the FAs profile of the backfat, and to a lesser extent of the intramuscular fat of semimembranosus muscle, without causing adverse effects on the meat quality or on its oxidative stability. Moreover, these parameters were not affected by the addition of the RWS in the CO+RWS diet.

  3. Regression of Nonalcoholic Fatty Liver Disease with Zinc and Selenium Co-supplementation after Disease Progression in Rats.

    Science.gov (United States)

    Shidfar, Farzad; Faghihi, Amirhosein; Amiri, Hamid Lorvand; Mousavi, Seyedeh Neda

    2018-01-01

    Studies have shown that zinc and selenium deficiency is common in nonalcoholic fatty liver disease (NAFLD). However, the effects of zinc and selenium co-supplementation before and/or after disease progression on NAFLD are not clear enough. The aim of this study was to compare the effects of zinc and selenium co-supplementation before and/or after disease progression on NAFLD prognosis. Forty male Sprague-Dawley rats (197±4 g) were randomly assigned to 4 dietary groups: normal-fat diet (NFD; receiving 9% of calories as fat), high-fat diet (HFD; receiving 82% of calories as fat), supplementation before disease progression (S+HFD), and supplementation after disease progression (HFD+S). The diets were implemented over a 20-week period in all the groups. Biochemical and histologic parameters were compared between the 4 groups, and between-group comparisons were also carried out. There were significant differences in the average food dietary intake (P<0.001), weight (P<0.001), fasting blood sugar (P=0.005), triglyceride (P<0.001), total cholesterol (P<0.001), low-density lipoprotein cholesterol (P=0.002), high-density lipoprotein cholesterol (P=0.001), alanine aminotransferase (P<0.001), and aspartate aminotransferase (P<0.001) between the 4 dietary groups. Serum triglyceride and total cholesterol were significantly lower in the HFD+S Group than in the S+HFD Group (P<0.001 and P=0.003, respectively). Fat accumulation was significantly reduced in the HFD+S Group (P<0.001). Zinc and selenium co-supplementation after disease progression improved biochemical and histologic parameters in an experimental model of NAFLD.

  4. Effects of cellulase supplementation to corn soybean meal-based diet on the performance of sows and their piglets.

    Science.gov (United States)

    Upadhaya, Santi D; Lee, Sang In; Kim, In Ho

    2016-07-01

    A total of 15 primiparous sows (Landrace × Yorkshire) and their litters were used in the current study to evaluate the efficacy of cellulase supplementation on the production performance of sows and piglets. Pigs were randomly allocated into one of three treatments with five replicates per treatment. The dietary treatments were as follows: (i) CON (corn-soybean meal-based control); (ii) EZ1 (CON + 0.05% cellulase); and (iii) EZ2 (CON + 0.10% cellulase). The supplementation of cellulase had no effect (P > 0.05) on body weight and feed intake of lactating sows. At weaning, back fat thickness loss decreased (P = 0.04) linearly in EZ1 and EZ2 treatments. The average daily gain (ADG) of piglets increased (linear P = 0.06, quadratic P = 0.04)) during days 14 to 21 as well as at days 21 to 25 (linear P = 0.03 and quadratic P = 0.01) with the increase in the level of supplemented enzyme. Dry matter and nitrogen digestibility increased (linear P = 0.01) in lactating sows fed EZ1 and EZ2 diet compared with CON. In conclusion, it is suggested that cellulase supplementation to corn-soybean meal based diet exerts beneficial effects to sows in reducing their back fat thickness loss at weaning and also helps to improve nutrient digestibility. It also helped to improve the ADG of piglets. © 2015 Japanese Society of Animal Science.

  5. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    Science.gov (United States)

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Three-year weight change in successful weight losers who lost weight on a low-carbohydrate diet.

    Science.gov (United States)

    Phelan, Suzanne; Wyatt, Holly; Nassery, Shirine; Dibello, Julia; Fava, Joseph L; Hill, James O; Wing, Rena R

    2007-10-01

    The purpose of this study was to evaluate long-term weight loss and eating and exercise behaviors of successful weight losers who lost weight using a low-carbohydrate diet. This study examined 3-year changes in weight, diet, and physical activity in 891 subjects (96 low-carbohydrate dieters and 795 others) who enrolled in the National Weight Control Registry between 1998 and 2001 and reported >or=30-lb weight loss and >or=1 year weight loss maintenance. Only 10.8% of participants reported losing weight after a low-carbohydrate diet. At entry into the study, low-carbohydrate diet users reported consuming more kcal/d (mean +/- SD, 1,895 +/- 452 vs. 1,398 +/- 574); fewer calories in weekly physical activity (1,595 +/- 2,499 vs. 2,542 +/- 2,301); more calories from fat (64.0 +/- 7.9% vs. 30.9 +/- 13.1%), saturated fat (23.8 +/- 4.1 vs. 10.5 +/- 5.2), monounsaturated fat (24.4 +/- 3.7 vs. 11.0 +/- 5.1), and polyunsaturated fat (8.6 +/- 2.7 vs. 5.5 +/- 2.9); and less dietary restraint (10.8 +/- 2.9 vs. 14.9 +/- 3.9) compared with other Registry members. These differences persisted over time. No differences in 3-year weight regain were observed between low-carbohydrate dieters and other Registry members in intent-to-treat analyses (7.0 +/- 7.1 vs. 5.7 +/- 8.7 kg). It is possible to achieve and maintain long-term weight loss using a low-carbohydrate diet. The long-term health effects of weight loss associated with a high-fat diet and low activity level merits further investigation.

  7. Edible bird’s nest attenuates procoagulation effects of high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Yida Z

    2015-07-01

    Full Text Available Zhang Yida,1,2 Mustapha Umar Imam,1 Maznah Ismail,1,3 Norsharina Ismail,1 Zhiping Hou1 1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Cardiology Department, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, People’s Republic of China; 3Faculty of Medicine and Health Sciences, Department of Nutrition and Dietetics, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Edible bird’s nest (EBN is popular in Asia, and has long been used traditionally as a supplement. There are, however, limited evidence-based studies on its efficacy. EBN has been reported to improve dyslipidemia, which is closely linked to hypercoagulation states. In the present study, the effects of EBN on high-fat diet- (HFD- induced coagulation in rats were evaluated. Rats were fed for 12 weeks with HFD alone or in combination with simvastatin or EBN. Food intake was estimated, and weight measurements were made during the experimental period. After sacrifice, serum oxidized low-density lipo­protein (oxLDL, adiponectin, leptin, von willibrand factor, prostacyclin, thromboxane and lipid profile, and whole blood coagulation indices (bleeding time, prothrombin time, activated partial thromboplastin time, red blood count count, and platelet count were estimated. Furthermore, hepatic expression of coagulation-related genes was evaluated using multiplex polymerase chain reaction. The results indicated that EBN could attenuate HFD-induced hypercholesterolemia and coagulation similar to simvastatin, partly through transcriptional regulation of coagulation-related genes. The results suggested that EBN has the potential for lowering the risk of cardiovascular disease-related hypercoagulation due to hypercholesterolemia. Keywords: edible bird’s nest, coagulation, high-fat diet, hypercholesterolemia, nutrigeno­mics

  8. Transcriptomic Changes in Liver of Young Bulls Caused by Diets Low in Mineral and Protein Contents and Supplemented with n-3 Fatty Acids and Conjugated Linoleic Acid.

    Directory of Open Access Journals (Sweden)

    Sara Pegolo

    Full Text Available The aim of the present study was to identify transcriptional modifications and regulatory networks accounting for physiological and metabolic responses to specific nutrients in the liver of young Belgian Blue × Holstein bulls using RNA-sequencing. A larger trial has been carried out in which animals were fed with different diets: 1] a conventional diet; 2] a low-protein/low-mineral diet (low-impact diet and 3] a diet enriched in n-3 fatty acids (FAs, conjugated linoleic acid (CLA and vitamin E (nutraceutical diet. The initial hypothesis was that the administration of low-impact and nutraceutical diets might influence the transcriptional profiles in bovine liver and the resultant nutrient fluxes, which are essential for optimal liver function and nutrient interconversion. Results showed that the nutraceutical diet significantly reduced subcutaneous fat covering in vivo and liver pH. Dietary treatments did not affect overall liver fat content, but significantly modified the liver profile of 33 FA traits (out of the total 89 identified by gas-chromatography. In bulls fed nutraceutical diet, the percentage of n-3 and CLA FAs increased around 2.5-fold compared with the other diets, whereas the ratio of n6/n3 decreased 2.5-fold. Liver transcriptomic analyses revealed a total of 198 differentially expressed genes (DEGs when comparing low-impact, nutraceutical and conventional diets, with the nutraceutical diet showing the greatest effects on liver transcriptome. Functional analyses using ClueGo and Ingenuity Pathway Analysis evidenced that DEGs in bovine liver were variously involved in energy reserve metabolic process, glutathione metabolism, and carbohydrate and lipid metabolism. Modifications in feeding strategies affected key transcription factors regulating the expression of several genes involved in fatty acid metabolism, e.g. insulin-induced gene 1, insulin receptor substrate 2, and RAR-related orphan receptor C. This study provides noteworthy

  9. Effects of black adzuki bean (Vigna angularis, Geomguseul extract on body composition and hypothalamic neuropeptide expression in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mina Kim

    2015-10-01

    Full Text Available Background: Obesity is often considered to result from either excessive food intake or insufficient physical activity. Adzuki beans have been evaluated as potential remedies for various health conditions, and recent studies have reported their effects on the regulation of lipid metabolism, but it remains to be determined whether they may be effective in overcoming obesity by regulating appetite and satiety. Objective: This study investigated the effect of black adzuki bean (BAB extract on body composition and hypothalamic neuropeptide expression in Sprague Dawley rats (Rattus norvegicus fed a high-fat diet. Design: The rats were fed for 8 weeks with a control diet containing 10 kcal% from fat (CD, a high-fat diet containing 60 kcal% from fat (HD, or a high-fat diet with 1% or 2% freeze-dried ethanolic extract powder of BAB (BAB-1 and BAB-2. Results: The body weights and epididymal fat weights were significantly reduced and the serum lipid profiles were improved in the group fed the diet containing BAB compared to the HD group. The expression of AGRP mRNA significantly decreased in the BAB groups, and treatment with BAB-2 resulted in a marked induction of the mRNA expression of POMC and CART, which are anorexigenic neuropeptides that suppress food intake. Furthermore, mRNA expression levels of ObRb, a gene related to leptin sensitivity in the hypothalamus, were significantly higher in the BAB groups than in the HD group. Conclusions: These results suggest that supplementation with BAB has a significant effect on body weight via regulation of hypothalamic neuropeptides.

  10. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    Science.gov (United States)

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design Rats were divided into four groups (n=6 per group) after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control) with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w.)/day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50) with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG), and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis. PMID:26822962

  11. Does the ingestion of a 24 hour low glycaemic index Asian mixed meal diet improve glycaemic response and promote fat oxidation? A controlled, randomized cross-over study.

    Science.gov (United States)

    Camps, Stefan Gerardus; Kaur, Bhupinder; Quek, Rina Yu Chin; Henry, Christiani Jeyakumar

    2017-07-12

    The health benefits of consuming a low glycaemic index (GI) diet to reduce the risk of type 2 Diabetes are well recognized. In recent years the GI values of various foods have been determined. Their efficacy in constructing and consuming a low GI diet over 24 h in modulating glycaemic response has not been fully documented. The translation of using single-point GI values of foods to develop a 24 h mixed meal diet can provide valuable information to consumers, researchers and dietitians to optimize food choice for glycaemic control. By using GI values of foods to develop mixed meals, our study is the first to determine how both blood glucose and substrate oxidation may be modulated over 24 h. The study included 11 Asian men with a BMI between 17-24 kg/m 2 who followed both a 1-day low GI and 1-day high GI diet in a randomized, controlled cross-over design. Test meals included breakfast, lunch, snack and dinner. Glycaemic response was measured continuously for over 24 h and postprandial substrate oxidation for 10 h inside a whole body calorimeter. The low GI diet resulted in lower 24 h glucose iAUC (860 ± 440 vs 1329 ± 614 mmol/L.min; p = 0.014) with lower postprandial glucose iAUC after breakfast (p low GI vs high GI diet (1.44 ± 0.63 vs 2.33 ± 0.82 mmol/L; p fat oxidation was less during the low vs high GI diet (-0.033 ± 0.021 vs -0.050 ± 0.017 g/min; p low GI local foods to construct a 24 h low GI diet, is able to reduce glycaemic response and variability as recorded by continuous glucose monitoring. Our observations also confirm that a low GI diet promotes fat oxidation over carbohydrate oxidation when compared to a high GI diet. These observations provide public health support for the encouragement of healthier nutrition choices by consuming low GI foods. NCT 02631083 (Clinicaltrials.gov).

  12. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    Science.gov (United States)

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  13. Tangeretin and 3',4',3,5,6,7,8-heptamethoxyflavone decrease insulin resistance, fat accumulation and oxidative stress in mice fed high-fat diet

    Science.gov (United States)

    Tangeretin and heptamethoxyflavone were investigated for their ability to repair metabolic damage caused by high-fat diet in C57BL/6J mice. In the first four weeks, induction of obesity was performed and the mice received standard diet (11% kcal from fat) or high-fat diet (45% kcal from fat). After ...

  14. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts.

    Science.gov (United States)

    Estruch, Ramón; Ros, Emilio; Salas-Salvadó, Jordi; Covas, Maria-Isabel; Corella, Dolores; Arós, Fernando; Gómez-Gracia, Enrique; Ruiz-Gutiérrez, Valentina; Fiol, Miquel; Lapetra, José; Lamuela-Raventos, Rosa M; Serra-Majem, Lluís; Pintó, Xavier; Basora, Josep; Muñoz, Miguel A; Sorlí, José V; Martínez, J Alfredo; Fitó, Montserrat; Gea, Alfredo; Hernán, Miguel A; Martínez-González, Miguel A

    2018-06-21

    Observational cohort studies and a secondary prevention trial have shown inverse associations between adherence to the Mediterranean diet and cardiovascular risk. In a multicenter trial in Spain, we assigned 7447 participants (55 to 80 years of age, 57% women) who were at high cardiovascular risk, but with no cardiovascular disease at enrollment, to one of three diets: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with mixed nuts, or a control diet (advice to reduce dietary fat). Participants received quarterly educational sessions and, depending on group assignment, free provision of extra-virgin olive oil, mixed nuts, or small nonfood gifts. The primary end point was a major cardiovascular event (myocardial infarction, stroke, or death from cardiovascular causes). After a median follow-up of 4.8 years, the trial was stopped on the basis of a prespecified interim analysis. In 2013, we reported the results for the primary end point in the Journal. We subsequently identified protocol deviations, including enrollment of household members without randomization, assignment to a study group without randomization of some participants at 1 of 11 study sites, and apparent inconsistent use of randomization tables at another site. We have withdrawn our previously published report and now report revised effect estimates based on analyses that do not rely exclusively on the assumption that all the participants were randomly assigned. A primary end-point event occurred in 288 participants; there were 96 events in the group assigned to a Mediterranean diet with extra-virgin olive oil (3.8%), 83 in the group assigned to a Mediterranean diet with nuts (3.4%), and 109 in the control group (4.4%). In the intention-to-treat analysis including all the participants and adjusting for baseline characteristics and propensity scores, the hazard ratio was 0.69 (95% confidence interval [CI], 0.53 to 0.91) for a Mediterranean diet with extra

  15. Micronutrient Supplement Use and Diet Quality in University Students

    Directory of Open Access Journals (Sweden)

    Adam R. Wiltgren

    2015-02-01

    Full Text Available Many national and international public health organisations recommend achieving nutrient adequacy through consumption of a wide variety of nutritious foods. Despite this, dietary supplement sales continue to increase. Understanding the characteristics of micronutrient supplement users and the relationship with diet quality can help develop effective public health interventions to reduce unnecessary consumption of vitamin and mineral supplements. Participants (n = 1306 were a convenience sample of students studying first year food and nutrition. Data was collected via a Food and Diet Questionnaire (FDQ and a Food Frequency Questionnaire (FFQ. Supplement users were defined as participants who indicated consuming any listed supplement as frequently as once a month or more. Diet quality was assessed using a Dietary Guideline Index (DGI score. Prevalence of supplement use was high in this study population with 56% of participants reporting supplement use; the most popular supplements consumed were multivitamins (28% and vitamin C (28%. A higher DGI score was significantly associated with an increased likelihood of supplement use (mean: 105 ± 18 vs. 109 ± 17, p = 0.001. Micronutrient supplement use was associated with a higher DGI score, suggesting that supplements are more likely to be used by those who are less likely to require them.

  16. Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction.

    Science.gov (United States)

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J; Liaw, Lucy

    2012-09-28

    We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.

  17. Very low-carbohydrate versus isocaloric high-carbohydrate diet in dietary obese rats.

    Science.gov (United States)

    Axen, Kathleen V; Axen, Kenneth

    2006-08-01

    The effects of a very low-carbohydrate (VLC), high-fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high-carbohydrate (HC), low-fat (LF) regimen in dietary obese rats. Male Sprague-Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post-load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC-HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one-half (HC) were pair-fed an HC-LF diet (Weeks 9 to 14 at 60% carbohydrate). Energy intakes of pair-fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. When energy intake was matched, the VLC-HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC-LF diet.

  18. Protective potentials of wild rice (Zizania latifolia (Griseb) Turcz) against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats.

    Science.gov (United States)

    Han, Shu-Fen; Zhang, Hong; Zhai, Cheng-Kai

    2012-07-01

    The study evaluates the protective potentials of wild rice against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats. In addition to the rats of low-fat diet group, others animals were exposed to a high-fat/cholesterol diet condition for 8 weeks. The city diet (CD) is based on the diet consumed by urban residents in modern China, which is rich in fat/cholesterol and high in carbohydrates from white rice and processed wheat starch. The chief source of dietary carbohydrates of wild rice diet (WRD) is from Chinese wild rice and other compositions are the same with CD. Rats fed CD showed elevated body and liver organ weights, lipid profiles, free fatty acids (FFA) and leptin comparable with rats fed high-fat/cholesterol diet (HFD) known to induce obesity and hyperlipidaemia in this species. However, rats consuming WRD suppressed the increase of lipid droplets accumulation, FFA, and leptin, and the decrease of lipoprotein lipase and adipose triglyceride lipase. Meanwhile, WRD prevented high-fat/cholesterol diet-induced elevation in protein expression of sterol-regulatory element binding protein-1c, and gene expression of fatty acid synthase and acetyl-CoA carboxylase. These findings indicate that wild rice as a natural food has the potentials of preventing obesity and liver lipotoxicity induced by a high-fat/cholesterol diet in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Sanna Barrand

    Full Text Available Maternal consumption of a high fat diet during early development has been shown to impact the formation of hypothalamic neurocircuitry, thereby contributing to imbalances in appetite and energy homeostasis and increasing the risk of obesity in subsequent generations. Early in postnatal life, the neuronal projections responsible for energy homeostasis develop in response to appetite-related peptides such as leptin. To date, no study characterises the genome-wide transcriptional changes that occur in response to exposure to high fat diet during this critical window. We explored the effects of maternal high fat diet consumption on hypothalamic gene expression in Sprague Dawley rat offspring at postnatal day 10. RNA-sequencing enabled discovery of differentially expressed genes between offspring of dams fed a high fat diet and offspring of control diet fed dams. Female high fat diet offspring displayed altered expression of 86 genes (adjusted P-value<0.05, including genes coding for proteins of the extra cellular matrix, particularly Collagen 1a1 (Col1a1, Col1a2, Col3a1, and the imprinted Insulin-like growth factor 2 (Igf2 gene. Male high fat diet offspring showed significant changes in collagen genes (Col1a1 and Col3a1 and significant upregulation of two genes involved in regulation of dopamine availability in the brain, tyrosine hydroxylase (Th and dopamine reuptake transporter Slc6a3 (also known as Dat1. Transcriptional changes were accompanied by increased body weight, body fat and body length in the high fat diet offspring, as well as altered blood glucose and plasma leptin. Transcriptional changes identified in the hypothalamus of offspring of high fat diet mothers could alter neuronal projection formation during early development leading to abnormalities in the neuronal circuitry controlling appetite in later life, hence priming offspring to the development of obesity.

  20. Exercise protects against high-fat diet-induced hypothalamic inflammation.

    Science.gov (United States)

    Yi, Chun-Xia; Al-Massadi, Omar; Donelan, Elizabeth; Lehti, Maarit; Weber, Jon; Ress, Chandler; Trivedi, Chitrang; Müller, Timo D; Woods, Stephen C; Hofmann, Susanna M

    2012-06-25

    Hypothalamic inflammation is a potentially important process in the pathogenesis of high-fat diet-induced metabolic disorders that has recently received significant attention. Microglia are macrophage-like cells of the central nervous system which are activated by pro-inflammatory signals causing local production of specific interleukins and cytokines, and these in turn may further promote systemic metabolic disease. Whether or how this microglial activation can be averted or reversed is unknown. Since running exercise improves systemic metabolic health and has been found to promote neuronal survival as well as the recovery of brain functions after injury, we hypothesized that regular treadmill running may blunt the effect of western diet on hypothalamic inflammation. Using low-density lipoprotein receptor deficient (l dlr-/-) mice to better reflect human lipid metabolism, we first confirmed that microglial activation in the hypothalamus is severely increased upon exposure to a high-fat, or "western", diet. Moderate, but regular, treadmill running exercise markedly decreased hypothalamic inflammation in these mice. Furthermore, the observed decline in microglial activation was associated with an improvement of glucose tolerance. Our findings support the hypothesis that hypothalamic inflammation can be reversed by exercise and suggest that interventions to avert or reverse neuronal damage may offer relevant potential in obesity treatment and prevention. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet.

    Directory of Open Access Journals (Sweden)

    Rebecca C Schugar

    Full Text Available Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666 that is very high in fat (~94% kcal, very low in carbohydrate (~1% kcal, low in protein (~5% kcal, and choline restricted (~300 mg/kg provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal and choline contents (300 mg/kg vs. 5 g/kg. C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.

  2. Investigation of ruminal bacterial diversity in dairy cattle fed supplementary monensin alone and in combination with fat, using pyrosequencing analysis.

    Science.gov (United States)

    Kim, M; Eastridge, M L; Yu, Z

    2014-02-01

    The objective of this study was to examine and compare the effects of monensin, both alone and together with dietary fat, on ruminal bacterial communities in dairy cattle fed the following 3 diets: a control diet, the control diet supplemented with monensin, and the control diet supplemented with both monensin and fat. Bacterial communities in the liquid and the adherent fractions of rumen content were analyzed using 454 pyrosequencing analysis of 16S rRNA gene amplicons. Most sequences were assigned to phyla Firmicutes and Bacteroidetes, irrespective of diets and fractions. Prevotella was the most dominant genus, but most sequences could not be classified at the genus level. The proportion of Gram-positive Firmicutes was reduced by 4.5% in response to monensin but increased by 12.8% by combination of monensin and fat, compared with the control diet. Some of the operational taxonomic units in Firmicutes and Bacteroidetes were also affected by monensin or by the combination of monensin with fat. The proportion of numerous bacteria potentially involved in lipolysis and (or) biohydrogenation was increased by both monensin and fat. The Shannon diversity index was decreased in the control diet supplemented with both monensin and fat, compared with the other 2 diet groups. Supplementary fats hinder bacterial attachment to plant particles and then result in decreased bacterial diversity in the rumen. The finding of this study may help in understanding the effect of monensin and fat on ruminant nutrition and the adverse effect of monensin and fat, such as milk fat depression and decreased feed digestibility.

  3. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats.

    Science.gov (United States)

    Steele, Catherine C; Pirkle, Jesseca R A; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice.

  4. Original Article The effect of grower feed diet supplemented with ...

    African Journals Online (AJOL)

    We report a preliminary study on the effect of grower feed diet supplemented with mashed Ganoderma lucidum against some enteric zoonotic parasites of wild rock pigeons (Columba livia) in Benin City, Nigeria. The pigeons were fed ad libitum with supplemented and non-supplemented grower feed diet in sawdust-floored ...

  5. Interaction between an ADCY3 Genetic Variant and Two Weight-Lowering Diets Affecting Body Fatness and Body Composition Outcomes Depending on Macronutrient Distribution: A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Leticia Goni

    2018-06-01

    Full Text Available The adenylate cyclase 3 (ADCY3 gene is involved in the regulation of several metabolic processes including the development and function of adipose tissue. The effects of the ADCY3 rs10182181 genetic variant on changes in body composition depending on the macronutrient distribution intake after 16 weeks of the dietary intervention were tested. The ADCY3 genetic variant was genotyped in 147 overweight or obese subjects, who were randomly assigned to one of the two diets varying in macronutrient content: a moderately-high-protein diet and a low-fat diet. Anthropometric and body composition measurements (DEXA scan were recorded. Significant interactions between the ADCY3 genotype and dietary intervention on changes in weight, waist circumference, and body composition were found after adjustment for covariates. Thus, in the moderately-high-protein diet group, the G allele was associated with a lower decrease of fat mass, trunk and android fat, and a greater decrease in lean mass. Conversely, in the low-fat diet group carrying the G allele was associated with a greater decrease in trunk, android, gynoid, and visceral fat. Subjects carrying the G allele of the rs10182181 polymorphism may benefit more in terms of weight loss and improvement of body composition measurements when undertaking a hypocaloric low-fat diet as compared to a moderately-high-protein diet.

  6. Metabolic effects of keto acid--amino acid supplementation in patients with chronic renal insufficiency receiving a low-protein diet and recombinant human erythropoietin--a randomized controlled trial.

    Science.gov (United States)

    Teplan, V; Schück, O; Votruba, M; Poledne, R; Kazdová, L; Skibová, J; Malý, J

    2001-09-17

    Supplement with keto acids/amino acids (KA) and erythropoietin can independently improve the metabolic sequels of chronic renal insufficiency. Our study was designed to establish whether a supplementation with keto acids/amino acids (KA) exerts additional beneficial metabolic effects in patients with chronic renal insufficiency (CRF) treated with a low-protein diet (LPD) and recombinant human erythropoietin (EPO). In a prospective randomized controlled trial over a period of 12 months, we evaluated a total of 38 patients (20 M/18 F) aged 32-68 years with a creatinine clearance (CCr) of 20-36 ml/min. All patients were receiving EPO (40 U/kg twice a week s.c.) and a low-protein diet (0.6 g protein/kg/day and 145 kJ/kg/day). The diet of 20 patients (Group I) was supplemented with KA at a dosage of 100 mg/kg/day while 18 patients (Group II) received no supplementation. During the study period, the glomerular filtration rate slightly decreased (CCr from 28.2 +/- 3.4 to 26.4 +/- 4.1 ml/min and 29.6 +/- 4.8 to 23.4 +/- 4.4 ml/min in groups I and II, respectively and Cin); this however was more marked in Group II (Group I vs. Group II, p diet presents an effective treatment modality in the conservative management of CRF.

  7. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction

    Science.gov (United States)

    Lamping, KL; Nuno, DW; Coppey, LJ; Holmes, AJ; Hu, S; Oltman, CL; Norris, AW; Yorek, MA

    2013-01-01

    Aims The ability of dietary enrichment with monounsaturated (MUFA), n-3, or n-6 polyunsaturated fatty acids (PUFA) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). Material and Methods We fed mice a high saturated fat diet (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signaling and reactivity of isolated pressurized gracilis arteries. Results After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance, and indices of insulin signaling (phosphorylated Akt) to normal whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine reduced in MO fed mice compared to normal. Conclusion We conclude that short term enrichment of an ongoing high fat diet with n-3 PUFA rich MO but not MUFA rich OO or n-6 PUFA rich SO reverses glucose tolerance, insulin signaling, and vascular dysfunction. PMID:22950668

  8. Diet and body fat in adolescence and early adulthood: a systematic review of longitudinal studies

    Directory of Open Access Journals (Sweden)

    Bruna Celestino Schneider

    Full Text Available Abstract Adipose tissue is a vital component of the human body, but in excess, it represents a risk to health. According to the World Health Organization, one of the main factors determining excessive body adiposity is the dietary habit. This systematic review investigated longitudinal studies that assessed the association between diet and body fat in adolescents and young adults. Twenty-one relevant papers published between 2001 and 2015 were selected. The most used method for estimating body fat was the body mass index (15 studies. Diet was most commonly assessed by estimating the consumption of food groups (cereals, milk and dairy products and specific foods (sugar-sweetened beverages, soft drinks, fast foods, milk, etc.. Ten studies found a direct association between diet and quantity of body fat. During adolescence, adhering to a dietary pattern characterized by high consumption of energy-dense food, fast foods, sugar-sweetened beverages and soft drinks, as well as low fiber intake, appears to contribute to an increase in body fat in early adulthood. The findings of the present study suggest that the frequent consumption of unhealthy foods and food groups (higher energy density and lower nutrient content in adolescence is associated with higher quantity of body fat in early adulthood.

  9. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress.

    Science.gov (United States)

    Zeferino, C P; Komiyama, C M; Pelícia, V C; Fascina, V B; Aoyagi, M M; Coutinho, L L; Sartori, J R; Moura, A S A M T

    2016-01-01

    The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2×3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature×diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair

  10. Effects of a high-fiber, low-fat diet intervention on serum concentrations of reproductive steroid hormones in women with a history of breast cancer.

    Science.gov (United States)

    Rock, Cheryl L; Flatt, Shirley W; Thomson, Cynthia A; Stefanick, Marcia L; Newman, Vicky A; Jones, Lovell A; Natarajan, Loki; Ritenbaugh, Cheryl; Hollenbach, Kathryn A; Pierce, John P; Chang, R Jeffrey

    2004-06-15

    Diet intervention trials are testing whether postdiagnosis dietary modification can influence breast cancer recurrence and survival. One possible mechanism is an effect on reproductive steroid hormones. Serum reproductive steroid hormones were measured at enrollment and 1 year in 291 women with a history of breast cancer who were enrolled onto a randomized, controlled diet intervention trial. Dietary goals for the intervention group were increased fiber, vegetable, and fruit intakes and reduced fat intake. Estradiol, bioavailable estradiol, estrone, estrone sulfate, androstenedione, testosterone, dehydroepiandrosterone sulfate, follicle-stimulating hormone, and sex hormone-binding globulin were measured. The intervention (but not the comparison) group reported a significantly lower intake of energy from fat (21% v 28%), and higher intake of fiber (29 g/d v 22 g/d), at 1-year follow-up (P <.001). Significant weight loss did not occur in either group. A significant difference in the change in bioavailable estradiol concentration from baseline to 1 year in the intervention (-13 pmol/L) versus the comparison (+3 pmol/L) group was observed (P <.05). Change in fiber (but not fat) intake was significantly and independently related to change in serum bioavailable estradiol (P <.01) and total estradiol (P <.05) concentrations. Results from this study indicate that a high-fiber, low-fat diet intervention is associated with reduced serum bioavailable estradiol concentration in women diagnosed with breast cancer, the majority of whom did not exhibit weight loss. Increased fiber intake was independently related to the reduction in serum estradiol concentration.

  11. Effects of Lactobacillus feed supplementation on cholesterol, fat content and fatty acid composition of the liver, muscle and carcass of broiler chickens

    OpenAIRE

    Renseigné , Non; Abdullah , Norhani; Jalaludin , Syed; C.V.L. Wong , Michael; Yin Wan Ho ,

    2006-01-01

    International audience; An experiment was conducted to study the effects of feed supplementation with a mixture of Lactobacillus cultures (LC) on cholesterol, fat and fatty acid composition in the liver, muscle and carcass of broiler chickens. One hundred and thirty-six, one-day-old male broiler chicks (Avian-43) were assigned randomly to two dietary treatments: (i) a basal diet (control), and (ii) a basal diet + 0.1% LC. The cholesterol contents of the carcass and liver but not the muscle, w...

  12. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  13. Food Supplement Reduces Fat, Improves Flavor

    Science.gov (United States)

    2007-01-01

    Diversified Services Corporation, seeking to develop a new nutritional fat replacement and flavor enhancement product, took advantage of the NASA Glenn Garrett Morgan Commercialization Initiative (GMCI) for technology acquisition and development and introductions to potential customers and strategic partners. Having developed and commercialized the product, named Nurtigras, the company is now marketing it through its subsidiary, H.F. Food Technologies Inc. The Nutrigras fat substitute is available in liquid, gel, or dry form and can be easily customized to the specific needs of the food manufacturer. It is primarily intended for use as a partial replacement for animal fat in beef patties and other normally high-fat meat products, and can also be used in soups, sauces, bakery items, and desserts. In addition to the nutritional benefits, the fat replacement costs less than the food it replaces, and as such can help manufacturers reduce material costs. In precooked products, Nutrigras can increase moisture content and thereby increase product yield. The company has been able to repay the help provided by NASA by contributing to the Space Agency's astronaut diet-the Nutrigras fat substitute can be used as a flavor enhancer and shelf-life extender for food on the ISS.

  14. Nutrient digestibility and milk production responses to increasing levels of palmitic acid supplementation vary in cows receiving diets with or without whole cottonseed.

    Science.gov (United States)

    Rico, J E; de Souza, J; Allen, M S; Lock, A L

    2017-01-01

    Our study evaluated the dose-dependent effects of a palmitic acid-enriched supplement in basal diets with or without the inclusion of whole cottonseed on nutrient digestibility and production responses of dairy cows. Sixteen Holstein cows (149 ± 56 days in milk) were used in a split plot Latin square design experiment. Cows were blocked by 3.5% fat-corrected milk (FCM) and allocated to a main plot receiving either a basal diet with soyhulls (SH, = 8) or a basal diet with whole cottonseed (CS, = 8) that was fed throughout the experiment. A palmitic acid-enriched supplement (PA 88.5% C16:0) was fed at 0, 0.75, 1.50, or 2.25% of ration DM in a replicated 4 × 4 Latin Square design within each basal diet group. Periods were 14 d with the final 4 d used for data collection. PA dose increased milk fat content linearly, and cubically affected yields of milk fat and 3.5% FCM. The PA dose did not affect milk protein and lactose contents, BW, and BCS, but tended to increase yields of milk, milk protein, and milk lactose. Also, PA dose reduced DMI and 16-carbon fatty acid digestibility quadratically, and increased 18-carbon fatty acid digestibility quadratically. There were no effects of basal diet on the yield of milk or milk components, but DMI tended to decrease in CS compared with SH, increasing feed efficiency (3.5% FCM/DMI). Compared with SH, CS diets increased yield of preformed milk fatty acids and 16-carbon fatty acid digestibility, and tended to decrease 18-carbon fatty acid digestibility. We observed basal diet × PA dose interactions for yields of milk and milk protein and for 16-carbon and total fatty acid digestibility, as well as tendency for yields of milk fat and 3.5% FCM. Also, there was a tendency for an interaction between basal diet and PA dose for NDF digestibility, which increased more for CS with increasing PA than for SH. PA dose linearly decreased digestibility of total fatty acids in SH diets but did not affect it in CS diets Results demonstrate

  15. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  16. Swimming exercise increases serum irisin level and reduces body fat mass in high-fat-diet fed Wistar rats.

    Science.gov (United States)

    Lu, Yun; Li, Hongwei; Shen, Shi-Wei; Shen, Zhen-Hai; Xu, Ming; Yang, Cheng-Jian; Li, Feng; Feng, Yin-Bo; Yun, Jing-Ting; Wang, Ling; Qi, Hua-Jin

    2016-05-13

    It has been shown that irisin levels are reduced in skeletal muscle and plasma of obese rats; however, the effect of exercise training on irisin level remains controversial. We aim to evaluate the association of swimming exercise with serum irisin level and other obesity-associated parameters. Forty healthy male Wistar rats were randomly assigned to 4 groups: a normal diet and sedentary group (ND group), normal diet and exercise group (NDE group), high-fat diet and sedentary group (HFD group), and high-fat diet and exercise group (HFDE group. After 8 consecutive weeks of swimming exercise, fat mass and serum irisin level was determined. Higher serum irisin levels were detected in the HFDE group (1.15 ± 0.28 μg/L) and NDE group (1.76 ± 0.17 μg/L) than in the HFD group (0.84 ± 0.23 μg/L) or the ND group (1.24 ± 0.29 μg/L), respectively (HFDE group vs. HFD group, P mass (r = -0.68, P mass (r = -0.576, P mass (r = -0.439, P mass, visceral fat mass and percentage fat mass were lower in the HFDE group than the HFD group (all P values mass in high-fat-fed Wistar rats, which may be attributable to elevated irisin levels induced by swimming exercise.

  17. Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat-cholesterol enriched diet.

    Science.gov (United States)

    Sandhya, V G; Rajamohan, T

    2008-12-01

    The coconut water presents a series of nutritional and therapeutic properties, being a natural, acid and sterile solution, which contains several biologically active components, l-arginine, ascorbic acid, minerals such as calcium, magnesium and potassium, which have beneficial effects on lipid levels. Recent studies in our laboratory showed that both tender and mature coconut water feeding significantly (Pcholesterol fed rats [Sandhya, V.G., Rajamohan, T., 2006. Beneficial effects of coconut water feeding on lipid metabolism in cholesterol fed rats. J. Med. Food 9, 400-407]. The current study evaluated the hypolipidemic effect of coconut water (4ml/100g body weight) with a lipid lowering drug, lovastatin (0.1/100g diet) in rats fed fat-cholesterol enriched diet ad libitum for 45 days. Coconut water or lovastatin supplementation lowered the levels of serum total cholesterol, VLDL+LDL cholesterol, triglycerides and increased HDL cholesterol in experimental rats (Pcholesterol in the liver were higher in coconut water treated rats. Coconut water supplementation increased hepatic bile acid and fecal bile acids and neutral sterols (Pcholesterol enriched diet.

  18. A randomized trial of energy-restricted high-protein versus high-carbohydrate, low-fat diet in morbid obesity.

    Science.gov (United States)

    Dalle Grave, Riccardo; Calugi, Simona; Gavasso, Ilaria; El Ghoch, Marwan; Marchesini, Giulio

    2013-09-01

    Conflicting evidence exists as to weight loss produced by diets with different carbohydrate/protein ratio. The aim was to compare the long-term effects of high-protein vs. high-carbohydrate diet (HPD, HCD), combined with cognitive behavior therapy (CBT). In a randomized trial, 88 obese participants (mean age, 46.7; mean BMI, 45.6 kg m(-2) ) were enrolled in a 3-week inpatient and 48-week outpatient treatment, with continuous CBT during the study period. All subjects consumed a restricted diet (1,200 kcal day(-1) for women, 1,500 for men; 20% energy from fat, fat). HPD derived 34% energy from proteins, 46% from carbohydrates; HCD 17% from proteins, 64% from carbohydrates. The primary outcome was 1-year percent weight loss. Secondary outcomes were attrition rates and changes in cardiovascular risk factors and psychological profile. Attrition rates were similar between groups (25.6%). In the intention-to-treat analysis, weight loss averaged 15.0% in HPD and 13.3% in HCD at 1 year, without any difference throughout the study period. Both diets produced a similar improvement in secondary outcomes. The relative carbohydrate and protein content of the diet, when combined with intensive CBT, does not significantly affect attrition rate, weight loss and psychosocial outcome in patients with severe obesity. Copyright © 2013 The Obesity Society.

  19. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content.

    Science.gov (United States)

    Bellahcene, Mohamed; O'Dowd, Jacqueline F; Wargent, Ed T; Zaibi, Mohamed S; Hislop, David C; Ngala, Robert A; Smith, David M; Cawthorne, Michael A; Stocker, Claire J; Arch, Jonathan R S

    2013-05-28

    SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in β-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.

  20. Rats Fed a Diet Rich in Fats and Sugars Are Impaired in the Use of Spatial Geometry.

    Science.gov (United States)

    Tran, Dominic M D; Westbrook, R Frederick

    2015-12-01

    A diet rich in fats and sugars is associated with cognitive deficits in people, and rodent models have shown that such a diet produces deficits on tasks assessing spatial learning and memory. Spatial navigation is guided by two distinct types of information: geometrical, such as distance and direction, and featural, such as luminance and pattern. To clarify the nature of diet-induced spatial impairments, we provided rats with standard chow supplemented with sugar water and a range of energy-rich foods eaten by people, and then we assessed their place- and object-recognition memory. Rats exposed to this diet performed comparably with control rats fed only chow on object recognition but worse on place recognition. This impairment on the place-recognition task was present after only a few days on the diet and persisted across tests. Critically, this spatial impairment was specific to the processing of distance and direction. © The Author(s) 2015.