WorldWideScience

Sample records for low-energy multicharged ions

  1. Collisions of low-energy multicharged ions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Crandall, D.H.

    1981-01-01

    Experimental measurements of cross sections for collisions of multiply charged ions with atoms at the lowest attainable collision energies are reported. Emphasis is on electron capture from hydrogen atoms by multiply charged ions at energies below 1 keV/amu. The principal effort is the development of a merged-ion-atom-beams apparatus for studies down to 1 eV/amu relative energy

  2. Recent measurements of low energy charge exchange cross sections for collisions of multicharged ions on neutral atoms and molecules

    International Nuclear Information System (INIS)

    Havener, Charles C.

    2001-01-01

    At ORNL Multicharged Ion Research Facility (MIRF), charge exchange (CX) cross sections have been measured for multicharged ions (MCI) on neutral atoms and molecules. The ORNL ion-atom merged-beam apparatus was used to measure single electron capture by MCI from H at eV/amu energies. A gas cell was used to measure single and double electron capture by MCI from a variety of molecular targets at keV collision energies. The merged-beams experiment has been successful in providing benchmark total electron capture measurements for several collision systems with a variety of multicharged ions on H or D

  3. Electron capture in very low energy collisions of multicharged ions with H and D in merged beams

    International Nuclear Information System (INIS)

    Havener, C.C.; Meyer, F.W.; Phaneuf, R.A.

    1991-01-01

    An ion-atom merged-beams technique is being used to measure total absolute electron-capture cross sections for multicharged ions in collisions with H (or D) in the energy range between 0.1 and 1000 eV/amu. Comparison between experiment and theory over such a large energy range constitutes a critical test for both experiment and theory. Total capture cross-section measurements for O 3+ H(D) and O 5+ + H(D) are presented and compared to state selective and differential cross section calculations. Landau-Zener calculations show that for O 5+ the sharp increase in the measured cross section below 1 eV/amu is partly due to trajectory effects arising from the ion-induced dipole interaction between the reactants. 20 refs., 8 figs

  4. Experimental study on the fragmentation of Adenine and Porphyrin molecules induced by low energy multicharged ion impact

    International Nuclear Information System (INIS)

    Li, B.

    2010-01-01

    Since the dissociation of small molecules might play key roles in the understanding of radiation induced damages of living tissues at the primary steps and at the molecular levels, fragmentation dynamics of small biomolecules have drawn much attention. The knowledge of the internal energy is of fundamental importance for understanding its fragmentation dynamics following external excitation. For a long time however, it was difficult to measure this parameter in coincidence with the fragmentation patterns until the development of CIDEC (Collision Induced Dissociation under Energy Control) method in 2007. In this work, the CIDEC method was extended to study the fragmentation of gas-phase biomolecules adenine (Ade: H 5 C 5 N 5 ) and porphyrin chloride FeTPPCl (C 44 H 28 N 4 FeCl). The population distribution for each dissociation channel as a function of the excitation energy of the parent molecular ions at a well-determined initial charge state has been experimentally determined, which could shed some light on the fragmentation dynamics of these molecules. In collisions between Cl + and Ade at 3 keV, the fragmentation pattern of Ade 2+ is dominated by the loss of H 2 CN + and the successive emission of HCN. The energy distribution of the parent dication confirms the successive emission dynamics. A specific decay channel is observed, i.e. the emission of a charged H 2 CN + followed by the emission of HC 2 N 2 . The measured mean excitation energies of this channel and other competitive channels are compared. In Kr 8+ - FeTPPCl collisions at 80 keV, parent ions FeTPPCL 1+,2+,3+ are observed, along with the corresponding decay patterns. It is found that, in the first step the dominant low-energy-cost decay channel is the emission of Cl 0 independent of the initial charge state of FeTPPCl r+ . For the resulted dication FeTPP 2+ , the dominant fragmentation channel is the neutral evaporation; for the tri-cation however, the dominant fragmentation channel is the

  5. Charge-transfer collisions of multicharged ions with atomic and molecular hydrogen: measurements with low-energy accelerators

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Meyer, F.W.; Crandall, D.H.

    1977-01-01

    Electron-capture cross sections for O/sup +q/ + H → O/sup +q-1/ + H + and O/sup +q/ + H 2 → O/sup +q-1/ + H 2 + are shown for projectile energies from 10 to 1300 keV. At low energies the cross sections are determined by details of the quasi-molecule potential; at higher energies momentum transfer becomes the dominant mechanism, and the cross sections fall off similarly. Results with other projectiles are described briefly. 1 figure

  6. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  7. Electron capture by multicharged ions at eV energies

    International Nuclear Information System (INIS)

    Havener, C.C.; Huq, M.S.; Meyer, F.W.; Phaneuf, R.A.

    1988-01-01

    A multicharged ion-atom merged-beams apparatus has been used in conjunction with the ORNL-ECR ion source to measure accurate absolute electron-capture cross sections in the energy range from below 1 eV/amu to 1500 eV/amu. Measurements for N/sup 3+,4+,5+/ /plus/ H(D) collisions indicate good agreement with available theoretical calculations. However, measurements with O 5+ /plus/ H(D) show an unexpected low-energy behavior which may be attributable to the ion-induced-dipole attraction between the reactants. Scaled Landau-Zener calculations presented here identify a transfer plus excitation channel which has the correct energy dependence at low energies. This finding suggest the need for a comprehensive coupled channel calculation which would include such product states. 25 refs., 8 figs

  8. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    Kutner, V.B.

    1981-01-01

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe 48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe 26+ approximately 4x10 10 h/s, Asub(r)sup(12+) approximately 10 12 h/s intensive ion beams are produced. In the laser source a full number of C 6+ ions during one laser pulse constitutes not less than 10 10 from the 5x10mm 2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe 15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached [ru

  9. Auger processes in tracks of fast multicharged ions

    International Nuclear Information System (INIS)

    Katin, V.V.; Martynenko, Yu.V.; Yavlinskij, Yu.N.

    1992-01-01

    The fast multicharged ion spends about 40% of energy losses on vacancy creation in the inner electron shells. This energy is transferred to the kinetic energy of electrons due to the cascade of Auger processes during ∼ 10 -14 s whereas the primary excited electrons receive the energy in ∼10 -16 s. (author)

  10. Recent activities at the ORNL multicharged ion research facility (MIRF)

    International Nuclear Information System (INIS)

    Meyer, F.W.; Bannister, M.E.; Hale, J.W.; Havener, C.C.; Krause, H.F.; Vane, C.R.; Deng, S.; Draganic, I.N.; Harris, P.R.

    2012-01-01

    Recent activities at the ORNL Multicharged Ion Research Facility (MIRF) are summarized. A brief summary of the MIRF high voltage (HV) platform and floating beam line upgrade is provided. An expansion of our research program to the use of molecular ion beams in heavy-particle and electron collisions, as well as in ion surface interactions is described, and a brief description is provided of the most recently added Ion Cooling and Characterization End-station (ICCE) trap. With the expansion to include molecular ion beams, the acronym MIRF for the facility, however, remains unchanged: 'M' can now refer to either 'Multicharged' or 'Molecular'. The paper is followed by the slides of the presentation. (authors)

  11. Introductory remarks on electron capture by multicharged ions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1979-01-01

    An overview is presented of applications of multicharged-ion electron capture and, through the qualitative assessment of availability of information, the general status of current understanding of such capture. A chart is given on which the various ion collision processes are related to other pertinent fields of physical research notably fusion, astrophysics, the solar corona, and lasers. The production and transport of ions is also noted. The symposium considers collision velocities less than 4 x 10 8 cm/s, where the capture cross sections are largest and where most of the available results are quite recent

  12. Triplemafios: a multicharged heavy ion source

    International Nuclear Information System (INIS)

    Briand, P.; Geller, R.; Jacquot, B.

    1976-01-01

    The principle and the characteristics of the ion source 'Triplemafios' are described. We also furnish the upto date performances concerning the ion charge states, ion currents and globale emittances of the beam [fr

  13. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  14. Design study of low-energy beam transport for multi-charge beams at RAON

    Energy Technology Data Exchange (ETDEWEB)

    Bahng, Jungbae [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of); Qiang, Ji [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, Eun-San, E-mail: eskim1@korea.ac.kr [Department of Accelerator Science, Graduate School, Korea University Sejong Campus, Sejong 30019 (Korea, Republic of)

    2015-12-21

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  15. Coulomb excitation of atoms by fast multicharged ions

    International Nuclear Information System (INIS)

    Yudin, G.L.

    1980-01-01

    Investigated is coulomb eXcitation of discrete levels of a hydrogen-like atom by a fast multicharged ion. Obtained are dependences of probabilities of channels 1S→nS and 1S→nP on the sight parameter in the zero order of sudden excitation theory. 1S-2S transition is considered in detail. Carried out are calculations for excitation of the hydrogen atom by the wholy bare carbon atom. It is shown, that at low values of excitation pr.ocess parameter eta excitation probability is a monotonously decreasing function of the impact parameter. With the growth of eta the situation is changed, and at low impact parameters the probability of 1S-2S transition is decreased. At high impact parameters approximation of sudden excitations is unacceptable, here lagging of coulomb interaction is essential

  16. Study of multicharged ions in the laser-produced plasmas

    International Nuclear Information System (INIS)

    Jaegle, P.; Carillon, A.; Jamelot, G.; Wehenkel, C.; Sureau, A.; Guennou, H.

    1980-01-01

    With respect to hot plasmas, laser induced plasmas have an especially high density, with a steep partial gradient and a fast temporal variation of temperature and density. The study of multicharged ion radiation, wich is necessary to perform diagnostics of plasma parameters, opens a new field for atomic physics investigations, including identification of peculiar lines, which are not observed in other conditions, large changes in line profiles due to radiative transfer and to both shift and broadening by Stark effect. Departure from population equilibrium takes place in these plasmas, going possibly so far as population inversion between ionic levels in an energy range covering EUV and soft X-rays. Experimental and theoretical study of these phenomena are in progress and needs to find solutions for complicated problems. Here, recent works performed with the laser of the GRECO 'Interaction Laser-Matiere' are briefly presented [fr

  17. Study of the on line radioactive multicharged ion production

    International Nuclear Information System (INIS)

    Lecesne, N.

    1997-01-01

    This work is directly related to the SPIRAL project (Systeme de Production d'Ions Radioactifs Acceleres en Ligne) which will start at GANIL at the end of 1998. The aim of the thesis was to study the on line radioactive multicharged ion beam production stages, i.e. the production and diffusion of the radioactive nuclei in a thick target, their possible transfer up to an ECR ion source and their ionisation. Production cross sections of radioactive neutron rich nuclei, formed by fragmentation of a heavy ion beam in a thick target, were measured. An external target-ECR source system, dedicated to the radioactive noble gases production, and two internal target-ECR source systems, dedicated to the radioactive condensable element production, were built and tested on the SIRa tests bench (Separateur d'Ions Radioactifs). Different detection configurations were elaborated in order to identify the radioactive nuclei and estimate their production yields. Finally, a new method for measuring the overall efficiency of the separator was developed and allowed to study the diffusion properties of radioactive noble gases in various targets. (author)

  18. Electron emission during multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Meyer, F.W.; Zehner, D.M.

    1990-01-01

    Recent measurements of electron spectra for slow multicharged N ion-surface collisions are presented. The emphasis is on potential emission, i.e. the electron emission related to the neutralization of the ions. When using N ions that carry a K shell vacancy into the collision, characteristic K Auger electron emission from the projectiles is observed, as well as, for specific surfaces, target atom Auger transitions (resulting from vacancy transfer). Measurements of the intensity of these Auger transitions as a function of the time the ions spend above the surface can serve as a useful probe of the timescales characterizing the relevant neutralization processes. This technique is elucidated with the help of some computer simulations. It is shown that neutralization timescales required in the atomic ladder picture, in which neutralization takes place by resonant capture followed by purely intra-atomic Auger transitions, are too long to explain our experimental results. The introduction of additional neutralization/de-excitation mechanisms in the simulations leads to much better agreement with the experiments

  19. Electron capture into excited states of multi-charged ions

    International Nuclear Information System (INIS)

    Dijkkamp, D.

    1985-01-01

    This thesis deals with charge exchange reactions in slow collisions of multi-charged ions with neutral atoms or molecules. These reactions proceed very efficiently via a curve crossing mechanism, which leads to preferential population of excited states of the ion. The subsequent decay of these states leads to the emission of characteristic radiation. From wavelength resolved measurements of the absolute intensity of this radiation, cross sections for selective population of the excited (n,l-) states of the ion were determined. In addition, for some systems the total capture cross section was measured directly by means of charge state analysis of the secondary projectile ions. The role of charge exchange processes in fusion plasmas and in astrophysical plasmas is indicated. An experimental set-up is described with emphasis on the Electron Cyclotron Resonance Ion Source that was used in the experiments. Results for collisions of C 6+ , N 6+ , O 6+ and Ne 6+ with He, H 2 and Ar are presented as well as for electron capture from Li atoms by C 4+ and He 2+ . The interaction of the iso-electronic sequence C 4+ , N 5+ , O 6+ with atomic hydrogen, molecular hydrogen and helium is studied. First results for partial and total cross sections in collisions of fully stripped carbon, nitrogen and oxygen ions with atomic hydrogen are presented. These data are of particular importance for applications in fusion diagnostics. The data indicate that calculations of both molecular and atomic orbital type yield correct results, if an extended basis set is used. (Auth.)

  20. Multicharged Ion-induced simple molecule fragmentation dynamics

    International Nuclear Information System (INIS)

    Tarisien, M.

    2003-10-01

    The aim of this work is to study the dynamics of swift multicharged ion-induced fragmentation of diatomic (CO) and triatomic (CO 2 ) molecules. Performed at the GANIL facility, this study used the Recoil Ion Momentum Spectroscopy technique (RIMS), which consists of a time-of-flight mass spectrometer, coupled with a multi-hit capability position sensitive detector (delay line anode). The high-resolution measurement of the kinetic energy distribution released (KER) during the CO fragmentation points out the limitation of the Coulomb Explosion Model, revealing, for example, the di-cation CO 2 + electronic state contribution in the case of C + /O + fragmentation pathway. Furthermore, the multi-ionization cross section dependence with the orientation of the internuclear axis of CO is compared with a geometrical model calculation. Finally, different behaviours are observed for the dissociation dynamics of a triatomic molecule (CO 2 ). While triple ionization leads mainly to a synchronous concerted fragmentation dynamics, a weak fraction of dissociating molecule follows a sequential dynamics involving CO 2 + metastable states. In the case of double ionization, (CO 2 ) 2+ di-cation dissociation dynamics is asynchronously concerted and has been interpreted using a simple model involving an asymmetrical vibration of the molecule. (author)

  1. Prospect for a 60 GHz multicharged ECR ion source

    Science.gov (United States)

    Thuillier, T.; Bondoux, D.; Angot, J.; Baylac, M.; Froidefond, E.; Jacob, J.; Lamy, T.; Leduc, A.; Sole, P.; Debray, F.; Trophime, C.; Skalyga, V.; Izotov, I.

    2018-05-01

    The conceptual design of a fourth generation hybrid electron cyclotron resonance (ECR) ion source operated at 60 GHz is proposed. The axial magnetic mirror is generated with a set of three Nb3Sn coils, while the hexapole is made with room temperature (RT) copper coils. The motivations for such a hybrid development are to study further the ECR plasma physics and the intense multicharged ion beams' production and transport at a time when a superconducting (SC) hexapole appears unrealistic at 60 GHz. The RT hexapole coil designed is an evolution of the polyhelix technology developed at the French High Magnetic Field Facility. The axial magnetic field is generated by means of 3 Nb3Sn SC coils operated with a maximum current density of 350 A/mm2 and a maximum coil load line factor of 81%. The ECR plasma chamber resulting from the design features an inner radius of 94 mm and a length of 500 mm. The radial magnetic intensity is 4.1 T at the wall. Characteristic axial mirror peaks are 8 and 4.5 T, with 1.45 T minimum in between.

  2. Double atom ionization by multicharged ions and strong electromagnetic field: correlation effects in a continuous spectrum

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1997-01-01

    The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data

  3. Heavy ion reactions at low energies

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    Some general features of the heavy ion reactions at low energies are presented. Some kinds of processes are studied, such as: elastic scattering, peripherical reactions, deep inelastic collisions and fusion. Both, theoretical and experimental perspectives on this field are discussed. (L.C.) [pt

  4. Study on characteristics of valves for pulsed gas feed into a cyclotron multicharged ion source

    International Nuclear Information System (INIS)

    Bogomolov, S.L.; Efremov, A.A.; Koval'chuk, I.M.; Kutner, V.B.; Pasyuk, A.S.

    1984-01-01

    Different valves (with rotating drum, piezoelectric and electromagnetic) for pulsed gas feed into cyclotron multicharged ion arc source are described. It is shown that piezoelectric and electromagnetic valves provide a possibility of regulating in a wide range the gas flow pulse parameters

  5. An online low energy gaseous ion source

    International Nuclear Information System (INIS)

    Jin Shuoxue; Guo Liping; Peng Guoliang; Zhang Jiaolong; Yang Zheng; Li Ming; Liu Chuansheng; Ju Xin; Liu Shi

    2010-01-01

    The accumulation of helium and/or hydrogen in nuclear materials may cause performance deterioration of the materials. In order to provide a unique tool to investigate the He-and/or H-caused problems, such as interaction of helium with hydrogen and defects, formation of gas bubbles and its evolution, and the related effects, we designed a low energy (≤ 20 keV) cold cathode Penning ion source, which will be interfaced to a 200 kV transmission electron microscope (TEM), for monitoring continuously the evolution of micro-structure during the He + or H + ion implantation. Studies on discharge voltage-current characteristics of the ion source, and extraction and focusing of the ion beam were performed. The ion source works stably with 15-60 mA of the discharge current.Under the gas pressure of 5 x 10 -3 Pa and 1.5 x 10 -2 Pa, the discharge voltage are about 380 V and 320 V, respectively. The extracted ion current under lower gas pressure is greater than that under higher gas pressure, and it increases with the discharge current and extraction voltage. The ion lens consisting of three equal-diameter metal cylinder focus the ion beam effectively, so that the beam density at the 150 cm away from the lens exit increases by a over one order of magnitude. For ion beams of around 10 keV, the measured beam density is about 200 nA · cm -2 , which is applicable for ion implantation and in situ TEM observation for many kinds of nuclear materials. (authors)

  6. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    International Nuclear Information System (INIS)

    Sidorov, A.; Dorf, M.; Zorin, V.; Bokhanov, A.; Izotov, I.; Razin, S.; Skalyga, V.; Rossbach, J.; Spaedtke, P.; Balabaev, A.

    2008-01-01

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be ∼70 π mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was ∼25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data

  7. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...

  8. Low energy ion-molecule reactions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, J.M. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  9. Quantum chaos in multicharged ions and statistical approach to the calculation of electron-ion resonant radiative recombination

    International Nuclear Information System (INIS)

    Gribakin, G.F.; Gribakina, A.A.; Flambaum, V.V.

    1999-01-01

    We show that the spectrum and eigenstates of open-shell multicharged atomic ions near the ionisation threshold are chaotic, as a result of extremely high level densities of multiply excited electron states (10 3 eV -1 in Au 24+ ) and strong configuration mixing. This complexity enables one to use statistical methods to analyse the system. We examine the dependence of the orbital occupation numbers and single-particle energies on the excitation energy of the system, and show that the occupation numbers are described by the Fermi-Dirac distribution, and the temperature and chemical potential can be introduced. The Fermi-Dirac temperature is close to the temperature defined through the canonical distribution. Using a statistical approach we estimate the contribution of multielectron resonant states to the radiative capture of low-energy electrons by Au 25+ and demonstrate that this mechanism fully accounts for the 10 2 times enhancement of the recombination over the direct radiative recombination, in agreement with recent experimental observations. Copyright (1999) CSIRO Australia

  10. Scanning ion microscopy with low energy lithium ions

    International Nuclear Information System (INIS)

    Twedt, Kevin A.; Chen, Lei; McClelland, Jabez J.

    2014-01-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography

  11. Charge exchange and ionization of atoms in collisions with multicharged ions

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1987-01-01

    Single-electron transition in continuous and discrete spectra, induced by A atom and B +2 multicharged ion collision with the charge Z>3 are investigated. A theory of quantum transitions in multilevel systems with ion-atom collisions is considered. Main results on charge exchange in slow (v 0 Z 1/2 ) collisions are presented. For analysis of charge exchange analytical method, being generalization of decay model and of approximation of nonadiabatic coupling of two states, that are included into a developed approach as limiting cases, is developed. The calculation results are compared with the available experimental data

  12. Spectroscopy of multi-charged ions: a short review

    International Nuclear Information System (INIS)

    Berry, H.G.

    1983-01-01

    Recent and future applications of multiply charged ions to spectroscopy and atomic structure are discussed. The experimental techniques use either very fast ions produced in heavy ion accelerators, or slow ions produced directly both in electron beam ion sources and from collisions of fast accelerated ions. For the accelerated fast ions, spectroscopic measurements on using gas target excitation, solid foil excitation and laser excitation. In gas target excitation, both X-ray and electron spectroscopy have been applied to analyse atomic structures and secondary collision effects. Highlycharged secondary ions have also been trapped electro-magnetically for further similar studies in controlled conditions. Spectroscopic detection following solid foil interaction has led to atomic lifetime measurements, principally of metastable level, analysis of complex highly-ionized heavy ion spectra, and investigations of relativistic and QED effects in few electron ions

  13. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  14. P.I.A.F.E project: long distance transport of low energy exotic ions

    International Nuclear Information System (INIS)

    Nibart, V.

    1996-01-01

    The aim of the PIAFE project is the long distance (400 m) transport of a low energy radioactive ion beam from the ILL (Institut Laue Langevin) to the ISN (Institut des Sciences Nucleaires) of Grenoble (France). The production, extraction, ionization and mass separation of ions is performed by the ILL, while the transformation of ions into multicharged ions, their stripping and acceleration is carried out at the ISN. Theoretical and experimental studies for a simple an original guidance solution have shown that such a long transport, even delicate, should not encounter any major difficulty. The main objectives of this thesis is the technical realization of a 18 m section of this transport line. The problem of supports and focalizing elements alignment has been solved together with the other problems such as: the central trajectory deviation due to alignment defects and to the Earth's magnetic field; the particle losses due to charge exchange with the residual gas and the emittance increase by Coulomb scattering. It has been demonstrated that a 90% transmission can be obtained using a 25 keV energy and a 10 -7 mbar vacuum. Experimental measurements using a rubidium ion source have allowed to validate a theoretical model of emittance increase due to the residual gas-ions interactions. The increase of emittance with respect to the pressure has been measured using four residual gases of different mass. (J.S.). 29 refs., 61 figs., 19 tabs., 8 photos., 4 appends

  15. Electron capture by multicharged ions from hydrogen atoms at eV energies

    International Nuclear Information System (INIS)

    Havener, C.C.; Nesnidal, M.P.; Porter, M.R.; Phaneuf, R.A.

    1990-01-01

    To quantitatively study electron capture during collisions of multiply charged ions with neutral atoms at near-thermal energies, keV-energy multicharged ion beams are merged with ground-state beams of H or D atoms of chosen velocity such that collisions in the relative energy range 1--1000 eV/amu result. Recent data for O 3+ , O 4+ + H(D) are presented and compared with theoretical predictions. Recently completed modifications to the apparatus are described that will provide a significant improvement in signal-to-background and angular collection. These improvements will allow measurements to be extended to lower energies, where effects due to the ion-induced dipole attraction may be evident

  16. Ionization and charge exchange in atom collision with multicharged ion

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1984-01-01

    Single-electron ionization and charge exchange are considered in collisions of an atom with an ion of charge Z> or =3 and at velocities v>Z -1 /sup // 3 . The approach is based on the Keldysh quasiclassical method. The ionization and charge exchange processes are described within the framework of a single formalism. Effects of rotation and translation are taken into account. The calculated total and partial cross sections agree well with the available experimental data. OFF

  17. Ionisation and dissociation of water induced by swift multicharged ions

    International Nuclear Information System (INIS)

    Legendre, S.

    2006-02-01

    Ionization and dissociation of water molecules and water clusters induced by 11.7 MeV/A Ni 25+ ions were carried out by imaging techniques. Branching ratios, ionisation cross sections and Kinetic Energy Released distributions have been measured together with fragmentation dynamics studies. Multiple ionization represents approximately 30% of the ionizing events. Double ionization produces in significant way atomic oxygen, considered as a possible precursor of the large production of HO 2 radical in liquid water radiolysis by ions of high Linear Energy Transfer. We evidence a strong selectivity of bond breakage in the case of ion-induced HOD fragmentation. Once the molecule doubly ionized, the breakage of the O-H bond is found 6.5 times more probable than that of the O-D bond. A semi-classical calculation simulating the fragmentation dynamics on the potential energy surface of the ground-state of di-cation H 2 O 2+ makes possible to as well reproduce the preferential nature of the breakage of the O-H bond as the position and the shift of the kinetic energy distributions. First results concerning interaction with water clusters are also reported. Measurements in coincidence are carried out giving access to correlation, with the distributions in energy and angle of the emitted fragments. Mass spectrum points fast intra-cluster proton transfer, leading to the emission of protonated clusters. (author)

  18. A multicharge ion source (Supernanogan) for the OLIS facility at ISAC/TRIUMF.

    Science.gov (United States)

    Jayamanna, K; Wight, G; Gallop, D; Dube, R; Jovicic, V; Laforge, C; Marchetto, M; Leross, M; Louie, D; Laplante, R; Laxdal, R; McDonald, M; Wiebe, G J; Wang, V; Yan, F

    2010-02-01

    The Off-Line Ion Source (OLIS) [K. Jayamanna, D. Yuan, T. Kuo, M. MacDonald, P. Schmor, and G. Dutto, Rev. Sci. Instrum. 67, 1061 (1996); K. Jayamanna, Rev. Sci. Instrum. 79, 02711 (2008)] facility consists of a high voltage terminal containing a microwave cusp ion source, either a surface ion source or a hybrid surface-arc discharge ion source [K. Jayamanna and C. Vockenhuber, Rev. Sci. Instrum. 79, 02C712 (2008)], and an electrostatic switch that allows the selection of any one of the sources without mechanical intervention. These sources provide a variety of +1 beams up to mass 30 for Isotope Separator and ACcelerator (ISAC) [R. E. Laxdal, Nucl. Instrum. Methods Phys. Res. B 204, 400 (2003)] experiments, commissioning the accelerators, setting up the radioactive experiments, and for tuning the beam lines. The radio frequency quadrupole (RFQ) [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] injector accelerator is a constant velocity machine designed to accept only 2 keV/u and the source extraction energy is limited to 60 kV. Further stripping is then needed downstream of the RFQ to inject the beam into the drift tube linac [M. Marchetto, Z. T. Ang, K. Jayamanna, R. E. Laxdal, A. Mitra, and V. Zvyagintsev, Eur. Phys. J. Spec. Top. 150, 241 (2005)] accelerator that requires A/q up to 6. Base on this constraints a multicharge ion source capable to deliver beams above mass 30 with A/q up to 6 was needed in order to reach full capability of the ISAC facility. A Supernanogan [C. Bieth et al., Nucleonika 48, S93 (2003)] multicharge ion source was then purchased from Pantechnik and was installed in the OLIS terminal. Commissioning and performance of the Supernanogan with some results such as emittance dependence of the charge states as well as charge state efficiencies are presented.

  19. Multicharged Ion-induced simple molecule fragmentation dynamics; Dynamique de la fragmentation de molecules simples induite par impact d'ion multicharge

    Energy Technology Data Exchange (ETDEWEB)

    Tarisien, M

    2003-10-01

    The aim of this work is to study the dynamics of swift multicharged ion-induced fragmentation of diatomic (CO) and triatomic (CO{sub 2}) molecules. Performed at the GANIL facility, this study used the Recoil Ion Momentum Spectroscopy technique (RIMS), which consists of a time-of-flight mass spectrometer, coupled with a multi-hit capability position sensitive detector (delay line anode). The high-resolution measurement of the kinetic energy distribution released (KER) during the CO fragmentation points out the limitation of the Coulomb Explosion Model, revealing, for example, the di-cation CO{sub 2}{sup +} electronic state contribution in the case of C{sup +}/O{sup +} fragmentation pathway. Furthermore, the multi-ionization cross section dependence with the orientation of the internuclear axis of CO is compared with a geometrical model calculation. Finally, different behaviours are observed for the dissociation dynamics of a triatomic molecule (CO{sub 2}). While triple ionization leads mainly to a synchronous concerted fragmentation dynamics, a weak fraction of dissociating molecule follows a sequential dynamics involving CO{sub 2}{sup +} metastable states. In the case of double ionization, (CO{sub 2}){sup 2+} di-cation dissociation dynamics is asynchronously concerted and has been interpreted using a simple model involving an asymmetrical vibration of the molecule. (author)

  20. Measurements of low energy auroral ions

    International Nuclear Information System (INIS)

    Urban, A.

    1981-01-01

    This paper summarizes ion measurements in the energy range 0.1 to 30 keV observed during the campaigns 'Substorm Phenomena' and 'Porcupine'. For a clear survey of the physical processes during extraordinary events, sometimes ion measurements of higher energies are also taken into account. Generally, the pitch angle distributions were isotropic during all flights except some remarkable events. In general the ion and electron flux intensities correlated, but sometimes revealed a spectral anti-correlation. Acceleration of the ions by an electrostatic field aligned parallel to the magnetic field could be identified accompanied by intense electron precipitation. On the other hand deceleration of the ions was observed in other field-aligned current sheets which are indicated by the electron and magnetic field measurements. Temporal successive monoenergetic ion variations pointed to energy dispersion and to the location of the source region at 9 Rsub(E). Furthermore, ion fluxes higher than those of the electrons were measured at pitch angles parallel to the magnetic field. The integral down-going number and energy flux of the ions contributed to the total particle or energy influx between 65% and less than 7% and did not clearly characterize the geophysical launch conditions or auroral activities. (author)

  1. Multicharged ion-induced emission from metal- and insulator surfaces related to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.P. [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1997-01-01

    The edge region of magnetically confined plasmas in thermonuclear fusion experiments couples the hot plasma core with the cold first wall. We consider the dependence of plasma-wall interaction processes on edge plasma properties, with particular emphasis on the role of slow multicharged ions (MCI). After a short survey on the physics of slow MCI-surface interaction we discuss recent extensive studies on MCI-induced electron emission from clean metal surfaces conducted at impact velocities << 1 a.u., from which generally reliable total electron yields can be obtained. We then demonstrate the essentially different role of the MCI charge for electron emission from metallic and insulator surfaces, respectively. Furthermore, we present recent results on slow MCI-induced `potential sputtering` of insulators which, in contrast to the well established kinetic sputtering, already occurs at very low ion impact energy and strongly increases with the MCI charge state. (J.P.N.). 55 refs.

  2. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    International Nuclear Information System (INIS)

    Meyer, Fred W.; Harris, Peter R.; Taylor, C.N.; Meyer, Harry M. III; Barghouty, N.; Adams, J. Jr.

    2011-01-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  3. Line radiation of multicharged ions with the Fermi-Dirac level distribution of electrons at high temperatures

    International Nuclear Information System (INIS)

    Garanin, S.F.

    2003-01-01

    Line radiation of multicharged ions with the Fermi-Dirac electron distribution by levels in the range of plasma temperatures, when electron movement may be considered quasiclassical, while potential, in which they move, is the Coulomb one, is considered. The spectrum and intensity of ion radiation are calculated. Within high plasma densities the radiation intensity per one ion proved to be independent of density and proportional to T 2 [ru

  4. An analytic expression for the sheath criterion in magnetized plasmas with multi-charged ion species

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2015-01-01

    The generalized Bohm criterion in magnetized multi-component plasmas consisting of multi-charged positive and negative ion species and electrons is analytically investigated by using the hydrodynamic model. It is assumed that the electrons and negative ion density distributions are the Boltzmann distribution with different temperatures and the positive ions enter into the sheath region obliquely. Our results show that the positive and negative ion temperatures, the orientation of the applied magnetic field and the charge number of positive and negative ions strongly affect the Bohm criterion in these multi-component plasmas. To determine the validity of our derived generalized Bohm criterion, it reduced to some familiar physical condition and it is shown that monotonically reduction of the positive ion density distribution leading to the sheath formation occurs only when entrance velocity of ion into the sheath satisfies the obtained Bohm criterion. Also, as a practical application of the obtained Bohm criterion, effects of the ionic temperature and concentration as well as magnetic field on the behavior of the charged particle density distributions and so the sheath thickness of a magnetized plasma consisting of electrons and singly charged positive and negative ion species are studied numerically

  5. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  6. Differential electron emission in multi-charged ion atom collisions: Systematics for distant and close collisions

    International Nuclear Information System (INIS)

    DuBois, R.D.; Toburen, L.H.; Middendorf, M.E.; Jagutzki, O.

    1992-09-01

    Absolute doubly differential cross sections for electron emission are presented for 0.5 MeV/u multi-charged ion impact on helium, neon, and argon targets. For the helium target, Bq+, Cq+ (q = 2--5) and Oq+, Fq+ (q = 3--6) projectiles were studied; for neon and argon, only Cq+ (q = 2--5) projectiles were used. Electron emission for 10 degrees ≤ Θ ≤ 60 degrees was studied. The measured cross sections were assumed to scale as the square of an effective projectile charge, Z eff , which was determined as a function of emitted electron energy and angle. For distant collisions (low emitted electron energies), we find that Z eff ∼ q for small q and Z eff eff > Z and increases as q decreases. This is true for all angles and targets investigated

  7. Multicharged heavy ion production process and ion sources in impulse regime allowing the operation of the process

    International Nuclear Information System (INIS)

    Jacquot, B.

    1985-01-01

    The present invention is concerned with a production process of multicharged ions of elements choosen in the following group carbon, nitrogen, oxygen, neon and argon in a ion source in impulse regime; the process is characterized in that the gas introduced in the ion souce enclosure is a gas mixture in a non-critical proportion (about 50% in partial pressure) of a first gas choosen among helium, nitrogen and oxygen and a second gas choosen in the group comprising carbon, nitrogen, oxygen, neon and argon. This process allows to grow current intensity of heavy ions more than 10 times. The invention is also concerned with a ion source in impulse regime; it is characterized in that it comprises an enclosure related to two gas entrances, provided with a valve controlled by pressure measurement in the enclosure [fr

  8. Production of multicharged radioactive ion beams for spiral: studies and realization of the first target-ion source system

    International Nuclear Information System (INIS)

    Maunoury, L.

    1998-01-01

    In the framework of the SPIRAL project, which concerns the production and the acceleration of a multicharged radioactive ions beam, the following part has been studied: production and ionization of the radioactive ions beam. A first target-source (nanogan II), devoted exclusively to the production of multicharged radioactive ions gas type beams, has been studied and tested. The diffusion efficiency has been deduced from the diffusion equations (Fick laws). This efficiency is governed by the following parameters: the temperature, the grains size of the target, the Arrhenius parameters and the radioactive period. Another study concerning the production targets is presented. It deals with the temperature distribution allowing an utilization of more than one month at a temperature of 2400 K. Another development (SPIRAL II) is devoted to the production of high neutron content radioactive atoms created by the uranium fission, from fast neutrons. The neutrons beam is produced by the ''stripping break-up'' of a deutons beam in a converter. (A.L.B.)

  9. Cluster-assisted multiple ionization of methyl iodide by a nanosecond laser: Influence of laser intensity on the kinetic energy and peak profile of multicharged ions

    International Nuclear Information System (INIS)

    Wen Lihua; Li Haiyang; Luo Xiaolin; Niu Dongmei; Xiao Xue; Wang Bin; Liang Feng; Hou Keyong; Shao Shiyong

    2006-01-01

    The dependences of kinetic energies and peak profiles of multicharged ions of I q+ (q = 2-3) and C 2+ on the laser intensity have been studied in detail by time-of-flight mass spectrometry, those multicharged ions are produced by irradiation of methyl iodide cluster beam with a nanosecond 532 nm Nd-YAG laser. Our experiments show that the kinetic energies released of multicharged ions increase linearly with the laser intensity in the range of 3 x 10 9 -2 x 10 11 W/cm 2 . The peaks of multicharged ions are split to forward ions and backward ions, and the ratio of the backward ions to forward ions decreases exponentially with laser intensity. The decreasing of backward ions is probably due to Coulomb scattering by the heavier I + ions when they turn around through the laser focus point. The linear dependence of kinetic energy of multicharged ions on laser intensity is interpreted by the ionization mechanism, in which the laser induced inverse bremsstrahlung heating of electron is the rate-limiting step

  10. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  11. Negative ions as a source of low energy neutral beams

    International Nuclear Information System (INIS)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems

  12. Track structure for low energy ions including charge exchange processes

    International Nuclear Information System (INIS)

    Uehara, S.; Nikjoo, H.

    2002-01-01

    The model and development is described of a new generation of Monte Carlo track structure codes. The code LEAHIST simulates full slowing down of low-energy proton history tracks in the range 1 keV-1 MeV and the code LEAHIST simulates low-energy alpha particle history tracks in the range 1 keV-8 MeV in water. All primary ion interactions are followed down to 1 keV and all electrons to 1 eV. Tracks of secondary electrons ejected by ions were traced using the electron code KURBUC. Microdosimetric parameters derived by analysis of generated tracks are presented. (author)

  13. Interaction of multicharged ions with molecules (CO2, C60) by coincident electron spectroscopy

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    2001-01-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems 18 O 8+ +Ar, CO 2 and C 60 have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C n + fragments (n=1 to 8) produced in multiple capture processes from C 60 target are given. A detailed investigation of the double capture process with CO 2 molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO 2 2+ molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  14. Corrosion behavior of low energy, high temperature nitrogen ion ...

    Indian Academy of Sciences (India)

    Corrosion behavior of low energy, high temperature nitrogen ion-implanted AISI 304 stainless steel. M GHORANNEVISS1, A SHOKOUHY1,∗, M M LARIJANI1,2,. S H HAJI HOSSEINI 1, M YARI1, A ANVARI4, M GHOLIPUR SHAHRAKI1,3,. A H SARI1 and M R HANTEHZADEH1. 1Plasma Physics Research Center, Science ...

  15. Study in the plasma with non-equilibrium ionization state by relative intensities in K-spectra of multicharged ions

    International Nuclear Information System (INIS)

    Bojko, V.A.; Skobelev, I.Yu.; Faenov, A.Ya.

    1984-01-01

    The pressure of the K-spectra formation of multicharge h-, He-, Li-like ions in a plasma with an arbitrary ionization state are considered. It is shown that comparison of experimental and theoretical data on the intensities of f a number of spectral lines belonging to such ions allows one to determine both the plasma electron temperature and ion distribution versus the ionization degre ees. The proposed method of plasma diagnostics is used for measuring parameters of the expanding laser-produced magnesium plasme

  16. Auger vs resonance neutralization in low energy He+ ion scattering

    International Nuclear Information System (INIS)

    Woodruff, D.P.

    1983-01-01

    He + ions incident on a metal surface can neutralize either by an Auger or resonant charge exchange. While the Auger process has always been thought to be dominant, recent theoretical interest in the simpler one-electron resonance process has led to suggestions that this alone can account for the neutralization seen in low energy He + ion scattering. In this paper this assertion is analysed by looking at the wider information available on charge exchange processes for He + ion scattering through comparison with Li + ion scattering, the importance of multiple scattering in both these scattering experiments and the results of ion neutralization spectroscopy. These lead to the conclusion that while resonance neutralization to produce metastable He* may well occur at a substantial rate in He + ion scattering, the dominant process leading to loss of ions from the final scattered signal is Auger neutralization as originally proposed. (author)

  17. Above-surface neutralization of multicharged ions incident on a cesiated Au target

    International Nuclear Information System (INIS)

    Meyer, F.W.; Hughes, I.G.; Overbury, S.H.

    1992-01-01

    The critical distance above the surface at which conduction band electrons can start to neutralize incident multicharged projectiles by classical overbarrier transitions is inversely proportional to the metal work function. By varying the amount of Cs coverage on a Au single crystal target between O and 1 monolayers, the authors have been able to verify an up to 3.3 eV decrease of the surface work function, corresponding to more than a factor of two decrease relative to that tabulated for clean Au. This change should result in more than doubling the above-surface interaction time. At larger above-surface distances, however, the electron capture most likely occurs into higher principal quantum numbers of the projectile. The subsequent de-excitation cascade by which inner shells of the projectiles are populated may thus require more time. The authors have investigated the overall effect that lowering the work function has on the above-surface component of projectile K-Auger electron emission for grazing incidence N 6+ ions interacting with cesiated Au single crystals. They will present results showing that an enhancement of this component is indeed observed, and that it is strongly dependent on incidence angle

  18. Luminescence model with quantum impact parameter for low energy ions

    CERN Document Server

    Cruz-Galindo, H S; Martínez-Davalos, A; Belmont-Moreno, E; Galindo, S

    2002-01-01

    We have modified an analytical model of induced light production by energetic ions interacting in scintillating materials. The original model is based on the distribution of energy deposited by secondary electrons produced along the ion's track. The range of scattered electrons, and thus the energy distribution, depends on a classical impact parameter between the electron and the ion's track. The only adjustable parameter of the model is the quenching density rho sub q. The modification here presented, consists in proposing a quantum impact parameter that leads to a better fit of the model to the experimental data at low incident ion energies. The light output response of CsI(Tl) detectors to low energy ions (<3 MeV/A) is fitted with the modified model and comparison is made to the original model.

  19. Characteristics of transitory multi-charged molecular ions produced by an intense femtosecond laser impulse; Etats electroniques des ions moleculaires multicharges transitoires produits par une impulsion laser femtoseconde intense

    Energy Technology Data Exchange (ETDEWEB)

    Quaglia, L

    2001-12-01

    The study of the molecular multi-ionization is narrowly linked to the dynamics of excitation and fragmentation for which the experimental observables rest on the characteristics of the fragmentation products, these characteristics are: intern energy, kinetic energy and charge states. The first chapter sets the problem. The second chapter presents the experimental tools used and developed in this work, the technologies of the detection of ions or of fluorescence are also described. The chapter 3 gathers the theoretical aspects: quantum chemistry and CASSCF (complete active space self consistent field) methods have been used to compute the potential energy curves of multi-charged ions, the two-dimensional hydrodynamic model derived from the Thomas-Fermi model is introduced to tackle the molecular re-orientation. The chapter 4 presents the experimental study of highly excited states by using fluorescence detection methods. The chapter 5 is dedicated to the study of low excited states by measuring kinetic energy spectra and by comparison with potential energy curves of molecular multi-charged ions. The chapter 6 presents experiments with 2 impulses and the results given by the Thomas-Fermi model applied to the re-orientation of the N{sub 2}O molecule. (A.C.)

  20. Pattern formation on Ge by low energy ion beam erosion

    International Nuclear Information System (INIS)

    Teichmann, Marc; Lorbeer, Jan; Frost, Frank; Rauschenbach, Bernd; Ziberi, Bashkim

    2013-01-01

    Modification of nanoscale surface topography is inherent to low-energy ion beam erosion processes and is one of the most important fields of nanotechnology. In this report a comprehensive study of surface smoothing and self-organized pattern formation on Ge(100) by using different noble gases ion beam erosion is presented. The investigations focus on low ion energies (⩽ 2000 eV) and include the entire range of ion incidence angles. It is found that for ions (Ne, Ar) with masses lower than the mass of the Ge target atoms, no pattern formation occurs and surface smoothing is observed for all angles of ion incidence. In contrast, for erosion with higher mass ions (Kr, Xe), ripple formation starts at incidence angles of about 65° depending on ion energy. At smaller incident angles surface smoothing occurs again. Investigations of the surface dynamics for specific ion incidence angles by changing the ion fluence over two orders of magnitude gives a clear evidence for coarsening and faceting of the surface pattern. Both observations indicate that gradient-dependent sputtering and reflection of primary ions play crucial role in the pattern evolution, just at the lowest accessible fluences. The results are discussed in relation to recently proposed redistributive or stress-induced models for pattern formation. In addition, it is argued that a large angular variation of the sputter yield and reflected primary ions can significantly contribute to pattern formation and evolution as nonlinear and non-local processes as supported by simulation of sputtering and ion reflection. (paper)

  1. Emittance measurements in low energy ion storage rings

    Science.gov (United States)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  2. Channeling effect for low energy ion implantation in Si

    International Nuclear Information System (INIS)

    Cho, K.; Allen, W.R.; Finstad, T.G.; Chu, W.K.; Liu, J.; Wortman, J.J.

    1985-01-01

    Ion implantation is one of the most important processes in semiconductor device fabrication. Due to the crystalline nature of Si, channeling of implanted ions occurs during this process. Modern devices become smaller and shallower and therefore require ion implantation at lower energies. The effect of channeling on ion implantation becomes a significant problem for low energy ion implantation. The critical angle for axial and planar channeling increases with decreasing energy. This corresponds to an increased probability for channeling with lowering of ion energy. The industry approach to avoid the channeling problem is to employ a tilt angle of 7 0 between the ion implantation direction and the surface normal. We approach the problem by mapping major crystalline axes and planes near the [100] surface normal. Our analysis indicates that a 7 0 tilt is not an optimum selection in channeling reduction. Tilt angles in the range 5 0 to 6 0 combined with 7 0 +- 0.5 0 rotation from the (100) plane are better selections for the reduction of the channeling effect. The range of suitable angles is a function of the implantation energy. Implantations of boron along well specified crystallographic directions have been carried out by careful alignment and the resulting boron profiles measured by SIMS. (orig.)

  3. A simple model for low energy ion-solid interactions

    International Nuclear Information System (INIS)

    Mohajerzadeh, S.; Selvakumar, C.R.

    1997-01-01

    A simple analytical model for ion-solid interactions, suitable for low energy beam depositions, is reported. An approximation for the nuclear stopping power is used to obtain the analytic solution for the deposited energy in the solid. The ratio of the deposited energy in the bulk to the energy deposited in the surface yields a ceiling for the beam energy above which more defects are generated in the bulk resulting in defective films. The numerical evaluations agree with the existing results in the literature. copyright 1997 American Institute of Physics

  4. Measurements of sputtering yields for low-energy plasma ions

    International Nuclear Information System (INIS)

    Nishi, M.; Yamada, M.; Suckewer, S.; Rosengaus, E.

    1979-04-01

    Sputtering yields of various wall/limiter materials of fusion devices have been extensively measured in the relevant plasma environment for low-energy light ions (E 14 cm -3 and electron temperature up to 10eV. Target materials used were C (graphite), Ti, Mo, Ta, W, and Fe (stainless steel). In order to study the dependence of the sputtering yields on the incident energy of ions, the target samples were held at negative bias voltage up to 300V. The sputtering yields were determined by a weight-loss method and by spectral line intensity measurements. The data obtained in the present experiment agree well with those previously obtained at the higher energies (E greater than or equal to 200eV) by other authors using different schemes; the present data also extend to substantially lower energies (E approx. > 30eV) than hitherto

  5. Low energy implantation of boron with decaborane ions

    Science.gov (United States)

    Albano, Maria Angela

    The goal of this dissertation was to determine the feasibility of a novel approach to forming ultra shallow p-type junctions (tens of nm) needed for future generations of Si MOS devices. In the new approach, B dopant atoms are implanted by cluster ions obtained by ionization of decaborane (B 10H14) vapor. An experimental ion implanter with an electron impact ion source and magnetic mass separation was built at the Ion Beam and Thin Film Research Laboratory at NJIT. Beams of B10Hx+ ions with currents of a few microamperes and energies of 1 to 12 keV were obtained and used for implantation experiments. Profiles of B and H atoms implanted in Si were measured by Secondary Ion Mass Spectroscopy (SIMS) before and after rapid thermal annealing (RTA). From the profiles, the junction depth of 57 nm (at 1018 cm-3 B concentration) was obtained with 12 keV decaborane ions followed by RTA. The dose of B atoms that can be implanted at low energy into Si is limited by sputtering as the ion beam sputters both the matrix and the implanted atoms. As the number of sputtered B atoms increases with the implanted dose and approaches the number of the implanted atoms, equilibrium of B in Si is established. This effect was investigated by comparison of the B dose calculated from the ion beam integration with B content in the sample measured by Nuclear Reaction Analysis (NRA). Maximum (equilibrium) doses of 1.35 x 1016 B cm -2 and 2.67 x 1016 B cm-2 were obtained at the beam energies of 5 and 12 keV, respectively. The problem of forming shallow p-type junctions in Si is related not only to implantation depth, but also to transient enhanced diffusion (TED). TED in Si implanted with B10Hx+ was measured on boron doping superlattice (B-DSL) marker layers. It was found that TED, following decaborane implantation, is the same as with monomer B+ ion implantation of equivalent energy and that it decreases with the decreasing ion energy. (Abstract shortened by UMI.)

  6. Study of uranium dioxyde sputtering induced by multicharged heavy ions at low and very low kinetic energy: projectile charge effect

    International Nuclear Information System (INIS)

    Haranger, F.

    2003-12-01

    Ion beam irradiation of a solid can lead to the emission of neutral or ionized atoms, molecules or clusters from the surface. This comes as a result of the atomic motion in the vicinity of the surface, induced by the transfer of the projectile energy. Then, the study of the sputtering process appears as a means to get a better understanding of the excited matter state around the projectile trajectory. In the case of slow multicharged ions, a strong electronic excitation can be achieved by the projectile neutralization above the solid surface and / or its deexcitation below the surface. Parallel to this, the slowing down of such ions is essentially related to elastic collision with the target atoms. The study of the effect of the initial charge state of slow multicharged ions, in the sputtering process, has been carried out by measuring the absolute angular distributions of emission of uranium atoms from a uranium dioxide surface. The experiments have been performed in two steps. First, the emitted particles are collected onto a substrate during irradiation. Secondly, the surface of the collectors is analyzed by Rutherford Backscattering Spectrometry (RBS). This method allows the characterization of the emission of neutrals, which are the vast majority of the sputtered particles. The results obtained provide an access to the evolution of the sputtering process as a function of xenon projectile ions charge state. The measurements have been performed over a wide kinetic energy range, from 81 down to 1.5 keV. This allowed a clear separation of the contribution of the kinetic energy and initial projectile charge state to the sputtering phenomenon. (author)

  7. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  8. Experiments on secondary ion emission with multicharged keV ion bombardement

    International Nuclear Information System (INIS)

    Della Negra, S.; Depauw, J.; Joret, H.; Le Beyec, Y.; Schweikert, E.A.

    1987-01-01

    An electron cyclotron resonance ion source was used to study the influence of the incident charge state of keV ions on secondary ion emission. The experiments were run with 18 keV Arn+ (1 < n < 11) beams produced by a minimafios source. Various types of targets were bombarded by the ion beam and the sputtered ionized species were identified by time of flight mass spectrometry. The experimental arrangement is detailed and preliminary results are indicated

  9. Emittance scanner for intense low-energy ion beams

    International Nuclear Information System (INIS)

    Allison, P.W.; Sherman, J.D.; Holtkamp, D.B.

    1983-01-01

    An emittance scanner has been developed for use with low-energy H - ion beams to satisfy the following requirements: (1) angular resolution of +-1/2 mrad, (2) small errors from beam space charge, and (3) compact and simple design. The scanner consists of a 10-cm-long analyzer containing two slits and a pair of electric deflection plates driven by a +-500-V linear ramp generator. As the analyzer is mechanically driven across the beam, the front slit passes a thin ribbon of beam through the plates. The ion transit time is short compared with the ramp speed; therefore, the initial angle of the ions that pass through the rear slit is proportional to the instantaneous ramp voltage. The current through the rear slit then is proportional to the phase-space density d 2 i/dxdx'. The data are computer-analyzed to give, for example, rms emittance and phase-space density contours. Comparison of measured data with those calculated from a prepared (collimated) phase space is in good agreement

  10. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  11. Incident ion charge state dependence of electron emission during slow multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Hughes, I.G.; Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    Characteristic variations in the total electron yield γ as a function of crystal azimuthal orientation are reported for slow N 2+ , N 5+ and N 6+ ions incident on a Au(011) single crystal, together with measurements of γ as a function of incident ion velocity. Kinetic electron emission is shown to arise predominantly in close collisions between incident ions and target atoms, and potential electron emission is found to be essentially constant within our present velocity range. The incident ion charge state is shown to play no role in kinetic electron emission. Extremely fast neutralization times of the order of 10 - 15 secs are needed to explain the observations

  12. The x-ray emission spectra of multicharged xenon ions in a gas puff laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Skobelev, I.Yu.; Dyakin, V.M.; Faenov, A.Ya. [Multicharged Ion Spectra Data Center, VNIIFTRI, Mendeleevo (Russian Federation); Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Warsaw (Poland); Biemont, E. [Institut de Physique Nucleaire Experimentale, Universite de Liege, Liege (Belgium); Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Quinet, P. [Astrophysique et Spectroscopie, Universite de Mons-Hainaut, Mons (Belgium); Nilsen, J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Behar, E.; Doron, R.; Mandelbaum, P.; Schwob, J.L. [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem (Israel)

    1999-01-14

    Emission spectra of multicharged xenon ions produced by a laser gas puff are observed with high spectral resolution in the 8.5-9.5 and 17-19 A wavelength ranges. Three different theoretical methods are employed to obtain 3l-n'l'(n' = 4 to 10) wavelengths and Einstein coefficients for Ni-like Xe{sup 26+}. For the 3d-4p transitions, very good agreement is found between the experimental wavelengths and the various theoretical wavelengths. These accurate energy level measurements can be useful for studying the Ni-like xenon x-ray laser scheme. On the other hand, several intense spectral lines could not be identified as 3l-n'l' lines of Ni-like xenon, despite the very good agreement between the wavelengths and Einstein coefficients calculated for these transitions using the three different methods. (author)

  13. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuldyuld@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  14. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells

  15. Variations of Low-energy Ion Distributions Measured in the Heliosheath

    International Nuclear Information System (INIS)

    Decker, R. B.; Roelof, E. C.; Hill, M. E.; Krimigis, S. M.

    2010-01-01

    This report is an update of low-energy ion intensities and angular distributions measured recently by the Low Energy Charged Particle instruments on the Voyager 1 and 2 spacecraft in the inner heliosheath.

  16. Low-energy radioactive ion beam production of 22Mg

    International Nuclear Information System (INIS)

    Duy, N.N.; Kubono, S.; Yamaguchi, H.; Kahl, D.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Kwon, Y.K.; Khiem, L.H.; Kim, Y.H.; Song, J.S.; Hu, J.; Ayyad, Y.

    2013-01-01

    The 22 Mg nucleus plays an important role in nuclear astrophysics, specially in the 22 Mg(α,p) 25 Al and proton capture 22 Mg(p,γ) 23 Al reactions. It is believed that 22 Mg is a waiting point in the αp-process of nucleosynthesis in novae. We proposed a direct measurement of the 22 Mg+α resonance reaction in inverse kinematics using a radioactive ion (RI) beam. A 22 Mg beam of 3.73 MeV/u was produced at CRIB (Center for Nuclear Study (CNS) low-energy RI Beam) facility of the University of Tokyo located at RIKEN (Japan) in 2011. In this paper we present the results about the production of the 22 Mg beam used for the direct measurement of the scattering reaction 22 Mg(α,α) 22 Mg, and the stellar reaction 22 Mg(α,p) 25 Al in the energy region concerning an astrophysical temperature of T 9 =1–3 GK

  17. Low-energy heavy-ion reactions: Some recent developments

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1989-01-01

    We address three areas: behavior of the optical model at low energies and associated phenomena, fusion at near- and sub-barrier energies; where does fusion occur?, and recent examples of explicit coupled-channels effects at low energies. 74 refs., 18 figs

  18. Studies of electron correlation effects in multicharged ion atom collisions involving double capture

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Sommer, K.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Meyer, F.W.

    1988-01-01

    We review measurements of L-Coster Kronig and Auger electron production in slow, multicharged collision systems to study electron correlation effects in the process of double electron capture. The n/sup /minus/3/ law was confirmed for the production of the Coster-Kronig configurations 1s/sup 2/2pn/ell/ (n greater than or equal to 6) in O/sup 6 +/ + He collisions. Enhancement of high angular momentum /ell/ in specific 1s/sup 2/2pn/ell/ configurations was observed by means of high-resolution measurements of the Coster-Kronig lines. The importance of electron correlation effects in couplings of potential energy curves leading to the 1s/sup 2/2pn/ell/ configurations is verified by means of Landau-Zener model calculations. 32 refs., 4 figs.

  19. Studies of electron correlation effects in multicharged ion atom collisions involving double capture

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Sommer, K.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Meyer, F.W.

    1988-01-01

    We review measurements of L-Coster Kronig and Auger electron production in slow, multicharged collision systems to study electron correlation effects in the process of double electron capture. The n/sup /minus/3/ law was confirmed for the production of the Coster-Kronig configurations 1s 2 2pn/ell/ (n ≥ 6) in O 6+ + He collisions. Enhancement of high angular momentum /ell/ in specific 1s 2 2pn/ell/ configurations was observed by means of high-resolution measurements of the Coster-Kronig lines. The importance of electron correlation effects in couplings of potential energy curves leading to the 1s 2 2pn/ell/ configurations is verified by means of Landau-Zener model calculations. 32 refs., 4 figs

  20. An electron cyclotron resonance ion source based low energy ion beam platform

    International Nuclear Information System (INIS)

    Sun, L. T.; Shang, Y.; Ma, B. H.; Zhang, X. Z.; Feng, Y. C.; Li, X. X.; Wang, H.; Guo, X. H.; Song, M. T.; Zhao, H. Y.; Zhang, Z. M.; Zhao, H. W.; Xie, D. Z.

    2008-01-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed

  1. An electron cyclotron resonance ion source based low energy ion beam platform.

    Science.gov (United States)

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  2. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  3. The Marshall Space Flight Center Low-Energy Ion Facility: a preliminary report

    International Nuclear Information System (INIS)

    Biddle, A.P.; Reynolds, J.W.; Chisholm, W.L. Jr.; Hunt, R.D.

    1983-10-01

    The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. The current status of this evolving resource is described. It also provides necessary information to allow users to utilize it most efficiently

  4. Interaction of multicharged ions with molecules (CO{sub 2}, C{sub 60}) by coincident electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Lab. CAR-IRSAMC

    2001-07-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems {sup 18}O{sup 8+}+Ar, CO{sub 2} and C{sub 60} have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C{sub n}{sup +} fragments (n=1 to 8) produced in multiple capture processes from C{sub 60} target are given. A detailed investigation of the double capture process with CO{sub 2} molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO{sub 2}{sup 2+} molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  5. Note: A well-confined pulsed low-energy ion beam: Test experiments of Ar+

    Science.gov (United States)

    Hu, Jie; Wu, Chun-Xiao; Tian, Shan Xi

    2018-06-01

    Here we report a pulsed low-energy ion beam source for ion-molecule reaction study, in which the ions produced by the pulsed electron impact are confined well in the spatial size of each bunch. In contrast to the ion focusing method to reduce the transverse section of the beam, the longitudinal section in the translational direction is compressed by introducing a second pulse in the ion time-of-flight system. The test experiments for the low-energy argon ions are performed. The present beam source is ready for applications in the ion-molecule reaction dynamics experiments, in particular, in combination with the ion velocity map imaging technique.

  6. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom

    International Nuclear Information System (INIS)

    Jardin, P.

    1995-01-01

    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature 44+ (6.7 MeV/A) + Ar => Xe 44 + Ar q+ +qe - (q ranging from 1 to 7); Xe 44+ (6.7 MeV/A) + He => Xe 44+ He 1+,2+ +1e - ,2e - . We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author)

  7. Theoretical investigations of the IO,{sup q+} (q = 2, 3, 4) multi-charged ions: Metastability, characterization and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hammami, H. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); EMIR, Institut Préparatoire aux Etudes d’Ingénieurs, Monastir (Tunisia); Yazidi, O. [Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Le Belvédère, 1060 Tunis (Tunisia); Ben El Hadj Rhouma, M. [EMIR, Institut Préparatoire aux Etudes d’Ingénieurs, Monastir (Tunisia); Al Mogren, M. M. [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2014-07-07

    Using ab initio methodology, we studied the IO{sup q+} (q = 2, 3, 4) multi-charged ions. Benchmark computations on the IO(X{sup 2}Π) neutral species allow validate the current procedure. For IO{sup 2+}, several potential wells were found on the ground and the electronic excited states potentials with potential barriers with respect to dissociation, where this dication can exist in the gas phase as long-lived metastable molecules. We confirm hence the recent observation of the dication by mass spectrometry. Moreover, we predict the existence of the metastable IO{sup 3+} trication, where a shallow potential well along the IO internuclear distance is computed. This potential well supports more than 10 vibrational levels. The IO{sup 3+} excited states are repulsive in nature, as well as the computed potentials for the IO{sup 4+} tetracation. For the bound states, we give a set of spectroscopic parameters including excitation transition energies, equilibrium distances, harmonic and anharmonic vibrational terms, and rotational constants. At the MRCI + Q/aug-cc-pV5Z(-PP) level, the adiabatic double and triple ionization energies of IO are computed to be ∼28.1 eV and ∼55.0 eV, respectively.

  8. Corrosion behaviour of low energy, high temperature nitrogen ion ...

    Indian Academy of Sciences (India)

    primary ions were used and negative secondary ions were detected. A difference in the distribution of the CrN and the alleged N signal was observed and attributed to CrN acting as a diffusion barrier for nitrogen diffusion. It may be noted here that nitrogen does not form stable elemental negative ions [2] and is thus.

  9. The use of low energy ion beams for the growth and processing of solid materials

    International Nuclear Information System (INIS)

    Armour, D.G.; Al-Bayati, A.H.; Gordon, J.S.

    1992-01-01

    Low energy ion bombardment forms the basis of ion assisted etching and growth of materials in plasma and ion beam systems. The growing demands for low temperature, highly controlled processing has led a rapid increase in both the application of low energy beams and the study of the fundamental ion surface interactions involved. The growth in the practical applications of ion beams in the few eV to a few hundred eV range has presented new problems in the production and transport of ion beams and has led to the development of highly specialised, ultra-low energy systems. These technological developments, in conjunction with the improvements in understanding of fundamental processes have widened the range of applications of low energy beams. (author) 52 refs

  10. The present state and perspectives of low-energy heavy ion biology

    International Nuclear Information System (INIS)

    Yuan Chengling; Yu Zengliang

    2004-01-01

    The interaction between low-energy ions and matter has been concerned rarely comparing to that of high-energy ions. It is even more unusual to find studies of the interaction of low-energy ions and complicated organisms. However, the discovery of bioeffects induced by ion beam implantation has opened a new branch in the field of ion beam applications in the life science--Low-energy Heavy Ion Biology. The mutagenic effect of low energy heavy ions was firstly reported in 1986 in rice. Since then, a damage mechanism involved in energy absorption, mass deposition, and charge exchange has been proposed. Accumulating evidence has indicated that these three factors are key determinants in the bioeffects induced by low energy heavy ions, which has opened new opportunities for mutational breeding, gene transferring, cell modification, and cell fusion. In recent years, the ion beam implantation technique has been widely applied in many fields, and increasing research interest in the field has been seen. The authors summarize recent advances in research on the role of low-energy ions in terms of the mechanisms and applications

  11. The interaction of low energy ion beams with surfaces

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1981-01-01

    Four of the most important physical processes which occur during ion plating and allied techniques (1) ion-induced (and energetic-atom-induced) desorption of adsorbed impurities from the substrate surface, (2) ion penetration and entrapment in the substrate and coating, (3) ion-induced sputtering of substrate and coating atoms and (4) recoil displacement of substrate and coating atoms leading to their intermixing. The ion and energetic atom energy range of importance is from thermal energies to the order of 1keV. Current understanding of these processes, supported by discussion of available experimental data, is reviewed. (Auth.)

  12. Stopping power for heavy ions in low energy region

    International Nuclear Information System (INIS)

    Kitagawa, Mitsuo

    1983-01-01

    Review is made for the study on the power for stopping heavy ions. The studies on the power for stopping heavy ions passing through materials have been developed in the last twenty years due to the accuracy improvement in the data analysis of the power for stopping light ions, the requirement of data establishment on the power for stopping heavy ions from fusion research and the development of the experimental studies by heavy-ion accelerators. The relation between the analysis of the power for stopping heavy ions and the power for stopping light ions is described from the standpoint that the results on the power for stopping light ions serve as the guide for the study on the power for stopping heavy ions. Both at present and in future. The analysis of stopping power data with the accuracy from +-10 to 20 % is possible from the theoretical analysis of effective electric charge and its systematic table of the numerical data. The outline of the scaling rule on effective electric charge is discussed. The deviation of the experimental data from the scaling rule is discussed by comparing with the measured values of effective electric charge ratio. Various analyses of the power for stopping heavy ions are summarized. (Asami, T.)

  13. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  14. Damage of copper by low energy xenon ions

    International Nuclear Information System (INIS)

    Babad-Zakhryapin, A.A.; Popenko, V.A.

    1988-01-01

    Changes in the copper crystal structure bombarded by xenon ions with 30-150 eV energy are studied. Foils of MOb copper mark, 10 mm in diameter and 100 μm thickness, are irradiated. The initial specimens are annealed in vacuum during 1 h at 900 K temperature. The specimens are bombarded by xenon ions in a water-cooled holder. A TE-O type accelerator serves as a xenon ion source. The ion energy varies within 30 to 150 eV range. The ion flux density is 8x10 16 ion/(cm 2 xs). It is shown that crystal structure variations at deep depths are observed not only at high (>1 keV), but at low ion energies down to several dozens of electronvolt as well. The crystal structure variation on copper irradiation by xenon ions with 30-150 eV energy is followed by formation of defects like dislocation loops, point defects in the irradiated target bulk

  15. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-05-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  16. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    International Nuclear Information System (INIS)

    Thopan, P.; Thongkumkoon, P.; Prakrajang, K.; Suwannakachorn, D.; Yu, L.D.

    2014-01-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms

  17. Nuclear structure studies with low-energy light ions: fundamental and applied

    International Nuclear Information System (INIS)

    Mazumdar, I.

    2016-01-01

    Studies in low and medium energy nuclear physics have been dominated by heavy-ion induced reactions for last five decades. Heavy-ion induced nuclear reactions have enriched our knowledge of the structural evolutions and intricacies of reaction dynamics of the nuclear many-body systems. However, the emergence and rise of heavy-ion physics have seen a general decline in studies with low- and medium-energy light-ion beams. The harsh reality of dwindling number of low-energy light ion facilities adversely affect research in nuclear physics. Very low-energy and high current light-ion facilities immediately conjures up in our minds the studies in nuclear astrophysics. Measurements of light-ion capture cross sections and astrophysical S factors are the major themes of research at most of the light-ion facilities. However, the importance low energy light-ion beams is multifarious. A variety of measurements providing vital support and inputs to heavy-ion research can only be carried out at the low-energy, light-ion facilities. Light-ion beams are also useful for generation of mono-energetic neutron beams. In this talk I will draw from some of our recent measurements to show the importance of light-ion beams in nuclear astrophysics and also in applied nuclear physics. (author)

  18. Development of high current low energy H+ ion source

    International Nuclear Information System (INIS)

    Forrester, A.T.; Crow, J.T.; Goebel, D.M.

    1978-01-01

    The ultimate goal of this work is the development of an ion source suitable for double charge exchange of D + ions to D - ions in cesium or other vapor. Since the fraction of the D + which changes to D - may be as high as 0.35 in the energy below one keV, the process appears very favorable. What is desired is a source of several hundred cm 2 area, with a D + current density greater than, say 0.2A/cm 2 . Small angular spread is essential with up to about 0.1 radian being acceptable. A simple approach to this problem appears to be through fine mesh extraction electrodes. In this system a single grid facing the ion source plasma constitutes the entire extraction electrode system. If the potential difference between the grid and the source plasma is large compared to the ion energy at the plasma boundary, then the distance s 0 is just the Child-Langmuir distance corresponding to the ion current density J and the potential difference V 0 between the plasma and the grid

  19. The synthesis of nucleotide in the aqueous solution induced by low energy ions

    International Nuclear Information System (INIS)

    Shi Huaibin; Shao Chunlin; Wang Xiangqin; Yu Zengliang

    2000-08-01

    A new apparatus was designed to induce reactions in aqueous solution by introducing low energy ions into the aqueous solution, this apparatus overcome the defaults of the old ones which demanded vacuum and made it possible to study the action among solutions, it also expanded the ion implantation biology. The role of low energy ions was introduced into the study of the origin of life, primitive earth conditions were imitated to study prior-life synthesis of nucleotide by introducing low energy ions into aqueous solution, low energy N + was implanted into adenine supersaturation solution including D-ribose and NH 4 H 2 PO 4 , it was confirmed that 5'-AMP was gained by HPLC analysis of the products. In comparison with other methods in this field, this one is simpler and nearer to the primitive earth conditions, thus it provided a new try for the studying of the origin of life

  20. Studies on low energy ion-atom collisions by means of electron-spectroscopy

    International Nuclear Information System (INIS)

    Hirosi Suzuki

    1991-01-01

    The typical results of studies on autoionization processes produced by low energy ion-atom collisions are given by means of the ejected electron spectroscopy, which have been performed by Atomic Physics Group of Sophia University

  1. Interaction of low-energy highly charged ions with matter

    International Nuclear Information System (INIS)

    Ginzel, Rainer

    2010-01-01

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  2. Mechanism of long-range penetration of low-energy ions in botanic samples

    International Nuclear Information System (INIS)

    Liu Feng; Wang Yugang; Xue Jianming; Wang Sixue; Du Guanghua; Yan Sha; Zhao Weijiang

    2002-01-01

    The authors present experimental evidence to reveal the mechanism of long-range penetration of low-energy ions in botanic samples. In the 100 keV Ar + ion transmission measurement, the result confirmed that low-energy ions could penetrate at least 60 μm thick kidney bean slices with the probability of about 1.0 x 10 -5 . The energy spectrum of 1 MeV He + ions penetrating botanic samples has shown that there is a peak of the count of ions with little energy loss. The probability of the low-energy ions penetrating the botanic sample is almost the same as that of the high-energy ions penetrating the same samples with little energy loss. The results indicate that there are some micro-regions with mass thickness less than the projectile range of low-energy ions in the botanic samples and they result in the long-range penetration of low-energy ions in botanic samples

  3. Sputtering mechanisms of polycrystalline platinum by low energy ions

    International Nuclear Information System (INIS)

    Chernysh, V.S.; Eckstein, W.; Haidarov, A.A.; Kulikauskas, V.S.; Mashkova, E.S.; Molchanov, V.A.

    1999-01-01

    The results of an experimental study and a computer simulation with the TRIM.SP code of the angular distributions of atoms sputtered from polycrystalline platinum under 1.5-9 keV He + bombardment at the normal ion incidence are presented. It has been found that angular distributions of sputtered atoms are overcosine and that their shape is practically independent of the bombarding ion species and ion energy. Good agreement between experimental results and computer simulation data was found. Computer simulations of the partial angular distributions of Pt atoms ejected due to various sputtering mechanisms for He and Ar bombardments were performed. The role of different mechanisms in the formation of angular distributions of sputtered atoms has been analyzed

  4. Dissociative recombination of the CH+ molecular ion at low energy

    Science.gov (United States)

    Chakrabarti, K.; Mezei, J. Zs; Motapon, O.; Faure, A.; Dulieu, O.; Hassouni, K.; Schneider, I. F.

    2018-05-01

    The reactive collision of the CH+ molecular ion with an electron is studied in the framework of the multichannel quantum defect theory, taking into account the contribution of the core-excited Rydberg states. In addition to the X 1Σ+ ground state of the ion, we also consider the contribution to the dynamics of the a 3Π and A 1Π excited states of CH+. Our results—in the case of the dissociative recombination in good agreement with the storage ring measurements—rely on decisive improvements—complete account of the ionisation channels and accurate evaluation of the reaction matrix—of a previously used model.

  5. Electron-impact ionization of multicharged ions at ORNL: 1985--1992

    International Nuclear Information System (INIS)

    Gregory, D.C.; Bannister, M.E.

    1994-07-01

    Absolute cross sections are presented in graphs and tables for single ionization of forty-one ions, multiple ionization of four ions, and for dissociation and ionization of two molecular ions by electron impact. This memo is the third in a series of manuscripts summarizing previously published as well as unpublished ionization cross section measurements at ORNL; contents of the two previous memos are also referenced in this work. All work tabulated in this memo involved ion beams generated in the ORNL-ECR ion source and utilized the ORNL electron-ion crossed beams apparatus. Target ions range from atomic number Z = 8 (oxygen) to Z = 92 (uranium) in initial charge states from +1 to +16. Electron impact energies typically range from threshold to 1500 eV

  6. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  7. Low energy ion beam systems for surface analytical and structural studies

    International Nuclear Information System (INIS)

    Nelson, G.C.

    1980-01-01

    This paper reviews the use of low energy ion beam systems for surface analytical and structural studies. Areas where analytical methods which utilize ion beams can provide a unique insight into materials problems are discussed. The design criteria of ion beam systems for performing materials studies are described and the systems now being used by a number of laboratories are reviewed. Finally, several specific problems are described where the solution was provided at least in part by information provided by low energy ion analysis techniques

  8. Electron cyclotron resonance ion source for high currents of mono- and multicharged ion and general purpose unlimited lifetime application on implantation devices

    Science.gov (United States)

    Bieth, C.; Bouly, J. L.; Curdy, J. C.; Kantas, S.; Sortais, P.; Sole, P.; Vieux-Rochaz, J. L.

    2000-02-01

    The electron cyclotron resonance (ECR) ion sources were originally developed for high energy physic applications. They are used as injectors on linear accelerators and cyclotrons to further increase the particle energy via high charge state ions. This ECR technology is well suited for sources placed on a high voltage platform where ac power available is limited by insulated transformers. The PANTECHNIK family of ion source with its wide range of ion beam (various charge states with various beam currents) offers new possibilities and perspectives in the field of ion implantation. In addition to all these possibilities, the PANTECHNIK ion sources have many other advantages like: a very long lifetime without maintenance expense, good stability, efficiency of ionization close to 100% (this improves the lifetime of the pumping system and other equipment), the possibility of producing ion beams with different energies, and a very good reproducibility. The main characteristics of sources like Nanogan or SuperNanogan will be recalled. We will especially present the results obtained with the new Microgan 10 GHz source that can be optimized for the production of high currents of monocharged ion, including reactive gas like BF3 (2 mA e of B+) or medium currents of low charge state like 0.5 mA e of Ar4+. The latest results obtained with Microgan 10 GHz show that it is possible to drive the source up to 30 mA e of total current, with an emittance of 150 π mm mrad at 40 kV and also to maintain the production of multicharged ions like Ar8+.

  9. On two possible mechanisms of metallic island remotion from solid surface at heavy multicharged ion irradiation

    International Nuclear Information System (INIS)

    Vorob'eva, I.V.; Geguzin, Ya.E.; Monastyrenko, V.E.

    1986-01-01

    Two mechanisms of energy transfer from a moving ion to a metallic island film on a solid surface are described. A particular case when the energy transfer quantity is enough to remove an island from the solid surface breaking adhesion bond is considered. One mechanism is 'shaking off', another one is a 'jumping up' mechanism. The essence of the first mechanism is that an ion bombarding the surface excites a cylindrical shock wave with a front that can 'shake off' islands from the solid surface along the ion trajectory when it reaches the surface. An island is heated in pulsed mode, and during thermal expansion it should push off the substrate, and so it jumps up. The pure case of such mechanism is observed when an ion transverses an island and transfers energy to the latter one that is defined by the quantity of ion energy losses in the island

  10. Modelling of low energy ion sputtering from oxide surfaces

    International Nuclear Information System (INIS)

    Kubart, T; Nyberg, T; Berg, S

    2010-01-01

    The main aim of this work is to present a way to estimate the values of surface binding energy for oxides. This is done by fitting results from the binary collisions approximation code Tridyn with data from the reactive sputtering processing curves, as well as the elemental composition obtained from x-ray photoelectron spectroscopy (XPS). Oxide targets of Al, Ti, V, Nb and Ta are studied. The obtained surface binding energies are then used to predict the partial sputtering yields. Anomalously high sputtering yield is observed for the TiO 2 target. This is attributed to the high sputtering yield of Ti lower oxides. Such an effect is not observed for the other studied metals. XPS measurement of the oxide targets confirms the formation of suboxides during ion bombardment as well as an oxygen deficient surface in the steady state. These effects are confirmed from the processing curves from the oxide targets showing an elevated sputtering rate in pure argon.

  11. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  12. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    International Nuclear Information System (INIS)

    Lestinsky, M.

    2007-01-01

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc 18+ yield a high-precision measurement of the 2s-2p 3/2 transition energy in this system. Operation of the two-electron-beam setup at high collision energy (∼1000 eV) is established using resonances of hydrogenlike Mg 11+ , while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F 6+ . (orig.)

  13. The steering and manipulation of ion beams for low-energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Beanland, D.G.; Freeman, J.H.

    1976-01-01

    Both electrostatic and magnetic fields are used in low-energy accelerators. Electrostatic fields are essential in the acceleration stages and they are commonly used for ion beam scanning and focussing. Magnetic fields are only infrequently used as lenses, but they are essential for mass analysis and are sometimes employed for beam steering. The electrostatic mirror is a versatile and compact lens which has hitherto received little attention for the controlled manipulation of heavy ions. In addition to energy analysis it can be used to steer, focus and scan such beams and its flexibility and usefulness can be further increased by shaping the electrostatic field in the mirror space. The use of a computer programme to model the focussing behaviour of a variety of lens shapes is described and it is shown that the focal properties of the mirror can be controlled to produce a parallel, convergent or divergent output beam. The use of mirrors for two-dimensional beam focusing is also outlined. To permit the use of the mirror system with heavy ions an apertured front plate, without field-defining gauzes, was utilized. In consequence an additional electrode was incorporated in the lens structure to prevent penetration of the positive electric field along the beam axes outside the mirror space. This factor and the compact design of the mirror, contributed to the minimisation of space-charge defocussing effects which normally militate against the use of such electrostatic lenses with high intensity ion beams. The results of experiments confirming the computer predictions are briefly described and, in conclusion some possible applications of electrostatic mirrors in electromagnetic isotope separators and low energy accelerators are outlined. (Auth.)

  14. Accumulation of multicharged ions in plasma with electrostatic well induced by ECR

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.; Golovanivsky, K.S.; Schepilov, V.D.

    1978-01-01

    In a magnetic field of mirror configuration supplemented in its central part by a microwave field (lambda=12.6 cm, P=20 W) a steady-state plasma (n=1x10 10 cm -3 , Tsub(ec)=40 eV) was produced. ECR condition was fulfilled in a circular region spaced at 1 cm from the plasma axis. In this 'hot' zone the electron temperature was Tsub(eh) = 1.5 keV. The temperature gradient creates an electrostatic well for ions in the perpendicular plane. The anisotropy of electron temperature in a mirror field caused the formation of an axial electrostatic well for ions. Thus, three-dimensional electrostatic pit was produced and the ion's life-time was as long as their charge was high. With H.F. power absorbed by the plasma 8-10 W the authors obtained comparable quantities of Ar 1+ , Ar 2+ , Ar 3+ , Ar 4+ , Ar 5+ , Ar 6+ and also ions of impurities C + , C 2+ , C 3+ , H + , H + 2 . The total current density of ions extracted from plasma is of 20 mA cm -2 . (Auth.)

  15. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  16. Scattering of low energy noble gas ions from a metal surface

    International Nuclear Information System (INIS)

    Luitjens, S.B.

    1980-01-01

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)

  17. Brookhaven four-stage accel-decel production of low-energy highly stripped heavy ions

    International Nuclear Information System (INIS)

    Barrette, J.; Thieberger, P.

    1981-01-01

    The dual MP tandem facility at Brookhaven has been used in a four-stage accel-decel mode to produce highly stripped S ion beams (Q = 10-16 + ). Fully stripped S ions were obtained at energies down to 8 MeV. The low energy limit is presently due to the inclined field configuration of the last acceleration tube

  18. P.I.A.F.E project: long distance transport of low energy exotic ions; Projet P.I.A.F.E: transport d`ions exotiques de basse energie sur longue distance

    Energy Technology Data Exchange (ETDEWEB)

    Nibart, V.

    1996-01-17

    The aim of the PIAFE project is the long distance (400 m) transport of a low energy radioactive ion beam from the ILL (Institut Laue Langevin) to the ISN (Institut des Sciences Nucleaires) of Grenoble (France). The production, extraction, ionization and mass separation of ions is performed by the ILL, while the transformation of ions into multicharged ions, their stripping and acceleration is carried out at the ISN. Theoretical and experimental studies for a simple an original guidance solution have shown that such a long transport, even delicate, should not encounter any major difficulty. The main objectives of this thesis is the technical realization of a 18 m section of this transport line. The problem of supports and focalizing elements alignment has been solved together with the other problems such as: the central trajectory deviation due to alignment defects and to the Earth`s magnetic field; the particle losses due to charge exchange with the residual gas and the emittance increase by Coulomb scattering. It has been demonstrated that a 90% transmission can be obtained using a 25 keV energy and a 10{sup -7} mbar vacuum. Experimental measurements using a rubidium ion source have allowed to validate a theoretical model of emittance increase due to the residual gas-ions interactions. The increase of emittance with respect to the pressure has been measured using four residual gases of different mass. (J.S.). 29 refs., 61 figs., 19 tabs., 8 photos., 4 appends.

  19. Electron cooling of PB$^{54+}$ ions in the low energy ion ring (LEIR)

    CERN Document Server

    Bosser, Jacques; Chanel, M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Tranquille, G

    1998-01-01

    For the preparation of dense bunches of lead ions for the LHC, electron cooling will be essential for accumula tion in a storage ring at 4.2 MeV/u. Tests have been carried out on the LEAR ring (renamed LEIR for Low Energy Ion Ring) in order to determine the optimum parameters for a future state-of-the-art electron cooling device which would be able to cool linac pulses of lead ions in less than 100 ms. The experiments focused on the generation of a stable high intensity electron beam that is needed to free space in both longitudinal and transverse phase space for incoming pulses. Investigations on the ion beam lifetime in the presence of the electron beam and on the dependency of the cooling times on the optical settings of the storage ring will also be discussed. This paper concentrates on the cooling aspects with the multiturn injection, vacuum, and high intensity aspects discussed in a companion paper at this conference.

  20. Observation of a shift of multicharged silicon ion recombination radiation jumps in a laser plasma

    International Nuclear Information System (INIS)

    Basov, N.G.; Kalashnikov, M.P.; Mikhajlov, Yu.A.; Rode, A.V.; Sklizkov, G.V.; Fedotov, S.I.

    1984-01-01

    In experiments on heating and compression of shell targets for the case of three-fold magnification of the laser radiation flux density on a target a shift in the recombination Si +13 ion radiation jump of 46+-8 eV has been observed, which corresponds to ionic density (1.3+-1)x10 20 cm -3 . To explain the mechanism of the jump shift, a scheme of potential energy and energy levels of two hydrogen-like ions are presented. It is shown that recording of the recombination radiation intensity jump enables one to determine the electron temperature of a plasma Tsub(e)sub(e). T value determined from the ratio of the intensity of continuous radiation before and after the recombination jump is 0.95+-0.1 keV

  1. Low-energy ion outflow modulated by the solar wind energy input

    Science.gov (United States)

    Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas

    2017-04-01

    Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.

  2. LEBIT - a low-energy beam and ion trap facility at NSCL/MSU

    International Nuclear Information System (INIS)

    Schwarz, S.; Bollen, G.; Davies, D.; Lawton, D.; Lofy, P.; Morrissey, D. J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; VanWasshenova, D.; Sun, T.; Weissman, L.; Wiggins, D.

    2003-01-01

    The Low Energy Beam and Ion Trap (LEBIT) Project aims to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. A combination of a high-pressure gas stopping cell and a radiofrequency quadrupole (RFQ) ion accumulator and buncher will be used to manipulate the beam accordingly. High-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system will be the first experimental program to profit from the low-energy beams. The status of the project is presented with a focus on recent stopping tests of 100-140 MeV/A Ar18+ ions in a gas cell

  3. The low-energy-beam and ion-trap facility at NSCL/MSU

    CERN Document Server

    Schwarz, S; Lawton, D; Lofy, P; Morrissey, D J; Ottarson, J; Ringle, R; Schury, P; Sun, T; Varentsov, V; Weissman, L

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A sup 4 sup 0 Ar sup 1 sup 8 sup + ions in a gas cell.

  4. The low-energy-beam and ion-trap facility at NSCL/MSU

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S. E-mail: schwarz@nscl.msu.edu; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; Weissman, L

    2003-05-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A {sup 40}Ar{sup 18+} ions in a gas cell.

  5. The low-energy-beam and ion-trap facility at NSCL/MSU

    International Nuclear Information System (INIS)

    Schwarz, S.; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; Weissman, L.

    2003-01-01

    The goal of the low-energy-beam and ion-trap (LEBIT) project is to convert the high-energy exotic beams produced at NSCL/MSU into low-energy low-emittance beams. This beam manipulation will be done by a combination of a high-pressure gas stopping cell and a radio-frequency quadrupole ion accumulator and buncher. The first experimental program to profit from the low-energy beams produced will be high-accuracy mass measurements on very short-lived isotopes with a 9.4 T Penning trap system. The status of the project is presented with an emphasis on recent stopping tests range of 100 MeV/A 40 Ar 18+ ions in a gas cell

  6. Collisions of fast multicharged ions in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1981-05-01

    Measurements of cross sections for charge transfer and ionization of H 2 and rare-gas targets have been made with fast, highly stripped projectiles in charge states as high as 59+. We have found an empirical scaling rule for electron-capture cross section in H 2 valid at energies above 275 keV/amu. Similar scaling might exist for other target gases. Cross sections are generally in good agreement with theory. We have found a scaling rule for electron loss from H in collisions with a fast highly stripped projectile, based on Olson's classical-trajectory Monte-Carlo calculations, and confirmed by measurements in an H 2 target. We have found a similar scaling rule for net ionization of rare-gas targets, based on Olson's CTMC calculations and the independent-electron model. Measurements are essentially consistent with the scaled cross sections. Calculations and measurements of recoil-ion charge-state spectra show large cross sections for the production of highly charged slow recoil ions

  7. Laser-produced multi-charged heavy ions as efficient soft x-ray sources

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Suzuki, Yuhei; Kawasaki, Masato

    2016-01-01

    We demonstrate EUV and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6x nm and a water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a high-Z plasma UTA source, coupled to x-ray optics. We will discuss the progress and Z-scaling of UTA emission spectra to achieve lab-scale table-top, efficient, high-brightness high-Z plasma EUV-soft x-ray sources for in vivo bio-imaging applications. (author)

  8. Energy-level splitting of multicharged ions due to interaction with own radiation field

    International Nuclear Information System (INIS)

    Gajnutdinov, R.Kh.; Kalashnikov, K.K.

    1991-01-01

    The overlapping of the energy levels of He-like uranium states with identical principal quantum numbers is investigated. Results are presented of a numerical calculation of the states produced as a result of mixing of the 2s 1/2 8p 1/2 and 2p 1/2 8p 1/2 states and of the respective spectral lines. It is shown that the interaction between the ion and its own radiation field splits each of the overlapping energy levels into several sublevels. The sublevels are isolated from each to other such an extent that interference effects become insignificant. The shapes of the spectral lines differ pronouncedly from the Lorentz shape and many of the line are anomaously narrow

  9. Study on rice transformation mediated by low energy ion beam implantation

    International Nuclear Information System (INIS)

    Li Hong; Wu Lifang; Yu Zengliang

    2001-01-01

    Delivery of foreign DNA into rice via ion beam was first reported in 1994. In recent years we have aimed to set up efficient transformation system mediated by low energy ion beam. The factors that influence the transformation including type of ion, parameters of ion energy, dose and dose rate, plant genotype, composition of media, concentration of hormones and antibiotics were carefully investigated. Treated with 25ke V Ar + , the transformation efficiencies of the mature embryos of rice variety 02428, Hua pei94-jian-09 and Minghui63 reached 11%, 11.4% and 7.1% measured by produced antibiotic resistant callus and l.52%, 1.87% and l.13% measured by regenerated plants respectively. PCR detection and Southern blot analysis showed that GUS report gene had inserted in rice genome. Low energy ion beam mediated gene transfer will be extended to other cereal recalcitrant to Agrobacterium tumefaciens as soon as methodological parameters were optimized. (authors)

  10. 10 GHz multicharged-heavy-ion source CAPRICE for all metallic and gaseous elements

    International Nuclear Information System (INIS)

    Bourg, F.; Geller, R.; Jacquot, B.

    1987-01-01

    A new compact multiply charged E.C.R. ion source completely enclosed by an iron return yoke is described. A new coaxial 10 GHz microwave accessibility is operating. This allows a very compact two stages source in an entirely removable vacuum chamber and a very easy increasing possibility of the axial magnetic field value. Then two different working modes are possible. A classical mode (ω ce =ω rf , 100% cw, rf power 300 W, coils supply 20 kW) gives same performance than all the other reliable larger 10 GHz sources. A second mode (100% cw, rf power 600 W, coils supply 33 kW) operates with an additional resonant surface ω ce =2ω rf and increases by a factor 3 or 4 all currents on high charge states. Total extraction current is multiplied by a factor of 4 just as it would do by using a classical 20 GHz source by increase in density. This new resonant surface is unfortunately stopped in its radial part by the wall of the vacuum chamber due to a too low 10 GHz sextupole (0,4 T). Presently a better sextupole (0,8 T) is being built in order to work with both whole resonant surfaces inside the plasma chamber and perhaps so to improve charge states distribution by rising the plasma life time. On the other hand both the removable vacuum chamber and the coaxial rf feeder are well fitted to produce all metallic ions in long run and high intensity by working without any insulator inside the plasma chamber and by a good cleaning possibility. One shows cw spectra of 10 metallic elements from Al to Au and one can observe an exponential decrease for Ca, Ag and Au. This remark indicates a possible easy way to yield high charge states of all metals. One can expect to regulate all the lightest elements like Al, Si, Fe, Ni, Mo, Ta and W for 100 h. For example a good (within 1%) regulation of a 15 μA 56 Fe 7+ for 10 h is partly shown. (orig.)

  11. Electron-nuclear. gamma. transition spectrum of a nucleus in a multicharged atomic ion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, L N; Letokhov, V S

    1987-08-01

    The nuclear emission of absorption spectrum of an atom possesses a set of electron satelites which are due to an alternation of the state of the electron shell. It is shown that the mechanism of formation of the satellites might be different for neutral atoms and high-charge ions. In the first case (loose electron shell) a ''shaking'' of the shell resulting from the interaction between the nucleus and ..gamma.. quantum is predominant. In the second case (rigid electron shell) the mechanism involves a direct interaction between the ..gamma.. quantum and electrons. The second mechanism is important in the case of dipole nuclear transitions and dominates at ..gamma.. quantum energies

  12. Electron emission following collisions between multi-charged ions and D2 molecules

    International Nuclear Information System (INIS)

    Laurent, G.

    2004-05-01

    Dissociative ionisation mechanisms induced in collisions involving a highly charged ion (S 15+ , 13.6 MeV/u) and a molecular deuterium target, have been studied through momentum vector correlations of both the D + fragments and the electrons produced. An experimental apparatus has been developed in order to detect in coincidence all the charged particles produced during the collision. The measurement of their momentum vectors, which allows one to determine both their kinetic energy and direction of emission with respect to the projectile one, combines Time of Flight, Position Sensitive Detection, and multi-coincidence techniques. The correlation of the fragment and electron kinetic energies enables not only to determine branching ratios between the dissociative ionisation pathways, but also to separate unambiguously kinetic energy distributions of fragments associated to each process. Finally, the angular distributions of ejected electrons, as a function of the orientation of the molecular axis with respect to the projectile direction, are deduced from the spatial correlation. Measurements are compared to theoretical angular distributions obtained using the CDW-EIS (Continuum Distorted Wave-Eikonal Initial State) method. (author)

  13. Electron-nuclear γ transition spectrum of a nucleus in a multicharged atomic ion

    International Nuclear Information System (INIS)

    Ivanov, L.N.; Letokhov, V.S.

    1987-01-01

    The nuclear emission of absorption spectrum of an atom possesses a set of electron satelites which are due to an alternation of the state of the electron shell. It is shown that the mechanism of formation of the satellites might be different for neutral atoms and high-charge ions. In the first case (loose electron shell) a ''shaking'' of the shell resulting from the interaction between the nucleus and γ quantum is predominant. In the second case (rigid electron shell) the mechanism involves a direct interaction between the γ quantum and electrons. The second mechanism is important in the case of dipole nuclear transitions and dominates at γ quantum energies p 2λ (λ is the nuclear transition multipole order, μ p ∼ 1/2 π is the relative proton mass and z the core mass). In the spectrum of the plasma source the electron satellites corresponding to the γ quantum emission and absorption lines are not overlapped by the Doppler contour of the γ line

  14. Low-energy ion beam extraction and transport: Experiment--computer comparison

    International Nuclear Information System (INIS)

    Spaedtke, P.; Brown, I.; Fojas, P.

    1994-01-01

    Ion beam formation at low energy (∼1 keV or so) is more difficult to accomplish than at high energy because of beam blowup by space-charge forces in the uncompensated region within the extractor, an effect which is yet more pronounced for heavy ions and for high beam current density. For the same reasons, the extracted ion beam is more strongly subject to space charge blowup than higher energy beams if it is not space-charge neutralized to a high degree. A version of vacuum arc ion source with an extractor that produces low-energy metal ion beams at relatively high current (∼0.5--10 kV at up to ∼100 mA) using a multi-aperture, accel--decel extractor configuration has been created. The experimentally observed beam extraction characteristics of this source is compared with those predicted using the AXCEL-INP code, and the implied downstream beam transport with theoretical expectations. It is concluded that the low-energy extractor performance is in reasonable agreement with the code, and that good downstream space charge neutralization is obtained. Here, the code and the experimental results are described, and the features that contribute to good low-energy performance are discussed

  15. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  16. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  17. Very low-energy and low-fluence ion beam bombardment of naked plasmid DNA

    International Nuclear Information System (INIS)

    Norarat, R.; Semsang, N.; Anuntalabhochai, S.; Yu, L.D.

    2009-01-01

    Ion beam bombardment of biological organisms has been recently applied to mutation breeding of both agricultural and horticultural plants. In order to explore relevant mechanisms, this study employed low-energy ion beams to bombard naked plasmid DNA. The study aimed at simulation of the final stage of the process of the ion beam bombardment of real cells to check whether and how very low-energy and low-fluence of ions can induce mutation. Argon and nitrogen ions at 5 keV and 2.5 keV respectively bombarded naked plasmid DNA pGFP to very low-fluences, an order of 10 13 ions/cm 2 . Subsequently, DNA states were analyzed using electrophoresis. Results provided evidences that the very low-energy and low-fluence ion bombardment indeed altered the DNA structure from supercoil to short linear fragments through multiple double strand breaks and thus induced mutation, which was confirmed by transfer of the bombarded DNA into bacteria Escherichia coli and subsequent expression of the marker gene.

  18. Space charge and working point studies in the CERN Low Energy Ion Ring

    CERN Document Server

    Huschauer, A; Hancock, S; Kain, V

    2017-01-01

    The Low Energy Ion Ring (LEIR) is at the heart ofCERN’s heavy ion physics programme and was designed toprovide the high phase space densities required by the exper-iments at the Large Hadron Collider (LHC). LEIR is the firstsynchrotron of the LHC ion injector chain and it receives aquasi-continuous pulse of lead ions (Pb54+) from Linac3, ex-ploiting a sophisticated multi-turn injection scheme in bothtransverse and longitudinal planes. Seven of these pulses areinjected and accumulated, which requires continuous elec-tron cooling (EC) at low energy to decrease the phase spacevolume of the circulating beam in between two injections.Subsequently, the coasting beam is adiabatically capturedin two bunches, which are then accelerated and extractedtowards the Proton Synchrotron (PS). Figure 1 shows theLEIR magnetic cycle and the different steps required forbeam production.

  19. A new computer code for quantitative analysis of low-energy ion scattering data

    NARCIS (Netherlands)

    Dorenbos, G; Breeman, M; Boerma, D.O

    We have developed a computer program for the full analysis of low-energy ion scattering (LEIS) data, i.e. an analysis that is equivalent to the full calculation of the three-dimensional trajectories of beam particles through a number of layers in the solid, and ending in the detector. A dedicated

  20. Influence of compaction and surface roughness on low-energy ion scattering signals

    NARCIS (Netherlands)

    Jansen, W.P.A.; Knoester, A.; Maas, A.J.H.; Schmit, P.; Kytökivi, A.; Denier van der Gon, A.W.; Brongersma, H.H.

    2004-01-01

    Investigation of the surface composition of powders often requires compaction. To study the effect of compaction on surface analysis, samples have been compacted at various pressures ranging from 0 Pa (i.e. no compaction) up to 2000 MPa (2 × 104 kg cm-2) Low-energy ion scattering (LEIS) was used to

  1. Deep-level transient spectroscopy of low-energy ion-irradiated silicon

    DEFF Research Database (Denmark)

    Kolkovsky, Vladimir; Privitera, V.; Nylandsted Larsen, Arne

    2009-01-01

     During electron-gun deposition of metal layers on semiconductors, the semiconductor is bombarded with low-energy metal ions creating defects in the outermost surface layer. For many years, it has been a puzzle why deep-level transient spectroscopy spectra of the as-deposited, electron-gun evapor...

  2. A radio frequency ring electrode cooler for low-energy ion beams

    International Nuclear Information System (INIS)

    Heinz, S.; Aeystoe, J.; Habs, D.; Hegewisch, S.; Huikari, J.; Nieminen, A.; Rinta-Antila, S.; Schumann, M.; Szerypo, J.

    2004-01-01

    We are investigating a new concept for ion confinement while buffer-gas-cooling low-energy ion beams. Instead of applying the well-established technique of Radio Frequency Quadrupoles (RFQs) where the ions are transversely confined by a quadratic-pseudo potential we are using a stack of thin ring electrodes supplied by an RF field (RF funnel) which creates a box-shaped potential well. In Monte Carlo simulations we have investigated the transmission behavior and cooling performance of the RF funnel. First experimental investigations with ion currents up to 20 nA revealed a promising transmission characteristic which qualifies the RF funnel as high-current cooler

  3. Utilization of ion source 'SUPERSHYPIE' in the study of low energy ion-atom and ion-molecule collisions

    International Nuclear Information System (INIS)

    Bazin, V.; Boduch, P.; Chesnel, J.Y.; Fremont, F.; Lecler, D.; Pacquet, J. Y.; Gaubert, G.; Leroy, R.

    1999-01-01

    Modifications in the ECR 4M ion source are described, which conducted to realization of the advanced source 'SUPERSHYPIE'. The Ar 8+ ion collision with Cs(6s,6p) were studied by photon spectroscopy at low energy, where the process is dominated by simple electron capture. Results obtained with 'SUPERSHYPIE' source are presented. The source was utilized also in ion-molecule collisions (CO, H 2 ) to study the spectra of recoil ions and Auger electron spectra in the Ar 17+ He collisions. The excellent performances of 'SUPERSHYPIE' in high charge production and concerning its accurate and fine control and stability are illustrated and underlined as compared with those of ECR 4M source

  4. Enhancements to the Low-Energy Ion Facility at SUNY Geneseo

    Science.gov (United States)

    Barfield, Zachariah; Kostick, Steven; Nagasing, Ethan; Fletcher, Kurt; Padalino, Stephen

    2017-10-01

    The Low Energy Ion Facility at SUNY Geneseo is used for detector development and characterization for inertial confinement fusion diagnostics. The system has been upgraded to improve the ion beam quality by reducing contaminant ions. In the new configuration, ions produced by the Peabody Scientific duoplasmatron ion source are accelerated through a potential, focused into a new NEC analyzing magnet and directed to an angle of 30°. A new einzel lens on the output of the magnet chamber focuses the beam into a scattering chamber with a water-cooled target mount and rotatable detector mount plates. The analyzing magnet has been calibrated for deuteron, 4He+, and 4He2+ ion beams at a range of energies, and no significant hysteresis has been observed. The system can accelerate deuterons to energies up to 25 keV to initiate d-d fusion using a deuterated polymer target. Charged particle spectra with protons, tritons, and 3He ions from d-d fusion have been measured at scattering angles ranging from 55° to 135°. A time-of-flight beamline has been designed to measure the energies of ions elastically scattered at 135°. CEM detectors initiate start and stop signals from secondary electrons produced when low energy ions pass through very thin carbon foils. Funded in part by the U.S. Department of Energy through the Laboratory for Laser Energetics.

  5. Experimental apparatus to investigate interactions of low energy ions with solid surfaces, 1

    International Nuclear Information System (INIS)

    Tsukakoshi, Osamu; Narusawa, Tadashi; Mizuno, Masayasu; Sone, Kazuho; Ohtsuka, Hidewo.

    1975-12-01

    Experimental apparatus to study the surface phenomena has been designed, which is intended to solve the vacuum wall problems in future thermonuclear fusion reactors and large experimental tokamak devices. An ion source and the beam transport optics are provided for bombarding solid target surface with an ion beam of energy from 0.1 to 6 keV. Measuring instruments include an ion energy analyser, a quadrupole mass spectrometer, an Auger electron spectrometer, an electro-micro-balance, a neutral particle energy spectrometer and its calibration system. Pumping system consists of oil-free ultrahigh vacuum pumps. Various kinds of experiments will be carried out by using the apparatus: 1) sputtering by low energy ion bombardment, 2) re-emission of the incident particles during and after ion bombardment, 3) release of adsorbed and occluded gases in the solids by ion bombardment, and 4) backscattering of fast ions. The combinations of measuring instruments for each experiment and their relative positions in the vacuum chamber are described through detailed drawings. The fundamental aspect in design of the ion beam transport optics for a low energy ion beam which can no longer neglect the space charge effect is also discussed. (auth.)

  6. Study on possibility of development of a laser multicharged ion source for a heavy ion fusion driver

    International Nuclear Information System (INIS)

    Barabash, L.Z.; Krechet, K.I.; Lapitskij, Yu.Ya.; Latyshev, S.V.; Shumshurov, A.V.

    1983-01-01

    The results of studying laser produced plasma ion sources for a heavy ion accelerating-storage complex used as a heavy ion fusion driver are presented. The following parameters were measured on an installation aimed for studying physical characteristics of heavy ion laser plasma for a lead target at laser radiation flux density of approximately 3x10 10 W/cm 2 : scattered ion charge composition, energy spectra and scattering angle distributions, ion currents, absolute number of ions in every charge state, plasma electron temperature. The ion current pulse duration varied from 3x10 -4 s at Z +1 to 2x10 -5 s at Z +10 . The maximum current amplitude of 2 mA corresponded to Z +7 charge. The scattering velocity increased with charge. The total number of ions that could be used for acceleration was approximately 5x10 13 for Z +2 and 5x10 12 for Z +6 per pulse. The ion laser source brightness was 2x10 11 A/cm 2 , the particle phase density was 10 18 (cmxrad) -1

  7. Formation of nanostructures on HOPG surface in presence of surfactant atom during low energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, M., E-mail: ranjanm@ipr.res.in; Joshi, P.; Mukherjee, S.

    2016-07-15

    Low energy ions beam often develop periodic patterns on surfaces under normal or off-normal incidence. Formation of such periodic patterns depends on the substrate material, the ion beam parameters, and the processing conditions. Processing conditions introduce unwanted contaminant atoms, which also play strong role in pattern formation by changing the effective sputtering yield of the material. In this work we have analysed the effect of Cu, Fe and Al impurities introduced during low energy Ar{sup +} ion irradiation on HOPG substrate. It is observed that by changing the species of foreign atoms the surface topography changes drastically. The observed surface topography is co-related with the modified sputtering yield of HOPG. Presence of Cu and Fe amplify the effective sputtering yield of HOPG, so that the required threshold for the pattern formation is achieved with the given fluence, whereas Al does not lead to any significant change in the effective yield and hence no pattern formation occurs.

  8. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  9. InN: Fermi level stabilization by low-energy ion bombardment

    International Nuclear Information System (INIS)

    Piper, L.F.J.; Veal, T.D.; McConville, C.F.; Lu, H.; Schaff, W.J.

    2006-01-01

    The near-surface electronic properties of InN have been investigated with high-resolution electron-energy loss spectroscopy. Low-energy (∝400 eV) nitrogen ion bombardment followed by low temperature annealing (<300 C) was found to dramatically increase the n-type conductivity of InN, close to the surface. This is explained in terms of the formation of amphoteric defects from the ion bombardment and annealing combined with the band structure of InN. Low-energy ion bombardment and annealing is shown to result in a damage-induced, donor-like defect-profile instead of the expected electron accumulation for InN. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  11. Self-organization processes and nanocluster formation in crystal lattices by low-energy ion irradiation

    International Nuclear Information System (INIS)

    Tereshko, I.; Abidzina, V.; Tereshko, A.; Glushchenko, V.; Elkin, I.

    2007-01-01

    The goal of this paper is to study self-organization processes that cause nanostructural evolution in nonlinear crystal media. The subjects of the investigation were nonlinear homogeneous and heterogeneous atom chains. The method of computer simulation was used to investigate the interaction between low-energy ions and crystal lattices. It was based on the conception of three-dimensional lattice as a nonlinear atom chain system. We showed that that in homogeneous atom chains critical energy needed for self-organization processes development is less than for nonlinear atom chain with already embedded clusters. The possibility of nanostructure formation was studied by a molecular dynamics method of nonlinear oscillations in atomic oscillator systems of crystal lattices after their low-energy ion irradiation. (authors)

  12. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  13. Extraction of low-energy negative oxygen ions for thin film formation

    International Nuclear Information System (INIS)

    Vasquez, M. Jr.; Sasaki, D.; Kasuya, T.; Wada, M.; Maeno, S.

    2011-01-01

    Coextraction of low-energy positive and negative ions were performed using a plasma sputter-type ion source system driven by a 13.56 MHz radio frequency (rf) power. Titanium (Ti) atoms were sputtered out from a target and the sputtered neutrals were postionized in oxygen/argon (O 2 /Ar) plasma prior to extraction. The negative O ions were surface-produced and self-extracted. Mass spectral analyses of the extracted ion beams revealed the dependence of the ion current on the incident rf power, induced target bias and O 2 /Ar partial pressure ratio. Ti + current was found to be dependent on Ar + current and reached a saturation value with increasing O 2 partial pressure while the O - current showed a peak current at around 1:9 O 2 /Ar partial pressure ratio. Ti + current was several orders of magnitude higher than that of the O - current.

  14. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    Science.gov (United States)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  15. Status of the SNS H- ion source and low-energy beam transport system

    International Nuclear Information System (INIS)

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-01-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H - ion beams to the Spallation Neutron Source (SNS) Front End and the accelerator chain have been developed into a mature unit that will satisfy the operational needs through the commissioning and early operating phases of SNS. The ion source was derived from the SSC ion source, and many of its original features have been improved to achieve reliable operation at 6% duty factor, producing beam currents in the 35-mA range and above. The LEBT utilizes purely electrostatic focusing and includes static beam-steering elements and a pre-chopper. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on relevant commissioning results obtained with the SNS RFQ accelerator. Perspectives for further improvements will be outlined in concluding remarks

  16. Ion-solid interaction at low energies: principles and application of quantitative ISS

    International Nuclear Information System (INIS)

    Niehus, H.; Spitzl, R.

    1991-01-01

    Quantitative surface analysis with low-energy (500-5000 eV) ion scattering spectroscopy is known to be difficult, most often because of strong charge transfer and multiple scattering effects occurring during ion-surface interaction. In order to avoid neutralization problems, either alkali primary ions or noble gas ions in combination with the detection of all scattered particles was applied. Multiple scattering occurs predominantly at forward scattering and might confound the analysis. Backward scattering (i.e. 180 o impact collision ion scattering) bypasses strongly the multiple scattering complication and has been used successfully for the analysis of a number of surface structures for metals, semiconductors and binary alloys. A simple triangulation concept gives access to mass-selective qualitative surface crystallography. Quantitative surface structures were determined by comparison with computer simulations. (author)

  17. Surface modification and metallization of polycarbonate using low energy ion beam

    International Nuclear Information System (INIS)

    Reheem, A.M. Abdel; Maksoud, M.I.A. Abdel; Ashour, A.H.

    2016-01-01

    The low energy argon ion is used for irradiation polycarbonate samples using cold cathode ion source. The surface of the PC substrates is examined using SEM, UV-spectroscopy and FTIR. It was found that the energy band gap decrease by increase argon ion fluence. Copper films are deposited onto polycarbonate (PC) substrates after irradiation by argon ion beam. The structure, surface morphology and the optical band gap are investigated using XRD, SEM and UV spectroscopy. It can be seen that the intensity increases with deposition time and band gap decreases from 3.45 eV for the pristine PC to ∼1.7 eV for copper thin film. - Highlights: • The low energy argon ion is used for irradiation polycarbonate samples. • The surface roughness increase from 9 µm to 23.5 µm after argon ion irradiated. • Copper films are deposited onto polycarbonate (PC) substrates. • Energy band gap decreases from 3.45 eV for pristine to 1.7 eV for copper thin film.

  18. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  19. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  20. Beam profile measurement with CR-39 track detector for low-energy ions

    CERN Document Server

    Sato, F; Tanaka, T; Iida, T; Yamauchi, T; Oda, K

    1999-01-01

    A CR-39 track detector was successfully used to measure the outline of thin low-energy ion beams. After the etching, the surface of the detector was examined with an observation system composed of a Normarski microscope, a CCD camera and a digital image processing computer. Beam images obtained with the system were in good agreement on the outline of the beam formed with a beam aperture. Also, the resolving power in the beam outline measurement was roughly explained from the consideration of the ion range and the etch-pit growth in the chemical etching for the CR-39 detector.

  1. Generating of low energy intensive ion streams in conditions of low pressure

    International Nuclear Information System (INIS)

    Zinoviev, D.V.; Tseluyko, A.F.; Chunadra, A.G.; Yunakov, N.N.

    2000-01-01

    In the work the method of forming of low energy ion streams near the sample surface with separating the generation area of plasma and the acceleration area of ion is offered.It allows to lower pressure in acceleration area essentially (0.01 Pa and below).The separating of the areas takes place at the expense of vacuum resistance in a plasma generating device.The dependence of plasma parameters on exterior parameters of the device is determined and the way of the further decreasing of working pressure in the modification area up to 10 -3 - 10 -4 Pa are shown

  2. Influence of copper single crystal structures on the reflection of low energy hydrogen and helium ions

    International Nuclear Information System (INIS)

    Feijen, H.H.W.

    1975-01-01

    A theoretical basis for the 'wedge-focussing' phenomenon is outlined. Investigations have been made to check up to what extent proton reflection can be simulated by using H 2 + or H 3 + as incident ions and analysing the reflected protons. The results of an experimental study of the influence of surface semi-channels on the reflection of low energy ( + , H 2 + and He + ions from copper single crystals with attention to the wedge-focussing effect are presented (G.T.H.)

  3. Improved four-stage accel-decel production of low-energy stripped heavy ions

    International Nuclear Information System (INIS)

    Thieberger, P.; Barrette, J.; Johnson, B.M.; Jones, K.W.; Meron, M.; Wegner, H.E.

    1982-01-01

    The two model MP Tandem Van de Graaff accelerators at Brookhaven have been used in a four-stage accel-decel configuration to produce highly stripped low energy heavy ions. The performance in this mode of operation has now been substantially improved by modifications of the second accelerator. The inclined field acceleration tube electrodes at the exit of this accelerator were replaced by straight electrodes, the vacuum was improved and the maximum negative terminal potential was increased. Higher intensity beams of heavier highly stripped ions can now be produced at lower energies than before

  4. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  5. Low energy ion scattering as a tool for surface structure and composition analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1980-01-01

    Low energy ion scattering is finding increasing application in the study of areas such as gas adsorption, thin film deposition and surface damage creation and annealing during ion irradiation where structural and compositional changes occurring in only the outermost atomic layer need to be monitored. The capabilities of the technique and the ways in which it has been developed for different types of analysis depend strongly on the fundamental atomic collision processes taking place at the surface and it is these processes, together with examples of their role in analysis applications, that form the subject of this paper. (author)

  6. Study of uranium dioxyde sputtering induced by multicharged heavy ions at low and very low kinetic energy: projectile charge effect; Etude de la pulverisation du dioxyde d'uranium induite par des ions lourds multicharges de basse et tres basse energie cinetique; effet de la charge du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Haranger, F

    2003-12-01

    Ion beam irradiation of a solid can lead to the emission of neutral or ionized atoms, molecules or clusters from the surface. This comes as a result of the atomic motion in the vicinity of the surface, induced by the transfer of the projectile energy. Then, the study of the sputtering process appears as a means to get a better understanding of the excited matter state around the projectile trajectory. In the case of slow multicharged ions, a strong electronic excitation can be achieved by the projectile neutralization above the solid surface and / or its deexcitation below the surface. Parallel to this, the slowing down of such ions is essentially related to elastic collision with the target atoms. The study of the effect of the initial charge state of slow multicharged ions, in the sputtering process, has been carried out by measuring the absolute angular distributions of emission of uranium atoms from a uranium dioxide surface. The experiments have been performed in two steps. First, the emitted particles are collected onto a substrate during irradiation. Secondly, the surface of the collectors is analyzed by Rutherford Backscattering Spectrometry (RBS). This method allows the characterization of the emission of neutrals, which are the vast majority of the sputtered particles. The results obtained provide an access to the evolution of the sputtering process as a function of xenon projectile ions charge state. The measurements have been performed over a wide kinetic energy range, from 81 down to 1.5 keV. This allowed a clear separation of the contribution of the kinetic energy and initial projectile charge state to the sputtering phenomenon. (author)

  7. Electrophoresis examination of strand breaks in plasmid DNA induced by low-energy nitrogen ion irradiation

    International Nuclear Information System (INIS)

    Zhao Yong; Tan Zheng; Du Yanhua; Qiu Guanying

    2003-01-01

    To study the effect on plasmid DNA of heavy ion in the energy range of keV where nuclear stopping interaction becomes more important or even predominant, thin film of plasmid pGEM-3Zf(-) DNA was prepared on aluminum surface and irradiated in vacuum ( -3 Pa) by low-energy nitrogen ions with energy of 30 keV (LET=285 keV/μm) at various fluence ranging from 2 x 10 10 to 8.2 x 10 13 ions/cm 2 . DNA strand breaks were analyzed by neutral electrophoresis followed by quantification with image analysis software. Low-energy nitrogen ion irradiation induced single-, double- and multiple double-strand breaks (DSB) and multiple DSB as the dominating form of DNA damages. Moreover, the linear fluence-response relationship at a low fluence range suggests that DSBs are induced predominantly by single ion track. However, strand break production is limited to a short range in the irradiated samples

  8. Radiative recombination of highly charged ions: Enhanced rates at low energies

    International Nuclear Information System (INIS)

    Frank, A.; Mueller, A.; Haselbauer, J.; Schennach, S.; Spies, W.; Uwira, O.; Wagner, M.

    1992-01-01

    In a single-pass merged-beams experiment employing a dense cold electron target recombination of highly charged ions is studied. Unexpected high recombination rates are observed at low energies E cm in the electron-ion center-of-mass frame. In particular, theoretical estimates for radiative recombination are dramatically exceeded by the experimental recombination rates at E cm =0 eV for U 28+ and for Au 25+ ions. Considerable rate enhancement is also observed for Ar 15+ . This points to a general phenomenon which has to be interpreted as a consequence of high electron densities, low electron beam temperatures, high ion charge states and presence of strong magnetic fields. (orig.)

  9. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  10. Channel for Applied Investigations on Low Energy Ion Beams of Cyclotron DC-60

    CERN Document Server

    Gikal, B N; Borisenko, A N; Fateev, A A; Gulbekyan, G G; Kalagin, I V; Kazacha, V I; Kazarinov, N Yu; Kolesov, I V; Lebedev, N I; Lysukhin, S N; Melnikov, V N

    2006-01-01

    The channel intended for carrying out applied investigations on the low energy ion beams having the kinetic energy 25 $Z/A$ keV/a.u. and transported from the ECR-source to a target is worked out. The channel structure and parameters of all its optics elements are defined. The calculation results of different ion types transportation are given. It is shown that ions having the ratio of their mass to charge Z/A=2-20 can be transported in the worked out channel with enough high expected efficiency. At that the ion beam diameter on the target is $\\sim$40 mm. The characteristics of the basic optical elements of the channel are also given.

  11. A low-energy ion source for p-type doping in MBE

    International Nuclear Information System (INIS)

    Park, R.M.; Stanley, C.R.; Clampitt, R.

    1980-01-01

    A compact low-energy ion cell has been developed for use as a source of acceptor impurities for the growth of p-type semiconductor material in ultra-high vacuum by molecular beam epitaxy. A flux of either zinc or cadmium atoms is emitted under molecular effusion conditions and partially ionised in the orifice of the cell by electron bombardment. The design provides for control of both the ion energy and current at constant cell temperature. (100)InP has been grown by MBE in a flux of 1 keV Zn ions. The surface morphology and crystal structure show no degradation when compared with (100)InP grown without the Zn ions present. (author)

  12. Ion mass dependence for low energy channeling in single-wall nanotubes

    International Nuclear Information System (INIS)

    Zheng Liping; Zhu Zhiyuan; Li Yong; Zhu Dezhang; Xia Huihao

    2008-01-01

    An Monte Carlo (MC) simulation program has been used to study ion mass dependence for the low energy channeling of natural- and pseudo-Ar ions in single-wall nanotubes. The MC simulations show that the channeling critical angle Ψ C obeys the (E) -1/2 and the (M 1 ) -1/2 rules, where E is the incident energy and M 1 is the ion mass. The reason for this may be that the motion of the channeled (or de-channeled) ions should be correlated with both the incident energy E and the incident momentum (2M 1 E) 1/2 , in order to obey the conservation of energy and momentum

  13. Lens effect of unipolar electrostatic steerers on low-energy ion beams and its effective reduction

    International Nuclear Information System (INIS)

    Asozu, Takuhiro; Matsuda, Makoto; Kutsukake, Kenichi

    2010-08-01

    The JAEA-Tokai tandem accelerator has two ion injectors, one is the negative ion injector placed on the ground and the other is the positive ion injector in the high voltage terminal. The electrostatic steerers in the high voltage terminal are used for ion beams from the both injectors. Because the beams from the negative ion injector gain high energy at the 20MV terminal, the electrodes of the electrostatic steerers are designed to be supplied several ten kV. The high voltages are supplied by two unipolar DC power supplies and they are controlled as the sum of the voltages keeps constant. The high electric potential between the electrodes affects the beam trajectory as an electrostatic lens. The potential must be too high for the low energy ion beams from the positive ion injector on the 100kV deck. We simulated the beam trajectory by calculation and evaluated the strength of the lens effects. The results showed that the focal distances were too short to control the beam form positive ion injector using optical devices in the downstream. If we reduce the voltages to one tenth in simulation, then the focusing effects were much less significant. We installed a multiplying factor circuit to make the voltages variable and much lower. The results of beam-handling tests using the circuit actually showed significant increase of the ion beam current. (author)

  14. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    Science.gov (United States)

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito; Martina, Luigi

    2018-01-01

    In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS) coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  15. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    Directory of Open Access Journals (Sweden)

    Nassisi Vincenzo

    2018-01-01

    Full Text Available In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  16. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  17. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-01-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  18. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: r.chater@imperial.ac.u [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2010-06-15

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  19. Development of a low-energy radioactive ion beam facility for the MARA separator

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, Philippos, E-mail: philippos.papadakis@jyu.fi; Moore, Iain; Pohjalainen, Ilkka; Sarén, Jan; Uusitalo, Juha [University of Jyväskylä, Department of Physics (Finland)

    2016-12-15

    A low-energy radioactive ion beam facility for the production and study of nuclei produced close to the proton drip line is under development at the Accelerator Laboratory of the University of Jyväskylä, Finland. The facility will take advantage of the mass selectivity of the recently commissioned MARA vacuum-mode mass separator. The ions selected by MARA will be stopped and thermalised in a small-volume gas cell prior to extraction and further mass separation. The gas cell design allows for resonance laser ionisation/spectroscopy both in-gas-cell and in-gas-jet. The facility will include experimental setups allowing ion counting, mass measurement and decay spectroscopy.

  20. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Youroukov, S; Kitova, S; Danev, G [Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 113 Sofia (Bulgaria)], E-mail: skitova@clf.bas.bg

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO{sub 2} together with concurrent bombardment with low energy N{sub 2}{sup +} ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N{sub 2}{sup +} ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV)

  1. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  2. Radiation damage in urania crystals implanted with low-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tien Hien, E-mail: tien-hien.nguyen@u-psud.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM – UMR 8609), CNRS-IN2P3-Université Paris-Sud, Bâtiments 104-108, 91405 Orsay Campus (France); Garrido, Frédérico; Debelle, Aurélien; Mylonas, Stamatis [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM – UMR 8609), CNRS-IN2P3-Université Paris-Sud, Bâtiments 104-108, 91405 Orsay Campus (France); Nowicki, Lech [The Andrzej Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Thomé, Lionel; Bourçois, Jérôme; Moeyaert, Jérémy [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM – UMR 8609), CNRS-IN2P3-Université Paris-Sud, Bâtiments 104-108, 91405 Orsay Campus (France)

    2014-05-01

    Implantations with low-energy ions (470-keV Xe and 500-keV La with corresponding ion range Rp ∼ 85 nm and range straggling ΔRp ∼ 40 nm) have been performed to investigate both radiation and chemical effects due to the incorporation of different species in UO{sub 2} (urania) crystals. The presence of defects was monitored in situ after each implantation fluence step by the RBS/C technique. Channelling data were analysed afterwards by Monte-Carlo simulations with a model of defects involving (i) randomly displaced atoms (RDA) and (ii) distorted rows, i.e. bent channels (BC). While increasing the ion fluence, the accumulation of RDA leads to a steep increase of the defect fraction in the range from 4 to 7 dpa regardless of the nature of bombarding ions followed by a saturation plateau over a large dpa range. A clear difference of 6% in the yield of saturation plateaus between irradiation with Xe and La ions was observed. Conversely, the evolutions of the fraction of BC showed a similar regular increase with increasing ion fluence for both ions. Moreover, this increase is shifted to a larger fluence in comparison to the sharp increase step of RDA. This phenomenon indicates a continuous structural modification of UO{sub 2} crystals under irradiation unseen by the measurement of RDA.

  3. Construction, characterization and applications of a compact mass-resolved low-energy ion beam system

    International Nuclear Information System (INIS)

    Lau, W.M.; Feng, X.; Bello, I.; Sant, S.; Foo, K.K.; Lawson, R.P.W.

    1991-01-01

    A compact mass-resolved low-energy ion beam system has been constructed in which ions are extracted from a Colutron ion source, focused by an einzel lens, mass-selected by a Wien filter, refocused by a second einzel lens into an ultrahigh vacuum target chamber, and finally decelerated with a five-electrode lens. The design of the deceleration lens was assisted by computer simulation including space-charge effects with an ion trajectory software (CHDEN). The system performance has been characterized with a quadrupole mass spectrometer and an energy analyzer along the beam axis. For example, argon ions can be transported at keV and decelerated to 10 eV with an energy spread of ±0.5 eV. The total current measured by a Faraday cage at the exit of the deceleration lens in the energy range of 10-200 eV is about 1-5 μA. The ion current density was higher than 100 μA/cm 2 at 50 eV but decreased to 10-20 μA/cm 2 at 10 eV. The mass resolution was estimated to be 40 under the present operation configuration. The system has been used to produce interesting results in both ion beam etching and deposition. (orig.)

  4. Flow direction variations of low energy ions as measured by the ion electron sensor (IES) flying on board of Rosetta

    Science.gov (United States)

    Szegö, Karoly; Nemeth, Zoltan; Foldy, Lajos; Burch, James L.; Goldstein, Raymond; Mandt, Kathleen; Mokashi, Prachet; Broiles, Tom

    2015-04-01

    The Ion Electron Sensor (IES) simultaneously measures ions and electrons with two separate electrostatic plasma analyzers in the energy range of 4 eV- 22 keV for ions. The field of view is 90ox360o, with angular resolution 5ox45o for ions, with a sector containing the solar wind being further segmented to 5o × 5o. IES has operated continuously since early 2014. In the ion data a low energy (energy ions. Here we analyze the arrival direction of this low energy component. The origin of these low energy ions is certainly the ionized component of the neutral gas emitted due to solar activity from comet 67P/Churiumov-Gerasimenko. The low energy component in general shows a 6h periodicity due to cometary rotation. The data show, however, that the arrival direction of the low energy ions is smeared both in azimuth and elevation, due possibly to the diverse mechanisms affecting these ions. One of these effects is the spacecraft potential (~-10V), which accelerates the ions towards the spacecraft omnidirectionally. To characterize the flow direction in azimuth-elevation, we have integrated over the lowest 8 energy channels using weighted energy: sum(counts * energy)/sum(counts); and considered only cases when the counts are above 30. When we apply higher cut for counts, the flow direction became more definite. For this analysis we use data files where the two neighbouring energy values and elevation values are collapsed; and the azimuthal resolution is 45o, that is the solar wind azimuthal segmentation is also collapsed. Here we use day 2014.09.11. as illustration. On that day a solar wind shock reached the spacecraft at about ~10 UT. After the shock transition the energy of the solar wind became higher, and after ~12 UT the flow direction of the solar wind fluctuated, sometimes by 35o. On this day Rosetta flew at about 29.3-29.6 km from the nucleus. In the azimuth-elevation plots summed over "weighted energy" (as defined above) we were able to identify two flow directions

  5. Low energy ion scattering (LEIS) and the compositional and structural analysis of solid surfaces

    International Nuclear Information System (INIS)

    Berg, J.A. van den; Armour, D.G.

    1981-01-01

    The physics of Low Energy Ion Scattering (LEIS) and its application as a surface analytical technique are reviewed. It is shown that compositional and short-range structural information can be obtained by choosing experimental conditions which optimize the contributions of single and double (or multiple) collisions, respectively. The LEIS technique allows mass analysis in a straightforward way, possesses a high surface selectivity but is unable to provide quantitative information in isolation due to scattering cross-section uncertainties and not easily quantifiable charge exchange effects. Structural information regarding adsorbate positions on single crystal surfaces and the short-range substrate structure (including damaged and reconstructed surfaces) can be obtained by exploiting shadowing and/or multiple scattering phenomena. The progress made in recent years in this area is charted. It is shown that computer simulations often play an important role in this type of study. Effects, such as charge exchange, inelastic energy loss and ion beam surface perturbations, which complicate the use of low energy ion scattering for surface analysis are discussed in detail. The present status of the technique in the different areas of study is indicated. (author)

  6. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    International Nuclear Information System (INIS)

    Tuleta, M.; Gabla, L.; Szkarlat, A.

    2005-01-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  7. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    Energy Technology Data Exchange (ETDEWEB)

    Tuleta, M.; Gabla, L. [Jagiellonian Univ., Institute of Physics, Cracow (Poland); Szkarlat, A. [Clinical Children' s Hospital of the Jagiellonian Univ., Medical College, Lab. of Microbiology, Cracow (Poland)

    2005-04-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  8. Bioastrophysical Aspects of Low Energy Ion Irradiation of Frozen Anthracene Containing Water

    International Nuclear Information System (INIS)

    Tuleta, M.; Gabla, L.; Madej, J.

    2001-01-01

    The origin of life on Earth remains a fascinating mystery in spite of many theories existing on this subject. However, it seems that simple prebiotic molecules could play an essential role in the formation of more complex organisms. In our experiment, we synthesized a class of these molecules (quinones) bombarding frozen anthracene containing water with low energy hydrogen ions. This experiment roughly simulated the astrophysical conditions which one can find in the solar system. Thus, we can hypothesize that prebiotic molecules could be created by interaction of the solar wind with interplanetary dust grains. The delivery of these molecules to early Earth may have contributed to the generation of life on our planet

  9. Defect diffusion during annealing of low-energy ion-implanted silicon

    International Nuclear Information System (INIS)

    Bedrossian, P.J.; Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    The authors present a new approach for investigating the kinetics of defect migration during annealing of low-energy, ion-implanted silicon, employing a combination of computer simulations and atomic-resolution tunneling microscopy. Using atomically-clean Si(111)-7 x 7 as a sink for bulk point defects created by 5 keV Xe and Ar irradiation, they observe distinct, temperature-dependent surface arrival rates for vacancies and interstitials. A combination of simulation tools provides a detailed description of the processes that underlie the observed temperature-dependence of defect segregation, and the predictions of the simulations agree closely with the experimental observations

  10. Initial state dependence of low-energy electron emission in fast ion atom collisions

    International Nuclear Information System (INIS)

    Moshammer, R.; Schmitt, W.; Kollmus, H.; Ullrich, J.; Fainstein, P.D.; Hagmann, S.

    1999-06-01

    Single and multiple ionization of Neon and Argon atoms by 3.6 MeV/u Au 53+ impact has been explored in kinematically complete experiments. Doubly differential cross sections for low-energy electron emission have been obtained for defined charge state of the recoiling target ion and the receding projectile. Observed target specific structures in the electron continuum are attributable to the nodal structure of the initial bound state momentum distribution. The experimental data are in excellent accord with CDW-EIS single ionization calculations if multiple ionization is considered appropriately. (orig.)

  11. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  12. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  13. High-intensity low energy titanium ion implantation into zirconium alloy

    Science.gov (United States)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  14. Inverted end-Hall-type low-energy high-current gaseous ion source

    International Nuclear Information System (INIS)

    Oks, E. M.; Vizir, A. V.; Shandrikov, M. V.; Yushkov, G. Yu.; Grishin, D. M.; Anders, A.; Baldwin, D. A.

    2008-01-01

    A novel approach to low-energy, high-current, gaseous ion beam generation was explored and an ion source based on this technique has been developed. The source utilizes a dc high-current (up to 20 A) gaseous discharge with electron injection into the region of ion generation. Compared to the conventional end-Hall ion source, the locations of the discharge anode and cathode are inverted: the cathode is placed inside the source and the anode outside, and correspondingly, the discharge current is in the opposite direction. The discharge operates in a diverging axial magnetic field, similar to the end-Hall source. Electron generation and injection is accomplished by using an additional arc discharge with a ''cold'' (filamentless) hollow cathode. Low plasma contamination is achieved by using a low discharge voltage (avoidance of sputtering), as well as by a special geometric configuration of the emitter discharge electrodes, thereby filtering (removing) the erosion products stemming from the emitter cathode. The device produces a dc ion flow with energy below 20 eV and current up to 2.5 A onto a collector of 500 cm 2 at 25 cm from the source edge, at a pressure ≥0.02 Pa and gas flow rate ≥14 SCCM. The ion energy spread is 2 to 3 eV (rms). The source is characterized by high reliability, low maintenance, and long lifetime. The beam contains less than 0.1% of metallic ions. The specific electric energy consumption is 400 eV per ion registered at the collector. The source operates with noble gases, nitrogen, oxygen, and hydrocarbons. Utilizing biasing, it can be used for plasma sputtering, etching, and other ion technologies

  15. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1992-01-01

    This report discusses research of multicharged nitrogen, oxygen and carbon monoxide molecular ions produced with collision with multicharged argon ions. Properties like ionization, dissociation, and excitation are investigated

  16. Plant height revertants of Dominant Semidwarf mutant rice created by low-energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Binmei [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu Yuejin [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: yjwu@ipp.ac.cn; Xu Xue; Song, M.; Zhao, M. [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, X.D. [Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101 (China)

    2008-04-15

    Dominant Semidwarf mutant rice (Sdd) was obtained from its wild type (WT) by irradiation with a low-energy ion beam. Six tall revertants of Sdd were induced by irradiation. The revertants restored the plant height to that of WT plants. Investigation of the agronomic character and genetic analysis indicate that the revertants are similar to WT plants with putative different inherited mutations. The revertants were checked for DNA differences using the simple sequence repeat technique. Among 408 such primers used, only 2 primers detected mutation sites in the revertants, which provided the molecular evidence for the revertants induced from Sdd. This study indicates that ion irradiation may be used as a mutagen to create revertants for plant architecture studies and could be a new application.

  17. Composition variations of low energy heavy ions during large solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorer (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.

  18. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: a.markwitz@gns.cri.nz [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2014-07-15

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  19. Kinetics of interaction from low-energy-ion bombardment of surfaces

    International Nuclear Information System (INIS)

    Horton, C.C.

    1988-01-01

    The kinetics of interaction from low energy oxygen ion bombardment of carbon and Teflon surfaces have been investigated. The surfaces were bombarded with 4.5 to 93 eV oxygen ions and emitted species were observed with a mass spectrometer. To obtain the kinetic information, the ion beam was square pulse modulated and reaction products were observed as a function of time. The kinetic information is contained in the response of the emitted species to the pulsed ion beam. Oxygen bombardment of carbon produced CO in three parallel branches with each following an adsorption-desorption process. The fast branch, with a rate constants of 12,000/sec, appeared to be sputter induced an was absent below about 19 eV. The medium and slow branches, with rate constants of 850/sec and 45/sec respectively, has little energy dependence and appeared to be due to chemical sputtering from two sites. The ratio of the fraction of the medium branch to that of the slow was constant at 1:3. The bombardment of Teflon produced CF in two parallel branches, with one following a series process and the other an adsorb-desorb process. The rate constant of the other branch were 22,000/sec and 7,000/sec and the rate constant of the other branch was 90/sec. The total signal fell monotonically with decreasing ion energy with the fraction for each branch holding constant at 71% for the series and 29% for the adsorb-desorb

  20. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  1. On the modification of metal/ceramic interfaces by low energy ion/atom bombardment during film growth

    International Nuclear Information System (INIS)

    Rigsbee, J.M.; Scott, P.A.; Knipe, R.K.; Hock, V.F.

    1986-01-01

    Elemental Cu and Ti films have been deposited onto ceramic substrates with a plasma-aided physical vapor deposition (ion-plating) process. This paper discusses how the structure and chemistry of the metallic film and the metal/ceramic interface are modified by low energy ion and neutral atom bombardment. Emphasis is placed on determining how low energy ion/neutral atom bombardment affects the strength of the metal/ceramic interface. Analyses of the film, interface and substrate regions have employed scanning Auger microprobe, secondary ion mass spectroscopy, SEM/STEM-energy dispersive X-ray and TEM/STEM imaging and microdiffraction techniques. (Auth.)

  2. Synthesis of 5'-CMP and 5'-dCMP in aqueous solution induced by low energy ions implantation

    International Nuclear Information System (INIS)

    Shi Huaibin; Shao Chunlin; Wang Xiangqin; Yu Zengliang

    2001-01-01

    Low energy N + ions produced by N 2 are accelerated and then introduced into aqueous solution to induce chemical reactions. This process avoids the need of a vacuum chamber and makes it possible to investigate the actions of low energy ions in aqueous solution. In order to explore prebiotic synthesis of nucleotide via reaction between low energy ions and aqueous solution under the primitive earth conditions, low energy N + is implanted into aqueous solution containing cytosine, D-ribose, D-2-deoxyribose and NH 4 H 2 PO 4 . It is confirmed that 5'-CMP and 5'-dCMP are produced by HPLC and 1 H-NMR analyses. The relation between yields of 5'-CMP and 5'-dCMP and irradiation time has been obtained

  3. Use of low energy alkali ion scattering as a probe of surface structure

    International Nuclear Information System (INIS)

    Overbury, S.H.

    1986-01-01

    An overview is given of the use of low energy ion scattering as a probe of surface structure with emphasis on work done using alkali ions. Various schemes for extracting structural information from the ion energy and angle distributions are discussed in terms of advantages and disadvantages of each. The scattering potential which is the primary non-structural parameter needed for analysis, is discussed in terms of recent experimental results. The structure of clean and reconstructed surfaces are discussed, with examples of measurements of layer relaxations on the Mo(111) surface and missing row reconstructions on the Au(110) and Pt(110) surfaces. Studies of adsorbate covered surfaces are presented with respect to location of the adsorbate and its effect on the structure of the underlying substrate. Finally, examples are given which demonstrate the sensitivity of ion scattering to surface defects and disordering on reconstructed Au(110) and Pt(110) surfaces and unreconstructed Mo(111) surfaces, and to ordering of adsorbates on Mo(001). 47 refs., 12 figs

  4. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  5. Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering

    International Nuclear Information System (INIS)

    Chan, W.L.; Chason, Eric

    2007-01-01

    When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or ''ripple'' structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement

  6. Tuning surface porosity on vanadium surface by low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2016-08-15

    Highlights: • Surface nanostructuring on vanadium surface using novel He{sup +} ion irradiation process. • Tuning surface-porosity using high-flux, low-energy He{sup +} ion irradiation at constant elevated sample temperature (823–173 K). • Presented top-down approach guarantees good contact between different crystallites. • Sequential significant enhancement in surface-pore edge size (and corresponding reduction in surface-pore density) with increasing sample temperature. - Abstract: In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He{sup +} ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He{sup +} ions at a constant ion-flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} for 1 h duration at constant sample temperatures in the wide range of 823–1173 K. Our results show that the surface porosity of V{sub 2}O{sub 5} (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V{sub 2}O{sub 5} surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of “black metal”. Combined with the naturally high melting point of V{sub 2}O{sub 5}, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V{sub 2}O{sub 5} is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  7. Ion beam studies. Part 1. The retardation of ion beams to very low energies in an implantation accelerator

    International Nuclear Information System (INIS)

    Freeman, J.H.; Temple, W.; Beanland, D.; Gard, G.A.

    1976-02-01

    The design and operation of a compact electrostatic lens for the retardation and focussing of high intensity beams of heavy ions down to energies in the range 10 to 1,000 eV is described. The use of such beams for low-energy ion implantation and for the production of uniform ion-deposited layers is outlined. The practical behaviour of the lens is shown to be in agreement with computer calculations and the theoretical model is used to delineate and explain the boundary conditions under which the focussing behaviour becomes anomalous. The calculated and measured effects of space-charge repulsion on the quality of focussing are compared and it is demonstrated that a simple retardation lens design can be effectively employed at high flux. (author)

  8. The temperature effect of low-energy ion beam implantation on seed

    International Nuclear Information System (INIS)

    Chang Shenghe; Su Mingjie; Qin Guangyong; Wu Yuping; Zhao Haizhen

    2005-01-01

    The temperature effects of low-energy ion beam implantation on the seed germination were studied. Maize dry seeds were covered with copy paper, aluminum foil and without cover, respectively. Results showed that the germination rate of the seeds covered with paper which was the bad heat transmitter was the highest among three treatments, while that covered with aluminum foil which can transmit heat energy well was the least. The germination rate of the seeds covered with nothing was the second. Temperature affected seeds germination markedly. Generally the temperature of the target room inhibited the seeds' germination. After minus the effects of the temperature in the target room, the germination rates of the seeds were modified in this paper. The modified germination rate curve was also provided. (authors)

  9. Nitriding of AISI 4140 steel by a low energy broad ion source

    International Nuclear Information System (INIS)

    Ochoa, E. A.; Figueroa, C. A.; Alvarez, F.

    2006-01-01

    A comprehensive study of the thermochemical nitriding process of steel AISI 4140 by low energy ion implantation (Kaufmann cell) is reported. Different times of implantation were employed and the studied samples were characterized by x-ray diffraction, in situ photoemission electron spectroscopy, scanning electron microscopy, and hardness (nanoindentation) measurements. The linear relationship between nitrogen content and hardness was verified. The structure of the nitrided layer was characterized yielding that the compound layer is formed by coarse precipitates, around small grains, constituted principally by ε-Fe 2-3 N and γ-Fe 4 N phases and the diffusion zone is formed by fine precipitates, around big grains of the original martensitic phase, constituted principally by γ-Fe 4 N phase. Finally, a diffusion model for multiphase systems was applied to determine effective diffusion coefficients of nitrogen in the different phases

  10. Operation of low-energy ion implanters for Si, N, C ion implantation into silicon and glassy carbon

    International Nuclear Information System (INIS)

    Carder, D.A.; Markwitz, A.

    2009-01-01

    This report details the operation of the low-energy ion implanters at GNS Science for C, N and Si implantations. Two implanters are presented, from a description of the components through to instructions for operation. Historically the implanters have been identified with the labels 'industrial' and 'experimental'. However, the machines only differ significantly in the species of ions available for implantation and sample temperature during implantation. Both machines have been custom designed for research purposes, with a wide range of ion species available for ion implantation and the ability to implant two ions into the same sample at the same time from two different ion sources. A fast sample transfer capability and homogenous scanning profiles are featured in both cases. Samples up to 13 mm 2 can be implanted, with the ability to implant at temperatures down to liquid nitrogen temperatures. The implanters have been used to implant 28 Si + , 14 N + and 12 C + into silicon and glassy carbon substrates. Rutherford backscattering spectroscopy has been used to analyse the implanted material. From the data a Si 30 C 61 N 9 layer was measured extending from the surface to a depth of about 77 ± 2 nm for (100) silicon implanted with 12 C + and 14 N + at multiple energies. Silicon and nitrogen ion implantation into glassy carbon produced a Si (40.5 %), C (38 %), N (19.5 %) and O (2%) layer centred around a depth of 50 ± 2 nm from the surface. (author). 8 refs., 20 figs

  11. Pre-compound emission in low-energy heavy-ion interactions

    Directory of Open Access Journals (Sweden)

    Kumar Sharma Manoj

    2017-01-01

    Full Text Available Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  12. Pre-compound emission in low-energy heavy-ion interactions

    Science.gov (United States)

    Sharma, Manoj Kumar; Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Singh, Devendra P.; Unnati; Singh, B. P.; Prasad, R.

    2017-11-01

    Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  13. Albedo of low-energy light ions: case of anisotropic approximation of the collision integral

    International Nuclear Information System (INIS)

    Simovic, R.; Vukanic, J. . E-mail address of corresponding author: simovicr@vin.bg.ac.yu; Simovic, R.)

    2005-01-01

    For diffusion and slowing-down of low-energy light ions, the linear transport equation in the path length form was rederived taking into account a common anisotropic approximation of the collision integral. Assuming that the transport cross section depends only on the ion initial energy, the equation was Laplace-transformed over the relative path length and half-space albedo problem was considered by using the ordinary DPN technique. The Laplace-transformed reflection function was found in the lowest order of DPN flux approximation, and then was inverted analytically leading to the distribution of backscattered particles in the relative path-length. For the general power potential V(R)∞R -1/m the particle reflection coefficient was obtained as a series, while for the special case of the inverse square potential (m=1/2) this coefficient was determined in a compact form. The present approach was compared with the TRIM simulations of helium ion reflection, as well as with the Tilinin - Betz fitting formula and the MARLOWE simulations of proton reflection. (author)

  14. Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude (L = 7)

    International Nuclear Information System (INIS)

    Singh, N.; Raitt, W.J.; Yasuhara, F.

    1982-01-01

    By using averaged data from ATS 6, ion energy and pitch angle distribution functions were examined for a magnetically quiet day (July 18, 1974). The data showed that for both field-aligned and perpendicular fluxes, the population had a mixture of characteristic energies. It was found that over three different energy bands in the range 3-600 eV the distribution functions could be fairly well approximated by Maxwellian distributions with temperatures in the ranges 3-10 eV, 30-50 eV, and approximately 70 eV in energy bands of 3-30 eV, 30-140 eV, and 140-600 eV, respectively. Pitch angle distributions were found to vary the local time; strong field-aligned particle fluxes were measured in the midnight and afternoon sectors, minor field-aligned components persisted to some extent at all times, especially at low energies (E 0 was seen. By using the assumption that the plasma was corotating with the satellite, we have examined pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution. It was found that a magnetic noise of power spectral density b 2 -3 γ 2 /Hz belonging to electromagnetic ion cyclotron mode (L mode) near the ion cyclotron frequency could be very effective in trapping the field-aligned fluxes by pitch angle scattering

  15. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    International Nuclear Information System (INIS)

    Horn, K.M.; Doyle, B.; Segal, M.N.; Adler, R.J.; Glatstein, E.

    1995-01-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3 He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in 'nested'-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3 He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment

  16. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    Science.gov (United States)

    Horn, K. M.; Doyle, B.; Segal, M. N.; Hamm, R. W.; Adler, R. J.; Glatstein, E.

    1995-12-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery — with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use and innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data is also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in "nested"-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  17. Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon

    Science.gov (United States)

    Nagarajappa, Kiran; Guha, Puspendu; Thirumurugan, Arun; Satyam, Parlapalli V.; Bhatta, Umananda M.

    2018-06-01

    Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag- ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.

  18. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    International Nuclear Information System (INIS)

    Delferriere, O.; De Menezes, D.

    2004-01-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D + extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D + ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H + beam emittance will be compared with experimental measurements

  19. Conical pitch angle distributions of very-low energy ion fluxes observed by ISEE 1

    International Nuclear Information System (INIS)

    Horowitz, J.L.; Baugher, C.R.; Chappell, C.R.; Shelley, E.G.; Young, D.T.

    1982-01-01

    Observations of low-energy ionospheric ions by the plasma composition experiment abroad ISEE 1 often show conical pitch angle distributions, that is, peak fluxes between 0 0 and 90 0 to the directions parallel or antiparallel to the magnetic field. Frequently, all three primary ionospheric ion species (H + , He + , and O + ) simultaneously exhibit conical distributions with peak fluxes at essentially the same pitch angle. A distinction is made here between unidirectional, or streaming, distributions, in which ions are traveling essentially from only one hemisphere, and symmetrical distributions, in which significant fluxes are observed traveling from both hemispheres. The orbital coverage for this survey was largely restricted to the night sector, approximately 2100--0600 LT, and moderate geomagnetic latitudes of 20 0 --40 0 . Also, lack of complete pitch angle coverage at all times may have reduced detection for conics with small cone angles. However, we may conclude that the unidirectional conical distributions observed in the northern hemisphere are always observed to be traveling from the northern hemisphere and that they exhibit the following characteristics relative to the symmetric distributions, in that they (1) are typically observed on higher L shells (that is, higher geomagnetic latitudes or larger geocentric distances or both), (2) tend to have significantly larger cone angles, and (3), are associated with higher magnetic activity levels

  20. Modifying the conductivity of polypyrrole through low-energy lead ion implantation

    International Nuclear Information System (INIS)

    Booth, Marsilea Adela; Leveneur, Jérôme; Costa, Alexsandro Santos; Kennedy, John; Harbison, SallyAnn; Travas-Sejdic, Jadranka

    2012-01-01

    Interest lies in the creation of novel nanocomposite materials obtained through mixing, impregnation or incorporation techniques. One such technique is ion implantation which possesses the potential for retaining properties from the base material and implanted material as well as any effects observed from combining the two. To this end low-energy (15 keV) implantation of lead ions of various fluences was performed in conducting polypyrrole films. The presence of lead-rich particles was evidenced through transmission electron microscopy. An interesting trend was observed between fluence and conductivity. Of the fluences tested, the optimum fluences of lead ion implantation in polypyrrole films for enhanced conductivity are 5 × 10 14 at. cm −2 and 2 × 10 15 at. cm −2 . The conductivity and stability appear to result from a combination of effects: polymer degradation arising from ion beam damage, an increase in charge-carriers (dications) present after implantation and precipitation of Pb-rich nanoparticles. Monitoring conductivity over time showed increased retention of conductivity levels after lead implantation. Improvements in stability for polypyrrole open avenues for application and bring polypyrrole one step closer to practical use. A mechanism is suggested for this advantageous retained conductivity. -- Highlights: ► Implanted and characterized polypyrrole films with Pb ions at different fluences. ► Samples indicate high conductivity when implanted with particular fluences. ► Increase in charge carriers and precipitation of conductive Pb-rich phase. ► Conductivity stability is higher for some implanted fluences than for pristine polypyrrole.

  1. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  2. Modern trends in ion source development for low-energy accelerators. Final report of a consultants' meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The IAEA consultative meeting was held to review the status of ion source development for accelerators having output energies less than 100 MeV (low-energy accelerators). Terms of reference for the meeting were to review the status of ion source development for several different types of low-energy accelerators (Van de Graaff, cyclotron, sealed-tube neutron generator, ion implanter, etc.) and to highlight any recent advances in this field. Individual abstracts were prepared for 5 papers presented at this meeting

  3. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  4. Low-Energy Electrons Emitted in Ion Collisions with Thin Foils

    Science.gov (United States)

    Kraemer, Michael; Kozhuharov, Christophor; Durante, Marco; Hagmann, Siegbert; Kraft, Gerhard; Lineva, Natallia

    The realistic description of radiation damage after charged particle passage is an ongoing issue for both radiotherapy as well as space applications. In both areas of applied radiological science, living as well as nonliving matter is exposed to ionizing radiation, and it is of vital interest to predict the responses of structures like cells, detectors or electronic devices. In ion beam radiotherapy, for example, the Local Effect Model (LEM) is being used to calculate radiobiological effects with so far unprecedented versatility. This has been shown in the GSI radiotherapy pilot project and consequently this model has become the "industry standard" for treatment planning in subsequent commercial ion radiotherapy sites. The model has also been extended to nonliving matter, i.e. to describe the response of solid state detectors such as TLDs and films. A prerequisite for this model (and possibly similar ones) is the proper description of microscopic track structure and energy deposition. In particular, the area at a very low distance (¡20 nm) from the ion path needs special attention due to the locally very high dose and the rather limited experimental evidence for the shape of the dose distribution. The dose distribution at low distances is inevitably associated with the creation and transport of low-energy (sub-keV) electrons. While some data, elementary cross sections as well as dose distributions, exist for gaseous media, i.e. under single collision conditions, experimental data for the condensed phase are scarce. We have, therefore, launched a project aimed at systematic research of the energy and angular distributions of low-energy (sub-keV) electrons emitted from solids. These investigations com-prise creation as well as transport of low-energy electrons under multiple collision conditions and hence require accounting for the properties of the target, both bulk and surface, i.e. for the inherent inhomogeneity of the thickness and for the surface roughness. To

  5. Low energy electron-initiated ion-molecule reactions of ribose analogues

    International Nuclear Information System (INIS)

    Mozejko, P.

    2003-01-01

    Recent experiments in which plasmid DNA samples were bombarded with low energy ( 2 O, DNA bases, and sugar-phosphate backbone analogues. To this end, the cyclic molecule tetrahydrofuran, and its derivatives, provide useful models for the sugar-like molecules contained in the backbone of DNA. In addition to LEE induced dissociation by processes such as dissociative electron attachment (DEA), molecules may be damaged by ions and neutral species of non-thermal energies created by LEE in the surrounding environment. In this contribution, we investigate with electron stimulated desorption techniques, LEE damage to films of desoxy-ribose analogues in the presence of various molecular coadsorbates, that simulate changes in local molecular environment. In one type of experiments tetrahydrofuran is deposited onto multilayer O2. A desorbed signal of OH - indicates ion-molecule reactions of the type O - + C 4 H 8 O -> OH - + C 4 H 7 O, where the O - was formed initially by DEA to O 2 . Further electron stimulated desorption measurements for tetrahydrofuran and derivatives adsorbed on H 2 O, Kr, N 2 O and CH 3 OH will be presented and discussed

  6. Determination of deuterium adsorption site on palladium(1 0 0) using low energy ion recoil spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kambali, I. [Department of Physics, University of Newcastle, Callaghan (Australia); O' Connor, D.J. [Department of Physics, University of Newcastle, Callaghan (Australia)], E-mail: john.oconnor@newcastle.edu.au; Gladys, M.J. [Department of Physics, University of Newcastle, Callaghan (Australia); Karolewski, M.A. [Department of Chemistry, University of Brunei Darussalam, Gadong BE1410 (Brunei Darussalam)

    2008-05-15

    Ion beam analysis has been recently applied to study the adsorption phenomena of some adsorbates on metal surfaces. In this paper, surface recoils created by low energy Ne{sup +} ions are employed to study the adsorption site of deuterium (D) atoms on Pd(1 0 0). This technique is extremely surface sensitive with the capacity for atomic layer depth resolution. From azimuthal angle observations of Pd(1 0 0) specimen, it was found that at room temperature, D was adsorbed in the fourfold hollow site of Pd(1 0 0) at a height of 0.25 {+-} 0.05 A above the surface. The adsorbate remains in the hollow site at all temperatures to 383 K though the vertical height above the surface is found to depend on coverage and for the first time evidence is found of a transition to a p(2 x 2) structure for the adsorbate. There is no evidence of D sitting in the Pd(1 0 0) subsurface at room and higher temperatures.

  7. Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    CERN Document Server

    Bosser, Jacques; Chanel, M; Hill, C; Lombardi, A M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Rossi, S; Tanke, E; Tranquille, G; Vretenar, Maurizio

    1999-01-01

    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ...

  8. On the neutralization of noble gas ions in low energy ion scattering

    International Nuclear Information System (INIS)

    Draxler, M.

    2003-04-01

    The set-up ACOLISSA has been set to operation. It was thoroughly tested and found to completely fulfill the requirements for the measurement of charge integrated and of ion TOF-LEIS spectra. Charge integrated scattering spectra in LEIS exhibit a surface peak in many experimental conditions. It was shown that the appearance of this peak is due to a reduced energy width of the contribution from the surface layer and partly due to a reduced energy loss in the surface layer as compared to deeper layers. In the regime of strong multiple scattering, both reasons reflect the fact, that scattering from surface atoms occurs practically exclusively by single binary collisions, while plural and multiple scattering set in in the subsurface layers. As a consequence, only the surface layer and to some extent also the second layer will contribute to the surface peak. Experiment as well as simulation show this behavior, so that other possible reasons for the appearance of a surface peak (e.g. channeling) can safely be ruled out. At high energies, when the multiple scattering half width angle is small, surface effects are mainly caused by electronic stopping and become small, as observed in both, experiment and simulation. In this regime, the energy spectrum is well described by the single scattering spectrum. From the present thesis one can draw the following conclusions concerning the neutralization of noble gas ions at metal surfaces: below the threshold for collision induced processes (CIN, CIR) Ε Εth), P+ is governed by local processes (collision induced neutralization and collision induced reionization) and by a non-local process (Auger neutralization), and thus depends on the energy as well as on vperp. From experiments like the one presented here, where the ion energy as well as the scattering geometry are varied, the process parameters of the neutralization can uniquely be determined for any system. These findings are generally valid and reveal the relevance of different

  9. The mass effect model of the survival rate's dose effect of organism irradiated with low energy ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Gui Qifu; Yu Zengliang

    1995-01-01

    The main characteristic of the low energy ions mutation is its mass deposition effect. Basing on the theory of 'double strand breaking' and the 'mass deposition effect', the authors suggests that the mass deposition products can repair or further damage the double strand breaking of DNA. According to this consideration the dose effect model of the survival rate of organism irradiated by low energy of N + ion beam is deduced as: S exp{-p[αφ + βφ 2 -Rφ 2 exp(-kφ)-Lφ 3 exp(-kφ)]}, which can be called 'mass effect model'. In the low energy ion beam mutation, the dose effects of many survival rates that can not be imitated by previous models are successfully imitated by this model. The suitable application fields of the model are also discussed

  10. Experimental study and simulation of the extraction conditions of a multicharged ion beam from an electron cyclotron resonance source

    International Nuclear Information System (INIS)

    Mandin, J.

    1996-01-01

    This thesis concerns the beam extraction studies of ECR Ion Sources for the SPIRAL project at GANIL (France). The optical properties (i.e. the emittances) of the radioactive ion beam production source is a crucial point in this project. We performed emittance measurements with a very high transport efficiency and developed a computer code for simulating the extraction and transport conditions. This simulation takes into account all the parameters acting on the extraction process: the characteristics of the ions and electrons emitted by the plasma, their space and energy distributions, the space charge, the magnetic filed of the source and the accelerating electric field. We explained the evolution of the emittances for two different types of ECR Ion Source. The simulation-experiment comparison showed us that the magnetic field and the intrinsic energy of the ions seem to be the most important parameters for explaining the overall emittance behaviour of the ECRIS. We precise their values and comment them. (author)

  11. Oxide-nitride-oxide dielectric stacks with Si nanoparticles obtained by low-energy ion beam synthesis

    International Nuclear Information System (INIS)

    Ioannou-Sougleridis, V; Dimitrakis, P; Vamvakas, V Em; Normand, P; Bonafos, C; Schamm, S; Mouti, A; Assayag, G Ben; Paillard, V

    2007-01-01

    Formation of a thin band of silicon nanoparticles within silicon nitride films by low-energy (1 keV) silicon ion implantation and subsequent thermal annealing is demonstrated. Electrical characterization of metal-insulator-semiconductor capacitors reveals that oxide/Si-nanoparticles-nitride/oxide dielectric stacks exhibit enhanced charge transfer characteristics between the substrate and the silicon nitride layer compared to dielectric stacks using unimplanted silicon nitride. Attractive results are obtained in terms of write/erase memory characteristics and data retention, indicating the large potential of the low-energy ion-beam-synthesis technique in SONOS memory technology

  12. Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance

    International Nuclear Information System (INIS)

    André, Mats

    2015-01-01

    This is a review of the mass balance of planet Earth, intended also for scientists not usually working with space physics or geophysics. The discussion includes both outflow of ions and neutrals from the ionosphere and upper atmosphere, and the inflow of meteoroids and larger objects. The focus is on ions with energies less than tens of eV originating from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We have invented a technique to observe low-energy ions based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the ion density and the outward flux in large volumes in the magnetosphere. The global outflow is of the order of 10 26 ions s –1 . This is a significant fraction of the total number outflow of particles from Earth, and changes plasma processes in near-Earth space. We compare order of magnitude estimates of the mass outflow and inflow for planet Earth and find that they are similar, at around 1 kg s −1 (30 000 ton yr −1 ). We briefly discuss atmospheric and ionospheric outflow from other planets and the connection to evolution of extraterrestrial life. (invited comment)

  13. Low-energy hydrogen flux measurements at the TORTUR tokamak with negative ion conversion

    International Nuclear Information System (INIS)

    Toledo, Wiebo van.

    1990-01-01

    The interaction of a tokamak plasma with the vessel wall is one of the most important subjects in thermonuclear research. The information about this interaction is not complete without direct detection of the outward stream of low-energy, down to a few electronvolts, neutral hydrogen or deuterium atoms. The detection of these atoms is the subject of this thesis. An appropriate method to analyse the atoms which are emitted from the edge plasma is to use a time-of-flight analyser. This kind of apparatus selects particles according to their velocities with-out distinguishing between different masses. If these analysers use the Daly-method the lowest measurable energy of the hydrogen atoms is approximately 25 electronvolts. To increase the detection efficiency a new detection method was developed. This new method uses the conversion of hydrogen atoms into H- ions on a cesiated tungsten surface. By this conversion the lowest measurable energy is decreased down to 5 electron-volt. (author). 93 refs.; 44 figs.; 7 tabs

  14. Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.

    1986-01-01

    The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.

  15. Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2004-03-01

    The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.

  16. Treatment of PVC using an alternative low energy ion bombardment procedure

    Science.gov (United States)

    Rangel, Elidiane C.; dos Santos, Nazir M.; Bortoleto, José Roberto R.; Durrant, Steven F.; Schreiner, Wido H.; Honda, Roberto Y.; Rangel, Rita de Cássia C.; Cruz, Nilson C.

    2011-12-01

    In many applications, polymers have progressively substituted traditional materials such as ceramics, glasses, and metals. Nevertheless, the use of polymeric materials is still limited by their surface properties. Frequently, selective modifications are necessary to suit the surface to a given application. Amongst the most common treatments, plasma immersion ion implantation (PIII) has attracted the attention of many researchers owing to its versatility and practicality. This method, however, requires a power supply to provide high voltage (tens of kV) negative pulses, with a controlled duty cycle, width and frequency. Owing to this, the implementation of PIII on the industrial scale can become economically inviable. In this work, an alternative plasma treatment that enables low energy ion bombardment without the need of a high voltage pulse generator is presented. To evaluate the efficiency of the treatment of polymers, polyvinylchloride, PVC, specimens were exposed to 5 Pa argon plasmas for 3600 s, at excitation powers, P, of between 10 and 125 W. Through contact angle and atomic force microscopy data, the influence of P on the wettability, surface free energy and roughness of the samples was studied. Surface chemical composition was measured by X-ray photoelectron spectroscopy, XPS. To evaluate the effect of aging under atmospheric conditions, contact angle and XPS measurements were performed one and 1334 days after the treatment. The plasma potential and ion density around the driven electrode were determined from Langmuir probe measurements while the self-bias potential was derived with the aid of an oscilloscope. From these data it was possible to estimate the mean energy of ions bombarding the PVC surface. Chlorine, carbon and oxygen contamination were detected on the surface of the as-received PVC. Upon exposure to the plasma, the proportion of chlorine was observed to decrease while that of oxygen increased. Consequently, the wettability and surface energy

  17. Treatment of PVC using an alternative low energy ion bombardment procedure

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Santos, Nazir M. dos; Bortoleto, José Roberto R.; Durrant, Steven F.; Schreiner, Wido H.; Honda, Roberto Y.; Cássia C Rangel, Rita de; Cruz, Nilson C.

    2011-01-01

    In many applications, polymers have progressively substituted traditional materials such as ceramics, glasses, and metals. Nevertheless, the use of polymeric materials is still limited by their surface properties. Frequently, selective modifications are necessary to suit the surface to a given application. Amongst the most common treatments, plasma immersion ion implantation (PIII) has attracted the attention of many researchers owing to its versatility and practicality. This method, however, requires a power supply to provide high voltage (tens of kV) negative pulses, with a controlled duty cycle, width and frequency. Owing to this, the implementation of PIII on the industrial scale can become economically inviable. In this work, an alternative plasma treatment that enables low energy ion bombardment without the need of a high voltage pulse generator is presented. To evaluate the efficiency of the treatment of polymers, polyvinylchloride, PVC, specimens were exposed to 5 Pa argon plasmas for 3600 s, at excitation powers, P, of between 10 and 125 W. Through contact angle and atomic force microscopy data, the influence of P on the wettability, surface free energy and roughness of the samples was studied. Surface chemical composition was measured by X-ray photoelectron spectroscopy, XPS. To evaluate the effect of aging under atmospheric conditions, contact angle and XPS measurements were performed one and 1334 days after the treatment. The plasma potential and ion density around the driven electrode were determined from Langmuir probe measurements while the self-bias potential was derived with the aid of an oscilloscope. From these data it was possible to estimate the mean energy of ions bombarding the PVC surface. Chlorine, carbon and oxygen contamination were detected on the surface of the as-received PVC. Upon exposure to the plasma, the proportion of chlorine was observed to decrease while that of oxygen increased. Consequently, the wettability and surface energy

  18. Ionisation and dissociation of water induced by swift multicharged ions; Etude de l'ionisation et de la dissociation d'H{sub 2}O induites par collision avec des ions multicharges rapides

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, S

    2006-02-15

    Ionization and dissociation of water molecules and water clusters induced by 11.7 MeV/A Ni{sup 25+} ions were carried out by imaging techniques. Branching ratios, ionisation cross sections and Kinetic Energy Released distributions have been measured together with fragmentation dynamics studies. Multiple ionization represents approximately 30% of the ionizing events. Double ionization produces in significant way atomic oxygen, considered as a possible precursor of the large production of HO{sub 2} radical in liquid water radiolysis by ions of high Linear Energy Transfer. We evidence a strong selectivity of bond breakage in the case of ion-induced HOD fragmentation. Once the molecule doubly ionized, the breakage of the O-H bond is found 6.5 times more probable than that of the O-D bond. A semi-classical calculation simulating the fragmentation dynamics on the potential energy surface of the ground-state of di-cation H{sub 2}O{sup 2+} makes possible to as well reproduce the preferential nature of the breakage of the O-H bond as the position and the shift of the kinetic energy distributions. First results concerning interaction with water clusters are also reported. Measurements in coincidence are carried out giving access to correlation, with the distributions in energy and angle of the emitted fragments. Mass spectrum points fast intra-cluster proton transfer, leading to the emission of protonated clusters. (author)

  19. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  20. A highly sensitive CaF{sub 2}:Dy nanophosphor as an efficient low energy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bhadane, Mahesh S.; Hareesh, K.; Dahiwale, S.S.; Sature, K.R. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Patil, B.J. [Department of Physics, Abasaheb Garware College, Pune 411004 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-11-01

    Highlights: • CaF{sub 2}:Dy nanophosphor synthesized by chemical co-precipitation route. • Phosphors are irradiated by H, Ar and N low energy ions at different fluences. • LEBI irradiated phosphors are characterized by XRD, TEM, FTIR and PL spectroscopy. • First time report to LEIB irradiated for thermoluminescence dosimetric applications. - Abstract: Dysprosium doped calcium fluoride (CaF{sub 2}:Dy) powers synthesized by co-precipitation method were irradiated with low energy ion beams (LEIB) viz. 100 keV H, 200 keV Ar and 350 keV N beams at different fluences and demonstrated for low energy ion dosimetric application. X-ray Diffraction and Transmission electron microscopy revealed the formation of highly crystalline cubic structured particles with size ∼45–50 nm. FTIR spectra of the CaF{sub 2}:Dy samples show changes of some bonds such as N–O asymmetric, C–F bonding and C–H aromatic contain stretching mode after LEIB irradiation. The thermoluminescence (TL) glow curve peaks were observed at 207 °C for Ar ion, at 203 °C for H ion and at 216 °C and 270 °C for N ion. It has been found that CaF{sub 2}:Dy nanophosphor shows a linear response with minimum fading for all the ion species. Computerized Glow Curve Deconvolution was performed for TL curve of high fluence ion irradiated nanophosphor to estimate the trapping parameters and the respective figure of merit (FOM) found to be very appropriate for all the nanophosphor. These results indicated that the CaF{sub 2}:Dy can be used as a low energy ion detector or dose.

  1. Fragmentation of pure and hydrated clusters of 5Br-uracil by low energy carbon ions: observation of hydrated fragments

    Czech Academy of Sciences Publication Activity Database

    Castrovilli, M. C.; Markush, P.; Bolognesi, P.; Rousseau, P.; Maclot, S.; Cartoni, A.; Delaunay, R.; Domaracka, A.; Kočišek, Jaroslav; Huber, B. A.; Avaldi, L.

    2017-01-01

    Roč. 19, č. 30 (2017), s. 19807-19814 ISSN 1463-9076 Institutional support: RVO:61388955 Keywords : fragmentation * nano-hydrated 5BrU clusters * low energy carbon ions Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  2. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    International Nuclear Information System (INIS)

    Volotka, A.V.

    2006-01-01

    Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be

  3. High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions

    Energy Technology Data Exchange (ETDEWEB)

    Volotka, A.V.

    2006-07-01

    Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be

  4. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    International Nuclear Information System (INIS)

    Wang Tiegu; Huang Qunce; Feng Weisen

    2007-01-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning

  5. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    Science.gov (United States)

    Wang, Tiegu; Huang, Qunce; Feng, Weisen

    2007-10-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  6. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tiegu, Wang [Henan Provincial Key Laboratory of Ion Beam Bio-Engineering, Zhengzhou University, Zhengzhou 450052 (China); Qunce, Huang [Henan Provincial Key Laboratory of Ion Beam Bio-Engineering, Zhengzhou University, Zhengzhou 450052 (China); Weisen, Feng [Luoyang Institute of Agricultural Science, Luoyang 471022 (China)

    2007-10-15

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  7. The Breeding of a Pigment Mutant Strain of Steroid Hydroxylation Aspergillus Flavus by Low Energy Ion Implantation

    International Nuclear Information System (INIS)

    Ye Hui; Ma Jingming; Feng Chun; Cheng Ying; Zhu Suwen; Cheng Beijiu

    2009-01-01

    In the process of the fermentation of steroid C 11 α-hydroxylgenation strain Aspergillus flavus AF-ANo208, a red pigment is derived, which will affect the isolation and purification of the target product. Low energy ion beam implantation is a new tool for breeding excellent mutant strains. In this study, the ion beam implantation experiments were performed by infusing two different ions: argon ion (Ar + ) and nitrogen ion (N + ). The results showed that the optimal ion implantation was N + with an optimum dose of 2.08 x 10 15 ions/cm 2 , with which the mutant strain AF-ANm16 that produced no red pigment was obtained. The strain had high genetic stability and kept the strong capacity of C11α-hydroxylgenation, which could be utilized in industrial fermentation. The differences between the original strain and the mutant strain at a molecular level were analyzed by randomly amplified polymorphic DNA (RAPD). The results indicated that the frequency of variation was 7.00%, which would establish the basis of application investigation into the breeding of pigment mutant strains by low energy ion implantation. (ion beam bioengineering)

  8. Electron emission following collisions between multi-charged ions and D{sub 2} molecules; Etude de l'emission electronique induite par impact d'ion multicharge sur la molecule D{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G

    2004-05-15

    Dissociative ionisation mechanisms induced in collisions involving a highly charged ion (S{sup 15+}, 13.6 MeV/u) and a molecular deuterium target, have been studied through momentum vector correlations of both the D{sup +} fragments and the electrons produced. An experimental apparatus has been developed in order to detect in coincidence all the charged particles produced during the collision. The measurement of their momentum vectors, which allows one to determine both their kinetic energy and direction of emission with respect to the projectile one, combines Time of Flight, Position Sensitive Detection, and multi-coincidence techniques. The correlation of the fragment and electron kinetic energies enables not only to determine branching ratios between the dissociative ionisation pathways, but also to separate unambiguously kinetic energy distributions of fragments associated to each process. Finally, the angular distributions of ejected electrons, as a function of the orientation of the molecular axis with respect to the projectile direction, are deduced from the spatial correlation. Measurements are compared to theoretical angular distributions obtained using the CDW-EIS (Continuum Distorted Wave-Eikonal Initial State) method. (author)

  9. 15.0 MeV/u He2+ ion-induced low energy electrons from water vapor

    International Nuclear Information System (INIS)

    Okada, Y.; Sato, Y.; Soga, F.; Ohsawa, D.

    2005-01-01

    We present the absolute doubly differential cross sections (DDCS) of low-energy electrons and their angular distributions (20deg - 160deg ) produced in the collisions of 15.0 MeV/u He 2+ ions with water vapor. Details of the experiments by 6.0 and 10.0 MeV/u He 2+ ions were already reported in our previous paper, in which the total uncertainty (±13%) was discussed. This paper shows the absolute DDCS data (1 - 100 eV) by 15.0 MeV/u He 2+ ions, in which the cover surrounding the interaction region was changed to μ-metal from Cu, in order to suppress the residual magnetic field for measuring the low-energy electrons effectively. (author)

  10. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897 (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Fujiwara, Y.; Sakakita, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan)

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  11. Tracking of Polycarbonate Films using Low-energy Ions Final Report CRADA No. TC-774-94

    Energy Technology Data Exchange (ETDEWEB)

    Musket, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-24

    Ion tracking is performed almost exclusively using ions with energies near or above the maximum in electronic stopping. For the present study, we have examined the results of etching ion tracks created by ions bombarding polycarbonate films with energies corresponding to stopping well below the maximum and just above the anticipated threshold for creating etchable latent tracks. Low-energy neon and argon ions with 18-60 keV /amu and fluences of about 108/cm2 were used to examine the limits for producing etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., -20 nm < SEM hole diameter < -100 nm), we can directly relate the energy deposition calculated for the incident ion to the creation of etchable tracks. The experimental results will be discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness the films. These results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications.

  12. Ion temperature profiles from the plasma center to the edge of ASDEX combining high and low energy CX-diagnostics

    International Nuclear Information System (INIS)

    Verbeek, H.; Heinrich, O.; Schneider, R.; Fahrbach, H.U.; Herrmann, W.; Neuhauser, J.; Stroth, U.; Reiter, D.

    1992-01-01

    The charge exchange (CX) neutral energy distribution from ASDEX measured with the conventional neutral particle analyzers (NPA) at energies >500 eV are combined with the low energy CX spectra from the low energy neutral analyzer (LENA). In the region of overlap their shapes fit each other very well. With the 3D EIRENE code the neutral gas was simulated and ion temperature (T i ) profiles from the center to the edge are obtained. The T i values at the separatrix and the edge based on the LENA data are considerably lower than those suggested earlier from the NPA data. This is attributed to the different energy ranges - high energies for the NPA, low energies for LENA - that are used for the T i evaluation. (orig.)

  13. Monte carlo simulation of penetration range distribution of ion beam with low energy implanted in plant seeds

    International Nuclear Information System (INIS)

    Huang Xuchu; Hou Juan; Liu Xiaoyong

    2009-01-01

    The depth and density distribution of V + ion beam implanted into peanut seed is simulated by the Monte Carlo method. The action of ions implanted in plant seeds is studied by the classical collision theory of two objects, the electronic energy loss is calculated by Lindhard-Scharff formulation. The result indicates that the depth of 200keV V + implanted into peanut seed is 5.57μm, which agrees with experimental results, and the model is appropriate to describe this interaction. This paper provides a computational method for the depth and density distribution of ions with low energy implanted in plant seeds. (authors)

  14. Effects of irradiation with low-energy nitrogen ion injection on root tip cells of broad bean

    International Nuclear Information System (INIS)

    Huang Yaqin; Li Jinzhe; Huang Qunce

    2012-01-01

    In order to study the cytogenetic effects of low-energy nitrogen ion irradiation, broad bean seed embryo was irradiated by different doses of nitrogen ions. Micronucleus rate, mitotic index and chromosome aberration in root-tip cells were analyzed. The results showed that the injection of ions inhibited mitosis of root tip cells, interfered the normal process of mitosis, caused aberrations of chromosome structure, behavior and number. The frequency of micronucleus and chromosomal aberrations increased with the increasing radiation dosage, while mitotic index decreased. (authors)

  15. Electron emission during interactions of multicharged N and Ar ions with Au(110) and Cu(001) surfaces

    International Nuclear Information System (INIS)

    Meyer, F.W.; Overbury, S.H.; Havener, C.C.; Zeijlmans van Emmichoven, P.A.; Burgdoerfer, J.; Zehner, D.M.

    1991-01-01

    We report measurements of energy distributions of electrons emitted during interactions 10q-keV N 6+ , and Ar q+ (q=7,8,9) ions with Au(110) and Cu(001) surfaces at grazing angles. The electron energy distributions have been measured as a function of angle of incidence, observation angle, and target-crystal azimuth. For both Au and Cu targets, the projectile KLL Auger peak observed for the case of the N 6+ projectiles is seen to consist of two components whose intensities have strikingly different dependences on incident perpendicular velocity. The main component of the KLL peak is attributed to subsurface electron emission and is modeled using a Monte Carlo simulation of the projectile trajectories in the bulk. The second component, observed only for the smallest incident perpendicular velocities, is attributed to above-surface KLL Auger electron emission and is modeled using computer simulations of the resonance neutralization-autoionization cascade that occurs prior to projectile penetration of the surface. In the case of the Au target, NNV and NVV transitions, attributed to vacancy transfer from the projectile K shell to the N shell of Au, are also observed. The Monte Carlo simulation of the subsurface contribution to the electron emission is able to reproduce the observed angle-of-incidence dependence of both the projectile and the target Auger electron intensities. In addition, it shows reasonable agreement with the observed dependences of the projectile KLL intensity on observation angle and crystal azimuth

  16. Electrostatic interaction between Interball-2 and the ambient plasma. 2. Influence on the low energy ion measurements with Hyperboloid

    Directory of Open Access Journals (Sweden)

    M. Hamelin

    2002-03-01

    Full Text Available The measurement of the thermal ion distributions in space is always strongly influenced by the ion motion through the complex 3D electrostatic potential structure built around a charged spacecraft. In this work, we study the related aberrations of the ion distribution detected on board, with special application to the case of the Hyperboloid instrument borne by the Interball-2 auroral satellite. Most of the time, the Interball-2 high altitude auroral satellite is charged at some non-negligible positive potential with respect to the ambient plasma, as shown in part 1; in consequence, the measurement of magnetospheric low energy ions (< 80 eV with the Hyperboloid instrument can be disturbed by the complex electric potential environment of the satellite. In the case of positive charging, as in previous experiments, a negative bias is applied to the Hyperboloid structure in order to reduce this effect and to keep as much as possible the opportunity to detect very low energy ions. Then, the ions reaching the Hyperboloid entrance windows would have travelled across a continuous huge electrostatic lens involving various spatial scales from ~ 10 cm (detector radius to ~ 10 m (satellite antennas. Neglecting space charge effects, we have computed the ion trajectories that are able to reach the Hyperboloid windows within their acceptance angles. There are three main results: (i for given values of the satellite potential, and for each direction of arrival (each window, we deduced the related energy cutoff; (ii we found that all ions in the energy channel, including the cutoff, can come from a large range of directions in the unperturbed plasma, especially when the solar panels or antennas act as electrostatic mirrors; (iii for higher energy channels, the disturbances are reduced to small angular shifts. Biasing of the aperture is not very effective with the Hyperboloid instrument (as on previous missions with instruments installed close to the spacecraft

  17. Ultra-low energy electrons from fast heavy-ion helium collisions: the `target Cusp`

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, W. [Freiburg Univ. (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Moshammer, R.; Kollmus, H.; Ullrich, J. [Freiburg Univ. (Germany); O`Rourke, F.S.C. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom); Sarkadi, L. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Mann, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hagmann, S. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.; Olson, R.E. [Missouri Univ., Rolla, MO (United States). Dept. of Physics

    1998-09-01

    Doubly differential cross sections d{sup 2}{sigma}/dv {sub parallel} dv {sub perpendicular} {sub to} have been obtained by mapping the 3-dimensional velocity space of ultra-low and low-energy electrons (1.5 meV{<=} E{sub e}{<=}100 eV) emitted in singly ionizing 3.6 MeV/u Au{sup 53+} on helium collisions. A sharp ({Delta}E{sub e} {sub perpendicular} {sub to} {sup FWHM} {<=} 22 meV) asymmetric peak centered at vertical stroke anti {nu} vertical stroke =0 is observed to emerge at ultra-low energies from the strongly forward shifted low-energy electron velocity distribution. The shape of this ``target cusp``, which is very sensitive on the details of the two-center potential, is in excellent accord with theoretical CTMC and CDW-EIS predictions. (orig.)

  18. Utilizing Neon Ion Microscope for GaSb nanopatterning studies: Nanostructure formation and comparison with low energy nanopatterning

    International Nuclear Information System (INIS)

    El-Atwani, Osman; Huynh, Chuong; Norris, Scott

    2016-01-01

    Graphical abstract: - Highlights: • Carl Zeiss-neon ion microscope was used to irradiated GaSb surfaces with 5 keV neon. • In-situ imaging using helium beam and ex-situ imaging using an electron beam were performed. • Differences in imaging output between the helium and the electron beam were observed. • Transition occurred in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. • Collision cascade simulations suggested a transition toward bulk-driven mechanisms. - Abstract: Low energy irradiation of GaSb surfaces has been shown to lead to nanopillar formation. Being performed ex-situ, controlling the parameters of the ion beam for controlled nanopattern formation is challenging. While mainly utilized for imaging and cutting purposes, the development of multibeam (helium/neon) ion microscopes has opened the path towards the use of these microscopes for in-situ ion irradiation and nanopatterning studies. In this study, in-situ irradiation (neon ions)/imaging (helium ions) of GaSb surfaces is performed using Carl Zeiss-neon ion microscope at low energies (5 and 10 keV). Imaging with helium ions, nanodots were shown to form at particular fluences after which are smoothed. Ex-situ imaging with SEM showed nanopore formation of size controlled by the ion energy and fluence. Compared to lower energy ex-situ neon ion irradiation at similar fluxes, where nanopillars are formed, the results demonstrated a transition in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. Simulations show an increase in the ballistic diffusion and a decrease in the strength of phase separation as a function of ion energy in agreement with the suppression of nanopillar formation at higher energies. Collision cascade simulations suggest a transition toward bulk-driven mechanisms.

  19. Utilizing Neon Ion Microscope for GaSb nanopatterning studies: Nanostructure formation and comparison with low energy nanopatterning

    Energy Technology Data Exchange (ETDEWEB)

    El-Atwani, Osman, E-mail: oelatwan25@gmail.com [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Huynh, Chuong [Carl Zeiss Microscopy, LLC, One Corporation Way, Peabody, MA 01960 (United States); Norris, Scott [Department of Mathematics, Southern Methodist University, Dallas, TX 75275 (United States)

    2016-05-01

    Graphical abstract: - Highlights: • Carl Zeiss-neon ion microscope was used to irradiated GaSb surfaces with 5 keV neon. • In-situ imaging using helium beam and ex-situ imaging using an electron beam were performed. • Differences in imaging output between the helium and the electron beam were observed. • Transition occurred in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. • Collision cascade simulations suggested a transition toward bulk-driven mechanisms. - Abstract: Low energy irradiation of GaSb surfaces has been shown to lead to nanopillar formation. Being performed ex-situ, controlling the parameters of the ion beam for controlled nanopattern formation is challenging. While mainly utilized for imaging and cutting purposes, the development of multibeam (helium/neon) ion microscopes has opened the path towards the use of these microscopes for in-situ ion irradiation and nanopatterning studies. In this study, in-situ irradiation (neon ions)/imaging (helium ions) of GaSb surfaces is performed using Carl Zeiss-neon ion microscope at low energies (5 and 10 keV). Imaging with helium ions, nanodots were shown to form at particular fluences after which are smoothed. Ex-situ imaging with SEM showed nanopore formation of size controlled by the ion energy and fluence. Compared to lower energy ex-situ neon ion irradiation at similar fluxes, where nanopillars are formed, the results demonstrated a transition in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. Simulations show an increase in the ballistic diffusion and a decrease in the strength of phase separation as a function of ion energy in agreement with the suppression of nanopillar formation at higher energies. Collision cascade simulations suggest a transition toward bulk-driven mechanisms.

  20. Nano-patterning of perpendicular magnetic recording media by low-energy implantation of chemically reactive ions

    International Nuclear Information System (INIS)

    Martin-Gonzalez, M.S.; Briones, F.; Garcia-Martin, J.M.; Montserrat, J.; Vila, L.; Faini, G.; Testa, A.M.; Fiorani, D.; Rohrmann, H.

    2010-01-01

    Magnetic nano-patterning of perpendicular hard disk media with perpendicular anisotropy, but preserving disk surface planarity, is presented here. Reactive ion implantation is used to locally modify the chemical composition (hence the magnetization and magnetic anisotropy) of the Co/Pd multilayer in irradiated areas. The procedure involves low energy, chemically reactive ion irradiation through a resist mask. Among N, P and As ions, P are shown to be most adequate to obtain optimum bit density and topography flatness for industrial Co/Pd multilayer media. The effect of this ion contributes to isolate perpendicular bits by destroying both anisotropy and magnetic exchange in the irradiated areas. Low ion fluences are effective due to the stabilization of atomic displacement levels by the chemical effect of covalent impurities.

  1. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom; Etude des mecanismes elementaires de transfert d`energie au cours d`une collision entre un ion lourd rapide multi-charge et un atome neutre

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, P. [Caen Univ., 14 (France)

    1995-12-31

    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature < 1 K). The association of time of flight and localisation techniques allows us, for each ionised target atom, to determine the three recoil velocity components with a very good accuracy (a few tens of meters per second). In chapter three, we describe the data analysis method. And then we present in the last chapter the results we have obtained for the collision systems Xe{sup 44+}(6.7 MeV/A) + Ar => Xe{sup 44} + Ar{sup q+}+qe{sup -} (q ranging from 1 to 7); Xe{sup 44+} (6.7 MeV/A) + He => Xe{sup 44+} He{sup 1+,2+}+1e{sup -},2e{sup -}. We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author) 44 refs.

  2. Nanocrystals manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Normand, P. E-mail: p.normand@imel.demokritos.gr; Kapetanakis, E.; Dimitrakis, P.; Skarlatos, D.; Beltsios, K.; Tsoukalas, D.; Bonafos, C.; Ben Assayag, G.; Cherkashin, N.; Claverie, A.; Berg, J.A. van den; Soncini, V.; Agarwal, A.; Ameen, M.; Perego, M.; Fanciulli, M

    2004-02-01

    An overview of recent developments regarding the fabrication and structure of thin silicon dioxide films with embedded nanocrystals through ultra-low-energy ion-beam-synthesis (ULE-IBS) is presented. Advances in fabrication, increased understanding of structure formation processes and ways to control them allow for the fabrication of reproducible and attractive silicon-nanocrystal memory devices for a wide-range of memory applications as herein demonstrated in the case of low-voltage EEPROM-like applications.

  3. Nanocrystals manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications

    International Nuclear Information System (INIS)

    Normand, P.; Kapetanakis, E.; Dimitrakis, P.; Skarlatos, D.; Beltsios, K.; Tsoukalas, D.; Bonafos, C.; Ben Assayag, G.; Cherkashin, N.; Claverie, A.; Berg, J.A. van den; Soncini, V.; Agarwal, A.; Ameen, M.; Perego, M.; Fanciulli, M.

    2004-01-01

    An overview of recent developments regarding the fabrication and structure of thin silicon dioxide films with embedded nanocrystals through ultra-low-energy ion-beam-synthesis (ULE-IBS) is presented. Advances in fabrication, increased understanding of structure formation processes and ways to control them allow for the fabrication of reproducible and attractive silicon-nanocrystal memory devices for a wide-range of memory applications as herein demonstrated in the case of low-voltage EEPROM-like applications

  4. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-01-01

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He + ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C + ion impurities in He + ion irradiations. For introducing such tiny C + ion impurities, gas mixtures of He and CH 4 have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He + ion (for Mo fuzz growth due to only He + ions) and 100% H + ion (for confirming the significance of tiny 0.04–2.0% H + ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10 24  ions m −2 ), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He + ion irradiation case. Enhancement of C + ion impurities in He + ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity concentrations. Additionally, no fuzz formation for 100% H + ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H + ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H + ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He + ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C + ion impurities in He + ions. • Almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity in He + ions. • No Mo fuzz formation for 100% H + ion

  5. Low energy RBS-channeling measurement system with the use of a time-of-flight scattered ion detector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masataka; Kobayashi, Naoto; Hayashi, Nobuyuki [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1996-07-01

    We have developed a low energy Rutherford backscattering spectrometry-ion channeling measurement system for the analysis of thin films and solid surfaces with the use of several tens keV hydrogen ions and a time-of-flight particle energy spectrometer. For the detection of the scattered ions new TOF spectrometer has been developed, which consists of two micro-channel-plate detectors. The pulsing of the primary ion beam is not necessary for this type of TOF measurement, and it is possible to observe continues scattered ion beams. The dimension of whole system is very compact compared to the conventional RBS-channeling measurement system with the use of MeV He ions. The energy resolution, {delta} E/E, for 25 keV H{sup +} was 4.1%, which corresponds to the depth resolution of 4.8 nm for silicon. The depth resolution of our system is better than that of conventional RBS system with MeV helium ions and solid state detectors. We have demonstrated the ion channeling measurement by this system with 25 keV hydrogen ions. The system can be available well to the analysis of thin films and solid surfaces with the use of the ion channeling effect. The observation of the reaction between Fe and hydrogen terminated silicon surface was also demonstrated. (J.P.N.)

  6. Surface studies by low energy ion beams: Cu/Ru(0001) and Cu/O/Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y G; O` Connor, D J; MacDonald, R J [Newcastle Univ., NSW (Australia). Dept. of Physics; Wandelt, H [Institut fur Physikalische und Theoretische Chemie der Universitat Bonn, Bonn (Germany).; Zee, H van [Eindhoven University of Technology, Eindhoven (Netherlands) Dept. of Physics

    1994-12-31

    The surface structure of Cu on Ru(OOO1) has been studied by low energy Li{sup +} ion scattering. It was found that Cu forms pseudomorphic islands for two layers. The effects of Cu on an O-precovered RU(OOO1) surface has also been investigated using keV He{sup +} ions. The results show that during the deposition of Cu, O is displaced from the Ru surface and migrated onto the top of the surface of the growing overlayer. The floated out O has been tested, showing a disordered overlayer. 5 refs., 3 figs.

  7. Surface studies by low energy ion beams: Cu/Ru(0001) and Cu/O/Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.G.; O`Connor, D.J.; MacDonald, R.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Wandelt, H. [Institut fur Physikalische und Theoretische Chemie der Universitat Bonn, Bonn (Germany).; Zee, H. van [Eindhoven University of Technology, Eindhoven (Netherlands) Dept. of Physics

    1993-12-31

    The surface structure of Cu on Ru(OOO1) has been studied by low energy Li{sup +} ion scattering. It was found that Cu forms pseudomorphic islands for two layers. The effects of Cu on an O-precovered RU(OOO1) surface has also been investigated using keV He{sup +} ions. The results show that during the deposition of Cu, O is displaced from the Ru surface and migrated onto the top of the surface of the growing overlayer. The floated out O has been tested, showing a disordered overlayer. 5 refs., 3 figs.

  8. Low energy cross section data for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions with atoms and molecules

    International Nuclear Information System (INIS)

    Okuno, Kazuhiko

    2007-04-01

    Systematic cross section measurements for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions in low energy collisions with atoms and molecules have been performed continuously by the identical apparatus installed with an octo-pole ion beam guide (OPIG) since 1980 till 2004. Recently, all of accumulated cross section data for a hundred collision systems has been entered into CMOL and CHART of the NIFS atomic and molecular numerical database together with some related cross section data. In this present paper, complicated ion-molecule reactions in hydrogen systems are revealed and the brief outlines of specific properties in low energy charge transfer collisions of multiply charged ions with atoms and molecules are introduced. (author)

  9. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    CERN Document Server

    Umarov, F F; Kudryashova, L B; Krylov, N M

    2002-01-01

    In the present work, an experimental study of low-energy (E sub 0 =20-500 eV) heavy Cs sup + ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E sub 0 (E sub 0) for Si (E sub b =4.64 eV/atom) and Ni (E sub b =4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E sub b are approximately equal to each other. It is found that the scattering angles of Cs sup + ions considerably exceed a limiting scattering angle theta sub l sub i sub m in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle inter...

  10. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    Energy Technology Data Exchange (ETDEWEB)

    Umarov, F.F. E-mail: farid1945@yahoo.com; Bazarbaev, N.N.; Kudryashova, L.B.; Krylov, N.M

    2002-11-01

    In the present work, an experimental study of low-energy (E{sub 0}=20-500 eV) heavy Cs{sup +} ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E{sub 0} (E{sub 0}) for Si (E{sub b}=4.64 eV/atom) and Ni (E{sub b}=4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E{sub b} are approximately equal to each other. It is found that the scattering angles of Cs{sup +} ions considerably exceed a limiting scattering angle {theta}{sub lim} in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle interactions (simultaneous ion interaction with several target atoms). It has been shown that during the many-particle interactions the structure of energy spectra disappears; high relative energy of scattering ions and their dependence on energy of bombardment is observed. It has been found that the energy of scattered ions depends on binding energy, melting temperature and packing density of target atoms.

  11. A research of possibility for negative muon production by a low energy electron beam accompanying ion beam

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1993-12-01

    A low energy electron beam (≤ 2000 eV) is injected perpendicularly to a uniform magnetic field, together with a low energy positive ion beam. On this magnetic mass analysis (using the uniform magnetic field), a peak of secondary electron current to the beam collector (arranging as a mass analyzer of 90deg type), appears at an analyzing magnetic field which corresponds exactly to a relation of negative muon μ - (the mass m=207 m e and the charge q=e, where m e and e are mass and charge of electron). The ion beam is essential for the peak appearance, which is produced by decelerating electrically the electron beam in front of the entrance slit of the mass analyzer, and by introducing a neutral gas into the electron beam region and producing a plasma through the ionization. We consider that a very small amount of negative muons may be produced through local cyclotron motions of the injected beam electrons in the ion beam or by an interaction between the bunched beam electrons and beam ions. (author)

  12. Remedial pulse programme for the production of monoenergetic ion beams of low energy

    International Nuclear Information System (INIS)

    Olubuyide, O.A.

    1975-01-01

    The technique involves an extension of sequential pulse techniques. An ion swarm is produced in a conventional mass-spectrometer ion source by a short electron beam pulse. Immediately, this swarm is accelerated impulsively by a short high voltage pulse on the repeller. The principal disadvantage of impulsive acceleration is that the final energy distribution of the ion swarm is broad especially at the lowest energies. At some instant during the passage of the ion swarm across the chamber second pulse is applied to the repeller--a ''remedial'' pulse which will accelerate the ions throughout the remainder of their passage and whose amplitude will be time-dependent. Slower ions must travel a greater distance in this ''remedial'' field than faster ions and will experience a proportionately greater increase in velocity from it. In this way, the remedial pulse can cause all the ions to acquire the same velocity at the exit slit. A limited experimental investigation has been made to examine the application of the proposed remedial pulse technique to existing ion sources. Application of the remedial pulse to impulsively-accelerated ion swarms reduced the energy distribution in the manner predicted by the theory but the quantitative reduction measured experimentally--a factor of approximately 2--was substantially less than the theoretical prediction of a factor of approximately 4. The limitations were characterized and a means of overcoming them was suggested in a new ion source of improved design. (Diss. Abstr. Int., B)

  13. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    Science.gov (United States)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  14. CR-39 nuclear track detector application for the diagnostics of low energy high power ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Opekounov, M S; Pechenkin, S A; Remnev, G E [Nuclear Physics Institute, Tomsk (Russian Federation); Ivonin, I V [Siberian Physical-Technical Institute, Tomsk (Russian Federation)

    1997-12-31

    The results of investigation of the spectral composition of ion beams generated by the magneto-insulated ion diode of the MUK-M and TEMP accelerators. The energy and mass characteristics of the accelerated ion beam were determined by a Thomson spectrometer with a CR-39 plate detector (MOM - Atomki Nuclear Track Detector, Type MA-ND/p). The accelerated ion energy was from 40 to 240 keV. The ion current density range was from 1 to 10 A/cm{sup 2}. The mass composition contained hydrogen, nitrogen, carbon and aluminum ions. The individual track analysis showed the track form, depth and diameter in dependence on the ion mass and energy. (author). 2 figs., 5 refs.

  15. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    Energy Technology Data Exchange (ETDEWEB)

    Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Thopan, P.; Yaopromsiri, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation.

  16. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    International Nuclear Information System (INIS)

    Thongkumkoon, P.; Prakrajang, K.; Thopan, P.; Yaopromsiri, C.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation

  17. Low-energy ion bombardment to tailor the interfacial and mechanical properties of polycrystalline 3C-silicon carbide

    International Nuclear Information System (INIS)

    Liu Fang; Li, Carolina H.; Pisano, Albert P.; Carraro, Carlo; Maboudian, Roya

    2010-01-01

    Low-energy Ar + ion bombardment of polycrystalline 3C-silicon carbide (poly-SiC) films is found to be a promising surface modification method to tailor the mechanical and interfacial properties of poly-SiC. The film average stress decreases as the ion energy and the bombardment time increase. Furthermore, this treatment is found to change the strain gradient of the films from positive to negative values. The observed changes in stress and strain gradient are explained by ion peening and thermal spikes models. In addition, the poly-SiC films show a significant enhancement in corrosion resistance by this treatment, which is attributed to a reduction in surface energy and to an increase in the compressive stress in the near-surface region.

  18. Effects of low-energy ion beam bombardment on metal oxides

    International Nuclear Information System (INIS)

    Sullivan, J.L.; Saied, S.O.; Choudhury, T.

    1993-01-01

    This paper describes a study of Ar ion bombardment damage in metal oxides. In the energy range 1 to 5 keV, preferential oxygen removal and reduction of the oxides was found to depend on ion current density, but to be independent of beam energy. (author)

  19. Possibilities of basic and applied researches using low energy ion beams accelerators

    International Nuclear Information System (INIS)

    Morales, Roberto

    1996-01-01

    Full text: The availability of ion sources that allow to accelerate heavy and light ions, and the new compact accelerators have opened interesting possibilities for using in basic and applied research, Some of the research lines such as material, environmental, archaeology, bio-medicine are shown

  20. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    Andelkovic, Z.; Herfurth, F.; Kotovskiy, N.; König, K.; Maaß, B.; Murböck, T.; Neidherr, D.; Schmidt, S.; Steinmann, J.; Vogel, M.; Vorobjev, G.

    2015-01-01

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  1. Angular distributions of particles sputtered from polycrystalline platinum by low-energy ions

    International Nuclear Information System (INIS)

    Chernysh, V.S.; Eckstein, W.; Haidarov, A.A.; Kulikauskas, V.S.; Mashkova, E.S.; Molchanov, V.A.

    2000-01-01

    The results of an experimental study and a computer simulation with the TRIM.SP code of the angular distributions of atoms sputtered from polycrystalline platinum under 3-9 keV Ne + bombardment at normal ion incidence are presented. It was found that angular distributions of sputtered atoms are overcosine and that their shape is practically independent of an ion energy. Comparison with the previously obtained data for He + and Ar + ions have shown that the shape of the angular distribution does not depend on the bombarding ion species. Good agreement between experimental results and computer simulation data was found. Computer simulations of the partial angular distributions of Pt atoms ejected due to various sputtering mechanisms for Ne ion bombardment were performed and the comparison with corresponding data for He and Ar bombarding was made. The role of different mechanisms in the formation of angular distributions of sputtered atoms has been analyzed

  2. Localized subsurface modification of materials using micro-low-energy multiple ion beamlets

    Directory of Open Access Journals (Sweden)

    Abhishek Chowdhury

    2011-12-01

    Full Text Available Generation of focused multiple ion beamlets from an intense microwave plasma source is investigated for the creation of localized subsurface modification of materials. Unlike conventional single element focused ion beam (FIB systems, the plasma source is capable of providing ion beams of multiple elements. Two types of plasma electrodes (PE are employed, one with a honeycomb structure with notched apertures and another with a 5×5 array of through apertures, both attached to the plasma source and are capable of generating focused ion beamlets (50 - 100 μm diameter in a patterned manner. Measurements of ion saturation current near the PE indicate that the plasma is uniform over an area of ∼ 7 cm2, which is further confirmed by uniformity in extracted beam current through the apertures. The ion beams are applied to investigate change in electrical sheet resistance Rs of metallic thin films in a controlled manner by varying the ionic species and beam energy. Results indicate a remarkable increase in Rs with beam energy (∼ 50 % at 1 keV for Ar ions, and with ionic species (∼ 90% for Krypton ions at 0.6 keV, when 80 nm thick copper films are irradiated by ∼2 cm diameter ion beams. Ion induced surface roughness is considered as the main mechanism for this change as confirmed by atomic force microscopy (AFM measurements. Predictions for micro-beamlet induced change in Rs are discussed. The experimental results are verified using TRIM and AXCEL-INP simulations.

  3. Systematic investigations of low energy Ar ion beam sputtering of Si and Ag

    Energy Technology Data Exchange (ETDEWEB)

    Feder, R., E-mail: rene.feder@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig (Germany); Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B. [Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig (Germany)

    2013-12-15

    Ion beam sputter deposition (IBD) delivers some intrinsic features influencing the growing film properties, because ion properties and geometrical process conditions generate different energy and spatial distributions of the sputtered and scattered particles. Even though IBD has been used for decades, the full capabilities are not investigated systematically and specifically used yet. Therefore, a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the generated secondary particles and backscattered ions and the deposited films needs to be done. A vacuum deposition chamber has been set up which allows ion beam sputtering of different targets under variation of geometrical parameters (ion incidence angle, position of substrates and analytics in respect to the target) and of ion beam parameters (ion species, ion energy) to perform a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the properties of the sputtered and scattered particles, and the properties of the deposited films. A set of samples was prepared and characterized with respect to selected film properties, such as thickness and surface topography. The experiments indicate a systematic influence of the deposition parameters on the film properties as hypothesized before. Because of this influence, the energy distribution of secondary particles was measured using an energy-selective mass spectrometer. Among others, experiments revealed a high-energetic maximum for backscattered primary ions, which shifts with increasing emission angle to higher energies. Experimental data are compared with Monte Carlo simulations done with the well-known Transport and Range of Ions in Matter, Sputtering version (TRIM.SP) code [J.P. Biersack, W. Eckstein, Appl. Phys. A: Mater. Sci. Process. 34 (1984) 73]. The thicknesses of the films are in good agreement with those calculated from simulated particle fluxes. For the positions of the

  4. Ion peening and stress relaxation induced by low-energy atom bombardment of covalent solids

    International Nuclear Information System (INIS)

    Koster, Monika; Urbassek, Herbert M.

    2001-01-01

    Using molecular-dynamics simulation, we study the buildup and relaxation of stress induced by low-energy (≤150 eV) atom bombardment of a target material. The effect is brought out most clearly by using an initially compressed specimen. As target material, we employ Si, based on the Tersoff potential. By varying the bond strength in the potential, we can specifically study its effect on damage production and stress changes. We find that in general, stress is relaxed by the atom bombardment; only for low bombarding energies and strong bonds, atom bombardment increases stress. We rationalize this behavior by considering the role of energized atoms and of recoil-implanted target atoms

  5. Studies on biological effects of low energy N+ on ion beam implantation rice

    International Nuclear Information System (INIS)

    Wang Songli; Huang Qunce; Wang Tiegu; Qin Guangyong

    2006-01-01

    Dry seeds of five varieties of rice were implanted by 25 KeV low energy N + with doses of 2.0 x 10 17 , 2.5 x 10 17 and 3.0 x 10 17 N + /cm 2 , respectively. Mutant plants were selected from their progenies and the biological effects of the mutant plants were studied. The results showed that chlorophyll content of mutant plants was higher than that of the control, and one of those is as high as 148.67% of chlorophyll content compared with the control. Isoenzyme activities (POD, CAT and SOD) of mutant plants were different from the control plants. And AFLP analysis showed that the similarity between variant plants and feminine control plants was higher than that between variant plants and masculine control plants. (authors)

  6. The effect of interatomic potential in molecular dynamics simulation of low energy ion implantation

    International Nuclear Information System (INIS)

    Chan, H.Y.; Nordlund, K.; Peltola, J.; Gossmann, H.-J.L.; Ma, N.L.; Srinivasan, M.P.; Benistant, F.; Chan, Lap

    2005-01-01

    Being able to accurately predict dopant profiles at sub-keV implant energies is critical for the microelectronic industry. Molecular Dynamics (MD), with its capability to account for multiple interactions as energy lowers, is an increasingly popular simulation method. We report our work on sub-keV implantation using MD and investigate the effect of different interatomic potentials on the range profiles. As an approximation, only pair potentials are considered in this work. Density Functional Theory (DFT) is used to calculate the pair potentials for a wide range of dopants (B, C, N, F, Si, P, Ga, Ge, As, In and Sb) in single crystalline silicon. A commonly used repulsive potential is also included in the study. Importance of the repulsive and attractive regions of the potential has been investigated with different elements and we show that a potential depicting the right attractive forces is especially important for heavy elements at low energies

  7. Tailoring molybdenum nanostructure evolution by low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2015-10-30

    Mirror-finished polished molybdenum (Mo) samples were irradiated with 100 eV He{sup +} ions as a function of ion fluence (using a constant flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1}) at normal incidence and at 923 K. Mo surface deterioration and nanoscopic fiber-form filament (“Mo fuzz”) growth evolution were monitored by using field emission (FE) scanning electron (SEM) and atomic force (AFM) microscopy studies. Those studies confirm a reasonably clean and flat surface, up to several micrometer scales along with a few mechanical-polishing-induced scratches. However, He{sup +} ion irradiation deteriorates the surface significantly even at 2.1 × 10{sup 23} ions m{sup −2} fluence (about 5 min. irradiation time) and leads to evolution of homogeneously populated ∼75-nm-long Mo nanograins having ∼8 nm intergrain width. The primary stages of Mo fuzz growth, i.e., elongated half-cylindrical ∼70 nm nanoplatelets, and encapsulated bubbles of 20–45 nm in diameter and preferably within the grain boundaries of sub-micron-sized grains, were observed after 1.3 × 10{sup 24} ions m{sup −2} fluence irradiation. Additionally, a sequential enhancement in the sharpness, density, and protrusions of Mo fuzz at the surface with ion fluence was also observed. Fluence- and flux-dependent studies have also been performed at 1223 K target temperature (beyond the temperature window for Mo fuzz formation). At a constant fluence of 2.6 × 10{sup 24} ions m{sup −2}, 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} flux generates a homogeneous layered and stacked nanodiscs of ∼70 nm diameter. On the other hand, 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} flux generates a combination of randomly patched netlike nanomatrix networked structure, mostly with ∼105 nm nanostructure wall width, various-shaped pores, and self-organized nano arrays. While the observed netlike nanomatrix network structures for 8.6 × 10{sup 24} ions m{sup −2} fluence (at a constant

  8. Low-energy ion distribution functions on a magnetically quiet day at geostationary altitude /L = 7/

    Science.gov (United States)

    Singh, N.; Raitt, W. J.; Yasuhara, F.

    1982-01-01

    Ion energy and pitch angle distribution functions are examined for a magnetically quiet day using averaged data from ATS 6. For both field-aligned and perpendicular fluxes, the populations have a mixture of characteristic energies, and the distribution functions can be fairly well approximated by Maxwellian distributions over three different energy bands in the range 3-600 eV. Pitch angle distributions varying with local time, and energy distributions are used to compute total ion density. Pitch angle scattering mechanisms responsible for the observed transformation of pitch angle distribution are examined, and it is found that a magnetic noise of a certain power spectral density belonging to the electromagnetic ion cyclotron mode near the ion cyclotron frequency can be effective in trapping the field aligned fluxes by pitch angle scattering.

  9. Tailoring molybdenum nanostructure evolution by low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Hassanein, A.

    2015-01-01

    Mirror-finished polished molybdenum (Mo) samples were irradiated with 100 eV He + ions as a function of ion fluence (using a constant flux of 7.2 × 10 20 ions m −2 s −1 ) at normal incidence and at 923 K. Mo surface deterioration and nanoscopic fiber-form filament (“Mo fuzz”) growth evolution were monitored by using field emission (FE) scanning electron (SEM) and atomic force (AFM) microscopy studies. Those studies confirm a reasonably clean and flat surface, up to several micrometer scales along with a few mechanical-polishing-induced scratches. However, He + ion irradiation deteriorates the surface significantly even at 2.1 × 10 23 ions m −2 fluence (about 5 min. irradiation time) and leads to evolution of homogeneously populated ∼75-nm-long Mo nanograins having ∼8 nm intergrain width. The primary stages of Mo fuzz growth, i.e., elongated half-cylindrical ∼70 nm nanoplatelets, and encapsulated bubbles of 20–45 nm in diameter and preferably within the grain boundaries of sub-micron-sized grains, were observed after 1.3 × 10 24 ions m −2 fluence irradiation. Additionally, a sequential enhancement in the sharpness, density, and protrusions of Mo fuzz at the surface with ion fluence was also observed. Fluence- and flux-dependent studies have also been performed at 1223 K target temperature (beyond the temperature window for Mo fuzz formation). At a constant fluence of 2.6 × 10 24 ions m −2 , 7.2 × 10 20 ions m −2 s −1 flux generates a homogeneous layered and stacked nanodiscs of ∼70 nm diameter. On the other hand, 1.2 × 10 21 ions m −2 s −1 flux generates a combination of randomly patched netlike nanomatrix networked structure, mostly with ∼105 nm nanostructure wall width, various-shaped pores, and self-organized nano arrays. While the observed netlike nanomatrix network structures for 8.6 × 10 24 ions m −2 fluence (at a constant flux of 1.2 × 10 21 ions m −2 s −1 ) is quite similar to those for 2.6 × 10 24 ions m −2

  10. Tailoring molybdenum nanostructure evolution by low-energy He+ ion irradiation

    Science.gov (United States)

    Tripathi, J. K.; Novakowski, T. J.; Hassanein, A.

    2015-10-01

    Mirror-finished polished molybdenum (Mo) samples were irradiated with 100 eV He+ ions as a function of ion fluence (using a constant flux of 7.2 × 1020 ions m-2 s-1) at normal incidence and at 923 K. Mo surface deterioration and nanoscopic fiber-form filament ("Mo fuzz") growth evolution were monitored by using field emission (FE) scanning electron (SEM) and atomic force (AFM) microscopy studies. Those studies confirm a reasonably clean and flat surface, up to several micrometer scales along with a few mechanical-polishing-induced scratches. However, He+ ion irradiation deteriorates the surface significantly even at 2.1 × 1023 ions m-2 fluence (about 5 min. irradiation time) and leads to evolution of homogeneously populated ∼75-nm-long Mo nanograins having ∼8 nm intergrain width. The primary stages of Mo fuzz growth, i.e., elongated half-cylindrical ∼70 nm nanoplatelets, and encapsulated bubbles of 20-45 nm in diameter and preferably within the grain boundaries of sub-micron-sized grains, were observed after 1.3 × 1024 ions m-2 fluence irradiation. Additionally, a sequential enhancement in the sharpness, density, and protrusions of Mo fuzz at the surface with ion fluence was also observed. Fluence- and flux-dependent studies have also been performed at 1223 K target temperature (beyond the temperature window for Mo fuzz formation). At a constant fluence of 2.6 × 1024 ions m-2, 7.2 × 1020 ions m-2 s-1 flux generates a homogeneous layered and stacked nanodiscs of ∼70 nm diameter. On the other hand, 1.2 × 1021 ions m-2 s-1 flux generates a combination of randomly patched netlike nanomatrix networked structure, mostly with ∼105 nm nanostructure wall width, various-shaped pores, and self-organized nano arrays. While the observed netlike nanomatrix network structures for 8.6 × 1024 ions m-2 fluence (at a constant flux of 1.2 × 1021 ions m-2 s-1) is quite similar to those for 2.6 × 1024 ions m-2 fluence, the nanostructure wall width extends up to ∼45

  11. On the defect structure due to low energy ion bombardment of graphite

    Science.gov (United States)

    Marton, D.; Bu, H.; Boyd, K. J.; Todorov, S. S.; Al-Bayati, A. H.; Rabalais, J. W.

    1995-03-01

    Graphite surfaces cleaved perpendicular to the c axis have been irradiated with low doses of Ar + ions at 50 eV kinetic energy and perpendicular incidence. Scanning tunneling micrographs (STM) of these irradiated surfaces exhibited dome-like features as well as point defects. These dome-like features retain undisturbed graphite periodicity. This finding is attributed to the stopping of ions between the first and second graphite sheets. The possibility of doping semiconductors at extremely shallow depths is raised.

  12. Smoothing an isolated interface of cobalt-copper under irradiation by low-energy argon ions

    International Nuclear Information System (INIS)

    Stognij, A.I.; Novitskij, N.N.; Stukalov, O.M.

    2003-01-01

    Multilayer film structures, i.e. gold layer-copper-cobalt, are considered. It is shown that the structure, where cobalt surface prior to copper layer deposition was subjected to additional irradiation by a flow of argon ions, features the smoothest surface. The conclusion is made about smoothing out of cobalt-copper interface as a result of multiple collisions of argon slow ions and cobalt atoms during braking within two or three upper atomic rows of the cobalt layer [ru

  13. STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF PET POLYMER FILMS MODIFIED BY LOW ENERGY Ar+ ION BEAMS

    Science.gov (United States)

    Fawzy, Y. H. A.; Abdel-Hamid, H. M.; El-Okr, M. M.; Atta, A.

    Polyethylene terephthalate (PET) films with thickness 40μm are irradiated with 3keV argon ion beams with different fluence ranging from 0.5×1018ions.cm-2 to 2×1018ions.cm-2 using locally designed broad ion source. The changes in the PET structure are characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscope (SEM) techniques. The XRD patterns show that the peak intensity decreases with irradiation and the particle size decreases from 65.75 Å for the un-irradiated to 52.80 Å after irradiation. The FTIR indicates partial decrease and reduction in the intensity of the bands due to the degradation of the polymer after ion irradiation. The optical energy band gap decreases from 3.14eV to 3.05eV and the number of carbon cluster increases from 119 to 126 after ion irradiation. The results show a slight increase in the electrical conductivities and the dielectric constant (ɛ). The results indicate the effectiveness of using PET films as capacitors and resistors in industrial applications.

  14. Calculations on Electron Capture in Low Energy Ion-Molecule Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, P.C. [Oak Ridge National Lab., TN (United States); Zygelman, B. [W.M. Keck Lab. for Computational Physics, Univ. of Nevada, Las Vegas, NV (United States); Kirby, K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    1997-12-31

    Recent progress on the application of a quantal, molecular-orbital, close-coupling approach to the calculation of electron capture in collisions of multiply charged ions with molecules is discussed. Preliminary results for single electron capture by N{sup 2+} with H{sub 2} are presented. Electron capture by multiply charged ions colliding with H{sub 2} is an important process in laboratory and astrophysical plasmas. It provides a recombination mechanism for multiply charged ions in x-ray ionized astronomical environments which may have sparse electron and atomic hydrogen abundances. In the divertor region of a tokamak fusion device, charge exchange of impurity ions with H{sub 2} plays a role in the ionization balance and the production of radiative energy loss leading to cooling, X-ray and ultraviolet auroral emission from Jupiter is believed to be due to charge exchange of O and S ions with H{sub 2} in the Jovian atmosphere. Solar wind ions interacting with cometary molecules may have produced the x-rays observed from Comet Hyakutake. In order to model and understand the behavior of these environments, it is necessary to obtain total, electronic state-selective (ESS), and vibrational (or rotational) state-selective (VSS) capture cross sections for collision energies as low as 10 meV/amu to as high as 100 keV/amu in some instances. Fortunately, charge transfer with molecular targets has received considerable experimental attention. Numerous measurements have been made with flow tubes, ion traps, and ion beams. Flow tube and ion trap studies generally provide information on rate coefficients for temperatures between 800 K and 20,000 K. In this article, we report on the progress of our group in implementing a quantum-mechanical Molecular Orbital Close Coupling (MOCC) approach to the study of electron capture by multiply charged ions in collisions with molecules. We illustrate this with a preliminary investigation of Single Electron Capture (SEC) by N{sup 2+} with H

  15. New improvements on the Kansas State University cryogenic electron beam ion source, a user facility for low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M. P.; Carnes, K.; Cocke, C. L.; DePaola, B. D.; Ehrenreich, T.; Fehrenbach, C.; Fry, D.; Gibson, P. E.; Kelly, S.; Lehnert, U.

    2000-01-01

    The Kansas State University cryogenic electron beam ion source supplies low energy ion beams to users of the Department of Energy user facility for highly charged ions. The ions escape the source with an initial energy between 1.6 and 5 kV per charge and are analyzed in a 90 degree sign dipole magnet located on the high voltage platform. When leaving the platform the ions can be accelerated by up to 160 kV per charge or can be decelerated to about 20% of their initial energy, covering 2.5 orders of magnitude. We are in the process of adding another order of magnitude to the range of available ion energies as a newly installed lens allows for deceleration down to a very few percent of the initial energy. In addition we present the current microbunching and chopping system which has been substantially improved over the past 2 yr. (c) 2000 American Institute of Physics

  16. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  17. A high-flux low-energy hydrogen ion beam using an end-Hall ion source

    NARCIS (Netherlands)

    Veldhoven, J. van; Sligte, E. te; Janssen, J.P.B.

    2016-01-01

    Most ion sources that produce high-flux hydrogen ion beams perform best in the high energy range (keV). Alternatively, some plasma sources produce very-lowenergy ions (<< 10 eV). However, in an intermediate energy range of 10-200 eV, no hydrogen ion sources were found that produce high-flux beams.

  18. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-09-15

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He{sup +} ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C{sup +} ion impurities in He{sup +} ion irradiations. For introducing such tiny C{sup +} ion impurities, gas mixtures of He and CH{sub 4} have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He{sup +} ion (for Mo fuzz growth due to only He{sup +} ions) and 100% H{sup +} ion (for confirming the significance of tiny 0.04–2.0% H{sup +} ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10{sup 24} ions m{sup −2}), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He{sup +} ion irradiation case. Enhancement of C{sup +} ion impurities in He{sup +} ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C{sup +} ion impurity concentrations. Additionally, no fuzz formation for 100% H{sup +} ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H{sup +} ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H{sup +} ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He{sup +} ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C{sup +} ion impurities in He{sup +} ions. • Almost complete prevention of Mo

  19. Surface damage studies of ETFE polymer bombarded with low energy Si ions (≤100 keV)

    International Nuclear Information System (INIS)

    Minamisawa, Renato Amaral; Almeida, Adelaide De; Budak, Satilmis; Abidzina, Volha; Ila, Daryush

    2007-01-01

    Surface studies of ethylenetetrafluoroethylene (ETFE), bombarded with Si in a high-energy tandem Pelletron accelerator, have recently been reported. Si ion bombardment with a few MeV to a few hundred keV energies was shown to be sufficient to produce damage on ETFE film. We report here the use of a low energy implanter with Si ion energies lower than 100 keV, to induce changes on ETFE films. In order to determine the radiation damage, ETFE bombarded films were simulated with SRIM software and analyzed with optical absorption photometry (OAP), Raman and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to show quantitatively the physical and chemical property changes. Carbonization occurs following higher dose implantation, and hydroperoxides were formed following dehydroflorination of the polymer

  20. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  1. Recoil ion charge state distributions in low energy Arq+ - Ar collisions

    International Nuclear Information System (INIS)

    Vancura, J.; Marchetti, V.; Kostroun, V.O.

    1992-01-01

    We have measured the recoil ion charge state distributions in Ar q+ -- Ar (8≤q≤16) collisions at 2.3 qkeV and 0.18qkeV by time of flight (TOF) spectroscopy. For Ar 8-16+ , recoil ion charge states up to 6+ are clearly present, indicating that the 3p subshell in the target atom is being depleted, while for Ar 10-16+ , there is evidence that target 3s electrons are also being removed. Comparison of the recoil ion charge state spectra at 2.3 and 0.18 qkeV shows that for a given projectile charge, there is very little dependence of the observed recoil target charge state distribution on projectile energy

  2. The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2

    International Nuclear Information System (INIS)

    Verheij, L.K.; Poelsema, B.; Boers, A.L.

    1976-01-01

    The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory

  3. Optimization of a Short Faraday Cup for Low-Energy Ions using Numerical Simulations

    CERN Document Server

    Bravin, E; Garcia Sosa, A; Welsch, CP

    2014-01-01

    ISOLDE, the heavy-ion facility at CERN is undergoing a major upgrade with the installation of a superconducting LINAC that will allow post-acceleration of ion beams up to 10 MeV/u. In this framework, customized beam diagnostics are being developed in order to fulfill the design requirements as well as to fit in the compact diagnostic boxes foreseen. The main detector of this system is a compact Faraday cup that will measure beam intensities in the range of 1 pA to 1 nA. In this contribution, simulation results of electrostatic fields and particle tracking are detailed for different Faraday cup prototypes taking into account the energy spectrum and angle of emission of the ion-induced secondary electrons.

  4. Determination of low-energy ion-induced electron yields from thin carbon foils

    International Nuclear Information System (INIS)

    Allegrini, Frederic; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter

    2003-01-01

    Ion beams crossing thin carbon foils can cause electron emission from the entrance and exit surface. Thin carbon foils are used in various types of time-of-flight (TOF) mass spectrometers to produce start pulses for TOF measurements. The yield of emitted electrons depends, among other parameters, on the energy of the incoming ion and its mass, and it has been experimentally determined for a few projectile elements. The electron emission yield is of great importance for deriving abundance ratios of elements and isotopes in space plasmas using TOF mass spectrometers. We have developed a detector for measuring ion-induced electron yields, and we have extended the electron yield measurements for oxygen to energies relevant for solar wind research. We also present first measurements of the carbon foil electron emission yield for argon and iron in the solar wind energy range

  5. A Study of Mutation Breeding of High-Yielding Tryptophanase Escherichia coli by Low-Energy N+ Ion Beam Implantation

    International Nuclear Information System (INIS)

    Pang Min; Yao Jianming; Wang Dongmei

    2009-01-01

    Low energy ion beam has been widely applied in microbe breeding, plant breeding, gene transfer and cell modification. In this study, the Escherichia coli (E.coli) strain producing tryptophanase was irradiated by a low energy nitrogen ion beam with an energy of 10 keV at a fluence of 13 x 10 14 N + /cm 2 when glycerin at a 15% concentration was used as a protector. The effect on the biomass of E. coli after N + implantation was analyzed in detail by statistic methods. The screening methods used in this study were proven to be effective. After continuous mutagenicity, a high-yield tryptophanase strain was selected and both its biomass and enzymatic activity were higher than those of the parent strain. The results of scale-up production showed that the biomass could reach wet weight 8.2 g/L and 110 g L-tryptophan could be formed in the volume of the 1l enzymatic reaction system.

  6. Determination of the sticking coefficient of low-energy hydrocarbon ions

    International Nuclear Information System (INIS)

    Tichmann, Klaus Markus

    2011-01-01

    The maximum lifetime of future fusion facilities like ITER will be limited by the retention of radioactive tritium in the vessel walls. The retention is significantly affected by the sticking coefficient of hydrocarbon molecules that form in the machine. Using a particle-beam experiment, this sticking coefficient was determined for multiple species at energies below 200 eV. The equipment for the production of the particle beam was optimised and a new ion source for hydrocarbon ions was developed. Simulations using molecular dynamics were performed in parallel to improve the understanding of the processes at the surface.

  7. Formation of plasmid DNA strand breaks induced by low-energy ion beam: indication of nuclear stopping effects

    International Nuclear Information System (INIS)

    Chen Yu; Jiang Bingyao; Chen Youshan; Ding Xingzhao; Liu Xianghuai; Chen Ceshi; Guo Xinyou; Yin Guanglin

    1998-01-01

    Plasmid pGEM 3zf(+) was irradiated by nitrogen ion beam with energies between 20 and 100 keV and the fluence kept as 1 x 10 12 ions/cm 2 . The irradiated plasmid was assayed by neutral electrophoresis and quantified by densitometry. The yields of DNA with single-strand and double-strand breaks first increased then decreased with increasing ion energy. There was a maximal yield value in the range of 20-100 keV. The relationship between DNA double-strand breaks (DSB) cross-section and linear energy transfer (LET) also showed a peak-shaped distribution. To understand the physical process during DNA strand breaks, a Monte Carlo calculation code known as TRIM (Transport of Ions in Matter) was used to simulate energy losses due to nuclear stopping and to electronic stopping. It can be assumed that nuclear stopping plays a more important role in DNA strand breaks than electronic stopping in this energy range. The physical mechanisms of DNA strand breaks induced by a low-energy ion beam are also discussed. (orig.)

  8. Development of an intense O-15 radioactive ion beam using low energy protons

    CERN Document Server

    Lapi, S; Zyuzin, A Yu; D'Auria, J M

    2003-01-01

    The production of copious quantities of sup 1 sup 5 O, (half-life = 122.2 s) for astrophysical applications has been a source of concern at TRIUMF and ISAC for some time. An sup 1 sup 5 O beam is needed for two experiments ( sup 1 sup 5 O(alpha,gamma) sup 1 sup 9 Ne and sup 1 sup 5 O( sup 6 Li,d) sup 1 sup 9 Ne) at ISAC. The beam flux required for these experiments is extremely high, (between 10 sup 9 and 10 sup 1 sup 1 sup 1 sup 5 O/s) and thus high efficiencies at all steps in the process will be required. Difficulties arise due to the fact that oxygen is very reactive chemically and thus is difficult to extract from a thick spallation target. The possibility of using one of the small cyclotrons on site (TR13, CP42 or TR30) for the production of this isotope ( sup 1 sup 5 O) has been discussed. This production approach will involve the use of low energy protons to interact with a nitrogen gas target via the sup 1 sup 5 N(p,n) sup 1 sup 5 O reaction, which is accessible with attainable particle energies usin...

  9. Polymer surfaces graphitization by low-energy He{sup +} ions irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Geworski, A.; Lazareva, I.; Gieb, K.; Koval, Y.; Müller, P. [Department of Physics, Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2014-08-14

    The electrical and optical properties of surfaces of polyimide and AZ5214e graphitized by low-energy (1 keV) He{sup +} irradiation at different polymer temperatures were investigated. The conductivity of the graphitized layers can be controlled with the irradiation temperature within a broad range and can reach values up to ∼1000 S/cm. We show that the electrical transport in low-conducting samples is governed by thermally activated hopping, while the samples with a high conductivity show a typical semimetallic behavior. The transition from thermally activated to semimetallic conductance governed by the irradiation temperature could also be observed in optical measurements. The semimetallic samples show an unusually high for graphitic materials carrier concentration, which results in a high extinction coefficient in the visible light range. By analyzing the temperature dependence of the conductance of the semimetallic samples, we conclude that the scattering of charge carriers is dominated by Coulomb interactions and can be described by a weak localization model. The transition from a three to two dimensional transport mechanism at low temperatures consistently explains the change in the temperature dependence of the conductance by cooling, observed in experiments.

  10. Formation of Si/SiC multilayers by low-energy ion implantation and thermal annealing

    NARCIS (Netherlands)

    Dobrovolskiy, S.; Yakshin, A. E.; Tichelaar, F. D.; Verhoeven, J.; E. Louis,; F. Bijkerk,

    2010-01-01

    Si/SiC multilayer systems for XUV reflection optics with a periodicity of 10-20 nm were produced by sequential deposition of Si and implantation of 1 key CHx+ ions. Only about 3% of the implanted carbon was transferred into the SIC, with a thin, 0.5-1 nm, buried SIC layer being formed. We

  11. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Science.gov (United States)

    Xu, Gang; Wang, Xiao-teng; Gan, Cai-ling; Fang, Yan-qiong; Zhang, Meng

    2012-09-01

    To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm-2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm-2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm-2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  12. Low-energy-spread ion bunches from a trapped atomic gas

    NARCIS (Netherlands)

    Reijnders, M.P.; Kruisbergen, van P.A.; Taban, G.; Geer, van der S.B.; Mutsaers, P.H.A.; Vredenbregt, E.J.D.; Luiten, O.J.

    2009-01-01

    We present time-of-flight measurements of the longitudinal energy spread of pulsed ultracold ion beams, produced by near-threshold ionization of rubidium atoms captured in a magneto-optical atom trap. Well-defined pulsed beams have been produced with energies of only 1 eV and a root-mean-square

  13. Multiple scattering of low energy rare gas ions: a comparison of experiment and computer simulation

    International Nuclear Information System (INIS)

    Heiland, W.; Taglauer, E.; Robinson, M.T.

    1976-01-01

    Some aspects of ion scattering below a few keV have been interpreted by multiple scattering. This can partly be simulated by chain or string models, where the single crystal surface is replaced by a chain of atoms. The computer program MARLOWE allows a simulation of solid-ion interaction, which is much closer to reality, e.g. the crystal is three-dimensional, includes lattice vibrations, electronic stopping power, different scattering potentials, etc. It is shown that the energy of the reflected ions as a function of the primary energy, lattice constant, impact angle and scattering angle can be understood within the string model. These results of the string model are confirmed by the MARLOWE calculations. For an interpretation of the measured intensities the simple string model is insufficient, whereas with MARLOWE reasonable agreement with experimental data may be achieved, if the thermal vibrations of the lattice atoms are taken into account. The experimental data include Ne + →Ni, Ne + →Ag and preliminary data on Ne + →W. The screening parameters of the scattering potentials are estimated for these ion-atom combinations. The results allow some conclusions about surface Debye temperatures. (Auth.)

  14. OPENMED: A facility for biomedical experiments based on the CERN Low Energy Ion Ring (LEIR)

    Science.gov (United States)

    Carli, Christian

    At present protons and carbon ions are in clinical use for hadron therapy at a growing number of treatment centers all over the world. Nevertheless, only limited direct clinical evidence of their superiority over other forms of radiotherapy is available [1]. Furthermore fundamental studies on biological effects of hadron beams have been carried out at different times (some a long time ago) in different laboratories and under different conditions. Despite an increased availability of ion beams for hadron therapy, beam time for preclinical studies is expected to remain insufficient as the priority for therapy centers is to treat the maximum number of patients. Most of the remaining beam time is expected to be required for setting up and measurements to guarantee appropriate good quality beams for treatments. The proposed facility for biomedical research [2] in support of hadron therapy centers would provide ion beams for interested research groups and allow them to carry out basic studies under well defined conditions. Typical studies would include radiobiological phenomena like relative biological effectiveness with different energies, ion species, and intensities. Furthermore possible studies include the development of advanced dosimetry in heterogeneous materials that resemble the human body, imaging techniques and, at a later stage, when the maximum energy with the LEIR magnets can be reached, fragmentation.

  15. Unusual features of proton and α-spectra from low-energy heavy-ion ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 75; Issue 1. Unusual features ... Keywords. Proton and α-spectra; heavy-ion reaction; broad structures; nuclear level density. ... The broad structures in the -spectra cannot be fully explained within the statistical model even with the enhanced level density. In this case ...

  16. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    International Nuclear Information System (INIS)

    Xu Gang; Wang Xiaoteng; Gan Cailing; Fang Yanqiong; Zhang Meng

    2012-01-01

    Highlights: ► We analyzed biological effects of N + implantation on dry Jatropha curcas seed. ► N + implantation greatly decreased seedling survival rate. ► At doses beyond 15 × 10 16 ion cm −2 , biological repair took place. ► CAT was essential for H 2 O 2 removal. POD mainly functioned as seed was severely hurt. ► HAsA–GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N + with energy of 25 keV was applied to treat the dry seed at six different doses. N + beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 10 16 to 15 × 10 16 ions cm −2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 10 16 ion cm −2 , biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 10 16 ions cm −2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA–GSH cycle appeared to be for regeneration of HAsA.

  17. Low flux and low energy helium ion implantation into tungsten using a dedicated plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Pentecoste, Lucile [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Thomann, Anne-Lise, E-mail: anne-lise.thomann@univ-orleans.fr [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Melhem, Amer; Caillard, Amael; Cuynet, Stéphane; Lecas, Thomas; Brault, Pascal [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Desgardin, Pierre; Barthe, Marie-France [CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche Scientifique, 45071 Orléans Cedex2 (France)

    2016-09-15

    The aim of this work is to investigate the first stages of defect formation in tungsten (W) due to the accumulation of helium (He) atoms inside the crystal lattice. To reach the required implantation conditions, i.e. low He ion fluxes (10{sup 11}–10{sup 14} ions.cm{sup 2}.s{sup −1}) and kinetic energies below the W atom displacement threshold (about 500 eV for He{sup +}), an ICP source has been designed and connected to a diffusion chamber. Implantation conditions have been characterized by means of complementary diagnostics modified for measurements in this very low density helium plasma. It was shown that lowest ion fluxes could only be reached for the discharge working in capacitive mode either in α or γ regime. Special attention was paid to control the energy gained by the ions by acceleration through the sheath at the direct current biased substrate. At very low helium pressure, in α regime, a broad ion energy distribution function was evidenced, whereas a peak centered on the potential difference between the plasma and the biased substrate was found at higher pressures in the γ mode. Polycrystalline tungsten samples were exposed to the helium plasma in both regimes of the discharge and characterized by positron annihilation spectroscopy in order to detect the formed vacancy defects. It was found that W vacancies are able to be formed just by helium accumulation and that the same final implanted state is reached, whatever the operating mode of the capacitive discharge.

  18. Comparative Study of Surface-lattice-site Resolved Neutralization of Slow Multicharged Ions during Large-angle Quasi-binary Collisions with Au(110): Simulation and Experiment

    International Nuclear Information System (INIS)

    Meyer, F.W.

    2001-01-01

    In this article we extend our earlier studies of the azimuthal dependences of low energy projectiles scattered in large angle quasi-binary collisions from Au(110). Measurements are presented for 20 keV Ar 9+ at normal incidence, which are compared with our earlier measurements for this ion at 5 keV and 10 0 incidence angle. A deconvolution procedure based on MARLOWE simulation results carried out at both energies provides information about the energy dependence of projectile neutralization during interactions just with the atoms along the top ridge of the reconstructed Au(110) surface corrugation, in comparison to, e.g., interactions with atoms lying on the sidewalls. To test the sensitivity of the agreement between the MARLOWE results and the experimental measurements, we show simulation results obtained for a non-reconstructed Au(110) surface with 20 keV Ar projectiles, and for different scattering potentials that are intended to simulate the effects on scattering trajectory of a projectile inner shell vacancy surviving the binary collision, In addition, simulation results are shown for a number of different total scattering angles, to illustrate their utility in finding optimum values for this parameter prior to the actual measurements

  19. Theoretical ion implantation profiles for low energy protons under channeling conditions

    International Nuclear Information System (INIS)

    Nobel, J.A.; Sabin, J.R.; Trickey, S.B.

    1994-01-01

    The authors present early results from the CHANNEL code, which simulates the passage of ionized projectiles through bulk solids. CHANNEL solves the classical equations of motion for the projectile using a force obtained from the gradient of the quantum mechanically derived coulombic potential of the solid (determined via a full potential augmented plane wave (FLAPW) calculation on the bulk) and a quantum mechanical energy dissipation term, the stopping power, as determined from the method of Echenique, Neiminen, and Ritchie. The code then generates the trajectory of the ionic projectile for a given incident position on the unit cell face and an initial velocity. The authors use CHANNEL to generate an ion (proton) implantation profile for the test case of simple cubic hydrogen with the projectile's initial velocity parallel to the (100) channel. Further preliminary results for ion implantation profiles of protons in diamond structure Si, with initial velocity along the (100) and (110) channels, are given

  20. Development of Linear Mode Detection for Top-down Ion Implantation of Low Energy Sb Donors

    Science.gov (United States)

    Pacheco, Jose; Singh, Meenakshi; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Fabrication of donor spin qubits for quantum computing applications requires deterministic control over the number of implanted donors and the spatial accuracy to within which these can be placed. We present an ion implantation and detection technique that allows us to deterministically implant a single Sb ion (donor) with a resulting volumetric distribution of performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  1. Proper surface channelling of low energy argon ions incident on a nickel (110) crystal

    International Nuclear Information System (INIS)

    Evdokimov, I.N.; Berg, J.A. van den; Armour, D.G.

    1979-01-01

    The scattering behaviour of 6 keV argon ions from a nickel (110) surface has been investigated for specular reflection under grazing incidence conditions. The occurrence of an anomalously high energy loss has been confirmed and the transition from chain scattering at large scattering angles to a distinctly different type of scattering at small angles has been investigated. The characteristics of the low angle scattering phenomena, which dominate the observed spectra at scattering angles below about 18 0 , may be explained in terms of a surface hyperchannelling model in which the incident ions are confined to move within the shallow 'potential valleys' between two atomic rows in the surface. The critical angle for occurrence of this phenomena which is distinctly different from surface semichannelling has been evaluated with Lindhard's standard string potential. The experimentally measured critical angles are in good agreement with the calculated ones. (author)

  2. Low energy Ar ion bombardment damage of Si, GaAs, and InP surfaces

    International Nuclear Information System (INIS)

    Williams, R.S.

    1982-01-01

    Argon bombardment damage to (100) surfaces of Si, GaAs, and InP for sputter ion-gun potentials of 1, 2, and 3 kilovolts was studied using Rutherford backscattering. Initial damage rates and saturation damage levels were determined. Bombardment damage sensitivity increased for the sequence Si, GaAs, and InP. Saturation damage levels for Si and GaAs correspond reasonably to LSS projected range plus standard deviation estimates; damage to InP exceeded this level significantly. For an ion-gun potential of 3 keV, the initial sputter yield of P from an InP surface exceeded the sputter yield of In by four atoms per incident Ar projectile. (author)

  3. Mechanical properties of silicon oxynitride thin films prepared by low energy ion beam assisted deposition

    International Nuclear Information System (INIS)

    Shima, Yukari; Hasuyama, Hiroki; Kondoh, Toshiharu; Imaoka, Yasuo; Watari, Takanori; Baba, Koumei; Hatada, Ruriko

    1999-01-01

    Silicon oxynitride (SiO x N y ) films (0.1-0.7 μm) were produced on Si (1 0 0), glass and 316L stainless steel substrates by ion beam assisted deposition (IBAD) using Si evaporation and the concurrent bombardment with a mixture of 200 eV N 2 and Ar, or O 2 and Ar ions. Adhesion was evaluated by pull-off tests. Film hardness was measured by a nanoindentation system with AFM. The measurement of internal stress in the films was carried out by the Stoney method. The film structure was examined by GXRD. XPS was employed to measure the composition of films and to analyze the chemical bonds. The dependence of mechanical properties on the film thickness and the processing temperature during deposition was studied. Finally, the relations between the mechanical properties of the films and the correlation with corrosion-protection ability of films are discussed and summarized

  4. Detailed calculation of low-energy positron scattering by the hydrogen molecular ion

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Carr, J.M.; Franklin, C.P.

    1996-01-01

    Detailed calculations are made using the Kohn method of positron scattering by the hydrogen molecular ion below the positronium formation threshold at 9.45 eV. Phase shifts from the two-centre Coulomb value are obtained for the lowest partial wave of Σ g + symmetry using a very flexible trial function containing a large number of short-range correlation functions. The convergence of the results with respect to both the linear and non-linear parameters is explored. (author)

  5. Formation of Si/SiC multilayers by low-energy ion implantation and thermal annealing

    NARCIS (Netherlands)

    Dobrovolskiy, S.; Yakshin, Andrey; Tichelaar, F.D.; Verhoeven, J.; Louis, Eric; Bijkerk, Frederik

    2010-01-01

    Si/SiC multilayer systems for XUV reflection optics with a periodicity of 10–20 nm were produced by sequential deposition of Si and implantation of 1 keV View the MathML source ions. Only about 3% of the implanted carbon was transferred into the SiC, with a thin, 0.5–1 nm, buried SiC layer being

  6. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-01-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He + ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10 24 ions m −2 (with a flux of 7.2 × 10 20 ions m −2 s −1 ). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO 3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth

  7. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Novakowski, T.J.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He + ion irradiation at different temperatures in the range of 823–1223 K. The samples were irradiated at normal incidence with 100 eV He + ions at constant flux of 1.2 × 10 21 ions m −2  s −1 to a total fluence of 4.3 × 10 24 ions m −2 . An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 10 25 ions m −2 (at the same flux of 1.2 × 10 21 ions m −2  s −1 ), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm 2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  8. Formation of SiC using low energy CO2 ion implantation in silicon

    International Nuclear Information System (INIS)

    Sari, A.H.; Ghorbani, S.; Dorranian, D.; Azadfar, P.; Hojabri, A.R.; Ghoranneviss, M.

    2008-01-01

    Carbon dioxide ions with 29 keV energy were implanted into (4 0 0) high-purity p-type silicon wafers at nearly room temperature and doses in the range between 1 x 10 16 and 3 x 10 18 ions/cm 2 . X-ray diffraction analysis (XRD) was used to characterize the formation of SiC in implanted Si substrate. The formation of SiC and its crystalline structure obtained from above mentioned technique. Topographical changes induced on silicon surface, grains and evaluation of them at different doses observed by atomic force microscopy (AFM). Infrared reflectance (IR) and Raman scattering measurements were used to reconfirm the formation of SiC in implanted Si substrate. The electrical properties of implanted samples measured by four point probe technique. The results show that implantation of carbon dioxide ions directly leads to formation of 15R-SiC. By increasing the implantation dose a significant changes were also observed on roughness and sheet resistivity properties.

  9. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Xu Gang, E-mail: xg335300@yahoo.com.cn [Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025 (China); Institute of Entomology, Guizhou University, Guiyang 550025 (China); Wang Xiaoteng [Department of Agricultural Resources and Environment, College of Agricultural, Guizhou University, Guiyang 550025 (China); Gan Cailing; Fang Yanqiong; Zhang Meng [College of Life Sciences, Guizhou University, Guiyang 550025 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We analyzed biological effects of N{sup +} implantation on dry Jatropha curcas seed. Black-Right-Pointing-Pointer N{sup +} implantation greatly decreased seedling survival rate. Black-Right-Pointing-Pointer At doses beyond 15 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place. Black-Right-Pointing-Pointer CAT was essential for H{sub 2}O{sub 2} removal. POD mainly functioned as seed was severely hurt. Black-Right-Pointing-Pointer HAsA-GSH cycle mainly contributed to the regeneration of HAsA. - Abstract: To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N{sup +} with energy of 25 keV was applied to treat the dry seed at six different doses. N{sup +} beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 Multiplication-Sign 10{sup 16} to 15 Multiplication-Sign 10{sup 16} ions cm{sup -2} severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 Multiplication-Sign 10{sup 16} ion cm{sup -2}, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 Multiplication-Sign 10{sup 16} ions cm{sup -2} may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  10. Interaction of atomic and low-energy deuterium with tungsten pre-irradiated with self-ions

    International Nuclear Information System (INIS)

    Ogorodnikova, O. V.; Markelj, S.; Toussaint, U. von

    2016-01-01

    Polycrystalline tungsten (W) specimens were pre-irradiated with self-ions to create identical samples with high density of defects up to ∼2.5 μm near the surface. Then, W specimens were exposed to either thermal atomic deuterium (D) beam with an incident energy of ∼0.2 eV or low energy D plasma with the incident energy varied between 5 and 200 eV at different sample temperatures. Each sample was exposed once at certain temperature and fluence. The D migration and accumulation in W were studied post-mortem by nuclear reaction method. It was shown that the rate of the D to occupy radiation-induced defects increases with increasing the incident energy, ion flux, and temperature. Experimental investigation was accompanied by modelling using the rate-equation model. Moreover, the analytical model was developed and benchmarked against numerical model. The calculations of the deuterium diffusion with trapping at radiation-induced defects in tungsten by analytical model are consistent with numerical calculations using rate-equation model. The data of reflection and penetration of atomic and low-energy D were taking from calculations using molecular dynamics (MD) with Juslin interatomic potentials and a binary collision code TRIM. MD calculations show an agreement with a binary collision code TRIM only in a very narrow range of deuterium energies between 1 and 20 eV. Incorporation of the data of reflection and penetration of deuterium in the macroscopic modelling has been done to verify the range of validity of calculations using MD and binary collision code TRIM by comparison of modelling results with experimental data. Modelling results are consistent with experiments using reflection and penetration data of D obtained from TRIM code for incident ion energy above 1 eV. Otherwise, the parameters obtained from MD should be incorporated in the rate-equation model to have a good agreement with the experiments

  11. Ultra-low-energy ion-beam synthesis of nanometer-separated Si nanoparticles and Ag nanocrystals 2D layers

    Science.gov (United States)

    Carrada, M.; Haj Salem, A.; Pecassou, B.; Paillard, V.; Ben Assayag, G.

    2018-03-01

    2D networks of Si and Ag nanocrystals have been fabricated in the same SiO2 matrix by Ultra-Low-Energy Ion-Beam-Synthesis. Our synthesis scheme differs from a simple sequential ion implantation and its key point is the control of the matrix integrity through an appropriate intermediate thermal annealing. Si nanocrystal layer is synthesised first due to high thermal budget required for nucleation, while the second Ag nanocrystal plane is formed during a subsequent implantation due to the high diffusivity of Ag in silica. The aim of this work is to show how it is possible to overcome the limitation related to ion mixing and implantation damage to obtain double layers of Si-NCs and Ag-NCs with controlled characteristics. For this, we take advantage of annealing under slight oxidizing ambient to control the oxidation of Si-NCs and the Si excess in the matrix. The nanocrystal characteristics and in particular their position and size can be adjusted thanks to a compromise between the implantation energy, the implanted dose for both Si and Ag ions and the intermediate annealing conditions (atmosphere, temperature and duration).

  12. X-ray yields by low energy heavy ion excitation in alkali halide solid targets

    International Nuclear Information System (INIS)

    Kurup, M.B.; Prasad, K.G.; Sharma, R.P.

    1981-01-01

    Solid targets of the alkali halides KCl, NaCl and KBr are bombarded with ion beams of 35 Cl + , 40 Ar + and 63 Cu + in the energy range 165 keV to 320 keV. The MO and characteristic K X-ray yields resulting from the ion-atom collision have been systematically studied. Both MO and Cl K X-ray yields are enhanced by factors 3.5 and 2 respectively in KCl targets as compared to that in NaCl when bombarded with either Cl + or Ar + projectiles. An intercomparison of MO and K X-ray yields for a given projectile-target combination has shown that the latter increases ten times faster than the former as the energy of the projectile is increased from 165 to 320 keV indicating a correspondingly stronger velocity dependence of the K X-ray production process. The X-ray yields observed in the symmetric Cl-Cl collision are identical to those observed in the asymmetric Ar-Cl collision for the same projectile velocities in both KCl and NaCl targets. It is inferred that the multiple ionization of the projectile resulting in an increase in the binding energy of its inner shells offsets the expected enhancement in the X-ray yields in a symmetric collision. The same projectiles, Ar or Cl, incident on KBr targets have produced only Br L X-rays. Using substantially heavier projectiles than the target atoms (Na, K and Cl), like 63 Cu + ions, the inner shell excitation by recoiling atoms is shown. (orig.)

  13. Behavior of carbon readsorbed on tungsten during low energy Ar ion irradiation at elevated temperatures

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Milcius, D.; Templier, C.; Bobrovaite, B.

    2008-01-01

    A study of the behavior of carbon sputtered and readsorbed after scattering collisions with particles of surrounding gas on the tungsten surface affected by Ar ion irradiation with the flux equal to 2 x 10 16 cm -2 s -1 extracted from plasma under 300 V negative bias voltage in the temperature range 370-870 K was performed. The dependence of the W sample weight change on the working gas pressure in the range 0.1-10 Pa was registered and the information was deduced about prevailing sputtering-redeposition processes. The depth profiles of carbon at the tungsten surface were measured. We found that carbon distribution profiles in tungsten depend on the C redeposition rate for fixed ion irradiation parameters. Three regimes have been distinguished: (i) at working gas pressure equal to 5 Pa and more, the C redeposition rate prevails the sample surface erosion rate and the W surface is covered by continuous amorphous carbon film (the C film growth regime), (ii) at working gas pressure equal to about 1 Pa, the C redepostion rate is approximately equal to the erosion rate and the W surface is partially covered by redeposited carbon, and (iii) at working gas pressure less than 0.2 Pa, the erosion rate prevails the C redeposition rate (the W surface erosion regime). In the regime of balanced redeposition and erosion deep C penetration depth into nanocrystalline W was registered. It is suggested that under simultaneous C adsorption and ion irradiation at elevated temperature C adatoms are driven from the W surface into grain boundaries and into the bulk by the difference in chemical potentials between the activated W surface and grain boundaries. As the W surface is covered by amorphous C film, the grain boundaries are blocked and the efficiency of carbon transport decreases

  14. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  15. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    International Nuclear Information System (INIS)

    Borodi, Gheorghe

    2008-01-01

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO 2 + with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H 2 densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH + , CH 2 + , and CH 4 + have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  16. Low-energy rate enhancement in recombination processes of electrons into bare uranium ions

    International Nuclear Information System (INIS)

    Wu Yong; Zeng Siliang; Duan Bin; Yan Jun; Wang Jianguo; Chinese Academy of Sciences, Lanzhou; Dong Chenzhong; Ma Xinwen

    2007-01-01

    Based on the Dirac-Fork-Slater method combined with the multichannel quantum defect theory, the recombination processes of electrons into bare uranium ions (U 92+ ) are investigated in the relative energy range close to zero, and the x-ray spectrum emitted in the direct radiative recombination and cascades processes are simulated. Compared with the recent measurement, it is found that the rate enhancement comes from the additional populations on high Rydberg states. These additional populations may be produced by other recombination mechanisms, such as the external electric-magnetic effects and the many-body correlation effects, which still remains an open problem. (authors)

  17. The structural and compositional analysis of single crystal surfaces using low energy ion scattering

    International Nuclear Information System (INIS)

    Armour, D.G.; Van der Berg, J.A.; Verheij, IL.K.

    1979-01-01

    The use of ion scattering for surface composition and structure analysis has been reviewed. The extreme surface specificity of this technique has been widely used to obtain quitative information in a straightforward way, but the/aolc/currence of charge exchange processes, thermal lattice vibrations and multiple scattering have precluded quantitative analysis of experimental data. Examples are quoted to illustrate the progress that has been made in understanding these fundamental processes and in applying this knowledge to the development of the analytical capabilities of the technique. (author)

  18. Quantitative low-energy ion beam characterization by beam profiling and imaging via scintillation screens.

    Czech Academy of Sciences Publication Activity Database

    Germer, S.; Pietag, F.; Polák, Jaroslav; Arnold, T.

    2016-01-01

    Roč. 87, č. 11 (2016), č. článku 113301. ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/21./. Madison, 05.06.2016-09.06.2016] Institutional support: RVO:61389021 Keywords : Current density * Etching * Faraday cups * Ion beam source s * Cameras Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.515, year: 2016 http://aip.scitation.org/doi/full/10.1063/1.4964701

  19. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    International Nuclear Information System (INIS)

    Zhang, F.M.; Yao, J.; Shen, Y.G.; King, B.V.; O'Connor, D.J.

    1993-01-01

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li + , He + and Ar + ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs

  20. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F M; Yao, J; Shen, Y G; King, B V; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li{sup +}, He{sup +} and Ar{sup +} ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs.

  1. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others

    1998-01-01

    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  2. Momenta of particles emitted by target at intensive irradiation by low-energy ions

    CERN Document Server

    Beshenkov, V G; Marchenko, V A

    2002-01-01

    One measured the aggregate momenta of the target emitted particles at the intensive sputtering by E sub 0 approx = 0.5 keV energy heavy inert gases. For liquid and being under premelting temperature Ga target the measured values are close to the expected momenta of sputtered metallic atoms and reflection ions, for Cu and Zr targets they are essentially higher. One assumes that sputtering of atoms of gas-diffuser implanted into the target causes the surplus momentum. The estimated average energy of these atoms approx = 20 eV. Under Ga irradiation the implanted atoms diffuse mainly towards the surface and are desorbed

  3. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.M.; Yao, J.; Shen, Y.G.; King, B.V.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li{sup +}, He{sup +} and Ar{sup +} ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs.

  4. Amorphous Ge quantum dots embedded in SiO2 formed by low energy ion implantation

    International Nuclear Information System (INIS)

    Zhao, J. P.; Huang, D. X.; Jacobson, A. J.; Chen, Z. Y.; Makarenkov, B.; Chu, W. K.; Bahrim, B.; Rabalais, J. W.

    2008-01-01

    Under ultrahigh vacuum conditions, extremely small Ge nanodots embedded in SiO 2 , i.e., Ge-SiO 2 quantum dot composites, have been formed by ion implantation of 74 Ge + isotope into (0001) Z-cut quartz at a low kinetic energy of 9 keV using varying implantation temperatures. Transmission electron microscopy (TEM) images and micro-Raman scattering show that amorphous Ge nanodots are formed at all temperatures. The formation of amorphous Ge nanodots is different from reported crystalline Ge nanodot formation by high energy ion implantation followed by a necessary high temperature annealing process. At room temperature, a confined spatial distribution of the amorphous Ge nanodots can be obtained. Ge inward diffusion was found to be significantly enhanced by a synergetic effect of high implantation temperature and preferential sputtering of surface oxygen, which induced a much wider and deeper Ge nanodot distribution at elevated implantation temperature. The bimodal size distribution that is often observed in high energy implantation was not observed in the present study. Cross-sectional TEM observation and the depth profile of Ge atoms in SiO 2 obtained from x-ray photoelectron spectra revealed a critical Ge concentration for observable amorphous nanodot formation. The mechanism of formation of amorphous Ge nanodots and the change in spatial distribution with implantation temperature are discussed

  5. A coincidence-type ion-electron converter detector for low-energy protons

    International Nuclear Information System (INIS)

    Benka, O.; Weinzierl, P.; Dobrozemsky, R.; Stratowa, C.

    1981-04-01

    A coincidence type ion-electron converter detector has been developed and used - together with an electrostatic energy-analyser - for precision measurements of the energy distribution of recoil protons from free-neutron decay. The most important aspect of the development was, besides keeping the background below 0,2 counts/sec in the presence of a certain radiation background, to achieve a high and energy-independent counting probability for protons with energies between 100 and 1000 eV. With an acceleration voltage of about 25 kV and Al-foils (20 to 35 ug/cmsup2) as converter, we obtained counting efficiences of 70 to 85 percent. The design and performance of the detector system, employing six foils with different sensitive areas, are described and discussed in detail. (author)

  6. Genetic transformation of watermelon with pumpkin DNA by low energy ion beam-mediated introduction

    International Nuclear Information System (INIS)

    Wang Haobo; Guo Jinhua; Huang Qunce; Yu Zengliang

    2002-01-01

    The No.601 watermelon (citrullus lanatus) seeds were treated with 25 keV N + implantation at the dosage of 7.8 x 10 16 ions/cm 2 . After treatment, watermelon seeds were incubated with 380 μg/μl pumpkin (Cucubita, maxima Duch) DNA solution at 35 degree C for 5 hours. By two-generations of selection and resistance screening at seedling stage, one transformed material was selected out, whose rind color is similar to that of the donor pumpkin and whose size of seeds is between that of the donor and the receptor. Using AFLP (amplified fragment length polymorphism) technique, two polymorphic DNA fragments were amplified. This primarily testified that the donor DNA fragments/gene were introduced into the receptor cell and integrated into the genomic DNA of the receptor

  7. Atomic-orbital expansion model for describing ion-atom collisions at intermediate and low energies

    International Nuclear Information System (INIS)

    Lin, C.D.; Fritsch, W.

    1983-01-01

    In the description of inelastic processes in ion-atom collisions at moderate energies, the semiclassical close-coupling method is well established as the standard method. Ever since the pioneering work on H + + H in the early 60's, the standard procedure is to expand the electronic wavefunction in terms of molecular orbitals (MO) or atomic orbitals (AO) for describing collisions at, respectively, low or intermediate velocities. It has been recognized since early days that traveling orbitals are needed in the expansions in order to represent the asymptotic states in the collisions correctly. While the adoption of such traveling orbitals presents no conceptual difficulties for expansions using atomic orbitals, the situation for molecular orbitals is less clear. In recent years, various forms of traveling MO's have been proposed, but conflicting results for several well-studied systems have been reported

  8. Genetic Transformation of Watermelon with Pumpkin DNA by Low Energy Ion Beam-Mediated Introduction

    Science.gov (United States)

    Wang, Hao-bo; Gao, Xiu-wu; Guo, Jin-hua; Huang, Qun-ce; Yu, Zeng-liang

    2002-12-01

    The No.601 watermelon (citrullus lanatus) seeds were treated with 25 keV N+ implantation at the dosage of 7.8 × 1016 ions/cm2. After treatment, watermelon seeds were incubated with 380 μg/μl pumpkin (Cucubita, maxima Duch) DNA solution at 35 °C for 5 hours. By two-generations of selection and resistance screening at seedling stage, one transformed material was selected out, whose rind color is similar to that of the donor pumpkin and whose size of seeds is between that of the donor and the receptor. Using AFLP (amplified fragment length polymorphism) technique, two polymorphic DNA fragments were amplified. This primarily testified that the donor DNA fragments/gene were introduced into the receptor cell and integrated into the genomic DNA of the receptor.

  9. On the origin of apparent Z{sub 1}-oscillations in low-energy heavy-ion ranges

    Energy Technology Data Exchange (ETDEWEB)

    Wittmaack, Klaus, E-mail: wittmaack@helmholtz-muenchen.de

    2016-12-01

    It has been known for quite some time that projected ranges measured by Rutherford backscattering spectrometry for a variety of low-energy heavy ions (energy-to-mass ratio E/M{sub 1} less than ∼0.4 keV/u) exhibit significant or even pronounced deviations from the theoretically predicted smooth dependence on the projectile’s atomic number Z{sub 1}. Studied most thoroughly for silicon targets, the effect was attributed to ‘Z{sub 1} oscillations’ in nuclear stopping, in false analogy to the well established Z{sub 1} oscillations in electronic stopping of low-velocity light ions. In this study an attempt was made to get order into range data published by four different groups. To achieve the goal, the absolute values of the ranges from each group had to be (re-)adjusted by up to about ±10%. Adequate justification for this approach is provided. With the changes made, similarities and differences between the different sets of data became much more transparent than before. Very important is the finding that the distortions in heavy-ion ranges are not oscillatory in nature but mostly one-sided, reflecting element-specific transport of implanted atoms deeper into the solid. Exceptions are rare gas and alkali elements, known to exhibit bombardment induced transport towards the surface. Range distortions reported for Xe and Cs could be reproduced on the basis of the recently established rapid relocation model. The extent of transport into the bulk, observed with many other elements, notably noble metals and lanthanides, reflects their high mobility under ion bombardment. The complexity of the element specific transport phenomena became fully evident by also examining the limited number of data available for the apparent range straggling. Profile broadening was identified in several cases. One element (Eu) was found to exhibit profile narrowing. This observation suggests that implanted atoms may agglomerate at peak concentrations up to 2%, possibly a tool for

  10. Image potential effect on the specular reflection coefficient of alkali ions scattered from a nickel surface at low energy

    International Nuclear Information System (INIS)

    Zemih, R.; Boudjema, M.; Benazeth, C.; Boudouma, Y.; Chami, A.C.

    2002-01-01

    The resonant charge exchange in the incoming path of alkali ions scattered at low energy from a polycrystalline nickel surface is studied by using the image effect occurring at glancing incidence (2-10 deg. from the surface plane) and for specular reflection. The part of the experimental artefacts (geometrical factor, surface roughness ...) is extracted from the reflection coefficient of almost completely neutralised projectiles (He + or Ne + ) compared with the coefficient obtained from numerical simulations (TRIM and MARLOWE codes). The present model explains very well the lowering of the reflection coefficient measured at grazing incidence (below 4 deg.). Furthermore, the optimised values of the charge fraction in the incoming path and the image potential are in agreement with the theoretical calculations in the case of Na + /Ni at 4 keV

  11. Doubly differential cross sections of low-energy electrons emitted in the ionization of molecular hydrogen by bare carbon ions

    International Nuclear Information System (INIS)

    Tribedi, L.C.; Richard, P.; Ling, D.; Wang, Y.D.; Lin, C.D.; Moshammer, R.; Kerby, G.W. III; Gealy, M.W.; Rudd, M.E.

    1996-01-01

    We have measured the double differential cross sections (DDCS) (d 2 σ/d var-epsilon ed Ω e ) of low-energy electron emission in the ionization of H 2 bombarded by bare carbon ions of energy 30 MeV. The energy and angular distributions of the electron DDCS have been obtained for 12 different emission angles and for electron energies varying between 0.1 and 300 eV. We have also deduced the single differential and total ionization cross section from the measured DDCS. The data have been compared with the predictions of first Born approximations and the CDW-EIS (continuum distorted wave endash eikonal initial state) model. The CDW-EIS model provides an excellent agreement with the data. copyright 1996 The American Physical Society

  12. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    Science.gov (United States)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  13. Micro-controller based fiber optic data telemetry system for the ion source of low energy accelerator facility at BARC

    International Nuclear Information System (INIS)

    Padmakumar, Sapna; Ware, Shailaja V.; Subrahmanyam, N.B.V.; Bhatt, J.P.; Singh, S.K.; Gupta, S.K.; Singh, P.; Choudhury, R.K.

    2009-01-01

    The Low Energy Accelerator Facility (LEAF) is a 50 keV, high intensity, negative ion accelerator facility that has been set up indigenously at Nuclear Physics Division, BARC. This facility is capable of delivering a wide range of negative ion beams of both light and heavy ions across the periodic table using a SNICS II (Source of Negative Ion by Caesium Sputtering) source. A micro-controller based control and monitoring system has been developed exclusively for the ion source parameters of LEAF. The data control and monitoring system mainly targets acquiring the data from the field in the terms of parameters such as voltages and currents. There are processes which need to be monitored continuously in order to keep certain parameters under check. The microcontroller based fiber optic data telemetry system allows us to perform the aforesaid task. The voltages can be controlled and monitored by providing the inputs and receiving the feedback through a user friendly graphic user interface. With this system one can control the status as well as analog value of the high voltage power supplies like extractor, cathode, filament, focus line heater and oven. This system consists of Fiber optic transceiver, which is connected on serial port (RS 232C) of microcontroller as well as RS232 port of PC. The whole control system is reliable even in noisy environments including RF and worse EMI conditions. This compact modular design is implemented using low cost devices and allows easy and fast maintainability. In the paper, the details of the system are presented. (author)

  14. Does the thermal spike affect low energy ion-induced interfacial mixing?

    International Nuclear Information System (INIS)

    Suele, P.; Menyhard, M.; Nordlund, K.

    2003-01-01

    Molecular dynamics simulations have been used to obtain the three-dimensional distribution of interfacial mixing and cascade defects in Ti/Pt multilayer system due to single 1 keV Ar + impact at grazing angle of incidence. The Ti/Pt system was chosen because of its relatively high heat of mixing in the binary alloy and therefore a suitable candidate for testing the effect of heat of mixing on ion-beam mixing. However, the calculated mixing profile is not sensitive to the heat of mixing. Therefore the thermal spike model of mixing is not fully supported under these irradiation conditions. Instead we found that the majority of mixing occurs after the thermal spike during the relaxation process. These conclusions are supported by liquid, vacancy as well as adatom analysis. The interfacial mixing is in various aspects anomalous in this system: the time evolution of mixing is leading to a phase delay for Ti mixing, and Pt exhibits an unexpected double peaked mixing evolution. The reasons to these effects are discussed

  15. Vacancy production in molybdenum by low energy light ion bombardment: computer simulation

    International Nuclear Information System (INIS)

    Hou, M.; Veen, A. van; Caspers, L.M.; Ypma, M.R.

    1983-01-01

    A comparison is made of the room temperature vacancy production measured with THDS (thermal helium desorption spectrometry) and the Frenkel pair production calculated in the binary collision approximation with MARLOWE for 0.5 to 3 keV He + ions and 1.5 keV protons injected into a Mo(110) crystal. Using the distributions of Frenkel pair separation distances calculated with MARLOWE for various values of the displacement threshold Esub(d), the experimental data are matched by selecting a cut-off radius Rsub(c) so that for separations larger than Rsub(c) the Frenkel pairs survive recombination. It became apparent that all experimental data could be reasonably described by a pair of parameters Esub(d) = 33 eV and Rsub(c) = 3.7 a 0 (a 0 is the lattice cell edge unit). The value of Esub(d) we found is close to the experimentally determined threshold energy for permanent displacements in Mo. A detailed analysis of the recombination process using the MARLOWE results shows that the found cut-off radius corresponds with an effective recombination radius Rsub(o) = 2.8 a 0 . In the literature lower (theoretical) values of Rsub(o) = 1.4 - 2.1 a 0 are quoted for correlated recombination of single Frenkel pairs in molybdenum. (orig.)

  16. Design of a compact Faraday cup for low energy, low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cantero, E.D., E-mail: esteban.cantero@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Sosa, A. [CERN, 1211 Geneva 23 (Switzerland); The University of Liverpool, Liverpool (United Kingdom); Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D. [CERN, 1211 Geneva 23 (Switzerland); Welsch, C.P. [The University of Liverpool, Liverpool (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom)

    2016-01-21

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  17. A study of low-energy ion induced radiolysis of thiol-containing amino acid cysteine in the solid and aqueous solution states

    Energy Technology Data Exchange (ETDEWEB)

    Ke Zhigang [Key Laboratory of Ion Beam Bio-engineering, Institute of Plasma Physics of Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1126, Hefei 230031 (China); Huang Qing, E-mail: huangq@ipp.ac.c [Key Laboratory of Ion Beam Bio-engineering, Institute of Plasma Physics of Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1126, Hefei 230031 (China); Dang Bingrong [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Lu Yilin [Key Laboratory of Ion Beam Bio-engineering, Institute of Plasma Physics of Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1126, Hefei 230031 (China); Department of Physics, Anhui University, Hefei 230031 (China); Yuan Hang; Zhang Shuqing; Yu Zengliang [Key Laboratory of Ion Beam Bio-engineering, Institute of Plasma Physics of Chinese Academy of Sciences, 350 Shushanhu Road, P.O. Box 1126, Hefei 230031 (China)

    2010-09-15

    The radiolysis of cysteine under plasma discharge and irradiation of low-energy ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR. In addition, the generation of hydrogen sulfide was also identified. The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH{sub 3}, -COO{sup -}) of cysteine, and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified. These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation.

  18. Contribution to the study of the optical potentials used at low energy for heavy ions

    International Nuclear Information System (INIS)

    Goncalves, Nadine.

    1980-12-01

    The object of this work is essentially to determine optical potentials by simultaneous analysis of elastic and inelastic scattering. The theoretical concepts required for analyzing experimental results are introduced, then the optical model, the coupled equation as well as the double convolution potential are presented. The transfer of a nucleon will be studied by Born's approximation of distorted waves if the process is direct and in one single stage. But if the process occurs in two stages, it is Born's approximation of coupled paths that enables the inelastic collective excitations to be taken into account. The two stage process plays a significant part in peopling the highly collective states of the residual nucleus. The experimental techniques employed in order to obtain angular distributions are dealt with in Chapter III. Three types of different detections were utilized: a semi-conducting junction, a Buechner analysis magnet, then a magnetic spectrometer composed of a quadripole and three dipoles in succession, so as to better the energy resolutions. The analysis of the experimental results is divided into two chapters, chapters IV and V. The first is devoted to the heavier systems, namely the pair-pair isotopes of Ge and Ni, and deals exclusively with the problem of determining optical potentials and its ambiguities. The second one deals with the lighter systems relative to 28 Si. On the one hand, it aims to study the elastic and inelastic angular distributions at the intermediate angles with 16 O and 18 O ions and, on the other hand, to make use of the optical potentials in the study of the transfer of a nucleon, to wit the pick-up of a 28 Si( 15 N, 16 O) 27 Al proton and the stripping of a 28 Si( 15 N, 14 N) 29 Si neutron [fr

  19. Implanting very low energy atomic ions into surface adsorbed cage molecules: the formation/emission of Cs/C60+

    International Nuclear Information System (INIS)

    Kolodney, Eli; Kaplan, Andrey; Manor, Yoni; Bekkerman, Anatoly; Tsipinyuk, Boris

    2004-01-01

    Full Text: We demonstrate the formation of an endo-complex via a collision of energetic ions with molecular overlayers on a surface. An incoming atomic ion is encapsulated inside a very large molecule or cluster by implanting the primary ion into the target species, which then recovers its original structure or rearrange itself around the implanted ion in some stable configuration. Here we describe an experiment resulting in the formation and ejection of an endo-complex, within a single collision. We study the formation and emission of endohedral fullerenes, Cs/C 60 + and Cs/C 70 + , following a single collision of Cs + ion with a sub-monolayer of C 60 (steady state coverage) on gold and silicon surfaces and with a sub-monolayer of C 70 on gold. A continuous low energy (E 0 =35-220 eV) Cs + ion beam hit the Cs + covered surface and the collisional formation and ejection of the endohedral Cs/Cs 60 + complex, within a single Cs + /C 60 collision was observed and characterized. Several experimental observations clearly demonstrate the single collision nature of the combined atom penetration endo-complex ejection event. The fullerene molecule is actually being picked up off the surface by the penetrating Cs + ion. The evidence for the trapping of the Cs + ion inside the fullerene cage is given both by the appearance of the Cs/Cs (602-2n) + (n=1-5) sequence and its termination at Cs/Cs 50 + . Kinetic Energy Distributions (KEDs) of the outgoing Cs/Cs 60 + were measured for two different Cs + impact energies under field-free conditions. The most striking observation is the near independence of the KEDs on the impact energy. Both KEDs peak around 1.2 eV with similar line shapes. A simple model for the formation/ejection/fragmentation dynamics of the endohedral complex is proposed and is found to be in good agreement with the experimental results

  20. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  1. Mechanism of conductivity type conversion in p-Hg1-xCdxTe crystals under low energy ion bombardment

    International Nuclear Information System (INIS)

    Bogoboyashchij, V.V.; Izhnin, I.I.

    2000-01-01

    Conditions giving rise to accelerated diffusion of Hg under bombardment of p-Hg 1-x Cd x Te by low-energy particles are analyzed and probable mechanisms of the phenomenon are suggested, permitting qualitative and quantitative agreement with experimental data. Analysis indicates that basic regularities of p-n-conversion during Hg 0.8 Cd 0.2 Te crystal bombardment by neutralized ions can be easily explained in the framework of traditional notions of mercury chemical diffusion in this material. The regularities stem from specific features of defect formation in Hg 0.8 Cd 0.2 Te, on the one hand, and from a high concentration of intrinsic electrons and holes, screening effectively the defective layer electric field, on the other hand. The high rate of conversion during ion bombardment compared with the rate of conversion during annealing in mercury vapors can be explained by the fact that a great number of nonequilibrium interstitial atoms of mercury, by far exceeding the value during thermal annealing, is crated near the surface of the crystal bombarded [ru

  2. Estimate of repulsive interatomic pair potentials by low-energy alkali-metal-ion scattering and computer simulation

    International Nuclear Information System (INIS)

    Ghrayeb, R.; Purushotham, M.; Hou, M.; Bauer, E.

    1987-01-01

    Low-energy ion scattering is used in combination with computer simulation to study the interaction potential between 600-eV potassium ions and atoms in metallic surfaces. A special algorithm is described which is used with the computer simulation code marlowes. This algorithm builds up impact areas on the simulated solid surface from which scattering cross sections can be estimated with an accuracy better than 1%. This can be done by calculating no more than a couple of thousand trajectories. The screening length in the Moliere approximation to the Thomas-Fermi potential is fitted in such a way that the ratio between the calculated cross sections for double and single scattering matches the scattering intensity ratio measured experimentally and associated with the same mechanisms. The consistency of the method is checked by repeating the procedure for different incidence conditions and also by predicting the intensities associated with other surface scattering mechanisms. The screening length estimates are found to be insensitive to thermal vibrations. The calculated ratios between scattering cross sections by different processes are suggested to be sensitive enough to the relative atomic positions in order to be useful in surface-structure characterization

  3. Influence of ion-to-atom ratio on the microstructure of evaporated molybdenum thin films grown using low energy argon ions

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar; Lodha, Gyanendra Singh [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sant, Tushar; Sharma, Surinder Mohan [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mukherjee, Chandrachur [Mechanical and Optical Support Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-03-15

    The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase in crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.

  4. One-electron capture into Li-like autoionising N4+ (1s2ln'l') configurations by metastable N5+ (1s2s3S) multicharged ions in collisions with He and H2, observed by electron spectrometry at 3.4 keV amu-1

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.

    1985-01-01

    One-electron capture into N 4+ (1s2ln'l') configurations, with n'=2 to 4, has been observed by electron spectrometry when a N 5+ (1s2s 3 S) multicharged ion beam encounters an He or H 2 target, at low collision velocity (upsilon=0.37 au) within single-collision conditions. Contributions of other 1s2l metastable states and of the 1s 2 ground state may be disregarded. A small indication of two-electron capture by 1s2s 3 S ions into (1s2s 3 S)3l3l' configurations is also seen. (author)

  5. The effect of low-energy electrons on the response of ion chambers to ionizing photon beams

    Science.gov (United States)

    La Russa, Daniel J.

    Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the

  6. Influence of low energy N+ ions pre-treatment on damage effects of UV-B irradiation on M1 rice

    International Nuclear Information System (INIS)

    Zhao Shuaipeng; Huang Qunce; Chen Xueneng

    2011-01-01

    The seedlings of rice (xindao18) were exposed to UV-B (10.08 kJ/(m 2 ·d 1 )) irradiation following the pretreatment with three different implantation dosages of low-energy N + ions. Changes in the levels of the superoxide (POD), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), glutathione (GSH) and soluble sugar were measured. The result showed that the UV-B irradiation on the seedlings of rice pretreated with low-energy ions implantation could lead to increase activities in POD and SOD, and the maximum appeared on the dose of 2.0 x 10 17 ions/cm 2 . Meanwhile, it made the content of GSH increased, and caused the activity of CAT and the content of MDA to be decreased. But there was no obvious change in soluble sugar. It was suggested that the rice pretreated by low energy ion implantation could enhance the antioxidation capacity and defensive ability when irradiated by UV-B, and the antioxidation system could be induced earlier than carbohydrate system. Therefore,the biological effects of UV-B irradiation on rice pretreated by low energy ion implantation were quite obvious. (authors)

  7. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.; Nakagawa, T. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Tzoganis, V. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Cockcroft Institute, Daresbury, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool, Merseyside L69 3BX (United Kingdom)

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  8. In situ x-ray diffraction investigations during low energy ion nitriding of austenitic stainless steel grade 1.4571

    International Nuclear Information System (INIS)

    Manova, D; Mändl, S; Gerlach, J W; Hirsch, D; Neumann, H; Rauschenbach, B

    2014-01-01

    Insertion of nitrogen into austenitic stainless steel leads to anomalously fast nitrogen diffusion and the formation of an expanded face-centred cubic phase which is known to contain a large amount of mechanical stress. In situ x-ray diffraction (XRD) measurements during low energy nitrogen ion implantation into steel 316Ti at 300–550 °C allow a direct view into diffusion and phase formation. While the layer growth is directly observable from the decreasing substrate reflection intensity, the time evolution of the intensities for the expanded phase reflection is much more complex: several mechanisms including at least formation and annealing of defects, twinning, reduction of the crystal symmetry, or grain rotation may be active inside the expanded phase, besides the thermally activated decay of the metastable expanded phase. This locally varying coherence length or scattering intensity from the expanded phase is furthermore a function of temperature and time, additionally complicating the deconvolution of XRD spectra for stress and concentration gradients. As no concise modelling of this coherence length is possible at present, a simple qualitative model assuming a dependence of the scattering intensity on the depth, influence by stress and plastic flow during the nitriding process is proposed for understanding the underlying processes. (paper)

  9. Ion-beam doping of GaAs with low-energy (100 eV) C + using combined ion-beam and molecular-beam epitaxy

    Science.gov (United States)

    Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  10. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    Science.gov (United States)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  11. Mutation breeding and submerged fermentation of a Pleurotus polysaccharide high-yield strain with low-energy heavy ions implantation

    International Nuclear Information System (INIS)

    Chen Henglei; Wan Honggui; Lv Changwu; Zeng Xianxian

    2010-01-01

    Pleurotus polysaccharide high-yield strains were selected through a method of auxotrophic primary screening and Shake-flask fermentation re-screening after low-energy heavy ions (the fluence of 1.2 x 10 16 N + /cm 2 at the energy of 15 keV) stepwise implantation. Two Pleurotus polysaccharide high-yield strains, PFPH-1 and PFPH-2, were selected with stable mycelium polysaccharide yield. The mycelium polysaccharide yield of PFPH-1 and PFPH-2 increased by 46.55% and 75.14%, respectively, compared to the original strain. The accumulation of mycelium biomass and intracellular polysaccharides were monitored in the submerged fermentation of Pleurotus ferulae by supplementation of various carbon and nitrogen sources as well as inorganic salts and pH alteration. The optima1 submerged fermentation medium favoring the accumulation of mycelium biomass and intracellular polysaccharides of PFPH-2 consisted of 1.0% wheat flour, 2.0% sucrose, 2.0% soybean flour, 1.5% bran extract, 0.2% K 2 HPO 4 , and 0.15% MgSO 4 ·7H 2 O, with a fittest pH value of 5.64. The orthogonal combination of the optimal carbon and nitrogen sources with inorganic salts indicates a synergistic effect on the accumulation of mycelium biomass and intracellular polysaccharides in the submerged fermentation of PFPH-2. The yield of mycelium polysaccharides of PFPH-2 increased to 903.73 ± 1.23 mg·L -1 by the end of fermentation. (authors)

  12. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Daniel; Parker, David [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Green, Stuart; Hugtenburg, Richard; Wojnecki, Cecile [Department of Medical Physics, University Hospital Birmingham NHS Trust, Birmingham, B15 2TH (United Kingdom); Palmans, Hugo [National Physical Laboratory, Acoustics and Ionizing Radiation, Teddington (United Kingdom)], E-mail: djk191@bham.ac.uk

    2010-01-21

    Dosimetry using a PMMA phantom was performed in 15 and 29 MeV proton beams from the Birmingham cyclotron, with a Markus parallel-plate ionization chamber and GafChromic EBT and MD-V2-55 film. Simulations of the depth-dose curves were performed with FLUKA 2008.3 and MCNPX 2.5.0, which agreed almost perfectly with each other in range and only differed by 2% in the Bragg peak (BP) region. FLUKA was also used to calculate k{sub Q} factors for Markus chamber measurements as an improvement to the IAEA TRS-398 values in low-energy beams. FLUKA depth-dose simulations overestimate the BP height measured by ion chamber by about 10%, where the initial proton energy spread was estimated by fitting to the slope of the measured BP distal edge. Both GafChromic films showed an under-response in the BP compared to ion chamber; however, EBT exhibits this effect at lower energies than MD-V2-55. A possible reason for this is attributed to the shape and arrangement of the monomer particles being different in the active components of EBT and MD-V2-55. Relative effectiveness (RE) of both films is presented as functions of residual range R{sub res} in water and peak proton energy determined by FLUKA, with considerations for the spatial separation of the two active layers in each film. The proton energies at which RE reduces to 90% of maximum film response are 6.7 and 3.2 MeV for MD-V2-55 and EBT, respectively. Additionally, a beam quality correction factor (g{sub Q,Q{sub 0}}) is suggested for both GafChromic films, involving water-to-film stopping power ratios evaluated using ICRU recommendations, and a polymer yield factor G{sub Q{sub 0}}/G{sub Q}. RE in this work is equated to the reciprocal of the polymer yield factor. The calculated values of (s{sub w,film}){sub Q} /(s{sub w,film}){sub Q{sub 0}} are constant within 2.1% and 1.2% across the proton energy range of 1-300 MeV for EBT and MD-V2-55, respectively, so it is concluded that the polymer yield factor is the dominant factor

  13. LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry

    International Nuclear Information System (INIS)

    Kirby, Daniel; Parker, David; Green, Stuart; Hugtenburg, Richard; Wojnecki, Cecile; Palmans, Hugo

    2010-01-01

    Dosimetry using a PMMA phantom was performed in 15 and 29 MeV proton beams from the Birmingham cyclotron, with a Markus parallel-plate ionization chamber and GafChromic EBT and MD-V2-55 film. Simulations of the depth-dose curves were performed with FLUKA 2008.3 and MCNPX 2.5.0, which agreed almost perfectly with each other in range and only differed by 2% in the Bragg peak (BP) region. FLUKA was also used to calculate k Q factors for Markus chamber measurements as an improvement to the IAEA TRS-398 values in low-energy beams. FLUKA depth-dose simulations overestimate the BP height measured by ion chamber by about 10%, where the initial proton energy spread was estimated by fitting to the slope of the measured BP distal edge. Both GafChromic films showed an under-response in the BP compared to ion chamber; however, EBT exhibits this effect at lower energies than MD-V2-55. A possible reason for this is attributed to the shape and arrangement of the monomer particles being different in the active components of EBT and MD-V2-55. Relative effectiveness (RE) of both films is presented as functions of residual range R res in water and peak proton energy determined by FLUKA, with considerations for the spatial separation of the two active layers in each film. The proton energies at which RE reduces to 90% of maximum film response are 6.7 and 3.2 MeV for MD-V2-55 and EBT, respectively. Additionally, a beam quality correction factor (g Q,Q 0 ) is suggested for both GafChromic films, involving water-to-film stopping power ratios evaluated using ICRU recommendations, and a polymer yield factor G Q 0 /G Q . RE in this work is equated to the reciprocal of the polymer yield factor. The calculated values of (s w,film ) Q /(s w,film ) Q 0 are constant within 2.1% and 1.2% across the proton energy range of 1-300 MeV for EBT and MD-V2-55, respectively, so it is concluded that the polymer yield factor is the dominant factor causing the LET quenching effect.

  14. Generation of Multicharged Krypton Ions in Nanosecond Laser Ionization of Krypton Beam%纳秒激光电离产生Kr17+的研究

    Institute of Scientific and Technical Information of China (English)

    罗晓琳; 孔祥蕾; 牛冬梅; 渠洪波; 李海洋

    2004-01-01

    Up to Kr17+ muhicharged krypton ions have been observed in time-of-flight mass spectrum by a 25 ns Nd-YAG 1. 064 μm laser at laser intensity about 1012 W/cm2. Experimental results indicate that the muhicharged ions appear only when the laser interacts with the middle part of the pulsed beam, and the intensities of the multi charged ions increase dramatically by increasing the backing pressure of Kr gas, which indicates that the clusters in the beam is essential to the production of muhicharged ions. From the experimental results, it is concluded that the cluster is ionized via multiphoton ionization and forms a nanoplasma ball, which can absorb the laser resonantly to further ionize the single charge ion to the high charge state.

  15. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    Science.gov (United States)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  16. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    International Nuclear Information System (INIS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L.D.

    2012-01-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli (E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  17. Impact of Low-Energy Ion Beam Implantation on the Expression of Ty1-copia-like Retrotransposons in Wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Ya Huiyuan; Jiao Zhen; Gu Yunhong; Wang Weidong; Qin Guangyong; Huo Yuping

    2007-01-01

    Retrotransposon-like elements are major constituents of most eukaryotic genomes. For example, they account for roughly 90% of the wheat (Triticum aestivum) genome. Previous study on a wheat strain treated by low-energy N + ions indicated the variations in AFLP (Amplified Fragment Length Polymorphism ) markers. One such variation was caused by the re-activation of Ty1-copia-like retrotransposons, implying that the mutagenic effects of low-energy ions might work through elevated activation of retrotransposons. In this paper an expression profile of Ty1-copia-like retrotransposons in wheat treated by low-energy N + ions is reported. The reverse transcriptase (RT) domains of these retrotransposons were amplified by reverse-transcriptional polymerase chain reaction (RT-PCR) and sequentially cloned. 42 and 65 clones were obtained from the treated (CL) and control materials (CK), respectively. Sequence analysis of each clone was performed by software. Phylogeny and classification were calculated responding to the sequences of the RT domains. All the results show that there is much difference in the RT domain between the control sample and the treated sample. Especially, the RT domains from the treated group encode significantly more functional ORF (open reading frames) than those from the control sample. This observation suggests that the treated sample has higher activation of retrotransposons, possibly as a consequence of low-energy ion beam irradiation. It also suggests that retrotransposons in the two groups impact the host gene expression in two different ways and carry out different functions in wheat cells

  18. Low-energy N-ion beam biotechnology application in the induction of Thai jasmine rice mutant with improved seed storability

    Science.gov (United States)

    Semsang, Nuananong; Techarang, Jiranat; Yu, Liangdeng; Phanchaisri, Boonrak

    2018-06-01

    Low-energy heavy-ion beam is a novel biotechnology used for mutation induction in plants. We used a low-energy N-ion beam to induce mutations in Thai jasmine rice (Oryza sativa L. cv. KDML 105) to improve the yield and seed quality. Seeds of BKOS6, a Thai jasmine rice mutant previously induced by ion beams, were re-bombarded with 60-kV-accelerated N-ions (N++N2+) to fluences of 1-2 × 1016 ions/cm2. The resulting mutant, named HyKOS21, exhibited photoperiod insensitivity, semi-dwarfness, and high yield potential. Seed storability of the mutant was studied in natural and accelerated ageing conditions and compared to that of KDML 105 and six other Thai rice varieties. In both testing conditions, HyKOS21 mutant had the highest seed storability among the tested varieties. After storage in the natural condition for 18 months, HyKOS21 had a seed germination percentage nearly two times as that of the original KDML 105. Biochemical analysis showed that the lipid peroxidation level of the mutant seeds was the lowest among those of the tested varieties. Furthermore, an expression analysis of genes encoding lipoxygenase isoenzyme (lox1, lox2, and lox3) revealed that the mutant lacked expression of lox1 and lox2 and expressed only lox3 in seeds. These results may explain the improved seed longevity of the mutant after storage. This work provides further evidence of the modification of biological materials using a low-energy ion beam to produce rice mutants with improved yield and seed storability. The benefits of this technology, to create new varieties with improved values, could serve for local economic development.

  19. One-electron capture into Li-like autoionising N/sup 4 +/ (1s2ln'l') configurations by metastable N/sup 5 +/ (1s2s/sup 3/S) multicharged ions in collisions with He and H/sub 2/, observed by electron spectrometry at 3. 4 keV amu/sup -1/

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Dousson, S.; Hitz, D.

    1985-04-14

    One-electron capture into N/sup 4 +/ (1s2ln'l') configurations, with n'=2 to 4, has been observed by electron spectrometry when a N/sup 5 +/ (1s2s /sup 3/S) multicharged ion beam encounters an He or H/sub 2/ target, at low collision velocity (upsilon=0.37 au) within single-collision conditions. Contributions of other 1s2l metastable states and of the 1s/sup 2/ ground state may be disregarded. A small indication of two-electron capture by 1s2s /sup 3/S ions into (1s2s /sup 3/S)3l3l' configurations is also seen.

  20. Low-energy ion beam bombardment effect on the plant-cell-envelope mimetic membrane for DNA transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prakrajang, K., E-mail: k.prakrajang@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2012-09-01

    This study is a systematic analysis of the mechanisms involved in ion-beam induced DNA transfer, an important application of ion beam biotechnology. Cellulose membranes were used to mimic the plant cell envelope. Ion beams of argon (Ar) or nitrogen (N) at an energy of 25 keV bombarded the cellulose membranes at fluences ranging from 10{sup 15} to 10{sup 16} ions/cm{sup 2}. The damage to the ion-beam-bombarded membranes was characterized using infrared spectroscopy, a micro tensile test and scanning electron microscopy (SEM). Chain scission was the dominant radiation damage type in the membrane. DNA diffusion across the membrane was significantly increased after ion beam bombardment. The increase in DNA transfer is therefore attributed to chain scission, which increases the permeability by increasing the number of pores in the membrane.

  1. Low-energy ion beam bombardment effect on the plant-cell-envelope mimetic membrane for DNA transfer

    International Nuclear Information System (INIS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L.D.

    2012-01-01

    This study is a systematic analysis of the mechanisms involved in ion-beam induced DNA transfer, an important application of ion beam biotechnology. Cellulose membranes were used to mimic the plant cell envelope. Ion beams of argon (Ar) or nitrogen (N) at an energy of 25 keV bombarded the cellulose membranes at fluences ranging from 10 15 to 10 16 ions/cm 2 . The damage to the ion-beam-bombarded membranes was characterized using infrared spectroscopy, a micro tensile test and scanning electron microscopy (SEM). Chain scission was the dominant radiation damage type in the membrane. DNA diffusion across the membrane was significantly increased after ion beam bombardment. The increase in DNA transfer is therefore attributed to chain scission, which increases the permeability by increasing the number of pores in the membrane.

  2. Molecular dynamic simulation of interaction of low-energy Ar and Xe ions with copper clusters at graphite surface

    International Nuclear Information System (INIS)

    Kornich, G.V.; Lozovskaya, L.I.; Betts, G.; Zaporozhchenko, V.I.; Faupel, F.

    2005-01-01

    One conducted molecular and dynamic simulation of sputtering of isolated clusters consisting of 13, 27 and 195 Cu atoms from the (0001) graphite surface by 200 eV energy Ar and Xe ions. It is shown that the factors of reflection of Ar and Xe ions from copper clusters differ from one another insignificantly, though the energy of the reflected Xe ions is essentially lower than that of Ar ions. The values of the factor of cluster sputtering by Xe ions are higher in contrast to sputtering by Ar ions. One identified two mechanisms of cluster sputtering resulting in the maximum of sputtering intensity at the polar angles near the normal one, and in periodicity of maximums within the azimuth distributions of sputtering intensity with 60 deg period [ru

  3. A study on the ranges of low energy ions in biological samples and its mechanism of biological effects

    International Nuclear Information System (INIS)

    Lu Ting; Xie Liqing; Li Junping; Xia Ji

    1993-01-01

    The seeds of wheat and bean are irradiated by iron ion beam with energy 100 keV. The RBS spectra of the samples are observed and the ranges and distributions of the iron ions in the wheat and bean are calculated theoretically by means of Monte Carlo method. The results of theory and experiment are compared and the mechanism of biological effects induced by ion is discussed

  4. Tailoring of the PS surface with low energy ions: Relevance to growth and adhesion of noble metals

    International Nuclear Information System (INIS)

    Zaporojtchenko, V.; Zekonyte, J.; Wille, S.; Schuermann, U.; Faupel, F.

    2005-01-01

    Ion-polymer interaction induces different phenomena in the near surface layer of polymers, and promotes its adhesion to metals. Using XPS, TEM and AFM, polystyrene surface was examined after 1 keV ion-beam treatments with oxygen, nitrogen and argon ions in the ion fluence range from 10 12 to 10 16 cm -2 to clarify the following points: chemical reaction after treatment in vacuum and after exposure to air, identification of adsorption-relevant species for metal atoms, formation of cross-links in the outermost polymer layer. The early stages of metal-polymer interface formation during metallization play a crucial role in the metal-polymer adhesion. Therefore, the influence of the ion fluence and ion chemistry on the condensation of noble metals, film growth and peel strength were measured. The peel strength showed a maximum at a certain fluence depending on ion chemistry. For example, the surface treatment with very low fluence of oxygen ions improved the adhesion between copper and polystyrene by two orders of magnitude without significantly increasing the surface roughness measured with AFM. The locus of failure changed at the same time from interfacial failure for untreated polymer surfaces to cohesive failure in the polymer for modified surfaces. A multilayer model of the metal-polymer interface after ion treatment is suggested

  5. A simple model for quantifying the degree of layer-by-layer growth in low energy ion deposition of thin films

    International Nuclear Information System (INIS)

    Huhtamaeki, T.; Jahma, M.O.; Koponen, I.T.

    2007-01-01

    Layer-by-layer growth of thin films can be promoted by using low energy ion deposition (LEID) techniques. The basic process affecting the growth are often quite diverse, but often the ion impact induced inter layer mass transfer processes due to adatom insertion to lower step edges or pile-ups to step edges above dominate. In this paper we propose a simple phenomenological model which describes the growth of thin films in LEID under these conditions. The model makes possible to distinguish the dominant growth, the detection of the transition from the 3D growth to 2D growth, and it can be used to quantify the degree of layer-by-layer growth. The model contains only two parameters, which can be phenomenologically related to the properties of the bombarding ion beam

  6. On the Effects of Pickup Ion-driven Waves on the Diffusion Tensor of Low-energy Electrons in the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, N. Eugene, E-mail: n.eugene.engelbrecht@gmail.com [Center for Space Research, North-West University, Potchefstroom, 2522 (South Africa)

    2017-11-01

    The effects of Alfvén cyclotron waves generated due to the formation in the outer heliosphere of pickup ions on the transport coefficients of low-energy electrons is investigated here. To this end, parallel mean free path (MFP) expressions are derived from quasilinear theory, employing the damping model of dynamical turbulence. These are then used as inputs for existing expressions for the perpendicular MFP and turbulence-reduced drift coefficient. Using outputs generated by a two-component turbulence transport model, the resulting diffusion coefficients are compared with those derived using a more typically assumed turbulence spectral form, which neglects the effects of pickup ion-generated waves. It is found that the inclusion of pickup ion effects greatly leads to considerable reductions in the parallel and perpendicular MFPs of 1–10 MeV electrons beyond ∼10 au, which are argued to have significant consequences for studies of the transport of these particles.

  7. Direct formation of thin films and epitaxial overlayers at low temperatures using a low-energy (10-500 eV) ion beam deposition system

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Alton, G.D.; Appleton, B.R.; Herbots, N.; Noggle, T.S.; Pennycook, S.J.

    1987-01-01

    A low-energy ion beam deposition system has been developed at Oak Ridge National Laboratory and has been applied successfully to the growth of epitaxial films at low temperatures for a number of different elements. The deposition system utilizes the ion source and optics of a commercial ion implantation accelerator. The 35 keV mass- and energy-analyzed ion beam from the accelerator is decelerated in a four-element electrostatic lens assembly to energies between 10 and 500 eV for direct deposition onto a target under UHV conditions. Current densities on the order of 10 μA/cm 2 are achieved with good uniformity over a 1.4 cm diameter spot. The completed films are characterized by Rutherford backscattering, ion channeling, cross-section transmission electron microscopy, and x-ray diffraction. The effects of substrate temperature, ion energy, and substrate cleaning have been studied. Epitaxial overlayers which show good minimum yields by ion channeling (3 to 4%) have been produced at temperatures as low as 375 0 C for Si on Si(100) and 250 0 C for Ge on Ge(100) at growth rates that exceed the solid-phase epitaxy rates at these temperatures by more than an order of magnitude

  8. Study on the erosion of refractory metals in interaction with low energy ions at high temperatures of a target

    International Nuclear Information System (INIS)

    Vaulin, E.P.; Georgieva, N.E.; Martynenko, T.P.; Feoktistov, L.V.

    1981-01-01

    The experimental study on the erosion of a polycrystalline tungsten by argon ions with 50-100 eV energy in the temperature range 1000-1900 K is carried out and a theoretical analysis of sputtering rate under these conditions is given. It is shown that the sputtering rate is determined not only by ion energy but depends essentially on surface temperature. On the basis of the thermal spot'' model a semiempiric formula is obtained for dependence of sputtering coefficient on ion energy and target temperature. The estimation of cathode specific errosion in high-current discharges due to the sputtering and evaporation is performed. It is shown that depending on cathode temperature, cathode potential jump value as well as on relation of ion and electron current on a cathode the specific erosion due to individual ions shock can be higher and much higher than the specific erosion for account of evaporation [ru

  9. Complementary low energy ion scattering and X-ray photoelectron spectroscopy characterization of polystyrene submitted to N{sub 2}/H{sub 2} glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, F., E-mail: bonatto02@yahoo.com.br [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Rovani, S. [Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Kaufmann, I.R.; Soares, G.V. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Baumvol, I.J.R. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Krug, C. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil)

    2012-02-15

    Low energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS) were used to access the elemental composition and chemical bonding characteristics of polystyrene (PS) surfaces sequentially treated by corona and glow discharge (plasma) processing in N{sub 2}/H{sub 2} ambient. The latter has shown activity as suppressor of pathogenic Staphylococcus epidermidis biofilms. LEIS indicated that oxygen from the corona discharge process is progressively replaced by nitrogen at the PS surface. XPS shows C=N and N-C=O chemical groups as significant inhibitors of bacterial adhesion, suggesting application in medical devices.

  10. Neutralization of methyl cation via chemical reactions in low-energy ion-surface collisions with fluorocarbon and hydrocarbon self-assembled monolayer films.

    Science.gov (United States)

    Somogyi, Arpád; Smith, Darrin L; Wysocki, Vicki H; Colorado, Ramon; Lee, T Randall

    2002-10-01

    Low-energy ion-surface collisions of methyl cation at hydrocarbon and fluorocarbon self-assembled monolayer (SAM) surfaces produce extensive neutralization of CH3+. These experimental observations are reported together with the results obtained for ion-surface collisions with the molecular ions of benzene, styrene, 3-fluorobenzonitrile, 1,3,5-triazine, and ammonia on the same surfaces. For comparison, low-energy gas-phase collisions of CD3+ and 3-fluorobenzonitrile molecular ions with neutral n-butane reagent gas were conducted in a triple quadrupole (QQQ) instrument. Relevant MP2 6-31G*//MP2 6-31G* ab initio and thermochemical calculations provide further insight in the neutralization mechanisms of methyl cation. The data suggest that neutralization of methyl cation with hydrocarbon and fluorocarbon SAMs occurs by concerted chemical reactions, i.e., that neutralization of the projectile occurs not only by a direct electron transfer from the surface but also by formation of a neutral molecule. The calculations indicate that the following products can be formed by exothermic processes and without appreciable activation energy: CH4 (formal hydride ion addition) and C2H6 (formal methyl anion addition) from a hydrocarbon surface and CH3F (formal fluoride addition) from a fluorocarbon surface. The results also demonstrate that, in some cases, simple thermochemical calculations cannot be used to predict the energy profiles because relatively large activation energies can be associated with exothermic reactions, as was found for the formation of CH3CF3 (formal addition of trifluoromethyl anion).

  11. Characteristics of ion spectrum in a low energy nitrogen operated plasma focus: application to the metallic substrates thermal treatment

    International Nuclear Information System (INIS)

    Kelly, H.; Lepone, A.; Marquez, A.

    1998-01-01

    Full text: This work presents the nitrogen ion spectrum characteristics in a Plasma Focus device, determined using a Thomson spectrometer and a Faraday cup, operated in the secondary electron collective mode. It is also discussed the thermal treatment and the re coating induce by ions incident on a metallic surface (AISI 304 steel) placed in front of the coaxial gun, when the device is operated with a Ti implant at the end of the central electrode

  12. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    International Nuclear Information System (INIS)

    Zhang, Lili; Xu, Xue; Wu, Yuejin

    2013-01-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N + and Ar + ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models

  13. The Raman effects in γ-LiAlO2 induced by low-energy Ga ion implantation

    Science.gov (United States)

    Zhang, Jing; Song, Hong-Lian; Qiao, Mei; Wang, Tie-Jun; Yu, Xiao-Fei; Wang, Xue-Lin

    2017-10-01

    The tetragonal γ-LiAlO2 crystal, known as a promising solid breeding material in future fusion reactors, has attracted much attention for its irradiation effects. This work focused on the Raman effects in ion-implanted γ-LiAlO2. Ga ions of 30, 80 and 150 keV were implanted on the z-cut γ-LiAlO2 sample surfaces at a fluence of 1 × 1014 ions/cm2 or 1 × 1015 ions/cm2. The average ion range varied from 230 to 910 Å. The Raman spectra were collected from the implanted surfaces before and after the implantation. Evident changes were reflected in the Raman modes intensities, with abnormal increments for the most detected modes. According to the assignments of Raman modes, the Al-O vibration was enhanced to a greater extent than the Li-Al-O vibration, and the LiO4-AlO4 vibration gained a lesser enhancement. The discussion, including the factors of roughness, crystalline disorder and influence by Ga ions, attempts to explain the increments of Raman intensity.

  14. Temperature-dependent surface porosity of Nb{sub 2}O{sub 5} under high-flux, low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Novakowski, T.J., E-mail: tnovakow@purdue.edu; Tripathi, J.K.; Hosinski, G.M.; Joseph, G.; Hassanein, A.

    2016-01-30

    Graphical abstract: - Highlights: • Nb{sub 2}O{sub 5} surfaces are nanostructured with a novel He{sup +} ion irradiation process. • High-flux, low energy He{sup +} ion irradiation generates highly porous surfaces. • Top-down approach guarantees good contact between different crystallites. • Sample annealing demonstrates temperature effect on surface morphology. • Surface pore diameter increases with increasing temperature. - Abstract: The present study reports on high-flux, low-energy He{sup +} ion irradiation as a novel method of enhancing the surface porosity and surface area of naturally oxidized niobium (Nb). Our study shows that ion-irradiation-induced Nb surface micro- and nano-structures are highly tunable by varying the target temperature during ion bombardment. Mirror-polished Nb samples were irradiated with 100 eV He{sup +} ions at a flux of 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} to a total fluence of 4.3 × 10{sup 24} ions m{sup −2} with simultaneous sample annealing in the temperature range of 773–1223 K to demonstrate the influence of sample temperature on the resulting Nb surface morphology. This surface morphology was primarily characterized using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Below 923 K, Nb surfaces form nano-scale tendrils and exhibit significant increases in surface porosity. Above 923 K, homogeneously populated nano-pores with an average diameter of ∼60 nm are observed in addition to a smaller population of sub-micron sized pores (up to ∼230 nm in diameter). Our analysis shows a significant reduction in surface pore number density and surface porosity with increasing sample temperature. High-resolution ex situ X-ray photoelectron spectroscopy (XPS) shows Nb{sub 2}O{sub 5} phase in all of the ion-irradiated samples. To further demonstrate the length scales in which radiation-induced surface roughening occurs, optical reflectivity was performed over a spectrum of

  15. Electron impact ionization of multicharged ions

    International Nuclear Information System (INIS)

    Crandall, D.H.; Hasselquist, B.E.; Phaneuf, R.A.; Gregory, D.C.

    1979-01-01

    Cross sections were measured with a crossed-beams apparatus. Results for e - + N 4+ → N 5+ + 2e - and e - + O 4+ → O 5+ + 2e - are shown from 100 to 2000 eV. The contribution of excitation-autoionization is noted. 2 figures

  16. Low-energy solar electrons and ions observed at Ulysses February-April, 1991 - The inner heliosphere as a particle reservoir

    Science.gov (United States)

    Roelof, E. C.; Gold, R. E.; Simnett, G. M.; Tappin, S. J.; Armstrong, T. P.; Lanzerotti, L. J.

    1992-01-01

    Ulysses observations at 2.5 AU of 38-315 keV electrons and 61-4752 keV ions during February-April 1991 suggest in several ways that, during periods of sustained high solar activity, the inner heliosphere serves as a 'reservoir' for low-energy solar particles. Particle increases were not associated one-to-one with large X-ray flares because of their poor magnetic connection, yet intensities in March-April remained well above their February levels. The rise phase of the particle event associated with the great flare of 2245UT March 22 lasted most of two days, while throughout the one-week decay phase, the lowest-energy ion fluxes were nearly equal at Ulysses and earth (IMP-8).

  17. Optimization of L(+)-Lactic Acid Fermentation Without Neutralisation of Rhizopus Oryzae Mutant RK02 by Low-Energy Ion Implantation

    International Nuclear Information System (INIS)

    Li Wen; Wang Tao; Yang Yingge; Liu Dan; Fan Yonghong; Wang Dongmei; Yang Qian; Yao Jianming; Zheng Zhiming; Yu Zengliang

    2008-01-01

    In order to get an industrial strain which can yield a high concentration of lactic acid for ISPR (in situ product removal), the original strain Rhizopus oryzae RE3303 was mutated by low-energy ion beam implantation. A mutant RK02 was screened, and the factors such as the substrate concentration, nitrogen source concentration, inoculum size, seed age, aeration and temperature that affect the production of lactic acid were studied in detail. Under optimal conditions, the maximum concentration of L(+)-lactic acid reached 34.85 g/L after 30 h shake-flask cultivation without adding any neutralisation (5% Glucose added), which was a 146% increase in lactic acid production after ion implantation compared with the original strain. It was also shown that RK02 can be used in ISPR to reduce the number of times of separation.

  18. Breeding of Coenzyme Q10 Produced Strain by Low-Energy Ion Implantation and Optimization of Coenzyme Q10 Fermentation

    International Nuclear Information System (INIS)

    Xu Dejun; Zheng Zhiming; Wang Peng; Wang Li; Yuan Hang; Yu Zengliang

    2008-01-01

    In order to increase the production efficiency of coenzyme Q 10 , the original strain Agrobacterium tumefaciens ATCC 4452 was mutated by means of Nitrogen ions implantation. A mutant strain, ATX 12, with high contents of coenzyme Q 10 was selected. Subsequently, the conditions such as carbohydrate concentration, nitrogen source concentration, inoculum's size, seed age, aeration and temperature which might affect the production of CoQ 10 were investigated in detail. Under optimal conditions, the maximum concentration of the intracellular CoQ 10 reached 200.3 mg/L after 80 h fed-batch fermentation, about 245% increasing in CoQ 10 production after ion implantation, compared to the original strain. (ion beam bioengineering)

  19. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  20. The refractive index distributions of KTP crystal waveguides formed with He-ions at high fluences and low energy

    International Nuclear Information System (INIS)

    Yin, Jiao-Jian; Lu, Fei; Ming, Xian-Bing; Ma, Yu-Jie

    2013-01-01

    The 300 keV He + ions have been implanted into z-cut KTP crystals with fluences of 4 × 10 16 , 6 × 10 16 , 8 × 10 16 and 10 × 10 16 ions/cm 2 . The Rutherford back scattering spectrometry (RBS)/channelling spectra of KTP crystals and the dark-mode spectrum have been measured. According to the multiple scattering formulae of Feldman and Rodgers, the damage profiles of z-cut KTP crystals have been calculated and extracted. The relations between the damage ratio, fluence and the ion-implanted depth have been established. The refractive index profiles over depth have been calculated, which are very close to the real distribution in waveguide

  1. CoSi2 growth on Si(001) by reactive deposition epitaxy: Effects of high-flux, low-energy ion irradiation

    International Nuclear Information System (INIS)

    Lim, C. W.; Greene, J. E.; Petrov, I.

    2006-01-01

    CoSi 2 layers, CoSi 2 (parallel sign)(001) Si and [100] CoSi 2 (parallel sign)[100] Si , contain fourfold symmetric (111) twinned domains oriented such that (221) CoSi 2 (parallel sign)(001) Si and CoSi 2 (parallel sign)[110] Si . We demonstrate that high-flux low-energy (E Ar + =9.6 eV) Ar + ion irradiation during deposition dramatically increases the area fraction f u of untwinned regions from 0.17 in films grown under standard magnetically balanced conditions in which the ratio J Ar + /J Co of the incident Ar + to Co fluxes is 1.4 to 0.72 with J Ar + /J Co =13.3. TEM analyses show that the early stages of RDE CoSi 2 (001) film growth proceed via the Volmer-Weber mode with independent nucleation of both untwinned and twinned islands. Increasing J Ar + /J Co results in larger values of both the number density and area of untwinned with respect to twinned islands. The intense Ar + ion bombardment creates additional low-energy adsorption sites that favor the nucleation of untwinned islands while collisionally enhancing Co surface mobilities which, in turn, increases the probability of itinerant Co adatoms reaching these sites

  2. Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach

    Directory of Open Access Journals (Sweden)

    B. Zygelman

    2002-03-01

    Full Text Available A survey of theoretical studies of charge transfer involving collisions of multiply-charged ions with atomic neutrals (H and He is presented. The calculations utilized the quantum-mechanical molecular-orbital close-coupling (MOCC approach where the requisite potential curves and coupling matrix elements have been obtained with the spin-coupled valence bond (SCVB method. Comparison is made among various collision partners, for equicharged systems, where it is illustrated that even for total charge transfer cross sections, scaling-laws do not exist for low-energy collisions (i.e. < 1 keV/amu. While various empirical scaling-laws are well known in the intermediateand high-energy regimes, the multi-electron configurations of the projectile ions results in a rich and varied low-energy dependence, requiring an explicit calculation for each collision-partner pair. Future charge transfer problems to be addressed with the combined SCVB-MOCC approach are briefly discussed.

  3. Effect of Ge nanocluster assembly self-organization at pulsed irradiation by low-energy ions during heteroepitaxy on Si

    CERN Document Server

    Dvurechenskij, A V; Smagina, Z V

    2001-01-01

    Using the method of scanning microscopy one studied experimentally size distribution of Ge clusters formed in course of experiments of two types at Ge heteroepitaxy on Si(111): regular process of molecular-beam epitaxy (MBE); pulse irradiation by approx = 200 eV energy Ge ions. The experiments were conducted at 350 deg C temperature. Pulse irradiation by an ion beam during heteroepitaxy was detected to result in reduction of the average size of Ge clusters, in compacting of their density and in reduction of mean square deviation from the average value in contrast to similar values in experiments devoted to regular MBE

  4. A Preliminary Study of the Application of a Model Animal-Caenorhabidity elegans' Exposure to a Low-Energy Ion Irradiation System

    International Nuclear Information System (INIS)

    Liu Xuelan; Cai Kezhou; Feng Huiyun; Xu An; Yuan Hang; Yu Zengliang

    2007-01-01

    Because of the lack of suitable animal models adapted to high vacuum stress in the low-energy ion implantation system, the bio-effects ion irradiation with an energy less than 50 keV on multi-cellular animal individuals have never been investigated so far. The nematode Caenorhabditis elegans has proved to be an excellent animal model used for the study of a broad spectrum of biological issues. The purpose of this work was to investigate the viability of this animal under ion irradiation. We studied the protection effects of glycerol and trehalose on the enhancement of nematodes' ability to bear the vacuum stress. The results showed that the survival of the nematodes was enhanced remarkably under long and slow desiccation, even without glycerol and trehalose. 15% glycerol showed a better anti-vacuum stress effect on the nematodes than trehalose did under short-time desiccation. Low-temperature pre-treatment or post-treatment of the samples had no obvious effect on the survival scored after argon ion irradiation. Moreover, little effect was induced by 15% glycerol- and vacuum-exposure on germ cell apoptosis, compared to the untreated control sample. It issuggested that such treatment would provide relatively low background for genotoxic evaluations with ion irradiation

  5. Study of surface activation of PET by low energy (keV) Ni+ and N+ ion implantation

    International Nuclear Information System (INIS)

    Nathawat, Rashi; Kumar, Anil; Kulshrestha, V.; Vijay, Y.K.; Kobayashi, T.; Kanjilal, D.

    2008-01-01

    Polyethyleneterephthalate (PET) has been modified by 100 keV Ni + and N + ions using metal ion from volatile compound (MIVOC) ion source to fluence ranging from 1 x 10 14 to 1 x 10 16 ions/cm 2 . The increasing application of polymeric material in technological and scientific field has motivated the use of surface treatment to modify the physical and chemical properties of polymer surfaces. When a material is exposed to ionization radiation, it suffers damage leading to surface activation depending on the type. The surface morphology was observed by atomic force microscopy (AFM). That show the roughness increases with fluence in both the cases. The Ni particles as precipitation in PET were observed by cross-section transmission electron microscopy (XTEM). The optical band gap (E g ) deduced from absorption spectra; was calculated by Tau'c relation. Raman spectroscopy shows quantitatively the chemical nature at the damage caused by the Ni + and N + bombardment. The ration of I D /I G shows graphite-like structure is formed on the surface. A layer of hydrogenated amorphous carbon is formed on the surface, which has confirmed by XPS results also.

  6. MIGRATION OF CU ADATOMS ON A CU(100) SURFACE, STUDIED WITH LOW-ENERGY ION-SCATTERING (LEIS)

    NARCIS (Netherlands)

    BREEMAN, M; BOERMA, DO

    1992-01-01

    We report the observation of adatoms appearing on the surface due to ion beam irradiation. These adatoms are interpreted to be self-interstitials, created in the damage cascades, which have diffused to the surface where they are trapped. From our LEIS experiments on a stepped Cu(100) surface we

  7. Low energy ion-molecule reaction dynamics and chemiionization kinetics: Progress report, February 1, 1985-January 31, 1988

    International Nuclear Information System (INIS)

    Farrar, J.M.

    1988-01-01

    The research program at Rochester is devoted to an understanding of the dynamics of elementary gas phase ionic reactions by using the molecular beam methods. We seek to elucidate pathways for energy disposal in elementary reactions, with the goal of using this information to understand the topology of the potential surfaces which govern the reaction, applying the results to ionic channels in combustion systems. We have made significant accomplishments in several distinct areas of research in crossed beam studies of ion-neutral reaction dynamics in the past three years. Our research has focused on the following topics and has resulted in 15 publications and submissions to major journals, with several additional manuscripts in preparation: dynamics of gas phase proton transfer reactions, gas phase carbon and methyl cation chemistry, reactive scattering from double minimum potentials, reactions of highly vibrationally excited ions: NH 3 + + D 2 , and electron and proton transfer reactions of anions. 9 refs

  8. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    Science.gov (United States)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L. D.; Anuntalabhochai, S.

    2013-07-01

    Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60-80 keV to a beam fluence range of 2 × 1016-2 × 1017 ions/cm2. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 106 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11).

  9. The modification of LiTaO3 crystal by low-energy He-ion implantation

    International Nuclear Information System (INIS)

    Pang, L.L.; Wang, Z.G.; Jin, Y.F.; Yao, C.F.; Cui, M.H.; Sun, J.R.; Shen, T.L.; Wei, K.F.; Zhu, Y.B.; Sheng, Y.B.; Li, Y.F.

    2012-01-01

    Highlights: ► LiTaO 3 crystal was implanted by 250 keV He + . ► We report the surface and transmittance of LiTaO 3 change with the fluence and time. ► New phenomena (self-splitting, self-exfoliation, self-recovery) occurred. ► Evolvement of defects and the behavior of helium were discussed. - Abstract: The effects of He-ion implantation on the surface morphology and transmittance of LiTaO 3 single crystals are investigated. The samples were implanted with 250 keV He-ion at different fluences at room temperature. The results show that the surface morphology and transmittance of implanted samples strongly depend on the ion fluence and the time when the samples expose to the air up to 60 days. When the fluence is above 1.0 × 10 16 He + /cm 2 , the transmission spectra indicate that a high concentration of defects is created. 3D-profile images show that at the higher fluence a great many triangular stripes appear on the surface of the samples. After 60 days, the recovery of the transmittance occurs and varies with the fluence. For the sample at the fluence of 5.0 × 10 16 He + /cm 2 , the raised stripes on the surface evolve into narrow cracks. Regional exfoliation, however, occurs on the surface of the sample with the fluence of 1.0 × 10 17 He + /cm 2 . According to the experimental results and simulation of SRIM 2008 code, the evolvement of defects and the behavior of He are discussed.

  10. A review on recent light particle correlation data from heavy ion collisions at intermediate and low energies

    International Nuclear Information System (INIS)

    Ardouin, D.

    1996-01-01

    A review of recent two-particle interferometry data for heavy-ion collisions in the domain of energy between ten and a few hundreds of MeV/nucleon is presented. Not only identical particles but unlike particle correlations have been used successfully as a probe for space-time dynamics of the collision process. Due to the availability of new dedicated charged particles or photon multi-detectors, the field of particle interferometry is moving to a good level of quantitative description: excitation energy and impact parameter dependences are now provided which should stimulate additional theoretical calculations for two-particle cross sections and emission of light fragments. (author)

  11. Low-energy ion irradiation in HiPIMS to enable anatase TiO2 selective growth

    Science.gov (United States)

    Cemin, Felipe; Tsukamoto, Makoto; Keraudy, Julien; Antunes, Vinícius Gabriel; Helmersson, Ulf; Alvarez, Fernando; Minea, Tiberiu; Lundin, Daniel

    2018-06-01

    High power impulse magnetron sputtering (HiPIMS) has already demonstrated great potential for synthesizing the high-energy crystalline phase of titanium dioxide (rutile TiO2) due to large quantities of highly energetic ions present in the discharge. In this work, it is shown that the metastable anatase phase can also be obtained by HiPIMS. The required deposition conditions have been identified by systematically studying the phase formation, microstructure and chemical composition as a function of mode of target operation as well as of substrate temperature, working pressure, and peak current density. It is found that films deposited in the metal and transition modes are predominantly amorphous and contain substoichiometric TiO x compounds, while in compound mode they are well-crystallized and present only O2‑ ions bound to Ti4+, i.e. pure TiO2. Anatase TiO2 films are obtained for working pressures between 1 and 2 Pa, a peak current density of ~1 A cm‑2 and deposition temperatures lower than 300 °C. Rutile is favored at lower pressures (2 A cm‑2), while amorphous films are obtained at higher pressures (5 Pa). Microstructural characterization of selected films is also presented.

  12. MD simulation of atomic displacements in metals and metallic bilayers under low energy ion bombardment at 300 K

    International Nuclear Information System (INIS)

    Kornich, G.V.; Betz, G.; Bazhin, A.I.

    1999-01-01

    MD simulations of 100 eV Ar ion bombardment of (1 0 0) Ni and Al as well as Al/Ni bilayer crystals at 300 K have been performed and compared to previous calculations at 0 K. The Al/Ni bilayer crystal consisted of one Al layer on a (1 0 0) Ni substrate. Sputtering yields for Ni and Al/Ni show no temperature dependence, while for Al a pronounced increase with temperature was observed. The contributions of different mechanisms to the production of surface and bulk defects are discussed. The mean square displacement (MSD) of atoms is in all cases larger at 300 K as compared to 0 K. The larger MSD at 300 K is mainly due to an increase in lateral (perpendicular to the ion beam) motion of displaced atoms. Similar the number of atomic jumps, in which an atom leaves its original Wigner-Seitz cell, increases in all cases with temperature. For the pure elements the production of bulk vacancies and interstitials decreases with temperature, but the number of surface vacancies and ad-atoms increases with temperature. For the bilayer system practically no temperature dependence for defects was observed

  13. Assembling of a low energy ion beam analysis facility and use of Nuclear Microprobe techniques in geological studies

    Energy Technology Data Exchange (ETDEWEB)

    Utui, R

    1996-11-01

    In this work, both PIXE and ion beam induced luminescence, or just Ionoluminescence (IL) were used for geochemical studies. The possibility of rapid absolute quantification of elements in the ppm level by PIXE combined with the yet higher sensitivity of IL to transition metals and Rare Earth Elements (REE) activators, in the absence of quenching phenomena, allow for a synergic use of the two methods in geological applications with enhanced sensitivity. IL and PIXE were combined for studying REE distribution in apatite minerals and ion beam induced damage in inorganic material in general with emphasis to synthetically grown zircon crystals doped with REE. Due to the sensitivity of IL to changes in chemical bonding in the material, beam damage effects can be studied even at low integrated doses, through wavelength shift or fading of the induced light. Micro PIXE technique was used for studying profile concentrations of trace elements in pyrite grains and of elements used as geothermometers. Geothermometry allowed to assess the cooling rates in iron meteorites and the mineralization conditions in metamorphic rocks, attempting to describe the tectonic history of the terranes, with application in petrologic studies and geological prospecting. 148 refs.

  14. Observation of luminescent spectra in low energy ion-neutral collisions. Progress report, June 1, 1976--May 31, 1978

    International Nuclear Information System (INIS)

    Leventhal, J.J.

    1978-01-01

    The experiments reported provide detailed information on the fundamental nature of energy transfer processes in ion-molecule or atom-molecule collisions. By combining ion beam techniques with emission spectroscopy, data are obtained which directly lead to internal energy state distributions of atomic and molecular products of these collisions. Data are in the form of emission spectra from nascent energetically excited species formed in the energy transfer process. Changes in the collision-produced spectra as a function of beam kinetic energy yield information on the extent of energy conversion (kinetic → internal) in the collision process. Some of the specific energy transfer processes studied are applicable to the problem of achieving inverted energy level populations in high pressure gas lasers. Also discussed are experiments designed to test theoretical models which predict product energy partitioning in molecular collisions. Because experimentally determined energy state distributions deviate substantially from the predicted distributions it is concluded that additional theoretical work is needed. A simple model was developed which qualitatively reproduces the important features of the data. This model, which is considerably more general than those previously available is outlined and briefly discussed

  15. Assembling of a low energy ion beam analysis facility and use of Nuclear Microprobe techniques in geological studies

    International Nuclear Information System (INIS)

    Utui, R.

    1996-11-01

    In this work, both PIXE and ion beam induced luminescence, or just Ionoluminescence (IL) were used for geochemical studies. The possibility of rapid absolute quantification of elements in the ppm level by PIXE combined with the yet higher sensitivity of IL to transition metals and Rare Earth Elements (REE) activators, in the absence of quenching phenomena, allow for a synergic use of the two methods in geological applications with enhanced sensitivity. IL and PIXE were combined for studying REE distribution in apatite minerals and ion beam induced damage in inorganic material in general with emphasis to synthetically grown zircon crystals doped with REE. Due to the sensitivity of IL to changes in chemical bonding in the material, beam damage effects can be studied even at low integrated doses, through wavelength shift or fading of the induced light. Micro PIXE technique was used for studying profile concentrations of trace elements in pyrite grains and of elements used as geothermometers. Geothermometry allowed to assess the cooling rates in iron meteorites and the mineralization conditions in metamorphic rocks, attempting to describe the tectonic history of the terranes, with application in petrologic studies and geological prospecting. 148 refs

  16. A study on irradiation damage of solid 5'-dTMP implanted by low energy N+ ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Yu Zengliang

    1995-01-01

    The yields of inorganic phosphate and base released from 5'-dTMP irradiated by 30 keV N + ion beam were investigated. The fluence effects of these yields and the influence with 0.1 mol/L NaOH treatment on them were presented. It was shown that the alkali treatment would not only increase the yield of inorganic phosphate, but also damage and then split base released from the irradiated 5'-dTMP. When the irradiated samples were treated with 0.1 mol/L NaOH immediately, the yield of inorganic phosphate was increased by a factor of 1.7 and the concentration of base decreased to half of that in the sample's water solution. Furthermore, the yield of inorganic phosphate would increase by a factor of 2.8 after 40 min of alkali treatment. Irradiation effects of ion beam were mainly direct ones and had a higher value of G(P i ), greater than 0.44 molecule/100 eV

  17. Research into releasing inorganic phosphate and base from 5'-dTMP irradiated by a low energy ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Yu Zengliang

    1994-01-01

    Research into radiation damage of nucleotide is an important area in radiation biology. In this paper, the yield of inorganic phosphate and base released from 5'-dTMP irradiated by a 30 keV N + ion beam was investigated in several aspects. The effect of particle fluence on yield and the influence of treatment with 0.1 N NaOH was deduced. By analysis, it is known that the alkali treatment not only increases the yield of inorganic phosphate, but also damages and splits the base released from irradiated 5'-dTMP. When the irradiated samples are treated by 0.1 N NaOH immediately, the yield of inorganic phosphate is increased by a factor of 1.7 and the concentration of base decreased to half of the original value. But the yield of inorganic phosphate could be increased by a factor of 2.8 after 40 min of alkali treatment. On the other hand, when 5'dTMP was irradiated by the ion beam, the G(Pi) obtained was above 0.44, higher than with γ-radiation. (Author)

  18. Studies on watermelon somatic cell mutant of resistance to fusaric acid (FA) by low energy Ar+ ion beam irradiation

    International Nuclear Information System (INIS)

    Wang Haobo; Gu Yunhong; Cheng Guowang; Yu Zengliang

    2003-01-01

    Three kinds of watermelon seeds irradiated by Ar + ion beam (25 keV, 6.24 x 10 16 ions/cm 2 ) were inoculated in MS medium with 15 mg/L FA. Cotyledons from the sterile seedling as explants were inoculated in MS +BA 2.0 mg/L + FA 15 mg/L. And the adventitious shoots of resistance to FA were cultured in MS + NAA 0.2 mg/L + FA 15 mg/L. The results showed that both the irradiation of Ar + and FA affected the germination rate and seedling of watermelon line 3-27 and YH-5, and the joint effect of Ar + and FA showed an enhanced restraint. The adventitious shoot and rootage induction rate from the seeds irradiated by Ar + were respectively bigger than the unirradiated seeds in 3-27 and YH-5. The increasing ranges were different between two watermelon lines and between the shoot and rootage induction rates

  19. Performance enhancement of Ge-on-Insulator tunneling FETs with source junctions formed by low-energy BF2 ion implantation

    Science.gov (United States)

    Katoh, Takumi; Matsumura, Ryo; Takaguchi, Ryotaro; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    To clarify the process of formation of source regions of high-performance Ge n-channel tunneling field-effect transistors (TFETs), p+-n junctions formed by low-energy ion implantation (I/I) of BF2 atoms are characterized. Here, the formation of p+-n junctions with steep B profiles and low junction leakage is a key issue. The steepness of 5.7 nm/dec in profiles of B implanted into Ge is obtained for BF2 I/I at 3 keV with a dose of 4 × 1014 cm-2. Ge-on-insulator (GOI) n-TFETs with the source tunnel junctions formed by low-energy B and BF2 I/I are fabricated on GOI substrates and the device operation is confirmed. Although the performance at room temperature is significantly degraded by the source junction leakage current, an I on/I off ratio of 105 and the minimum sub-threshold swing (S.S.) of 130 mV/dec are obtained at 10 K. It is found that GOI n-TFETs with steeper B profiles formed by BF2 I/I have led to higher on current and a lower sub-threshold slope, demonstrating the effectiveness of steep B profiles in enhancing the GOI TFET performance.

  20. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Directory of Open Access Journals (Sweden)

    M. Guevara-Bertsch

    2016-03-01

    Full Text Available We investigate the variation of the oscillation frequency of the Mg2+ and O2− ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  1. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Bertsch, M.; Avendaño, E. [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Ramírez-Hidalgo, G. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Sección de Física Teórica, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Chavarría-Sibaja, A.; Araya-Pochet, J. A. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Herrera-Sancho, O. A., E-mail: oscar-andrey.herrera@uibk.ac.at [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstr. 21a, 6020 Innsbruck (Austria)

    2016-03-15

    We investigate the variation of the oscillation frequency of the Mg{sup 2+} and O{sup 2−} ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  2. Transmission sputtering of gold thin-films by low-energy (< 1 keV) xenon ions: I. The system and the measurement

    International Nuclear Information System (INIS)

    Ayrault, G.; Seidman, D.N.

    1978-01-01

    A novel system for direct measurement of the transmission sputtering yields of ion-irradiated thin films is described. The system was specifically designed for the study of the transmission sputtering caused by low energy ( 0 A thick) which was mounted in a JEM 200 transmission electron-microscope holder. The temperature of the specimen could be varied between approx. 25 and 300 K employing a continuous-transfer liquid-helium cryostat. The particles (atoms or ions) ejected from the unirradiated surface of the gold thin-film were detected by two channetron electron-multiplier arrays in the Chevron configuration; the Chevron detector was able to detect individual transmission sputtered particles when operated in the saturated mode. To further enhance resolution the electron cascades, produced by the CEMA, were amplified and shaped electronically into uniform square pulses. The shaped signals were detected with an Ithaco 391A lock-in amplifier (LIA). With the aid of a ratiometer feature in the LIA we were able to measure directly the ratio of the transmission sputtered-current (I/sub t/) to the incident ion-current (I/sub b/); for I/sub b/ = μA cm -2 a ratio of I/sub t//I/sub b/ as small as 1 x 10 -9 was measured. A detailed discussion of the calibration procedure and the experimental errors, involved in this technique, are also presented. 45 references

  3. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ngaojampa, C.; Nimmanpipug, P. [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.t [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Lee, V.S., E-mail: vannajan@gmail.co [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2011-02-15

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  4. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    International Nuclear Information System (INIS)

    Ngaojampa, C.; Nimmanpipug, P.; Yu, L.D.; Anuntalabhochai, S.; Lee, V.S.

    2011-01-01

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  5. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    International Nuclear Information System (INIS)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L.D.; Anuntalabhochai, S.

    2013-01-01

    Highlights: •N-ion beam bombarded Thai jasmine rice seeds to induce mutation. •Mutants with blast-disease resistance and high yield were screened. •Gene involved in the blast-disease resistance was analyzed. •The gene responsible for the resistance was linked to Spotted leaf protein 11. -- Abstract: Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60–80 keV to a beam fluence range of 2 × 10 16 –2 × 10 17 ions/cm 2 . The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 10 6 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11)

  6. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Mahadtanapuk, S. [School of Agriculture and Natural Resources, University of Phayao, Phayao 56000 (Thailand); Teraarusiri, W. [Central Laboratory, University of Phayao, Phayao 56000 (Thailand); Phanchaisri, B. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@frnf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S., E-mail: burinka@hotmail.com [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Highlights: •N-ion beam bombarded Thai jasmine rice seeds to induce mutation. •Mutants with blast-disease resistance and high yield were screened. •Gene involved in the blast-disease resistance was analyzed. •The gene responsible for the resistance was linked to Spotted leaf protein 11. -- Abstract: Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60–80 keV to a beam fluence range of 2 × 10{sup 16}–2 × 10{sup 17} ions/cm{sup 2}. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 10{sup 6} spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11)

  7. Correlation effects on double electron capture in highly-charged, low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Meyer, F.W.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Stolterfoht, N.

    1987-01-01

    The method of zero-degree Auger electron spectroscopy has been used to study two-electron excited states populated in slow double capture collisions of highly charged ions with He and H 2 . The focus of this study is on production of autoionization electrons originating from the non-equivalent 1s 2 2pnl electron configurations in comparison with electron production resulting from the Auger decay of (near) equivalent 1s 2 nln'l' (with n∼n') configurations. It is shown that production of non-equivalent electron configurations is significant and involves electron-electron correlation effects whose analysis leads beyond the independent-particle model. Recent results that include a measurement at non-zero angles are presented to illustrate the angular dependence of electron emission from non-equivalent electron configurations, as well as the dependence on projectile charge state and target species. Comparison of high resolution scans over two lines of the 1s 2 2pnl sequence for the O 6+ + He system with accurate transition energy calculations shows preferential population of high angular momentum substation

  8. SIMS analyses of ultra-low-energy B ion implants in Si: Evaluation of profile shape and dose accuracy

    International Nuclear Information System (INIS)

    Magee, C.W.; Hockett, R.S.; Bueyueklimanli, T.H.; Abdelrehim, I.; Marino, J.W.

    2007-01-01

    Numerous experimental studies for near-surface analyses of B in Si have shown that the B distribution within the top few nanometers is distorted by secondary ion mass spectrometry (SIMS) depth profiling with O 2 -flooding or normal incidence O 2 bombardment. Furthermore, the presence of surface oxide affects the X j determination as well as B profile shape when SIMS analyses are conducted while fully oxidizing the analytical area. Nuclear techniques such as elastic recoil detection (ERD), nuclear reaction analysis (NRA), and high-resolution Rutherford backscattering spectrometry (HR-RBS), are known to provide a profile shape near the surface that is free of artifacts. Comparisons with SIMS analyses have shown that SIMS analyses without fully oxidizing the analytical area agree well with these techniques at sufficiently high concentrations (where the nuclear techniques are applicable). The ability to measure both the B profile and an oxide marker with this non-oxidizing SIMS technique also allows accurate positioning of the B profile with respect to the SiO 2 /Si interface. This SIMS analysis protocol has been used to study the differences in near-surface dopant distribution for plasma-based implants. This study specifically focuses on measuring near-surface profile shapes as well as total implant doses for ultra-shallow B implants in Si especially those made with high peak B concentrations

  9. Mutation induction of pleurotus ferulae by low-energy N+ ion implantation and characters of the selected mutant

    International Nuclear Information System (INIS)

    Chen Henglei; Wan Honggui; Zhang Jun; Zeng Xianxian

    2008-01-01

    In order to obtain Pleurotus ferulae with high temperature tolerance, mycelium mono-cells of wild type strain ACK was treated by nitrogen ion (5-30 keV, 1.5x10 15 -1.5x10 16 cm -2 ) implantation, and mutant CGMCC1762 was selected through auxotrophy screening method, which was Lys, VB6 auxotrophy stress with high temperature. We found that during riper period the surface layer mycelium of the mutant was not aging neither grew tegument even above 30 degree C. The mycelium endurable temperature of the mutant was increased 7 degree C compared with that of the wild type strain. The fruiting bodies growth temperature of the mutant was 16-20 degree C in daytime and was 6-12 degree C at night. The highest growth temperature of fruiting bodies of the mutant was increased by 5 degree C than that of original strain. Through three generation investigation, we found that the mutant CGMCC1762 was stable with high temperature tolerance. (authors)

  10. Prize for Industrial Applications of Physics Talk: Low energy spread Ion source for focused ion beam systems-Search for the holy grail

    Science.gov (United States)

    Ward, Bill

    2011-03-01

    In this talk I will cover my personal experiences as a serial entrepreneur and founder of a succession of focused ion beam companies (1). Ion Beam Technology, which developed a 200kv (FIB) direct ion implanter (2). Micrion, where the FIB found a market in circuit edit and mask repair, which eventually merged with FEI corporation. and (3). ALIS Corporation which develop the Orion system, the first commercially successful sub-nanometer helium ion microscope, that was ultimately acquired by Carl Zeiss corporation. I will share this adventure beginning with my experiences in the early days of ion beam implantation and e-beam lithography which lead up to the final breakthrough understanding of the mechanisms that govern the successful creation and operation of a single atom ion source.

  11. Comparative study of surface-lattice-site resolved neutralization of slow multicharged ions during large-angle quasi-binary collisions with Au(1 1 0): Simulation and experiment

    International Nuclear Information System (INIS)

    Meyer, F.W.; Morozov, V.A.

    2002-01-01

    In this article we extend our earlier studies of the azimuthal dependences of low energy projectiles scattered in large angle quasi-binary collisions (BCs) from Au(1 1 0). Measurements are presented for 20 keV Ar 9+ at normal incidence, which are compared with our earlier measurements for this ion at 5 keV and 10 deg. incidence angle. A deconvolution procedure based on MARLOWE simulation results carried out at both energies provides information about the energy dependence of projectile neutralization during interactions just with the atoms along the top ridge of the reconstructed Au(1 1 0) surface corrugation, in comparison to, e.g. interactions with atoms lying on the sidewalls. To test the sensitivity of the agreement between the MARLOWE results and the experimental measurements, we show simulation results obtained for a non-reconstructed Au(1 1 0) surface with 20 keV Ar projectiles, and for different scattering potentials that are intended to simulate the effects on scattering trajectory of a projectile inner shell vacancy surviving the BC. In addition, simulation results are shown for a number of different total scattering angles, to illustrate their utility in finding optimum values for this parameter prior to the actual measurements

  12. An (e, 2e + ion) study of low-energy electron-impact ionization and fragmentation of tetrahydrofuran with high mass and energy resolutions

    Science.gov (United States)

    Ren, Xueguang; Pflüger, Thomas; Weyland, Marvin; Baek, Woon Yoon; Rabus, Hans; Ullrich, Joachim; Dorn, Alexander

    2014-10-01

    We study the low-energy (E0 = 26 eV) electron-impact induced ionization and fragmentation of tetrahydrofuran using a reaction microscope. All three final-state charged particles, i.e., two outgoing electrons and one fragment ion, are detected in triple coincidence such that the momentum vectors and, consequently, the kinetic energies for charged reaction products are determined. The ionic fragments are clearly identified in the experiment with a mass resolution of 1 amu. The fragmentation pathways of tetrahydrofuran are investigated by measuring the ion kinetic energy spectra and the binding energy spectra where an energy resolution of 1.5 eV has been achieved using the recently developed photoemission electron source. Here, we will discuss the fragmentation reactions for the cations C4H8O+, C4H7O+, C2H3O+, C3H_6^+, C3H_5^+, C3H_3^+, CH3O+, CHO+, and C2H_3^+.

  13. Changes of electronic properties of p-GaN(0 0 0 1) surface after low-energy N+-ion bombardment

    Science.gov (United States)

    Grodzicki, M.; Mazur, P.; Ciszewski, A.

    2018-05-01

    The p-GaN(0 0 0 1) crystal with a relatively low acceptor concentration of 5 × 1016 cm-3 is used in these studies, which are carried out in situ under ultrahigh vacuum (UHV) by ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). The p-GaN(0 0 0 1)-(1 × 1) surface is achieved by thermal cleaning. N+-ion bombardment by a 200 eV ion beam changes the surface stoichiometry, enriches it with nitrogen, and disorders it. Such modified surface layer inverts its semiconducting character from p- into n-type. The electron affinity for the already cleaned p-GaN surface and that just after bombardment shows a shift from 2.2 eV to 3.2 eV, as well as an increase of band bending at the vacuum/surface interface from 1.4 eV to 2.5 eV. Proper post-bombardment heating of the sample restores the initial atomic order of the modified layer, leaving its n-type semiconducting character unchanged. The results of the measurements are discussed based on two types of surface states concepts.

  14. Recoil ion momentum spectroscopy in atomic and nuclear physics: applications to low energy ion-atom/molecule collisions and to beta-neutrino angular correlation in beta decay

    International Nuclear Information System (INIS)

    Flechard, X.

    2012-12-01

    Since the early 1990's, Recoil Ion Momentum Spectroscopy is an ideal tool for ion-atom and ion-molecule collisions study. We detail here the development of this experimental technique during the last twenty years, illustrated with some of the most striking results obtained at GANIL (Caen) and J.R. Mac Donald Laboratory (Kansas State University). Recoil Ion Momentum Spectroscopy is also particularly well suited for β-ν angular correlation measurements in nuclear β decay. The LPCTrap experiment, installed at GANIL, is based on this technique, coupled to the use of a Paul trap for the radioactive ions confinement. The precise measurements performed with this setup allow both, to test specific aspects of the Standard Model of elementary particles, and to study the electron shake-off process following β decay. (author)

  15. Analysis of a Partial Male-Sterile Mutant of Arabidopsis thaliana Isolated from a Low-Energy Argon Ion Beam Mutagenized Pool

    International Nuclear Information System (INIS)

    Xu Min; Bian Po; Wu Yuejin; Yu Zengliang

    2008-01-01

    A screen for Arabidopsis fertility mutants, mutagenized by low-energy argon ion beam, yielded two partial male-sterile mutants tc243-1 and tc243-2 which have similar phenotypes. tc243-2 was investigated in detail. The segregation ratio of the mutant phenotypes in the M2 pools suggested that mutation behaved as single Mendelian recessive mutations. tc243 showed a series of mutant phenotypes, among which partial male-sterile was its striking mutant characteristic. Phenotype analysis indicates that there are four factors leading to male sterility. a. Floral organs normally develop inside the closed bud, but the anther filaments do not elongate sufficiently to position the locules above the stigma at anthesis. b. The anther locules do not dehisce at the time of flower opening (although limited dehiscence occurs later). c. Pollens of mutant plants develop into several types of pollens at the trinucleated stage, as determined by staining with DAPI (4',6-diamidino-2-phenylindole), which shows a variable size, shape and number of nucleus. d. The viability of pollens is lower than that of the wild type on the germination test in vivo and vitro.

  16. On the detection of low-energy 4He, 12C, 14N, 16O ions in PC foils and its use in nuclear reaction measurements

    International Nuclear Information System (INIS)

    Somogyi, G.; Hunyadi, I.; Koltay, E.; Zolnai, L.

    1977-01-01

    It is shown that by using a proper etching reagent the registration sensitivity of polycarbonate foils can be enhanced and they prove to be very suitable track recorders for alpha-particles emitted from nuclear reactions. At 6 MeV an energy resolution of 0.2 MeV can be achieved when using the track diameters as a measure of the particle energy. A theoretical way to calculate the track parameters important in nuclear reaction measurements involving alpha-particles recorded in polycarbonate foils is given. For this purpose the track etch rate vs residual range curve was determined by a parameter optimization procedure. The energy resolution of the track-diameter method as a function of the particle energy was predicted. In earlier studies the track-diameter method was mostly used in angular distribution measurements of (d, α) nuclear reactions. In this work it is shown that with polycarbonate foils it can be well applied to excitation function measurements, as well. Such studies are presented for the α 0 and α 1 groups of the 27 Al(p, α) 24 Mg reaction in an energy interval between 1540 and 1920 keV. Finally, preliminary results of the track etching properties of low-energy O + , N + , C + and He + ions accelerated with a 5 MV Van de Graaff generator are given. (Auth.)

  17. Kinetic and Potential Sputtering Enhancements of Lunar Regolith Erosion: The Contribution of the Heavy Multicharged (Minority) Solar Wind Constituents

    Science.gov (United States)

    Meyer, F. W.; Barghouty, A. F.

    2012-01-01

    We report preliminary results for H+, Ar+1, Ar+6 and Ar+9 ion sputtering of JSC-1A lunar regolith simulant at solar wind velocities, obtain ed at the ORNL Multicharged Ion Research Facility using quadrupole ma ss spectrometry. The multi-charged Ar ions were used as proxies for i ntermediate mass solar wind multicharged ions. Prior to the Ar beam e xposures, the sample was exposed to high fluence H+ irradiation to si mulate H-loading due to the dominant solar wind constituent. A x80 en hancement of oxygen sputtering by Ar+ over same velocity H+ was measu red and an additional x2 increase for Ar+9 over same velocity Ar+ was demonstrated, giving clear evidence of the importance of potential s puttering by multicharged ions. This enhancement was observed to pers ist to the maximum fluences investigated (approx 10(exp 16)/sq cm). As discussed in a companion abstract by N. Barghouty, such persistent s puttering enhancement has significant implications on weathering and aging of lunar regolith. In addition, XPS measurements showed strong evidence of Fe reduction for those target areas that had been exposed to high fluence Ar+ and Ar+8 beams. Preferential oxidation of the Fe -reduced beam-exposed regions during transfer to the XPS system led t o enhanced O concentrations in those regions as well. On the basis of these very promising preliminary results, a NASA-LASER project on mo re extensive measurements was recently selected for funding. The prop osal expands the collaboration with NASA-MSFC for the simulation effort, and adds a new collaboration with NASA-GSFC for lunar mission-rele vant measurements.

  18. Utilization of the ion traps by SPIRAL

    International Nuclear Information System (INIS)

    Le Brun, C.; Lienard, E.; Mauger, F.; Tamain, B.

    1997-01-01

    An ion trap is a device capable of confine particles, ions or atoms in a well-controlled environment isolated from any exterior perturbations. There are different traps. They are utilized to collect or stock ions, to cool them after in order to subject them to high precision measurement of masses, magnetic moments, hyperfine properties, beta decay properties, etc. Some dozen of traps are currently used all over the world to study stable or radioactive ions.. SPIRAL has been designed and built to produce radioactive ions starting from various heavy ion beams. SPIRAL has the advantage that the projectile parameters, the target and the energy can be chosen to optimize the production in various regions of the nuclear chart. Also, in SPIRAL it is possible to extract more rapidly the radioactive ions formed in the targets. In addition, in SPIRAL the multicharged ion production in a ECR source is possible. The utilization of multicharged ions is indeed very useful for fast mass measurements or for the study of the interaction between the nucleus and the electronic cloud. Finally, utilization of a ion trap on SPIRAL can be designed first at the level of production target by installing a low energy output line. Than, the trap system could be up-graded and brought to its full utilization behind of the recoil spectrometer. It must be capable of selecting and slowing down the ions produced in the reactions (fusion transfer, very inelastic collisions, etc.) induced by the radioactive ions accelerated in CIME. At present, the collaboration is debating on the most favored subject to study and the most suited experimental setups. The following subjects were selected: ion capture, purification and manipulation; isomers (separation and utilization); mass measurements; hyperfine interactions; lifetimes, nuclear electric cloud; β decays; study of the N = Z nuclei close to the proton drip line; physical and chemical properties of transuranium systems

  19. Application of ECR ion source beams in atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W.

    1987-01-01

    The availability of intense, high charge state ion beams from ECR ion sources has had significant impact not only on the upgrading of cyclotron and synchrotron facilities, but also on multicharged ion collision research, as evidenced by the increasing number of ECR source facilities used at least on a part time basis for atomic physics research. In this paper one such facility, located at the ORNL ECR source, and dedicated full time to the study of multicharged ion collisions, is described. Examples of applications of ECR ion source beams are given, based on multicharged ion collision physics studies performed at Oak Ridge over the last few years. 21 refs., 18 figs., 2 tabs.

  20. Low energy supersymmetry phenomenology

    International Nuclear Information System (INIS)

    Baer, H.; Chen, C.H.; Gunion, J.; Kamon, T.; Lopez, J.L.; Kao, C.

    1995-04-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e + e - , p bar p and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of super-particles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. The authors then comment upon the complementarity of proposed hadron and e + e - machines for a comprehensive study of low energy supersymmetry

  1. Low energy supersymmetry phenomenology

    CERN Document Server

    Baer, H.; Chen, C.H.; Eberl, H.; Feng, J.L.; Fujii, K.; Gunion, John F.; Kamon, T.; Kao, C.; Lopez, J.L.; Majerotto, W.; McIntyre, P.; Munroe, Ray B.; Murayama, H.; Paige, F.; Porod, W.; Sender, J.; Sopczak, A.; Tata, X.; Tsukamoto, T.; White, J.

    1996-01-01

    We summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, we evaluate the capabilities of various e^+e^-, p\\bar p and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, we discuss capabilities of future facilities to dis-entangle the anticipated spectrum of super-particles and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. We comment upon the complementarity of proposed hadron and e^+e^- machines for a comprehensive study of low energy supersymmetry.

  2. Tuning of the optical properties of In-rich In{sub x}Ga{sub 1−x}N (x=0.82−0.49) alloys by light-ion irradiation at low energy

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, Marta; Polimeni, Antonio; Capizzi, Mario [Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Pettinari, Giorgio [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Ciatto, Gianluca; Fonda, Emiliano [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif sur Yvette Cedex (France); Amidani, Lucia; Boscherini, Federico [Department of Physics and CNISM, University of Bologna, V. le C. Berti Pichat 6/2, 40127 Bologna (Italy); Filippone, Francesco; Bonapasta, Aldo Amore [CNR-Istituto di Struttura della Materia (ISM), Via Salaria Km 29.5, CP 10, I-00016 Monterotondo Stazione (Italy); Knübel, Andreas; Cimalla, Volker; Ambacher, Oliver [Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg (Germany); Giubertoni, Damiano; Bersani, Massimo [CMM - Fondazione Bruno Kessler, Trieste, via Sommarive 18, 38100, Povo Trento (Italy)

    2013-12-04

    The effects of low-energy irradiation by light ions (H and He) on the properties of In-rich In{sub x}Ga{sub 1−x}N alloys are investigated by optical and structural techniques. H-irradiation gives rise to a remarkable blue-shift of light emission and absorption edge energies. X-ray absorption measurements and first-principle calculations address the microscopic origin of these effects.

  3. Tuning of the optical properties of In-rich InxGa1−xN (x=0.82−0.49) alloys by light-ion irradiation at low energy

    International Nuclear Information System (INIS)

    De Luca, Marta; Polimeni, Antonio; Capizzi, Mario; Pettinari, Giorgio; Ciatto, Gianluca; Fonda, Emiliano; Amidani, Lucia; Boscherini, Federico; Filippone, Francesco; Bonapasta, Aldo Amore; Knübel, Andreas; Cimalla, Volker; Ambacher, Oliver; Giubertoni, Damiano; Bersani, Massimo

    2013-01-01

    The effects of low-energy irradiation by light ions (H and He) on the properties of In-rich In x Ga 1−x N alloys are investigated by optical and structural techniques. H-irradiation gives rise to a remarkable blue-shift of light emission and absorption edge energies. X-ray absorption measurements and first-principle calculations address the microscopic origin of these effects

  4. Low-energy QCD

    International Nuclear Information System (INIS)

    Ecker, G.

    1995-11-01

    After a brief introduction to chiral perturbation theory, the effective field theory of the standard model at low energies, two recent applications are reviewed: elastic pion-pion scattering to two-loop accuracy and the complete renormalized pion-nucleon Lagrangian to O(P 3 ) in the chiral expansion. (author)

  5. Formation of 2-D arrays of semiconductor nanocrystals or semiconductor-rich nanolayers by very low-energy Si or Ge ion implantation in silicon oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Normand, P. E-mail: p.normand@imel.demokritos.gr; Beltsios, K.; Kapetanakis, E.; Tsoukalas, D.; Travlos, T.; Stoemenos, J.; Berg, J. van den; Zhang, S.; Vieu, C.; Launois, H.; Gautier, J.; Jourdan, F.; Palun, L

    2001-05-01

    The structure evolution of annealed low-energy Si- or Ge-implanted thin and thick SiO{sub 2} layers is studied. The majority of Si (or Ge) species is restricted within a 3-4 nm thick layer. Si is able to separate and crystallize more easily than Ge. The glass transition temperature of the as-implanted structure has a significant effect on the progress of phase transformations accompanying annealing.

  6. Formation of 2-D arrays of semiconductor nanocrystals or semiconductor-rich nanolayers by very low-energy Si or Ge ion implantation in silicon oxide films

    International Nuclear Information System (INIS)

    Normand, P.; Beltsios, K.; Kapetanakis, E.; Tsoukalas, D.; Travlos, T.; Stoemenos, J.; Berg, J. van den; Zhang, S.; Vieu, C.; Launois, H.; Gautier, J.; Jourdan, F.; Palun, L.

    2001-01-01

    The structure evolution of annealed low-energy Si- or Ge-implanted thin and thick SiO 2 layers is studied. The majority of Si (or Ge) species is restricted within a 3-4 nm thick layer. Si is able to separate and crystallize more easily than Ge. The glass transition temperature of the as-implanted structure has a significant effect on the progress of phase transformations accompanying annealing

  7. Low energy particle composition

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1975-01-01

    More than 50 papers presented at this Conference dealt with the composition of low energy particles. The topics can be divided roughly into two broad categories. The first is the study of the energy spectra and composition of the steady or 'quiet-time' particle flux, whose origin is at this time unknown. The second category includes the study of particles and photons which are associated with solar flares or active regions on the sun. (orig.) [de

  8. Development and testing of a three-stage double tandem accelerator-decelerator system for low energy, highly stripped ions. Progress report, March 1, 1978--February 28, 1979

    International Nuclear Information System (INIS)

    Bayfield, J.E.

    1978-11-01

    Three-stage operation of the University of Pittsburgh accel-decel double tandem source of highly stripped ion beams is described. The system has produced 0 5+ , 0 6+ , 0 7+ , and 0 8+ ions at specific energies as low as 15 keV per AMU. The design of the new decelerator tubes is discussed. The present performance and limitations of the overall system are outlined. Some new charge exchange cross sections have been measured, for combined higher ion charge states and lower ion energies than heretofore was possible. Future four-stage operation with very heavy ions is considered

  9. Dissociative scattering of low-energy SiF{sub 3}{sup +} and SiF{sup +} ions (5-200 eV) on Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hiroyuki; Baba, Yuji; Sasaki, T A [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Dissociative scattering of molecular SiF{sub 3}{sup +} and SiF{sup +} ions from a Cu(100) single crystal surface has been investigated in the incident energy range from 5 eV to 200 eV with a scattering angle of 77deg. The scattered ion intensity of dissociative ions and parent molecular ions were measured as a function of incident ion energy. The observed data show that onset energies of dissociation for SiF{sub 3}{sup +} and SiF{sup +} ions are 30 eV and 40 eV, respectively. The obtained threshold energies are consistent with a impulsive collision model where the dissociation of incident ion is caused by vibrational excitation during collision. (author)

  10. Low Energy Conference 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    11 of the 19 presentations have been indexed for the database. The following national organisations jointly organised the Low-energy Conference 2009: The Norwegian Society for the Conservation of Nature, the Norwegian Society of Engineers and Technologists, Norwegian Technology, the Federation of Norwegian Industries and the Low-Energy Program. Energy efficiency is often given little attention in the ongoing debates concerning different initiatives in order to reduce greenhouse emissions. The aim of the conference was to set energy efficiency on the agenda as an important environmental instrument. Both the Intergovernmental Panel on Climate Change - IPCC and the International Energy Agency - IEA regard energy efficiency as one of the fastest and most effective ways of reducing greenhouse emissions. Despite of this little is done. Many countries are ahead of Norway - why are we lagging behind? The Low-Energy conference has a broad approach: Nigel Jollands from the International Energy Agency -IEA puts energy efficiency in a global perspective. Soeren Rise from Teqniq in Denmark informs about the Danes' energy saving agreement, which appears to have been a success. The conference increased the competencies on concrete energy efficiency solutions, how to speed up the marketing of energy-friendly buildings and technologies, possibilities through industry and the impact of EU-directives and other instruments in order to trigger the potential. The conference closed with a discussion panel of leading energy politicians. The conference contributed to raise the debate in advance of the General election in Norway and the climate negotiations in Copenhagen during the autumn 2009. (EW)

  11. Evaluation of the relative thermoluminescence efficiency of LiF:Mg,Ti and LiF:Mg,Cu,P TL detectors to low-energy heavy ions

    DEFF Research Database (Denmark)

    Gieszczyk, W.; Bilski, P.; Olko, P.

    2013-01-01

    and xenon ion beams, at energies ranging from 5.0 to 9.3 MeV/n. Supra- and sublinear response was found, for the MTS-N and MCP-N, respectively, similarly as observed for γ-rays. However, the level of nonlinearity of response of studied detectors is strongly reduced by increasing values of the ion ionization...... density (no supralinearity for Xe ions, for MTS-N, within calculated uncertainties). The growth of high-temperature TL peaks, with increasing ionization density, was observed for MCP-N, what was not previously reported. At the whole range of applied energies higher efficiencies were noted for MTS......-N, for all ion species. A decrease of the efficiency with decrease of the ion energy was confirmed, for both types of studied detectors. At a given energy, higher efficiency was observed for lighter ions, because of the lower ionization density. Significantly higher decrease of the efficiency was measured...

  12. Low Energy Nuclear Reactions?

    CERN Multimedia

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  13. Surface modification of poly(tetrafluoroethylene) films by low energy Ar+ ion-beam activation and UV-induced graft copolymerization

    International Nuclear Information System (INIS)

    Zhang Yan; Huan, A.C.H.; Tan, K.L.; Kang, E.T.

    2000-01-01

    Surface modification of poly(tetrafluoroethylene) (PTFE) films by Ar + ion-beam irradiation with varying ion energy and ion dose was carried out. The changes in surface composition of the irradiated PTFE films were characterized, both in situ and after exposure to air, by X-ray photoelectron spectroscopy (XPS). The possible mechanisms of chemical reaction induced by the incident ion beam on the surface of PTFE film included defluorination, chain scission and cross-linking, as indicated by the presence of the characteristic peak components associated with the - - -CF 3 , - - -CF, and C(CF 2 ) 4 species in the C 1s core-level spectra, the decrease in surface [F]/[C] ratio, and the increase in surface micro-hardness of the Ar + ion-beam-treated PTFE films. Furthermore, the free radicals generated by the ion-beam could react with oxygen in the air to give rise to oxidized carbon species, such as the peroxides, on the PTFE surface. Thus, after exposure to air, the Ar + ion-beam-pretreated PTFE films were susceptible to further surface modification by UV-induced graft copolymerization with a vinyl monomer, such as acrylamide (AAm). The graft concentrations were deduced from the XPS-derived surface stoichiometries. The Ar + ion energy and the ion dose affected not only the surface composition of the treated films but also the graft copolymerization efficiency of the corresponding pretreated films

  14. Extra Low ENergy Antiproton

    CERN Multimedia

    To produce dense antiproton beams at very low energies (110 keV), it has been proposed to install a small decelerator ring between the existing AD ring and the experimental area. Phase-space blowup during deceleration is compensated by electron cooling such that the final emittances are comparable to the 5MeV beam presently delivered by the AD. An immediate consequence is a significant increase in the number of trapped antiprotons at the experiments as outlined in the proposal CERN/SPSC-2009-026; SPCS-P-338. This report describes the machine parameters and layout of the proposal ELENA (Extra Low ENergy Antiproton)ring also gives an approximate estimate of cost and manpower needs. Since the initial estimate, published in 2007 (CERN-AB-2007-079), the ELENA design has evolved considerably. This is due to a new location in the AD hall to acommodate for the possibility of another experimental zone, as suggested by the SPCS, and also due to improvements in the ring optics and layout. The cost estimate that is prese...

  15. Possibilities of basic and applied researches using low energy ion beams accelerators; Posibilidades de investigacion basica y aplicada con aceleradores de haces ionicos de bajas energias

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Roberto [Chile Univ., Santiago (Chile). Lab. de Fisica Nuclear

    1997-12-31

    Full text: The availability of ion sources that allow to accelerate heavy and light ions, and the new compact accelerators have opened interesting possibilities for using in basic and applied research, Some of the research lines such as material, environmental, archaeology, bio-medicine are shown.

  16. Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Heidarian, A.; Bali, R.; Grenzer, J.; Wilhelm, R.A.; Heller, R.; Yildirim, O.; Lindner, J.; Potzger, K.

    2015-09-01

    Ion irradiation induced modifications of the thermomagnetic properties of equiatomic FeRh thin films have been investigated. The application of 20 keV Ne{sup +} ions at different fluencies leads to broadening of the antiferromagnetic to ferromagnetic phase transition as well as a shift of the transition temperature towards lower temperatures with increasing ion fluence. Moreover, the ferromagnetic background at low temperatures generated by the ion irradiation leads to pronounced saturation magnetisation at 5 K. Complete erasure of the transition, i.e. ferromagnetic ordering through the whole temperature regime was achieved at a Ne{sup +} fluence of 3 × 10{sup 14} ions/cm{sup 2}. It does not coincide with the complete randomization of the chemical ordering of the crystal lattice.

  17. Chemical etching of GaAs with a novel low energy ion beam source: a low damage process for device fabrication

    International Nuclear Information System (INIS)

    Beckerman, J.; Jackman, R.B.

    1993-01-01

    If the advantages of physics (anisotropy) can be combined with the advantages of chemistry (damage-free perturbation of the lattice) then an excellent, near damage-free, etching reaction can result. In this context, the promise for ultra-low energy ( -1 . The source does, however, give rise to a coating, derived from the source liner, which must be washed from all etched samples. The presence of such a coating is likely to be the origin of the slow etch rate achieved. After removal of the coating, smooth, mirror-like etched surfaces are apparent. These surfaces perform very well when Schottky diodes are constructed from them showing no deviation from the behaviour of control samples. (author)

  18. Tin Oxide Crystals Exposed by Low-Energy {110} Facets for Enhanced Electrochemical Heavy Metal Ions Sensing: X-ray Absorption Fine Structure Experimental Combined with Density-Functional Theory Evidence.

    Science.gov (United States)

    Jin, Zhen; Yang, Meng; Chen, Shao-Hua; Liu, Jin-Huai; Li, Qun-Xiang; Huang, Xing-Jiu

    2017-02-21

    Herein, we revealed that the electrochemical behaviors on the detection of heavy metal ions (HMIs) would largely rely on the exposed facets of SnO 2 nanoparticles. Compared to the high-energy {221} facet, the low-energy {110} facet of SnO 2 possessed better electrochemical performance. The adsorption/desorption tests, density-functional theory (DFT) calculations, and X-ray absorption fine structure (XAFS) studies showed that the lower barrier energy of surface diffusion on {110} facet was critical for the superior electrochemical property, which was favorable for the ions diffusion on the electrode, and further leading the enhanced electrochemical performance. Through the combination of experiments and theoretical calculations, a reliable interpretation of the mechanism for electroanalysis of HMIs with nanomaterials exposed by different crystal facets has been provided. Furthermore, it provides a deep insight into understanding the key factor to improve the electrochemical performance for HMIs detection, so as to design high-performance electrochemical sensors.

  19. Self-organizing nanodot structures on InP surfaces evolving under low-energy ion irradiation: analysis of morphology and composition.

    Science.gov (United States)

    Radny, Tobias; Gnaser, Hubert

    2014-01-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence Φ the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18) cm(-2), and ion fluxes f of (0.4 - 2) × 10(14) cm(-2) s(-1) were used. The surface morphology resulting from these ion irradiations was examined by atomic force microscopy (AFM). Generally, nanodot structures are formed on the surface; their dimensions (diameter, height and separation), however, were found to depend critically on the specific bombardment conditions. As a function of ion fluence, the mean radius r, height h, and spacing l of the dots can be fitted by power-law dependences: r ∝ Φ(0.40), h ∝ Φ(0.48), and l ∝ Φ(0.19). In terms of ion flux, there appears to exist a distinct threshold: below f ~ (1.3 ± 0.2) × 10(14) cm(-2) s(-1), no ordering of the dots exists and their size is comparatively small; above that value of f, the height and radius of the dots becomes substantially larger (h ~ 40 nm and r ~ 50 nm). This finding possibly indicates that surface diffusion processes could be important. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that APT can provide analytical information on the composition of individual InP nanodots. By means of 3D APT data, the surface region of such nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of approximately 1 nm and amount to 1.3 to 1.7.

  20. Preparation of atomically clean and flat Si(1 0 0) surfaces by low-energy ion sputtering and low-temperature annealing

    International Nuclear Information System (INIS)

    Kim, J.C.; Ji, J.-Y.; Kline, J.S.; Tucker, J.R.; Shen, T.-C.

    2003-01-01

    Si(1 0 0) surfaces were prepared by wet-chemical etching followed by 0.3-1.5 keV Ar ion sputtering, either at elevated or room temperature (RT). After a brief anneal under ultrahigh vacuum (UHV) conditions, the resulting surfaces were examined by scanning tunneling microscopy. We find that wet-chemical etching alone cannot produce a clean and flat Si(1 0 0) surface. However, subsequent 300 eV Ar ion sputtering at room temperature followed by a 700 deg. C anneal yields atomically clean and flat Si(1 0 0) surfaces suitable for nanoscale device fabrication

  1. Low energy electron spectroscopy of C{sub 60} in collisions with fast bare ions: Observation of GDPR peak and its angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Misra, D; Chatterjee, S; Kasthurirangan, S; Agnihotri, A; Tribedi, L C, E-mail: lokesh@tifr.res.i [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400005 (India)

    2009-11-01

    We report the first direct measurement of GDPR peak in heavy ion (4 MeV/u F''9''+) induced secondary electron DDCS (double differential cross section) spectrum of C{sub 60} fullerene. A peak corresponding to GDPR is seen at all angles and the angular distribution, showing a dip at 90''0, is in contrast with ion-atom collisions, indicating plasmon oscillations along beam direction. A comparison has also been done between C{sub 60} and other gaseous targets as well as with state-of-the art theoretical models, based on density functional methods.

  2. Tuning the electronic properties of LaAlO3/SrTiO3 interfaces by irradiating the LaAlO3 surface with low-energy cluster ion beams

    Science.gov (United States)

    Ridier, Karl; Aureau, Damien; Bérini, Bruno; Dumont, Yves; Keller, Niels; Vigneron, Jackie; Etcheberry, Arnaud; Domengès, Bernadette; Fouchet, Arnaud

    2018-01-01

    We have investigated the effects of low-energy ion beam irradiations using argon clusters on the chemical and electronic properties of LaAlO3/SrTiO3 (LAO/STO) heterointerfaces by combining x-ray photoelectron spectroscopy (XPS) and electrical transport measurements. Due to its unique features, we demonstrate that a short-time cluster ion irradiation of the LAO surface induces significant modifications in the chemical properties of the buried STO substrate with (1) a lowering of Ti atoms oxidation states (from Ti4 + to Ti3 + and Ti2 +) correlated to the formation of oxygen vacancies at the LAO surface and (2) the creation of new surface states for Sr atoms. Contrary to what is generally observed by using higher energy ion beam techniques, this leads to an increase of the electrical conductivity at the LAO/STO interface. Our XPS data clearly reveal the existence of dynamical processes on the titanium and strontium atoms, which compete with the effect of the cluster ion beam irradiation. These relaxation effects are in part attributed to the diffusion of the ion-induced oxygen vacancies in the entire heterostructure since an increase of the interfacial metallicity is also evidenced far from the irradiated area. This paper highlights the possibility of tuning the electrical properties of LAO/STO interfaces by surface engineering, confirming experimentally the intimate connection between LAO chemistry and electronic properties of LAO/STO interfaces.

  3. Inside bluetooth low energy

    CERN Document Server

    Gupta, Naresh

    2013-01-01

    Bluetooth Low Energy (LE) is one of the latest enhancement to Bluetooth technology and, as the name suggests, it is aimed at ultra low power devices, such as heart rate monitors, thermometers, and sensors. Due to very low power consumption, devices compliant with this standard can operate for several years on coin cell batteries without the need for recharging. This cutting-edge book helps you understand the whats , whys , and hows of Bluetooth LE. It includes a broad view of the technology, identifies the various building blocks, and explains how they come together. You also find discussions on Bluetooth basics, providing the background information needed to master Bluetooth LE.The book explains the architecture of Bluetooth LE stack and the functionality provided by each of the layers. You find expert guidance in setting up your own system in a quick and efficient manner with inexpensive, easily available hardware and just a couple of PCs running Linux. This unique volume features two chapters that are dedi...

  4. Solar low energy dwellings

    International Nuclear Information System (INIS)

    Hestnes, Anne Grete

    2000-01-01

    By now, a lot has been learnt about how to reduce energy use in dwellings using solar and low energy technologies, and many good examples can be found throughout Europe. Still, they are not quite the common feature we would expect them to be, i.e. they have not really penetrated the market. The reason for this is in part a result of the fact that the designers and developers of these buildings have not looked at what the market wants and needs, but rather at how to use a set of given technologies. The buildings are the result of a technology push rather than a market pull and have therefore, often, been detached or semidetached dwellings with different solar technologies added on in less than optimal ways. In order to increase market penetration, it is time to look at the market trends and relate to these. Fortunately, quite a few European architects have realized this and have started designing somewhat different residential buildings. The paper focuses on examples of the new trends in solar residential architecture and by that, hopefully, it shows that we are on the right track. (au)

  5. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  6. Low energy acetoin ions CH3C(=O)C(H)(OH)CH3.+ decompose to CH3CO. and CH3CHOH+ via a remarkable "hidden rearrangement"

    Science.gov (United States)

    Suh, Dennis; Burgers, Peter C.; Terlouw, Johan K.

    1995-06-01

    Tandem mass spectrometry based experiments on D and 18O labelled acetoin isotopomers show that the title reaction is not just a simple bond cleavage, but rather involves rearrangement via ion--dipole complexes; the intermediacy of a charge-transfer complex is proposed to account for the observed product ratios.

  7. Genetics analysis of mutagenic effect on M1 and M2 of arabidopsis thaliana derived from the seeds implanted by low energy ion

    International Nuclear Information System (INIS)

    Chen Donghua; Liang Qianjin; Zhang Genfa; Zhang Wenjun; Zhang Xiangqi

    2001-01-01

    Ameliorated RAPD technique was used to analyze the variations and their genetic stability of the gene pool DNAs of M 1 generation of different ion implanted (into seeds) Arabidopsis thaliana and the individual plant DNAs of generations M 1 and M 2 . The analysis of the gene pool DNAs of generation M 1 suggested that: 53 of 178 random primers amplified differential fragments, and multiplication experiments testified that the PCR results of some primers showed considerable stability. The results revealed that variation percentages, within a certain limit, relates to implanting dosage. Particularly, the genetic stability analysis of generation M 2 certificates that: performing PCR analysis by means of the same primers of generation M 1 brought about variation bands identical with that of generation M 1 , so it is possible that variations induced by ion implanting may be truly hereditary

  8. L-shell x-ray yields and production cross-sections of molybdenum induced by low-energy highly charged argon ions

    International Nuclear Information System (INIS)

    Du Juan; Xu Jinzhang; Chen Ximeng; Yang Zhihu; Shao Jianxiong; Cui Ying; Zhang Hongqiang; Gao Zhimin; Liu Yuwen

    2007-01-01

    L-shell x-ray yields of molybdenum bombarded by highly charged Ar q+ ions (q=11-16) are measured. The x-ray production cross-sections are extracted from the yields data. The energy of the incident Ar ions ranges from 200 to 350 keV. After the binding energy correction, experimental data are explained in the framework of binary-encounter-approximation (BEA). The direct ionization is treated in the united atom (UA) limit (Lapicki and Lichten 1985 Phys. Rev. A 31 1354), not in the separate atom (SA) limit. The calculation results of BEA (Gacia and Fortner 1973 Rev. Mod. Phys. 45 111) are much lower than the experimental results, while the results of binding energy modified BEA are basically in agreement with the experimental results

  9. Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach

    OpenAIRE

    Cooper, D. L.; Stancil, P. C.; Turner, A. R.; Wang, J. G.; Clarke, N. J.; Zygelman, B.

    2002-01-01

    A survey of theoretical studies of charge transfer involving collisions of multiply-charged ions with atomic neutrals (H and He) is presented. The calculations utilized the quantum-mechanical molecular-orbital close-coupling (MOCC) approach where the requisite potential curves and coupling matrix elements have been obtained with the spin-coupled valence bond (SCVB) method. Comparison is made among various collision partners, for equicharged systems, where it is illustrated that even for total...

  10. Investigations of electrical and optical properties of low energy ion irradiated α-Fe{sub 2}O{sub 3} (hematite) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sulania, Indra; Kanjilal, D. [Inter University Accelerator Centre, P O Box-10502, Aruna Asaf Ali Marg, New Delhi-110067 (India); Kaswan, Jyoti; Attatappa, Vinesh [Department of physics, Amity University, Manesar-122 413, Haryana (India); Karn, Ranjeet Kumar [Jamshedpur Cooperative College, Circuit House Area, Jamshedpur-831001, Jharkhand (India); Agarwal, D. C. [Sant Longowal Institute of Engineering and Technology, Sangrur, Longowal-148106, Punjab (India)

    2016-05-23

    Thin films of α-Fe{sub 2}O{sub 3} of thickness ~100 nm were synthesized on Si (100) and glass substrates by thermal evaporation method. The as deposited films were annealed at 400°C in Oxygen environment for 2 hours to obtain the desired phase. The annealed films found to be polycrystalline in nature with an average crystallite size ~7 nm. The direct and indirect band gaps were found to be 2.2 and 1.5 eV respectively for annealed films using. I-V characteristics and Hall-effect measurement of annealed films showed n-type semi conducting behavior. Further, films were irradiated with nitrogen ions of energy 10 keV at an ion fluence of 1×10{sup 18} ions/cm{sup 2}. After irradiation, a decrease in both direct as well as indirect band gap was observed, from 2.2 to 2.1 eV and 1.5 to 1.3 eV respectively. I-V characteristic and Hall-Effect measurement confirmed change in conductivity of the films from n-type to p-type after irradiation, which can have possible applications in semi conducting device fabrications.

  11. Search for a double-collision mechanism as a possible interpretation for ionization by low-energy light-ion impact

    International Nuclear Information System (INIS)

    Avaldi, L.; Magno, C.; Milazzo, M.; Rota, A.

    1981-01-01

    In a previous work the authors proposed, in the frame of the binary-encounter approximation (BEA) of the inner-shell atomic ionization by ion bombardment, a correction to the ion energy in order to account for the Coulomb repulsion by the atomic nucleus. Such corrected cross-section values numerically coincide with those of the PWBA model, but, as a consequence of the correction, they obtain a much higher-energy ionization threshold than the binding energy, which has no experimental evidence. In the present work it is shown that ionization below such a threshold can be explained by a double-collision mechanism which involves intermediate electron states and can directly be derived from the impulsive nature of the binary-collision model. Calculations have been performed by supposing a statistical independence between these two collisions. Relativistic corrections have not been taken into account. A remarkable agreement is obtained between the curves corresponding to single- and double-collision classical processes, since they match at the bombarding threshold ion energy. (author)

  12. Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants

    Science.gov (United States)

    Fonash, S. J.

    1985-01-01

    New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.

  13. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  14. A study on the effect of low energy ion beam irradiation on Au/TiO_2 system for its application in photoelectrochemical splitting of water

    International Nuclear Information System (INIS)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja; Satsangi, Vibha Rani; Shrivastav, Rohit; Avasthi, Devesh Kumar; Dass, Sahab

    2016-01-01

    Nanostructured TiO_2 thin films were deposited on indium tin oxide (ITO) substrate via sol–gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO_2 (Au/TiO_2) thin films were then irradiated with 500 keV Ar"2"+ ion beam at different ion fluences viz. 1 × 10"1"6, 3 × 10"1"6 and 1 × 10"1"7 to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV–visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO_2 and Au/TiO_2 thin film irradiated at 1 × 10"1"6 fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO_2. The film irradiated at 1 × 10"1"6 fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (V_o_c) and reduced charge transfer resistance.

  15. LINAC 3 experiment: This experiment is used to study some scenarios of the future LEIR (low-energy ion ring) vacuum design.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 1 316LN stainless steel sheet 0.7 m thick sheet metal, with water-jet cut holes; before (sheet metal) and after rolling (tube). Photo 2 316LN stainless steel tube with water-jet cut holes. Photo 3 Inner tube is fitted with NEG (non-evaporable getter) strips, creating a kind of total NEG pump. Photo 4 Inner tube is fitted with NEG (non-evaporable getter) strips, creating a kind of total NEG pump. Photo 5 Same tubes but compiled on top of each other. Photo 6 The stack of tubes is put into a vacuum chamber that will be used in the LINAC 3 experiment during summer 2002 (lead-ion beam will be used for this experiment). The holes allow all-round pumping, i.e. close to the vacuum chamber walls.

  16. Low-energy antiprotons physics and the FLAIR facility

    International Nuclear Information System (INIS)

    Widmann, E

    2015-01-01

    FLAIR, the Facility for low-energy antiproton and ion research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the modularized start version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR. (paper)

  17. FLSR - The Frankfurt low energy storage ring

    International Nuclear Information System (INIS)

    Stiebing, K.E.; Alexandrov, V.; Doerner, R.; Enz, S.; Kazarinov, N.Yu.; Kruppi, T.; Schempp, A.; Schmidt Boecking, H.; Voelp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-01-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut fuer Kernphysik der Johann Wolfgang Goethe-Universitaet Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  18. Low energy accelerators for research and applications

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2013-01-01

    Charged particle accelerators are instruments for producing a variety of radiations under controlled conditions for basic and applied research as well as applications. They have helped enormously to study the matter, atoms, nuclei, sub-nuclear particles and their constituents, forces involved in the related phenomena etc. No other man-made instrument has been so effective in such studies as the accelerator. The large accelerator constructed so far is the Large Hadron Collider (LHC) housed in a tunnel of 27 km circumference, while a small accelerator can fit inside a room. Small accelerators accelerate charged particles such as electrons, protons, deuterons, alphas and, in general ions to low energy, generally, below several MeV. These particle beams are used for studies in nuclear astrophysics, atomic physics, material science, surface physics, bio sciences etc. They are used for ion beam analysis such as RBS, PIXE, NRA, AMS, CPAA etc. More importantly, the ion beams have important industrial applications like ion implantation, surface modification, isotope production etc. while electron beams are used for material processing, material modification, sterilization, food preservation, non destructive testing etc. In this talk, role of low energy accelerators in research and industry as well as medicine will be discussed. (author)

  19. Low energy cyclotron for radiocarbon dating

    International Nuclear Information System (INIS)

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity 14 C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate 14 C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect 14 C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible

  20. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  1. Low energy ion-molecule reactions

    International Nuclear Information System (INIS)

    Farrar, J.M.

    1986-01-01

    The authors work during the past year has focused on several problems in the condensation reactions of C + and CH 3 + with small molecules, particularly hydrocarbons. Their emphasis has been on understanding the dynamics of collision complex formation and isomerization of transient intermediates along the reaction coordinate. In many ionic reactions, intermediates having non-classical valence structures may be nearly as stable as their classical analogs, in contrast with neutral systems where the non-classical structures are much less stable. The C + + NH 3 system shows this behavior, indicating that the non-classical HCNH 2 + structure formed by insertion of C + into the N-H bond serves as a precursor to the products. N-H bond cleavage in this intermediate to form HCNH + occurs over a large barrier and occurs more readily than the 1,2 hydrogen atom shift to form the classical H 2 C = NH + intermediate. Their experimental kinetic energy distribution for this channel is consistent with the presence of a large exit channel barrier. Their recently published work on C + + H 2 O also demonstrates this phenomenon. The CHOH + hydroxycarbene cation serves as the initial intermediate and isomerization to the classical H 2 CO + cation is competitive with O-H or C-H cleavage to yield the formyl, HCO + , or isoformyl, COH + , cations. They have also completed studies on the reactions of C + with O 2 , CH 3 OH, HCN, and the two-carbon containing hydrocarbons ethane, ethylene, and acetylene

  2. Analysis of surface with low energy ions

    International Nuclear Information System (INIS)

    Oliver, A.; Miranda, J.

    1989-01-01

    Nuclear techniques applied to element analysis presents different characteristics depending on projectile energy. It can seen observed than an energy (E ≅ 1 MeV) exists which separate two regions for which sensitivity, information analysis and resolution in detection are different. For this work, we describe for the energy region E ≤ 1 MeV, the advantage of the three most used techniques which are PIXE, RBS y RNR. (Author)

  3. Coherent production of high-energy photons and π mesons in heavy ion reactions

    International Nuclear Information System (INIS)

    Batkin, I.S.; Kopytin, I.V.

    1986-01-01

    A microscopic model of high-energy photon and pion production processes in collision of multicharged ions with kinetic energy of relative motion from 40 to 100 MeV per nucleon was constructed not using fitting parameters

  4. FLSR - The Frankfurt low energy storage ring

    Science.gov (United States)

    Stiebing, K. E.; Alexandrov, V.; Dörner, R.; Enz, S.; Kazarinov, N. Yu.; Kruppi, T.; Schempp, A.; Schmidt Böcking, H.; Völp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-02-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut für Kernphysik der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  5. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. Low-energy solar neutrino detection plays a fundamental role in ... the experimental point of view, there are multiple ways to shed light among the different .... compared to the two metallicity expectations [16]. ..... from the Earth; solar neutrinos; indirect dark matter searches) and GeV physics (pro-.

  6. Low-energy nuclear physics

    International Nuclear Information System (INIS)

    1985-01-01

    The 1985 annual report of the Schuster Laboratory, Manchester University, England, on low-energy nuclear physics, is presented. The report includes experiments involving: high spin states, nuclei far from stability, reactions and fission, spectroscopy and related subjects. Technical developments are also described. (U.K.)

  7. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    Low-energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND ...

  8. Electron-ion collisions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1982-01-01

    This discussion concentrates on basic physics aspects of inelastic processes of excitation, ionization, and recombination that occur during electron-ion collisions. Except for cases of illustration along isoelectronic sequences, only multicharged (at least +2) ions will be specifically discussed with some emphasis of unique physics aspects associated with ionic charge. The material presented will be discussed from a primarily experimental viewpoint with most attention to electron-ion interacting beams experiments

  9. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  10. Operating Characteristics of the low energy accelerator

    International Nuclear Information System (INIS)

    Abd El-Baki, M.M.; Abd El-Rahman, M.M.

    2000-01-01

    The main purpose of this work is to describe the construction and operation of low energy accelerator with energy in the range from (zero to 100 KeV.). This accelerator includes an ion source of the cold cathode penning type (with pierce geometry for ion beam extraction), an accelerating tube (with 8 electrodes) and faraday cup for measuring ion current. A vacuum system which gives vacuum of the order 3.0 x 10 8 torr is used. A palladium tube is used to supply the source with pure hydrogen atoms. It was possible to operate this accelerator with an energy 50 KeV. at minimum hydrogen pressure. 6.3 x 10 6 torr. The total resistance applied between the accelerating electrodes R T = 31.5 M OMEGA. These data includes the influence of the pressure in the accelerating tube, the magnetic field of the ion source, the extraction potential and the accelerating potential on the collector ion current. It was possible to accelerate protons with an energy 50 KeV with current about 100 MU A at pressure 6.3 x 10 6 Torr, the source magnetic field + 1100 gauss (I B = 2A), the current = 0.4 A and the extraction potential = 10 K. V

  11. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  12. A low energy solar town

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend; Balocco, Carla

    1998-12-31

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m{sup 2}/year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs.

  13. A low energy solar town

    International Nuclear Information System (INIS)

    Svendsen, Svend; Balocco, Carla

    1998-01-01

    The use of solar energy at large scale is necessary to support the energy savings and a more efficient energy use, like besides the quality of the ambient and the quality of the available energy sources. The solar heating systems with seasonal storage can be combined with heat from refuse incineration plants and other renewable heat sources. These systems combined with district heating are an example of the sustainable energy planning and the reduction of the environmental stress. Strategies for sustainability in the settlements can be defined by and energy model to planning that individuates development and economic and financial supports to. The aim of the work concerns the development of a small sun city with no use of fossil fuels. The new low energy solar town is an idealised urban an energy system. The studied settlement regards one thousand new low-energy houses supplied by a district heating with a central solar heating system with seasonal heat storage. The heating and ventilation demand in the studied low energy buildings are less than 40 kWh/m 2 /year, the electricity demand is less than 2000 kWh per house year. The result of the work is an useful tool to the energy planning of the urban areas and it is also a necessary support to the political and energetic decisions. (EG) 58 refs

  14. Plasma focus as an heavy ion source in the problem of heavy ion fusion

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Dubrovskij, A.V.; Kalachev, N.V.; Krokhin, O.N.; Silin, P.V.; Nikulin, V.Ya.; Cheblukov, Yu.N.

    1984-01-01

    Results of experiments on the ion flux formation in a plasma focus (PF) to develop a multicharged ion source for thermonuclear facility driver are presented. In plasma focus accelerating section copper ions were injected. Advantages of the suggested method of ion beam formation are demonstrated. Beam emittance equalling < 0.1 cmxmrad is obtained. Plasma focus ion energy exceeds 1 MeV. Plasma focus in combination with a neodymium laser is thought to be a perspective ion source for heavy ion fusion

  15. A facility for low energy charged particle induced reaction studies

    International Nuclear Information System (INIS)

    Vilaithong, T.; Singkarat, S.; Yu, L.D.; Intarasiri, S.; Tippawan, U.

    2000-01-01

    In Chiang Mai, a highly stable low energy ion accelerator (0 - 350 kV) facility is being established. A subnano-second pulsing system will be incorporated into the beam transport line. The detecting system will consist of a time-of-flight charged particle spectrometer and a high resolution gamma-ray system. The new facility will be used in the studies of low energy heavy ion backscattering and charged particle induced cross section measurement in the interests of material characterization and nucleosynthesis. (author)

  16. Low energy bar pp physics

    International Nuclear Information System (INIS)

    Amsler, C.; Crowe, K.

    1989-02-01

    A detailed investigation of proton-antiproton interactions at low energy has become feasible with the commissioning of the LEAR facility in 1983. We shall shortly review the status of bar pp annihilation at rest and the physics motivations for second generation experiments with the Crystal Barrel detector. This type of detector would be adequate for the study of both Kp and bar pp interactions on an extracted beam of the KAON Factory. We shall conclude with a few remarks on the physics opportunities with bar p's at the KAON Factory which, in our opinion, will not be covered by the present LEAR facility. 11 refs., 10 figs., 2 tabs

  17. Studies in Low-Energy Nuclear Science

    International Nuclear Information System (INIS)

    Brune, Carl R.; Grimes, Steven M.

    2010-01-01

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187. We describe here research into low-energy nuclear reactions and structure. The statistical properties of nuclei have been studied by measuring level densities and also calculating them theoretically. Our approach of measuring level densities via evaporation spectra is able to reach a very wide range of nuclei by using heavy ion beams (we expect to develop experiments using radioactive beams in the near future). Another focus of the program has been on γ-ray strength functions. These clearly impact nuclear reactions, but they are much less understood than corresponding transmission coefficients for nucleons. We have begun investigations of a new approach, using γ-γ coincidences following radiative capture. Finally, we have undertaken several measurements of cross sections involving light nuclei which are important in various applications. The 9 Be(α,n) and B(d,n) reactions have been measured at Ohio University, while neutron-induced reactions have been measured at Los Alamos (LANSCE).

  18. The low-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Low-energy geothermal resources are characterized by temperatures ranging from 30 to 100 C. The principal worldwide applications are: towns and greenhouses heating, spa bathing, agriculture products drying, etc.. Sources depth ranges from 1500 to 2500 m in porous and permeable formations (sandstones, sands, conglomerates, limestones..) carrying aquifers. The worldwide installed power was of about 11500 MWth in 1990, with an annual production of about 36000 GWh (about 1% of worldwide energy consumption). The annual production rate is estimated to 10% and would represent a 30000 and 80000 MWth power in 2000 and 2010, respectively. In France, low-energy geothermal resources are encountered principally in Mesozoic sediments of the Parisian and Aquitanian basins. French geothermics has developed during the last 30 years and principally between 1980 and 1985 after the second petroleum crack. After 1985, the decay of fossil fuel costs and the development of corrosion problems in the geothermal wells have led to the abandonment of the less productive fields and to the study of technical solutions to solve the corrosion problems. (J.S.). 1 fig., 5 photos

  19. Study of highly charged ion production by electron cyclotron resonance ion source. Interactions of Argon 17+ ions with metallic surface at grazing incidence

    International Nuclear Information System (INIS)

    Ban, G.

    1992-04-01

    In this thesis divided in 2 parts, the author first presents the operating of MiniMafios 16/18 GHz ECR ion sources and methods of extracted multicharged ion identification and then, studies the highly charged ion interactions with a metallic surface and the formation of 'hollow atoms'. 556 figs., 17 tabs

  20. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....