WorldWideScience

Sample records for low-energy fusion channels

  1. Role of the Hoyle state in the 12C+12C fusion at low energies

    Directory of Open Access Journals (Sweden)

    Descouvemont P.

    2014-04-01

    Full Text Available The 12C+12C fusion reaction is investigated in a multichannel folding model, using the density-dependent DDM3Y nucleon-nucleon interaction. The 12C(01+, 2+, 02+, 3− states are included, and their densities are taken from a microscopic cluster calculation. Absorption to fusion channels is simulated by a short-range imaginary potential and the model does not contain any fitting parameter. We compute elastic and fusion cross sections simultaneously. The role of 12C+12C inelastic channels and, in particular, of the 12C(01++12C(02+ channel involving the Hoyle state is important even at low energies.

  2. Systematics for low energy incomplete fusion: Still a puzzle?

    Directory of Open Access Journals (Sweden)

    Yadav Abhishek

    2016-01-01

    Full Text Available In order to have a better and clear picture of incomplete fusion reactions at energies ≈4-7MeV/nucleon, the excitation function measurements have been performed for 18O+159Tb system. The experimental data have been analyzed within the framework of compound nucleus decay. The cross-section for xn/pxn-channels are found to be well reproduced by PACE4 predictions, which suggest their production via complete fusion process. However, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. The incomplete fusion fractions have been deduced at each studied energy and compared with other nearby systems for better insight into the underlying dynamics. The incomplete fusion fraction has been found to be sensitive to the projectile’s energy and α-Q-value.

  3. Projectile - Mass asymmetry systematics for low energy incomplete fusion

    Directory of Open Access Journals (Sweden)

    Singh Pushpendra P.

    2015-01-01

    Full Text Available In the present work, low energy incomplete fusion (ICF in which only a part of projectile fuses with target nucleus has been investigated in terms of various entrance channel parameters. The ICF strength function has been extracted from the analysis of experimental excitation functions (EFs measured for different projectile-target combinations from near- to well above- barrier energies in 12C,16O(from 1.02Vb to 1.64Vb+169Tm systems. Experimental EFs have been analysed in the framework statistical model code PACE4 based on the idea of equilibrated compound nucleus decay. It has been found that the value of ICF fraction (FICF increases with incident projectile energy. A substantial fraction of ICF (FICF ≈ 7 % has been accounted even at energy as low as ≈ 7.5% above the barrier (at relative velocity νrel ≈0.027 in 12C+169Tm system, and FICF ≈ 10 % at νrel ≈0.014 in 16O+169Tm system. The probability of ICF is discussed in light of the Morgenstern’s mass-asymmetry systematics. The value of FICF for 16O+169Tm systems is found to be 18.3 % higher than that observed for 12C+169Tm systems. Present results together with the re-analysis of existing data for nearby systems conclusively demonstrate strong competition of ICF with CF even at slightly above barrier energies, and strong projectile dependence that seems to supplement the Morgenstern’s systematics.

  4. Mirrored low-energy channel for the MiniXRD

    Science.gov (United States)

    Dutra, E. C.; MacNeil, L. P.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    X-ray Diodes (XRDs) are currently used for spectroscopic measurements, measuring X-ray flux, and estimating spectral shape of the VUV to soft X-ray spectrum. A niche exists for an inexpensive, robust X-ray diode that can be used for experiments in hostile environments on multiple platforms, including explosively driven experiments that have the potential for destroying the diode during the experiment. A multiple channel stacked filtered array was developed with a small field of view where a wider parallel array could not be used, but filtered channels for energies lower than 1000 eV were too fragile to deploy under normal conditions. To achieve both the robustness and the required low-energy detection ability, we designed a small low-energy mirrored channel with a spectral sensitivity from 30 to 1000 eV. The stacked MiniXRD X-ray diode system design incorporates the mirrored low-energy channel on the front of the stacked filtered channels to allow the system to work within a small field of view. We will present results that demonstrate this is a promising solution for low-energy spectrum measurements.

  5. Mirrored low-energy channel for the MiniXRD

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Eric [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); MacNeil, Lawrence [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Raphaelian, Mark [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Compton, Steve; Jacoby, Barry

    2015-10-08

    X-ray Diodes (XRDs) are currently used for spectroscopic measurements, measuring X-ray flux, and estimating spectral shape of the VUV to soft X-ray spectrum. A niche exists for an inexpensive, robust X-ray diode that can be used for experiments in hostile environments on multiple platforms, including explosively driven experiments that have the potential for destroying the diode during the experiment. A multiple channel stacked filtered array was developed with a small field of view where a wider parallel array could not be used, but filtered channels for energies lower than 1000 eV were too fragile to deploy under normal conditions. To achieve both the robustness and the required low-energy detection ability, the researchers designed a small low-energy mirrored channel with a spectral sensitivity from 30 to 1000 eV. The stacked MiniXRD X-ray diode system design incorporates the mirrored low-energy channel on the front of the stacked filtered channels to allow the system to work within a small field of view. We will present results that demonstrate this is a promising solution for low-energy spectrum measurements.

  6. High field – low energy muon ionization cooling channel

    Directory of Open Access Journals (Sweden)

    Hisham Kamal Sayed

    2015-09-01

    Full Text Available Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈300  μm-rad in transverse and ≈1–1.5  mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈50–25  μm-rad with an upper limit on the longitudinal emittance of ≈76  mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of low energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25–30 T and low momentum muon beam starting at 135  MeV/c and gradually decreasing. The cooling channel design presented here is the first to reach ≈50 micron scale emittance beam. We present the channel’s optimized design parameters including the focusing solenoid fields, absorber parameters and the transverse and longitudinal matching.

  7. Role of the Hoyle state in the {sup 12}C+{sup 12}C fusion at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, Universite Libre de Bruxelles (ULB), Brussels (Belgium); Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Estudos Avancados; Assuncao, M., E-mail: massuncao@unifesp.br [Universidade Federal de Sao Paulo (UFESP), Sao Paulo, SP (Brazil). Departamento de Ciencias Exatas e da Terra

    2014-07-01

    The {sup 12}C + {sup 12}C fusion reaction is investigated in a multichannel folding model, using the density-dependent DDM3Y nucleon-nucleon interaction. The {sup 12}C(0{sup +}{sub 1}, 2{sup +}, 0{sup +}{sub 2} , 3{sup -}) states are included, and their densities are taken from a microscopic cluster calculation. Absorption to fusion channels is simulated by a short-range imaginary potential and the model does not contain any fitting parameter. We compute elastic and fusion cross sections simultaneously. The role of {sup 12}C + {sup 12}C inelastic channels and, in particular, of the {sup 12}C(0{sup +}{sub 1})+{sup 12}C(0{sup +}{sub 2}) channel involving the Hoyle state is important even at low energies. (author)

  8. Low-energy d+d fusion via the Trojan Horse Method

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Aliotta, M.; Burjan, V.; Gimenez del Santo, M.; Kiss, G. G.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Mrazek, J.; Pizzone, R. G.; Piskor, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartà, R.

    2013-04-01

    The 2H(d,p)3H and 2H(d,n)3He reactions have been recently investigated from Edd=1.5 MeV down to 2 keV, by means of the Trojan Horse Method (THM) applied to the Quasi Free 3He+d interaction at 18 MeV [1]. The knowledge of their fusion cross section at low energies is of interest for pure and applied physics. Both reactions belong to the network of processes to fuel the first inertial confinement fusion reactors in the range of kT= 1 to 30 keV. These energies overlap with the burning temperatures of deuterium in the Pre-main sequence of stellar evolution. They are key processes in the Standard Big Bang Nucleosynthesis (SBBN), in an energy region from 50 to 300 keV and experimental data at least up to 1 MeV are required for an accurate calculation of the reaction rate. Providing experimental data for both channels from a single experiment and over the entire energy range of interest is crucial for an accurate calculation of the reaction rates. This is what has been obtained from the present Trojan Horse (TH) investigation with new reaction rates which deviate by more than 20% from available direct data. This represents also the first pioneering experiment in quasi free regime where the charged spectator is detected.

  9. Low-energy nuclear fusion data and their relation to magnetic and laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Jarmie, N.

    1980-04-01

    The accuracy of the basic fusion data for the T(d,n)/sup 4/He, /sup 3/He(d,p)/sup 4/He, T(t,2n)/sup 4/He, D(d,n)/sup 3/He, and D(d,p)T reactions was investigated in the 10- to 100-keV bombarding energy region, and the effects of inaccuracies on the design of fusion reactors were assessed. The data base for these reactions (particularly, the most critical T(d,n)/sup 4/He reaction) rests on 25-year-old experiments the accuracy (often assumed to be +- 5%) of which has rarely been questioned: yet, in all except the d + d reactions, there are significant differences among data sets. The errors in the basic data sets may be considerably larger than previously expected, and the effect on design calculations should be significant. Much of the trouble apparently lies in the accuracy of the energy measurements, which are difficult at low energies. Systematic errors of up to 50% are possible in the reactivity values of the present T(d,n)/sup 4/He data base. The errors in the reactivity will propagate proportionately into the errors in fusion probabilities in reactor calculations. /sup 3/He(d,p)/sup 4/He reaction cross sections could be in error by as much as 50% in the low-energy region. The D(d,n)/sup 3/He and D(d,p)T cross sections appear to be well known and consistent. The T(t,2n)/sup 4/He cross section is poorly known and may be subject to large systematic errors. Improved absolute measurements for all the reactions in the low bombarding energy region (10 to 100 keV) are needed, but until they are done, the data sets should be left as they are (except for T(t,2n)/sup 4/He data, which could be lowered by about 50%). The apparent uncertainties of these data sets should be kept in mind. 14 figures.

  10. Investigation of heat of fusion storage for solar low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2005-01-01

    and xanthane rubber. The storage can cool down to surrounding temperature preserving the latent heat in form of the heat of fusion energy. The basis for the calculations is a super low energy house with a space heating demand of 2010 kWh/year and a domestic hot water demand of 2530 kWh/year. For storage...

  11. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2006-01-01

    to achieve 100% coverage of space heating and domestic hot water in a low energy house in a Danish climate with a solar heating system with 36 m² flat plate solar collector and approximately 10 m³ storage with sodium acetate. A traditional water storage solution aiming at 100% coverage will require a storage...... of the storage to cool down below the melting point without solidification preserving the heat of fusion energy. If the supercooled storage reaches the surrounding temperature no heat loss will take place until the supercooled salt is activated. The investigation shows that this concept makes it possible...

  12. New results in low-energy fusion of 40Ca+Zr,9290

    Science.gov (United States)

    Stefanini, A. M.; Montagnoli, G.; Esbensen, H.; Čolović, P.; Corradi, L.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Soić, N.; Strano, E.; Szilner, S.

    2017-07-01

    Background: Near- and sub-barrier fusion of various Ca + Zr isotopic combinations have been widely investigated. A recent analysis of 40Ca+96Zr data has highlighted the importance of couplings to multiphonon excitations and to both neutron and proton transfer channels. Analogous studies of 40Ca+90Zr tend to exclude any role of transfer couplings. However, the lowest measured cross section for this system is rather high (840 μ b ). A rather complete data set is available for 40Ca+94Zr , while no measurement of 40Ca+92Zr fusion has been performed in the past. Purpose: Our aim is to measure the full excitation function of 40Ca+92Zr near the barrier and to extend downward the existing data on 40Ca+90Zr , in order to estimate the transfer couplings that should be used in coupled-channels calculations of the fusion of these two systems and of 40Ca+94Zr . Methods: 40Ca beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used, bombarding thin metallic 90Zr (50 μ g /cm2 ) and 92ZrO2 targets (same thickness) enriched to 99.36 % and 98.06 % in masses 90 and 92, respectively. An electrostatic beam deflector allowed the detection of fusion evaporation residues (ER) at very forward angles, and angular distributions of ER were measured. Results: The excitation function of 40Ca+92Zr has been measured down to the level of ≃60 μ b . Coupled-channels (CC) calculations using a standard Woods-Saxon (WS) potential and following the line of a previous analysis of 40Ca+96Zr fusion data give a good account of the new data, as well as of the existing data for 40Ca+94Zr . The previous excitation function of 40Ca+90Zr has been extended down to 40 μ b . Conclusions: Transfer couplings play an important role in explaining the fusion data for 40Ca+92Zr and 40Ca+94Zr . The strength of the pair-transfer coupling is deduced by applying a simple recipe based on the value obtained for 40Ca+96Zr . The logarithmic slopes and the S factors for fusion are reproduced

  13. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Science.gov (United States)

    Silk, Jonathan R.; Dashwood, Richard J.; Chater, Richard J.

    2010-06-01

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  14. Low energy cost for optimal speed and control of membrane fusion.

    Science.gov (United States)

    François-Martin, Claire; Rothman, James E; Pincet, Frederic

    2017-02-07

    Membrane fusion is the cell's delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand.

  15. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperatu...... the storage is in its super cooled phase without activation of the phase change. This paper presents an initial simulation model of a PCM storage for implementation in TRNSYS 15 [1] as well as the first test results achieved with the model....

  16. Low energy molecule-surface interaction processes of relevance to next-generation fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Snowdon, K.J.; Tawara, H.

    1996-03-01

    The mechanisms which may lead to molecular release or scattering from surfaces exposed to low energy (0.1-100 eV) particle irradiation or photon and electron irradiation are summarized. The charge and electronic state, angular, translational and internal energies of the departing molecules are, where possible, described and the physical origin of the characteristics of each distribution explained. On the basis of our current understanding of these surface processes, we argue for the use of medium- to high-Z metal surfaces in plasma facing components of the gas-blanket type divertor recently proposed for ITER. By operating such surfaces at sufficiently elevated temperatures, the release of highly vibrationally excited hydrogen molecules via Eley-Rideal-like surface recombination reactions could be suppressed. (author). 73 refs.

  17. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... (and the the return temperature) would only be a few degrees above room temperature due to the very low heating demand and the large heat transfer surface area. One of the objectives in a newly started IEA Task 32 project is to investigate and develop improved thermal storages for combined solar...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  18. Low-energy d+d fusion reactions via the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A., E-mail: tumino@lns.infn.it [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Universita degli Studi di Enna ' Kore' , Enna (Italy); Spitaleri, C. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Mukhamedzhanov, A.M. [Cyclotron Institute Texas A and M University, College Station, TX (United States); Typel, S. [Excellence Cluster Universe, Technische Universitaet Muenchen, Garching (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH - Theorie, Darmstadt (Germany); Aliotta, M. [School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland (United Kingdom); Scottish Universities Physics Alliance (United Kingdom); Burjan, V. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); Gimenez del Santo, M. [Departamento de Fisica Nuclear, Universitade de Sao Paulo, Sao Paulo (Brazil); Kiss, G.G. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); ATOMKI, Debrecen (Hungary); Kroha, V.; Hons, Z. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); La Cognata, M.; Lamia, L. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Mrazek, J. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); Pizzone, R.G. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Piskor, S. [Nuclear Physics Institute of ASCR, Rez (Czech Republic); Rapisarda, G.G.; Romano, S.; Sergi, M.L.; Sparta, R. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy)

    2011-06-06

    The bare nucleus S(E) factors for the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured for the first time via the Trojan Horse Method off the proton in {sup 3}He from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre-Main-Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from available direct data with new S(0) values of 57.4{+-}1.8 MeVb for {sup 3}H+p and 60.1{+-}1.9 MeVb for {sup 3}He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  19. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... as the theoretical results obtained for a solar combi system with the PCM-storage installed in a low energy house in a Danish climate. Parametric studies of collector area, storage volume and solar fraction for the PCM-system will be presented as well as an outline for a system with 100% coverage of the space...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...

  20. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  1. Low energy RBS-channeling measurement system with the use of a time-of-flight scattered ion detector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masataka; Kobayashi, Naoto; Hayashi, Nobuyuki [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1996-07-01

    We have developed a low energy Rutherford backscattering spectrometry-ion channeling measurement system for the analysis of thin films and solid surfaces with the use of several tens keV hydrogen ions and a time-of-flight particle energy spectrometer. For the detection of the scattered ions new TOF spectrometer has been developed, which consists of two micro-channel-plate detectors. The pulsing of the primary ion beam is not necessary for this type of TOF measurement, and it is possible to observe continues scattered ion beams. The dimension of whole system is very compact compared to the conventional RBS-channeling measurement system with the use of MeV He ions. The energy resolution, {delta} E/E, for 25 keV H{sup +} was 4.1%, which corresponds to the depth resolution of 4.8 nm for silicon. The depth resolution of our system is better than that of conventional RBS system with MeV helium ions and solid state detectors. We have demonstrated the ion channeling measurement by this system with 25 keV hydrogen ions. The system can be available well to the analysis of thin films and solid surfaces with the use of the ion channeling effect. The observation of the reaction between Fe and hydrogen terminated silicon surface was also demonstrated. (J.P.N.)

  2. Monte-Carlo Simulation of Exclusive Channels in e+e- Annihilation at Low Energy

    CERN Document Server

    Anipko, D A; Pak, A

    2003-01-01

    Software package for Monte-Carlo simulation of e+e- exclusive annihilation channels written in the C++ language for Linux/Solaris platforms has been developed. It incorporates matrix elements for several mechanisms of multipion production in a model of consequent two and three-body resonance decays. Possible charge states of intermediate and final particles are accounted automatically under the assumption of isospin conservation. Interference effects can be taken into acccount. Package structure allows adding new matrix elements written in a gauge-invariant form.

  3. Observation of Strong Reflection of Electron Waves Exiting a Ballistic Channel at Low Energy

    Science.gov (United States)

    Vaz, Canute I.; Liu, Changze; Campbell, Jason P.; Ryan, Jason T.; Southwick, Richard G.; Gundlach, David; Oates, Anthony S.; Huang, Ru; Cheung, Kin. P.

    2016-01-01

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger's equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable. PMID:27882264

  4. Long-term channel adjustment and geomorphic feature creation by vegetation in a lowland, low energy river

    Science.gov (United States)

    Grabowski, Robert; Gurnell, Angela

    2016-04-01

    Physical habitat restoration is increasingly being used to improve the ecological status of rivers. This is particularly true for lowland streams which are perceived to lack sufficient energy to create new features or to flush out fine sediment derived from agricultural and urban sources. However, this study has found that even in low-energy, base-flow dominated chalk streams, physical habitat improvement can happen naturally without direct human intervention. Furthermore this positive change is achieved by components of the river that are often regarded as management problems: in-stream macrophytes (i.e. weed), riparian trees, woody debris, and most importantly fine sediment. This project investigated the long-term changes in channel planform for the River Frome (Dorset, UK) over the last 120 years and the role of aquatic and riparian vegetation in driving this change. Agricultural census data, historical maps, recent aerial images and field observations were analysed within a process-based, hierarchical framework for hydromorphological assessment, developed in the EU FP7 REFORM project, to investigate the source and timing of fine sediment production in the catchment, to quantify the reach-scale geomorphic response, and to identify vegetation-related bedforms that could be responsible for the adjustment. The analysis reveals that the channel has narrowed and become more sinuous in the last 50-60 years. The timing of this planform adjustment correlates with substantial changes in land use and agricultural practices (post-World War II) that are known to increase soil erosion and sediment connectivity. The field observations and recent aerial images suggest that the increased delivery of fine sediment to the channel has been translated into geomorphic adjustment and diversification though the interactions between vegetation, water flow and sediment. Emergent aquatic macrophytes are retaining fine sediment, leading to the development of submerged shelves that aggrade

  5. Entrance channel effect in the incomplete fusion reactions

    Directory of Open Access Journals (Sweden)

    Singh B.P.

    2011-10-01

    Full Text Available In the present work the effect of various entrance channel parameters on incomplete fusion strength and the reaction dynamics in 12C+159Tb system at energies ≈ 4-7MeV/A have been investigated by measuring the excitation functions of individual reaction channels. Experimental excitation functions have been analyzed in the framework of compound nucleus decay using statistical model code PACE4. Analysis of data suggests the production of xn/pxn-channels via complete fusion of 12C with 159Tb, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones. This enhancement has been attributed due to incomplete fusion. For better insight into the underlying dynamics, fraction of incomplete fusion to the total fusion has been deduced and compared with 16O+159Tb and other nearby systems as a function of various entrance channel parameters. The fraction of incomplete fusion has been found to be sensitive to the projectile type, energy and entrance-channel mass-asymmetry.

  6. Relating molecular structure and low-energy fusion through time-dependent wave-packet dynamics: the 12C+12C collision

    Directory of Open Access Journals (Sweden)

    Diaz-Torres Alexis

    2015-01-01

    Full Text Available Recent progress in a quantitative study of the 12C+12C sub-Coulomb fusion is reported. It is carried out using full-dimensional, time-dependent wave-packet dynamics, a quantum reaction model that has not been much exploited in nuclear physics, unlike in chemical physics. The low-energy collision is described in the rotating center-of-mass frame within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave-packet through the collective potential-energy landscape that is calculated with a realistic two-center shell model. Among other preliminary results, the theoretical sub-Coulomb fusion resonances for 12C+12C seem to correspond well with observations. The method appears to be useful for expanding the cross-section predictions towards stellar energies.

  7. Light charged particles from low-energy {sup 58}Ni+{sup 112}Sn fusion-evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Fineman, B.J.; Brinkmann, K.; Caraley, A.L.; Gan, N.; Kernan, W.J.; McGrath, R.L.; Savas, T.A. [Physics Department, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States)

    1995-06-01

    Proton and {alpha}-particle energy spectra were measured in coincidence with evaporation residues from 252 and 295 MeV {sup 58}Ni+{sup 112}Sn fusion reactions. Residues were separated from the beam using an electrostatic deflector and detected with surface barrier detectors. Light charged particles were detected with arrays of NaI detectors. Statistical model calculations based on standard parameter choices reproduce the spectra from the cold, low spin {sup 170}Pt{sup *} system. The effects of employing different methods of calculating transmission coefficients were explored. The optical model, ingoing wave boundary condition model, and a simple one-dimensional barrier penetration model from a fusion systematics analysis produce comparable satisfactory predictions. The Hill-Wheeler approximation for transmission coefficients gives unrealistic results for protons.

  8. Fusion and neutron transfer reactions with weakly bound nuclei within time-dependent and coupled channel approaches

    Science.gov (United States)

    Samarin, V. V.

    2016-05-01

    The time-dependent Schrödinger equation and the coupled channel approach based on the method of perturbed stationary two-center states are used to describe nucleon transfers and fusion in low-energy nuclear reactions. Results of the cross sections calculation for the formation of the 198Au and fusion in the 6He+197Au reaction and for the formation of the 65Zn in 6He+64Zn reaction agree satisfactorily with the experimental data near the barrier. The Feynman's continual integrals calculations for a few-body systems were used for the proposal of the new form of the shell model mean field for helium isotopes.

  9. Contributions of complete fusion and break-up–fusion to intermediate mass fragment production in the low energy interaction of 12C and 27Al

    CERN Document Server

    Förtsch, S V; Colleoni, P; Gadioli, E; Gadioli Erba, E; Mairani, A; Steyn, G F; Lawrie, J J; Smit, F D; Connell, S H; Fearick, R W; Thovhogi, T

    2007-01-01

    The measured spectra of a large number of intermediate mass fragments produced at a CM energy of about 110 MeV in the 27Al(12C, x) reaction as well as in its inverse reaction, 12C(27Al, x), are presented. The analysis of these data suggests that, at this energy, the main reaction mechanisms which contribute to the intermediate mass fragment emission are two-nucleus complete fusion and break-up–fusion reactions.

  10. Color-to-grayscale conversion through weighted multiresolution channel fusion

    Science.gov (United States)

    Wu, Tirui; Toet, Alexander

    2014-07-01

    We present a color-to-gray conversion algorithm that retains both the overall appearance and the discriminability of details of the input color image. The algorithm employs a weighted pyramid image fusion scheme to blend the R, G, and B color channels of the input image into a single grayscale image. The use of simple visual quality metrics as weights in the fusion scheme serves to retain visual contrast from each of the input color channels. We demonstrate the effectiveness of the method by qualitative and quantitative comparison with several state-of-the-art methods.

  11. Color-to-grayscale conversion through weighted multiresolution channel fusion

    NARCIS (Netherlands)

    Wu, T.; Toet, A.

    2014-01-01

    We present a color-to-gray conversion algorithm that retains both the overall appearance and the discriminability of details of the input color image. The algorithm employs a weighted pyramid image fusion scheme to blend the R, G, and B color channels of the input image into a single grayscale

  12. Statistical Hauser-Feshbach theory with width fluctuation correction including direct reaction channels for neutron induced reaction at low energies

    CERN Document Server

    Kawano, T; Hilaire, S

    2016-01-01

    A model to calculate particle-induced reaction cross sections with statistical Hauser-Feshbach theory including direct reactions is given. The energy average of scattering matrix from the coupled-channels optical model is diagonalized by the transformation proposed by Engelbrecht and Weidenm\\"{u}ller. The ensemble average of $S$-matrix elements in the diagonalized channel space is approximated by a model of Moldauer [Phys.Rev.C {\\bf 12}, 744 (1975)] using newly parametrized channel degree-of-freedom $\

  13. Development of multichannel low-energy neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Arikawa, Y., E-mail: arikawa-y@ile.osaka-u.ac.jp; Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan); Murata, T. [Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  14. Contact Resistance and Channel Conductance of Graphene Field-Effect Transistors under Low-Energy Electron Irradiation

    Directory of Open Access Journals (Sweden)

    Filippo Giubileo

    2016-11-01

    Full Text Available We studied the effects of low-energy electron beam irradiation up to 10 keV on graphene-based field effect transistors. We fabricated metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO2, obtaining specific contact resistivity ρ c ≈ 19 k Ω · µ m 2 and carrier mobility as high as 4000 cm2·V−1·s−1. By using a highly doped p-Si/SiO2 substrate as the back gate, we analyzed the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate herein that low energy irradiation is detrimental to the transistor current capability, resulting in an increase in contact resistance and a reduction in carrier mobility, even at electron doses as low as 30 e−/nm2. We also show that irradiated devices recover their pristine state after few repeated electrical measurements.

  15. Applicability of the continuum-discretized coupled-channels method to the deuteron breakup at low energies

    CERN Document Server

    Ogata, Kazuyuki

    2016-01-01

    We re-examine the deuteron elastic breakup cross sections on 12C and 10Be at low incident energies, for which a serious discrepancy between the continuum-discretized coupled-channels method (CDCC) and the Faddeev-Alt-Grassberger-Sandhas theory (FAGS) was pointed out. We show the closed-channels neglected in the preceding study affect significantly the breakup cross section calculated with CDCC, resulting in good agreement with the result of FAGS.

  16. Underwater color image segmentation method via RGB channel fusion

    Science.gov (United States)

    Xuan, Li; Mingjun, Zhang

    2017-02-01

    Aiming at the problem of low segmentation accuracy and high computation time by applying existing segmentation methods for underwater color images, this paper has proposed an underwater color image segmentation method via RGB color channel fusion. Based on thresholding segmentation methods to conduct fast segmentation, the proposed method relies on dynamic estimation of the optimal weights for RGB channel fusion to obtain the grayscale image with high foreground-background contrast and reaches high segmentation accuracy. To verify the segmentation accuracy of the proposed method, the authors have conducted various underwater comparative experiments. The experimental results demonstrate that the proposed method is robust to illumination, and it is superior to existing methods in terms of both segmentation accuracy and computation time. Moreover, a segmentation technique is proposed for image sequences for real-time autonomous underwater vehicle operations.

  17. Role of scalar dibaryon and $f_0(500)$ in the isovector channel of low-energy neutron-proton scattering

    CERN Document Server

    Deinet, Werner; Giacosa, Francesco; Rischke, Dirk H

    2016-01-01

    We calculate the total and the differential cross section for $np$ scattering at low energies in the isospin $I=1$ channel within the so-called extended Linear Sigma Model. This model contains conventional (pseudo)scalar and (axial--)vector mesons, as well as the nucleon and its chiral partner within the mirror assignment. In order to obtain good agreement with experimental data we need to consider two additional resonances: the lightest scalar state $f_{0}(500)$ and a dibaryon state with quantum numbers $I=1,$ $J^{P}=0^{+}$ (a.k.a.\\ $^{1}S_{0}$ resonance). The resonance $f_{0}(500)$ is coupled to nucleons in a chirally invariant way through the mirror assignment and is crucial for a qualitatively correct description of the shape of the differential cross section. On the other hand, the dibaryon is exchanged in the $s$--channel and is responsible of the large cross section close to threshold. We compare our results to data summarized by the SAID program of the CNS Data Analysis Center.

  18. Relationship between and effect of inelastic excitations and transfer channels on sub-barrier fusion enhancement

    Science.gov (United States)

    Khushboo, Mandal, S.; Nath, S.; Madhavan, N.; Gehlot, J.; Jhingan, A.; Kumar, Neeraj; Banerjee, Tathagata; Kaur, Gurpreet; Rojeeta Devi, K.; Banerjee, A.; Neelam, Varughese, T.; Siwal, Davinder; Garg, R.; Mukul, Ish; Saxena, M.; Verma, S.; Kumar, S.; Behera, B. R.; Verma, P.

    2017-07-01

    Background: It is a well established fact that nuclear deformation and vibration influence fusion dynamics around the Coulomb barrier. This effect was observed for several systems with the inclusion of inelastic excitations in coupled-channels calculations. Sub-barrier fusion cross sections were also observed to be affected by neutron transfer in systems carrying positive Q value for transfer channels. However, recent experimental analysis with a few systems showed that inelastic excitations are enough to explain the sub-barrier fusion behavior, and no effect was noticed due to positive Q -value transfer channels. Purpose: The motivation behind present investigation is to explore the effects of colliding nuclei structure and the transfer channel on enhancement of sub-barrier fusion cross sections. Method: An experiment was performed with Heavy Ion Reaction Analyzer (HIRA) at New Delhi to measure the fusion cross sections for 28Si+Zr,9692 systems. These cross sections were later compared with quantum mechanical coupled-channels calculations. In order to explore the effects of nuclear deformation on fusion cross sections, the present data were compared with those of other researchers on fusion who have used various projectiles of different structural properties on a 96Zr target. Results: Experimental fusion cross sections have been extracted around the Coulomb barrier. In the coupled-channels framework, inclusion of inelastic excitations of both projectile (28Si) and targets (Zr,9692) could reproduce the experimental cross sections around the Coulomb barrier, but they deviated substantially in the sub-barrier region. This indicates that positive Q -value neutron transfer channels may need to be included in the calculations to reproduce the experimental cross sections at sub-barrier energies. Conclusions: The nuclear structure of interacting nuclei has a strong influence on sub-barrier fusion enhancement. The effect of multineutron transfer channels was observed to be

  19. Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    CERN Document Server

    Mosteiro, P; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Caccianiga, B; Cadonati, L; Calaprice, F; Caminata, A; Cavalcante, P; Chavarria, A; Chepurnov, A; D'Angelo, D; Davini, S; Derbin, A; Empl, A; Etenko, A; Fomenko, K; Franco, D; Gabriele, F; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Gromov, M; Hagner, C; Hungerford, E; Ianni, Al; Ianni, An; Kobychev, V; Korablev, D; Korga, G; Kryn, D; Laubenstein, M; Lehnert, B; Lewke, T; Litvinovich, E; Lombardi, F; Lombardi, P; Ludhova, L; Lukyanchenko, G; Machulin, I; Manecki, S; Maneschg, W; Marcocci, S; Meindl, Q; Meroni, E; Meyer, M; Miramonti, L; Misiaszek, M; Montuschi, M; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Pocar, A; Ranucci, G; Razeto, A; Re, A; Romani, A; Rossi, N; Saldanha, R; Salvo, C; Schoenert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Wang, H; Winter, J; Wojcik, M; Wright, A; Wurm, M; Zaimidoroga, O; Zavatarelli, S; Zuber, K; Zuzel, G

    2015-01-01

    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.

  20. An Image Fusion Method Based on NSCT and Dual-channel PCNN Model

    OpenAIRE

    Nianyi Wang; Yide Ma; Weilan Wang; Shijie Zhou

    2014-01-01

    NSCT is one of useful multiscale geometric analysis tools, which takes full advantage of geometric regularity of image intrinsic structures. The dual-channel PCNN is a simplified PCNN model, which can process multiple images by a single PCNN. This saves time in the process of image fusion and cuts down computational complexity. In this paper, we present a new image fusion scheme based on NSCT and dual-channel PCNN. Firstly, the fusion rules of subband coefficients of NSCT are discussed. For t...

  1. An Image Fusion Method Based on NSCT and Dual-channel PCNN Model

    Directory of Open Access Journals (Sweden)

    Nianyi Wang

    2014-02-01

    Full Text Available NSCT is one of useful multiscale geometric analysis tools, which takes full advantage of geometric regularity of image intrinsic structures. The dual-channel PCNN is a simplified PCNN model, which can process multiple images by a single PCNN. This saves time in the process of image fusion and cuts down computational complexity. In this paper, we present a new image fusion scheme based on NSCT and dual-channel PCNN. Firstly, the fusion rules of subband coefficients of NSCT are discussed. For the fusion rule of low frequency coefficients, the maximum selection rule (MSR is used. Then, for the fusion rule of high frequency coefficients, spatial frequency (SF of each high frequency subband is considered as the gradient features of images to motivate dual-channel PCNN networks and generate pulse of neurons. At last, fused image is obtained by using the inverse NSCT transform. In order to show that the proposed method can deal with image fusion, we used two pairs of images as our experimental subjects. The proposed method is compared with other five methods. The performance of various methods is mathematically evaluated by using four image quality evaluation criteria. Experimental comparisons conducted on different fusion methods prove the effectiveness of the proposed fusion method

  2. Coupled-channels description of the 40Ca+58,64Ni transfer and fusion reactions

    CERN Document Server

    Scamps, G; Hagino, K; Haas, F; Courtin, S

    2016-01-01

    Preliminary experimental data for nucleon transfer reactions of the 40Ca+58Ni and 40Ca+64Ni systems are analyzed with the coupled- channels approach. It is shown that a simple treatment for the transfer in the coupled-channels method cannot reproduce simultaneously the transfer probabilities and the sub-barrier enhancement of fusion cross sections.

  3. Effects of entrance channel on fusion probability in hot fusion reactions

    CERN Document Server

    Zhu, Long; Huang, Ching-Yuan; Zhang, Feng-Shou

    2016-01-01

    Within the framework of the dinuclear system (DNS) model, the fusion reactions leading to the compound nuclei 274Hs and 286Cn are investigated. The fusion probability as a function of DNS excitation energy is studied. The calculated results are in good agreement with the available experimental data. The obtained results show that the fusion probabilities are obviously enhanced for the reactions located at high place in potential energy surface, although these reactions may have small values of mass asymmetry. It is found that the enhancement is due to the large potential energy of the initial DNS.

  4. Pre-formed plasma channels for ion beam fusion

    Science.gov (United States)

    Peterson, R. R.; Olson, C. L.

    1997-04-01

    The transport of driver ions to the target in an IFE power plant is an important consideration in IFE target chamber design. Pre-formed laser-guided plasma discharge channels have been considered for light ions because they reduce the beam microdivergence constraints, allow long transport lengths, and require a target chamber fill gas that can help protect the target chamber from the target explosion. Here, pre-formed plasma discharge channels are considered for heavy ion transport. The channel formation parameters are similar to those for light ions. The allowable ion power per channel is limited by the onset of plasma instabilities and energy loss due to a reverse emf from the rapid channel expansion driven by the ion beam.

  5. Investigating multi-channel quantum tunneling in heavy-ion fusion reactions with Bayesian spectral decomposition

    CERN Document Server

    Hagino, K

    2016-01-01

    Excitations of colliding nuclei during a nuclear reaction considerably affect fusion cross sections at energies around the Coulomb barrier. It has been demonstrated that such channel coupling effects can be represented in terms of a distribution of multiple fusion barriers. We here apply a Bayesian approach to analyze the so called fusion barrier distributions. This method determines simultaneously the barrier parameters and the number of barriers. We particularly investigate the $^{16}$O+$^{144}$Sm and $^{16}$O+$^{154}$Sm systems in order to demonstrate the effectiveness of the method. The present analysis indicates that the fusion barrier distribution for the former system is most consistent with three fusion barriers, even though the experimental data show only two distinct peaks.

  6. Oscillations at low energies

    CERN Document Server

    Dwyer, D A

    2015-01-01

    A concise summary of the "Oscillation at low energies" parallel session at the 2014 Neutrino Oscillation Workshop is provided. Plans to use man-made neutrinos and antineutrinos to determine the neutrino mass hierarchy, search for sterile neutrinos, and to observe coherent neutrino-nucleus scattering were discussed. Potential measurements of solar neutrinos, supernova neutrinos, and geoneutrinos are also summarized.

  7. Effects of entrance channel on fusion probability in hot fusion reactions

    Science.gov (United States)

    Zhu, Long; Su, Jun; Huang, Ching-Yuan; Zhang, Feng-Shou

    2016-12-01

    Within the framework of the dinuclear system (DNS) model, the fusion reactions leading to the compound nuclei 274Hs* and 286Cn* are investigated. The fusion probability as a function of DNS excitation energy is studied. The calculated results are in good agreement with the available experimental data. The obtained results show that the fusion probabilities are obviously enhanced for the reactions located at high place in potential energy surface, although these reactions may have small values of mass asymmetry. It is found that the enhancement is due to the large potential energy of the initial DNS. Supported by Natural Science Foundation of Guangdong Province China (2016A030310208). National Natural Science Foundation of China (11605296, 11405278, 11505150, 11635003), Fundamental Research Funds for the Central Universities (15 lgpy 30) and China Postdoctoral Science Foundation (2015M582730)

  8. Low energy boron implantation in silicon: (1) reduction of channeling tail by careful alignments. (2) Transient diffusion during rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.

    1985-01-01

    An attempt was made to minimize the channeling tail by implantation along a random equivalent direction following a careful alignment of the target. In order to analytically determine the random equivalent directions, critical angles for channeling were mapped on a stereogram. Boron ions with energies of 17 and 45 keV are implanted along specified directions determined from the map. The depth distribution of the dopant is profiled by SIMS and the effects of water orientation upon the channeling tail are noted. Industrial common use of a 7/sup 0/ tilt is not optimum. However, implantation with the wafer tilted at 5.5 +/- 0.5/sup 0/ from the surface normal and rotated at 7.0 +/- 0.5/sup 0/ from a (100) plane shows the least channel-tail compared to implantation along other directions. Rapid thermal annealing (RTA) is a promising annealing method for shallow junction formation. Transient enhanced diffusion of implanted boron is observed. Two different mechanisms for the boron diffusion enhancement are suggested; namely the fast diffusion of boron interstitials or the enhancement by point defects generated during RTA. However, no experimental evidence exists so far.

  9. Low-energy neutrinos

    CERN Document Server

    Ludhova, Livia

    2016-01-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the feld of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artifcial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three felds, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  10. Low Energy Hadron Physics

    CERN Document Server

    Pennington, Michael R

    2000-01-01

    Ask a group of particle theorists about low energy hadron physics and they will say that this is a subject that belongs to the age of the dinosaurs. However, it is GeV physics that controls the outcome of every hadronic interaction at almost every energy. Confinement of quarks and gluons (and any other super-constituents) means that it is the femto-universe that determines what experiments detect. What we have to learn at the start of the 21st century is discussed.

  11. Low Energy Nuclear Reactions?

    CERN Document Server

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  12. Extra Low ENergy Antiproton

    CERN Multimedia

    To produce dense antiproton beams at very low energies (110 keV), it has been proposed to install a small decelerator ring between the existing AD ring and the experimental area. Phase-space blowup during deceleration is compensated by electron cooling such that the final emittances are comparable to the 5MeV beam presently delivered by the AD. An immediate consequence is a significant increase in the number of trapped antiprotons at the experiments as outlined in the proposal CERN/SPSC-2009-026; SPCS-P-338. This report describes the machine parameters and layout of the proposal ELENA (Extra Low ENergy Antiproton)ring also gives an approximate estimate of cost and manpower needs. Since the initial estimate, published in 2007 (CERN-AB-2007-079), the ELENA design has evolved considerably. This is due to a new location in the AD hall to acommodate for the possibility of another experimental zone, as suggested by the SPCS, and also due to improvements in the ring optics and layout. The cost estimate that is prese...

  13. Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, C.; Penache, D.; Tauschwitz, A.; Rosmej, F.B.; Neff, S.; Birkner, R.; Constantin, C.; Knobloch, R.; Presura, R.; Yu, S.S.; Sharp, W.M.; Ponce, D.M.; Hoffmann, D.H.H.

    2002-05-01

    The final beam transport in the reactor chamber for heavy ion fusion in preformed plasma channels offers many attractive advantages compared to other transport modes. In the past few years, experiments at the Gesellschaft fuer Schwerionenforschung (GSI) accelerator facility have addressed the creation and investigation of discharge plasmas, designed for the transport of intense ion beams. Stable, self-standing channels of 50 cm length with currents up to 55 kA were initiated in low-pressure ammonia gas by a CO{sub 2}-laser pulse along the channel axis before the discharge is triggered. The channels were characterized by several plasma diagnostics including interferometry and spectroscopy. We also present first experiments on laser-guided intersecting discharges.

  14. Present status of coupled-channels calculations for heavy-ion subbarrier fusion reactions

    CERN Document Server

    Hagino, K

    2015-01-01

    The coupled-channels method has been a standard tool in analyzing heavy-ion fusion reactions at energies around the Coulomb barrier. We investigate three simplifications usually adopted in the coupled-channels calculations. These are i) the exclusion of non-collective excitations, ii) the assumption of coordinate independent coupling strengths, and iii) the harmonic oscillator approximation for multi-phonon excitations. In connection to the last point, we propose a novel microscopic method based on the beyond-mean-field approach in order to take into account the anharmonic effects of collective vibrations.

  15. Multi-spectral image fusion method based on two channels non-separable wavelets

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; PENG JiaXiong

    2008-01-01

    A construction method of two channels non-separable wavelets filter bank which dilation matrix is [1, 1; 1, -1] and its application in the fusion of multi-spectral image are presented. Many 4x4 filter banks are designed. The multi-spectral image fusion algorithm based on this kind of wavelet is proposed. Using this filter bank, multi-resolution wavelet decomposition of the intensity of multi-spectral image and panchromatic image is performed, and the two low-frequency components of the intensity and the panchromatic image are merged by using a tradeoff parameter. The experiment results show that this method is good in the preservation of spectral quality and high spatial resolution information. Its performance in preserving spectral quality and high spatial information is better than the fusion method based on DWFT and IHS. When the parameter t is closed to 1, the fused image can obtain rich spectral information from the original MS image. The amount of computation reduced to only half of the fusion method based on four channels wavelet transform.

  16. Higgs self-coupling in the fusion channel at the international linear collider

    Indian Academy of Sciences (India)

    K Moeing; A Rosca

    2007-11-01

    We investigate the Higgs pair production process at the international linear collider (ILC), focusing on the measurement of the trilinear self-coupling of the Higgs boson in the fusion channel. The sensitivity of this measurement is discussed in the Higgs mass range 140-200 GeV at a center-of-mass energy between 1 TeV and 1.5 TeV.

  17. Inside bluetooth low energy

    CERN Document Server

    Gupta, Naresh

    2013-01-01

    Bluetooth Low Energy (LE) is one of the latest enhancement to Bluetooth technology and, as the name suggests, it is aimed at ultra low power devices, such as heart rate monitors, thermometers, and sensors. Due to very low power consumption, devices compliant with this standard can operate for several years on coin cell batteries without the need for recharging. This cutting-edge book helps you understand the whats , whys , and hows of Bluetooth LE. It includes a broad view of the technology, identifies the various building blocks, and explains how they come together. You also find discussions on Bluetooth basics, providing the background information needed to master Bluetooth LE.The book explains the architecture of Bluetooth LE stack and the functionality provided by each of the layers. You find expert guidance in setting up your own system in a quick and efficient manner with inexpensive, easily available hardware and just a couple of PCs running Linux. This unique volume features two chapters that are dedi...

  18. Dual Channel Pulse Coupled Neural Network Algorithm for Fusion of Multimodality Brain Images with Quality Analysis

    Directory of Open Access Journals (Sweden)

    Kavitha SRINIVASAN

    2014-09-01

    Full Text Available Background: In the review of medical imaging techniques, an important fact that emerged is that radiologists and physicians still are in a need of high-resolution medical images with complementary information from different modalities to ensure efficient analysis. This requirement should have been sorted out using fusion techniques with the fused image being used in image-guided surgery, image-guided radiotherapy and non-invasive diagnosis. Aim: This paper focuses on Dual Channel Pulse Coupled Neural Network (PCNN Algorithm for fusion of multimodality brain images and the fused image is further analyzed using subjective (human perception and objective (statistical measures for the quality analysis. Material and Methods: The modalities used in fusion are CT, MRI with subtypes T1/T2/PD/GAD, PET and SPECT, since the information from each modality is complementary to one another. The objective measures selected for evaluation of fused image were: Information Entropy (IE - image quality, Mutual Information (MI – deviation in fused to the source images and Signal to Noise Ratio (SNR – noise level, for analysis. Eight sets of brain images with different modalities (T2 with T1, T2 with CT, PD with T2, PD with GAD, T2 with GAD, T2 with SPECT-Tc, T2 with SPECT-Ti, T2 with PET are chosen for experimental purpose and the proposed technique is compared with existing fusion methods such as the Average method, the Contrast pyramid, the Shift Invariant Discrete Wavelet Transform (SIDWT with Harr and the Morphological pyramid, using the selected measures to ascertain relative performance. Results: The IE value and SNR value of the fused image derived from dual channel PCNN is higher than other fusion methods, shows that the quality is better with less noise. Conclusion: The fused image resulting from the proposed method retains the contrast, shape and texture as in source images without false information or information loss.

  19. OPTIMIZATION OF MULTIPLE-CHANNEL COOPERATIVE SPECTRUM SENSING WITH DATA FUSION RULE IN COGNITIVE RADIO NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Yu Huogen; Tang Wanbin; Li Shaoqian

    2012-01-01

    This paper focuses on multi-channel Cooperative Spectrum Sensing (CSS) where Secondary Users (SUs) are assigned to cooperatively sense multiple channels simultaneously.A multi-channel CSS optimization problem of joint spectrum sensing and SU assignment based on data fusion rule is formulated,which maximizes the total throughput of the Cognitive Radio Network (CRN) subject to the constraints of probabilities of detection and false alarm.To address the optimization problem,a Branch and Bound (BnB) algorithm and a greedy algorithm are proposed to obtain the optimal solutions.Simulation results are presented to demonstrate the effectiveness of our proposed algorithms and show that the throughput improvement is achieved through the joint design.It is also shown that the greedy algorithm with a low complexity achieves the comparable performance to the exhaustive algorithm.

  20. Correlation functions with fusion-channel multiplicity in W3 Toda field theory

    CERN Document Server

    Belavin, Vladimir; Foda, Omar; Santachiara, Raoul

    2016-01-01

    Current studies of WN Toda field theory focus on correlation functions such that the WN highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W3 Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl3, and a semi-degenerate primary field with a highest-weight in the fundamental representation of sl3. We show that, when the fusion rules are obeyed, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian...

  1. Correlation functions with fusion-channel multiplicity in W{sub 3} Toda field theory

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie,Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)

    2016-06-22

    Current studies of W{sub N} Toda field theory focus on correlation functions such that the W{sub N} highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W{sub 3} Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl{sub 3}, and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl{sub 3}. We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W{sub N} theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  2. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  3. Theory of low-energy electron-molecule collision physics in the coupled-channel method and application to e-CO/sub 2/ scattering. [0. 01 to 10 eV, potentials, partial waves

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, M.A.

    1976-08-01

    A theory of electron-molecule scattering based on the fixed-nuclei approximation in a body-fixed reference frame is formulated and applied to e-CO/sub 2/ collisions in the energy range from 0.07 to 10.0 eV. The procedure used is a single-center coupled-channel method which incorporates a highly accurate static interaction potential, an approximate local exchange potential, and an induced polarization potential. Coupled equations are solved by a modification of the integral equations algorithm; several partial waves are required in the region of space near the nuclei, and a transformation procedure is developed to handle the consequent numerical problems. The potential energy is converged by separating electronic and nuclear contributions in a Legendre-polynomial expansion and including a large number of the latter. Formulas are derived for total elastic, differential, momentum transfer, and rotational excitation cross sections. The Born and asymptotic decoupling approximations are derived and discussed in the context of comparison with the coupled-channel cross sections. Both are found to be unsatisfactory in the energy range under consideration. An extensive discussion of the technical aspects of calculations for electron collisions with highly nonspherical targets is presented, including detailed convergence studies and a discussion of various numerical difficulties. The application to e-CO/sub 2/ scattering produces converged results in good agreement with observed cross sections. Various aspects of the physics of this collision are discussed, including the 3.8 eV shape resonance, which is found to possess both p and f character, and the anomalously large low-energy momentum transfer cross sections, which are found to be due to ..sigma../sub g/ symmetry. Comparison with static and static-exchange approximations are made.

  4. New approach to information fusion for Lipschitz classifiers ensembles: Application in multi-channel C-OTDR-monitoring systems

    Science.gov (United States)

    Timofeev, Andrey V.; Egorov, Dmitry V.

    2016-06-01

    This paper presents new results concerning selection of an optimal information fusion formula for an ensemble of Lipschitz classifiers. The goal of information fusion is to create an integral classificatory which could provide better generalization ability of the ensemble while achieving a practically acceptable level of effectiveness. The problem of information fusion is very relevant for data processing in multi-channel C-OTDR-monitoring systems. In this case we have to effectively classify targeted events which appear in the vicinity of the monitored object. Solution of this problem is based on usage of an ensemble of Lipschitz classifiers each of which corresponds to a respective channel. We suggest a brand new method for information fusion in case of ensemble of Lipschitz classifiers. This method is called "The Weighing of Inversely as Lipschitz Constants" (WILC). Results of WILC-method practical usage in multichannel C-OTDR monitoring systems are presented.

  5. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks.

    Science.gov (United States)

    Xu, Linfeng; Lee, Hun; Panchapakesan, Rajagopal; Oh, Kwang W

    2012-10-21

    We propose a robust droplet fusion and sorting method for two parallel trains of droplets that is relatively insensitive to frequency and phase mismatch. Conventional methods of droplet fusion require an extremely precise control of aqueous/oil flows for perfect frequency matching between two trains of droplets. In this work, by combining our previous two methods (i.e., droplet synchronization using railroad-like channels and manipulation of shape-dependent droplets using guiding tracks), we realized an error-free droplet fusion/sorting device for the two parallel trains of droplets. If droplet pairs are synchronized through a railroad-like channel, they are electrically fused and the fused droplets transit to a middle guiding track to flow in a middle channel; otherwise non-synchronized non-fused droplets will be discarded into the side waste channels by flowing through their own guiding tracks. The simple droplet synchronization, fusion, and sorting technology will have widespread application in droplet-based chemical or biological experiments, where two trains of the chemically or biologically treated or pre-formed droplets yield a train of 100% one-to-one fused droplets at the desired outlet channel by sorting all the non-synchronized non-fused droplets into waste outlets.

  6. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  7. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  8. New Approach for Evaluating Incomplete and Complete Fusion Cross Sections with Continuum-Discretized Coupled-Channels Method

    CERN Document Server

    Hashimoto, S; Chiba, S; Yahiro, M

    2009-01-01

    We propose a new method for evaluating incomplete and complete fusion cross sections separately using the Continuum-Discretized Coupled-Channels method. This method is applied to analysis of the deuteron induced reaction on a 7Li target up to 50 MeV of the deuteron incident energy. Effects of deuteron breakup on this reaction are explicitly taken into account. Results of the method are compared with those of the Glauber model, and the difference between the two is discussed. It is found that the energy dependence of the incomplete fusion cross sections obtained by the present calculation is almost the same as that obtained by the Glauber model, while for the complete fusion cross section, the two models give markedly different energy dependence. We show also that a prescription for evaluating incomplete fusion cross sections proposed in a previous study gives much smaller result than an experimental value.

  9. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    2009-01-01

    For a class of negative slowly decaying potentials, including V(x):=−γ|x|−μ with 0low-energy regime. Using appropriate modifiers of the Isozaki–Kitada type we show that scattering theory is well behaved on the whole continuous spectrum...

  10. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    For a class of negative slowly decaying potentials, including with , we study the quantum mechanical scattering theory in the low-energy regime. Using modifiers of the Isozaki--Kitada type we show that scattering theory is well behaved on the {\\it whole} continuous spectrum of the Hamiltonian...

  11. Review of Low Energy Neutrinos

    CERN Document Server

    Vergados, J D

    2007-01-01

    Some issues regarding low energy neutrinos are reviewed. We focus on three aspects i)We show that by employing very low energy (a few keV) electron neutrinos, neutrino disappearance oscillations can be investigated by detecting recoiling electrons with low threshold spherical gaseous TPC's. In such an experiment, which is sensitive to the small mixing angle theta13, the novel feature is that the oscillation length is so small that the full oscillation takes place inside the detector. Thus one can determine accurately all the oscillation parameters and, in particular, measure or set a good limit on theta13. ii) Low threshold gaseous TPC detectors can also be used in detecting nuclear recoils by exploiting the neutral current interaction. Thus these robust and stable detectors can be employed in supernova neutrino detection. iii) The lepton violating neutrinoless double decay is investigated focusing on how the absolute neutrino mass can be extracted from the data

  12. The low energy signaling network

    Directory of Open Access Journals (Sweden)

    Filipa dos Santos Tomé

    2014-07-01

    Full Text Available Stress impacts negatively on plant growth and crop productivity, causing extensive losses to agricultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy saving responses. The resulting low energy syndrome (LES includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases SnRK1 and TOR play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments.

  13. Theoretical study of effects of the entrance channel on the relative yield of complete fusion and quasifission in heavy-ion collisions within a dinuclear system approach

    Science.gov (United States)

    Soheyli, S.; Khanlari, M. Varasteh

    2016-09-01

    The relative yield of complete fusion and quasifission components for the 12C+204Pb , 19F+197Au , 30Si+186W , and 48Ca+168Er reactions which all lead to the compound nucleus 216Ra are analyzed to calculate the entrance channel effects by comparison of capture, complete fusion, and quasifission cross sections, emission barriers (Bfus*,Bq f ), as well as complete fusion probability estimated by statistical method within the framework of the dinuclear system model. The difference among complete fusion probabilities calculated by the dinuclear system model for different entrance channels can be explained by the hindrance to complete fusion due to the larger inner fusion barrier Bfus* for the transformation of the dinuclear system into a compound nucleus and the increase of the quasifission contribution due to the decreasing of the emission barrier Bq f of quasifission as a function of the angular momentum. Although these reactions with different entrance channels populate the same compound nucleus 216Ra at similar excitation energies, the model predicts the negligible quasifission probability for reactions having higher entrance channel mass asymmetry and the dominant decay channel is complete fission. For reactions induced by massive projectiles such as Si and Ca having lower entrance channel mass asymmetry, the quasifission component is dominant in the evolution of dinuclear system, and the fusion process is extremely hindered.

  14. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    Energy Technology Data Exchange (ETDEWEB)

    Leon, M. [comp.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  15. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    Davide D'angelo

    2012-10-01

    Low-energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND experiments as well as from upcoming (SNO+) and planned (LENA) experiments. Scintillator neutrino detectors are also powerful antineutrino detectors which can detect neutrinos emitted by the Earth crust and mantle. First measurements of geoneutrinos have occurred which can bring fundamental contribution in understanding the geophysics of the planet.

  16. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted...

  17. Low energy gauge unification theory

    CERN Document Server

    Li Tian Jun

    2002-01-01

    Because of the problems arising from the fermion unification in the traditional Grand Unified Theory and the mass hierarchy between the 4-dimensional Planck scale and weak scale, we suggest the low energy gauge unification theory with low high-dimensional Planck scale. We discuss the non-supersymmetric SU(5) model on M sup 4 xS sup 1 /Z sub 2 xS sup 1 /Z sub 2 and the supersymmetric SU(5) model on M sup 4 xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 '). The SU(5) gauge symmetry is broken by the orbifold projection for the zero modes, and the gauge unification is accelerated due to the SU(5) asymmetric light KK states. In our models, we forbid the proton decay, still keep the charge quantization, and automatically solve the fermion mass problem. We also comment on the anomaly cancellation and other possible scenarios for low energy gauge unification.

  18. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  19. Barrier distributions and signatures of transfer channels in the Ca40+Ni58,64 fusion reactions at energies around and below the Coulomb barrier

    Science.gov (United States)

    Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.

    2014-10-01

    Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.

  20. Study of angular momentum variation due to entrance channel effect in heavy ion fusion reactions

    Science.gov (United States)

    Kumar, Ajay

    2014-05-01

    A systematic investigation of the properties of hot nuclei may be studied by detecting the evaporated particles. These emissions reflect the behavior of the nucleus at various stages of the deexcitation cascade. When the nucleus is formed by the collision of a heavy nucleus with a light particle, the statistical model has done a good job of predicting the distribution of evaporated particles when reasonable choices were made for the level densities and yrast lines. Comparison to more specific measurements could, of course, provide a more severe test of the model and enable one to identify the deviations from the statistical model as the signature of other effects not included in the model. Some papers have claimed that experimental evaporation spectra from heavy-ion fusion reactions at higher excitation energies and angular momenta are no longer consistent with the predictions of the standard statistical model. In order to confirm this prediction we have employed two systems, a mass-symmetric (31P+45Sc) and a mass-asymmetric channel (12C+64Zn), leading to the same compound nucleus 76Kr* at the excitation energy of 75 MeV. Neutron energy spectra of the asymmetric system (12C+64Zn) at different angles are well described by the statistical model predictions using the normal value of the level density parameter a = A/8 MeV-1. However, in the case of the symmetric system (31P+45Sc), the statistical model interpretation of the data requires the change in the value of a = A/10 MeV-1. The delayed evolution of the compound system in case of the symmetric 31P+45Sc system may lead to the formation of a temperature equilibrated dinuclear complex, which may be responsible for the neutron emission at higher temperature, while the protons and alpha particles are evaporated after neutron emission when the system is sufficiently cooled down and the higher g-values do not contribute in the formation of the compound nucleus for the symmetric entrance channel in case of charged

  1. Low energy beam transport for HIDIF

    Science.gov (United States)

    Meusel, O.; Pozimski, J.; Jakob, A.; Lakatos, A.

    2001-05-01

    Low energy beam transport (LEBT) for a heavy ion inertial fusion (HIDIF, I. Hofmann and G. Plass, Report of the European Study Group on Heavy Ion Driven Inertial Fusion for the Period 1995-1998) facility suffers from high space charge forces and high ion mass. Space charge compensation reduces the necessary focusing force of the lenses and the radius of the beam in the LEBT, and therefrom the emittance growth due to aberrations and self fields is reduced. Gabor lenses (D. Gabor, Nature 160 (1947)) providing a stable space charge cloud for focusing and combine strong cylinder symmetric focusing with partly space charge compensation and low emittance growth. A high tolerance against source noise and current fluctuations and reduced investment costs could be other possible advantages. The proof of principle has already been demonstrated (J.A. Palkovic, Measurements on a Gabor lens for Neutralizing and Focusing a 30 keV Proton beam, University of Wisconsin, Madison, 1989; J. Pozimski, P. Groß, R. Dölling and T. Weis, First experimental studies of a Gabor plasma-lens in Frankfurt, Proceedings of the 3rd EPAC Conference, Berlin, 1992). To broaden the experiences and to investigate the realisation of a LEBT concept for the HIDIF injector an experimental program using two Gabor lenses for independent variation of beam radius and envelope angel at RFQ injection was started. Therefrom the first experimental results using a double Gabor lens (DGPL) LEBT system for transporting an high perveance Xe + beam are presented and the results of numerical simulations are shown.

  2. Low energy beam transport for HIDIF

    Energy Technology Data Exchange (ETDEWEB)

    Meusel, O. E-mail: o.meusel@iap.uni-frankfurt.de; Pozimski, J.; Jakob, A.; Lakatos, A

    2001-05-21

    Low energy beam transport (LEBT) for a heavy ion inertial fusion (HIDIF, I. Hofmann and G. Plass, Report of the European Study Group on Heavy Ion Driven Inertial Fusion for the Period 1995-1998) facility suffers from high space charge forces and high ion mass. Space charge compensation reduces the necessary focusing force of the lenses and the radius of the beam in the LEBT, and therefrom the emittance growth due to aberrations and self fields is reduced. Gabor lenses (D. Gabor, Nature 160 (1947)) providing a stable space charge cloud for focusing and combine strong cylinder symmetric focusing with partly space charge compensation and low emittance growth. A high tolerance against source noise and current fluctuations and reduced investment costs could be other possible advantages. The proof of principle has already been demonstrated (J.A. Palkovic, Measurements on a Gabor lens for Neutralizing and Focusing a 30 keV Proton beam, University of Wisconsin, Madison, 1989; J. Pozimski, P. Gross, R. Doelling and T. Weis, First experimental studies of a Gabor plasma-lens in Frankfurt, Proceedings of the 3rd EPAC Conference, Berlin, 1992). To broaden the experiences and to investigate the realisation of a LEBT concept for the HIDIF injector an experimental program using two Gabor lenses for independent variation of beam radius and envelope angel at RFQ injection was started. Therefrom the first experimental results using a double Gabor lens (DGPL) LEBT system for transporting an high perveance Xe{sup +} beam are presented and the results of numerical simulations are shown.

  3. Low-Energy Proton Testing Methodology

    Science.gov (United States)

    Pellish, Jonathan A.; Marshall, Paul W.; Heidel, David F.; Schwank, James R.; Shaneyfelt, Marty R.; Xapsos, M.A.; Ladbury, Raymond L.; LaBel, Kenneth A.; Berg, Melanie; Kim, Hak S.; Phan, Anthony; Friendlich, M.R.; Rodbell, Kenneth P.; Hakey, Mark C.; Dodd, Paul E.; Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Sierawski, B.D.

    2009-01-01

    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation.

  4. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion

    DEFF Research Database (Denmark)

    Peters, C; Bayer, M J; Bühler, S

    2001-01-01

    +/calmodulin controls this terminal process in many intracellular fusion events. Here we identify V0, the membrane-integral sector of the vacuolar H+-ATPase, as a target of calmodulin on yeast vacuoles. Between docking and bilayer fusion, V0 sectors from opposing membranes form complexes. V0 trans...

  5. Low Energy Supergravity Revisited (I)

    CERN Document Server

    Moultaka, Gilbert; Tant, Damien

    2016-01-01

    General forms of the K\\"ahler and superpotenials that lead to consistent low energy broken Supersymmetry originating from $N=1$ Supergravity have been classified and used for model building since more than three decades. We point out the incompleteness of this classification. Focusing in this paper mainly on the case of minimal K\\"ahler potential, we adopt a rigorous approach that retrieves on the one hand the known forms, and demonstrate on the other hand the existence of a whole set of new forms for the superpotential of which we give a complete classification. The latter forms involve a new type of chiral superfields having the unusual property of belonging neither to the hidden sector nor to the conventional observable sector. We argue how new possibilities for model building can arise, comparing the obtained forms with the conventional ones, and discuss the gravity mediation of supersymmetry breaking and the vacuum structure in the presence of the new type of chiral superfields. In the simplest case, we ...

  6. Observation of incomplete fusion reactions at l < l {sub crit}

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhishek, E-mail: abhishekyadav117@gmail.com; Sharma, Vijay R., E-mail: abhishekyadav117@gmail.com; Singh, Devendra P., E-mail: abhishekyadav117@gmail.com; Unnati,; Singh, B. P.; Prasad, R. [Department of Physics, Aligarh Muslim University, Aligarh (UP) - 202 002 (India); Singh, Pushpendra P. [GSI-Helmholtz Centre for Heavy Ion Research GmbH, D-64291 Darmstadt (Germany); Bala, Indu; Kumar, R.; Muralithar, S.; Singh, R. P. [NP-Group: Inter-University Accelerator Center, Aruna Asaf Ali Marg, New Delhi - 110 067 (India); Sharma, M. K. [Department of Physics, S. V. College, Aligarh- 202 001 (India)

    2014-08-14

    In order to understand the presence of incomplete fusion at low energies i.e. 4-7MeV/nucleon and also to study its dependence on various entrance-channel parameters, the two type of measurements (i) excitation function for {sup 12}C+{sup 159}Tb, and (ii) forward recoil ranges for {sup 12}C+{sup 159}Tb systems have been performed. The experimentally measured excitation functions have been analyzed within the framework of compound nucleus decay using statistical model code PACE4. Analysis of data suggests the production of xn/px)n-channels via complete fusion, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. Further, the incomplete fusion events observed in case of forward recoil range measurements have been explained on the basis of the breakup fusion model, where these events may be attributed to the fusion of {sup 8}Be and/or {sup 4}He from {sup 12}C projectile to the target nucleus. In the present work, the SUMRULE model calculations are found to highly underestimate the observed incomplete fusion cross-sections which indicate that the l-values lower than l {sub crit} (limit of complete fusion) significantly contribute to the incomplete fusion reactions.

  7. Low energy housing, Chimo, Steinbach

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    A house was constructed in Steinbach, Manitoba to demonstrate energy efficient residential construction techniques incorporating a cost-effective innovative wall design. Prior to the construction of the home, a computer analysis was made, and recommendations made to improve the techniques used in the design. During the construction of the home, an air leakage test was performed using the infiltrometer. Major objectives of the builder were to construct a wall with a thickness capable of accommodating R-48 (14'') glassfiber batts without constructing two separate walls and to achieve this with less cost, to provide a continuous path of insulation from the wall section into the attic area, to provide level attic insulation to the exterior of the perimeter wall by utilizing a raised heel type roof truss, to locate the house on the lot to give a southern exposure and to demonstrate the effectiveness of using an air-to-air heat exchanger and circulating hot water duct heater instead of other types of heating systems. It is concluded that the majority of the objectives were met in the design and construction of this home. The I-Beam stud walls use less material and are lighter, stronger and easier to erect than conventional double stud walls. The major disadvantage of the design is that vapour barrier installation is more involved and labour intensive. The circulating hot water duct heater, combined with an air-to-air heat exchanger, is recommended as a heating system for low energy homes. 10 figs., 4 tabs., 12 illus.

  8. Microscopic study of $^{40}$Ca+$^{58,64}$Ni fusion reactions

    CERN Document Server

    Bourgin, D; Courtin, S; Haas, F

    2016-01-01

    Background: Heavy-ion fusion reactions at energies near the Coulomb barrier are influenced by couplings between the relative motion and nuclear intrinsic degrees of freedom of the colliding nuclei. The time-dependent Hartree-Fock (TDHF) theory, incorporating the couplings at the mean-field level, as well as the coupled-channels (CC) method are standard approaches to describe low energy nuclear reactions. Purpose: To investigate the effect of couplings to inelastic and transfer channels on the fusion cross sections for the reactions $^{40}$Ca+$^{58}$Ni and $^{40}$Ca+$^{64}$Ni. Methods: Fusion cross sections around and below the Coulomb barrier have been obtained from coupled-channels (CC) calculations, using the bare nucleus-nucleus potential calculated with the frozen Hartree-Fock method and coupling parameters taken from known nuclear structure data. The fusion thresholds and neutron transfer probabilities have been calculated with the TDHF method. Results: For $^{40}$Ca+$^{58}$Ni, the TDHF fusion threshold ...

  9. Towards Low Energy Atrial Defibrillation

    Directory of Open Access Journals (Sweden)

    Philip Walsh

    2015-09-01

    . Efficient transcutaneous power transfer and sensing of ICI during cardioversion are evidenced as key to the advancement of low-energy atrial defibrillation.

  10. PCAC and shadowing of low energy neutrinos

    Science.gov (United States)

    Kopeliovich, B. Z.

    2005-02-01

    The Adler relation between reactions initiated by neutrinos and pions is easy to misinterpret as a manifestation of the pion pole dominance. An axial current, however, cannot fluctuate into a pion, but only to heavy axial-vector states, since the lepton current is transverse. This is the miracle of the PCAC hypothesis which dictates a specific conspiracy between the heavy fluctuations, so that all together they mock the pion pole. Indeed, the observed Q2 dependence of the axial form factor is controlled by the effective mass m˜1 GeV, rather than the pion mass. On the contrary, the onset of nuclear shadowing is governed by the small pion mass, rather than by the large axial mass scale. This is in variance with the conventional wisdom which equates the fluctuation lifetime and the coherence time. For the case of axial current they are different by almost two orders of magnitude. As a result, neutrino interactions are shadowed at very low energies of few hundred MeV, while energy of about 10 GeV is needed to access nuclear shadowing for the vector current. On the contrary to naive expectations, nuclear absorption enhances, rather than suppresses the cross section of coherent neutrino-production of pions which is the strongest channel (half of the total cross section) in the black disc limit.

  11. Enhancement of the multi-channel continuous monitoring system through the use of Xenorhabdus luminescens lux fusions.

    Science.gov (United States)

    Lee, Jin Hyung; Mitchell, Robert J; Gu, Man Bock

    2004-10-15

    The enhancement of the multi-channel continuous toxicity monitoring system developed previously was studied. To achieve better and more stable results from the system, the use of thermo-lux fusion strains that express the luxCDABE genes from Xenorhabdus luminescens was evaluated. A total of six recombinant Escherichia coli strains with the promoters from three oxidative-stress responsive genes, i.e. the katG, sodA and pqi-5 genes, fused to either the lux genes from Vibrio fischeri or X. luminescens were characterized and their responses to different chemicals compared. It was found that the basal level bioluminescence (BL) from the thermo-lux fusion strains was always higher while that of the V. fischeri lux strains were always near or below the lower limit of detection of the system. For example, the katG::V. fischeri lux strain, DPD2511, gave no discernible response due to its low level expression while a fusion of the katG promoter with the X. luminescens lux operon was clearly responsive and capable of detecting hydrogen peroxide down to about 1 ppm. The use of the thermo-lux strains found them to be as sensitive as the V. fischeri lux strains while providing a brighter, more stable basal level bioluminescence, making the analysis and monitoring of water-borne toxicity more reliable.

  12. Channel Impulse Response Estimation in IEEE 802.11p via Data Fusion and MMSE Estimator

    Directory of Open Access Journals (Sweden)

    Giulio Ministeri

    2015-01-01

    Full Text Available Tracking the channel impulse response in systems based on the IEEE 802.11p standard, the most widely accepted standard for the physical layer in vehicular area networks (VANETs, is still an open research topic. In this paper we aim to improve previously proposed channel estimators by utilizing data aided algorithm that includes the channel decoding to enhance the quality of the estimated data. Moreover we propose a novel technique that exploits information provided by external sensors like GPS or speedometer, usually present in vehicles. The algorithm proposed so far has been analyzed in non-line-of-sight link conditions; in this paper we present an analysis of performances in the line-of-sight condition as well. Simulations show that both proposals give considerable improvements in terms of packet error rate and channel estimation error in the highway scenario which is surely the most stressing environment for the channel response tracker.

  13. A new look at low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B; Marwan, Jan

    2009-10-01

    This paper presents a new look at low-energy nuclear reaction research, a field that has developed from one of the most controversial subjects in science, "cold fusion." Early in the history of this controversy, beginning in 1989, a strong polarity existed; many scientists fiercely defended the claim of new physical effects as well as a new process in which like-charged atomic nuclei overcome the Coulomb barrier at normal temperatures and pressures. Many other scientists considered the entire collection of physical observations-along with the hypothesis of a "cold fusion"--entirely a mistake. Twenty years later, some people who had dismissed the field in its entirety are considering the validity of at least some of the reported experimental phenomena. As well, some researchers in the field are wondering whether the underlying phenomena may be not a fusion process but a neutron capture/absorption process. In 2002, a related tabletop form of thermonuclear fusion was discovered in the field of acoustic inertial confinement fusion. We briefly review some of this work, as well.

  14. Low Energy Background Spectrum in CDMSlite

    CERN Document Server

    Barker, D

    2016-01-01

    One trend in dark matter direct detection is the development of techniques which will lower experimental thresholds and achieve sensitivity to light mass dark matter particles. In doing so, it is necessary to have an understanding of the low energy spectrum of the major background components. Geant4 has a number of specialized low energy physics processes that can be implemented when simulating an experimental geometry. To understand this low energy region for the Super Cryogenic Dark Matter Search (SuperCDMS), a variety of these models have been simulated and compared against theoretical calculations and SuperCDMS calibration data. Most of the low energy processes include a more complete description of the atomic structure, allowing us to observe the phenomenon of Compton steps in the simulation. An important application of this low energy background modeling is for the SuperCDMS low ionization threshold experiment (CDMSlite). CDMSlite has reached world-leading sensitivities in the search for low mass weakly...

  15. Single track nanodosimetry of low energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bantsar, A. [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Grosswendt, B. [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Pszona, S. [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)], E-mail: pszona@ipj.gov; Kula, J. [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)

    2009-02-11

    Auger-electron-emitting radionuclides (for instance, {sup 125}I) with a predominant energy spectrum below 3 keV are an active area of research towards the clinical application of radiopharmaceuticals. Hence, the necessity for an adequate description of the effects of radiation by low-energy electrons on nanometric biological targets seems to be unquestionable. Experimental nanodosimetry for low-energy electrons has been accomplished with a device named JET COUNTER. The present paper describes, for the first time, nanodosimetric experiments in nanometer-sized cavities of nitrogen using low energy electrons ranging from 100 eV to 2 keV.

  16. Single track nanodosimetry of low energy electrons

    Science.gov (United States)

    Bantsar, A.; Grosswendt, B.; Pszona, S.; Kula, J.

    2009-02-01

    Auger-electron-emitting radionuclides (for instance, 125I) with a predominant energy spectrum below 3 keV are an active area of research towards the clinical application of radiopharmaceuticals. Hence, the necessity for an adequate description of the effects of radiation by low-energy electrons on nanometric biological targets seems to be unquestionable. Experimental nanodosimetry for low-energy electrons has been accomplished with a device named JET COUNTER. The present paper describes, for the first time, nanodosimetric experiments in nanometer-sized cavities of nitrogen using low energy electrons ranging from 100 eV to 2 keV.

  17. Low energy ghosts and the Jeans' instability

    Science.gov (United States)

    Gümrükçüoǧlu, A. Emir; Mukohyama, Shinji; Sotiriou, Thomas P.

    2016-09-01

    We show that a massless canonical scalar field minimally coupled to general relativity can become a tachyonic ghost at low energies around a background in which the scalar's gradient is spacelike. By performing a canonical transformation we demonstrate that this low energy ghost can be recast, at the level of the action, in a form of a fluid that undergoes a Jeans-like instability affecting only modes with large wavelength. This illustrates that low energy tachyonic ghosts do not lead to a catastrophic quantum vacuum instability, unlike the usual high-energy ghost degrees of freedom.

  18. A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain

    Science.gov (United States)

    Xiang, Tianzhu; Yan, Li; Gao, Rongrong

    2015-03-01

    In this paper, a novel fusion algorithm based on the adaptive dual-channel unit-linking pulse coupled neural network (PCNN) for infrared and visible images fusion in nonsubsampled contourlet transform (NSCT) domain is proposed. The flexible multi-resolution and directional expansion for images of NSCT are associated with global coupling and pulse synchronization characteristic of dual-PCNN. Compared with other dual-PCNN models, the proposed model possesses fewer parameters and is not difficult to implement adaptive, which is more suitable for image fusion. Firstly, the source images were multi-scale and multi-directional decomposed by NSCT. Then, to make dual-channel PCNN adaptive, the average gradient of each pixel was presented as the linking strength, and the time matrix was presented to determine the iteration number adaptively. In this fusion scheme, a novel sum modified-Laplacian of low-frequency subband and a modified spatial frequency of high-frequency subband were input to motivate the adaptive dual-channel unit-linking PCNN, respectively. Experimental results demonstrate that the proposed algorithm can significantly improve image fusion performance, accomplish notable target information and high contrast, simultaneously preserve rich details information, and excel other typical current methods in both objective evaluation criteria and visual effect.

  19. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic...

  20. Low-energy Planetary Excavator (LPE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC is developing an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic materials...

  1. Monochromatic gamma emitter for low energy quanta

    CERN Document Server

    Tomova, Z R; Mironova, S A

    2004-01-01

    The possibility of creating of a monochromatic gamma emitter of low energy quanta is analyzed. The idea is based on Daning's scheme. Except for purely scientific problems the monochromator is actual for therapy of wide range of diseases.

  2. Low Energy Mission Planning Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low Energy Mission Planning Toolbox is designed to significantly reduce the resources and time spent on designing missions in multi-body gravitational...

  3. Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2007-03-15

    The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)

  4. Role of the Hoyle state in {sup 12}C + {sup 12}C fusion

    Energy Technology Data Exchange (ETDEWEB)

    Assunção, M., E-mail: massuncao@unifesp.br [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, 09972-270, Campus Diadema, São Paulo (Brazil); Descouvemont, P., E-mail: pdesc@ulb.ac.be [Instituto de Estudos Avançados da Universidade de São Paulo, Caixa Postal 72012, 05508-970, São Paulo (Brazil); Departamento de Física Matemática, Instituto de Física da Universidade de São Paulo, Caixa Postal 66318, 05314-970, São Paulo (Brazil)

    2013-06-25

    The {sup 12}C + {sup 12}C fusion reaction is investigated in a multichannel folding model, using the density-dependent DDM3Y nucleon–nucleon interaction. The {sup 12}C(0{sub 1}{sup +},2{sup +},0{sub 2}{sup +},3{sup −}) states are included, and their densities are taken from a microscopic cluster calculation. Absorption to fusion channels is simulated by a short-range imaginary potential, and the model does not contain any fitting parameter. We compute elastic and fusion cross sections simultaneously. The role of {sup 12}C + {sup 12}C inelastic channels, and in particular of the {sup 12}C(0{sub 1}{sup +}) + {sup 12}C(0{sub 2}{sup +}) channel involving the Hoyle state, is important even at low energies. In the Gamow region, the energy range relevant in astrophysics, inelastic channels increase the S factor by a factor of three.

  5. Low-energy K- optical potentials: deep or shallow?

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K- optical potential in the nuclear medium is evaluated self consistently from a free-space K-Nt matrix constructed within a coupled-channel chiral approach. The fit of model parameters gives a good description of the low-energy data plus the available K- atomic data. The resulting optical potential is relatively `shallow' in contradiction to the potentials obtained from phenomenological analysis. The calculated (Kstop-,π) hypernuclear production rates are very sensitive to the details of kaonic bound state wave function. The (Kstop-,π) reaction could thus serve as a suitable tool to distinguish between shallow and deep K- optical potentials.

  6. Entrance channel effect with stable and radioactive beams using dynamical cluster decay model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Raj, E-mail: rajkumarfzr@gmail.com [Dipartimento di Fisica “Galileo Galilei” and INFN, University of Padova, Padova-35131 (Italy); Jain, Deepika [School of Physics and Material Science, Thapar University, Patiala-147004 (India)

    2014-09-15

    The decay of hot and rotating {sup 172}Yb*, formed in two entrance channels {sup 124}Sn + {sup 48}Ca and {sup 132}Sn + {sup 40}Ca, is studied using the dynamical cluster-decay model. The effect of entrance channel, deformations (up to β{sub 2}), barrier modification and fusion enhancement are addressed. The decay pattern of compound system, formed in different channels at comparable energy around the barrier, shows change in magnitude with structure remains almost same. There is an increase in the fusion probability with decrease in barrier modification, which leads to fusion enhancement at low energies. The higher ℓ values are contributing for {sup 132}Sn + {sup 40}Ca channel at lower energies as compare to {sup 124}Sn + {sup 48}Ca. It is inferred that with the use of stable and radioactive beam, forming same compound nucleus, the entrance channel dependence changes with the excitation energy.

  7. Dosimetry of Low-Energy Beta Radiation

    DEFF Research Database (Denmark)

    Borg, Jette

    Useful techniques and procedures for derermination of absorbed doses from exposure in a low-energy beta radiation were studied and evaluated. The four techniques included were beta spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical...... low-energy beta radiation field a moderated spectrum from a carbon-14 source was used. The measured responce of a Si(Li) detector to photons (bremsstrahlung) showed fine agreemant with the MC calculated photon response, whereas the difference between measured and MC calculated response to electrons...

  8. Dosimetry of Low-Energy Beta Radiation

    DEFF Research Database (Denmark)

    Borg, Jette

    Useful techniques and procedures for derermination of absorbed doses from exposure in a low-energy beta radiation were studied and evaluated. The four techniques included were beta spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical...... low-energy beta radiation field a moderated spectrum from a carbon-14 source was used. The measured responce of a Si(Li) detector to photons (bremsstrahlung) showed fine agreemant with the MC calculated photon response, whereas the difference between measured and MC calculated response to electrons...

  9. A recombinant fusion protein containing a spider toxin specific for the insect voltage-gated sodium ion channel shows oral toxicity towards insects of different orders.

    Science.gov (United States)

    Yang, Sheng; Pyati, Prashant; Fitches, Elaine; Gatehouse, John A

    2014-04-01

    Recombinant fusion protein technology allows specific insecticidal protein and peptide toxins to display activity in orally-delivered biopesticides. The spider venom peptide δ-amaurobitoxin-PI1a, which targets insect voltage-gated sodium channels, was fused to the "carrier" snowdrop lectin (GNA) to confer oral toxicity. The toxin itself (PI1a) and an amaurobitoxin/GNA fusion protein (PI1a/GNA) were produced using the yeast Pichia pastoris as expression host. Although both proteins caused mortality when injected into cabbage moth (Mamestra brassicae) larvae, the PI1a/GNA fusion was approximately 6 times as effective as recombinant PI1a on a molar basis. PI1a alone was not orally active against cabbage moth larvae, but a single 30 μg dose of the PI1a/GNA fusion protein caused 100% larval mortality within 6 days when fed to 3rd instar larvae, and caused significant reductions in survival, growth and feeding in 4th - 6th instar larvae. Transport of fusion protein from gut contents to the haemolymph of cabbage moth larvae, and binding to the nerve chord, was shown by Western blotting. The PI1a/GNA fusion protein also caused mortality when delivered orally to dipteran (Musca domestica; housefly) and hemipteran (Acyrthosiphon pisum; pea aphid) insects, making it a promising candidate for development as a biopesticide.

  10. Fusion of 3D cardiac SPECT and 64-channel-CT angiography using personal computer in functionally relevant coronary artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee [Sung-Ae General Hospital, Seoul (Korea, Republic of)

    2007-06-15

    Image fusion is fast catching attention as Wagner pointed out in this 2006 version of the recent progress and development presented at the annual meeting of Society of Nuclear Medicine. Prototypical fusion of bone scan and radiograph was already attempted at in 1961 when Fleming et al. published an article on strontium-85 bone scan. They simply superimposed dot scan on radiograph enabling simultaneous assessment of altered bone metabolism and local bone anatomy. Indeed the parallel reading of images of bone scan and radiography, CT, MRI or ultrasonography has been practiced in nuclear medicine long since. It is fortunate that recent development of computer science and technology along with the availability of refined CT and SPECT machines has permitted us to open a new avenue to digitally produce precise fusion image so that they can readily be read, exchanged and disseminated using internet. Ten years ago fusion was performed using Bresstrahlung SPECT/CT and it is now achievable by PET/CT and SPECT/CT software and SPECT/CT hardware. The merit of image fusion is its feasibility of reliable assessment of morphological and metabolic change. It is now applicable not only to stationary organs such as brain and skeleton but also to moving organs such as the heart, lung and stomach. Recently, we could create useful fusion image of cardiac SPECT and 64-channel CT angiograph. The former provided myocardial metabolic profile and the latter vascular narrowing in two patients with coronary artery stenosis and myocardial ischemia.

  11. Low Energy of Activation Lithium-Ion Conducting Channel

    Science.gov (United States)

    2010-09-22

    Between Gold Electrodes (710 µm Thick; 1.6 cm2) 1/T (K) Electrochem. and Solid-State Letters, 8 (5), E45-E48 (2005) ECS Transactions , 25 (36) 163...167 (2010) Ea = 0.038 eV 11 Nyquist Plots of SS/Thin Film Li2Pc Cast Onto an MnO2 Cathode/SS at -50, -25, 0, +25, and 50°C ECS Transactions , 25

  12. Allowance for the tunnel effect in the entrance channel of fusion-fission reactions

    Science.gov (United States)

    Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.

    2016-05-01

    A two-stage model is developed in order to describe fusion-fission reactions. The process in the course of which colliding ions approach each other is simulated at the first stage, the deformations and relative orientations of the ions being taken into account. The first stage of the calculation is completed as soon as colliding nuclei touch each other. A continuous nuclear system (monosystem) is formed at this instant. The emerging distributions of the angular momenta of this system and of its potential and internal energies at the point of touching are used as input data that are necessary for triggering the second stage of the calculation. The evolution of collective coordinates that describe the shape of the monosystem is calculated at the second stage. The description of this evolution is terminated either at the instant of its fission or upon the release of a major part of its excess energy via particle and photon emission. In the latter case, the probability for the fission of the monosystem or a further decrease in its excitation energy becomes extremely small. The ion-collision process and the evolution of the monosystem formed after primary nuclei come into contact are simulated on the basis of stochastic Langevin equations. The quantities appearing in them (which include the potential energy and inertial and friction parameters) are determined with allowance for the shell structure of nuclei. The tunneling of colliding nuclei through the Coulomb barrier is taken into account, and the effect of this phenomenon on model predictions is studied.

  13. Theories of Low Energy Nuclear Transmutations

    CERN Document Server

    Srivastava, Y N; Swain, J

    2012-01-01

    Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

  14. Branch II : Neutrino Oscillations at Low Energies

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, A., E-mail: anatael@in2p3.fr [CNRS/IN2P3. Laboratoire d' Astro-Particule et Cosmologie. 10 rue Alice Domont et Leonie Duquet. Paris. 75205. Cedex 13 (France); Volpe, C., E-mail: volpe@ipno.in2p3.fr [Institut de Physique Nucleaire Orsay and University of Paris XI,CNRS/IN2P3, F-91406 Orsay cedex (France)

    2011-08-15

    We summarize here briefly the experimental and theoretical results presented at the NOW2010 workshop during the parallel session Branch II 'Oscillations at low energies'. The topics have covered open problems and recent advances in solar neutrinos, reactor and geo-neutrinos, as well as neutrinos from core-collapse supernovae.

  15. Studies in Low-Energy Nuclear Science

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  16. Low Energy Antiproton Ring experimental area

    CERN Multimedia

    1991-01-01

    The experimental area at the Low Energy Antiproton Ring (LEAR) is seen. This set up was used to slow down antiprotons which had been produced by colliding a proton beam with a solid target. The experiments in the hall then took antiprotons from LEAR to perform antimatter studies. One such experiment, PS210, produced the world's first antihydrogen atoms.

  17. Low-Energy Spectral Features in GRBs

    CERN Document Server

    Briggs, M S

    1996-01-01

    I discuss low-energy lines in gamma-ray bursts. The process of deconvolving gamma-ray spectral data and the steps needed to demonstrate the existence of a line are explained. Previous observations and the current status of the analysis of the BATSE data are described.

  18. Low energy observables with the ATLAS experiment

    CERN Document Server

    Foster, Andrew Geoffrey; The ATLAS collaboration

    2017-01-01

    Recent results in the soft QCD sector of the Standard Model are presented. Measurements of low energy observables were performed with the ATLAS detector at the Large Hadron Collider at CERN. In particular, underlying event, charged particle correlation and diffraction observables are reported and various models of Monte Carlo predictions are compared to the data.

  19. The low energy atmospheric antiproton albedo

    Science.gov (United States)

    Cole, J. B.; Ormes, J. F.

    1989-01-01

    The flux of albedo antiprotons in the 100-1000 MeV kinetic energy range produced by the cosmic ray primaries in the atmosphere is calculated. It is shown that this is not a significant background to measurements of the low energy anti-proton cosmic ray flux.

  20. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH.

    Science.gov (United States)

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W M; Wu, Wu-Tian; Yue, Jianbo

    2013-08-16

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca(2+) signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.

  1. Physical Mechanism of Nuclear Reactions at Low Energies

    CERN Document Server

    Oleinik, V P; Arepjev, Yu.D

    2002-01-01

    The physical mechanism of nuclear reactions at low energies caused by spatial extension of electron is considered. Nuclear reactions of this type represent intra-electronic processes, more precisely, the processes occurring inside the area of basic localization of electron. Distinctive characteristics of these processes are defined by interaction of the own field produced by electrically charged matter of electron with free nuclei. Heavy nucleus, appearing inside the area of basic localization of electron, is inevitably deformed because of interaction of protons with the adjoining layers of electronic cloud, which may cause nuclear fission. If there occur "inside" electron two or greater number of light nuclei, an attractive force appears between the nuclei which may result in the fusion of nuclei. The intra-electronic mechanism of nuclear reactions is of a universal character. For its realization it is necessary to have merely a sufficiently intensive stream of free electrons, i.e. heavy electric current, an...

  2. NRV web knowledge base on low-energy nuclear physics

    Science.gov (United States)

    Karpov, V.; Denikin, A. S.; Alekseev, A. P.; Zagrebaev, V. I.; Rachkov, V. A.; Naumenko, M. A.; Saiko, V. V.

    2016-09-01

    Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it to the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.

  3. Particle-in-cell simulations of an alpha channeling scenario: electron current drive arising from lower hybrid drift instability of fusion-born ions

    Science.gov (United States)

    Cook, James; Chapman, Sandra; Dendy, Richard

    2010-11-01

    Particle-in-cell (PIC) simulations of fusion-born protons in deuterium plasmas demonstrate a key alpha channeling phenomenon for tokamak fusion plasmas. We focus on obliquely propagating modes at the plasma edge, excited by centrally born fusion products on banana orbits, known to be responsible for observations of ion cyclotron emission in JET and TFTR. A fully self-consistent electromagnetic 1D3V PIC code evolves a ring-beam distribution of 3MeV protons in a 10keV thermal deuterium-electron plasma with realistic mass ratio. A collective instability occurs, giving rise to electromagnetic field activity in the lower hybrid range of frequencies. Waves spontaneously excited by this lower hybrid drift instability undergo Landau damping on resonant electrons, drawing out an asymmetric tail in the distribution of electron parallel velocities, which constitutes a net current. These simulations demonstrate a key building block of some alpha channeling scenarios: the direct collisionless coupling of fusion product energy into a form which can help sustain the equilibrium of the tokamak.

  4. Entanglement creation in low-energy scattering

    Energy Technology Data Exchange (ETDEWEB)

    Weder, Ricardo [Institut National de Recherche en Informatique et en Automatique Paris-Rocquencourt, Projet POEMS, Domaine de Voluceau-Rocquencourt, BP 105, F-78153, Le Chesnay Cedex (France)

    2011-12-15

    We study the entanglement creation in the low-energy scattering of two particles in three dimensions, for a general class of interaction potentials that are not required to be spherically symmetric. The incoming asymptotic state, before the collision, is a product of two normalized Gaussian states. After the scattering, the particles are entangled. We take as a measure of the entanglement the purity of one of them. We provide a rigorous explicit computation, with error bound, of the leading order of the purity at low energy. The entanglement depends strongly on the difference of the masses. It takes its minimum when the masses are equal, and it increases rapidly with the difference of the masses. It is quite remarkable that the anisotropy of the potential gives no contribution to the leading order of the purity, in spite of the fact that entanglement is a second-order effect.

  5. Geant4 Low Energy Electromagnetic Physics

    Institute of Scientific and Technical Information of China (English)

    S.Chauvie; G.Depaola; 等

    2001-01-01

    Geant4 Low Energy Electromagnetic package Provides a precise treatment of electromagnetic interations of particles with matter down to very low energies (250 oV for electrons and photons,<1 keV for hadrons and ions),It includes a veriety of models for the electromagnetic processes of electrons,photons,hadrons and ions,taking into account advance features,such as shell effects and effects due to charge dependence.The comprehensive set of particle types it can handle,the variety of modeling approaches and the extended coverage of energy range make this package a unique tool among Monte Carlo codes on the market,and of relevance to serveral experimental domains in HIEP,astroparticle physics,space science and biomedical studies.

  6. Low-Energy Polymeric Phases of Alanates

    Science.gov (United States)

    Huan, Tran Doan; Amsler, Maximilian; Marques, Miguel A. L.; Botti, Silvana; Willand, Alexander; Goedecker, Stefan

    2013-03-01

    Low-energy structures of alanates are currently known to be described by patterns of isolated, nearly ideal tetrahedral [AlH4] anions and metal cations. We discover that the novel polymeric motif recently proposed for LiAlH4 plays a dominant role in a series of alanates, including LiAlH4, NaAlH4, KAlH4, Mg(AlH4)2, Ca(AlH4)2, and Sr(AlH4)2. In particular, most of the low-energy structures discovered for the whole series are characterized by networks of corner-sharing [AlH6] octahedra, forming wires and/or planes throughout the materials. Finally, for Mg(AlH4)2 and Sr(AlH4)2, we identify two polymeric phases to be lowest in energy at low temperatures.

  7. Gas Electron multipliers for low energy beams

    CERN Document Server

    Arnold, F; Ropelewski, L; Spanggaard, J; Tranquille, G

    2010-01-01

    Gas Electron Multipliers (GEM) find their way to more and more applications in beam instrumentation. Gas Electron Multiplication uses a very similar physical phenomenon to that of Multi Wire Proportional Chambers (MWPC) but for small profile monitors they are much more cost efficient both to produce and to maintain. This paper presents the new GEM profile monitors intended to replace the MWPCs currently used at CERN’s low energy Antiproton Decelerator (AD). It will be shown how GEMs overcome the documented problems of profile measurements with MWPCs for low energy beams, where the interaction of the beam with the detector has a large influence on the measured profile. Results will be shown of profile measurements performed at 5 MeV using four different GEM prototypes, with discussion on the possible use of GEMs at even lower energies needed at the AD in 2013.

  8. Architectural Quality of Low Energy Houses

    DEFF Research Database (Denmark)

    Lauring, Michael; Marsh, Rob

    2008-01-01

    This paper expounds a systematic vocabulary concerning architectural quality in houses in general and low energy houses in particular. The vocabulary consists of nine themes. Inside each theme, examples are given of how to achieve both architectural quality and good environmental performance....... The purpose is to provide a useful tool for communication and argumentation in order to further integrated design of houses with good architecture and good environmental performance. ...

  9. Low Energy Pion-Hyperon Interaction

    CERN Document Server

    Hama, Y

    2001-01-01

    We study the low energy pion-hyperon interaction considering effective non-linear chiral invariant Lagrangians including pions, rho mesons, hyperons and corresponding resonances. Then we calculate the S- and P-wave phase-shifts, total cross sections, angular distributions and polarizations for the momentum in the center-of-mass frame up to k=400 MeV. With these results we discuss the CP violation in the csi-> pi-lambda and omega-> pi-csi weak decays.

  10. Study on low-energy positron polarimetry

    Indian Academy of Sciences (India)

    A Schälicke; G Alexander; R Dollan; K Laihem; T Lohse; S Riemann; P Starovoitov; A Ushakov

    2007-12-01

    A polarised positron source has been proposed for the design of the international linear collider (ILC). In order to optimise the positron beam, a measurement of its degree of polarisation close to the positron creation point is desired. In this contribution, methods for determining the positron polarisation at low energies are reviewed. A newly developed polarisation extension to GEANT4 will provide the basis for further polarimeter investigations.

  11. Architectural Quality of Low Energy Houses

    DEFF Research Database (Denmark)

    Lauring, Michael; Marsh, Rob

    2008-01-01

    This paper expounds a systematic vocabulary concerning architectural quality in houses in general and low energy houses in particular. The vocabulary consists of nine themes. Inside each theme, examples are given of how to achieve both architectural quality and good environmental performance....... The purpose is to provide a useful tool for communication and argumentation in order to further integrated design of houses with good architecture and good environmental performance. ...

  12. EULEB EUropean high quality Low Energy Buildings

    OpenAIRE

    2006-01-01

    ABSTRACT: The EULEB-Project is intended to supply information to architects and engineers throughout Europe and beyond it. Within the EU it will support the new Energy Directive on Buildings through providing design and engineering details of European public high quality buildings with low energy consumption. By providing a CD containing information on architecture, energy consumption and economical efficiency as well as the comfort of these innovative buildings in use, the lac...

  13. Targeting Low-Energy Ballistic Lunar Transfers

    Science.gov (United States)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  14. Vacuum fluctuations of $\\overline{q}q$ and values of low-energy constants

    CERN Document Server

    Descotes, S

    2000-01-01

    We discuss the influence of the vacuum fluctuations of \\bar{q}q pairs on low-energy constants and condensates. The analysis of the Goldstone boson masses and decay constants shows that the three-flavour condensate and some low-energy constants are very sensitive to the value of L_6, which measures the Zweig-rule violation in the scalar channel. A chiral sum rule based on experimental data in this channel is used to constrain L_6, confirming a significant decrease between the two- and the three-flavor condensates.

  15. Ultra low energy results and their impact to dark matter and low energy neutrino physics

    CERN Document Server

    Bougamont, E; Derre, J; Giomataris, I; Gerbier, G; Gros, M; Magnier, P; Navick, X F; Salin, P; Savvidis, I; Tsiledakis, G; Vergados, J D

    2010-01-01

    We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such performance low energy calibration systems have been successfully developed: - A pulsed UV lamp extracting photoelectrons from the inner surface of the detector - Various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence which is unique performance for such large-massive detector. It opens a new window in dark matter and low energy neutrino search and may allow detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scattering

  16. Dosimetry of low-energy beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Borg, J.

    1996-08-01

    Useful techniques and procedures for determination of absorbed doses from exposure in a low-energy {beta} radiation field were studied and evaluated in this project. The four different techniques included were {beta} spectrometry, extrapolation chamber dosimetry, Monte Carlo (MC) calculations, and exoelectron dosimetry. As a typical low-energy {beta} radiation field a moderated spectrum from a {sup 14}C source (E{sub {beta}},{sub max} =156 keV) was chosen for the study. The measured response of a Si(Li) detector to photons (bremsstrahlung) showed fine agreement with the MC calculated photon response, whereas the difference between measured and MC calculated responses to electrons indicates an additional dead layer thickness of about 12 {mu}m in the Si(Li) detector. The depth-dose profiles measured with extrapolation chambers at two laboratories agreed very well, and it was confirmed that the fitting procedure previously reported for {sup 147}Pm depth-dose profiles is also suitable for {beta} radiation from {sup 14}C. An increasing difference between measured and MC calculated dose rates for increasing absorber thickness was found, which is explained by limitations of the EGS4 code for transport of very low-energy electrons (below 10-20 keV). Finally a study of the thermally stimulated exoelectron emission (TSEE) response of BeO thin film dosemeters to {beta} radiation for radiation fields with maximum {beta} energies ranging from 67 keV to 2.27 MeV is reported. For maximum {beta} energies below approximately 500 keV, a decrease in the response amounting to about 20% was observed. It is thus concluded that a {beta} dose higher than about 10 {mu}Gy can be measured with these dosemeters to within 0 to -20% independently of the {beta}energy for E{sub {beta}},{sub max} values down to 67 keV. (au) 12 tabs., 38 ills., 71 refs.

  17. COMPARISON OF VARIOUS APPROACHES TO MULTI-CHANNEL INFORMATION FUSION IN C-OTDR SYSTEMS FOR REMOTE MONITORING OF EXTENDED OBJECTS

    Directory of Open Access Journals (Sweden)

    A. V. Timofeev

    2015-01-01

    Full Text Available The paper presents new results concerning selection of optimal information fusion formula for ensembles of COTDR channels. Here C-OTDR is a coherent optical time domain reflectometer. Each of these channels provides data for appropriate automatic classifier which is designed to classify the elastic vibration sources in the multiclass case. Those classifiers form a so-called classifiers ensemble. Ensembles of Lipschitz Classifiers were considered. In this case the goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The Matching Pursuit Optimization Ensemble Classifiers (MPOEC, the Linear Programming Boosting (LP-Boost (LP-β and LP-B variants, the Multiple Kernel Learning (MKL, and Weighing of Inversely as Lipschitz Constants (WILC approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. The basics of these methods have been briefly described along with intrinsic features. All of those methods are based on reducing the task of choosing convex hull parameters to a solution of an optimization problem. All of the mentioned approaches can be successfully used for using in the C-OTDR system data processing. Results of practical usage are presented.

  18. Low energy constraints and scalar leptoquarks⋆

    Directory of Open Access Journals (Sweden)

    Fajfer Svjetlana

    2014-01-01

    Full Text Available The presence of a colored weak doublet scalar state with mass below 1 TeV can provide an explanation of the observed branching ratios in B → D(∗τντ decays. Constraints coming from Z → bb̄, muon g − 2, lepton flavor violating decays are derived. The colored scalar is accommodated within 45 representation of SU(5 group of unification. We show that presence of color scalar can improve mass relations in the up-type quark sector mass. Impact of the colored scalar embedding in 45-dimensional representation of SU(5 on low-energy phenomenology is also presented.

  19. FLSR - The Frankfurt low energy storage ring

    Science.gov (United States)

    Stiebing, K. E.; Alexandrov, V.; Dörner, R.; Enz, S.; Kazarinov, N. Yu.; Kruppi, T.; Schempp, A.; Schmidt Böcking, H.; Völp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-02-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut für Kernphysik der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  20. Extending the Eikonal Approximation to Low Energy

    CERN Document Server

    Capel, Pierre; Ogata, Kazuyuki

    2014-01-01

    E-CDCC and DEA, two eikonal-based reaction models are compared to CDCC at low energy (e.g. 20AMeV) to study their behaviour in the regime at which the eikonal approximation is supposed to fail. We confirm that these models lack the Coulomb deflection of the projectile by the target. We show that a hybrid model, built on the CDCC framework at low angular momenta and the eikonal approximation at larger angular momenta gives a perfect agreement with CDCC. An empirical shift in impact parameter can also be used reliably to simulate this missing Coulomb deflection.

  1. Non-degenerate Low Energy Leptogenesis

    CERN Document Server

    Geng, Chao-Qiang

    2009-01-01

    We study a simple extension of the standard model to tackle the neutrino masses, matter-antimatter asymmetry and dark matter (DM) in the universe, and the lithium problems. In our model, the baryon asymmetry is achieved by the low energy leptogenesis mechanism without requiring any degeneracy of masses, DM is provided by the neutral component of the inert scalar doublet, and the lithium problems are solved by using its negatively charged component. The new particles proposed in the model are within the reach at the future colliders. We also show that our model satisfies the electroweak precision tests.

  2. Low energy behaviour of standard model extensions

    CERN Document Server

    Boggia, Michele; Passarino, Giampiero

    2016-01-01

    The integration of heavy scalar fields is discussed in a class of BSM models, containing more that one representation for scalars and with mixing. The interplay between integrating out heavy scalars and the Standard Model decoupling limit is examined. In general, the latter cannot be obtained in terms of only one large scale and can only be achieved by imposing further assumptions on the couplings. Systematic low-energy expansions are derived in the more general, non-decoupling scenario, including mixed tree-loop and mixed heavy-light generated operators. The number of local operators is larger than the one usually reported in the literature.

  3. Round Gating for Low Energy Block Ciphers

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco;

    2016-01-01

    Pushed by the pervasive diffusion of devices operated by battery or by the energy harvested, energy has become one of the most important parameter to be optimized for embedded systems. Particularly relevant would be to optimize the energy consumption of security primitives. In this paper we explore...... design techniques for implementing block ciphers in a low energy fashion. We concentrate on round based implementation and we discuss how gating, applied at round level can affect and improve the energy consumption of the most common lightweight block cipher currently used in the internet of things...

  4. Low energy signatures of nonlocal field theories

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Martín-Martínez, Eduardo; Saravani, Mehdi

    2016-09-01

    The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by nonanalytic functions of the d'Alembertian operator □ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy nonlocality scales. This allows us to suggest a nuclear physics experiment (˜MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.

  5. Materials for Low-Energy Neutron Radiation Shielding

    Science.gov (United States)

    Singleterry, Robert C., Jr.; Thibeault, Sheila A.

    2000-01-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a low-energy neutron environment using the Monte Carlo N-Particle (MCNP) transport code with an energy range up to 20 MeV. Some candidate materials have been tested in particle beams, and others seemed reasonable to analyze in this manner before deciding to test them. The two metal alloys analyzed are actual materials being designed into or used in aircraft and spacecraft today. This analysis shows that hydrogen-bearing materials have the best shielding characteristics over the metal alloys. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better by larger quantities of carbon in the material. If a low-energy absorber is added to the material, fewer neutrons are transmitted through the material. Future analyses should focus on combinations of scatterers and absorbers to optimize these reaction channels and on the higher energy neutron component (above 50 MeV).

  6. Study of chirally motivated low-energy K - optical potentials

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K - optical potential in the nuclear medium is evaluated self consistently from a free-space K -N t matrix constructed within a coupled-channel chiral approach to the low-energy K¯N data. The chiral-model parameters are fitted to a select subset of the low-energy data plus the K - atomic data throughout the periodic table. The resulting attractive K - optical potentials are relatively 'shallow', with central depth of the real part about 55 MeV, for a fairly reasonable reproduction of the atomic data with χ2/ N≈2.2. Relatively 'deep' attractive potentials of depth about 180 MeV, which result in other phenomenological approaches with χ2/ N≈1.5, are ruled out within chirally motivated models. Different physical data input is required to distinguish between shallow and deep K - optical potentials. The (K -stop, π) reaction could provide such a test, with exclusive rates differing by over a factor of three for the two classes of potentials. Finally, forward (K -,p) differential cross sections for the production of relatively narrow deeply bound K -nuclear states are evaluated for deep K - optical potentials, yielding values considerably lower than those estimated before.

  7. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  8. Low-energy lepton violation from supersymmetric flipped SU(5)

    Science.gov (United States)

    Brahm, David E.; Hall, Lawrence J.

    1989-10-01

    We construct a supersymmetric flipped SU(5)⊗U(1) model which violates R parity and electron number at low energies, through a superpotential term (1/2CijkLiLjEck. Rotation of the electron and Higgs superfields makes this term also responsible for charged-lepton masses. The model employs a missing-partners mechanism for the Higgs fields and a seesaw mechanism for the neutrinos. It correctly predicts the approximate electron mass and several mass relations, as well as numerical values for the grand unification scale and the Cijk coefficients. The electron-neutrino Majorana mass is close to experimental limits, and provides constraints. Interesting Z0 decays are predicted: e.g., Z0-->e-μ+e+μ- with invariant-mass peaks in the (e,μ) channels.

  9. Elastic α-{sup 12}C scattering at low energies in cluster effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Shung-Ichi [Sunmoon University, School of Mechanical and ICT Convergence Engineering, Asan, Chungnam (Korea, Republic of)

    2016-05-15

    The elastic α-{sup 12}C scattering at low energies is studied employing an effective field theory in which the α and {sup 12}C states are treated as elementary-like fields. We discuss scales of the theory in the stellar energy region where the {sup 12}C(α, γ){sup 16}O process occurs, and then obtain an expression of the elastic scattering amplitudes in terms of effective-range parameters. Using experimental data of the phase shifts for l=0,1, 2 channels at low energies, for which the resonance regions are avoided, we fix values of the parameters and find that the phase shifts at the low energies are well reproduced by using three effective-range parameters for each channel. Furthermore, we discuss problems and uncertainties of the present approach when the amplitudes are extrapolated to the stellar energy region. (orig.)

  10. Elastic $\\alpha$-$^{12}$C scattering at low energies in cluster effective field theory

    CERN Document Server

    Ando, Shung-Ichi

    2016-01-01

    The elastic $\\alpha$-$^{12}$C scattering at low energies is studied employing an effective field theory in which the $\\alpha$ and $^{12}$C states are treated as elementary like fields. We discuss scales of the theory at stellar energy region that the ${}^{12}$C($\\alpha$, $\\gamma$)$^{16}$O process occurs, and then obtain an expression of the elastic scattering amplitudes in terms of effective range parameters. Using experimental data of the phase shifts for $l=0,1,2$ channels at low energies, for which the resonance regions are avoided, we fix values of the parameters and find that the phase shifts at the low energies are well reproduced by using three effective range parameters for each channel. Furthermore, we discuss problems and uncertainties of the present approach when the amplitudes are extrapolated to the stellar energy region.

  11. Low energy cyclotron for radiocarbon dating

    Energy Technology Data Exchange (ETDEWEB)

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  12. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  13. The Telescope Array's Low Energy Extension: TALE

    Science.gov (United States)

    Matthews, John

    2009-05-01

    A great deal of information about the sources of ultra high energy cosmic rays exists encoded in the energy spectrum. There are three spectral features in the ultra high energy regime (the second knee, the ankle, and the GZK cut-off). An important composition change also occurs in this energy range. The Telescope Array (TA) is a large area ultra high energy cosmic ray observatory built and operated by groups from the US, Japan, Korea, and Russia. The existing part of the Telescope Array already has good efficiency above the ankle (˜10^18.5 eV). These detectors are already in the field collecting data. The TA Low Energy Extension (TALE) refers to the detectors devoted to the ``low energy'' portion of the spectrum - 10^16.5 - 10^19 eV. The aim of TA/TALE is to understand the origin of cosmic rays and to study their composition over a broad energy range. We will introduce the detector components and discuss the opportunities.

  14. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons.

    Science.gov (United States)

    Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser

    2016-04-26

    Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target's location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of localization accuracy in environments with sparse beacon deployment.

  15. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  16. Low-energy neutrino factory design

    Directory of Open Access Journals (Sweden)

    C. Ankenbrandt

    2009-07-01

    Full Text Available The design of a low-energy (4 GeV neutrino factory (NF is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The π^{±} decay to produce muons (μ^{±}, which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by ∼1.4×10^{21} μ^{+} per year decaying in a long straight section of the storage ring, and a similar number of μ^{-} decays.

  17. Detection of low energy antimatter with emulsions

    CERN Document Server

    Aghion, S; Ariga, T; Bollani, M; Cas, E Dei; Ereditato, A; Evans, C; Ferragut, R; Giammarchi, M; Pistillo, C; Romé, M; Sala, S; Scampoli, P

    2016-01-01

    Emulsion detectors feature a very high position resolution and consequently represent an ideal device when particle detection is required at the micrometric scale. This is the case of quantum interferometry studies with antimatter, where micrometric fringes have to be measured. In this framework, we designed and realized a new emulsion based detector characterized by a gel enriched in terms of silver bromide crystal contents poured on a glass plate. We tested the sensitivity of such a detector to low energy positrons in the range 10-20 keV. The obtained results prove that nuclear emulsions are highly efficient at detecting positrons at these energies. This achievement paves the way to perform matter-wave interferometry with positrons using this technology.

  18. Low energy ion-molecule reactions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, J.M. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  19. Towards a Low Energy Society from me

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen; Christensen, Bente Lis

    The book is based on energy planning research at Technical University of Denmark. With 1980 as a base year, two possible scenarios for future development in Denmark are analysed and described with respect to technology used and life style practised. In a high-energy society the country's energy...... consumption is almost doubled by 2030, and in a low-energy society energy consumption in 2030 can be less than one third of that in the base year. In this updated version a chapter is added dealing with what actually happened over the first 20 years of the scenario period, in which energy consumption stayed...... constant in between the two scenarios. It is analysed what went right with energy savings and what didn't over these passed years. The book is illustrated with drawings and graphs by Claus Deleuran....

  20. LEAR (Low Energy Antiproton Ring), general view.

    CERN Multimedia

    1990-01-01

    When the Antiproton Project was launched in the late 1970s, it was recognized that in addition to the primary purpose of high-energy proton-antiproton collisions in the SPS, there was interesting physics to be done with low-energy antiprotons. In 1982, LEAR was ready to receive antiprotons from the Antiproton Accumulator (AA), via the PS. A year later, delivery of antiprotons to the experiments began, at momenta as low as 100 MeV/c (kinetic energy 5.3 MeV), in an "Ultra-Slow Extraction" mode, dispensing some E9 antiprotons over times counted in hours. For such an achievement, stochastic and electron cooling had to be brought to high levels of perfection.

  1. Bluetooth Low Energy Mesh Networks: A Survey.

    Science.gov (United States)

    Darroudi, Seyed Mahdi; Gomez, Carles

    2017-06-22

    Bluetooth Low Energy (BLE) has gained significant momentum. However, the original design of BLE focused on star topology networking, which limits network coverage range and precludes end-to-end path diversity. In contrast, other competing technologies overcome such constraints by supporting the mesh network topology. For these reasons, academia, industry, and standards development organizations have been designing solutions to enable BLE mesh networks. Nevertheless, the literature lacks a consolidated view on this emerging area. This paper comprehensively surveys state of the art BLE mesh networking. We first provide a taxonomy of BLE mesh network solutions. We then review the solutions, describing the variety of approaches that leverage existing BLE functionality to enable BLE mesh networks. We identify crucial aspects of BLE mesh network solutions and discuss their advantages and drawbacks. Finally, we highlight currently open issues.

  2. Low Energy Atomic Photodesorption from Organic Coatings

    Directory of Open Access Journals (Sweden)

    Alessandro Lucchesini

    2016-10-01

    Full Text Available Organic coatings have been widely used in atomic physics during the last 50 years because of their mechanical properties, allowing preservation of atomic spins after collisions. Nevertheless, this did not produce detailed insight into the characteristics of the coatings and their dynamical interaction with atomic vapors. This has changed since the 1990s, when their adsorption and desorption properties triggered a renewed interest in organic coatings. In particular, a novel class of phenomena produced by non-destructive light-induced desorption of atoms embedded in the coating surface was observed and later applied in different fields. Nowadays, low energy non-resonant atomic photodesorption from organic coatings can be considered an almost standard technique whenever large densities of atomic vapors or fast modulation of their concentration are required. In this paper, we review the steps that led to this widespread diffusion, from the preliminary observations to some of the most recent applications in fundamental and applied physics.

  3. Low-energy dynamics of gravitation

    Science.gov (United States)

    Torma, Tibor

    The present status of theories of quantum gravity are reviewed from the low energy point of view. String theory relates classical black-hole type solutions of Einstein- like equations (e.g. axidilaton gravity) to the string vacuum. Several such solutions are proposed and their properties are investigated, including their behavior under supersymmetry transformations. A general feature of all possible quantum theories of gravitation is that they lead to a field theory description at low (as compared to the Planck mass) energies. The theoretical consistency, uniqueness and consequences of such an effective theory are investigated. I show that a power counting theorem allows for the momentum expansion that defines the effective theory even in the presence of large masses. I also show that graviton-graviton scattering is free of potential infrared and collinear divergencies that plague perturbative discussions of Yang-Mills theories.

  4. Bluetooth Low Energy Mesh Networks: A Survey

    Science.gov (United States)

    Darroudi, Seyed Mahdi; Gomez, Carles

    2017-01-01

    Bluetooth Low Energy (BLE) has gained significant momentum. However, the original design of BLE focused on star topology networking, which limits network coverage range and precludes end-to-end path diversity. In contrast, other competing technologies overcome such constraints by supporting the mesh network topology. For these reasons, academia, industry, and standards development organizations have been designing solutions to enable BLE mesh networks. Nevertheless, the literature lacks a consolidated view on this emerging area. This paper comprehensively surveys state of the art BLE mesh networking. We first provide a taxonomy of BLE mesh network solutions. We then review the solutions, describing the variety of approaches that leverage existing BLE functionality to enable BLE mesh networks. We identify crucial aspects of BLE mesh network solutions and discuss their advantages and drawbacks. Finally, we highlight currently open issues. PMID:28640183

  5. Low energy consumption spintronics using multiferroic heterostructures.

    Science.gov (United States)

    Trassin, Morgan

    2016-01-27

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  6. Windows in Low Energy Houses. Size Matters

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Mari-Louise

    2004-06-01

    A generally accepted way of building passive houses has been to have small windows facing north and a large glass facade to the south. This is to minimize losses on the north side while gaining as much solar heat as possible on the south. In spring 2001, twenty terraced houses were built outside Goeteborg partly in this way. The indoor temperature is kept at a comfortable level by passive methods, using solar gains and internal gains from household appliances and occupants. Heat losses are very low, since the building envelope is well insulated and since modern coated triple-glazed windows have been installed. The purpose of this work is to investigate how decreasing the window size facing south and increasing the window size facing north in low energy houses will influence the energy consumption and maximum power needed to keep the indoor temperature between 23 and 26 deg C. Different climates and orientations have been investigated and so have the influence of occupancy and window type. A dynamic building simulation tool, DEROB, has been used and the simulations indicate an extremely low energy demand for the houses. The results show that the size of the energy efficient windows does not have a major influence on the heating demand in winter, but is of relevant signification looking at the cooling need in summer. This indicates that instead of the traditional technique of building passive houses it is possible to enlarge the window area facing north and get better lighting conditions. To decrease the energy need for cooling, there is an optimal window size facing south that is smaller than the original size of the investigated buildings.

  7. 21 CFR 878.4410 - Low energy ultrasound wound cleaner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low energy ultrasound wound cleaner. 878.4410... (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4410 Low energy ultrasound wound cleaner. (a) Identification. A low energy ultrasound wound cleaner is a device that...

  8. Low energy electron scattering from fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Fisica; Yates, Brent; Hong, Ling; Khakoo, Murtadha A. [California State University at Fullerton, CA (US). Physics Department; Bettega, Marcio H.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Costa, Romarly F. da [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, Marco A.P. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE/CNPEM), Campinas, SP (Brazil)

    2011-07-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist

  9. Low Energy High Brilliance Beam Characterization

    CERN Document Server

    Bähr, J

    2005-01-01

    Low energy high brilliance beam characterization plays an important role for electron sources and injectors of Free Electron Lasers (FELs) and electron linear accelerators as for example the future ILC project. The topic is discussed basing on solutions of the PITZ facility (PhotoInjector Test facility Zeuthen) which are compared with methods applied at other facilities. The properties of an electron beam produced at a laser-driven rf-gun is mainly influenced also by characteristics of the laser beam and the electron gun itself. Therefore aspects of diagnostics will be also discussed for the laser, laser beam line and gun as well. The main properties of the electron beam are transverse and longitudinal phase space and charge as well. The measurement of transverse beam size and position, transverse emittance, charge, beam current, and longitudinal phase space will be discussed in detail. The measurements of the transverse emittance at PITZ is based on a single slit method. The measurement of the longitudinal p...

  10. Low-energy electron scattering from cyanamide

    Science.gov (United States)

    Wang, Kedong; Guo, Shuangcheng; Meng, Ju; Huang, Xiaotian; Wang, Yongfeng

    2016-09-01

    The low-energy electron collisions with cyanamide molecule are investigated by using the UK molecular R -matrix codes for electron energies ranging from 0.01 eV to 10 eV. Three models including static-exchange, static-exchange plus polarization, and close-coupling (CC) approximations are employed to reveal the dynamic interaction. Elastic (integrated and differential), momentum-transfer, and excitation cross sections from the ground state to the three low-lying electron excited states have been presented. Two shape resonances, two core-excited resonances, and two Feshbach resonances are detected in the CC approximation. The role of active space in the target and scattering problem including the resonances is discussed. The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed. These resonances may be responsible for the fragments observed in a recent experiment of the dissociative electron attachments to cyanamide. Since the cyanamide molecule has a large permanent dipole moment, a Born closure procedure is used to account for the contribution of partial waves higher than l =4 to obtain converged cross sections.

  11. Studies in Low-Energy Nuclear Science

    Energy Technology Data Exchange (ETDEWEB)

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  12. Low Energy Investigations at Kamioka Observatory

    CERN Document Server

    Sekiya, Hiroyuki

    2013-01-01

    At Kamioka Observatory many activities for low energy rare event search are ongoing. Super-Kamiokande(SK), the largest water Cherenkov neutrino detector, currently continues data taking as the fourth phase of the experiment (SK-IV). In SK-IV, we have upgraded the water purification system and tuned water flow in the SK tank. Consequently the background level was lowered significantly. This allowed SK-IV to derive solar neutrino results down to 3.5MeV energy region. With these data, neutrino oscillation parameters are updated from global fit; $\\Delta m^2_{12}=7.44^{+0.2}_{-0.19}\\times10^{-5} {\\rm eV}^2$, $\\sin^2\\theta_{12}=0.304\\pm0.013$, $\\sin^2\\theta_{13}=0.030^{+0.017}_{-0.015}$. NEWAGE, the directional sensitive dark matter search experiment, is currently operated as "NEWAGE-0.3a" which is a $0.20\\times0.25\\times0.31$ m$^3$ micro-TPC filled with CF4 gas at 152 Torr. Recently we have developed "NEWAGE-0.3b". It was succeeded to lower the operation pressure down to 76 Torr and the threshold down to 50 keV (F...

  13. Exploring Neutrino Mixing with Low Energy Superbeams

    CERN Document Server

    Minakata, H; Minakata, Hisakazu; Nunokawa, Hiroshi

    2001-01-01

    We explore as clearly as possible the features of neutrino oscillation which are relevant for measurements of the CP violating Kobayashi-Maskawa phase delta and the sign of \\Delta m^2_{13}. We focus on the so called low-energy option and discuss principles for optimizing experimental parameters to measure these two quantities simultaneously. Toward the goal, we first formulate a method for obtaining a bird-eye view of the phenomenon of neutrino oscillation by introducing a new powerful tool called the ``CP trajectory diagram in bi-probability space''. It allows us to represent pictorially the three effects separately in a single diagram; effect from genuine CP violation due to the sin delta term, effect from the CP conserving cos delta term, and the fake CP violating effect due to earth matter. By using the CP trajectory diagram we observe that there is a two-fold ambiguity in the determination of delta which is related with the sign of Delta m^2_{13}. We then address the question of what are the promising op...

  14. PCAC and Shadowing of Low Energy Neutrinos

    CERN Document Server

    Kopeliovich, B Z

    2005-01-01

    The Adler relation between reactions initiated by neutrinos and pions is easy to misinterpret as a manifestation of the pion pole dominance. An axial current, however, cannot fluctuate into a pion, but only to heavy axial-vector states, since the lepton current is transverse. This is the miracle of the PCAC hypothesis which dictates a specific conspiracy between the heavy fluctuations, so that all together they mock the pion pole. Indeed, the observed Q^2 dependence of the axial form factor is controlled by the effective mass m_A \\sim 1 GeV, rather than the pion mass. On the contrary, the onset of nuclear shadowing is governed by the small pion mass, rather than by the large axial mass scale. This is in variance with the conventional wisdom which equates the fluctuation lifetime and the coherence time. For the case of axial current they are different by almost two orders of magnitude. As a result, neutrino interactions are shadowed at very low energies of few hundred MeV, while energy of about 10 GeV is neede...

  15. Optimal Low Energy Earth-Moon Transfers

    Science.gov (United States)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  16. Design of Low-Energy District Heating System for a Settlement with Low-Energy Buildings

    DEFF Research Database (Denmark)

    Tol, Hakan; Svendsen, Svend

    2011-01-01

    velocity and/or max pressure gradient. Since traditional dimensioning methods cause over-dimensioned network, special attention has to be given to lower the dimensions and as a consequence heat loss from the DH network further. In this investigation pipe dimensioning method of low-energy DH system......With the integration of new low-energy buildings the traditional district heating (DH) systems with high operating temperatures will have significantly higher heat loss according to the heat supplied to the district. The relatively higher heat loss could be reduced with low operating temperatures...... was developed with an optimization method in the objective of minimizing heat loss from the network while pressure drop values were kept as the constraints through the DH network. In the dimensioning method also descending pipe dimensions were formed in the branched type DH network by taking into account...

  17. Low-energy theorems for nucleon-nucleon scattering at Mπ=450 MeV

    Science.gov (United States)

    Baru, V.; Epelbaum, E.; Filin, A. A.

    2016-07-01

    We apply the low-energy theorems to analyze the recent lattice QCD results for the two-nucleon system at a pion mass of Mπ≃450 MeV obtained by the NPLQCD Collaboration. We find that the binding energies of the deuteron and dineutron are inconsistent with the low-energy behavior of the corresponding phase shifts within the quoted uncertainties and vice versa. Using the binding energies of the deuteron and dineutron as input, we employ the low-energy theorems to predict the phase shifts and extract the scattering length and the effective range in the S31 and S10 channels. Our results for these quantities are consistent with those obtained by the NPLQCD Collaboration from effective field theory analyses but are in conflict with their determination based on the effective-range approximation.

  18. Low energy x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  19. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  20. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons

    Directory of Open Access Journals (Sweden)

    Yuan Zhuang

    2016-04-01

    Full Text Available Indoor wireless localization using Bluetooth Low Energy (BLE beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM, channel-separate fingerprinting (FP, outlier detection and extended Kalman filtering (EKF for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy. The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m, which performs 35.82% better than <3.99 m from the Propagation Model (PM + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m, the proposed algorithm achieves the accuracies of <3.88 m at

  1. Positron Channeling

    CERN Document Server

    Badikyan, Karen

    2016-01-01

    The possibility of channeling the low-energy relativistic positrons around separate crystallographic axes with coaxial symmetry of negative ions in some types of crystals is shown. The process of annihilation of positrons with electrons of medium was studied in detail.

  2. European national strategies to move towards very low energy buildings

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    difficult. One way of promoting very low energy buildings is by various direct or indirect actions that make these kinds of buildings more attractive. The most popular support for low energy buildings is e.g. loans with low interest rates to finance low energy buildings. This is done either by means...... high energy performance. It is important to stress the need for MS to introduce a national or regional definition of very low energy buildings in their building regulation and to develop a national strategy towards this level of energy performance to become the standard. This market transformation...... the ambition in the EU Action plan - to develop an EU strategy towards very low energy houses. The current recast of the EPBD is an opportunity, which must not be missed to introduce the requirement to MS to define very low energy buildings and a national strategy towards this level of energy performance...

  3. Low energy electron interactions with complex biological targets

    Science.gov (United States)

    Orlando, Thomas

    2012-10-01

    The low energy (1-25 eV) electron-induced damage of DNA oligomers have been examined both theoretically and experimentally. Specifically, elastic scattering of 5-30 eV electrons within B-DNA 5'-CCGGCGCCGG-3' and A-DNA 5'-CGCGAATTCGCG-3' sequences has been calculated using the separable representation of a free-space electron propagator and a curved wave multiple scattering formalism. The disorder brought about by the surrounding water and helical base stacking leads to featureless amplitude build-up of elastically scattered electrons on the sugars and phosphate groups for all energies between 5-30 eV. However, some constructive interference features arising from diffraction were revealed when examining the structural waters within the major groove. We correlated these scattering features with measured DNA single and double strand breaks. Compound resonance states involving interfacial water and excitation energies > 5 eV seem to be required for lethal double strand breaks. We have recently extended this work to excitation energies below 5 eV by examining the damage using Raman-microscopy and scanning electrostatic force microscopy. Very efficient damage via single strand breaks is observed below 5 eV excitation energies. This involves π* negative ion resonances that are initially localized on the bases but transferred to the σ* states of the sugar-phosphate bond. The efficacies of these channels depend upon the base-pair sequences as well as the presence of water.

  4. Photon strength and the low-energy enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Hatarik, R.; Lesher, S. R.; Scielzo, N. D. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Krtička, M. [Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, Prague 8 (Czech Republic); Allmond, J. M. [Department of Physics, University of Richmond, Virginia 23173 (United States); Basunia, M. S.; Fallon, P.; Firestone, R. B.; Lake, P. T.; Lee, I-Y.; Paschalis, S.; Petri, M.; Phair, L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Goldblum, B. L. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States)

    2014-08-14

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in {sup 95}Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to {sup 95}Mo photon strength function data measured at the University of Oslo.

  5. Low-energy lepton violation from supersymmetric flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Brahm, D.E.; Hall, L.J. (Physics Department, University of California, Berkeley, California 94720 (US) Theoretical Physics Group, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720)

    1989-10-01

    We construct a supersymmetric flipped SU(5){direct product}U(1) model which violates {ital R} parity and electron number at low energies, through a superpotential term (1/2{ital C}{sup {ital ijk}}L{sub i}L{sub j}E{sub k}{sup c}). Rotation of the electron and Higgs superfields makes this term also responsible for charged-lepton masses. The model employs a missing-partners mechanism for the Higgs fields and a seesaw mechanism for the neutrinos. It correctly predicts the approximate electron mass and several mass relations, as well as numerical values for the grand unification scale and the {ital C}{sup {ital ijk}} coefficients. The electron-neutrino Majorana mass is close to experimental limits, and provides constraints. Interesting {ital Z}{sup 0} decays are predicted: e.g., {ital Z}{sup 0}{r arrow}e{sup {minus}}{mu}{sup +}e{sup +}{mu}{sup {minus}} with invariant-mass peaks in the ({ital e},{mu}) channels.

  6. Analysis of Latency Performance of Bluetooth Low Energy (BLE) Networks

    Science.gov (United States)

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2015-01-01

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes. PMID:25545266

  7. Electronic excitation of molecular hydrogen by low-energy electrons

    Science.gov (United States)

    Hargreaves, Leigh

    2016-09-01

    Molecular hydrogen is the most abundant element in the universe, particularly in interstellar plasmas such as atmospheres of gas giant planets and stars. Electron collision data for hydrogen is critical to interpreting the spectroscopy of interstellar objects, as well as being of applied value for modelling technological plasmas. Hydrogen is also fundamentally interesting, as while highly accurate wave functions for this simple molecule are available, providing an accurate, ab initio, treatment the collision dynamics has proven challenging, on account of the need to have a complete description of channel coupling and polarization effects. To date, no single theoretical approach has been able to replicate experimental results across all transitions and incident energies, while the experimental database that is available is far from complete and not all available measurements are in satisfactory agreement. In this talk, we present differential and integral cross section measurements for electronic excitation cross sections for molecular hydrogen by low-energy electron impact. The data were measured at incident energies below 20eV, using a well-tested crossed beam apparatus and employing a moveable gas source approach to ensure that background contributions to the scattering are accurately accounted for. These measurements are compared with new theoretical results employing the convergent close coupling approach.

  8. Analysis of latency performance of bluetooth low energy (BLE) networks.

    Science.gov (United States)

    Cho, Keuchul; Park, Woojin; Hong, Moonki; Park, Gisu; Cho, Wooseong; Seo, Jihoon; Han, Kijun

    2014-12-23

    Bluetooth Low Energy (BLE) is a short-range wireless communication technology aiming at low-cost and low-power communication. The performance evaluation of classical Bluetooth device discovery have been intensively studied using analytical modeling and simulative methods, but these techniques are not applicable to BLE, since BLE has a fundamental change in the design of the discovery mechanism, including the usage of three advertising channels. Recently, there several works have analyzed the topic of BLE device discovery, but these studies are still far from thorough. It is thus necessary to develop a new, accurate model for the BLE discovery process. In particular, the wide range settings of the parameters introduce lots of potential for BLE devices to customize their discovery performance. This motivates our study of modeling the BLE discovery process and performing intensive simulation. This paper is focused on building an analytical model to investigate the discovery probability, as well as the expected discovery latency, which are then validated via extensive experiments. Our analysis considers both continuous and discontinuous scanning modes. We analyze the sensitivity of these performance metrics to parameter settings to quantitatively examine to what extent parameters influence the performance metric of the discovery processes.

  9. Occupant satisfaction with new low-energy houses

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Jensen, Ole Michael; Kristensen, Lars

    2012-01-01

    The development and the erection of low-energy buildings have been intensified in recent years. Still, there are only few studies of the energy performance and occupant satisfaction with living in low-energy houses. A questionnaire survey was therefore carried out among occupants of low-energy ho......The development and the erection of low-energy buildings have been intensified in recent years. Still, there are only few studies of the energy performance and occupant satisfaction with living in low-energy houses. A questionnaire survey was therefore carried out among occupants of low......-energy houses. The purpose was to study occupant satisfaction with new low-energy houses concerning i.a. the perceived indoor climate and the technical installations for heating and ventilation. The survey showed an overall satisfaction with the new low-energy houses, but also that there were problems...... that should be addressed to make low-energy houses more attractive to ordinary people. Problems could be that it was too hot in summer and too cold in winter; that there were initial difficulties with the technical installations and that they were difficult to use. A series of recommendations to increase...

  10. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  11. Zweig rule violation in the scalar sector and values of low-energy constants

    CERN Document Server

    Descotes, S

    2001-01-01

    We discuss the role of the Zweig rule violation in the scalar channel for the determination of low-energy constants and condensates arising in the effective chiral Lagrangian of QCD. The analysis of the Goldstone boson masses and decay constants shows that the three-flavor condensate and some low-energy constants are very sensitive to the value of the Zweig Rule violating constant L_6. A similar study is performed in the case of the decay constants. A chiral sum rule based on experimental data in the scalar channel is used to constrain L_6, indicating a significant decrease between the two- and the three-flavor condensates. The analysis of the scalar form factors of the pion at zero momentum suggests that the pseudoscalar decay constant could also be suppressed from N_f=2 to 3.

  12. Search for a Vector Boson Fusion Higgs boson production in the di-photon channel with the ATLAS experiment

    CERN Document Server

    Petit, E; The ATLAS collaboration

    2012-01-01

    This poster was made for the HCP conference. The initial title submitted to the conference organisation committee was "Search for an associated Higgs boson production in the di-photon channel with the ATLAS experiment" and was about the details of the VH measurements in the di-photon channel with 13 fb-1 of data, and the implications in terms of Higgs boson couplings. But since the H->gammagamma was finally not approved to go for HCP, the title and the content of the posters changed from the VH production mode to the VBF production mode (for which we have results with the ICHEP dataset).

  13. Total cross sections of positron-sodium scattering at low energies

    Institute of Scientific and Technical Information of China (English)

    Cheng Yong-Jun; Zhou Ya-Jun; Jiao Li-Guang

    2012-01-01

    A new calculation for the total cross section of positron-sodium scattering is performed in an energy range down to a few tenths of one electron volt using the coupled-channel optical method. The ionization continuum and the positronium formation channels are included via an equivalent-local complex potential.The role played by the break-up and rearrangement processes in the low energy positron-sodium scattering is also investigated.The total scattering cross section is reported and compared with the available theoretical and experimental data.

  14. Low-energy-consumption hybrid lasers for silicon photonics

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Ran, Qijiang; Mørk, Jesper

    2012-01-01

    Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed.......Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed....

  15. Evolution of fusion hindrance for asymmetric systems at deep sub-barrier energies

    Science.gov (United States)

    Shrivastava, A.; Mahata, K.; Pandit, S. K.; Nanal, V.; Ichikawa, T.; Hagino, K.; Navin, A.; Palshetkar, C. S.; Parkar, V. V.; Ramachandran, K.; Rout, P. C.; Kumar, Abhinav; Chatterjee, A.; Kailas, S.

    2016-04-01

    Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in 12C +198Pt system but not in 7Li +198Pt system, within the measured energy range. Emergence of the hindrance, moving from lighter (6,7Li) to heavier (12C, 16O) projectiles is explained employing a model that considers a gradual transition from a sudden to adiabatic regime at low energies. The model calculation reveals a weak effect of the damping of coupling to collective motion for the present systems as compared to that obtained for systems with heavier projectiles.

  16. Evolution of fusion hindrance for asymmetric systems at deep sub barrier energies

    CERN Document Server

    Shrivastavaa, A; Pandit, S K; Nanal, V; Ichikawa, T; Hagino, K; Navin, A; Palshetkar, C S; Parkar, V V; Ramachandran, K; Rout, P C; Kumar, Abhinav; Chatterjee, A; Kailas, S

    2016-01-01

    Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in 12C + 198Pt system but not in 7Li + 198Pt system, within the measured energy range. Emergence of the hindrance, moving from lighter (6,7Li) to heavier (12C,16O) projectiles is explained employing a model that considers a gradual transition from a sudden to adiabatic regime at low energies. The model calculation reveals a weak effect of the damping of coupling to collective motion for the present systems as compared to that obtained for systems with heavier projectiles.

  17. Evolution of fusion hindrance for asymmetric systems at deep sub-barrier energies

    Directory of Open Access Journals (Sweden)

    A. Shrivastava

    2016-04-01

    Full Text Available Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in C12+Pt198 system but not in Li7+Pt198 system, within the measured energy range. Emergence of the hindrance, moving from lighter (6,7Li to heavier (12C, 16O projectiles is explained employing a model that considers a gradual transition from a sudden to adiabatic regime at low energies. The model calculation reveals a weak effect of the damping of coupling to collective motion for the present systems as compared to that obtained for systems with heavier projectiles.

  18. Occupant Experiences and Satisfaction with New Low-Energy Houses

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Thomsen, Kirsten Engelund; Mørck, Ove

    2013-01-01

    The development and the erection of low-energy buildings have been intensified in recent years. Still, there are only few studies on occupant experiences and satisfaction of living in low-energy houses. A questionnaire survey was therefore carried out in the autumn 2011 among occupants of low......-energy houses that meet the future lower energy requirements of the planned Danish Building Regulations 2015. The purpose was to study experiences and satisfaction among occupants living in new low-energy houses. It included i.a. overall satisfaction, perceived indoor climate and experiences and satisfaction...... with technical installations for heating and ventilation, the ability of regulating the indoor climate, the availability and quality of information and the experienced heat consumption. The survey showed an overall satisfaction with new low-energy houses, but also that there were problems that should...

  19. What is a low-energy house and who cares?

    Energy Technology Data Exchange (ETDEWEB)

    Litt, B.R.

    1994-12-01

    Most energy analysts view low-energy houses as good things, yet differ in their expectations of what exactly a low energy house is. There are two intertwining threads to this report. The first is an evaluation of 50 buildings that have been claimed to be low-energy residences, for which monitored energy performance data have been collected. These data represent the preliminary effort in the ongoing update of the Buildings Energy-Use Compilation and Analysis (BECA) data base for new residences. The second thread concerns the definition of a low-energy house. After the elements of a definition are presented, their implications for actors involved in providing housing are identified. Several more tractable definitions are applied to the houses in this compilation. The outcomes illustrate ways in which different interests are served by various definitions. Different definitions can yield very different energy rankings. No single definition of a low-energy house is universally applicable.

  20. Double Higgs Production in Vector Boson Fusion(VBF) Channel and Looking for Algorithms to Find VBF Jets

    CERN Document Server

    Ahmed, Wasif

    2016-01-01

    In the recent years, search for heavy particles on LHC data had consistently advanced on both CMS and ATLAS. So it would be worth looking for this heavy Kaluza-Klein graviton in one warped extra dimensional model. The analysis is on the VBF channel. Certain algorithms were tested to find jets that do not come from the double higgs produced by the decay of KK-graviton.

  1. Search for the Standard Model Higgs Boson via Vector Boson Fusion Production Process in the Di-Tau Channels

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    We outline a search for the Standard Model Higgs boson decaying into a τ-pair in association with two jets, which is produced dominantly by the Vector Boson Fusion (VBF) process. The results indicate significant potential for a discovery in the low mass range. We consider fully leptonic, semi-leptonic, and, for the first time, fully hadronic tau decays. Mass reconstruction, central-jet veto, and jet tagging are discussed, and we present an approach to estimate the background from the data. Additional emphasis has been given to trigger issues and the impact of pileup. The results are based on an improved detector description, including misalignments, the most recent reconstruction software, and modern Monte Carlo event generators, including a revised prediction of the underlying event activity.

  2. Simulation of indoor environment in low energy housing

    DEFF Research Database (Denmark)

    Vagiannis, Georgios; Knudsen, Henrik N.; Toftum, Jørn;

    The aim of this study was to assess whether low energy consumption in dwellings imposes problems by deteriorating the indoor environment. Several indoor environment parameters were correlated with the energy consumption of low energy houses. One house from a village of low energy houses in Denmark...... was selected and sensitivity analyses were conducted for the importance of occupancy, ventilation, window opening, and heat recovery efficiency. In particular occupancy and venting played significant roles for the indoor environment and energy consumption. It was also shown that with passive measures, but also...... with the installation of a chiller, a comfortable thermal indoor environment could be achieved with only a minor increase in the energy consumption....

  3. Cryostat for Ultra-low-energy Threshold Germanium Spectrometers

    CERN Document Server

    Aalseth, Craig E; Fast, James E; Hossbach, Todd W; Orrell, John L; Overman, Cory T; Vandevender, Brent A

    2012-01-01

    This paper presents progress on the development of a cryostat intended to improve upon the low-energy threshold (below 0.5 keV) of p-type point contact germanium gamma-ray spectrometers. Ultra-low energy thresholds are important in the detection of low-energy nuclear recoils, an event class relevant to both dark matter direct detection and measurement of coherent neutrino-nucleus scattering. The cryostat design, including a thermal and electrical-field model, is given. A prototype cryostat has been assembled and data acquired to evaluate its vacuum and thermal performance.

  4. Oblique aggradation: a novel explanation for sinuosity of low-energy streams in peat-filled valley systems.

    NARCIS (Netherlands)

    Candel, J.H.J.; Makaske, A.; Storms, J.E.A.; Wallinga, J.

    2016-01-01

    Low-energy streams in peatlands often have a high sinuosity. However, it is unknown how this sinuous planform formed, since lateral migration of the channel is hindered by relatively erosion-resistant banks. We present a conceptual model of Holocene morphodynamic evolution of a stream in a peat-fill

  5. Method for analysis of low energy backscattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Rez. Ustav Jaderne Fyziky); Pelikan, L. (Ceske Vysoke Uceni Technicke, Prague (Czechoslavika). Dept. of Microelectronics); Rybka, V.; Krejci, P. (Tesla, Prague (Czechoslovakia))

    1982-04-15

    An analytical formula is proposed describing the shape of the energy spectra of particles backscattered from samples implanted with heavy impurities. The method is suitable for quantitative evaluation of backscattering spectra measured with low energy ions.

  6. Biological assessments for the low energy demonstration accelerator, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  7. Classification of low energy houses in Danish Building Regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    The new Danish Building Regulations (Building Regulations, 2005) introduces the total energy consumption, i.e. energy use for heating, ventilation, cooling and domestic hot water, for buildings as a measure for the energy efficiency of new buildings, i.e. moving away from the former U-value demands....... In addition to the minimum requirements for new buildings, the new Building Regulations also specify requirements for characterizing a building as either low energy building class 1 or low energy building class 2. This paper describes a type-house that is presently being built in Denmark. The type......-house easily meets the requirements for being categorized as a low energy building class 1, and the paper investigates how much U-values can be increased if the type-house were to fulfil the requirements for a low energy building class 2 or a building that just fulfils the minimum demands....

  8. The MAJORANA Demonstrator Low-Energy Rare Event Search

    Science.gov (United States)

    Wiseman, Clinton; Majorana Collaboration

    2016-09-01

    The extremely low backgrounds of the MAJORANA DEMONSTRATOR neutrinoless double beta decay experiment, combined with the excellent energy resolution of its high-purity germanium (HPGe) detectors, provide an opportunity for a dark matter search at low energy (rare event searches at low energies, including light WIMPs (Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  9. Saturation of low-energy antiproton annihilation on nuclei

    Science.gov (United States)

    Gal, A.; Friedman, E.; Batty, C. J.

    2000-10-01

    Recent measurements of very low-energy (pL0, parallels the recent prediction, for /E<0, that the level widths of /p¯ atoms saturate and, hence, that /p¯ deeply bound atomic states are relatively narrow. Antiproton annihilation cross sections are calculated at pL=57 MeV//c across the periodic table, and their dependence on /Z and /A is classified and discussed with respect to the Coulomb focussing effect at very low energies.

  10. Low-Energy Kπ Phase Shifts in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; ZHANG Zong-Ye; YU You-Wen

    2005-01-01

    The low-energy region kaon-pion S- and P-wave phase shifts with isospin I = 1/2 and I = 3/2 are dynamically studied in the chiral SU(3) quark model by solving a resonating group method equation. The model parameters are taken to be the values fitted by the energies of the baryon ground states and the kaon-nucleon elastic scattering phase shifts of different partial waves. As a preliminary study the s-channel q(-q) annihilation interactions are not included since they only act in the very short range and are subsequently assumed to be unimportant in the low-energy domain. The numerical results are in qualitative agreement with the experimental data.

  11. Supporting the Josephson Interpretation of Low Energy Nuclear Reactions and Stabilization of Nuclear Waste

    Directory of Open Access Journals (Sweden)

    F. Osman

    2005-01-01

    Full Text Available Brian Josephson appealed at the meeting of the Nobel Laureates July 2004 against the ignorance of physicist to the phenomenon of cold fusion. Though there are good reasons against many publications on this topic but not for all what was reported. It seems to be indicated to summarize the following serious, reproducible and confirmed observations on the reactions of protons or deuterons incorporated in host metals such as palladium, nickel and other metals. We underline the confusing discovery by Cockroft and Oliphant with the anomalous low energy for nuclear reactions which was hundred times lower than in the usual cases when smashing nuclei against their Coulomb potential. A similar unexpected result was that of Otto Hahn’s-the chemist!-Discovery of fission that had changed the world. A significant result of cold fusion was seen in gaseous atmosphere or discharges between palladium targets, rather significant and fully reproducible, e.g. From the “life after death” heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect-preferably in the swimming electron layer-may lead to reactions at nuclear distances d of picometers with reaction probability times U off about mega seconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to Low Energy Nuclear Reactions (LENR where the involvement of pollution could be excluded from the generation of very seldom rare earth elements. A basically new theory for DD cross sections is used to confirm the picometer-mega second reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nucleus generation, magic numbers and to quark

  12. Structure information from fusion barriers

    Indian Academy of Sciences (India)

    S V S Sastry; S Santra

    2000-06-01

    It is shown that the analysis of fusion barrier distributions is not always an unambiguous test or a ‘fingerprint’ of the structure information of the colliding nuclei. Examples are presented with same fusion barrier distributions for nuclei having different structures. The fusion excitation functions for 16O+208Pb, using the coupled reaction channel (CRC) method and correct structure information, have been analysed. The barrier distributions derived from these excitation functions including many of the significant channels are featureless, although these channels have considerable effects on the fusion excitation function. However, a simultaneous analysis of the fusion, elastic and quasi-elastic channels would fix the structure and the reaction unambiguously

  13. $\\alpha$-scattering and $\\alpha$-induced reaction cross sections of $^{64}$Zn at low energies

    CERN Document Server

    Ornelas, A; Gyürky, Gy; Elekes, Z; Fülöp, Zs; Halász, Z; Kiss, G G; Somorjai, E; Szücs, T; Takács, M P; Galaviz, D; Güray, R T; Korkulu, Z; Özkan, N; Yalçın, C

    2016-01-01

    Background: alpha-nucleus potentials play an essential role for the calculation of alpha-induced reaction cross sections at low energies in the statistical model... Purpose: The present work studies the total reaction cross section sigma_reac of alpha-induced reactions at low energies which can be determined from the elastic scattering angular distribution or from the sum over the cross sections of all open non-elastic channels. Method: Elastic and inelastic 64Zn(a,a)64Zn angular distributions were measured at two energies around the Coulomb barrier at 12.1 MeV and 16.1 MeV. Reaction cross sections of the (a,g), (a,n), and (a,p) reactions were measured at the same energies using the activation technique. The contributions of missing non-elastic channels were estimated from statistical model calculations. Results: The total reaction cross sections from elastic scattering and from the sum of the cross sections over all open non-elastic channels agree well within the uncertainties. This finding confirms the cons...

  14. Energy and carbon impact of very low energy building

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne; Eriksen, Kurt Emil (EuroACE (Belgium)). e-mail: susanne.dyrboel@rockwool.com; Engelund Thomsen, Kirsten; Wittchen, Kim B.; Jensen, Ole Michael (Danish Building Research Inst., SBI (Denmark))

    2009-07-01

    The main purpose of the current study is to investigate the impact associated with a wider introduction of very low energy buildings in Europe, especially for EU Member States (MS) which have elaborated plans for the future towards very low energy buildings. In the study, the resulting energy savings and CO{sub 2} emission reduction from buildings constructed as very low energy buildings will be dealt with, taking into account the national energy-mix as well as national interpretation of very low energy buildings. In addition, the study seeks to obtain information on relevant national studies on very low energy buildings, including measures and programmes to promote such buildings and to remove barriers to their future development. In this context, education, training, and the public sector are areas of special interest. In a recent study [1] we gathered a picture of the planned strategies in European countries regarding the implementation of requirements towards very low energy buildings (on passive house level or similar). This paper discusses results from a second survey on potential energy and CO{sub 2} emission reductions if European MS shift towards very low energy buildings. One of the prescribed actions on buildings in the EU Action Plan on Energy Efficiency [2] is for the Commission to develop a strategy for very low energy or passive houses (before 2009) towards a more widespread deployment of these building types by 2015. In the Commission proposal for the Energy Performance of Buildings Directive (EPBD) recast [3] MS will be required to draw up national plans for increasing the number of buildings for which both carbon dioxide emissions and primary energy consumption are low or equal to zero. The MS shall set targets for the minimum percentage which these buildings shall constitute of the total number of buildings in 2020. The targets shall be specified for both new and existing buildings as well as for buildings occupied by public authorities. The

  15. Low energy availability in the marathon and other endurance sports.

    Science.gov (United States)

    Loucks, Anne B

    2007-01-01

    Energy availability is the amount of dietary energy remaining after exercise training for all other metabolic processes. Excessively low energy availability impairs reproductive and skeletal health, although genetics and age may alter an individual's initial conditions and sensitivity when low energy availability is imposed. Many marathon runners and other endurance athletes reduce energy availability either (i) intentionally to modify body size and composition for improving performance; (ii) compulsively in a psychopathological pattern of disordered eating; or (iii) inadvertently because there is no strong biological drive to match energy intake to activity-induced energy expenditure. Inadvertent low energy availability is more extreme when consuming a low fat, high carbohydrate diet. Low energy availability, reproductive disorders, low bone mineral density and stress fractures are more common in female than male athletes. Functional menstrual disorders caused by low energy availability should be diagnosed by excluding diseases that also disrupt menstrual cycles. To determine energy availability (in units of kilocalories or kilojoules per kilogram of fat-free mass), athletes can record their diets and use diet analysis software to calculate energy intake, measure energy expenditure during exercise using a heart monitor and measure fat-free mass using a bioelectrical impedance body composition scale. All are commercially available at consumer prices.

  16. A phenomenological study of photon production in low energy neutrino nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, James P [Los Alamos National Laboratory; Goldman, Terry J [Los Alamos National Laboratory

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting in Detroit MI.

  17. Low-energy elastic electron scattering form chloroethane, C2H5Cl

    Science.gov (United States)

    Sakaamini, A.; Navarro, C.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.

    2015-10-01

    We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloroethane, C2H5Cl, also known as ethyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 1 to 30 eV and at scattering angles from {10}\\circ to {125}\\circ . We compare our data to previous results for C2H5Cl and for the related molecule chloromethane.

  18. Low-energy elastic electron scattering from chloromethane, CH3Cl

    Science.gov (United States)

    Navarro, C.; Sakaamini, A.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.

    2015-10-01

    We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloromethane, CH3Cl, also known as methyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 0.5 to 100 eV and at scattering angles from {5}\\circ to {125}\\circ . We compare our data to earlier previous results for this molecule.

  19. The low-energy structure of the nucleon-nucleon interaction: statistical versus systematic uncertainties

    Science.gov (United States)

    Navarro Pérez, R.; Amaro, J. E.; Ruiz Arriola, E.

    2016-11-01

    We analyze the low-energy nucleon-nucleon (NN) interaction by confronting statistical versus systematic uncertainties. This is carried out with the help of model potentials fitted to the Granada-2013 database where a statistically meaningful partial wave analysis comprising a total of 6713 np and pp published scattering data below 350 MeV from 1950 till 2013 has been made. We extract threshold parameter uncertainties from the coupled-channel effective range expansion up to j≤slant 5. We find that for threshold parameters systematic uncertainties are generally at least an order of magnitude larger than statistical uncertainties. Similar results are found for np phase shifts and amplitude parameters.

  20. Calculation of astrophysical S factor at low energy levels

    Science.gov (United States)

    Andic, Halil Ibrahim; Ozer, Okan

    2017-02-01

    Nuclear reactions are very important for the structure, evolution, nucleosynthesis and various observational manifestations of main-sequence stars, white dwarfs and neutron stars. For astrophysical applications, one needs to know value of S-factor for many reactions at low energies. The experimental measurements of cross-sections at such low energies are essentially not easily available since the Coulomb barrier. Theoretical calculations are model dependent, so that nuclear physics uncertainties of calculated S-factor can be substantial. Using the supersymmetric quantum mechanics one can obtain the supersymmetric partner potential that can vary by several orders of magnitude in the energy range of a given reaction in the calculation of S factor. Since the determination of reaction rates requires accurate values of cross sections at very low energies, then in order to eliminate the main part of the energy dependence of these cross sections one makes use of the astrophysical S-factor in Taylor Expansion series about zero-energy.

  1. Low Energy Analyzing Powers in Pion-Proton Elastic Scattering

    CERN Document Server

    Meier, R; Bilger, R; Van den Brandt, B; Breitschopf, J; Clement, H; Comfort, J R; Denz, H; Erhardt, A; Föhl, K; Friedman, E; Gr"ater, J; Hautle, P; Hofman, G J; Konter, J A; Mango, S; P"atzold, J; Pavan, M M; Wagner, G J; Von Wrochem, F

    2004-01-01

    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

  2. EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haifeng; Chevalier, Roger A., E-mail: hy4px@virginia.edu, E-mail: rac5x@virginia.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

    2015-06-20

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼10{sup 50} erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  3. Evolution of the Crab nebula in a low energy supernova

    CERN Document Server

    Yang, Haifeng

    2015-01-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy ($\\sim 10^{50}$ ergs). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  4. Coulomb effects in low-energy nuclear fragmentation

    Science.gov (United States)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  5. Low Energy Description of Quantum Gravity and Complementarity

    CERN Document Server

    Nomura, Yasunori; Weinberg, Sean J

    2013-01-01

    We propose an explicit framework in which low energy dynamics of quantum gravity is described preserving locality, and yet taking into account the effects that are not captured by the naive global spacetime picture, e.g. those associated with black hole complementarity. Our framework employs a "special relativistic" description of gravity; specifically, gravity is treated as a force measured by the observer tied to the coordinate system associated with a freely falling local Lorentz frame. We explicitly identify regions of spacetime in which low energy local descriptions are applicable as viewed from the freely falling frame; in particular, we identify a surface called the gravitational observer horizon on which the local proper acceleration measured in the observer's coordinates becomes the cutoff (string) scale. This allows for separating clearly between the "low-energy" local physics and "trans-Planckian" intrinsically quantum gravitational (stringy) physics, and allows for developing clear physical pictur...

  6. The Solar Solution: Tracking the Sun with Low Energy Neutrinos

    CERN Document Server

    Hartman, Nicole

    2016-01-01

    As neutrinos become a significant background for projected dark matter experiments, the community will become concerned with determining if events counted in a dark matter experiment are good dark matter candidates or low-energy neutrinos from astrophysical sources. We investigate the feasibility of using neutrino-electron scattering in a terrestrial detector medium as a means to determine the flight direction of the original, low-energy solar neutrino.Using leading-order weak interactions in the Standard Model and constrains from energy and momentum conservation, we developed a simple simulation that suggests that 68% of the time the ejected electron would be within 0.99 radians of the incident neutrino's direction. This suggests that it may be fruitful to pursue low-energy neutrino detection capability that can utilize such ejected electrons.

  7. Low energy analyzing powers in pion-proton elastic scattering

    Science.gov (United States)

    Meier, R.; Cröni, M.; Bilger, R.; van den Brandt, B.; Breitschopf, J.; Clement, H.; Comfort, J. R.; Denz, H.; Erhardt, A.; Föhl, K.; Friedman, E.; Gräter, J.; Hautle, P.; Hofman, G. J.; Konter, J. A.; Mango, S.; Pätzold, J.; Pavan, M. M.; Wagner, G. J.; von Wrochem, F.

    2004-05-01

    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS and a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for π+p scattering, and at 67.3 and 87.2 MeV for π-p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

  8. Electron polarimetry at low energies in Hall C at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Gaskell, D. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

    2013-11-07

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered.

  9. A Low Energy Intelligent Clustering Protocol for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Li, Qiao; Cui, Lingguo; Zhang, Baihai

    2010-01-01

    LEACH (low-energy adaptive clustering hierarchy) is a well-known self-organizing, adaptive clustering protocol of wireless sensor networks. However it has some shortcomings when it faces such problems as the cluster construction and energy management. In this paper, LEICP (low energy intelligent...... clustering protocol), an improvement of the LEACH protocol is proposed to overcome the shortcomings of LEACH. LEICP aims at balancing the energy consumption in every cluster and prolonging the network lifetime. A fitness function is defined to balance the energy consumption in every cluster according...

  10. Indoor Positioning System based on Bluetooth Low Energy

    OpenAIRE

    2014-01-01

    Bluetooth Low Energy is a new radio interface offered in all new smartphones. In addition to be able to transmit data, BLE can be used to locate things. [ANGLÈS] Bluetooth Low Energy is the new specification of Bluetooth available for all new smartphones. It is a new low power consumption technology aimed to transmit small amount of data. In addition to be able to transmit data, BLE can be used to locate things. iBeacon protocol, which uses BLE, is aimed at that objective with special atte...

  11. Techniques and methods for the low-energy neutrino detection

    Science.gov (United States)

    Ranucci, Gioacchino

    2016-04-01

    Low-energy neutrino physics and astrophysics has been one of the most active field of particle physics research over the past two decades, achieving important and sometimes unexpected results, which have paved the way for a bright future of further exciting studies. The methods, the techniques and the technologies employed for the construction of the many experiments which acted as important players in this area of investigation have been crucial elements to reach the many accumulated physics successes. The topic covered in this review is, thus, the description of the main features of the set of methodologies at the basis of the design, construction and operation of low-energy neutrino detectors.

  12. Scattering of low-energy neutrinos on atomic shells

    Energy Technology Data Exchange (ETDEWEB)

    Babič, Andrej [Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical University, 115 19 Prague, Czech Rep. (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague (Czech Republic); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Šimkovic, Fedor [Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague (Czech Republic); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Department of Nuclear Physics and Biophysics, Comenius University, 842 48 Bratislava (Slovakia)

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  13. Using multi-channel level sets to measure the cytoplasmic localization of HCMV pUL97 in GFP-B-gal fusion constructs.

    Science.gov (United States)

    Held, Christian; Webel, Rike; Palmisano, Ralf; Hutterer, Corina; Marschall, Manfred; Wittenberg, Thomas

    2014-04-01

    Human cytomegalovirus UL97-encoded protein kinase (pUL97) phosphorylates cellular and viral proteins and is critical for viral replication. To quantify the efficiency of nuclear translocation and to elucidate the role of putative nuclear localization signal (NLS) elements, immunofluorescence analysis of different pUL97 expression constructs was performed. Since manual quantitation of respective expression levels lacks objectivity and reproducibility, and is time-consuming as well, a computer-based model is established. This model enables objective quantitation of the degree of cytoplasmic localization λ. To determine the degree of cytoplasmic localization of different pUL97-GFP-β-gal fusion proteins automatically, a multi-channel segmentation of the nucleus and cytoplasm of transfected HeLa cells is performed in DAPI and GFP micrographs. A watershed transform-based segmentation scheme is used for the segmentation of the cell nuclei. Subsequently, the cytoplasm is segmented using a fast marching level set method. Based on the segmentation of cell nuclei and cytoplasm, λ can be determined for each HeLa cell by quantitation of the ratio of average signal intensity outside and inside the nucleus. The degree of cytoplasmic localization of an individual construct is then determined by evaluating the average and standard deviation of λ for the corresponding HeLa cells. Evaluation demonstrates that nuclear transport of pUL97 is a multilayered mechanism resulting in different efficiencies of nuclear translocation between a small and a large isoform and objective quantitation of the cytoplasmic localization is possible with a high accuracy (96.7% and 94.3%). Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Low energy effective Lagrangians in open superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ricardo [Universidade Federal de Itajuba, MG (Brazil). Inst. de Ciencias Exatas

    2008-07-01

    The low energy effective Lagrangian describes the interactions of the massless modes of String Theory. Present work is being done to obtain all alpha'{sup 3} terms (bosonic and fermionic) by means of the known 5-point amplitudes and SUSY.

  15. Low-energy CZT detector array for the ASIM mission

    DEFF Research Database (Denmark)

    Cenkeramaddi, Linga Reddy; Genov, Georgi; Kohfeldt, Anja

    2012-01-01

    In this article we introduce the low-energy CZT (CdZnTe) 16 384-pixel detector array on-board the Atmosphere Space Interaction Monitor (ASIM), funded by the European Space Agency. This detector is a part of the larger Modular X-and Gamma-ray sensor (MXGS). The CZT detector array is sensitive...

  16. Some Aspects of Low Energy Properties of Nucleons

    OpenAIRE

    Upadhyay, Alka

    2011-01-01

    We conclude that nucleon is a many body complex system whose low-energy behaviour is determined mainly by strong interaction. Non-perturbative approach to QCD, such as QCD sum rule and the QCD based effective theory, and the models such as a statistical model, have a complementary role in exposing different aspects of nucleonic properties.

  17. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  18. Low energy electron microscopy imaging using Medipix2 detector

    NARCIS (Netherlands)

    Sikharulidze, I.; Gastel, van R.; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, van der S.J.

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10–20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2

  19. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H.

    2017-01-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  20. LOW ENERGY BEAM-GAS SPECTROSCOPY OF HIGHLY IONISED ATOMS

    OpenAIRE

    Desesquelles, J.; DENIS A.; Druetta, M.; Martin, S.

    1989-01-01

    Features of low energy beam-gas spectroscopic source are reviewed and compared to those of other light sources. Measurement techniques are surveyed. They include the study of wavelength of heavy multiply charged ions in visible and u.v. ranges from normal excited states, doubly excited states, high n levels and doubly excited Rydberg levels.

  1. Medipix 2 detector applied to low energy electron microscopy

    NARCIS (Netherlands)

    Gastel, van R.; Sikharulidze, I.; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, van der S.J.

    2009-01-01

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy.

  2. Low energy neutron propagation in MCNPX and GEANT4

    CERN Document Server

    Lemrani, R; Gerbier, G; Kudryavtsev, V A; Robinson, M; Spooner, N J C

    2006-01-01

    Simulations of neutron background from rock for underground experiments are presented. Neutron propagation through two types of rock, lead and hydrocarbon material is discussed. The results show a reasonably good agreement between GEANT4, MCNPX and GEANT3 in transporting low-energy neutrons.

  3. Low-energy limit of the extended Linear Sigma Model

    CERN Document Server

    Divotgey, Florian; Giacosa, Francesco; Rischke, Dirk H

    2016-01-01

    The extended Linear Sigma Model (eLSM) is an effective hadronic model based on the linear realization of chiral symmetry $SU(N_f)_L \\times SU(N_f)_R$, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the eLSM for $N_f=2$ flavors by integrating out all fields except for the pions, the (pseudo-)Nambu--Goldstone bosons of chiral symmetry breaking. We only keep terms entering at tree level and up to fourth order in powers of derivatives of the pion fields. Up to this order, there are four low-energy coupling constants in the resulting low-energy effective action. We show that the latter is formally identical to Chiral Perturbation Theory (ChPT), after choosing a representative for the coset space generated by chiral symmetry breaking and expanding up to fourth order in powers of derivatives of the pion fields. Two of the low-energy coupling constants of the eLSM are uniquely determined by a fit to hadron masses and decay widths. We find that thei...

  4. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    K Chakrabarti

    2001-04-01

    Low energy positron impact ionization of atomic hydrogen is studies theoretically using the hyperspherical partial wave method of Das [1] in constant 12, equal energy sharing geometry. The TDCS reveal considerable differences in physics compared to electron impact ionization under the same geometry.

  5. Low-energy house in Sisimiut - Data overview

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff; Rode, Carsten; Madsen, Henrik

    Experiments with persistently exciting heat inputs are a fundamental tool in identification of heat dynamics in buildings. The Low-energy house in Sisimiut, Greenland, provides an advanced experimental setup with frequent measurements of temperatures, heat inputs, and much more. This paper presents...

  6. Catalogue of Radionuclide Low-Energy Electron Spectra (LEES)

    CERN Document Server

    Vylov, T D; Kovalik, A; Yakushev, E A; Mahmoud, M; Novgorodov, A F; Lebedev, N A; Filossofov, D V; Briançon, C; Walen, R J; Coursol, N F; Minkova, A; Petev, P; Dragoun, O; Brabec, V; Inoyatov, A

    2003-01-01

    More than 100 of apparatus low-energy electron spectra from radionuclides with Z=24-95 are collected in the presented LEES Catalogue. These spectra have been recorded in systematical investigations of Auger and internal conversion electrons with the ESA-50 electrostatic spectrometer during past 20 years.

  7. Theoretical approaches to low energy $\\bar{K}N$ interactions

    CERN Document Server

    Cieply, Ales

    2016-01-01

    We provide a direct comparison of modern theoretical approaches based on the SU(3) chiral dynamics and describing the low energy $\\bar{K}N$ data. The model predictions for the $\\bar{K}N$ amplitudes and pole content of the models are discussed.

  8. Low-energy neutrino observation at Super-Kamiokande-III

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Y [Kamioka Observatory, ICRR, University of Tokyo, 456 Higashi-Mozumi, Kamioka-cho, Hida-shi, Gifu 506-1205 (Japan)], E-mail: takeuchi@icrr.u-tokyo.ac.jp

    2008-07-15

    Super-Kamiokande-III (SK-III) has been started its observation in July 2006. The main targets of low-energy neutrinos are the solar neutrinos and the diffuse supernova neutrino background. In this paper, the current status of the solar neutrino observation in SK-III is reported.

  9. Causality and universality in low-energy quantum scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H.-W., E-mail: hammer@hiskp.uni-bonn.d [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Lee, Dean [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany)

    2009-11-16

    We generalize Wigner's causality bounds and Bethe's integral formula for the effective range to arbitrary dimension and arbitrary angular momentum. Moreover, we discuss the impact of these constraints on the separation of low- and high-momentum scales and universality in low-energy quantum scattering.

  10. LHC to skip low-energy test runs

    CERN Multimedia

    Cartwright, Jon

    2007-01-01

    "The Large Hadron Collider will not be ready in time to perform a low-energy "engineering run", which was originally scheduled to take place this November, according to an official at CERN. This will leave the operators no chance to gain exerinece with the particle accelerator's steering and detection systems before the high-energy runs begin in spring next year." (1 page)

  11. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  12. Low-energy buildings on mainstream market terms

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Elle, Morten; Hoffmann, Birgitte

    2008-01-01

    This paper looks into the challenge of actually implementing energy efficient technologies and concepts in mainstream new build. The aim of the paper is to point out some of the provisos of promoting low-energy buildings on mainstream market terms, emphasising the need to understand forces working...

  13. Investigation of gas generation in regenerative fuel cells by low-energy X-rays

    Science.gov (United States)

    Selamet, Omer Faruk; Deevanhxay, Phengxay; Tsushima, Shohji; Hirai, Shuichiro

    2015-11-01

    Gas generation and discharge behaviors in an operating regenerative fuel cell (RFC) are investigated using low-energy X-ray radiography. In situ visualization at high spatial and temporal resolution reveal dynamic and inhomogeneous behaviors of the gas generation in the membrane electrode assembly (MEA) in the RFC. Temporal and spatial variation of the gas thickness in the MEA is quantitatively discussed and shows an intermittent and periodic discharge processes of the gas generated by electrolysis, suggesting that the reaction sites in the catalyst layer and the discharging path of gas bubbles are well established in the MEA for the electrolysis. Larger gas accumulation and discharge in the gas diffusion layer (GDL) under the ribs are identified in comparison with those under the channels, which is attributed to the relatively longer path for accumulated gas under the ribs to be discharged into the flow channels.

  14. Low-energy $DD^{*+}$ Scattering and the Resonance-like Structure $Z_c(3900)$

    CERN Document Server

    Chen, Ying; Lei, Yu-Hong; Li, Ning; Liang, Jian; Liu, Chuan; Liu, Hang; Liu, Jin-Long; Liu, Liuming; Liu, Yong-Fu; Liu, Yu-Bin; Liu, Zhaofeng; Ma, Jian-Ping; Wang, Zhan-Lin; Yang, Yi-Bo; Zhang, Jian-Bo

    2014-01-01

    In this exploratory lattice study, low-energy scattering of $D$ and $D^*$ meson are analyzed using lattice QCD with $N_f=2$ twisted mass fermion configurations with three pion mass values. The calculation is performed within single-channel L\\"uscher's finite-size formalism. The threshold scattering parameters, namely the scattering length $a_0$ and the effective range $r_0$, for the $s$-wave scattering in $J^P=1^+$ channel are extracted. For the cases in our study, the interaction between the two charmed mesons is weakly repulsive. Our lattice results therefore do not support the possibility of a shallow bound state for the two charmed mesons for the pion mass values we studied. This calculation provides some useful information on the nature of the newly discovered resonance-like structure $Z_c(3900)$ by various experimental groups.

  15. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    CERN Document Server

    Daum, E

    2000-01-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the sup 6 Li(n,t) sup 4 He channel as it occurs in a DEMO breeding blanket.

  16. Fusion near and below the barrier for the systems /sup 32,34/S+/sup 24,25,26/Mg and /sup 32/S+/sup 27/Al

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, G.M.; Braun-Munzinger, P.; Karp, J.S.; Freifelder, R.H.; Renner, T.R.; Wilschut, H.W.

    1983-08-01

    Excitation functions are reported for total fusion near and below the Coulomb barrier of the systems /sup 32,34/S+/sup 24,25,26/Mg and /sup 27/Al. The data cannot be reproduced by one-dimensional barrier penetration calculations. The enhancement of the cross sections at low energies is compared to predictions of models taking into acount the static deformation or zero point vibration of the reaction partners. Calculations including zero point motion do not reproduce the observed variations of the measured cross sections with respect to the neutron number of target and projectile. Reasonable agreement is obtained when calculating fusion between statically deformed nuclei. Finally, the fusion process is described in a quantum mechanical coupled channels model, indicating the importance of dynamical effect on sub-barrier fusion.

  17. Recent results from the TwinSol low-energy RIB facility

    Energy Technology Data Exchange (ETDEWEB)

    Becchetti, F.D. [U. Michigan, Ann Arbor, MI 48109 (United States); Kolata, J.J. [U. Notre Dame, Notre Dame, IN 46556 (United States)

    2016-06-01

    We report on some of the recent developments and experimental work done at the twin-solenoid low-energy radioactive-ion-beam (RIB) facility TwinSol installed at the U Notre Dame 10 MV FN tandem accelerator. The TwinSol facility is a joint project of the University of Michigan (UM) and the University of Notre Dame (UND), and includes several U.S. and foreign collaborators. A number of significant experiments including RIB-induced transfer reactions, elastic scattering, resonant scattering, and fusion at energies near and well below the Coulomb barrier have been performed with this facility. Several of these as well as future work and upgrades planned will be described.

  18. Double-electron capture by highly-ionized atoms isolated at very low energy

    Science.gov (United States)

    Fogwell Hoogerheide, Shannon; Dreiling, Joan M.; Sahiner, Arda; Tan, Joseph N.

    2016-05-01

    Charge exchange with background gases, also known as electron capture processes, is important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. However, there are few experiments in the very low energy regime that could be useful for further theoretical development. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with energy state. Analysis using a system of rate equations yields information about the ion cloud expansion and single-electron capture rates. A substantial amount of double-electron capture is also observed. We present the relative rates and discuss the error budget. SFH and JMD were funded by National Research Council Research Associateship Awards during some of this work.

  19. α scattering and α -induced reaction cross sections of 64Zn at low energies

    Science.gov (United States)

    Ornelas, A.; Mohr, P.; Gyürky, Gy.; Elekes, Z.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Somorjai, E.; Szücs, T.; Takács, M. P.; Galaviz, D.; Güray, R. T.; Korkulu, Z.; Özkan, N.; Yalçın, C.

    2016-11-01

    Background: α -nucleus potentials play an essential role for the calculation of α -induced reaction cross sections at low energies in the statistical model. Uncertainties of these calculations are related to ambiguities in the adjustment of the potential parameters to experimental elastic scattering angular distributions and to the energy dependence of the effective α -nucleus potentials. Purpose: The present work studies the total reaction cross section σreac of α -induced reactions at low energies which can be determined from the elastic scattering angular distribution or from the sum over the cross sections of all open nonelastic channels. Method: Elastic and inelastic 64Zn(α ,α )64Zn angular distributions were measured at two energies around the Coulomb barrier, at 12.1 and 16.1 MeV. Reaction cross sections of the (α ,γ ) , (α ,n ) , and (α ,p ) reactions were measured at the same energies using the activation technique. The contributions of missing nonelastic channels were estimated from statistical model calculations. Results: The total reaction cross sections from elastic scattering and from the sum of the cross sections over all open nonelastic channels agree well within the uncertainties. This finding confirms the consistency of the experimental data. At the higher energy of 16.1 MeV, the predicted significant contribution of compound-inelastic scattering to the total reaction cross section is confirmed experimentally. As a by-product it is found that most recent global α -nucleus potentials are able to describe the reaction cross sections for 64Zn around the Coulomb barrier. Conclusions: Total reaction cross sections of α -induced reactions can be well determined from elastic scattering angular distributions. The present study proves experimentally that the total cross section from elastic scattering is identical to the sum of nonelastic reaction cross sections. Thus, the statistical model can reliably be used to distribute the total reaction

  20. Low-Energy Photon-Photon Fusion into Three Pions in Generalized Chiral Perturbation Theory

    CERN Document Server

    Ametller, L; Knecht, M; Talavera, P

    1999-01-01

    The processes $\\gamma\\gamma\\to\\pi^0\\pi^0\\pi^0$ and $\\gamma\\gamma\\to \\pi^+ of their potential sensitivity to the mechanism of spontaneous breaking of chiral symmetry and to various counterterms. The amplitudes are computed up to order ${\\cal O}(p^6)$. The event production rates are estimated for the Daphne

  1. Investigation of heat of fusion storage for solar low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2005-01-01

    This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate...

  2. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...

  3. How to Succeed in Low-Energy Housing—Path Creation Analysis of Low-Energy Innovation Projects

    Directory of Open Access Journals (Sweden)

    Pia Pässilä

    2015-07-01

    Full Text Available The low-energy and the nearly zero-energy buildings trend is calling for radical new innovations from the construction industry. This study uses path creation theory to examine two innovation concepts for low-energy housing in Northern Europe with contrasting outcomes—with one being an apparent market success and the other a disappointment. The results highlight two issues behind the success, one of a systemic nature and the other concerning innovation management. First, the development of energy efficiency regulations and the dominant technological trajectory regarding low-energy houses are interdependent. However, it seems that while supporting the trajectory of the innovation developed in the first case, regulators created virtually insurmountable cognitive and normative obstacles to finding alternative technological pathways. Second, the significance of proof of concepts for new innovations cannot be underestimated. The importance of a pilot project rests not only on showcasing and testing the technology, but also on its ability to increase political support, investments, and public awareness. The study implies that low-energy construction seems to be the next great challenge, one where genuine co-operation between the industry, public authorities and academia is a prerequisite for success.

  4. Fusion near and below the barrier for the systems 32,34S+24,25,26Mg and 32S+27Al

    Science.gov (United States)

    Berkowitz, G. M.; Braun-Munzinger, P.; Karp, J. S.; Freifelder, R. H.; Renner, T. R.; Wilschut, H. W.

    1983-08-01

    Excitation functions are reported for total fusion near and below the Coulomb barrier of the systems 32,34S+24,25,26Mg and 27Al. The data cannot be reproduced by one-dimensional barrier penetration calculations. The enhancement of the cross sections at low energies is compared to predictions of models taking into acount the static deformation or zero point vibration of the reaction partners. Calculations including zero point motion do not reproduce the observed variations of the measured cross sections with respect to the neutron number of target and projectile. Reasonable agreement is obtained when calculating fusion between statically deformed nuclei. Finally, the fusion process is described in a quantum mechanical coupled channels model, indicating the importance of dynamical effect on sub-barrier fusion. NUCLEAR REACTIONS 24,25,26Mg, 27Al(32,34S, Fusion) 0.9channels effects on fusion process.

  5. Vacuum polarization of graphene with a supercritical Coulomb impurity: Low-energy universality and discrete scale invariance

    Science.gov (United States)

    Nishida, Yusuke

    2014-10-01

    We study massless Dirac fermions in a supercritical Coulomb potential with the emphasis on that its low-energy physics is universal and parametrized by a single quantity per supercritical angular momentum channel. This low-energy parameter with the dimension of length is defined only up to multiplicative factors and thus each supercritical channel exhibits the discrete scale invariance. In particular, we show that the induced vacuum polarization has a power-law tail whose coefficient is a sum of log-periodic functions with respect to the distance from the potential center. This coefficient can also be expressed in terms of the energy and width of so-called atomic collapse resonances. Our universal predictions on the vacuum polarization and its relationship to atomic collapse resonances shed light on the longstanding fundamental problem of quantum electrodynamics and can in principle be tested by graphene experiments with charged impurities.

  6. Low-energy proton increases associated with interplanetary shock waves.

    Science.gov (United States)

    Palmeira, R. A. R.; Allum, F. R.; Rao, U. R.

    1971-01-01

    Impulsive increases in the low energy proton flux observed by the Explorer 34 satellite, in very close time association with geomagnetic storm sudden commencements are described. It is shown that these events are of short duration (20-30 min) and occur only during the decay phase of a solar cosmic-ray flare event. The differential energy spectrum and the angular distribution of the direction of arrival of the particles are discussed. Two similar increases observed far away from the earth by the Pioneer 7 and 8 deep-space probes are also presented. These impulsive increases are compared with Energetic Storm Particle events and their similarities and differences are discussed. A model is suggested to explain these increases, based on the sweeping and trapping of low energy cosmic rays of solar origin by the advancing shock front responsible for the sudden commencement detected on the earth.

  7. A schematic model for QCD I Low energy meson states

    CERN Document Server

    Lerma, S; Hess, P O; Civitarese, O; Reboiro, M

    2003-01-01

    A simple model for QCD is presented, which is able to reproduce the meson spectrum at low energy. The model is a Lipkin type model for quarks coupled to gluons. The basic building blocks are pairs of quark-antiquarks coupled to a definite flavor and spin. These pairs are coupled to pairs of gluons with spin zero. The multiplicity problem, which dictates that a given experimental state can be described in various manners, is removed when a particle-mixing interaction is turned on. In this first paper of a series we concentrates on the discussion of meson states at low energy, the so-called zero temperature limit of the theory. The treatment of baryonic states is indicated, also.

  8. Low-Energy Electron Beam Direct Writing Equipment

    Science.gov (United States)

    Fuse, Takashi; Ando, Atsushi; Kotsugi, Tadashi; Kinoshita, Hidetoshi; Sugihara, Kazuyoshi

    2007-09-01

    We proposed an electron beam direct writing (EBDW) system capable of high throughput and maskless operation based on a novel concept of using both low-energy electron beam (EB) and character projection (CP) system. We fabricated an EB optical column of low-energy EBDW equipment and obtained a resist pattern. We also investigated the beam blur and line width roughness (LWR) of lines and spaces (L/S) formed on a resist to change various EB current densities and convergence half angles. The obtained results show that a Coulomb interaction effect markedly affects the beam blur in our EB optical column. Thus, we reduce the number of sources caused by LWR and developed photoresists to obtain small LWR L/S patterns for achieving a high throughput.

  9. Space charge compensation in low energy proton beams

    CERN Document Server

    Ismail, A B; Uriot, D; Pichoff, N

    2004-01-01

    High power accelerators are being studied for several projects including accelerator driven neutron or neutrino sources. The low energy part of these facilities has to be carefully optimized to match the beam requirements of the higher energy parts. In this low energy part, the space charge self force, induced by a high intensity beam, has to be carefully managed. This nonlinear force can generate a high irreversible emittance growth of the beam. To reduce space charge effects, neutralization of the beam charge can be done by capturing some particles of the ionised residual gas in the vacuum chamber. This space charge compensation (SCC) regime complicates the dynamic study. Modelling the beam behaviour in such regime would be a significant contribution to the development of high intensity accelerators. Numerical and experimental study of SCC is in progress on the Saclay High Intensity Proton Injector. Experimental measurements and 2D/3D simulations of proton beam SCC will be presented.

  10. Low-energy (CaCu{2}O{8+δ}.

    Science.gov (United States)

    Plumb, N C; Reber, T J; Koralek, J D; Sun, Z; Douglas, J F; Aiura, Y; Oka, K; Eisaki, H; Dessau, D S

    2010-07-23

    Using low photon energy angle-resolved photoemission, we study the low-energy dispersion along the nodal (π,π) direction in Bi{2}Sr{2}CaCu{2}O{8+δ} as a function of temperature. Less than 10 meV below the Fermi energy, the high-resolution data reveal a novel "kinklike" feature in the electron self-energy that is distinct from the larger well-known kink roughly 70 meV below E{F}. This new kink is strongest below the superconducting critical temperature and weakens substantially at higher temperatures. A corollary of this finding is that the Fermi velocity v{F}, as measured in this low-energy range, varies rapidly with temperature-increasing by almost 30% from 70 to 110 K. The behavior of v{F}(T) appears to shift as a function of doping, suggesting a departure from simple "universality" in the nodal Fermi velocity of cuprates.

  11. Three dimensional calculation of flux of low energy atmospheric neutrinos

    Science.gov (United States)

    Lee, H.; Bludman, S. A.

    1985-01-01

    Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.

  12. Antineutron and antiproton nuclear interactions at very low energies

    Science.gov (United States)

    Friedman, E.

    2014-05-01

    Experimental annihilation cross sections of antineutrons and antiprotons at very low energies are compared. Features of Coulomb focusing are observed for pbar annihilation on protons. Direct comparisons for heavier targets are not straightforward due to lack of overlap between targets and energies of experimental results for pbar and nbar. Nevertheless, the annihilation cross sections for nbar on nuclei cannot be described by an optical potential that fits well all the available data on pbar interactions with nuclei. Comparisons made with the help of this potential reveal in the nbar data features similar to Coulomb focusing. Direct comparisons between nbar and pbar annihilations at very low energies would be possible when pbar cross sections are measured on the same targets and at the same energies as the available cross sections for nbar. Such measurements may be possible in the foreseeable future.

  13. Patients with rett syndrome sustain low-energy fractures

    DEFF Research Database (Denmark)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine

    2011-01-01

    We present the first case-control study addressing both fracture occurrence and fracture mechanisms in Rett syndrome (RTT). Two previous studies have shown increased fracture risk in RTT. This was also our hypothesis regarding the Danish RTT population. Therefore, we investigated risk factors...... and x-ray evaluations. National register search on fracture diagnoses was done to obtain complete fracture histories. Our results showed that patients with RTT sustained significantly more low-energy fractures from early age compared with controls, even though overall fracture occurrence apparently...... was not increased. Low-energy fractures were significantly associated with less mobility and lack of ambulation. Associations with MECP2 mutations or epilepsy were not demonstrated, contrary to previous findings. Blood biochemistry indicated a possible need for D vitamin supplementation in RTT. Our study casts...

  14. A primer for electroweak induced low-energy nuclear reactions

    Indian Academy of Sciences (India)

    Y N Srivastava; A Widom; L Larsen

    2010-10-01

    Under special circumstances, electromagnetic and weak interactions can induce low-energy nuclear reactions to occur with observable rates for a variety of processes. A common element in all these applications is that the electromagnetic energy stored in many relatively slow-moving electrons can – under appropriate circumstances – be collectively transferred into fewer, much faster electrons with energies sufficient for the latter to combine with protons (or deuterons, if present) to produce neutrons via weak interactions. The produced neutrons can then initiate low-energy nuclear reactions through further nuclear transmutations. The aim of this paper is to extend and enlarge upon various examples analysed previously, present order of magnitude estimates for each and to illuminate a common unifying theme amongst all of them.

  15. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...... to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification...

  16. Radiation processing of liquid with low energy electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by {gamma}-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with {gamma}-ray should be carried out. (author)

  17. Low-energy supersymmetry breaking and fermion mass hierarchies

    CERN Document Server

    Gherghetta, Tony; Poppitz, E R; Gherghetta, Tony; Jungman, Gerard; Poppitz, Erich

    1995-01-01

    In models with low-energy supersymmetry breaking, an anomalous Abelian horizontal gauge symmetry can simultaneously explain the fermion mass hierarchy and the values of the \\mu and B terms. We construct an explicit model where the anomaly is cancelled by the Green-Schwarz mechanism at the string scale. We show that with our charge assignments, the breaking of the horizontal symmetry generates the correct order of magnitude and correct hierarchy for all Yukawa couplings.

  18. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  19. Selected Papers on Low-Energy Antiprotons and Possible Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert [Fermilab

    1998-09-19

    The only realistic means by which to create a facility at Fermilab to produce large amounts of low energy antiprotons is to use resources which already exist. There is simply too little money and manpower at this point in time to generate new accelerators on a time scale before the turn of the century. Therefore, innovation is required to modify existing equipment to provide the services required by experimenters.

  20. New views on the low-energy side of gravity

    OpenAIRE

    Piazza, Federico

    2009-01-01

    Common wisdom associates all the unraveled and theoretically challenging aspects of gravity with its UV-completion. However, there appear to be few difficulties afflicting the effective framework for gravity already at low energy, that are likely to be detached from the high-energy structure. Those include the black hole information paradox, the cosmological constant problem and the rather involved and fine tuned model building required to explain our cosmological observations. I review some ...

  1. Heavy Meson Production at a Low-Energy Photon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  2. Sustainable Heating/Cooling for Low Energy Buildings

    DEFF Research Database (Denmark)

    Krajčík, M.; Olesen, Bjarne W.; Petráš, D.

    2012-01-01

    Experimental evaluation is one of the means that allow thorough investigation of the indoor environment in a room. Providing that the measurement procedures are correct and that the investigator has the necessary experimental equipment available, experimental measurements can provide results with...... located in a low-energy building. Procedures and indicators that can be successfully used for experimental investigations of indoor environment are described and a sample of measured data is reported....

  3. A Low energy neutrino factory for large theta(13)

    Energy Technology Data Exchange (ETDEWEB)

    Geer, Steve; Mena, Olga; /Fermilab /Rome U. /INFN, Rome; Pascoli, Silvia; /Durham U., IPPP

    2007-01-01

    If the value of {theta}{sub 13} is within the reach of the upcoming generation of long-baseline experiments, T2K and NOvA, they show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP-violation and the neutrino mass hierarchy. They consider baselines with typical length 1000-1500 km. The unique performance of the low energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines {Omicron}(1000) km. They perform both a semi-analytical study of the sensitivities and a numerical analysis to explore how well this setup can measure {theta}{sub 13}, CP-violation, and determine the type of mass hierarchy and the {theta}{sub 23} quadrant. A low energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter {theta}{sub 13}.

  4. Enhancement of surface processes with low energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.

    1995-05-01

    Continuing trends in device fabrication towards smaller feature sizes, lower thermal budgets and advanced device structures put greater emphasis on controlling the surface structure and reactivity during processing. Since the evolution of the semiconductor surface during processing is determined by the interaction of multiple surface processes, understanding how to control and modify these processes on the atomic level would enable us to exert greater control over the resulting morphology and composition. Low energy ions represent one method for bringing controlled amounts of energy to the surface to modify surface structure and kinetics. The kinetic energy deposited by the ions can break bonds and displace atoms, creating defect populations significantly in excess of the equilibrium concentration. Consequences of these non-equilibrium conditions include the enhancement of surface kinetic processes, increased surface reactivity and formation of metastable structures and compositions. These effects can be beneficial (ion enhanced mass transport can lead to surface smoothing) or they can be detrimental (residual defects can degrade electrical properties or lead to amorphization). The net results depend on a complex balance that depends on many parameters including ion mass, energy, flux and temperature. In the following section, we review progress both in our fundamental understanding of the production of low-energy ion-induced defects and in the use of low energy ions to enhance surface morphology, stimulate low temperature growth and obtain non-equilibrium structures and compositions.

  5. Improving Indoor Localization Using Bluetooth Low Energy Beacons

    Directory of Open Access Journals (Sweden)

    Pavel Kriz

    2016-01-01

    Full Text Available The paper describes basic principles of a radio-based indoor localization and focuses on the improvement of its results with the aid of a new Bluetooth Low Energy technology. The advantage of this technology lies in its support by contemporary mobile devices, especially by smartphones and tablets. We have implemented a distributed system for collecting radio fingerprints by mobile devices with the Android operating system. This system enables volunteers to create radio-maps and update them continuously. New Bluetooth Low Energy transmitters (Apple uses its “iBeacon” brand name for these devices have been installed on the floor of the building in addition to existing WiFi access points. The localization of stationary objects based on WiFi, Bluetooth Low Energy, and their combination has been evaluated using the data measured during the experiment in the building. Several configurations of the transmitters’ arrangement, several ways of combination of the data from both technologies, and other parameters influencing the accuracy of the stationary localization have been tested.

  6. Ultra-low energy storage ring at FLAIR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Carsten P., E-mail: c.p.welsch@liverpool.ac.uk [Cockcroft Institute and the University of Liverpool (United Kingdom); Papash, A. I.; Gorda, O. [Max Planck Institute for Nuclear Physics (Germany); Harasimowicz, J. [Cockcroft Institute and University of Liverpool (United Kingdom); Karamyshev, O.; Karamysheva, G. [Max Planck Institute for Nuclear Physics (Germany); Newton, D. [Cockcroft Institute and University of Liverpool (United Kingdom); Panniello, M. [Max Planck Institute for Nuclear Physics (Germany); Putignano, M.; Siggel-King, M. R. F. [Cockcroft Institute and University of Liverpool (United Kingdom); Smirnov, A. [Max Planck Institute for Nuclear Physics (Germany)

    2012-12-15

    The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV and possibly less. The USR has been completely redesigned over the past three years. The ring structure is based on a 'split achromat' lattice that allows in-ring experiments with internal gas jet target. Beam parameters might be adjusted in a wide range: from very short pulses in the nanosecond regime to a Coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Detailed investigations of the USR, including studies into the ring's long term beam dynamics, life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. New tools and beam handling techniques for diagnostics of ultra-low energy ions at beam intensities less than 10{sup 6} were developed by the QUASAR Group. In this paper, progress on the USR project will be presented with an emphasis on the expected beam parameters available to the experiments at FLAIR.

  7. Excellent channels of evaporation in the fusion of {sup 8} B with {sup 58} Ni; Canales relevantes de evaporacion en la fusion de {sup 8} B con {sup 58} Ni

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Q, E.; Aguilera, E.F.; Garcia M, H.; Lizcano, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    Inside the systematic studies of nuclear reactions with radioactive beams carried out by our group, using the installation TWINSOL of the University of Notre Dame, it was carried out an experiment where the fusion of the system {sup 8} B + {sup 58} Ni was measured to investigate the effects of the proton halo of the radioactive nuclei {sup 8} B to the interactionate with a target of {sup 58} Ni. The protons were detected taken place in the reaction and values were determined for the fusion cross section. (Author)

  8. Review of rest gas interaction at very low energies applied to the Extra Low Energy Antiproton ring ELENA

    CERN Document Server

    Carli, C; Karamyshev, O; Welsch, C P

    2014-01-01

    The Extremely Low ENergy Antiproton ring (ELENA) is a small synchrotron equipped with an electron cooler, which shall be constructed at CERN to decelerate antiprotons to energies as low as 100 keV. Scattering of beam particles on rest gas molecules may have a detrimental effect at such low energies and leads to stringent vacuum requirements. Within this contribution scattering of the stored beam on rest gas molecules is discussed for very low beam energies. It is important to carefully distinguish between antiprotons scattered out of the acceptance and lost, and those remaining inside the aperture to avoid overestimation of emittance blow-up. Furthermore, many antiprotons do not interact at all during the time they are stored in ELENA and hence this is not a multiple scattering process

  9. Mass Producing Targets for Nuclear Fusion

    Science.gov (United States)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  10. ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms

    Science.gov (United States)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-04-01

    MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (EMEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.

  11. Bi-channel Video Fusion Human Invasion Detection Based on Neural Network%基于神经网络的双通道视频融合人员入侵检测

    Institute of Scientific and Technical Information of China (English)

    王志明; 张丽; 包宏

    2012-01-01

    To overcome the low detection precision of single visible camera, a human, detection system by fusion of bi-channel video is proposed. Visible and infrared video are obtained by a visible camera and a thermal infrared video of the same scene. Motion regions are detected separately in two videos by neural network background model with adaptive learning rate. Detected results of two channels are fused by image registration and logical "or" operation and noise are removed by Gauss filter. Human like rectangular regions are detected efficiently by using integral image. Experimental results show that, bi-channel video fusion can detect pedestrian and bicycle with presion of 98%, which is more reliable than a single channel video.%为克服单个可见光摄像头检测准确率低的问题,提出一种融合双通道视频的人员检测系统.由可见光摄像头和红外热像仪分别获取同一场景的可见光和红外线视频数据,使用自适应学习速率的神经网络背景模型在2个通道中分别检测运动区域.通过图像配准对2个通道的结果进行“或”融合,并采用高斯滤波以消除噪声,利用积分图像快速检测近似长方形响应的人体区域.实验结果表明,该系统对行人和骑自行车人员的检测准确率达到98%,比单一通道具有更高的可靠性.

  12. Developing effective rockfall protection barriers for low energy impacts

    Science.gov (United States)

    Mentani, Alessio; Giacomini, Anna; Buzzi, Olivier; Govoni, Laura; Gottardi, Guido; Fityus, Stephen

    2016-04-01

    Recently, important progresses have been made towards the development of high capacity rockfall barriers (100 kJ - 8000 kJ). The interest of researchers and practitioners is now turning to the development of fences of minor capacity, whose use becomes essential in areas where rockfall events generally have low intensity and the use of high capacity barriers would be accompanied by excessive costs and high environmental impact. Low energy barriers can also provide a cost-effective solution even in areas where high energies events are expected. Results of full-scale tests are vital to any investigation on the behaviour of these structures. An experimental set-up has been developed at The University of Newcastle (AUS), to investigate the response of low energy rockfall barrier prototypes to low energy impacts. The Australian territory, and in particular New South Wales, is in fact characterised by rockfall events of low-to-medium intensity (50 kJ - 500 kJ) and the need of protection structures working within such energy range, is particularly felt [1]. The experiments involved the impact of a test block onto three spans, low energy barrier prototypes, made of steel structural posts, fully fixed at the base, side cables and a steel meshwork constituted by a double twist hexagonal wire net [2]. Test data enabled the development, calibration and assessment of FE models [3], on which non-linear and dynamic analyses have been performed addressing the effect of the block size. Results have shown that the response of the structure is strongly governed by the net. Data from tests conducted on the sole net and on the entire barrier showed in fact a similar trend, different to what typically observed for high capacity barriers, whose behaviour is also led by the presence of uphill cables and brakes. In particular, the numerical analyses have demonstrated a dependence of the net performance on the block size. In particular, a loss of capacity in the order of 50% occurred as the

  13. EPIDEMIOLOGICAL STUDY OF LOW ENERGY FRACTURES IN REPUBLIC OF ARMENIA

    Directory of Open Access Journals (Sweden)

    S. Saakyan

    2017-01-01

    Full Text Available Until present no data was available inArmeniain respect of incidence of low energy fractures that are typical of osteoporotic locations which consequently did not allow to evaluate the scope of this problem across the country.Purpose of the study – to identify the incidence of low energy fractures in proximal femur, in distal forearm, in proximal humerus and in distal tibia across population ofArmenia aged 50 years and older.Materials and methods. An observing population study was performed in two regions of Armenia during 2011-2013 where the frequency of selected locations in cases of moderate trauma was identified. During 2011-2012 the information was collected based on traumatology service records adding in 2013 other sources including primary level of healthcare due to observed infrequent applications for medical help in cases of trauma. Results. In 2013 the incidence of proximal femur fractures in men was reported as 136 cases per 100 000 of population aged 50 years and older, in women – 201 cases per 100 000. At the same time only 57.7% of patients with proximal femur fractures were admitted to hospital. Distal forearm fractures incidence in men and women was observed correspondingly 56/100 000 and 176/100 000 cases, proximal humerus fractures – 39/100 000 and 86/100 000 cases and distal tibia fractures – 39/100 000 and 86/100 000 cases. The predicted annual number of proximal femur fracture in Armenia amounts to 2067 cases, distal forearm fractures – 1205, proximal humerus fractures – 640.Conclusion. Epidemiological data that was collected for the first time on low energy fractures incidence confirmed the acute osteoporosis issue inArmenia and revealed the problems in organization of medical care for the group of senior patients with injuries.

  14. RADIATION HAZARD AND PROTECTION OF LOW ENERGY ACCELERATORS

    Institute of Scientific and Technical Information of China (English)

    雷清章

    1994-01-01

    In this paper,the origin and type of radiation hazards as well as the main aspects of radiation protection for low-energy accelerators are discussed in general,and the problems of radiation protection and the experimental results of the operational monitoring of the five accelecrators in the Institute of Nuclear Science and Technology,Sichuan University,namely,one 1.2M cyclofron,two Cockroft-waltons and two Van de Graafts,as well as a powerful electron accelerator for industrial irradiation are described.The discussion and evaluation are made according to the requirments of the national standards GB5172-85.

  15. Low energy electron beams for industrial and environmental applications

    CERN Document Server

    Skarda, Vlad

    2017-01-01

    EuCARD-2 Workshop, 8-9 December 2016, Warsaw, Poland. Organizers: Science and Technology Facilities Council, UK CERN - The European Organization for Nuclear Research, Switzerland, Institute of Nuclear Chemistry and Technology, Poland, Fraunhofer Institute for Electron Beam and Plasma Technology, Germany, Warsaw University of Technology, Poland. An article presents short information about EuCARD-2 Workshop “Low energy electron beams for industrial and environmental applications”, which was held in December 2016 in Warsaw. Objectives, main topics and expected output of meeting are described. List of organizers is included.

  16. Energy performance of the low-energy house in Greenland

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    energy gain, efficient ventilation system with heat recovery and solar heating. In this paper the results of a calculation of the energy consumption of low-energy house is presented. The calculation was done using the program BSim2002 [1] and a new weather test reference year based on climatic data...... by ventilation heat recovery (90% efficiency) specially designed for arctic conditions, by using thicker insulation in walls (300 mm) and roof/floor (350 mm), and by using solar hot water heating (3250 kWh/year). The building is intended to enhance sustainability in the building sector in Greenland....

  17. Low-energy features of a 1-tev higgs sector

    CERN Document Server

    Appelquist, Thomas

    1979-01-01

    It seems very likely that the Higgs sector of a spontaneously broken gauge theory could be heavy (M = 1 TeV) and strongly interacting. By exploiting the intimate connection of such theories to nonlinear a models, it is possible to show under quite general conditions what sort of impact the heavy Higgs sector can have on low energy experiments (E << 1 TeV). In this talk, the techniques and results will be summar- ized for an SU(2) gauge theory, The analysis of the Weinberg-Salam and other realistic theories will appear in a forthcoming paper.

  18. Characterization of low energy radioactive beams using direct reactions

    DEFF Research Database (Denmark)

    Johansen, J.G.; Fraser, M.A.; Bildstein, V.

    2013-01-01

    We demonstrate a new technique to determine the beam structure of low energy radioactive beams using coincidence events from a direct reaction. The technique will be described and tested using Geant4 simulations. We use the technique to determine for the first time the width, divergence and energy...... of an accelerated radioactive beam produced at ISOLDE. We use data from an experiment with an 11Be beam incident on a deuteron target producing 10Be from a (d,t) reaction. The T-REX Si detector array was used for particle detection, but the technique is applicable for other setups....

  19. Validation of GPUMCD for low-energy brachytherapy seed dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe; Carrier, Jean-Francois [Ecole polytechnique de Montreal, Departement de genie informatique et genie logiciel, 2500 chemin de Polytechnique, Montreal, QC, H3T 1J4 (Canada); Departement de radio-oncologie, Centre hospitalier universitaire de Quebec (CHUQ), 11 Cote du Palais, Quebec, QC, G1R 2J6 (Canada); Departement de physique, Universite de Montreal, Montreal, QC (Canada) and Departement de radio-oncologie and Centre de recherche du CHUM, Centre hospitalier de l' Universite de Montreal (CHUM), Montreal, QC, H2L 4M1 (Canada)

    2011-07-15

    Purpose: To validate GPUMCD, a new package for fast Monte Carlo dose calculations based on the GPU (graphics processing unit), as a tool for low-energy single seed brachytherapy dosimetry for specific seed models. As the currently accepted method of dose calculation in low-energy brachytherapy computations relies on severe approximations, a Monte Carlo based approach would result in more accurate dose calculations, taking in to consideration the patient anatomy as well as interseed attenuation. The first step is to evaluate the capability of GPUMCD to reproduce low-energy, single source, brachytherapy calculations which could ultimately result in fast and accurate, Monte Carlo based, brachytherapy dose calculations for routine planning. Methods: A mixed geometry engine was integrated to GPUMCD capable of handling parametric as well as voxelized geometries. In order to evaluate GPUMCD for brachytherapy calculations, several dosimetry parameters were computed and compared to values found in the literature. These parameters, defined by the AAPM Task-Group No. 43, are the radial dose function, the 2D anisotropy function, and the dose rate constant. These three parameters were computed for two different brachytherapy sources: the Amersham OncoSeed 6711 and the Imagyn IsoStar IS-12501. Results: GPUMCD was shown to yield dosimetric parameters similar to those found in the literature. It reproduces radial dose functions to within 1.25% for both sources in the 0.5< r <10 cm range. The 2D anisotropy function was found to be within 3% at r = 5 cm and within 4% at r = 1 cm. The dose rate constants obtained were within the range of other values reported in the literature.Conclusion: GPUMCD was shown to be able to reproduce various TG-43 parameters for two different low-energy brachytherapy sources found in the literature. The next step is to test GPUMCD as a fast clinical Monte Carlo brachytherapy dose calculations with multiple seeds and patient geometry, potentially providing

  20. Early forest fire detection using low-energy hydrogen sensors

    Directory of Open Access Journals (Sweden)

    K. Nörthemann

    2013-11-01

    Full Text Available Most huge forest fires start in partial combustion. In the beginning of a smouldering fire, emission of hydrogen in low concentration occurs. Therefore, hydrogen can be used to detect forest fires before open flames are visible and high temperatures are generated. We have developed a hydrogen sensor comprising of a metal/solid electrolyte/insulator/semiconductor (MEIS structure which allows an economical production. Due to the low energy consumption, an autarkic working unit in the forest was established. In this contribution, first experiments are shown demonstrating the possibility to detect forest fires at a very early stage using the hydrogen sensor.

  1. Use of a streamer chamber for low energy nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Van Bibber, K.; Pang, W.; Avery, M.; Bloemhof, E.

    1979-10-01

    A small streamer chamber has been implemented for low energy heavy ion reaction studies at the LBL 88-inch cyclotron. The response of the chamber to light and heavy ions below 35 MeV/nucleon has been examined. The limited sensitivity of light output as a function of ionization works to advantage in recording a wide variety of tracks in the same photograph whose energy loss may vary considerably. Furthermore, as gas targets are attractive for several reasons, we have investigated the suitability of Ar and Xe for use in streamer chambers.

  2. Modelling low energy electron interactions for biomedical uses of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M; Garcia, G [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Munoz, A; Oller, J C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense s.n., 28040 Madrid (Spain); Limao-Vieira, P [Departamento de Fisica, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Huerga, C; Tellez, M [Hospital Universitario La Paz, paseo de la Castellana 261, 28046 Madrid (Spain); Hubin-Fraskin, M J [Department of Chemistry, University of Liege, 4000 Liege 1 (Belgium); Nixon, K; Brunger, M, E-mail: g.garcia@imaff.cfmac.csic.e [School of Chemistry, Physics and Earth Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia)

    2009-11-15

    Current radiation based medical applications in the field of radiotherapy, radio-diagnostic and radiation protection require modelling single particle interactions at the molecular level. Due to their relevance in radiation damage to biological systems, special attention should be paid to include the effect of low energy secondary electrons. In this study we present a single track simulation procedure for photons and electrons which is based on reliable experimental and theoretical cross section data and the energy loss distribution functions derived from our experiments. The effect of including secondary electron interactions in this model will be discussed.

  3. Matter-Antimatter Asymmetry - Aspects at Low Energy

    CERN Document Server

    Willmann, Lorenz

    2015-01-01

    The apparent dominance of matter over antimatter in our universe is an obvious and puzzling fact which cannot be adequately explained in present physical frameworks that assume matter-antimatter symmetry at the big bang. However, our present knowledge of starting conditions and of known sources of CP violation are both insufficient to explain the observed asymmetry. Therefore ongoing research on matter-antimatter differences is strongly motivated as well as attempts to identify viable new mechanisms that could create the present asymmetry. Here we concentrate on possible precision experiments at low energies towards a resolution of this puzzle.

  4. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    Science.gov (United States)

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.

  5. The lowest resonance in QCD from low--energy data

    CERN Document Server

    Ametller, L

    2014-01-01

    We show that a generalization of $su(2)$ Chiral Perturbation Theory, including a perturbative singlet scalar field, converges faster towards the physical value of sensible low--energy observables. The physical mass and width of the scalar particle are obtained through a simultaneous analysis of the pion radius and the gamma gamma -> pi^0 pi^0 cross-section. Both values are statistically consistent with the ones obtained by using Roy equations in pi-pi scattering. In addition we find indications that the photon-photon-singlet coupling is quite small.

  6. GEANT4 simulations for low energy proton computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Milhoretto, Edney [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil); Schelin, Hugo R. [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil)], E-mail: schelin@utfpr.edu.br; Setti, Joao A.P.; Denyak, Valery; Paschuk, Sergei A. [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil); Evseev, Ivan G.; Assis, Joaquim T. de; Yevseyeva, O. [Polytechnic Institute/UERJ, Rua Alberto Rangel s/n, N. Friburgo, RJ, Brazil 28630-050 (Brazil); Lopes, Ricardo T. [Nuclear Instr. Lab./COPPE/UFRJ, Av. Horacio Macedo 2030, Rio de Janeiro-RJ (Brazil); Vinagre Filho, Ubirajara M. [Institute of Nuclear Engineering-IEN/CNEN, Rua Helio de Almeida 75, Rio de Janeiro-RJ (Brazil)

    2010-04-15

    This work presents the recent results of computer simulations for the low energy proton beam tomographic scanner installed at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to adjust the parameters of previous simulation within the first experimental results and to understand some specific effects that affected the form of the final proton energy spectra. To do this, the energy and angular spread of the initial proton beam were added, and the virtual phantom geometry was specified more accurately in relation to the real one. As a result, a more realistic view on the measurements was achieved.

  7. Revisiting \\gamma\\gamma->\\pi^+\\pi^- at low energies

    CERN Document Server

    Gasser, J; Sainio, M E; Gasser, Juerg; Ivanov, Mikhail A.; Sainio, Mikko E.

    2006-01-01

    We complete the recalculation of the available two-loop expressions for the reaction \\gamma\\gamma->\\pi\\pi in the framework of chiral perturbation theory. Here, we present the results for charged pions. The cross section and the values of the dipole polarizabilities agree very well with the earlier calculation, provided the same set of low-energy constants (LECs) is used. With updated values for the LECs at order p^4, we find for the dipole polarizabilities (\\alpha_1-\\beta_1)_{\\pi^\\pm} = (5.7\\pm 1.0) 10^{-4} fm^3, which is in conflict with the experimental result recently reported by the MAMI Collaboration.

  8. Hannover fare[Ultra low energy flats in Hannover, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bellew, P.; Kauschmann, J. [Atelier Ten (Germany)

    2000-08-01

    This article describes the new ultra-low energy apartments established for Expo 2000 in the Kronsberg residential district on the outskirts of Hannover. Details are given of the concept design placing the blocks back to back and separating them by a covered atrium, the connection of the eight blocks to a mechanical ventilation system with heat recovery, and the unusual 3-skin roof structure with different cavities inflated in winter and summer. The heating and hot water system, the metering of the apartments, and the regulatory framework governing the construction of the buildings are discussed.

  9. Two-particle Anderson localization at low energies

    CERN Document Server

    Ekanga, Trésor

    2012-01-01

    We prove exponential spectral localization in a two-particle lattice Anderson model, with a short-range interaction and external random i.i.d. potential, at sufficiently low energies. The proof is based on the multi-particle multi-scale analysis developed earlier by Chulaevsky and Suhov (2009) in the case of high disorder. Our method applies to a larger class of random potentials than in Aizenman and Warzel (2009) where dynamical localization was proved with the help of the fractional moment method.

  10. Combining high-scale inflation with low-energy SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Basel Univ. (Switzerland). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Halter, Sebastian [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    2011-12-15

    We propose a general scenario for moduli stabilization where low-energy supersymmetry can be accommodated with a high scale of inflation. The key ingredient is that the stabilization of the modulus field during and after inflation is not associated with a single, common scale, but relies on two different mechanisms. We illustrate this general scenario in a simple example, where during inflation the modulus is stabilized with a large mass by a Kaehler potential coupling to the field which provides the inflationary vacuum energy via its F-term. After inflation, the modulus is stabilized, for instance, by a KKLT superpotential. (orig.)

  11. Plasma focus in the limit of low energy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P.; Soto, L.; Sylvester, G.; Zambra, M. [Comision Chilena de Energia Nuclear, Casilla 188 D, Santiago (Chile); Bruzzone, H.; Clausse, A.; Moreno, C. [Red Interinstitucional de Plasmas Densos y Magnetizados, PLADEMA (Argentina)

    2002-07-01

    In order to achieve the design of a repetitive neutron pulses source for a substance detector, a single shot very small plasma focus device has been designed and constructed. The plasma focus operates in the limit of low energy (160 nF capacitor bank, 25-50 nH, 30-40 kV, 70-130 J). The design of the electrode was assisted by a simple model of a Mather plasma focus. A neutron yield of 10{sup 4} - 10{sup 5} is expected when the discharge is operated with deuterium. (Author)

  12. Double aberration correction in a low-energy electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Th., E-mail: schmidtt@fhi-berlin.mpg.de [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Marchetto, H.; Levesque, P.L. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Groh, U.; Maier, F. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Preikszas, D. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Carl Zeiss NTS GmbH, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany); Hartel, P.; Spehr, R. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Lilienkamp, G. [Technische Universitaet Clausthal, Physikalisches Institut, Leibnizstrasse 4, D-38678 (Germany); Engel, W. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany); Fink, R. [Universitaet Erlangen-Nuernberg, Physikalische Chemie II, Egerlandstrasse 3, D-91058 Erlangen (Germany); Bauer, E. [Technische Universitaet Clausthal, Physikalisches Institut, Leibnizstrasse 4, D-38678 (Germany); Arizona State University, Department of Physics, Tempe, AZ 85287 (United States); Rose, H. [Technische Universitaet Darmstadt, Angewandte Physik, Hochschulstrasse 6, D-64289 Darmstadt (Germany); Umbach, E. [Universitaet Wuerzburg, Experimentelle Physik II, Am Hubland, D-97074 Wuerzburg (Germany); Freund, H.-J. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 6-8, D-14195 Berlin (Germany)

    2010-10-15

    The lateral resolution of a surface sensitive low-energy electron microscope (LEEM) has been improved below 4 nm for the first time. This breakthrough has only been possible by simultaneously correcting the unavoidable spherical and chromatic aberrations of the lens system. We present an experimental criterion to quantify the aberration correction and to optimize the electron optical system. The obtained lateral resolution of 2.6 nm in LEEM enables the first surface sensitive, electron microscopic observation of the herringbone reconstruction on the Au(1 1 1) surface.

  13. Wavelet modulation: An alternative modulation with low energy consumption

    Science.gov (United States)

    Chafii, Marwa; Palicot, Jacques; Gribonval, Rémi

    2017-02-01

    This paper presents wavelet modulation, based on the discrete wavelet transform, as an alternative modulation with low energy consumption. The transmitted signal has low envelope variations, which induces a good efficiency for the power amplifier. Wavelet modulation is analyzed and compared for different wavelet families with orthogonal frequency division multiplexing (OFDM) in terms of peak-to-average power ratio (PAPR), power spectral density (PSD) properties, and the impact of the power amplifier on the spectral regrowth. The performance in terms of bit error rate and complexity of implementation are also evaluated, and several trade-offs are characterized. xml:lang="fr"

  14. Low Energy Continuum and Lattice Effective Field Theories

    Science.gov (United States)

    Elhatisari, Serdar

    In this thesis we investigate several constraints and their impacts on the short-range potentials in the low-energy limits of quantum mechanics.We also present lattice Monte Carlo calculations using the adiabatic projection method. In the first part we consider the constraints of causality and unitarity for the low-energy interactions of particles. We generalize Wigner's causality bound to the case of non-vanishing partial-wave mixing. Specifically we analyze the system of the low-energy interactions between protons and neutrons. We derive a general theorem that non-vanishing partial-wave mixing cannot be reproduced with zero-range interactions without violating causality or unitarity. We also analyze low-energy scattering for systems with arbitrary short-range interactions plus an attractive 1/ralpha tail for alpha ≥ 2. In particular, we focus on the case of alpha = 6 and we derive the constraints of causality and unitarity also for these systems and find that the van derWaals length scale dominates over parameters characterizing the short-distance physics of the interaction. This separation of scales suggests a separate universality class for physics characterizing interactions with an attractive 1{r6 tail. We argue that a similar universality class exists for any attractive potential 1/ralpha for alpha ≥ 2. In the second part of the thesis we present lattice Monte Carlo calculations of fermion-dimer scattering in the limit of zero-range interactions using the adiabatic projection method. The adiabatic projection method uses a set of initial cluster states and Euclidean time projection to give a systematically improvable description of the low-lying scattering cluster states in a finite volume. We use Luscher's finite-volume relations to determine the s-wave, p-wave, and d-wave phase shifts. For comparison, we also compute exact lattice results using Lanczos iteration and continuum results using the Skorniakov-Ter-Martirosian equation. For our Monte Carlo

  15. International development trends in low-energy cements

    Energy Technology Data Exchange (ETDEWEB)

    Stark, J.; Mueller, A.

    1988-04-01

    Besides the currently dominant tendency to increase the proportion of interground additive in cement, the following development trends are internationally emerging in the material composition of so-called low-energy cements with a view to minimizing energy input for cement manufacture: (1) active belite cement with the principal clinker minerals a'C/sub 2/S and C/sub 3/S; (2) belite sulphoaluminate cement (..beta.. C/sub 2/S, C/sub 4/A/sub 3/S); (3) belite sulphoferrite cement (..beta.. C/sub 2/S, C/sub 4/AF, C/sub 4/A/sub 3/S); (4) NTS cement (alinite).

  16. Low-energy cosmic rays in the Orion region

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    The recently observed nuclear gamma-ray line emission from the Orion complex implies a high flux of low-energy cosmic rays (LECR) with unusual abundance. This cosmic ray component would dominate the energy density, pressure, and ionising power of cosmic rays, and thus would have a strong impact...... sections, thus it depends only weakly on the LECR spectrum and not on any other parameter. Observations with HEPC will allow us to derive the bremsstrahlung spectrum over the weakly extended gamma-ray emission regions....

  17. Quantum effects at low-energy atom–molecule interface

    Indian Academy of Sciences (India)

    B Deb; A Rakshit; J Hazra; D Chakraborty

    2013-01-01

    The effects of quantum interference in inter-conversion between cold atoms and diatomic molecules are analysed in this study. Within the framework of Fano’s theory, continuum bound anisotropic dressed state formalism of atom–molecule quantum dynamics is presented. This formalism is applicable in photo- and magneto-associative strong-coupling regimes. The significance of Fano effect in ultracold atom–molecule transitions is discussed. Quantum effects at low-energy atom–molecule interface are important for exploring coherent phenomena in hitherto unexplored parameter regimes.

  18. Characterization of a free air ionization chamber for low energies

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natalia F.; Xavier, Marcos; Vivolo, Vitor; Caldas, Linda V.E., E-mail: nsilva@ipen.br, E-mail: mxavier@ipen.br, E-mail: vivolo@ipen.br, E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Free air ionization chambers are used by most primary metrology laboratories as primary standards of the quantities air kerma and exposure in X-ray beams. The free air ionization chamber for low energies of the Calibration Laboratory (LCI) of IPEN showed in a characterization test a problem in the set responsible for the variation of its sensitive volume. After a modification in the support of the micrometers used for the movement of the internal cylinder and the establishment of a new alignment system protocol, the tests were redone. The objective of this work was to present the results obtained in the new condition. (author)

  19. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  20. Restrained Dark $U(1)_d$ at Low Energies

    CERN Document Server

    Correia, F C

    2016-01-01

    We investigate a spontaneously broken $U(1)_d$ gauge symmetry with a muon-specific dark Higgs. Our first goal is to verify how the presence of a new dark Higgs, $\\phi$, and a dark gauge boson, $V$, can simultaneously face the anomalies from the muon magnetic moment and the proton charge radius. Secondly, by assuming that $V$ must decay to an electron-positron pair, we explore the corresponding parameter space determined with the low energy constraints coming from $ K \\to \\mu X$, electron $(g-2)_e$, $K \\to \\mu \

  1. Low-Energy Signatures of Nonlocal Field Theories

    CERN Document Server

    Belenchia, Alessio; Martin-Martinez, Eduardo; Saravani, Mehdi

    2016-01-01

    The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by non-analytic functions of the d'Alembertian operator $\\Box$ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy non-locality scales. This allows us to suggest a nuclear physics experiment ($\\sim$ MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.

  2. Effective Field Theory for Low-Energy np Systems

    CERN Document Server

    Park, T S

    1998-01-01

    The properties of low-energy neutron-proton systems are studied in an effective field theory where only nucleons figure as relevant degrees of freedom. With a finite momentum cut-off regularization scheme, we show that the large scattering lengths of the np systems do not spoil the convergence of the effective field theory, which turns out to be extremely successful in reproducing, with little cut-off dependence, the deuteron properties, the np 1S0 scattering amplitude and most significantly, the M1 transition amplitude entering into the radiative np capture process.

  3. Low-energy heavy-ion reactions: a link between nuclear structure and reaction dynamics

    CERN Document Server

    Corradi, L; Beghini, S; Lin, C J; Montagnoli, G; Pollarolo, G; Scarlassara, F; Segato, G F; Stefanini, A M; Zheng, L F

    1999-01-01

    High precision data recently obtained in the study of multinucleon transfer and sub-barrier fusion reactions at LNL are presented. The studies of transfer channels in the systems sup 4 sup 0 sup , sup 4 sup 8 Ca+ sup 1 sup 2 sup 4 Sn and sup 6 sup 4 Ni+ sup 2 sup 3 sup 8 U revealed important effects not identified in the past, and demonstrated the possibility of a quantitative understanding of the role played by the various degrees of freedom in the reaction mechanism. Evidence of their influence on the fusion enhancements seem to show-up in the systems sup 4 sup 0 Ca+ sup 1 sup 2 sup 4 sup , sup 1 sup 1 sup 6 Sn and sup 4 sup 0 Ca+ sup 9 sup 0 sup , sup 9 sup 6 Zr, but, in general, the data still escape a consistent treatment.

  4. Low-energy constants and condensates from the tau hadronic spectral functions

    CERN Document Server

    Boito, Diogo; Jamin, Matthias; Maltman, Kim; Peris, Santiago

    2013-01-01

    We use results of fits to the OPAL spectral data, obtained from non-strange hadronic \\tau decays, to evaluate the difference between the vector and axial current correlators, \\Pi_{V-A}(Q^2). The behavior of \\Pi_{V-A}(Q^2) near euclidean momentum Q^2=0 is used to determine the effective low-energy constants L_10^eff and C_87^eff related to the renormalized low-energy constants L_10^r and C_87^r in the chiral lagrangian. We also investigate how well two-loop chiral perturbation theory describes \\Pi_{V-A}(Q^2) as a function of Q^2. This is the first determination of L_10^eff and C_87^eff to employ a fully self-consistent model for the violations of quark-hadron duality in both the vector and axial channels. We also discuss the values of the coefficients C_{6,V-A} and C_{8,V-A} governing the dimension six and eight contributions to the operator product expansion representation of \\Pi_{V-A}(Q^2).

  5. Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation

    Science.gov (United States)

    Hoshino, Yasushi; Yachida, Gosuke; Inoue, Kodai; Toyohara, Taiga; Nakata, Jyoji

    2016-06-01

    We performed extremely low-energy 16O+ implantation at 10 keV (Rp ˜ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO2 layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscope (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO2 layer with ≤20 nm thick formed by extremely low-energy 16O+ implantation followed by surprisingly low temperature annealing at 1050∘ C.

  6. Quasi-isochronous muon collection channels

    Energy Technology Data Exchange (ETDEWEB)

    Ankenbrandt, Charles M. [Muons, Inc., Batavia, IL (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for

  7. The effect of absorption on low energy π- d scattering

    Science.gov (United States)

    Afnan, I. R.; Blankleider, B.

    1980-06-01

    Using Faddeev-like equations that couple the NN to the π-d channel, we calculate πd → πd and π d ⇹ pp cross sections, and the N-N phase shifts. Sensitivity to the πN interaction in the P 11 channel is investigated.

  8. Effect of entrance channel parameters on the fusion of two heavy ions: Excitation functions of reaction products in 16O+66Zn and 37Cl + 45Sc reactions

    Indian Academy of Sciences (India)

    Suparne Sodaye; B S Tomar; A Goswami

    2006-06-01

    Excitation functions of reaction products formed in 16O+66Zn and 37Cl + 45Sc systems, leading to the same compound nucleus, 82Sr, were measured using recoilcatcher technique and off-line -ray spectrometry. The contribution of non-compound processes like transfer and incomplete fusion (ICF) reactions to the cross-sections of different evaporation residues were delineated by comparing the experimental data with the predictions of Monte Carlo simulation code PACE2. The results show that non-compound processes become a significant fraction of the total reaction cross-section in 16O+66Zn systems in the beam energy range studied, while 37Cl + 45Sc gives mainly compound nucleus products. The mass asymmetry dependence of the fusion and non-compound cross-sections have been analysed in terms of the static fusion model and sum rule model.

  9. NPTool: a simulation and analysis framework for low-energy nuclear physics experiments

    Science.gov (United States)

    Matta, A.; Morfouace, P.; de Séréville, N.; Flavigny, F.; Labiche, M.; Shearman, R.

    2016-08-01

    The Nuclear Physics Tool (NPTool) is an open source data analysis and Monte Carlo simulation framework that has been developed for low-energy nuclear physics experiments with an emphasis on radioactive beam experiments. The NPTool offers a unified framework for designing, preparing and analyzing complex experiments employing multiple detectors, each of which may comprise some hundreds of channels. The framework has been successfully used for the analysis and simulation of experiments at facilities including GANIL, RIKEN, ALTO and TRIUMF, using both stable and radioactive beams. This paper details the NPTool philosophy together with an overview of the workflow. The framework has been benchmarked through the comparison of simulated and experimental data for a variety of detectors used in charged particle and gamma-ray spectroscopy.

  10. Incoherent photoproduction of ϕ-meson from deuteron at low energies

    Directory of Open Access Journals (Sweden)

    Kiswandhi Alvin

    2014-06-01

    Full Text Available The LEPS and CLAS data of the incoherent photoproduction of ϕ meson from deuteron at low energies are studied with a model for ϕ meson photoproduction from nucleon consisting of Pomeron, π, and η meson exchanges in the t-channel, and a postulated resonance, with parameters fitted to recent LEPS data on ϕ production from proton near threshold. The resonance was introduced to explain an observed bump in the forward differential cross section. Within impulse approximation, we find that the Fermi motion, final state interaction, and the resonance excitation all give important contributions to improve the agreement with data. However, discrepancies remain. Contributions from ϕ production via spectator nucleon by other mesons like π,ρ, and ϕ produced from the first nucleon need to be calculated in order to gain insight on the medium effects as well as the existence of the postulated nucleon resonance.

  11. Excitation of the lowest electronic transitions in ethanol by low-energy electrons

    Science.gov (United States)

    Hargreaves, L. R.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2016-09-01

    We report absolute differential and integral cross sections for electronic excitation of ethanol, by low-energy electron impact. Cross sections for low-lying excited states were measured at incident electron energies from 9 to 20 eV and at scattering angles from {5}\\circ through {130}\\circ . Our results include cross sections for excitation of the 1{}3A\\prime \\prime and 1{}1A\\prime \\prime states as well as for the 2{}3A\\prime \\prime + 1{}3A\\prime and 2{}1A\\prime \\prime + 2{}1A\\prime cross section sums. Corresponding calculations were also performed using the Schwinger multichannel method, within an 11-channel close-coupling scheme.

  12. Rate of F center formation in sapphire under low-energy low-fluence Ar+ irradiation

    Science.gov (United States)

    Epie, E. N.; Wijesundera, D. N.; Tilakaratne, B. P.; Chen, Q. Y.; Chu, W. K.

    2016-03-01

    Ionoluminescence, optical absorption spectroscopy and Rutherford backscattering spectrometry channelling (RBS-C) have been used to study the rate of F center formation with fluence in 170 keV Ar+ irradiated single crystals of α-Al2O3 (sapphire) at room temperature. Implantation fluences range between 1013 cm-2 and 5 ×1014 cm-2. F center density (NF) has been found to display an initial rapid linear increase with Ar+ fluence followed by saturation to a maximum value of 1.74 ×1015 cm-2. Experimental results show a 1-1 correlation between radiation damage in the oxygen sublattice and F center density. This suggest F center kinetics in sapphire under low-energy low-fluence Ar irradiation is a direct consequence of dynamic competition between oxygen defect creation and recombination. An attempt has also been made to extend this discussion to F center kinetics in sapphire under swift heavy ion irradiation.

  13. DLTS of low-energy hydrogen ion implanted n-Si

    Energy Technology Data Exchange (ETDEWEB)

    Deenapanray, P.N.K

    2003-12-31

    We have used deep level transient spectroscopy and capacitance-voltage measurements to study the influence of low-energy hydrogen ion implantation on the creation of defects in n-Si. In particular, we have studied the ion fluence dependence of the free carrier compensation at room temperature, and we have measured the generation of VO-H complex and VP-pair in ion implanted samples. The 7.5 keV H ions created defects in the top 0.3 {mu}m of samples, which resulted in carrier compensation to depths exceeding 1 {mu}m. This effect is not due to defects created by ion channeling but is rather due to the migration of defects as demonstrated using binary collision code MARLOWE.

  14. DLTS of low-energy hydrogen ion implanted n-Si

    Science.gov (United States)

    Deenapanray, Prakash N. K.

    2003-12-01

    We have used deep level transient spectroscopy and capacitance-voltage measurements to study the influence of low-energy hydrogen ion implantation on the creation of defects in n-Si. In particular, we have studied the ion fluence dependence of the free carrier compensation at room temperature, and we have measured the generation of VO-H complex and VP-pair in ion implanted samples. The 7.5 keV H ions created defects in the top 0.3 μm of samples, which resulted in carrier compensation to depths exceeding 1 μm. This effect is not due to defects created by ion channeling but is rather due to the migration of defects as demonstrated using binary collision code MARLOWE.

  15. Detector and Electronic Developments for Low Energy Multi Particle Break-up Studies.

    Science.gov (United States)

    Tengblad, Olof

    2007-11-01

    The study of excited states of unbound light nuclei includes the simultaneous detection of several charge particles emitted with very low energy. This puts several constrains on the detection system to be used. For the detectors, high segmentation is needed to be able to detect several coincident particles without an exponential drop in efficiency. The high segmentation of the detectors leads to experiments with an increased amount of electronic channels. For very dedicated experiment integrated electronic chips can be prepared, but in many cases where the detector set-up are frequently being changed, one still have to rely on more traditional analogue electronic circuits. News in the field of charge particle detection will be discussed.

  16. Low energy charged particles interacting with amorphous solid water layers

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Yonatan; Asscher, Micha [Institute of Chemistry, Hebrew University of Jerusalem, Edmund J. Safra Campus, Givat-Ram, Jerusalem 91904 (Israel)

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  17. Low energy charged particles interacting with amorphous solid water layers

    Science.gov (United States)

    Horowitz, Yonatan; Asscher, Micha

    2012-04-01

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 μA) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 ± 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  18. Passive and low energy research and development: a global view

    Energy Technology Data Exchange (ETDEWEB)

    Balcomb, J.D.

    1984-01-01

    Passive and low energy applications in buildings have become a topic of worldwide interest within the last few years. It has now been demonstrated very clearly that indoor comfort can be maintained with an expenditure of only 10 to 20% of the energy often required by modern buildings. This is accomplished through a combination of conservation measures to minimize the load, passive use of solar energy for heating, natural cooling, and daylighting. The major research emphasis has been on devising mathematical models to characterize heat flow within buildings, on the validation of these models by comparison with test results, and on the subsequent use of the models to investigate the influence of both design parameters and weather on system performance. Design guidelines have been developed, and simplified methods of analysis have been promulgated. Performance has been monitored in test modules, test buildings, and many residential and commercial buildings. The results both confirm good performance and establish the accuracy of model predictions. A significant change in the research picture has been seen in the last 4 years; whereas the major effort was originally in the United States, research is now being conducted in many countries throughout the world as many people have realized that passive and low energy methods are appropriate in virtually every climate and are well suited to economic, convenient, and reliable building construction and operation.

  19. Origin of the Low Energy Structure in Above Threshold Ionization

    CERN Document Server

    Titi, Atef S

    2015-01-01

    We present an ab initio analytic theory to account for both the very low energy structure (VLES) [C. Y. Wu et al., Phys. Rev. Lett. 109, 043001 (2012); W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)], and the low energy structure (LES) [W. Quan et al. Phys. Rev. Lett. 103, 093001 (2009); C.I. Blaga et al., Nat. Phys. 5, 335 2009)] of above threshold ionization. The origin of both VLES and LES lies in a forward scattering mechanism by the Coulomb potential. We parameterize the S matrix in terms of ?, which is the displacement of the the classical motion of an electron in the laser field. When ? = 0, the S matrix is singular, which we attribute to be forward Coulomb scattering without absorption of light quanta. By devising a regularization scheme, the resulting S matrix is non-singular when ? = 0, and the origins of VLES and LES are revealed. We attribute VLES to multiple forward scattering of near-threshold electrons by the Coulomb potential, with no absorption of light quanta, signifying the role of the...

  20. Response of plastic scintillators to low-energy photons.

    Science.gov (United States)

    Peralta, Luis; Rêgo, Florbela

    2014-08-21

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  1. Low energy probes of PeV scale sfermions

    Energy Technology Data Exchange (ETDEWEB)

    Altmannshofer, Wolfgang; Harnik, Roni; Zupan, Jure

    2013-11-27

    We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, mu->e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

  2. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  3. Personnel Security System using Bluetooth Low Energy (BLE Tag

    Directory of Open Access Journals (Sweden)

    K.Gautham

    2013-04-01

    Full Text Available One of the primary aspects of Personal security is through various user authentication techniques like biometrics, password, Smart Card, etc. We propose to design a personal security authentication system using the commonly available Bluetooth technology. The authentication is done on a fixed device, connected to the web and the identity is provided by a mobile device commonly carried by the person. Almost every cell phone has Bluetooth® transceiver for connecting to a wireless headset or to a host PC. Many new cars have Bluetooth to let you talk hands free while driving. Bluetooth has thus emerged as a pervasive technology. The aim of the paper is to describe a Personnel Security System using Bluetooth Low Energy (BLE Tag which operates on a coin cell battery that will discover all the available low energy devices in the vicinity and keep track of when it entered and when it left the zone. In addition, this tag can also be used as a positioning device by measuring the Received Signal Strength (RSSI value. The initial phase is aimed at designing the hardware for the tag. The second phase is initiated towards programming the tag. The final phase is targeted towards testing the designed hardware module and developing a Personnel Security System.

  4. Low energy electron point source microscopy: beyond imaging.

    Science.gov (United States)

    Beyer, André; Gölzhäuser, Armin

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes.

  5. Low Energy Laser Biostimulation: New Prospects For Medical Applications

    Science.gov (United States)

    Castel, John C.; Abergel, R. Patrick; Willner, Robert E.; Baumann, James G.

    1987-03-01

    The therapeutic benefits of light-energy is not a new concept to the modern world. Documented applications from ancient times tell of the therapeutic effects of ordinary sun-light to treat such common ailments as painful body joints, wounds, compound fractures and tetanus. The discovery of laser light in the 1960's, opened up new prospects for the medical use of light. Laser light differs from other forms of electromagnetic spectrum in that a single wavelength rather than a spectrum of wavelengths is emitted. Since the early 1970's, low-energy laser radiation has been reported to enhance wound healing rates, reduce edema, and relieve musculoskeletal pain. There is no detectable thermal effect of this laser on the tissue being treated. The effects are considered to occur as a result of photochemical, non thermal effects of the laser beam. Photons are absorbed by the tissue being treated and, in turn, produce positive therapeutic effects such as reduction of pain and edema. Pre-clinical and clinical evaluations are, presently, underway to document the safety and efficacy of low energy laser therapy, which represents a significant advance in the non-invasive treatment of pain.

  6. Low-energy control of electrical turbulence in the heart

    Science.gov (United States)

    Luther, Stefan; Fenton, Flavio H.; Kornreich, Bruce G.; Squires, Amgad; Bittihn, Philip; Hornung, Daniel; Zabel, Markus; Flanders, James; Gladuli, Andrea; Campoy, Luis; Cherry, Elizabeth M.; Luther, Gisa; Hasenfuss, Gerd; Krinsky, Valentin I.; Pumir, Alain; Gilmour, Robert F.; Bodenschatz, Eberhard

    2011-07-01

    Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult, because of the nonlinear interaction of excitation waves in a heterogeneous anatomical substrate. In the absence of a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation. Here we establish the relationship between the response of the tissue to an electric field and the spatial distribution of heterogeneities in the scale-free coronary vascular structure. We show that in response to a pulsed electric field, E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E) and a characteristic time, τ, for tissue depolarization that obeys the power law τ~Eα. These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore, efficient termination of fibrillation. Using this control strategy, we demonstrate low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.

  7. Low energy nanoemulsification to design veterinary controlled drug delivery devices

    Directory of Open Access Journals (Sweden)

    Thierry F Vandamme

    2010-10-01

    Full Text Available Thierry F Vandamme, Nicolas Anton, University of Strasbourg, Faculty of Pharmacy, Illkirch Cedex, France; UMR CNRS 7199, Laboratoire de Conception et Application de Molécules Bioactives, équipe de Pharmacie Biogalénique, Illkirch Cedex, France,  This work is selected as Controlled Release Society Outstanding Veterinary Paper Award 2010Abstract: The unique properties of nanomaterials related to structural stability and quantum-scale reactive properties open up a world of possibilities that could be exploited to design and to target drug delivery or create truly microscale biological sensors for veterinary applications. We developed cost-saving and solvent-free nanoemulsions. Formulated with a low-energy method, these nanoemulsions can find application in the delivery of controlled amounts of drugs into the beverage of breeding animals (such as poultry, cattle, pigs or be used for the controlled release of injectable poorly water-soluble drugs.Keywords: nanoemulsion, nanomedicine, low-energy emulsification, veterinary, ketoprofen, sulfamethazine

  8. Low-Energy Electron Scattering by Sugarcane Lignocellulosic Biomass Molecules

    Science.gov (United States)

    Oliveira, Eliane; Sanchez, Sergio; Bettega, Marcio; Lima, Marco; Varella, Marcio

    2012-06-01

    The use of second generation (SG) bioethanol instead of fossil fuels could be a good strategy to reduce greenhouse gas emissions. However, the efficient production of SG bioethanol has being a challenge to researchers around the world. The main barrier one must overcome is the pretreatment, a very important step in SG bioethanol aimed at breaking down the biomass and facilitates the extraction of sugars from the biomass. Plasma-based treatment, which can generate reactive species, could be an interesting possibility since involves low-cost atmospheric-pressure plasma. In order to offer theoretical support to this technique, the interaction of low-energy electrons from the plasma with biomass is investigated. This study was motived by several works developed by Sanche et al., in which they understood that DNA damage arises from dissociative electron attachment, a mechanism in which electrons are resonantly trapped by DNA subunits. We will present elastic cross sections for low-energy electron scattering by sugarcane biomass molecules, obtained with the Schwinger multichannel method. Our calculations indicate the formation of π* shape resonances in the lignin subunits, while a series of broad and overlapping σ* resonances are found in cellulose and hemicellulose subunits. The presence of π* and σ* resonances could give rise to direct and indirect dissociation pathways in biomass. Then, theoretical resonance energies can be useful to guide the plasma-based pretreatment to break down specific linkages of interest in biomass.

  9. Very low energy supernovae and their resulting transients

    Science.gov (United States)

    Lovegrove, Elizabeth

    Core-collapse supernovae play a key role in many of astrophysical processes, but the details of how these explosive events work remain elusive. Many questions about the CCSN explosion mechanism and progenitor stars could be answered by either detecting very-low-energy supernovae (VLE SNe) or alternately placing a tight upper bound on their fraction of the CCSN population. However, VLE SNe are by definition dim events. Many VLE SNe result from the failure of the standard CCSN explosion mechanism, meaning that any observable signature must be created by secondary processes either before or during the collapse. In this dissertation I examine alternate means of producing transients in otherwise-failed CCSNe and consider the use of shock breakout flashes to both detect VLE SNe and retrieve progenitor star information. I begin by simulating neutrino-mediated mass loss in CCSNe progenitors to show that a dim, unusual, but still observable transient can be produced. I then simulate shock breakout flashes in VLE SNe for both the purposes of detection as well as extracting information about the exploding star. I discuss particular challenges of modeling shock breakout at low energies and behaviors unique to this regime, in particular the behavior of the spectral temperature. All simulations in this dissertation were done with the CASTRO radiation-hydrodynamic code.

  10. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    Directory of Open Access Journals (Sweden)

    Tanya M. S. David

    2014-01-01

    Full Text Available Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO level of −3.33 eV based on optical energy gap. The polymer was synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.

  11. Low Energy Continuum and Lattice Effective Field Theories

    CERN Document Server

    Elhatisari, Serdar

    2014-01-01

    In the first part of the thesis we consider the constraints of causality and unitarity for particles interacting via strictly finite-range interactions. We generalize Wigner's causality bound to the case of non-vanishing partial-wave mixing. Specifically we analyze the system of the low-energy interactions between protons and neutrons. We also analyze low-energy scattering for systems with arbitrary short-range interactions plus an attractive $1/r^{\\alpha}$ tail for $\\alpha\\geq2$. In particular, we focus on the case of $\\alpha=6$ and we derive the constraints of causality and unitarity also for these systems and find that the van der Waals length scale dominates over parameters characterizing the short-distance physics of the interaction. This separation of scales suggests a separate universality class for physics characterizing interactions with an attractive $1/r^{6}$ tail. We argue that a similar universality class exists for any attractive potential $1/r^{\\alpha}$ for $\\alpha\\geq2$. In the second part of ...

  12. Low energy recoil detection with a spherical proportional counter

    CERN Document Server

    Savvidis, I; Eleftheriadis, C; Giomataris, I; Papaevangellou, T

    2016-01-01

    We present low energy recoil detection results in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An ${}^{241}Am-{}^{9}{Be}$ fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the $keV$ energy region was resolved by observing the $5.9\\ keV$ line of a ${}^{55}Fe$ X-ray source, with energy resolution of $9\\%$ ($\\sigma$). The toolkit GEANT4 was used to simulate the irradiation of the detector by an ${}^{241}Am-{}^{9}{Be}$ source, while SRIM was used to calculate the Ionization Quenching Factor (IQF). The GEANT4 simulated energy deposition spectrum in addition with the SRIM calculated quenching factor provide valuable insight to the experimental results. The performance of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searc...

  13. Low energy probes of PeV scale sfermions

    Science.gov (United States)

    Altmannshofer, Wolfgang; Harnik, Roni; Zupan, Jure

    2013-11-01

    We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, μ to e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

  14. Indirect Study of the 16O+16O Fusion Reaction Toward Stellar Energies by the Trojan Horse Method

    Science.gov (United States)

    Hayakawa, S.; Spitaleri, C.; Burtebayev, N.; Aimaganbetov, A.; Figuera, P.; Fisichella, M.; Guardo, G. L.; Igamov, S.; Indelicato, I.; Kiss, G.; Kliczewski, S.; La Cognata, M.; Lamia, L.; Lattuada, M.; Piasecki, E.; Rapisarda, G. G.; Romano, S.; Sakuta, S. B.; Siudak, R.; Trzcińska, A.; Tumino, A.; Urkinbayev, A.

    2016-05-01

    The 16O+16O fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of low-energy heavy-ion fusion reactions. We aim to determine the excitation function for the most major exit channels, α+28Si and p+31P, toward stellar energies indirectly by the Trojan Horse Method via the 16O(20Ne, α28Si)α and 16O(20Ne, p31P)α three-body reactions. We report preliminary results involving reaction identification, and determination of the momentum distribution of α-16O intercluster motion in the projectile 20Ne nucleus.

  15. Indirect Study of the 16O+16O Fusion Reaction Toward Stellar Energies by the Trojan Horse Method

    Directory of Open Access Journals (Sweden)

    Hayakawa S.

    2016-01-01

    Full Text Available The 16O+16O fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of low-energy heavy-ion fusion reactions. We aim to determine the excitation function for the most major exit channels, α+28Si and p+31P, toward stellar energies indirectly by the Trojan Horse Method via the 16O(20Ne, α28Siα and 16O(20Ne, p31Pα three-body reactions. We report preliminary results involving reaction identification, and determination of the momentum distribution of α-16O intercluster motion in the projectile 20Ne nucleus.

  16. Low energy ion beam assisted growth of metal multilayers

    Science.gov (United States)

    Quan, Junjie

    Vapor deposited metal multilayers have attracted a great deal of interest in recent years because they offer extraordinary strength, hardness, heat resistance, and unexpected new properties like high reflectivity and spin-dependent conductivity. The giant magnetoresistance effects discovered in Fe/Cr artificial superstructures in 1988 stimulated a large number of studies on the electronic transport properties of spintronic materials because of their important applications in highly sensitive magnetic sensors, nonvolatile random access memories, and the data storage industry in general. Magnetic multilayers allow exploitation of unique micromagnetic, magnetooptic, and magnetoelectronic phenomena that cannot be realized using conventional materials. For example, if ferromagnetic layers (such as CoFe) with a thicknesses of 5-7 nm are separated by a non-magnetic spacer (such as Cu or AlOx) of an appropriate thickness (1-3 nm), they can exhibit large changes in their electrical resistance when a magnetic field is applied. These changes are caused mainly by spin-dependent conduction electron scattering at magnetic multilayer interfaces. Many experimental and theoretical works have sought to promote a basic understanding of the effect of atomic structure in thin film multilayers upon spin dependent transport. It has been found that interfacial imperfections, such as interfacial roughness and interlayer mixing, dramatically reduce the properties exploited for spintronic applications. A combination of computer modeling and experiments has been used to discover more effective ways to control the interfacial structures of metal multilayers. Earlier atomic simulations had indicated that it is very important to control adatom energy during deposition in order to improve interface properties. Based on these ideas, this dissertation has investigated the effects of low energy ion assistance during metal multilayer deposition. Using molecular dynamics modeling, the effects of ion

  17. Search for Higgs boson decays in the H→W{sup +}W{sup -}→lνlν channel via vector boson fusion with the ATLAS detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Bonnie Kar Bo

    2014-11-27

    A search for the evidence of Higgs boson production via vector boson fusion in the H→W{sup (*)}→lνlν decay mode is presented using data recorded with the ATLAS detector from proton-proton collisions at the Large Hadron Collider. The data were taken in 2011 and 2012, at a centre-of-mass energy of √(s)=7 TeV and 8 TeV respectively, corresponding to a total integrated luminosity of 25 fb{sup -1}. A multivariate analysis has been developed using boosted decision trees, in parallel with a cut-based approach which provides a valuable cross-check. For both methods, regions with a large signal presence are identified, with separate control regions used to check the modelling and yields of background processes. The analysis is conducted separately for the 7 TeV and 8 TeV datasets to allow focussed optimisation, before recombining to achieve a final result. Evidence for the vector boson fusion production in the H→WW{sup (*)}→lνlν channel has been established, with an observed significance of 3.3 standard deviations. Assuming the existence of a Standard Model Higgs boson with a mass of 125.36 GeV, the ratio of the measured cross section to that predicted by the Standard Model for vector boson fusion is observed to be consistent with unity: μ{sub obs}=1.28{sup +0.44}{sub -0.40}(stat.){sup +0.29}{sub -0.20}(syst.). As the vector boson fusion production mode is sensitive to couplings of the Standard Model Higgs boson to the W and Z vector bosons, a value for the bosonic coupling has been observed to be consistent with the Standard Model prediction: κ{sub V}=1.04{sup +0.10}{sub -0.11}.

  18. Precision Measurement of Low-Energy Antiprotons with GAPS for Dark Matter and Primordial Black Hole Physics

    CERN Document Server

    Aramaki, T; von Doetinchem, P; Fuke, H; Hailey, C J; Mognet, S A I; Ong, R A; Perez, K M; Zweerink, J

    2014-01-01

    The general antiparticle spectrometer (GAPS) experiment is an indirect dark matter search focusing on antiparticles produced by WIMP annihilation and decay in the Galactic halo. In addition to the very powerful search channel provided by antideuterons, GAPS has a strong capability to measure low-energy antiprotons (0.07 $\\le$ E $\\le$ 0.25 GeV) as dark matter signatures. This is an especially effective means for probing light dark matter, whose existence has been hinted at in the direct dark matter searches, including the recent result from the CDMS-II experiment. While severely constrained by LUX and other direct dark matter searches, light dark matter candidates are still viable in an isospin- violating dark matter scenario and halo-independent analysis. Along with the excellent antideuteron sensitivity, GAPS will be able to detect an order of magnitude more low-energy antiprotons, compared to BESS and PAMELA, providing a precision measurement of low-energy antiproton flux and a unique channel for probing li...

  19. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    suggesting that fusion partners may specifically select each other and that heterogeneity between the partners seems to play a role. Therefore, we set out to directly test the hypothesis that fusion factors have a heterogenic involvement at different stages of nuclearity. Therefore, we have analyzed...... on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through......Investigations addressing the molecular keys of osteoclast fusion are primarily based on end-point analyses. No matter if investigations are performed in vivo or in vitro the impact of a given factor is predominantly analyzed by counting the number of multi-nucleated cells, the number of nuclei per...

  20. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  1. Tissue modeling schemes in low energy breast brachytherapy.

    Science.gov (United States)

    Afsharpour, Hossein; Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-11-21

    Breast tissue is heterogeneous and is mainly composed of glandular (G) and adipose (A) tissues. The proportion of G versus A varies considerably among the population. The absorbed dose distributions in accelerated partial breast irradiation therapy with low energy photon brachytherapy sources are very sensitive to tissue heterogeneities. Current clinical algorithms use the recommendations of the AAPM TG43 report which approximates the human tissues by unit density water. The aim of this study is to investigate various breast tissue modeling schemes for low energy brachytherapy. A special case of breast permanent seed implant is considered here. Six modeling schemes are considered. Uniform and non-uniform water breast (UWB and NUWB) consider the density but neglect the effect of the composition of tissues. The uniform and the non-uniform G/A breast (UGAB and NUGAB) as well the age-dependent breast (ADB) models consider the effect of the composition. The segmented breast tissue (SBT) method uses a density threshold to distinguish between G and A tissues. The PTV D(90) metric is used for the analysis and is based on the dose to water (D(90(w,m))). D(90(m,m)) is also reported for comparison to D(90(w,m)). The two-month post-implant D(90(w,m)) averaged over 38 patients is smaller in NUWB than in UWB by about 4.6% on average (ranging from 5% to 13%). Large average differences of G/A breast models with TG43 (17% and 26% in UGAB and NUGAB, respectively) show that the effect of the chemical composition dominates the effect of the density on dose distributions. D(90(w,m)) is 12% larger in SBT than in TG43 when averaged. These differences can be as low as 4% or as high as 20% when the individual patients are considered. The high sensitivity of dosimetry on the modeling scheme argues in favor of an agreement on a standard tissue modeling approach to be used in low energy breast brachytherapy. SBT appears to generate the most geometrically reliable breast tissue models in this

  2. Status report on the Low Energy Neutron Source for 2015

    Science.gov (United States)

    Baxter, D. V.; Rinckel, T.

    2016-11-01

    The Low Energy Neutron Source at Indiana University first produced cold neutrons in April of 2005. Ten years after first reaching this milestone, the facility has three instruments in operation on its cold target station, and a second target station is devoted to thermal and fast neutron physics offers capabilities in radiation effects research (single-event effects in electronics) and radiography. Key elements in our success over these last ten years have been the diversity of activities we have been able maintain (which often involves using each of our instruments for multiple different activities), the close relationship we have developed with a number of major sources, and the focus we have had on innovation in neutron instrumentation. In this presentation, we will introduce some of the highlights from our most recent activities, provide an update on some of our technical challenges, and describe some of our ideas for the future.

  3. Effects of heavy sea quarks at low energies.

    Science.gov (United States)

    Bruno, Mattia; Finkenrath, Jacob; Knechtli, Francesco; Leder, Björn; Sommer, Rainer

    2015-03-13

    We present a factorization formula for the dependence of light hadron masses and low energy hadronic scales on the mass M of a heavy quark: apart from an overall mass-independent factor Q, ratios such as r_{0}(M)/r_{0}(0) are computable in perturbation theory at large M. The perturbation theory part is stable concerning different loop orders. Our nonperturbative Monte Carlo results obtained in a model calculation, where a doublet of heavy quarks is decoupled, match quantitatively to the perturbative prediction. Upon taking ratios of different hadronic scales at the same mass, the perturbative function drops out and the ratios are given by the decoupled theory up to M^{-2} corrections. We verify-in the continuum limit-that the sea quark effects of quarks with masses around the charm mass are very small in such ratios.

  4. District Heating in Areas with Low Energy Houses

    DEFF Research Database (Denmark)

    Tol, Hakan Ibrahim

    houses there being considered for renovation to houses of a low-energy class, and due to the existing heat-supply energy infrastructure there being a natural gas grid. The third case study carried out aimed at developing energy conversion systems based on use of renewable energy sources that were...... in Denmark. The second case study was aimed at solving another regional energy planning scheme, one concerned with already existing houses, the heat requirements of which were currently being met by use of a natural gas grid or a conventional high-temperature district heating network. The idea considered...... to study the improvement in efficiency achieved by use of multi-generation systems, (ii) various types of energy conversion systems, such as single-generation, cogeneration, and multi-generation systems, (iii) the long-term storage of heat energy to cope with the mismatch between the energy production from...

  5. Ignitor with stable low-energy thermite igniting system

    Science.gov (United States)

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  6. Ee-Leach(Low Energy Adaptive Clustering Hierarchy Modified Protocol

    Directory of Open Access Journals (Sweden)

    Nishita Payar,

    2014-05-01

    Full Text Available A wireless sensor network is made by many homogeneous and/or nodes which can sense data and communicate to each other. As energy is a scarce resource in WSN, the main issue is energy efficient routing. Many flat and hierarchical protocols have been projected to enhance the network lifetime. Low Energy Adaptive Clustering Hierarchy (LEACH protocol is a basic energy efficient hierarchical routing protocol in WSN. In LEACH, cluster heads are selected and cluster is formed by joining non cluster head nodes. Member nodes transmit the data to respective cluster head and the cluster head is conscientious to transmit the gathered and aggregated data directly to the base station. This paper examines the performance of the conventional LEACH protocol and gives an enhancement to it for energy efficiency. The proposed protocol considers many parameters like residual energy and distance from base station etc. for cluster head selection and energy efficient routing.

  7. Novel Role of Superfluidity in Low-Energy Nuclear Reactions

    CERN Document Server

    Magierski, Piotr; Wlazłowski, Gabriel

    2016-01-01

    We demonstrate, within symmetry unrestricted time dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses capture cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in non-central collisions are significantly affected. The modification of the capture cross section and possibilities for its experimental detection are discussed.

  8. Linac4 low energy beam measurements with negative hydrogen ions.

    Science.gov (United States)

    Scrivens, R; Bellodi, G; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J-B; Lettry, J; Lombardi, A; Midttun, Ø; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-02-01

    Linac4, a 160 MeV normal-conducting H(-) linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H(-) beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  9. Optimization of design parameters of low-energy buildings

    Science.gov (United States)

    Vala, Jiří; Jarošová, Petra

    2017-07-01

    Evaluation of temperature development and related consumption of energy required for heating, air-conditioning, etc. in low-energy buildings requires the proper physical analysis, covering heat conduction, convection and radiation, including beam and diffusive components of solar radiation, on all building parts and interfaces. The system approach and the Fourier multiplicative decomposition together with the finite element technique offers the possibility of inexpensive and robust numerical and computational analysis of corresponding direct problems, as well as of the optimization ones with several design variables, using the Nelder-Mead simplex method. The practical example demonstrates the correlation between such numerical simulations and the time series of measurements of energy consumption on a small family house in Ostrov u Macochy (35 km northern from Brno).

  10. Computer simulations of a low energy proton beam tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Milhoretto, E.; Schelin, H.R.; Setti, J.A.P.; Denyak, V.; Paschuk, S.A.; Basilio, A.C.; Rocha, R.; Ribeiro Junior, S. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Curso de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)]. E-mails: sergei@utfpr.edu.br; edneymilhoretto@yahoo.com; schelin@cpgei.cefetpr.br; Evseev, I.; Yevseyeva, O. [Universidade Estadual do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)]. E-mail: evseev@iprj.uerj.br; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graducao em Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: ricardo@lin.ufrj.br; Vinagre Filho, U.M. [Instituto de Energia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2007-07-01

    This work presents the recent development of a low energy proton beam tomograph. The proton tomograph prototype (involving UTFPR, UERJ, UFRJ and IEN/CNEN) has been installed and tested at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to optimize the performance of the scattered proton beam and its aluminum collimator energy losses. The computer code simulates the tomographic measurements with two aluminum collimators (variable aperture from 0.2 mm to 0.4 mm in diameter and variable thickness from 4 mm to 8 mm), a water phantom and a Si(Li) detector. The analysis of the exit beam energy spectra in comparison with a perfectly collimated proton beam made it possible to achieve the best quality of reconstructed tomographic images of water phantom. (author)

  11. Low Energy States in the $SU(N)$ Skyrme Models

    CERN Document Server

    Ioannidou, T A; Zakrzewski, W J

    1998-01-01

    We show that any solution of the SU(2) Skyrme model can be used to give a topologically trivial solution of the SU(4) one. In addition, we extend the method introduced by Houghton et al. and use harmonic maps from S2 to CP(N-1) to construct low energy configurations of the SU(N) Skyrme models. We show that one of such maps gives an exact, topologically trivial, solution of the SU(3) model. We study various properties of these maps and show that, in general, their energies are only marginally higher than the energies of the corresponding SU(2) embeddings. Moreover, we show that the baryon (and energy) densities of the SU(3) configurations with baryon number B=2-4 are more symmetrical than their SU(2) analogues. We also present the baryon densities for the B=5 and B=6 configurations and discuss their symmetries.

  12. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    CERN Document Server

    Agnese, R; Balakishiyeva, D; Thakur, R Basu; Bauer, D A; Billard, J; Borgland, A; Bowles, M A; Brandt, D; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Cerdeno, D G; Chagani, H; Chen, Y; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Fritts, M; Godfrey, G L; Golwala, S R; Graham, M; Hall, J; Harris, H R; Hertel, S A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Kiveni, M; Koch, K; Leder, A; Loer, B; Asamar, E Lopez; Mahapatra, R; Mandic, V; Martinez, C; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Moore, D C; Nelson, R H; Oser, S M; Page, K; Page, W A; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Rogers, H E; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Upadhyayula, S; Villano, A N; Welliver, B; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2014-01-01

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search (CDMS~II) experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from $^{210}$Pb decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in our data. We confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.

  13. Low energy vibrational excitations characteristic of superionic glass

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: nakamura.mitsutaka@jaea.go.jp; Iwase, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Arai, M. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kartini, E. [Industrial Material Division, R and D Center for Materials Science and Technology, BATAN, Serpong, Tangerang 15314 (Indonesia); Russina, M. [Hahn-Meitner-Institut, Glienicker Strasse 100, 14109 Berlin (Germany); Yokoo, T. [Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); Taylor, J.W. [Rutherford Appleton Laboratory, ISIS, Chilton Didcot, Oxon OX11 (United Kingdom)

    2006-11-15

    The mechanism of high ionic conductivity in superionic glass constitutes an unsolved problem in the field of science. Here we performed inelastic neutron scattering measurements of superionic glass system (AgI){sub x}(Ag{sub 2}S){sub x}(AgPO{sub 3}){sub 1-2x} by using MARI spectrometer at ISIS, and found that the Q-dependence of inelastic intensity in the energy region from 1 to 3meV of superionic phase glass shows an excess intensity above Q=1.8A{sup -1} compared with insulator phase. Similar phenomena were also observed in another superionic glass (AgI){sub 0.5}(AgPO{sub 3}){sub 0.5} by using NEAT spectrometer at HMI with high resolution measurement. These results clearly suggest peculiar low energy vibrational excitations should be universal features of superionic glass.

  14. Performance of the Low-energy House in Sisimiut

    DEFF Research Database (Denmark)

    Rode, Carsten; Kragh, Jesper; Borchersen, Egil;

    2009-01-01

    A low-energy house was built in Sisimiut, Greenland in 2004-05 and since its inauguration in April 2005, its performance and operation have been object of study for researchers and students. The house is characterised by a highly insulated building envelope, advanced windows and a ventilation...... auxiliary heat to a room in the building. The paper briefly introduces the design and technology of the house before reporting on the performance results until date. It has been a challenge in some aspects to introduce new technologies which have not been commonly used before in an Arctic environment...... system with heat recovery, which should cut the energy consumption of the building to only half of what in 2006 became the permissible value in the Greenlandic building code. In addition to this, the house is equipped with a solar collector that supplies heat to the domestic hot water system and delivers...

  15. Low-energy Variety of Asymmetric SUSY Flavor Structure

    CERN Document Server

    Inoue, K; Yoshioka, K; Inoue, Kenzo; Kojima, Kentaro; Yoshioka, Koichi

    2007-01-01

    In this letter we study the low-energy phenomenology and cosmological implications of supersymmetric grand unified theory with asymmetric flavor structure, which is suggested by the recent observation of fermion masses and mixing angles. The predictions of the scenario are rather dependent on a Yukawa parameter fixed by group-theoretical argument. A reduced value of the parameter gives a resolution to the sign problem of supersymmetric Higgs mass \\mu, with which the theory becomes simultaneously consistent with the experimental data of bottom/tau mass ratio, flavor-changing rare decay of bottom quark, and the muon anomalous magnetic moment. The relic abundance of the lightest superparticle as cold dark matter of the universe is also investigated in light of the three-years WMAP result. A new source of flavor violation is found in the D-term induced scalar masses, that is a distinctive signature of the generation asymmetry.

  16. Low-energy Coulomb excitation of Sr,9896 beams

    Science.gov (United States)

    Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-11-01

    The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.

  17. The nuclear structure and low-energy reactions (NSLER) collaboration

    Science.gov (United States)

    Dean, D. J.; NSLER Collaboration

    2006-09-01

    The long-term vision of the Nuclear Structure and Low-Energy Reactions (NSLER) collaboration is to arrive at a comprehensive and unified description of nuclei and their reactions that is grounded in the interactions between the constituent nucleons. For this purpose, we will develop a universal energy density functional for nuclei and replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that will deliver maximum predictive power with minimal uncertainties that are well quantified. Nuclear structure and reactions play an essential role in the science to be investigated at rare isotope facilities, and in nuclear physics applications to the Science-Based Stockpile Stewardship Program, next-generation reactors, and threat reduction. We anticipate an expansion of the computational techniques and methods we currently employ, and developments of new treatments, to take advantage of petascale architectures and demonstrate the capability of the leadership class machines to deliver new science heretofore impossible.

  18. First evidence of low energy enhancement in Ge isotopes

    Directory of Open Access Journals (Sweden)

    Renstrøm T.

    2015-01-01

    Full Text Available The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ∼1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ∼3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  19. Profitable solutions in low energy homes; Loennsomme varmeloesninger i lavenergiboliger

    Energy Technology Data Exchange (ETDEWEB)

    Axell, Monica; Ruud, Svein; Nylund, Hilde Karin

    2011-07-01

    Various combinations of technical installations for three different building bodies is compared to a calculation model. Both the energy consequences for action on climate change on the screen, a requirement in the regulations and life cycle costs are assessed for Swedish climate zones. The combination of geothermal heat, heat recovery and effective climate monitor will, not surprisingly, provide the best solution for the total energy needs. At the same time, this study shows that there is a need to develop heat pumps as a product. Existing solutions on the Swedish market is either too big, too expensive, or both to be cost-efficient solutions for a low-energy villas in Norway. (AG)

  20. The CERN Low Energy Antiproton Ring (LEAR) project

    CERN Document Server

    Lefèvre, P; Plass, G

    1980-01-01

    The idea to add to the CERN Antiproton Accumulator (AA) a facility for experiments with dense and pure beams of low energy antiprotons has received enthusiastic support from many members of the physics community. After conceptual studies done since 1977 the following scheme was authorized in May 1980: Small batches of cooled antiprotons will be skimmed off from the AA at regular intervals, decelerated in the CERN PS and transferred into a small storage ring (LEAR). In its first stage LEAR will work as a beam stretcher providing a high duty cycle spill of 10/sup 6/ p/s into an experimental area. Future options (not yet authorized) foresee internal jet targets together with cooling, co-rotating beams of p and H, proton antiproton colliding beams, fast extraction with slowing down of p's to rest. A storage ring to fulfil this variety of tasks has to combine some unusual machine features which are summarized in the present report. (6 refs).

  1. Low Energy Cosmic Rays and the Disturbed Magnetosphere

    CERN Document Server

    Kudela, K

    2013-01-01

    Low energy galactic cosmic rays as well as particles accelerated to high energies either at the solar surface or in the interplanetary medium have access to the atmosphere above a given position on the Earth depending upon the state of the magnetosphere. The interpretation of the cosmic ray anisotropy, deduced from the neutron monitor (NM) network, must assume the variability of the magnetospheric configuration. Along with a short review of changes of the geomagnetic cutoffs in the disturbed magnetosphere reported in the earlier papers, we present the results of computations of transmissivity function and asymptotic directions for selected points on the ground and for a low altitude polar orbiting satellite as well. The computations, based on different available models of geomagnetic field of external sources are performed for quiet time periods and for strong geomagnetic disturbances occurred in 2003 and 2004.

  2. Opportunistic Sensor Data Collection with Bluetooth Low Energy.

    Science.gov (United States)

    Aguilar, Sergio; Vidal, Rafael; Gomez, Carles

    2017-01-23

    Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios.

  3. The Construction of Affordable Low Energy Prefabricated Housing in Denmark

    DEFF Research Database (Denmark)

    Vibæk, Kasper Sánchez; Beim, Anne

    2013-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...... efficient to operate and valuable for building communities. Herein discussed are two successful examples of low energy prefabricated housing projects built in Copenhagen Denmark, which embraced both the constraints and possibilities offered by prefabrication....

  4. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  5. Low-energy house in Sisimiut - Measurement equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hvidthoeft Delff Andersen, P.; Rode, C.; Madsen, Henrik

    2013-08-15

    This paper documents the measurement equipment in a low-energy house in Sisimiut, Greenland. Detailed measurements are being taken on energy consumption, indoor temperatures, floor heating, ventilation, open/closed state of doors and windows, and indoors climate. Equipped with a central control unit, experiments can be designed in order to study heat dynamics of the building. It is described how to plan and execute such experiments in one apartment in the building. The building also features both a solar thermal system and extra buffer tank facilitating testing of storage strategies on the power generated by the solar thermal system. A weather station equipped with thermometer, pyranometer and anemometer is installed on the building as well. Finally, it is described how to retrieve data from an SQL server which is configured to take monthly backups. R functions have been implemented to fetch and prepare the data for time series analysis. Examples are given on the use of these. (Author)

  6. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  7. Triton Electric Form Factor at Low-Energies

    CERN Document Server

    Sadeghi, H

    2009-01-01

    Making use of the Effective Field Theory(EFT) expansion recently developed by the authors, we compute the charge form factor of triton up to next-to-next-to-leading order (N$^2$LO). The three-nucleon forces(3NF) is required for renormalization of the three-nucleon system and it effects are predicted for process and is qualitatively supported by available experimental data. We also show that, by including higher order corrections, the calculated charge form factor and charge radius of $^3$H are in satisfactory agreement with the experimental data and the realistic Argonne $v_{18}$ two-nucleon and Urbana IX potential models calculations. This method makes possible a high precision few-body calculations in nuclear physics. Our result converges order by order in low energy expansion and also cut-off independent.

  8. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  9. Low energy neutral atom imaging: Remote observations of the magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Funsten, H.O.; McComas, D.J.; Scime, E.E.; Moore, K.R.

    1995-02-01

    Recent developments in detection of neutral atom imaging should enable imaging the global structure and dynamics of the terrestrial magnetosphere. The inherent technical challenge of imaging low energy neutral atoms (LENAs) with energy < 30 keV is their separation from the tremendous UV background, to which LENA detectors are sensitive, without loss of information of LENA trajectory and energy. Three instrument concepts for separating LENAs from the background UV are presented: LENA charge conversion via transmission through an ultrathin carbon foil and subsequent electrostatic deflection, EUV grating polarizers and attenuators, and high frequency shutters. Each of these concepts can be mated to a detector section that provides both LENA imaging capability and coincidence/time-of-flight.

  10. Low-energy antinucleon-nucleus interaction revisited

    Science.gov (United States)

    Friedman, E.

    2015-08-01

    Annihilation cross sections of antiprotons and antineutrons on the proton between 50 and 400 MeV/c show Coulomb focusing below 200 MeV/c and almost no charge-dependence above 200 MeV/c. Similar comparisons for heavier targets are not possible for lack of overlap between nuclear targets studied with and beams. Interpolating between -nucleus annihilation cross sections with the help of an optical potential to compare with -nucleus annihilation cross sections reveal unexpected features of Coulomb interactions in the latter. Direct comparisons between -nucleus and -nucleus annihilations at very low energies could be possible if cross sections are measured on the same targets and at the same energies as the available cross sections for . Such measurements may be feasible in the foreseeable future.

  11. Oxidation of nickel surfaces by low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Saric, Iva [Faculty of Civil Engineering, University of Rijeka (Croatia); Center for Micro and Nano Sciences and Technologies, University of Rijeka (Croatia); Peter, Robert; Kavre, Ivna; Badovinac, Ivana Jelovica; Petravic, Mladen [Center for Micro and Nano Sciences and Technologies, University of Rijeka (Croatia); Department of Physics, University of Rijeka (Croatia)

    2016-03-15

    We have studied formation of oxides on Ni surfaces by low energy oxygen bombardment using X-ray photoemission spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). Different oxidation states of Ni ions have been identified in XPS spectra measured around Ni 2p and O 1s core-levels. We have compared our results with thermal oxidation of Ni and shown that ion bombardment is more efficient in creating thin oxide films on Ni surfaces. The dominant Ni-oxide in both oxidation processes is NiO (Ni{sup 2+} oxidation state), while some Ni{sub 2}O{sub 3} contributions (Ni{sup 3+} oxidation state) are still present in all oxidised samples. The oxide thickness of bombarded Ni samples, as determined by SIMS, was shown to be related to the penetration depth of oxygen ions in Ni.

  12. Opportunistic Sensor Data Collection with Bluetooth Low Energy

    Science.gov (United States)

    Aguilar, Sergio; Vidal, Rafael; Gomez, Carles

    2017-01-01

    Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios. PMID:28124987

  13. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...... of the external envelope and the thermal capacity of the internal walls as the main parameters that affect the load shifting potential of the apartment....... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...

  14. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    Science.gov (United States)

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  15. Bluetooth low energy: wireless connectivity for medical monitoring.

    Science.gov (United States)

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications.

  16. Low-energy nuclear reactions in crystal structures

    Science.gov (United States)

    Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Rusetskii, A. S.

    2017-09-01

    Results of studying low-energy nuclear reactions at the HELIS facility (LPI) are presented. Investigations of yields from DD reactions in deuterated crystal structures at deuteron energies of 10 to 25 keV show a considerable enhancement effect. It is shown that exposure of the deuterated targets to the H+ (proton) and Ne+ beams with energies from 10 to 25 keV and an X-ray beam with the energy of 20 to 30 keV stimulates DD reaction yields. For the CVD diamond target, it is shown that its orientation with respect to the deuteron beam affects the neutron yield. The D+ beam is shown to cause much higher heat release in the TiDx target than the H+ and Ne+ beams, and this heat release depends on the deuterium concentration in the target and the current density of the deuteron beam.

  17. NRV web knowledge base on low-energy nuclear physics

    Science.gov (United States)

    Karpov, A. V.; Denikin, A. S.; Naumenko, M. A.; Alekseev, A. P.; Rachkov, V. A.; Samarin, V. V.; Saiko, V. V.; Zagrebaev, V. I.

    2017-07-01

    The paper describes the principles of organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru/) which integrates a large amount of digitized experimental data on the properties of nuclei and nuclear reaction cross sections with a wide range of computational programs for modeling of nuclear properties and various processes of nuclear dynamics which work directly in the browser of a remote user. The paper also gives an overview of the current situation in the field of application of network information technologies in nuclear physics. The features of the NRV knowledge base are illustrated in detail on the example of the analysis of nucleon transfer reactions within the distorted wave Born approximation.

  18. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  19. The rising cost of low-energy-density foods.

    Science.gov (United States)

    Monsivais, Pablo; Drewnowski, Adam

    2007-12-01

    Consuming lower-energy-density foods is one recommended strategy for management of body weight. This cross-sectional study used retail food prices to test the hypothesis that low-energy-density foods are not only more costly per kilocalorie, but have increased disproportionately in price as compared to high-energy-density foods. For a list of 372 foods and beverages belonging to a food frequency questionnaire database, retail prices were obtained from major supermarket chains in the Seattle, WA, metropolitan area in 2004 and 2006. Energy density of all items was calculated and prices were expressed as $/100 g edible portion and as $/1,000 kcal. Foods were stratified by quintiles of energy density and the differences in energy cost and in percent price change were tested using analyses of variance. High-energy-density foods provided the most dietary energy at least cost. Energy cost of foods in the bottom quintile of energy density, beverages excluded, was $18.16/1,000 kcal as compared to only $1.76/1,000 kcal for foods in the top quintile. The 2-year price change for the least energy-dense foods was +19.5%, whereas the price change for the most energy-dense foods was -1.8%. The finding that energy-dense foods are not only the least expensive, but also most resistant to inflation, may help explain why the highest rates of obesity continue to be observed among groups of limited economic means. The sharp price increase for the low-energy-density foods suggests that economic factors may pose a barrier to the adoption of more healthful diets and so limit the impact of dietary guidance.

  20. Restrained dark U (1 )d at low energies

    Science.gov (United States)

    Correia, Fagner C.; Fajfer, Svjetlana

    2016-12-01

    We investigate a spontaneously broken U (1 )d gauge symmetry with a muon-specific dark Higgs. Our first goal is to verify how the presence of a new dark Higgs, ϕ , and a dark gauge boson, V , can simultaneously face the anomalies from the muon magnetic moment and the proton charge radius. Second, by assuming that V must decay to an electron-positron pair, we explore the corresponding parameter space determined with the low-energy constraints coming from K →μ X , electron (g -2 )e, K →μ νμe+e-, K →μ νμμ+μ-, and τ →ντμ νμe+e-. We focus on the scenario where the V mass is below ˜2 mμ and the ϕ mass runs from few MeV to 250 MeV, with V -photon mixing of the order ˜O (10-3). Among weak process at low energies, we check the influence of the new light vector on kaon decays as well as on the scattering e+e-→μ+μ-e+e- and discuss the impact of the dark Higgs on e+e-→μ+μ-μ+μ-. Finally, we consider contributions of the V -photon mixing in the decays π0→γ e+e-, η →γ e+e-, ρ →π e+e-, K*→K e+e-, and ϕ (1020 )→η e+e-.

  1. Study on heat transfer performance of flow channels in first-wall of fusion reactor blanket%聚变堆包层第一壁流道换热性能研究

    Institute of Scientific and Technical Information of China (English)

    曹浩然; 黄荣华; 孟宪超; 黎俊亨

    2015-01-01

    以聚变堆包层第一壁内流道作为研究对象,设计了以空气为介质的包层第一壁U型流道换热性能实验台架。通过测量第一壁流道沿流动方向的温度和压力分布,研究了在不同管径和雷诺数下,温度、流速和弯头形状等因素对第一壁流道换热性能的影响,并与数值模拟结果进行了对比分析。实验结果表明:30mm×30mm最大的U型方管可以在不增加流动阻力的情况下,提高流体与管壁之间换热强度23%,并且通过弯头处渐缩的优化改进可进一步提高换热强度15%,数值分析结果与之也较符合。本研究表明通过改变包层第一壁流道的形状和尺寸可以有效提高第一壁流道的换热性能。%A set of apparatus of the U‐shape flow channels with air as coolant was designed to study the flow channels in the first‐wall of fusion reactor blanket .The temperature distributions of the flow channels in the first‐wall were measured along the flowing direction ,and the impacts of flow channel diameter ,Reynolds number ,temperature ,inlet velocity and corner shape on heat transfer perform‐ance of the first wall were investigated by comparing the measured data with numerical simulation re‐sults .The experiment results show that the largest U‐shape flow channel with 30 mm × 30 mm square cross‐section could increase performance of heat transfer between coolant and flow channel wall by 23% without the increasing coolant flow resistance ,the modified flow channel design with the conver‐ging flow area could further enhance the heat transfer by almost 15% ,with which the numerical simu‐lation results agree well .Research results show that the heat transfer performance of flow channels could be efficiently increased by modifying the size and shape .

  2. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  3. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  4. Radiation damage in urania crystals implanted with low-energy ions

    Science.gov (United States)

    Nguyen, Tien Hien; Garrido, Frédérico; Debelle, Aurélien; Mylonas, Stamatis; Nowicki, Lech; Thomé, Lionel; Bourçois, Jérôme; Moeyaert, Jérémy

    2014-05-01

    Implantations with low-energy ions (470-keV Xe and 500-keV La with corresponding ion range Rp ∼ 85 nm and range straggling ΔRp ∼ 40 nm) have been performed to investigate both radiation and chemical effects due to the incorporation of different species in UO2 (urania) crystals. The presence of defects was monitored in situ after each implantation fluence step by the RBS/C technique. Channelling data were analysed afterwards by Monte-Carlo simulations with a model of defects involving (i) randomly displaced atoms (RDA) and (ii) distorted rows, i.e. bent channels (BC). While increasing the ion fluence, the accumulation of RDA leads to a steep increase of the defect fraction in the range from 4 to 7 dpa regardless of the nature of bombarding ions followed by a saturation plateau over a large dpa range. A clear difference of 6% in the yield of saturation plateaus between irradiation with Xe and La ions was observed. Conversely, the evolutions of the fraction of BC showed a similar regular increase with increasing ion fluence for both ions. Moreover, this increase is shifted to a larger fluence in comparison to the sharp increase step of RDA. This phenomenon indicates a continuous structural modification of UO2 crystals under irradiation unseen by the measurement of RDA.

  5. Radiation damage in urania crystals implanted with low-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tien Hien, E-mail: tien-hien.nguyen@u-psud.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM – UMR 8609), CNRS-IN2P3-Université Paris-Sud, Bâtiments 104-108, 91405 Orsay Campus (France); Garrido, Frédérico; Debelle, Aurélien; Mylonas, Stamatis [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM – UMR 8609), CNRS-IN2P3-Université Paris-Sud, Bâtiments 104-108, 91405 Orsay Campus (France); Nowicki, Lech [The Andrzej Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Thomé, Lionel; Bourçois, Jérôme; Moeyaert, Jérémy [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM – UMR 8609), CNRS-IN2P3-Université Paris-Sud, Bâtiments 104-108, 91405 Orsay Campus (France)

    2014-05-01

    Implantations with low-energy ions (470-keV Xe and 500-keV La with corresponding ion range Rp ∼ 85 nm and range straggling ΔRp ∼ 40 nm) have been performed to investigate both radiation and chemical effects due to the incorporation of different species in UO{sub 2} (urania) crystals. The presence of defects was monitored in situ after each implantation fluence step by the RBS/C technique. Channelling data were analysed afterwards by Monte-Carlo simulations with a model of defects involving (i) randomly displaced atoms (RDA) and (ii) distorted rows, i.e. bent channels (BC). While increasing the ion fluence, the accumulation of RDA leads to a steep increase of the defect fraction in the range from 4 to 7 dpa regardless of the nature of bombarding ions followed by a saturation plateau over a large dpa range. A clear difference of 6% in the yield of saturation plateaus between irradiation with Xe and La ions was observed. Conversely, the evolutions of the fraction of BC showed a similar regular increase with increasing ion fluence for both ions. Moreover, this increase is shifted to a larger fluence in comparison to the sharp increase step of RDA. This phenomenon indicates a continuous structural modification of UO{sub 2} crystals under irradiation unseen by the measurement of RDA.

  6. Low-energy outer-shell photodetachment of the negative ion of boron

    Science.gov (United States)

    Wang, Kedong; Zatsarinny, Oleg; Bartschat, Klaus

    2016-04-01

    The photodetachment of the negative ion of boron, B-(2s22p2)3P, is investigated by employing the B-spline R-matrixmethod for photon energies ranging from threshold to 12 eV. A multi-configuration Hartree-Fock method with nonorthogonal, term-dependent orbitals is employed to generate accurate initial bound-state and final continuum-state wavefunctions. The close-coupling expansion includes all principal scattering channels for photodetachment from both the 2p and 2s orbitals. The calculated photodetachment cross sections are in good agreement with the available experimental data. Several prominent resonance features are predicted, thereby providing new challenges in the study of this highly correlated process. To classify the resonance structure, both the partial cross sections and the main contributions of the individual scattering channels are discussed. The presented cross sections, along with the asymmetry parameter β for the angular distribution, are believed to be the most comprehensive and accurate dataset currently available for the B- photodetachment process at low energies. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  7. Predicting Low Energy Dopant Implant Profiles in Semiconductors using Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Beardmore, K.M.; Gronbech-Jensen, N.

    1999-05-02

    The authors present a highly efficient molecular dynamics scheme for calculating dopant density profiles in group-IV alloy, and III-V zinc blende structure materials. Their scheme incorporates several necessary methods for reducing computational overhead, plus a rare event algorithm to give statistical accuracy over several orders of magnitude change in the dopant concentration. The code uses a molecular dynamics (MD) model to describe ion-target interactions. Atomic interactions are described by a combination of 'many-body' and pair specific screened Coulomb potentials. Accumulative damage is accounted for using a Kinchin-Pease type model, inelastic energy loss is represented by a Firsov expression, and electronic stopping is described by a modified Brandt-Kitagawa model which contains a single adjustable ion-target dependent parameter. Thus, the program is easily extensible beyond a given validation range, and is therefore truly predictive over a wide range of implant energies and angles. The scheme is especially suited for calculating profiles due to low energy and to situations where a predictive capability is required with the minimum of experimental validation. They give examples of using the code to calculate concentration profiles and 2D 'point response' profiles of dopants in crystalline silicon and gallium-arsenide. Here they can predict the experimental profile over five orders of magnitude for <100> and <110> channeling and for non-channeling implants at energies up to hundreds of keV.

  8. Low energy class 1 typehouses according to the Danish building regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Kragh, Jesper; Svendsen, Svend

    2008-01-01

    In 2005 the Danish Building regulations introduced two low energy classes for buildings in addition to tightened minimum requirements. The low energy class 1 and low energy class 2 correspond to total energy use, i.e. energy use for heating, ventilation, cooling and domestic hot water, as 50...

  9. In-medium nuclear interactions of low-energy hadrons

    Science.gov (United States)

    Friedman, E.; Gal, A.

    2007-11-01

    Exotic atoms provide a unique laboratory for studying strong interactions and nuclear medium effects at zero kinetic energy. Experimental and theoretical developments of the last decade in the study of exotic atoms and some related low-energy reactions are reviewed. The exotic atoms considered are of π-,K-,pbar,Σ-, and also the so far unobserved Ξ- atoms. The analysis of these atomic systems consists of fitting density-dependent optical potentials Vopt=t(ρ)ρ to comprehensive sets of data of strong-interaction level shifts, widths and yields across the periodic table. These provide information on the in-medium hadron-nucleon t matrix t(ρ) over a wide range of densities up to central nuclear densities. For pions, the review focuses on the extraction of the πN in-medium s-wave interaction from pionic atoms, which include also the deeply bound π- atomic states recently observed at GSI in isotopes of Sn and Pb. Also included are recent measurements at PSI of elastic scattering of π± on Si, Ca, Ni and Zr at 21.5 MeV. The experimental results are analyzed in the context of chirally motivated π-nuclear potentials, and the evidence for partial restoration of chiral symmetry in dense nuclear matter is critically discussed. For antikaons, we review the evidence from K- atoms, and also from low-energy K-p scattering and reaction data for and against a deepKbar-nucleus potential of 150-200 MeV attraction at nuclear matter density. The case for relatively narrow deeply bound K-atomic states is made, essentially independent of the potential-depth issue. Recent experimental suggestions from KEK and DA ΦNE (Frascati) for signals of Kbar-nuclear deeply bound states are reviewed, and dynamical models for calculating binding energies and widths of Kbar- nuclear states are discussed. For kaons we review the evidence, from K+ total and reaction cross section measurements at the AGS (BNL) on Li, C, Si and Ca at plab=500-700 MeV/c, for significant absorptivity of t

  10. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    Science.gov (United States)

    Delferrière, O.; De Menezes, D.

    2004-05-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D+ extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D+ ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H+ beam emittance will be compared with experimental measurements.

  11. Single image haze removal using adaptive dark channel prior and image fusion strategy%结合自适应暗通道先验和图像融合策略的单幅图像除雾方法

    Institute of Scientific and Technical Information of China (English)

    程丹松; 刘欢; 张永强; 金野; 吴锐; 刘鹏

    2016-01-01

    为解决暗通道先验统计学模型在一些情况下存在“光晕效应”、颜色偏暗和在雾浓度高区域处理效果不佳等问题,针对暗通道先验方法进行改进,并结合图像融合策略来增强可视化区域的视觉效果。利用像素块加权插值法来计算每个像素点的暗通道值,进而消除软抠图或导向滤波方法所带来的光晕效应;利用高斯模型对待恢复图像的暗通道像素值进行模拟,从而自适应地恢复天空和其他明亮区域;通过图像融合策略增强高浓度区域的图像信息。实验结果表明,与其他几种经典算法相比,改进方案不仅能够显著提高有雾图像的可见度,而且具有更好的鲁棒性。%To resolve the problems of over⁃saturation, artefacts and dark⁃look for Dark Channel Prior, this study proposes a method of single image haze removal using adaptive dark channel and image fusion. The Weighted Normalization Interpolation Method is used to compute the dark channel of pixel. The dark channel pixels of the image going to be recovered are modeled as a Gaussian one that a more natural recovered image of the sky and other bright regions can be obtained adaptively. Finally, a post fusion method is devised to increase the image information at dense haze region. Experimental results demonstrate that the proposed method not only significantly improves the visibility of the hazy image than the well⁃known state⁃of⁃the⁃art approaches, but also has a better robustness.

  12. RING1B contributes to Ewing sarcoma development by repressing the NaV1.6 sodium channel and the NF-κB pathway, independently of the fusion oncoprotein

    Science.gov (United States)

    Hernandez-Muñoz, Inmaculada; Rodriguez, Eva; Fernández-Mariño, Ana Isabel; Pardo-Pastor, Carlos; Bahamonde, María Isabel; Fernández-Fernández, José M.; García-Domínguez, Daniel J.; Hontecillas-Prieto, Lourdes; Lavarino, Cinzia; Carcaboso, Angel M.; de Torres, Carmen; Tirado, Oscar M.; de Alava, Enrique; Mora, Jaume

    2016-01-01

    Ewing sarcoma (ES) is an aggressive tumor defined by EWSR1 gene fusions that behave as an oncogene. Here we demonstrate that RING1B is highly expressed in primary ES tumors, and its expression is independent of the fusion oncogene. RING1B-depleted ES cells display an expression profile enriched in genes functionally involved in hematological development but RING1B depletion does not induce cellular differentiation. In ES cells, RING1B directly binds the SCN8A sodium channel promoter and its depletion results in enhanced Nav1.6 expression and function. The signaling pathway most significantly modulated by RING1B is NF-κB. RING1B depletion results in enhanced p105/p50 expression, which sensitizes ES cells to apoptosis by FGFR/SHP2/STAT3 blockade. Reduced NaV1.6 function protects ES cells from apoptotic cell death by maintaining low NF-κB levels. Our findings identify RING1B as a trait of the cell-of-origin and provide a potential targetable vulnerability. PMID:27317769

  13. Very Low Energy Electron Scattering from Ozone and Chlorine Dioxide

    Science.gov (United States)

    Gulley, R. J.; Field, T. A.; Steer, W. A.; Mason, N. J.; Ziesel, J. P.; Lunt, S. L.; Field, D.

    1998-10-01

    Total cross-sections are reported for the scattering of electrons from ozone (O_3) and chlorine dioxide (OClO) for energies in the range of 9 meV to 10 eV. The measurements were made in transmission experiments using a synchrotron photoionization apparatus with an energy resolution in the incident electron beam of ~ 3.5 meV (FWHM). The cross section for O3 shows strong rotational scattering at low energy, through the presence of the permanent dipole moment of O_3. Superposed on this strong scattering signal, there is evidence of a weak structure around 50 meV associated with dissociative attachment. A shape resonance, known from earlier work at ~ 4 meV, is also observed. Electron scattering from OClO is dominated by rotationally inelastic scattering decreasing from a peak at essentially zero eV to an energy of 40 meV, where p-wave attachment becomes more important, peaking at 50--60 meV and extending to several hundred meV.

  14. Automation of variable low-energy positron beam experiments

    CERN Document Server

    Jayapandian, J; Amarendra, G; Venugopal-Rao, G; Purniah, B; Viswanathan, B

    2000-01-01

    By exploiting the special BIOS interrupt (INT 1CH) of PC in conjunction with a compatible high-voltage controller card and menu-driven control program, we report here the automation of variable low-energy positron beam experiments. The beam experiment consists of monitoring the Doppler broadening lineshape parameters corresponding to the annihilation 511 keV gamma-ray at various positron beam implantation energies. The variation and monitoring of the sample high voltage, which determines positron beam energy, is carried out using a controller add-on card coupled to a 0-30 kV high-voltage unit. The design features of this controller card are discussed. This controller card is housed in a PC, which also houses a multichannel analyser (MCA) card. The MCA stores the Doppler energy spectrum of the annihilation gamma-ray. The interactive control program, written in Turbo C, carries out the assigned tasks. The design features of the automation and results are presented.

  15. Review of lattice results concerning low-energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Colangelo, G.; Leutwyler, H.; Wenger, U. [Universitaet Bern, Albert Einstein Center for Fundamental Physics, Institut fuer Theoretische Physik, Bern (Switzerland); Duerr, S. [Bergische Universitaet Wuppertal, Wuppertal (Germany); Forschungszentrum Juelich, Juelich Supercomputing Centre, Juelich (Germany); Juettner, A.; Necco, S. [CERN, Physics Department, TH Unit, Geneva 23 (Switzerland); Lellouch, L. [Centre de Physique Theorique, Marseille (France); Lubicz, V. [Universita Roma Tre (Italy); INFN, Dipartimento di Fisica, Rome (Italy); Sachrajda, C.T. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Simula, S. [INFN, Sezione di Roma Tre, Rome (Italy); Vladikas, A. [Universita di Roma Tor Vergata (Italy); INFN, Sezione di Tor Vergata, Rome (Italy); Wittig, H. [University of Mainz, Institut fuer Kernphysik (Germany); Helmholtz Institute Mainz, Mainz (Germany)

    2011-07-15

    We review lattice results relevant for pion and kaon physics with the aim of making them easily accessible to the particle physics community. Specifically, we review the determination of the light-quark masses, the form factor f{sub +}(0), relevant for the semileptonic K{yields}{pi} transition at zero momentum transfer as well as the ratio f{sub K} /f{sub {pi}} of decay constants and discuss the consequences for the elements V{sub us} and V{sub ud} of the CKM matrix. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} and SU(3){sub L} x SU(3){sub R} Chiral Perturbation Theory and review the determination of the B{sub K} parameter of neutral kaon mixing. We introduce quality criteria and use these when forming averages. Although subjective and imperfect, these criteria may help the reader to judge different aspects of current lattice computations. Our main results are summarized in Sect. 1.2, but we stress the importance of the detailed discussion that underlies these results and constitutes the bulk of the present review. (orig.)

  16. On the low energy end of the QCD spectrum

    CERN Document Server

    Leutwyler, H

    2008-01-01

    The energy gap of QCD is now understood very well. There is no doubt that the expansion in powers of the two lightest quark masses does represent a very useful tool for the analysis of the low energy structure. Concerning the expansion in powers of m_s, however, the current situation leaves much to be desired. While some of the lattice results indicate, for instance, that the violations of the Okubo-Iizuka-Zweig rule in the quark condensate and in the decay constants are rather modest, others point in the opposite direction. I am confident that the dust will settle soon, so that the effective coupling constants that govern the dependence of the various quantities of physical interest on m_s can be determined, to next-to-next-to-leading order of the chiral expansion. The range of validity of ChPT can be extended by means of dispersive methods. The properties of the physical states occurring in the spectrum of QCD below KKbar threshold can reliably be investigated on this basis. In particular, as shown only rat...

  17. Oxidation of polyethylene implanted with low energy magnesium ions

    Energy Technology Data Exchange (ETDEWEB)

    Deslandes, Alec, E-mail: acd@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Sydney (Australia); Ionescu, Mihail, E-mail: mio@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Sydney (Australia); Karatchevtseva, Inna, E-mail: ikm@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Sydney (Australia); Siegele, Rainer, E-mail: rns@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Sydney (Australia); Cohen, David D., E-mail: dcz@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Sydney (Australia)

    2013-07-15

    The oxidation of polyethylene implanted with low energy, i.e. 25–50 keV, Mg ions to fluences from 5 × 10{sup 12}–5 × 10{sup 16} ions/cm{sup 2} was studied. Rutherford back-scattering spectroscopy showed all implanted samples gained oxygen but the distribution did not match that of the implanted Mg. An increase in carbon content was also observed for the near-surface region. Depth profiles of hydrogen were obtained via elastic recoil detection analysis, showing that hydrogen was lost throughout and beyond the range of the Mg ions, producing unsaturated and chemically active sites available for oxidation. Fourier-transform infrared spectroscopy revealed the formation of carbon–oxygen bonding such as carbonyl groups, but showed no evidence of oxidised magnesium. Raman spectroscopy showed disordered and graphitic carbon bonding configurations were created by the irradiation, but no evidence of oxidised magnesium. The implantation of films to high fluence produced a carbonized surface-layer that made the irradiated polymer more resistant to oxidation.

  18. The low-energy program of the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Massarczyk, Ralph; MAJORANA Collaboration

    2017-01-01

    The MAJORANA Collaboration constructed an ultra-low background, modular high-purity Ge detector array to search for neutrinoless double-beta decay in 76Ge. Located at the 4850-ft level of the Sanford Underground Research Facility, the DEMONSTRATOR detector assembly has the goal to show that it is possible to achieve background rates necessary for future ton-scale experiments. The ultra-clean assembly in combination with low-noise p-type point contact detectors allows measurements with thresholds in the keV range. The talk will give an overview of the low-energy physics and recent achievements made since the completed DEMONSTRATOR array started data taking in mid 2016. Recent results from campaign will be presented, including new limits on bosonic dark matter interaction rates. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  19. Review of lattice results concerning low-energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Aoki, Y. [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); Bernard, C. [Washington University, Department of Physics, Saint Louis, MO (United States); Blum, T. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); University of Connecticut, Physics Department, Storrs, CT (United States); Colangelo, G.; Leutwyler, H.; Necco, S.; Wenger, U. [Institut fuer theoretische Physik, Universitaet Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Della Morte, M. [University of Southern Denmark, CP3-Origins and Danish IAS, Odense M (Denmark); IFIC (CSIC), Paterna (Spain); Duerr, S. [Bergische Universitaet Wuppertal, Wuppertal (Germany); Juelich Supercomputing Center, Juelich (Germany); El-Khadra, A.X. [University of Illinois, Department of Physics, Urbana, IL (United States); Fukaya, H.; Onogi, T. [Osaka University, Department of Physics, Osaka (Japan); Horsley, R. [University of Edinburgh, School of Physics, Edinburgh (United Kingdom); Juettner, A.; Sachrajda, C.T. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Kaneko, T. [High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Laiho, J. [University of Glasgow, SUPA, Department of Physics and Astronomy, Glasgow (United Kingdom); Syracuse University, Department of Physics, Syracuse, New York (United States); Lellouch, L. [Aix-Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Lubicz, V. [Universita Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); Sezione di Roma Tre, INFN, Rome (Italy); Lunghi, E. [Indiana University, Physics Department, Bloomington, IN (United States); Pena, C. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC and Departamento de Fisica Teorica, Madrid (Spain); Sharpe, S.R. [University of Washington, Physics Department, Seattle, WA (United States); Simula, S. [Sezione di Roma Tre, INFN, Rome (Italy); Sommer, R. [NIC rate at DESY, Zeuthen (Germany); Water, R.S.V. de [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vladikas, A. [Universita di Roma Tor Vergata, INFN, Sezione di Tor Vergata, c/o Dipartimento di Fisica, Rome (Italy); Wittig, H. [University of Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institute Mainz, Mainz (Germany); Collaboration: FLAG Working Group

    2014-09-15

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f{sub +}(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio f{sub K}/f{sub π} of decay constants and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} andSU(3)L{sub L} x SU(3){sub R} Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant α{sub s}. (orig.)

  20. Strong interactions and electromagnetism in low-energy hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, B.

    2002-10-01

    In the present work, we study various aspects of the entanglement of the strong and electromagnetic interactions as it is manifest in low-energy hadron physics. In the framework of chiral perturbation theory, two aspects are investigated: the test of the structure of baryons as probed by external electromagnetic currents, and the modification of reactions mediated by the strong interactions in the presence of internal (virtual) photons. In the first part of this work, we study the electromagnetic form factors of nucleons and the ground state baryon octet, as well as strangeness form factors of the nucleon. Emphasis is put on the comparison of a new relativistic scheme for the calculation of loop diagrams to the heavy-baryon formalism, and on the convergence of higher-order corrections in both schemes. The new scheme is shown to yield both a phenomenologically more successful description of the data and better convergence behaviour. In the second part, we study isospin violation in pion-kaon scattering as mediated by virtual photon effects and the light quark mass difference. This investigation is of particular importance for the extraction of scattering lengths from measurements of lifetime and energy levels in pion-kaon atoms. The isospin breaking corrections are shown to be small and sufficiently well under control. (orig.)

  1. Wettability Modification of Nanomaterials by Low-Energy Electron Flux

    Directory of Open Access Journals (Sweden)

    Torchinsky I

    2009-01-01

    Full Text Available Abstract Controllable modification of surface free energy and related properties (wettability, hygroscopicity, agglomeration, etc. of powders allows both understanding of fine physical mechanism acting on nanoparticle surfaces and improvement of their key characteristics in a number of nanotechnology applications. In this work, we report on the method we developed for electron-induced surface energy and modification of basic, related properties of powders of quite different physical origins such as diamond and ZnO. The applied technique has afforded gradual tuning of the surface free energy, resulting in a wide range of wettability modulation. In ZnO nanomaterial, the wettability has been strongly modified, while for the diamond particles identical electron treatment leads to a weak variation of the same property. Detailed investigation into electron-modified wettability properties has been performed by the use of capillary rise method using a few probing liquids. Basic thermodynamic approaches have been applied to calculations of components of solid–liquid interaction energy. We show that defect-free, low-energy electron treatment technique strongly varies elementary interface interactions and may be used for the development of new technology in the field of nanomaterials.

  2. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, J. Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report by Lawrence Berkeley National Laboratory identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two meetings and provided input and feedback to early drafts of this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most U.S. locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.

  3. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two web-based meetings and provided input and feedback to early drafts of this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most US locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.

  4. Molecular ion sources for low energy semiconductor ion implantation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S. [Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Dugin, S.; Alexeyenko, O. [State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow (Russian Federation)

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  5. Low-energy buildings: Bioclimatic improvements appropriate to Belgrade

    Directory of Open Access Journals (Sweden)

    MiloradoviĆ Nenad

    2006-01-01

    Full Text Available Buildings consume around 40% of the total world energy and bioclimatic architecture may achieve energy savings for heating and air conditioning purposes. The geometric shape of a building membrane, its compactness aerodynamics and orientation, building aggregation, the level of isolation as well as the layout and size of windows are all determining for the energy performance of a building. In this paper it is presented an optimized configuration for the low-energy construction basis of a building, which reduces energy exchange with surroundings. Such layout, with specific south-eastern orientation (because of "košava" wind influence is suitable for Belgrade constructions. Here is also presented an example of dense structures, which can be developed in urban areas. Above all, the advantage of such layout of the base is in its compactness, whereas south-eastern orientation allows for opportune heating of a building in the morning hours it increases its aerodynamics (by which it reduces ventilation loss for heating, and represents a compromise solution for winter and summer energy requirements.

  6. Review of lattice results concerning low energy particle physics

    CERN Document Server

    Colangelo, Gilberto; Juttner, Andreas; Lellouch, Laurent; Leutwyler, Heinrich; Lubicz, Vittorio; Necco, Silvia; Sachrajda, Christopher T; Simula, Silvano; Vladikas, Anastassios; Wenger, Urs; Wittig, Hartmut

    2011-01-01

    We review lattice results relevant for pion and kaon physics with the aim of making them easily accessible to the particle physics community. Specifically, we review the determination of the light-quark masses, the form factor f_+(0), relevant for the semileptonic K -> pi transition at zero momentum transfer as well as the ratio f_K/f_pi of decay constants and discuss the consequences for the elements V_{us} and V_{ud} of the CKM matrix. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)_LxSU(2)_R and SU(3)_LxSU(3)_R Chiral Perturbation Theory and review the determination of the B_K parameter of neutral kaon mixing. We introduce quality criteria and use these when forming averages. Although subjective and imperfect, these criteria may help the reader to judge different aspects of current lattice computations. Our main results are summarized in section 1.2, but we stress the importance of the detailed discussion that underlies these results and constitute...

  7. Neutrino Phenomenology of Very Low-Energy Seesaws

    CERN Document Server

    De Gouvêa, A; Vasudevan, N; Gouvea, Andre de; Jenkins, James; Vasudevan, Nirmala

    2007-01-01

    The Standard Model augmented by the presence of gauge-singlet right-handed neutrinos proves to be an ideal scenario for accommodating nonzero neutrino masses. Among the new parameters of this ``New Standard Model'' are right-handed neutrino Majorana masses M. Theoretical prejudice points to M much larger than the electroweak symmetry breaking scale, but it has recently been emphasized that all M values are technically natural and should be explored. Indeed, M around 1-10 eV can accommodate an elegant oscillation solution to the LSND anomaly, while other M values lead to several observable consequences. We consider the phenomenology of low energy seesaw scenarios with M less than and equal to approximately 1 keV. By exploring such a framework with three right-handed neutrinos, we can consistently fit all oscillation data -- including those from LSND -- while partially addressing several astrophysical puzzles, including anomalous pulsar kicks, heavy element nucleosynthesis in supernovae, and the existence of wa...

  8. Low energy, high power hydrogen neutral beam for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su; Mishagin, V.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Prospect Lavrentieva 11, 630090 Novosibirsk (Russian Federation); Korepanov, S.; Smirnov, A. [Tri Alpha Energy, Inc., Foothill Ranch, California 92610 (United States)

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  9. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  10. Homestake result, sterile neutrinos and low energy solar neutrino experiments

    CERN Document Server

    De Holanda, P C

    2003-01-01

    The large mixing (LMA) MSW solution predicts ~2-sigma higher Ar-production rate, Q_{Ar}, than the Homestake result. Also there is no apparent upturn of the spectrum (R=N_obs/N_SSM) at low energies in SNO and Super-Kamiokande (SK). Both these facts can be explained if a light, \\Delta m^2_{01} ~ (2 - 20)10^{-5} eV^2, sterile neutrino exists which mixes very weakly with active neutrinos: sin^2 2\\alpha ~ (10^{-5} - 10^{-3}). We perform both the analytical and numerical study of conversion effects in the system of two active neutrinos with the LMA parameters and one weakly mixed sterile neutrino. The presence of sterile neutrino leads to a dip in the survival probability in the intermediate energy range E = (0.5 - 5) MeV thus suppressing the Be, or/and pep, CNO as well as B neutrino fluxes. Apart from diminishing Q_{Ar} it leads also to decrease of the Ge-production rate and may lead to decrease of the BOREXINO signal and CC/NC ratio at SNO. Future studies of the solar neutrinos by SNO, SK, BOREXINO and KamLAND as...

  11. Low-energy radioactive ion beam production of 22Mg

    Science.gov (United States)

    Duy, N. N.; Kubono, S.; Yamaguchi, H.; Kahl, D.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Kwon, Y. K.; Khiem, L. H.; Kim, Y. H.; Song, J. S.; Hu, J.; Ayyad, Y.

    2013-09-01

    The 22Mg nucleus plays an important role in nuclear astrophysics, specially in the 22Mg(α,p)25Al and proton capture 22Mg(p,γ)23Al reactions. It is believed that 22Mg is a waiting point in the αp-process of nucleosynthesis in novae. We proposed a direct measurement of the 22Mg+α resonance reaction in inverse kinematics using a radioactive ion (RI) beam. A 22Mg beam of 3.73 MeV/u was produced at CRIB (Center for Nuclear Study (CNS) low-energy RI Beam) facility of the University of Tokyo located at RIKEN (Japan) in 2011. In this paper we present the results about the production of the 22Mg beam used for the direct measurement of the scattering reaction 22Mg(α,α)22Mg, and the stellar reaction 22Mg(α,p)25Al in the energy region concerning an astrophysical temperature of T9=1-3 GK.

  12. Performance of the ETH gas ionization chamber at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.M., E-mail: arnold.mueller@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH-Zurich, Schafmattstrasse 20, CH-8093 Zurich (Switzerland); Doebeli, M.; Suter, M.; Synal, H.-A. [Laboratory of Ion Beam Physics, ETH-Zurich, Schafmattstrasse 20, CH-8093 Zurich (Switzerland)

    2012-09-15

    The performance of gas ionization chambers (GIC) for the detection of low energy ions has been considerably improved in the past years by the use of silicon nitride entrance windows and low noise preamplifiers. This has led to an increased use of high resolution GICs in the fields of accelerator mass spectrometry and ion beam analysis. This development and the underlying physical principles are reviewed and the latest technical status of such devices is summarized. A detailed study on energy resolution and pulse height defect is presented with projectiles covering a wide particle mass range (H, {sup 9}Be, {sup 13}C, {sup 27}Al, {sup 35}Cl, {sup 127}I, {sup 232}Th) with energies between 0.1 and 2.2 MeV. The dependence of energy resolution and charge output per unit particle energy on the nuclear charge of the projectile is investigated and parametrized. SRIM calculations of ionizing energy loss considerably differ from these experimental findings. For 1 MeV particles discrepancies up to 50% are observed. The performance of GICs and their practical use is compared to that of solid state detectors. The potential for further improvement of the technology and its fields of application are assessed.

  13. Low-energy gamma ray attenuation characteristics of aviation fuels

    Science.gov (United States)

    Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.

    1990-01-01

    Am241 (59.5 keV) gamma ray attenuation characteristics were investigated in 270 aviation fuel (Jet A and Jet A-1) samples from 76 airports around the world as a part of world wide study to measure the variability of aviation fuel properties as a function of season and geographical origin. All measurements were made at room temperature which varied from 20 to 27 C. Fuel densities (rho) were measured concurrently with their linear attenuation coefficients (mu), thus providing a measure of mass attenuation coefficient (mu/rho) for the test samples. In 43 fuel samples, rho and mu values were measured at more than one room temperature, thus providing mu/rho values for them at several temperatures. The results were found to be independent of the temperature at which mu and rho values were measured. It is noted that whereas the individual mu and rho values vary considerably from airport to airport as well as season to season, the mu/rho values for all samples are constant at 0.1843 + or - 0.0013 cu cm/gm. This constancy of mu/rho value for aviation fuels is significant since a nuclear fuel quantity gauging system based on low energy gamma ray attenuation will be viable throughout the world.

  14. Low-energy Antikaon Interaction with Nuclei: The AMADEUS Challenge

    CERN Document Server

    Marton, Johann; Bellotti, Giovanni; Berucci, Carolina; Bosnar, Dimitri; Bragadireanu, Mario; Curceanu, Catalina; Clozza, Alberto; Cargnelli, Michael; Butt, Aslan; Del Grande, Raffaele; Fabbietti, Laura; Fiorini, Carlo; Ghio, Francesco; Guaraldo, Carlo; Iliescu, Mihai; Sandri, Paolo Levi; Pietreanu, Dorel; Piscicchia, Kristian; Vidal, Antonio Romero; Scordo, Alessandro; Shi, Hexi; Sirghi, Diana; Sirghi, Florin; Tucakovic, Ivana; Doce, Oton Vazquez; Widmann, Eberhard; Zmeskal, Johann

    2016-01-01

    The low-energy strong interaction of antikaons (K-) with nuclei has many facets and rep- resents a lively and challenging research ?eld. It is interconnected to the peculiar role of strangeness, since the strange quark is rather light, but still much heavier than the up and down quarks. Thus, when strangeness is involved one has to deal with spontaneous and explicit symmetry breaking in QCD. It is well known that the antikaon interaction with nucleons is attractive, but how strong ? Is the interaction strong enough to bind nucleons to form kaonic nuclei and, if so, what are the properties (binding energy, decay width)? There are controversial indications for such bound states and new results are expected to come soon. The existence of antikaon mediated bound states might have important consequences since it would open the possibility for the formation of cold baryonic matter of high density which might have a severe impact in astrophysics for the understanding of the composi- tion of compact (neutron) stars. ...

  15. Seeking to Improve Low Energy Neutral Atom Detection in Space

    Science.gov (United States)

    Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.

    2007-01-01

    The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.

  16. Modelling interaction cross sections for intermediate and low energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B

    2002-07-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  17. Modelling interaction cross sections for intermediate and low energy ions.

    Science.gov (United States)

    Toburen, L H; Shinpaugh, J L; Justiniano, E L B

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes that can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured ejected electron energy spectra.

  18. Testing SO(10)-inspired leptogenesis with low energy neutrino experiments

    CERN Document Server

    Di Bari, Pasquale

    2011-01-01

    We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N_2 dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ~ 10^10 GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m_1 \\simeq (1-5)\\times 10^-3 eV and m_1\\simeq (0.03-0.1) eV. For m_1\\lesssim 0.01 eV the allowed region in the plane theta_13-thet...

  19. Review of lattice results concerning low-energy particle physics.

    Science.gov (United States)

    Aoki, S; Aoki, Y; Bernard, C; Blum, T; Colangelo, G; Della Morte, M; Dürr, S; El-Khadra, A X; Fukaya, H; Horsley, R; Jüttner, A; Kaneko, T; Laiho, J; Lellouch, L; Leutwyler, H; Lubicz, V; Lunghi, E; Necco, S; Onogi, T; Pena, C; Sachrajda, C T; Sharpe, S R; Simula, S; Sommer, R; Van de Water, R S; Vladikas, A; Wenger, U; Wittig, H

    We review lattice results related to pion, kaon, [Formula: see text]- and [Formula: see text]-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor [Formula: see text], arising in semileptonic [Formula: see text] transition at zero momentum transfer, as well as the decay-constant ratio [Formula: see text] of decay constants and its consequences for the CKM matrix elements [Formula: see text] and [Formula: see text]. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of [Formula: see text] and [Formula: see text] Chiral Perturbation Theory and review the determination of the [Formula: see text] parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on [Formula: see text]- and [Formula: see text]-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant [Formula: see text].

  20. A low-energy antiproton detector prototype for AFIS

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lingxin; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Losekamm, Martin; Paul, Stephan; Poeschl, Thomas; Renker, Dieter [Technische Universitaet Muenchen (Germany)

    2014-07-01

    Antiprotons are produced in interactions of primary cosmic rays with earth's exosphere, where a fraction of them will be confined in the geomagnetic field in the inner van Allen Belt. The antiproton-to-proton flux ratio predicted by theory is in good agreement with recent results from the South Atlantic Anomaly (SAA) published by the PAMELA collaboration. We have designed the AFIS (Antiproton Flux in Space) project in order to extend the measurable range of antiprotons towards the low-energy region. In scope of this project a small antiproton detector consisting of scintillating fibers and silicon photomultipliers is being developed as payload for a CubeSat traversing the SAA in Low Earth Orbit. For the proof of concept we have built a prototype called ''CubeZero'' which completed its first test using pion and proton beams at PSI, Switzerland. Our primary goal was to investigate on the performance of tracking and Bragg peak identification in hardware and software. Analysis of detector performance based on data taken during this beam test is presented in this talk.

  1. On the effects of heavy sea quarks at low energies

    CERN Document Server

    Bruno, Mattia; Knechtli, Francesco; Leder, Bjoern; Sommer, Rainer

    2014-01-01

    We present a factorisation formula for the dependence of light hadron masses and low energy hadronic scales on the mass $M$ of a heavy quark: apart from an overall factor $Q$, ratios such as $r_0(M)/r_0(0)$ are computable in perturbation theory at large $M$. The mass-independent factor $Q$ is obtained from the theory in the limit $M\\to0$ and the decoupled theory with the heavy quark removed. The perturbation theory part is stable concerning different loop orders and our non-perturbative results match on quantitatively to the perturbative prediction. Upon taking ratios of different hadronic scales at the same mass, the perturbative function drops out and the ratios are given by the decoupled theory up to $M^{-2}$ corrections. Our present numerical results are obtained in a model calculation where there are no light quarks and a heavy doublet of quarks is decoupled. They are limited to masses a factor two below the charm. This is not large enough to see the $M^{-2}$ scaling predicted by the theory, but it is su...

  2. Gridless, very low energy, high-current, gaseous ion source

    Energy Technology Data Exchange (ETDEWEB)

    Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2010-02-15

    We have made and tested a very low energy gaseous ion source in which the plasma is established by a gaseous discharge with electron injection in an axially diverging magnetic field. A constricted arc with hidden cathode spot is used as the electron emitter (first stage of the discharge). The electron flux so formed is filtered by a judiciously shaped electrode to remove macroparticles (cathode debris from the cathode spot) from the cathode material as well as atoms and ions. The anode of the emitter discharge is a mesh, which also serves as cathode of the second stage of the discharge, providing a high electron current that is injected into the magnetic field region where the operating gas is efficiently ionized. In this discharge configuration, an electric field is formed in the ion generation region, accelerating gas ions to energy of several eV in a direction away from the source, without the use of a gridded acceleration system. Our measurements indicate that an argon ion beam is formed with an energy of several eV and current up to 2.5 A. The discharge voltage is kept at less than 20 V, to keep below ion sputtering threshold for cathode material, a feature which along with filtering of the injected electron flow, results in extremely low contamination of the generated ion flow.

  3. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  4. E1 and M1 strength functions at low energy

    Directory of Open Access Journals (Sweden)

    Schwengner Ronald

    2017-01-01

    Full Text Available We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.

  5. Early Forest Fire Detection Using Low Energy Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Jürgen Müller

    2016-08-01

    Full Text Available The North-east German Lowlands is a region with one of the highest forest fire risks in Europe. In order to keep damage levels as low as possible, it is important to have an effective early warning system. Such a system is being developed on the basis of a hydrogen sensor, which makes it possible to detect a smouldering forest fire before the development of open flames. The prototype hydrogen sensor produced at the Humboldt University Berlin has a metal/ solid electrolyte/insulator/ semiconductor (MEIS structure, which allows cost-effective production. Due to the low energy consumption, an autarchic working unit could be installed in the forest. Field trials have shown that it is possible to identify a forest fire in its early stages when hydrogen concentrations are still low. A significant change in the signal due to a fire was measured at a distance of about 100m. In view of the potential impacts of climate change, the innovative pre-ignition warning system is an important early diagnosis and monitoring module for the protection of the forests.

  6. Passive cooling in a low-energy office building

    Energy Technology Data Exchange (ETDEWEB)

    Breesch, H.; Janssens, A. [Buildings and Climatic Control, Department of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Bossaer, A. [Cenergie cvba, B-2600 Berchem (Belgium)

    2005-12-01

    In office buildings, the use of passive cooling techniques combined with a reduced cooling load may result in a good thermal summer comfort and therefore save cooling energy consumption. This is shown in the low-energy office building 'SD Worx' in Kortrijk (Belgium), in which natural night ventilation and an earth-to-air heat exchanger are applied. In winter, the supply air is successively heated by the earth-to-air heat exchanger and the regenerative heat exchanger, which recovers the heat from the exhaust air. In summer, the earth-to-air heat exchanger cools the ventilation air by day. In addition, natural night ventilation cools down the exposed structure which has accumulated the heat of the previous day. In this article the overall thermal comfort in the office building is evaluated by means of measuring and simulation results. Measurements of summer 2002 are discussed and compared to simulations with a coupled thermal and ventilation simulation model TRNSYS-COMIS. The simulations are used to estimate the relative importance of the different techniques. The evaluation shows that passive cooling has an important impact on the thermal summer comfort in the building. Furthermore, natural night ventilation appears to be much more effective than an earth-to-air heat exchanger to improve comfort. (author)

  7. Inelastic pion scattering by /sup 13/C at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  8. Review of lattice results concerning low energy particle physics

    CERN Document Server

    Aoki, Sinya; Bernard, Claude; Blum, Tom; Colangelo, Gilberto; Della Morte, Michele; Dürr, Stephan; Khadra, Aida X El; Fukaya, Hidenori; Horsley, Roger; Kaneko, Takeshi; Jüttner, Andreas; Laiho, Jack; Lellouch, Laurent; Leutwyler, Heinrich; Lubicz, Vittorio; Lunghi, Enrico; Necco, Silvia; Onogi, Tetsuya; Pena, Carlos; Sachrajda, Christopher T; Sharpe, Stephen R; Shigemitsu, Junko; Simula, Silvano; Sommer, Rainer; Van de Water, Ruth S; Vladikas, Anastassios; Wenger, Urs; Wittig, Hartmut

    2013-01-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit.

  9. The low-energy frontier of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-02-15

    Most embeddings of the Standard Model into a more unified theory, in particular the ones based on supergravity or superstrings, predict the existence of a hidden sector of particles which have only very weak interactions with the visible sector Standard Model particles. Some of these exotic particle candidates (such as e.g. ''axions'', ''axion-like particles'' and ''hidden U(1) gauge bosons'') may be very light, with masses in the sub-eV range, and have very weak interactions with photons. Correspondingly, these very weakly interacting sub-eV particles (WISPs) may lead to observable effects in experiments (as well as in astrophysical and cosmological observations) searching for light shining through a wall, for changes in laser polarisation, for non-linear processes in large electromagnetic fields and for deviations from Coulomb's law. We present the physics case and a status report of this emerging low-energy frontier of fundamental physics. (orig.)

  10. Review of lattice results concerning low-energy particle physics

    CERN Document Server

    Aoki, S; Becirevic, D; Bernard, C; Blum, T; Colangelo, G; Della Morte, M; Dimopoulos, P; Dürr, S; Fukaya, H; Golterman, M; Gottlieb, Steven; Hashimoto, S; Heller, U M; Horsley, R; Jüttner, A; Kaneko, T; Lellouch, L; Leutwyler, H; Lin, C -J D; Lubicz, V; Lunghi, E; Mawhinney, R; Onogi, T; Pena, C; Sachrajda, C T; Sharpe, S R; Simula, S; Sommer, R; Vladikas, A; Wenger, U; Wittig, H

    2016-01-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in the semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory. We review the determination of the BK parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for mc and mb (also new compared to the previous review), as well as those for D- and B-meson decay constants, form factors, and mixing p...

  11. Design of low-energy building and energy consumption analyses

    Institute of Scientific and Technical Information of China (English)

    刘鸣; 陈滨; 范悦; 朱佳音; 索健

    2009-01-01

    In China,a new "Design standard for energy efficiency of residential buildings (for cold region)" was introduced in 2006. In this new standard,more high level insulation of the building envelope is required,yearly energy requirement for heating must be less than 55 kWh/(m2·a)(regarded as a low-energy house). The new attempt was carried out in the process of architecture design with an evaluation on energy consumption of the building. The design plan was brought forward and compared. PHPP software from German was applied to calculate energy consumption of the passive residential building. The optimum design planning was discussed and model of passive house suited to China’s national conditions were attempted. The compactness,solar air collector and the window-wall ratio have essential influence on the energy consumption of buildings. The annual heat demands for the buildings with the window-wall ratio 0.35 and 0.50 are 48 kWh/(m2·a) and 46 kWh/(m2·a),respectively. The yearly auxiliary heat of building with the wall-mounted solar air collectors and the window-wall ratio 0.35 is just 4.8 kWh/(m2·a).

  12. Low energy observables and exclusive production with the ATLAS Detector

    CERN Document Server

    Martin, Tim; The ATLAS collaboration

    2017-01-01

    Low energy phenomena have been studied in detail at the LHC, providing important input for improving models of non-perturbative QCD effects. The ATLAS collaboration has performed several new measurements in this sector: We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV. The results are corrected for detector effects and compared to predictions from various Monte Carlo generators. In addition, we present studies on the correlated hadron production, as they are an important source for information on the early stages of hadron formation. In particular, an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions is performed in order to study coherent particle production. The results are compared to the predictions of a helical QCD string fragmenting model. In the absence of forward proton tagging, exclusive processes can be distinguished in the ...

  13. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  14. AES based secure low energy adaptive clustering hierarchy for WSNs

    Science.gov (United States)

    Kishore, K. R.; Sarma, N. V. S. N.

    2013-01-01

    Wireless sensor networks (WSNs) provide a low cost solution in diversified application areas. The wireless sensor nodes are inexpensive tiny devices with limited storage, computational capability and power. They are being deployed in large scale in both military and civilian applications. Security of the data is one of the key concerns where large numbers of nodes are deployed. Here, an energy-efficient secure routing protocol, secure-LEACH (Low Energy Adaptive Clustering Hierarchy) for WSNs based on the Advanced Encryption Standard (AES) is being proposed. This crypto system is a session based one and a new session key is assigned for each new session. The network (WSN) is divided into number of groups or clusters and a cluster head (CH) is selected among the member nodes of each cluster. The measured data from the nodes is aggregated by the respective CH's and then each CH relays this data to another CH towards the gateway node in the WSN which in turn sends the same to the Base station (BS). In order to maintain confidentiality of data while being transmitted, it is necessary to encrypt the data before sending at every hop, from a node to the CH and from the CH to another CH or to the gateway node.

  15. Performance of low-temperature district heating for low-energy houses

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend

    2010-01-01

    houses, which was previously developed and reported in the project “Development and demonstration of low-energy district heating for low energy housing” [EFP, 2007]. Two different concepts of low energy district heating substations are tested, and measurements of their performance aim to document...... that LEDH is a proper solution for sustainable heating systems and answer the question which concept of used substations is more favourable to be used in detached low energy houses. The preliminary results show that LEDH can provide low energy buildings with space heating and domestic hot water (DHW...

  16. Low-energy electron-induced reactions in thin films of glucose and N-acetyl-glucosamine

    Science.gov (United States)

    Ryzhkova, A.; Swiderek, P.

    2011-05-01

    Reactions induced in thin films of α- D-glucose and N-acetylglucosamine by low-energy electron exposure at incident electron energies ( E0) between 5 eV and 15 eV have been investigated by high-resolution electron energy loss spectroscopy (HREELS). The reactions of α- D-glucose upon electron exposure were also studied in the presence of molecular oxygen. Electron exposure leads to characteristic changes of the vibrational spectra indicating that OH groups are lost with the formation of CC double bonds taking place preferentially above the ionisation threshold of the investigated molecules. At lower E0, OH groups are equally decomposed suggesting that dissociative electron attachment contributes to the reactions but formation of double bonds is not observed. The results show that different reaction channels are effective depending on E0 and that the outcome of electron-driven chemistry in saccharides may be controlled by changing from the subionisation regime to E0 above the ionisation threshold. Generally, low-energy electron exposure in the absence of O 2 produces a material with lower oxygen content, i.e. leads to a reduction of the saccharide. In the case of N-acetylglucosamine, removal of the amide group from the sugar is also important at subionisation energies. In contrast, as shown for α- D-glucose, low-energy electron exposure in the presence of O 2 leads to oxidation of the sugar even at cryogenic temperature.

  17. Low energy scattering parameters from the solutions of the non-relativistic Yukawa model on a 3-dimensional lattice

    Energy Technology Data Exchange (ETDEWEB)

    Soto, F. de [Laboratoire Physique Subatomique et Cosmologie, 53 av. des Martyrs, 38026 Grenoble (France)]|[Dpto. Sistemas Fisicos, Quimicos y Naturales, U. Pablo de Olavide, 41013 Sevilla (Spain); Carbonell, J. [Laboratoire Physique Subatomique et Cosmologie, 53 av. des Martyrs, 38026 Grenoble (France)

    2007-04-15

    The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding - infinite space - low energy parameters and bound state binding energies from eigenstates computed at finite lattice size is discussed. The results have been obtained with a non relativistic model, which is justified by the small energies involved in the calculations. Despite its simplicity, the model considered contains an essential ingredient of the hadron-hadron interaction - its finite range - which plays a relevant role in view of extracting the low energy parameters from the finite volume spectra. It offers a wieldy and physically sound tool to test the validity of the different approaches discussed in the literature to study the low energy scattering of baryon-baryon or meson-baryon systems from a lattice simulations in QCD. The results presented in this work have been essentially limited to the ground state of central attractive interactions, depending only on one parameter. The method can be easily applied to more involved interactions, like hard core repulsive terms or non central potentials leading to coupled channel equations. (authors)

  18. Low-energy pi pi photoproduction off nuclei

    CERN Document Server

    Mühlich, P; Buss, O; Mosel, U

    2004-01-01

    In the present paper we investigate pi0 pi0 and pi(+/-)pi0 photoproduction off complex nuclei at incident beam energies of 400-460 MeV. Simulations of two pion photoproduction on protons and nuclei are performed by means of a semi-classical BUU transport model including a full coupled-channel treatment of the final state interactions. Elastic scattering of the final state pions with the nucleons in the surrounding nuclear medium is found to yield a downward shift of the pi pi invariant mass distribution. We show that the target mass dependence of the pi0 pi0 invariant mass spectrum as measured by the TAPS collaboration can be explained without introducing medium effects beyond absorption and quasi-elastic scattering of the final state particles. On the other hand, we find considerable discrepancies with the data in the pi(+/-)pi0 channel, which are not understood.

  19. Review of lattice results concerning low-energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [Kyoto University, Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Aoki, Y. [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Becirevic, D. [Universite Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR8627), CNRS, Orsay (France); Bernard, C. [Washington University, Department of Physics, Saint Louis, MO (United States); Blum, T. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); University of Connecticut, Physics Department, Storrs, CT (United States); Colangelo, G.; Leutwyler, H.; Wenger, U. [Universitaet Bern, Albert Einstein Center for Fundamental Physics, Institut fuer Theoretische Physik, Bern (Switzerland); Della Morte, M. [University of Southern Denmark, CP3-Origins and Danish IAS, Odense M (Denmark); IFIC (CSIC), Paterna (Spain); Dimopoulos, P. [Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Compendio del Viminale, Rome (Italy); Universita di Roma Tor Vergata, c/o Dipartimento di Fisica, Rome (Italy); Duerr, S. [University of Wuppertal, Wuppertal (Germany); Juelich Supercomputing Center, Forschungszentrum Juelich, Juelich (Germany); Fukaya, H.; Onogi, T. [Osaka University, Department of Physics, Toyonaka, Osaka (Japan); Golterman, M. [San Francisco State University, Department of Physics and Astronomy, San Francisco, CA (United States); Gottlieb, Steven; Lunghi, E. [Indiana University, Department of Physics, Bloomington, IN (United States); Hashimoto, S.; Kaneko, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); The Graduate University for Advanced Studies (Sokendai), School of High Energy Accelerator Science, Tsukuba (Japan); Heller, U.M. [American Physical Society (APS), Ridge, NY (United States); Horsley, R. [University of Edinburgh, Higgs Centre for Theoretical Physics, School of Physics and Astronomy, Edinburgh (United Kingdom); Juettner, A.; Sachrajda, C.T. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Lellouch, L. [CNRS, Aix-Marseille Universite, Universite de Toulon, Centre de Physique Theorique, UMR 7332, Marseille (France); Lin, C.J.D. [CNRS, Aix-Marseille Universite, Universite de Toulon, Centre de Physique Theorique, UMR 7332, Marseille (France); National Chiao-Tung University, Institute of Physics, Hsinchu (China); Lubicz, V. [Universita Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); INFN, Sezione di Roma Tre, Rome (Italy); Mawhinney, R. [Columbia University, Physics Department, New York, NY (United States); Pena, C. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Sharpe, S.R. [University of Washington, Physics Department, Seattle, WA (United States); Simula, S. [INFN, Sezione di Roma Tre, Rome (Italy); Sommer, R. [DESY, John von Neumann Institute for Computing (NIC), Zeuthen (Germany); Vladikas, A. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Wittig, H. [University of Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institute Mainz, Mainz (Germany); Collaboration: Flavour Lattice Averaging Group (FLAG)

    2017-02-15

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor f{sub +}(0), arising in the semileptonic K → π transition at zero momentum transfer, as well as the decay constant ratio f{sub K}/f{sub π} and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} and SU(3){sub L} x SU(3){sub R} Chiral Perturbation Theory. We review the determination of the B{sub K} parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for m{sub c} and m{sub b} (also new compared to the previous review), as well as those for D- and B-meson-decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant α{sub s}. (orig.)

  20. Isotope Effects in Low Energy Ion-Atom Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Havener, Charles C [ORNL; Seely, D. G. [Albion College; Thomas, J. D. [University of Toledo, Toledo, OH; Kvale, Thomas Jay [University of Toledo, Toledo, OH

    2009-01-01

    Isotope effects for charge transfer processes have recently received increased attention. The ion-atom merged-beams apparatus at Oak Ridge National Laboratory is used to measure charge transfer for low energy collisions of multi-charged ions with H and D and is therefore well suited to investigate isotope effects. The apparatus has been relocated and upgraded to accept high velocity beams from the 250 kV High Voltage Platform at the Multi-Charged Ion Research Facility. The intense higher velocity multi-charged ion beams allow, for the first time, measurements with both H and D from keV/u down to meV/u collision energies in the center-of-mass frame. When charge transfer occurs at relatively large inter-nuclear distances (via radial couplings) the ion-induced dipole attraction can lead to trajectory effects, causing differences in the charge transfer cross sections for H and D. A strong isotope effect (nearly a factor of two) has been observed in the cross section for Si4+ + H(D) below 0.1 eV/u. However, little or no difference is observed for N2+ + H(D). Recently, strong effects have been predicted for the fundamental system He2+ + H(D,T) at collision energies below 200 eV/u where charge transfer occurs primarily through united-atom rotational coupling. We are currently exploring systems where rotational coupling is important and isotopic differences in the cross section can be observed.

  1. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted turned by 180-degrees and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  2. Meta-analysis on intravascular low energy laser therapy

    Science.gov (United States)

    Zhao, Shu-Dong; Liu, Timon Cheng-Yi; Wang, Yan-Fang; Liu, Song-Hao

    2008-12-01

    Intravascular low energy laser therapy (ILELT) was put forward for cardiocirculatory diseases in USA in 1982, was popular in Russia in 1980s, and then in China in 1990s. The therapeutic effects of ILELT and drugs in comparison with drugs only on Chinese patients and their blood parameters were analyzed with meta-analyses and reported as (OR, 95%CI) for patient improvement and (WMD, 95% CI) for blood parameter improvement, where 95%CI, OR and WMD denoted 95% confidence intervals, odds ratio and weighted mean difference, respectively. It was found that the patients of cerebral infarction (2.39, 2.09~2.74) and cerebrovascular diseases (2.97, 1.69~2.53) were cured, respectively, (P low density lipoprotein cholesterol (-0.6, -1.01~-0.19), triacylglycerol (0.63, -0.83~-0.42), high density lipoprotein (0.34, 0.10~0.59), erythrocyte aggregation index (-0.24, -0.27~-0.21), erythrocyte Sedimentation Rate (-4.57, -7.26~-1.89), fibrinogen (-0.76, -1.31~-0.21), whole blood contrast viscosity (-0.40, -0.69~-0.12), low cut blood viscosity (-1.2, -1.93~-0.48), high cut blood viscosity (-0.62, -0.92~-0.32), whole blood viscosity(-1.2, -1.85~-0.54) and plasma blood contrast viscosity(-0.07, -0.12~-0.03) were found improved (P < 0.05). It is concluded that the patients of cerebral infarction, cerebrovascular diseases and diabetes might be improved with ILELT, which might be mediated by blood parameter improvement.

  3. Properties of states of low energy on cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Degner, Andreas

    2013-01-15

    The present thesis investigates properties of a class of physical states of the quantised scalar field in FRW spacetimes, namely the states of low energy (SLE's). These states are characterised by minimising the time-smeared energy density measured by an isotropic observer, where the smearing is performed with respect to a test function f of compact support. Furthermore, they share all spatial symmetries of the spacetime. Since SLE's are Hadamard states, expectations values of observables like the energy density can be rigorously defined via the so called point-splitting method. In a first step, this procedure is applied to the explicit calculation of the energy density in SLE's for the case of de Sitter space with flat spatial sections. In particular, the e ect of the choice of the mass m and the test function f is discussed. The obtained results motivate the question whether SLE's converge to a distinguished state (namely the Bunch Davies state) when the support of f is shifted to the infinite past. It is shown that this is indeed the case, even in the more general class of asymptotic de Sitter spacetimes, where an analogon of the Bunch Davies state can be defined. This result enables the interpretation of such distinguished states to be SLE's in the infinite past, independently of the form of the smearing function f. Finally, the role of SLE's for the semiclassical backreaction problem is discussed. We derive the semiclassical Friedmann equation in a perturbative approach over Minkowski space. This equation allows for a stability analysis of Minkowski space by the investigation of asymptotic properties of solutions. We also treat this problem using a numerical method.

  4. Quantum propagator approach to heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bao, J.D. [Beijing Univ., BJ (China). Dept. of Physics; Boiley, D.; Bao, J.D. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2002-07-01

    The real-time path integral propagator approach is used to study the fusion probability of massive nuclei including quantum effect. An analytical expression of the probability to pass over barrier of an inverted harmonic potential is obtained, in which both height and curvature of the barrier are controlled by the neck degree of freedom. The fusion probability of three systems in central collision as a function of the center of mass energy are calculated and compared to experimental results. It is shown that the quantum fluctuation enhances the fusion probability at low energies, and the neck fluctuation makes the slope of the fusion probability curve become flatter. (author)

  5. Jet energy calibration and a search for supersymmetry with vector boson fusion channel like sign di-$\\tau_h$ final states

    CERN Document Server

    Rathjens,Denis; Kamon, Teruki

    2015-01-01

    At the LHC, the production of jets has the highest cross section out of all processes. Therefore, jets are important objects for calibration, reconstruction and identification at the CMS experiment.\\\\In this thesis, the calibration of the jet energy scale with respect to residual differences between data and simulation after simulation-based precalibrations is shown. A correction for the s√=8 TeV run of 2012 depending on jet transverse momentum and pseudorapidity is derived using di-jet final states.\\\\Furthermore, the capacity of jets to be misidentified as hadronically decaying τ leptons is demonstrated. A method for an approximate simulation based description of this property is shown in the context of a search for supersymmetry in vector boson fusion final states.

  6. Low-energy NN scattering with a Brazilian chiral potential

    Energy Technology Data Exchange (ETDEWEB)

    Batista, E.F. [Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, BA (Brazil); Rocha, C.A. [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), SP (Brazil); Szpigel, S. [Universidade Presbiteriana Mackenzie (UPM), SP (Brazil); Timoteo, V.S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2012-07-01

    Full text: We apply the subtracted kernel method (SKM), a renormalization approach based on recursive multiple subtractions performed in the kernel of the scattering equation, to a Brazilian chiral nucleon-nucleon (NN) interactions up to next-to-next-to-next-to-leading-order (N3LO). We evaluate the phase shifts in the 1S0 and 3P0 channels and explicitly demonstrate that the SKM procedure is renormalization group invariant under the change of the subtraction scale through a non-relativistic Callan-Symanzik flow equation for the evolution of the renormalized NN interactions. (author)

  7. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali, E-mail: hamorris@ualberta.ca; Menon, Geetha; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  8. Photon Strength and the Low-Energy Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiedeking, M; Bernstein, L A; Krticka, M; Bleuel, D L; Allmond, J M; Basunia, M S; Burke, J T; Fallon, P; Firestone, R B; Goldblum, B L; Hatarik, R; Lake, P T; Lee, I Y; Lesher, S R; Paschalis, S; Petri, M; Phair, L; Scielzo, N D

    2012-02-22

    The ability of atomic nuclei to emit and absorb photons with energy E{sub {gamma}} is known as the photon strength function f(E{sub {gamma}}). It has direct relevance to astrophysical element formation via neutron capture processes due to its central role in nuclear reactions. Studies of f(E{sub {gamma}}) have benefited from a wealth of data collected in neutron capture and direct reactions but also from newly commissioned inelastic photon scattering facilities. The majority of these experimental methods, however, rely on the use of models because measured {gamma}-ray spectra are simultaneously sensitive to both the nuclear level density and f(E{sub {gamma}}). As excitation energy increases towards the particle separation energies, the level density increases rapidly, creating the quasi-continuum. Nuclear properties in this excitation energy region are best characterized using statistical quantities, such as f(E{sub {gamma}}). A point of contention in studies of the quasi-continuum has been an unexpected and unexplained increase in f(E{sub {gamma}}) at low {gamma}-ray energies (i.e. below E{sub {gamma}} {approx}3 MeV) in a subset of light-to-medium mass nuclei. Ideally, a new model-independent experimental technique is required to address questions regarding the existence and origin of this low-energy enhancement in f(E{sub {gamma}}). Here such a model-independent approach is presented for determining the shape of f(E{sub {gamma}}) over a wide range of energies. The method involves the use of coupled high-resolution particle and {gamma}-ray spectroscopy to determine the emission of {gamma} rays from the quasi-continuum in a nucleus with defined excitation energy to individual discrete levels of known spins and parities. This method shares characteristics of two neutron capture-based techniques: the Average Resonance Capture (ARC) and the Two-Step Cascade analysis (TSC). The power of the new technique lies in the additional ability to positively identify primary

  9. Photon Strength and the Low-Energy Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiedeking, M; Bernstein, L A; Krticka, M; Bleuel, D L; Allmond, J M; Basunia, M S; Burke, J T; Fallon, P; Firestone, R B; Goldblum, B L; Hatarik, R; Lake, P T; Lee, I Y; Lesher, S R; Paschalis, S; Petri, M; Phair, L; Scielzo, N D

    2012-02-22

    The ability of atomic nuclei to emit and absorb photons with energy E{sub {gamma}} is known as the photon strength function f(E{sub {gamma}}). It has direct relevance to astrophysical element formation via neutron capture processes due to its central role in nuclear reactions. Studies of f(E{sub {gamma}}) have benefited from a wealth of data collected in neutron capture and direct reactions but also from newly commissioned inelastic photon scattering facilities. The majority of these experimental methods, however, rely on the use of models because measured {gamma}-ray spectra are simultaneously sensitive to both the nuclear level density and f(E{sub {gamma}}). As excitation energy increases towards the particle separation energies, the level density increases rapidly, creating the quasi-continuum. Nuclear properties in this excitation energy region are best characterized using statistical quantities, such as f(E{sub {gamma}}). A point of contention in studies of the quasi-continuum has been an unexpected and unexplained increase in f(E{sub {gamma}}) at low {gamma}-ray energies (i.e. below E{sub {gamma}} {approx}3 MeV) in a subset of light-to-medium mass nuclei. Ideally, a new model-independent experimental technique is required to address questions regarding the existence and origin of this low-energy enhancement in f(E{sub {gamma}}). Here such a model-independent approach is presented for determining the shape of f(E{sub {gamma}}) over a wide range of energies. The method involves the use of coupled high-resolution particle and {gamma}-ray spectroscopy to determine the emission of {gamma} rays from the quasi-continuum in a nucleus with defined excitation energy to individual discrete levels of known spins and parities. This method shares characteristics of two neutron capture-based techniques: the Average Resonance Capture (ARC) and the Two-Step Cascade analysis (TSC). The power of the new technique lies in the additional ability to positively identify primary

  10. Identification and tracking of low energy spectator protons

    Energy Technology Data Exchange (ETDEWEB)

    Mussgiller, A.

    2007-07-20

    The present theses discusses the development, technical design and realization as well as the read-out electronics of a detection system for the identification and tracking of low energy spectator protons. With the knowledge of the four-momentum of such spectator protons it will be possible to use deuterium as an effective neutron target. Previous measurements with an early version of the detection system have already shown that this method works quite well to investigate for instance the {omega} or {eta}-meson production in proton-neutron collisions. Moreover, after the completion and installation of the polarized internal target (PIT) at ANKE, it will be even possible to engage in that field with double polarized experiments. To increase the luminosity the polarized target is equipped with an extended target cell. The described detection-system will provide the vertex reconstruction for this extended interaction region. In addition, it will act as an independent beam polarimeter at ANKE. The detection system consists of three layers of double-sided silicon strip detectors which are arranged in a telescope structure and placed inside the accelerator vacuum as close as 2 cm to the interaction region. The modular design of the electronics and the support structures for the detectors allows one to exchange detectors and electronics in a maximum flexible way. In a minimum configuration the telescope is equipped with two detectors, a thin ({approx} 69 {mu}m) double-sided Silicon strip detector as a first layer and a very thick ({>=} 5 mm) double-sided micro-structured Lithium-drifted Silicon detector as a second layer. With this arrangement it is possible to track and identify protons in a kinetic energy range from 2.5 MeV to 25 MeV. For deuterons this range for such a telescope configuration is from 4 MeV to 34 MeV. The performance concerning the energy determination and tracking is shown based on data taken during a beam-time in November of 2003. With the existing

  11. Low-energy {pi}{pi} photoproduction off nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Muehlich, P.; Alvarez-Ruso, L.; Buss, O.; Mosel, U

    2004-08-12

    In the present Letter we investigate {pi}{sup 0}{pi}{sup 0} and {pi}{sup {+-}}{pi}{sup 0} photoproduction off complex nuclei at incident beam energies of 400-460 MeV. Simulations of two pion photoproduction on protons and nuclei are performed by means of a semi-classical BUU transport model including a full coupled-channel treatment of the final state interactions. Elastic scattering of the final state pions with the nucleons in the surrounding nuclear medium is found to yield a downward shift of the {pi}{pi} invariant mass distribution. We show that the target mass dependence of the {pi}{sup 0}{pi}{sup 0} invariant mass spectrum as measured by the TAPS Collaboration can be explained without introducing medium effects beyond absorption and quasi-elastic scattering of the final state particles. On the other hand, we find considerable discrepancies with the data in the {pi}{sup {+-}}{pi}{sup 0} channel, which are not understood.

  12. Limits for Recombination in a Low Energy Loss Organic Heterojunction

    KAUST Repository

    Menke, S. Matthew

    2016-11-03

    Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

  13. Low-energy $^{6}$He scattering in a microscopic model

    CERN Document Server

    Descouvemont, P

    2016-01-01

    A microscopic version of the Continuum Discretized Coupled Channel (CDCC) method is used to investigate $^{6}$He scattering on $^{27}$Al, $^{58}$Ni, $^{120}$Sn, and $^{208}$Pb at energies around the Coulomb barrier. The $^{6}$He nucleus is described by an antisymmetric 6-nucleon wave function, defined in the Resonating Group Method. The $^{6}$He continuum is simulated by square-integrable positive-energy states. The model is based only on well known nucleon-target potentials, and is therefore does not depend on any adjustable parameter. I show that experimental elastic cross sections are fairly well reproduced. The calculation suggests that breakup effects increase for high target masses. For a light system such as $^{6}$He+$^{27}$Al, breakup effects are small, and a single-channel approximation provides fair results. This property is explained by a very simple model, based on the sharp-cut-off approximation for the scattering matrix. I also investigate the $^{6}$He-target optical potentials, which confirm th...

  14. Interaction of low energy electrons with DNA: Applications to cancer radiation therapy

    Science.gov (United States)

    Sanche, Léon

    2016-11-01

    Presently, there exists considerable information on the mechanisms involved when low-energy electrons (LEEs) interact with biomolecules, including DNA. Since these electrons are produced in large quantities by ionizing radiation, knowing their mechanisms of action increases our understanding of radiobiological damage and modifications of this damage by morphological or chemical changes introduced in the DNA. In the present article, the results of experiments on LEE-induced damage to DNA modified by radiosensitizers, chemotherapeutic agents and gold nanoparticles are reviewed. DNA strand breaks and multiple lesions become more numerous with such modifications. They are usually due to an increase in the number and probability of forming transient anions of DNA constituents, and their decay into destructive channels, such as dissociative electron attachment. As shown in this review, by invoking the role of LEEs in the processes of radiosensitization, guidelines can be provided for the development of new radiosensitizers and improved protocols in the treatment of cancer patients with radiotherapy alone or in concomitance with chemotherapy.

  15. Low-energy fine-structure resonances in photoionization of O ii

    Science.gov (United States)

    Nahar, Sultana N.; Montenegro, Maximiliano; Eissner, Werner; Pradhan, Anil K.

    2010-12-01

    Resonant features in low-energy photoionization cross sections are reported in coupled-channel calculations for O ii including relativistic fine structure. The calculations reveal extensive near-threshold resonant structures in the small energy region between the fine structure levels of the ground state 2p2(3P0,1,2) of the residual ion O iii. Although the resonances have not yet been observed, they are similar to other experimentally observed features. They are expected to significantly enhance the very-low-temperature dielectronic recombination rates, potentially leading to the resolution of an outstanding nebular abundances anomaly. Higher energy partial and total photoionization cross sections of the ground configuration levels 2p3(4S3/2o,2D3/2,5/2o,2P1/2,3/2o) are found to be in agreement with experimental measurements on synchrotron-based photon sources [1-3], thereby identifying the excited O iii levels present in the ion beams. These are also the first results from a recently developed version of Breit-Pauli R-matrix (BPRM) codes, with inclusion of two-body magnetic interaction terms. The improved relativistic treatment could be important for other astrophysical applications and for more precise benchmarking of experimental measurements.

  16. Low energy neutron inelastic scattering on /sup 152/Sm nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, D.J.R.; Cabezas, S.R.; Lopez, M.R.

    1984-01-01

    A study of inelastic neutron scattering by the nucleus /sup 152/Sm at incident energies of 2.47 and 2.75 MeV using the coupled-channel method has been made. Consideration is made of the 2/sup +//0.122 MeV/, 4/sup +//0.366 MeV/ and 2/sup +//1.086 MeV/excited states. It is shown that in this energy range the process may be described satisfactorily considering /sup 152/Sm as a deformed nucleus with non-axial symmetry, given the quadrupole and hexadecapole deformations. The scattering process through the compound nucleus is calculated according to the Hauser-Feshbach formula with width fluctuation correction. It is shown that the presence of direct excitation process is partly due to the non-axiality of /sup 152/Sm.

  17. low energies

    Science.gov (United States)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Pires, K. C. C.; Lubian, J.; Mendes Junior, D. R.; de Faria, P. N.; Kolata, J. J.; Becchetti, F. D.; Jiang, H.; Aguilera, E. F.; Lizcano, D.; Martinez-Quiroz, E.; Garcia, H.

    2017-01-01

    We present 8B 27Al elastic scattering angular distributions for the proton-halo nucleus 8B at two energies above the Coulomb barrier, namely Elab=15.3 and 21.7 MeV. The experiments were performed in the Radioactive Ion Beams in Brasil facility (RIBRAS) in São Paulo, and in the TwinSol facility at the University of Notre Dame, USA. The angular distributions were measured in the angular range of 15-80 degrees. Optical model and continuum discretized coupled channels calculations were performed, and the total reaction cross sections were derived. A comparison of the 8B+27Al total reaction cross sections with similar systems including exotic, weakly bound, and tightly bound projectiles impinging on the same target is presented.

  18. Low energy scattering phase shifts for meson-baryon systems

    CERN Document Server

    Detmold, William

    2015-01-01

    In this work, we calculate meson-baryon scattering phase shifts in four channels using lattice QCD methods. From a set of calculations at four volumes, corresponding to spatial sizes of 2, 2.5, 3, and 4 fm, and a pion mass of m_pi ~ 390 MeV, we determine the scattering lengths and effective ranges for these systems at the corresponding quark masses. We also perform the calculation at a lighter quark mass, m_pi ~ 230 MeV, on the largest volume. Using these determinations, along with those in previous work, we perform a chiral extrapolation of the scattering lengths to the physical point after correcting for the effective range contributions using the multi-volume calculations performed at m_pi ~ 390 MeV.

  19. Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdinov, O.; Abdallah, J.; Abeloos, B.; Aben, R.; Abolins, M.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Dortz, O. Le; Guirriec, E. Le; Menedeu, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Andrade Filho, L. Manhaes de; Ramos, J. Manjarres; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Murrone, A.; Musheghyan, H.; Muskinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.

    2016-12-01

    A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb^{-1} of proton-proton collision data at √{s} = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter tilde{d}. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter tilde{d} is constrained to the interval (-0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of tilde{d}=0.

  20. Test of CP Invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Murrone, Alessia; Musheghyan, Haykuhi; Muskinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-11-29

    A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of $\\tau$ leptons and is based on 20.3 fb$^{-1}$ of proton—proton collision data at $\\sqrt{s}$ = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter $\\tilde{d}$. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter $\\tilde{d}$ is constrained to the interval [-0.11,0.05] at 68% confidence level, consistent with the Standard Model expectation of $\\tilde{d}=0$.

  1. Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdinov, O; Abdallah, J; Abeloos, B; Aben, R; Abolins, M; Aben, R; Abolins, M; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Andrade Filho, L Manhaes de; Ramos, J Manjarres; Mann, A; Mansoulie, B; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Murrone, A; Musheghyan, H; Muskinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L

    2016-01-01

    A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of [Formula: see text] leptons and is based on 20.3 [Formula: see text] of proton-proton collision data at [Formula: see text] = 8 [Formula: see text] collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter [Formula: see text]. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter [Formula: see text] is constrained to the interval [Formula: see text] at 68% confidence level, consistent with the Standard Model expectation of [Formula: see text].

  2. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  3. Spinal Fusion

    Science.gov (United States)

    ... results in predictable healing. Autograft is currently the “gold standard” source of bone for a fusion. The ... pump. With this technique, the patient presses a button that delivers a predetermined amount of narcotic pain ...

  4. Electrostatic interaction between Interball-2 and the ambient plasma. 2. Influence on the low energy ion measurements with Hyperboloid

    Directory of Open Access Journals (Sweden)

    M. Hamelin

    Full Text Available The measurement of the thermal ion distributions in space is always strongly influenced by the ion motion through the complex 3D electrostatic potential structure built around a charged spacecraft. In this work, we study the related aberrations of the ion distribution detected on board, with special application to the case of the Hyperboloid instrument borne by the Interball-2 auroral satellite. Most of the time, the Interball-2 high altitude auroral satellite is charged at some non-negligible positive potential with respect to the ambient plasma, as shown in part 1; in consequence, the measurement of magnetospheric low energy ions (< 80 eV with the Hyperboloid instrument can be disturbed by the complex electric potential environment of the satellite. In the case of positive charging, as in previous experiments, a negative bias is applied to the Hyperboloid structure in order to reduce this effect and to keep as much as possible the opportunity to detect very low energy ions. Then, the ions reaching the Hyperboloid entrance windows would have travelled across a continuous huge electrostatic lens involving various spatial scales from ~ 10 cm (detector radius to ~ 10 m (satellite antennas. Neglecting space charge effects, we have computed the ion trajectories that are able to reach the Hyperboloid windows within their acceptance angles. There are three main results: (i for given values of the satellite potential, and for each direction of arrival (each window, we deduced the related energy cutoff; (ii we found that all ions in the energy channel, including the cutoff, can come from a large range of directions in the unperturbed plasma, especially when the solar panels or antennas act as electrostatic mirrors; (iii for higher energy channels, the disturbances are reduced to small angular shifts. Biasing of the aperture is not very effective with the Hyperboloid instrument (as on previous missions with instruments installed close to the spacecraft

  5. Low-Energy Mutual Neutralization Studies for Early Universe Hydrogen Chemistry

    Science.gov (United States)

    Urbain, Xavier

    2010-03-01

    Low-energy interactions between light ions, as they occur in low density plasmas, are ideally studied under merged-beam conditions. This was the motivation for building the dual-source setup in operation at UCL, Louvain-la-Neuve, since the early eighties. Although initially developed for the study of charge exchange [1], mutual neutralization and transfer ionization, this machine has produced a host of total cross section measurements for a wide variety of associative ionization and other reactive processes involving charged reactants, from H^+ to CO^+, in collision with H^-, D^-, C^- and O^- [2]. A recent paper by Glover et al. [3] has revived the interest for mutual neutralization studies, by stressing the need of the astrophysical community for a precise determination of the low-energy cross section of the H^+/H^- reaction. The mutual neutralization acts as a sink for negative ions which otherwise dominate the primordial formation of H2 by associative detachment with ground state H. Absolute measurements in the range 5 meV to 5 eV are needed to rule out earlier experimental work [4] contradicting the most recent theoretical predictions [5]. Our setup is currently modified to incorporate coincident imaging techniques, giving access to differential cross sections besides the branching among accessible neutral channels. Mutual neutralization reactions of H^- with H2^+ and H3^+ will also be investigated, for the role they play in laboratory plasmas [6].[4pt] [1] S. Sz"ucs, M. Karemera, M. Terao, and F. Brouillard, J. Phys. B 17, 1613 (1983).[0pt] [2] E. A. Naji et al., J. Phys. B 31, 4887 (1998), A. Le Padellec et al., J. Chem. Phys., 124, 154304 (2006) and references therein.[0pt] [3] S. C. Glover, D. W. Savin, and A.-K. Jappsen , Astrophys. J. 640, 553 (2006). [0pt] [4] J. Moseley, W. Aberth, and J. R. Peterson, Phys. Rev. Lett. 24, 435 (1970).[0pt] [5] M. Stenrup, å. Larson, and N. Elander, Phys. Rev. A 79, 012713 (2009).[0pt] [6] M. J. J. Eerden et al., Phys

  6. Extension of the ratio method to low energy

    Science.gov (United States)

    Colomer, F.; Capel, P.; Nunes, F. M.; Johnson, R. C.

    2016-05-01

    Background: The ratio method has been proposed as a means to remove the reaction model dependence in the study of halo nuclei. Purpose: Originally it was developed for higher energies, but given the potential interest in applying the method at lower energy, in this work we explore its validity at 20 MeV/nucleon. Method: The ratio method takes the ratio of the breakup angular distribution and the summed angular distribution (which includes elastic, inelastic, and breakup) and uses this observable to constrain the features of the original halo wave function. In this work we use the continuum discretized coupled channel method and the Coulomb-corrected dynamical eikonal approximation for the study. Results: We study the reactions of 11Be on 12C,40Ca, and 208Pb at 20 MeV/nucleon. We compare the various theoretical descriptions and explore the dependence of our result on the core-target interaction. Conclusions: Our study demonstrates that the ratio method is valid at these lower beam energies.

  7. Extension of the ratio method to low energy

    CERN Document Server

    Colomer, F; Nunes, F M; Johnson, R C

    2016-01-01

    Background: The ratio method has been proposed as a means to remove the reaction model dependence in the study of halo nuclei. Purpose: Originally, it was developed for higher energies but given the potential interest in applying the method at lower energy, in this work we explore its validity at 20 MeV/nucleon. Method: The ratio method takes the ratio of the breakup angular distribution and the summed angular distribution (which includes elastic, inelastic and breakup) and uses this observable to constrain the features of the original halo wave function. In this work we use the Continuum Discretized Coupled Channel method and the Coulomb-corrected Dynamical Eikonal Approximation for the study. Results: We study the reactions of 11Be on 12C, 40Ca and 208Pb at 20 MeV/nucleon. We compare the various theoretical descriptions and explore the dependence of our result on the core-target interaction. Conclusions: Our study demonstrates that the ratio method is valid at these lower beam energies.

  8. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    hitting anything solid, they will create secondary electrons. These electrons are in fact the energy source needed to run interstellar chemistry. Slow electrons can in principle trigger three different primary processes in a molecule. The first is ionisation by electron impact (EI), which is used to create ions in mass spectrometry. In this process an electron hits a molecule M and knocks an outer shell electron to create a cation. This occurs whenever the electron energy is above the ionisation threshold of the target molecule. Another possibility is the attachment of a slow electron to a molecule to create an anion. This can occur at sharply defined resonance energies specific to the molecule M. A third possibility is to excite the molecule M to a neutral state M∗ .[9] M + e- -> M+ + 2 e- (Electron impact ionisation) M + e- -> M- (Electron attachment) M + e- -> M∗ + e- (Neutral excitation) The created states M+ , M- and M∗ are usually not stable states so they very often dissociate into ions and radicals, which can then further react with neighbouring molecules to form new chemical species. In these chemical reactions some products can be formed even at very low temperatures that would otherwise require a lot of thermal energy and/or special catalysts. The formation of ethylamine from ethylene and ammonia by hydroamination is one such example. The reaction is characterized by a high activation barrier caused by the electronic repulsion between the electron density rich C=C double bound and the lone pair electrons of ammo-nia. The reaction also has a highly negative entropy, so it becomes less favourable at higher temperatures, ruling out heat as a means to facilitate the reaction. In classical chemistry this problem is overcome by the use of catalysts. Unfortunately there still is no general catalyst for this kind of reaction. Recently it was shown that the reaction can efficiently be induced by low energy electron radiation.[10] One of the reaction partners is

  9. Solving The Longstanding Problem Of Low-Energy Nuclear Reactions At the Highest Microscopic Level - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    A 2011 DOE-NP Early Career Award (ECA) under Field Work Proposal (FWP) SCW1158 supported the project “Solving the Long-Standing Problem of Low-Energy Nuclear Reactions at the Highest Microscopic Level” in the five-year period from June 15, 2011 to June 14, 2016. This project, led by PI S. Quaglioni, aimed at developing a comprehensive and computationally efficient framework to arrive at a unified description of structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon (NN) and three-nucleon (3N) forces. Specifically, the project had three main goals: 1) arriving at the accurate predictions for fusion reactions that power stars and Earth-based fusion facilities; 2) realizing a comprehensive description of clustering and continuum effects in exotic nuclei, including light Borromean systems; and 3) achieving fundamental understanding of the role of the 3N force in nuclear reactions and nuclei at the drip line.

  10. Low-energy electron beams through ultra-thin foils, applications for electron microscopy

    NARCIS (Netherlands)

    Van Aken, R.H.

    2005-01-01

    This thesis has discussed two electron microscopy applications that make use of ultra-thin foils: the tunnel junction emitter and the low-energy foil corrector. Both applications have in common that the electron beam is sent through the thin foil at low energy. Part of the electrons will scatter in

  11. MicroBooNE: The Search For The MiniBooNE Low Energy Excess

    Energy Technology Data Exchange (ETDEWEB)

    Kaleko, David [Columbia Univ., New York, NY (United States)

    2017-01-01

    This thesis describes work towards the search for a low energy excess in MicroBooNE. What MicroBooNE is, what the low energy excess is, and how one searches for the latter in the former will be described in detail.

  12. Satisfaction with indoor climate in new Danish low-energy houses

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Mortensen, Lone Hedegaard; Kragh, Jesper

    2015-01-01

    This paper focuses on the indoor climate in new Danish low-energy houses and discusses the issue of overheating in relation to evaluation methods and user satisfaction. The user satisfaction has been evaluated among 370 owners of new low-energy class 2015 detached single-family houses based on a ...

  13. Perceptional and socio-economic factors in adoption of low energy houses

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Nair, Gireesh; Gustavsson, Leif (Ecotechnology, Mid Sweden Univ., Oestersund (Sweden)). e-mail: leif.gustavsson@miun.se

    2009-07-01

    Diffusion of low energy houses reduces greenhouse emission from residential sector. However, adoption of such houses depends on the perception of the potential buyers. In this paper we have analyzed Swedish homeowners' perception of low energy houses. Data was collected in 2008 from a mail-in questionnaire survey of about 3000 owners of detached houses. Results showed that about 39% of respondents, especially young, educated or whose household income was high, would consider buying a low energy house. Majority of the respondents agreed that a low energy house in comparison to a conventional house has lower operating energy cost, but higher investment cost. Majority thought that low energy houses do not have lower resale value, lower aesthetic appearance, or greater operational difficulty

  14. Trophoblast fusion.

    Science.gov (United States)

    Huppertz, Berthold; Gauster, Martin

    2011-01-01

    The villous trophoblast of the human placenta is the epithelial cover of the fetal chorionic villi floating in maternal blood. This epithelial cover is organized in two distinct layers, the multinucleated syncytiotrophoblast directly facing maternal blood and a second layer of mononucleated cytotrophoblasts. During pregnancy single cytotrophoblasts continuously fuse with the overlying syncytiotrophoblast to preserve this end-differentiated layer until delivery. Syncytial fusion continuously supplies the syncytiotrophoblast with compounds of fusing cytotrophoblasts such as proteins, nucleic acids and lipids as well as organelles. At the same time the input of cytotrophoblastic components is counterbalanced by a continuous release of apoptotic material from the syncytiotrophoblast into maternal blood. Fusion is an essential step in maintaining the syncytiotrophoblast. Trophoblast fusion was shown to be dependant on and regulated by multiple factors such as fusion proteins, proteases and cytoskeletal proteins as well as cytokines, hormones and transcription factors. In this chapter we focus on factors that may be involved in the fusion process of trophoblast directly or that may prepare the cytotrophoblast to fuse.

  15. Structural response of transient heat loading on a molybdenum surface exposed to low-energy helium ion irradiation

    Science.gov (United States)

    Sinclair, G.; Tripathi, J. K.; Diwakar, P. K.; Hassanein, A.

    2016-03-01

    The advancement of fusion reactor engineering is currently inhibited by the lack of knowledge surrounding the stability of plasma facing components (PFCs) in a tokamak environment. During normal operation, events of high heat loading occur periodically where large amounts of energy are imparted onto the PFC surface. Concurrently, irradiation by low-energy helium ions present in the fusion plasma can result in the synthesis of a fibre form nanostructure on the PFC surface, called ‘fuzz’. In order to understand how this heterogeneous structure evolves and deforms in response to transient heat loading, a pulsed Nd:YAG millisecond laser is used to simulate these events on a fuzz form molybdenum (Mo) surface. Performance was analysed by three metrics: nanostructure evolution, particle emission, and improvement in optical properties. Experiments performed at the upper end of the expected range for type-I edge-localized modes (ELMs) found that the helium-induced nanostructure completely disappears after 200 pulses of the laser at 1.5 MJ m-2. In situ mass loss measurements found that the amount of particles leaving the surface increases as energy density increases and the rate of emission increases with pulse count. Finally, optical properties assisted in providing a qualitative indication of fuzz density on the Mo surface; after 400 pulses at 1.5 MJ m-2, the optical reflectivity of the damaged surface is ~90% of that of a mirror polished Mo sample. These findings provide different results than previous studies done with tungsten (W), and further help illustrate the complicated nature of how transient events of high heat loading in a tokamak environment might impact the performance and lifetime of PFCs in ITER and future DEMO devices (Ueda et al 2014 Fusion Eng. Des. 89 901-6).

  16. Could spectator electrons legalize cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, L. (Jadavpur Univ., Calcutta (India). Dept. of Physics)

    1990-12-01

    In this paper the possibility of spectator electrons driving cold d-d fusion in condensed matter to an observation threshold is considered, along with the consequences on the branching ratio of the exit channels. The intrinsic dominance of the t-p channel due to the increased phase space is demonstrated.

  17. Ship detection in remote sensing image based on the fuzzy fusion of multi-channel Gabor filtering%基于多通道Gabor滤波模糊融合的遥感图像舰船检测

    Institute of Scientific and Technical Information of China (English)

    肖乔; 裴继红; 王荔霞; 龚志成

    2015-01-01

    A scheme to sea background suppressing was proposed for ships detection in optical remote sensing images based on the fuzzy fusion of multi-channel Gabor filtering.First,a multi-channel Gabor filter was designed to give out-put image group.Second,three filtering enhancement evaluations were defined to get the fuzzy evaluation matrix. Third,the fuzzy comprehensive evaluations were calculated and the significant images were selected from filtered output images.Finally,the weights of the significant images were determined and the fused image was given by using weigh-ted sum of these significant images.Experimental results showed that the proposed ship detection algorithm based on fuzzy fusion of multi-channel Gabor filtering could efficiently improve the detection accuracy and significantly reduce false alarm rate.%针对海水背景对舰船目标检测的干扰问题,提出了1种基于多通道Gabor滤波模糊综合评价融合方法来抑制海水背景,增强舰船目标区域,并实现舰船目标的检测和提取。首先对图像进行多通道Gabor滤波,得到多幅滤波增强输出图像;其次,定义了3种滤波图像增强效果评价指标,并为输出图像建立模糊评价矩阵;再次,根据模糊评价矩阵计算出各输出图像的模糊综合评价值,并选出各通道滤波增强效果最优的输出图像,作为该通道的滤波输出显著图像;最后,通过各显著图像的模糊评价值,计算对应的融合权重,并对这些输出显著图像进行加权叠加融合,得到舰船目标融合增强图像并进行检测。实验结果表明,本研究提出的方法能够自适应选取具有较好背景抑制效果和舰船目标区域增强效果的Gabor滤波输出图像进行融合,融合后的图像能够有效增强舰船目标的显著性。与现有的基于多通道Gabor滤波的舰船目标检测方法相比较,本研究提出的舰船目标检测算法能够有效减少目标检测的

  18. Fusion Machinery

    DEFF Research Database (Denmark)

    Sørensen, Jakob Balslev; Milosevic, Ira

    2015-01-01

    the vesicular SNARE VAMP2/synaptobrevin-2 and the target (plasma membrane) SNAREs SNAP25 and syntaxin-1 results in fusion and release of neurotransmitter, synchronized to the electrical activity of the cell by calcium influx and binding to synaptotagmin. Formation of the SNARE complex is tightly regulated...... and appears to start with syntaxin-1 bound to an SM (Sec1/Munc18-like) protein. Proteins of the Munc13-family are responsible for opening up syntaxin and allowing sequential binding of SNAP-25 and VAMP2/synaptobrevin-2. N- to C-terminal “zippering” of the SNARE domains leads to membrane fusion...

  19. A consistent four-body CDCC model of low-energy reactions: Application to 9Be + 208Pb

    CERN Document Server

    Hussein, M S; Canto, L F

    2015-01-01

    We investigate the $^9$Be + $^{208}$Pb elastic scattering, breakup and fusion at energies around the Coulomb barrier. The three processes are described simultaneously, with identical conditions of calculations. The $^{9}$Be nucleus is defined in an $\\alpha + \\alpha$ + n three-body model, using the hyperspherical coordinate method. We first analyze spectroscopic properties of $^9$Be, and show that the model provides a fairly good description of the low-lying states. The scattering with $^{208}$Pb is then studied with the Continuum Discretized Coupled Channel (CDCC) method, where the $\\alpha+\\alpha$ + n continuum is approximated by a discrete number of pseudostates. Optical potentials for the $\\alpha$+ $^{208}$Pb and n+ $^{208}$Pb systems are taken from the literature. We present elastic-scattering and fusion cross sections at different energies.

  20. Low-energy effective interactions beyond the constrained random-phase approximation by the functional renormalization group

    Science.gov (United States)

    Kinza, Michael; Honerkamp, Carsten

    2015-07-01

    In the derivation of low-energy effective models for solids targeting the bands near the Fermi level, the constrained random-phase approximation (cRPA) has become an appreciated tool to compute the effective interactions. The Wick-ordered constrained functional renormalization group (cfRG) generalizes the cRPA approach by including all interaction channels in an unbiased way. Here we present applications of the cfRG to two simple multiband systems and compare the resulting effective interactions to the cRPA. First, we consider a multiband model for monolayer graphene, where we integrate out the σ bands to get an effective theory for π bands. It turns out that terms beyond cRPA are strongly suppressed by the different x y -plane reflection symmetry of the bands. In our model the cfRG corrections to cRPA become visible when one disturbs this symmetry difference slightly, however, without qualitative changes. This study shows that the embedding or layering of two-dimensional electronic systems can alter the effective interaction parameters beyond what is expected from screening considerations. The second example is a one-dimensional model for a diatomic system reminiscent of a CuO chain, where we consider an effective theory for Cu 3 d -like orbitals. Here the fRG data shows relevant and qualitative corrections compared to the cRPA results. We argue that the new interaction terms affect the magnetic properties of the low-energy model.