WorldWideScience

Sample records for low-dose-radiation risk assessment

  1. Risk of radiation-induced cancer at low doses and low dose rates for radiation protection purposes

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this report is to provide an updated, comprehensive review of the data available for assessing the risk of radiation-induced cancer for radiation protection purposes. Particular emphasis is placed on assessing risks at low doses and low dose rates. The review brings together the results of epidemiological investigations and fundamental studies on the molecular and cellular mechanisms involved in radiation damage. Additionally, this information is supplemented by studies with experimental animals which provide further guidance on the form of the dose-response relationship for cancer induction, as well as on the effect of dose rate on the tumour yield. The emphasis of the report is on cancer induction resulting from exposure to radiations with a low linear energy transfer (LET). The work was performed under contract for the Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses, Paris, France, whose agreement to publish is gratefully ackowledged. It extends the advice on radiation risks given in Documents of the NRPB, 4 No. 4 (1993). (Author)

  2. Use of BEIR V and UNSCEAR 1988 in radiation risk assessment: Lifetime total cancer mortality risk estimates at low doses and low dose rates for low-LET radiation

    International Nuclear Information System (INIS)

    1992-12-01

    In November 1986, the Department of Defense (DoD) asked the Committee on Interagency Radiation Research and Policy Coordination (CIRRPC) to develop a coordinated Federal position on risk assessment for low levels of ionizing radiation. Since Federal risk assessment activities are based primarily on the scientific data and analyses in authoritative review documents prepared by groups like the National Academy of Sciences' Committee on the Biological Effects of Ionizing Radiation (BEIR), the National Council on Radiation Protection and Measurements (NCRP) and the United Nations' Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), DoD proposed that the CIRRPC Science Panel undertake the task of providing coordinated interagency positions on the use of information in the reports of such groups. The practice has been for individual Federal agencies to interpret and decide independently how to use the information provided in such reports. As a result of its deliberations, the Subpanel recommends two nominal risk estimates for lifetime total cancer mortality following whole-body exposure to low levels of low-LET ionizing radiation, one for the general population and one for the working-age population (see Section II). The recommended risk estimates reflect the general agreement of information in BEIR V and UNSCEAR 1988 for total cancer mortality. The Subpanel's risk estimates and associated statements are intended to meet the needs of the Federal agencies for: (a) values that are current; (b) values that are relevant to the low-dose and low dose-rate ionizing radiation exposures principally encountered in carrying out Federal responsibilities; (c) a statement of the change in the estimates of lifetime total cancer mortality relative to estimates in previous authoritative review documents; and (d) a practical statement on the scientific uncertainty associated with applying the lifetime total cancer mortality values at very low doses

  3. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    Science.gov (United States)

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?AbstractHigh doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  4. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  5. Relationship between dose and risk, and assessment of carcinogenic risks associated with low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Tubiana, M.; Aurengo, A.

    2005-01-01

    This report raises doubts on the validity of using LNT (linear no-threshold) relationship for evaluating the carcinogenic risk of low doses (< 100 mSv) and even more for very low doses (< 10 mSv). The LNT concept can be a useful pragmatic tool for assessing rules in radioprotection for doses above 10 mSv; however since it is not based on biological concepts of our current knowledge, it should not be used without precaution for assessing by extrapolation the risks associated with low and even more so, with very low doses (< 10 mSv), especially for benefit-risk assessments imposed on radiologists by the European directive 97-43. The biological mechanisms are different for doses lower than a few dozen mSv and for higher doses. The eventual risks in the dose range of radiological examinations (0.1 to 5 mSv, up to 20 mSv for some examinations) must be estimated taking into account radiobiological and experimental data. An empirical relationship which has been just validated for doses higher than 200 mSv may lead to an overestimation of risks (associated with doses one hundred fold lower), and this overestimation could discourage patients from undergoing useful examinations and introduce a bias in radioprotection measures against very low doses (< 10 mSv). Decision makers confronted with problems of radioactive waste or risk of contamination, should re-examine the methodology used for the evaluation of risks associated with very low doses and with doses delivered at a very low dose rate. This report confirms the inappropriateness of the collective dose concept to evaluate population irradiation risks

  6. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  7. Construction of data base for radiation safety assessment of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Saigusa, Shin

    2001-01-01

    Data base with an electronic text on the safety assessment of low dose ionizing radiation have been constructed. The contents and the data base system were designed to provide useful information to Japanese citizens, radiation specialists, and decision makers for a scientific and reasonable understanding of radiation health effects, radiation risk assessment, and radiation protection. The data base consists of the following four essential parts, namely, ORIGINAL DESCRIPTION, DETAILED INFORMATION, TOPIC INFORMATION, and RELATED INFORMATION. The first two parts of the data base are further classified into following subbranches: Radiobiological effects, radiation risk assessment, and radiation exposure and protection. (author)

  8. The assessment of the carcinogenic effects of low dose radiation

    International Nuclear Information System (INIS)

    Tubiana, M.; Lafuma, J.; Masse, R.; Latarjet, R.

    1991-01-01

    It is concluded that the exclusion of patients for the purposes of risk estimation, the choice of a particular relative risk projection model and of a dose reduction factor equal to 2 are all decisions which result in an overestimation of the actual risk. These choices can be understood when the aim is radiation protection and when it is safer to overestimate the risk; however, they are open to criticism if the aim is a realistic assessment of the risk. For low doses, below 50 mSv/year, and when all causes of uncertainty are added, the actual risk might be markedly lower than the risk estimated with the ICRP (1991) carcinogenic risk coefficient and the DRF estimated by ICRP. Future studies should aim at providing direct and more precise assessments of risk coefficients in the low dose region. (Author)

  9. Epistemological problems in assessing cancer risks at low radiation doses

    International Nuclear Information System (INIS)

    Walinder, G.

    1987-01-01

    Historically, biology has not been subjected to any epistemological analysis as has been the case with mathematics and physics. Our knowledge of the effects in biological systems of various stimuli proves to be dualistic in a complementary (although not mutually exclusive) way, which bears resemblance to the knowledge of phenomena in quantum physics. The dualistic limbs of biological knowledge are the action of stimuli and the response of the exposed, biological system. With regard to radiogenic cancer, this corresponds to the action of the ionizations and the response of the exposed mammal to that action, respectively. The following conclusions can be drawn from the present analysis: Predictions as to radiogenic cancer seem often if not always to have neglected the response variability (variations in radiosensitivity) in individuals or among individuals in populations, i.e. the predictions have been based exclusively on radiation doses and exposure conditions. The exposed individual or population, however, must be considered an open statistical system, i.e. a system in which predictions as to the effect of an agent are only conditionally possible. The knowledge is inverse to the size of the dose or concentration of the active agent. On epistemological grounds, we can not gain knowledge about the carcinogenic capacity of very low (non-dominant) radiation doses. Based on the same principle, we can not predict cancer risks at very low (non-dominant) radiation doses merely on the basis of models, or otherwise interpolated or extrapolated high-dose effects, observed under special exposure conditions

  10. Risk of cancer subsequent to low-dose radiation

    International Nuclear Information System (INIS)

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident

  11. Dose-response relationships and risk estimates for the induction of cancer due to low doses of low-LET radiation

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1981-01-01

    Risk estimates for radiation-induced cancer at low doses can be obtained only by extrapolation from the known effects at high doses and high dose rates, using a suitable dose-response model. The applicability of three different models, linear, sublinear and supralinear, are discussed in this paper. Several experimental studies tend to favour a sublinear dose-response model (linear-quadratic model) for low-LET radiation. However, human epidemiological studies do not exclude any of the dose-response relationships. The risk estimates based on linear and linear quadratic dose-response models are compared and it is concluded that, for low-LET radiation, the linear dose-response model would probably over-estimate the actual risk of cancer by a factor of two or more. (author)

  12. Health effects of low-level ionising radiation: biological basis for risk assessment

    International Nuclear Information System (INIS)

    Upton, A.C.

    1987-01-01

    The biological basis for risk assessment is discussed. The risks of carcinogenic effects, teratogenic effects, and genetic (heritable) effects are estimated to vary in proportion with the dose of radiation in the low-dose domain; however, the risks also appear to vary with the LET of the radiation, age at the time of irradiation, and other variables. Although the data suffice to place the risks in perspective with other hazards of modern life, further research to refine the reliability of the risk assessment is called for. (author)

  13. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used

  14. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  15. Low-dose radiation epidemiological studies: an assessment of methodological problems

    International Nuclear Information System (INIS)

    Modan, B.

    1991-01-01

    The present report attempts to assess the problems inherent in the analysis of low dose radiation studies, with emphasis on possible sources of methodological errors in the published data, and the consequent relevance to risk estimates. The published data examined concerned populations exposed to nuclear sources such as fallout, weapons' test or in the vicinity of nuclear reactors, occupational exposure, intra-uterine diagnostic X-rays, scattered radiation following X-ray therapy and background irradiation. (UK)

  16. The assessment of risks from exposure to low-levels of ionizing radiation

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1992-06-01

    This report is concerned with risk assessments for human populations receiving low level radiation doses; workers routinely exposed to radiation, Japanese victims of nuclear bombs, and the general public are all considered. Topics covered include risk estimates for cancer, mortality rates, risk estimates for nuclear site workers, and dosimetry

  17. Risks to health from radiation at low dose rates

    International Nuclear Information System (INIS)

    Gentner, N.E.; Osborne, R.V.

    1997-01-01

    Our focus is on whether, using a balance-of-evidence approach, it is possible to say that at a low enough dose, or at a sufficiently low dose rate, radiation risk reduces to zero in a population. We conclude that insufficient evidence exists at present to support such a conclusion. In part this reflects statistical limitations at low doses, and in part (although mechanisms unquestionably exist to protect us against much of the damage induced by ionizing radiation) the biological heterogeneity of human populations, which means these mechanisms do not act in all members of the population at all times. If it is going to be possible to demonstrate that low doses are less dangerous than we presently assume, the evidence, paradoxically, will likely come from studies of higher dose and dose rate scenarios than are encountered occupationally. (author)

  18. Low dose diagnostic radiation does not increase cancer risk in cancer prone mice

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D., E-mail: dboreham@nosm.ca [Northern Ontario School of Medicine, ON (Canada); Phan, N., E-mail: nghiphan13@yahoo.com [Univ. of Ottawa, Ottawa, ON (Canada); Lemon, J., E-mail: lemonja@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    The increased exposure of patients to low dose diagnostic ionizing radiation has created concern that these procedures will result in greater risk of carcinogenesis. However, there is substantial evidence that shows in many cases that low dose exposure has the opposite effect. We have investigated whether CT scans can modify mechanisms associated with carcinogenesis in cancer-prone mice. Cancer was induced in Trp53+/- mice with an acute high dose whole-body 4 Gy γ-radiation exposure. Four weeks following the cancer-inducing dose, weekly whole-body CT scans (10 mGy/scan, 75 kVp X-rays) were given for ten consecutive weeks adding an additional radiation burden of 0.1 Gy. Short-term biological responses and subsequent lifetime cancer risk were investigated. Five days following the last CT scan, there were no detectable differences in the spontaneous levels of DNA damage in blood cells (reticulocytes). In fact, CT scanned mice had significantly lower constitutive levels of oxidative DNA damage and cell death (apoptosis), compared to non-CT scanned mice. This shows that multiple low dose radiation exposures modified the radio response and indicates protective processes were induced in mice. In mice treated with the multiple CT scans following the high cancer-inducing 4 Gy dose, tumour latency was increased, significantly prolonging lifespan. We conclude that repeated CT scans can reduce the cancer risk of a prior high-dose radiation exposure, and delay the progression of specific types of radiation-induced cancers in Trp53+/-mice. This research shows for the first time that low dose exposure long after cancer initiation events alter risk and reduce cancer morbidity. Cancer induction following low doses does not follow a linear non-threshold model of risk and this model should not be used to extrapolate risk to humans following low dose exposure to ionizing radiation. (author)

  19. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  20. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  1. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    International Nuclear Information System (INIS)

    Johnston, Peter J.; Wilson, George D.

    2003-01-01

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program

  2. Review of European research trends of low dose radiation risk

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Yoshida, Kazuo

    2010-01-01

    Large research projects on low dose radiation effects in Europe and US over the past decade have provided limited scientific knowledge which could underpin the validation of radiation protection systems. Recently in Europe, there have been repeated discussions and dialogues to improve the situation, and as the consequence, the circumstances surrounding low dose radiation risks are changing. In 2009, Multidisciplinary European Low Dose Initiative (MELODI) was established as a trans-national organization capable of ensuring appropriate governance of research in the pursuit of a long term shared vision, and Low Dose Research towards Multidisciplinary Integration (DoReMi) network was launched in 2010 to achieve fairly short term results in order to prove the validity of the MELODI approach. It is expected to be very effective and powerful activities to facilitate the reduction of uncertainties in the understanding of low dose risks, but the regulatory requests rushing the reinforcement of radiological protection regulations based on the precautional principles are more increasing. To develop reasonable radiological protection systems based on scientific evidences, we need to accelerate to collect scientific evidences which could directly underpin more appropriate radiation protection systems even in Japan. For the purpose, we Japan need to develop from an independent standpoint and share as a multidisciplinary vision a long term and holistic research strategy which enables to enhance Japanese advantages such as low dose rate facilities and animal facilities, as soon as possible. (author)

  3. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2005-01-01

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  4. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  5. Risk assessment from heterogeneous energy deposition in tissue, the problem of effects from low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Booz, J.

    1992-01-01

    Low doses of ionizing radiation from external or internal sources cause heterogeneous distribution of energy deposition events in the exposed biological system. With the cell being the individual element of the tissue system, the fraction of cells hit, the dose received by the hit, and the biological response of the cell to the dose received eventually determine the effect in tissue. The hit cell may experience detriment, such as change in its DNA leading to a malignant transformation, or it may derive benefit in terms of an adaptive response such as a temporary improvement of DNA repair or temporary prevention of effects from intracellular radicals through enhanced radical detoxification. These responses are protective also to toxic substances that are generated during normal metabolism. Within a multicellular system the probability of detriment must be weighed against the probability of benefit through adaptive responses with protection against various toxic agents including those produced by normal metabolism. Because irradiation can principally induce both, detriment and adaptive responses, one type of affected cells may not be simply summed up at the expense of cells with other types of effects, in assessing risk to tissue. An inventory of various types of effects in the blood-forming system of mammals, even with large ranges of uncertainty, uncovers the possibility of benefit to the system from exposure to low doses of low-LET radiation. This experimental approach may complement epidemiological data on individuals exposed to low doses of ionizing radiation and may lead to a more rational appraisal of risk

  6. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Sterc, D.

    2012-01-01

    Our civilization is witnessing about century of nuclear age mixed with enormous promises and cataclysmic threats. Nuclear energy seems to encapsulate both potential for pure good and evil or at least we humans are able to perceive that. These images are continuously with us and they are both helping and distracting from making best of nuclear potentials for civilization. Today with nuclear use significantly present and with huge potential to further improve our life with energy and medical use it is of enormous importance to try to have calmed, rational, and objective view on potential risks and certain benefits. Because all use of nuclear energy proved that their immediate risks are negligible (i.e., Three Mile Island and Fukushima) or much smaller than from the other alternatives (i.e., Chernobyl) it seems that the most important issue is the amount of risk from the long term effects to people from exposure to small doses of radiation. A similar issue is present in the increased use of modern computational tomography and other radiation sources use in medicine for examination and therapy. Finally, extreme natural exposures are third such potential risk sources. Definition of low doses varies depending on the way of delivery (i.e., single, multiple or continuous exposures), and for this paper usual dose of 100 mSv is selected as yearly upper amount. There are three very different scientifically supported views on the potential risks from the low doses exposure. The most conservative theory is that all radiation is harmful, and even small increments from background levels (i.e., 2-3 mSv) present additional risk. This view is called linear no threshold theory (LNT) and it is accepted as a regulatory conservative simple approach which guarantees safety. Risk is derived from the extrapolation of the measured effects of high levels of radiation. Opposite theory to LNT is hormesis which assumes that in fact small doses of radiation are helpful and they are improving our

  7. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  8. Responses of epithelial cells to low and very low doses of low let radiation

    International Nuclear Information System (INIS)

    Mothersill, Carmel; Seymour, Colin

    2003-01-01

    Recent advances in our knowledge of the biological effects of low doses of ionizing radiation have shown unexpected phenomena. These vary in the endpoint used to detect them and in the dose range examined but all occur as high-frequency events in cell populations. They include: 1. a 'bystander effect' which can be demonstrated at low doses as a transferable.factor(s) causing radiobiological effects in unexposed cells, 2. an assortment of delayed effects' occurring in progeny of cells exposed to low doses, 3. Low-dose Hypersensitivity (HRS) and Increased radioresistance (IRR) which can collectively be demonstrated as a change in the dose-effect relationship, occurring around 0.5-1 Gy of low LET radiation and 4. adaptive responses where cells exposed to very low doses followed by higher doses, exhibit an induced relatively resistant response to the second dose. In all cases, the effect of very low doses is greater than would be predicted by extrapolation of high dose data and is inconsistent with conventional DNA break/repair-based radiobiology. In practical risk assessment terms, the relative importance of the effects are high at low doses where they dominate the response, and small at high doses. This paper reviews these assorted phenomena and in particular seeks to explore whether related or distinct mechanisms underlie these various effects Understanding the mechanistic basis of these phenomena may suggest new approaches to controlling death or survival sectoring at low radiation doses. The key question is whether these low dose phenomena necessitate a new approach to risk assessment. (author)

  9. Lifetime radiation risks from low-dose rate radionuclides in beagles

    International Nuclear Information System (INIS)

    Goldman, M.; Rosenblatt, L.S.

    1985-01-01

    One of the largest, long-term (25-yr) animal studies on the effects of low-dose internal irradiation is almost completed. Some 335 beagles were given continuous exposure to graded 90 Sr [low linear energy transfer (LET)] in their diets (D-dogs) through adulthood. A second group (R-dogs) was given fractionated doses of 225 Ra (high LET) as young adults. A third group of 44 was given a single injection of 90 Sr as adults (S-dogs) to compare single to continuous dosages. All dogs were followed through their lifetimes. Only one of the 848 dogs is still alive. The animals were whole-body counted over their entire life span and were examined frequently for assessment of medical status. There were no acute radiation lethalities. Analyses of the large data base from these dogs have begun and preliminary indications are that 90 Sr, which was tested over a 1500-fold skeletal dose rate range, does not cause significant life shortening at average accumulation skeletal doses of ∼2500 rads (25 Gy) and that a curvilinear dose response curve for life shortening was seen at higher accumulation doses. The data will be discussed in terms of modern epidemiological concepts and quantifications will be related to certain parameters of human risk from acute or chronic radiation exposures

  10. Cancer and non-cancer risk at low doses of radiation: biological basis of radiation-environment interplay

    International Nuclear Information System (INIS)

    Sasaki, Masao S.

    2013-01-01

    Cancer and non-cancer risk at low doses of ionizing radiation remains poorly defined due to ambiguity at low doses caused by limitations in statistical power and information available on interplay with environment. To deal with these problems, a novel non-parametric statistics was developed based on artificial neural networks theorem and applied to cancer and non-cancer risk in A-bomb survivors. The analysis revealed several unique features at low doses that could not be accounted for by nominal radiation dose alone. They include (1) threshold that varies with organ, gender and age, including cardiovascular diseases, (2) prevalence of infectious diseases, and (3) suppression of pathogenesis of HTLV1. The threshold is unique as it is manifested as negative excess relative risk, a reduction of spontaneous rate at low doses. The response is consistent with currently emerging laboratory data on DNA double-strand break (DSB) repair pathway choice and its sustainability as epigenetic memory in accordance with histone code theory. In response to DSB, of radiation or DNA replication arrest origin, distinct and competitively operating repair pathways are instigated. Activation by low doses of restitution-directed canonical non-homologous end-joining (C-NHEJ) suppresses both error-prone alternative end-joining (Alt-NHEJ) and homologous recombination (HR). The latter two present major pathways to mutagenesis at stalled replication folk associated with endogenous and exogenous genotoxin such as tobacco smoke metabolites and AID-associated somatic hypermutation and class switch recombination in Ig gene. Suppression of these error-prone pathways by low doses of low LET radiation is consistent with the reduction of cancer occurrence by environmental genotoxin, immunodiversity and stable integration of retrovirus DNA, providing a significant modulator of dose linearity at low doses. Whole picture may bring about a new landscape of cancer and non-cancer molecular epidemiology which

  11. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    the effects of radiation can be used to improve the assessment of low dose radiation risk. In this article, the mechanisms of targeted and non-targeted responses, and interrelation between the phenomena on cellular injury after exposure to low doses of radiation as they relate to low dose radiation effects will be reviewed.

  12. Risk assessment and late effects of radiation in low-earth orbits

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1989-01-01

    The radiation dose rates in low-earth orbits are dependent on the altitude and orbital inclination. The doses to which the crews of space vehicles are exposed is governed by the duration of the mission and the shielding, and in low-earth orbit missions protons are the dominant particles encountered. The risk of concern with the low dose rates and the relatively low total doses of radiation that will be incurred on the space station is excess cancer. The National Council on Radiation Protection and Measurements has recently recommended career dose-equivalent limits that take into account sex and age. The new recommendations for career limits range from 1.0 Sv to 4 Sv, depending on sex and on the age at the time of their first space mission, compared to a single career limit of 4.0 Sv previously used by NASA. Risk estimates for radiated-induced cancer are evolving and changes in the current guidance may be required in the next few years. 10 refs., 1 fig., 3 tabs

  13. Low Dose Risk, Decisions, and Risk Communication

    International Nuclear Information System (INIS)

    Flynn, James

    2002-01-01

    The overall research objective was to establish new levels of information about how people, groups, and communities respond to low dose radiation exposure. This is basic research into the social psychology of individual, group, and community responses to radiation exposures. The results of this research are directed to improving risk communication and public participation in management of environmental problems resulting from low dose radiation

  14. The Radiobiological Basis for Improvements in Radiotherapy and Low Dose Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hei, Tom K. [Columbia Univ., New York, NY (United States)

    2009-12-09

    This conference grant was proposed to organize and host an international conference at Columbia University in New York to critically assess the cellular and molecular signaling events and tissue response following radiation damage. The conference would also serve as a venue to play tribute to the more than forty years contributions made by Professor Eric J. Hall to the radiation biology field. The goals of the meeting were to examine tumor hypoxia and sensitizer development; recent advances made in clinical radiotherapy; addressed several low dose phenomena, including genomic instability and bystander effects that are important in radiation risk assessment. Study and Results: The symposium was held on October 13th and 14th, 2008 at the Alfred Lerner Hall in the Morningside campus of Columbia University. The symposium, entitled “From Beans to Genes: A Forty Year Odyssey in Radiation Biology” was attended by more than 120 faculty, scientists, clinicians, fellows and students. The symposium, spanned over a day and a half, covered four scientific themes. These included tumor hypoxia and radiosensitizers; low dose radiation response; radiation biology in the practice of radiotherapy, and radiation hazard in space and genetic predisposition to cancer. The program of the symposium is as follow:

  15. Radiation Risk Associated with Low Doses of Ionizing Radiation: Irrational Fear or Real Danger

    International Nuclear Information System (INIS)

    Reshetin, V.

    2007-01-01

    The established worldwide practice of protecting people from radiation based on the assessments of radiation risk received in the researches carried out earlier costs hundreds of billions of dollars a year to implement. In the opinion of the well-known experts, the maintenance of the existing radiation protection regulations or moreover acceptance of more tough regulations can influence the development of nuclear power engineering. The accepted practice of assessment of human health risk from radiation may also significantly affect our perception of threats of radiation terrorism. In this work, the critical analysis of publications on the assessment of the effects of small doses of radiation on human health is carried out. In our analysis, we especially emphasize the data on cancer mortality among survivors of the atomic bombing of Hiroshima and Nagasaki who received instantaneous radiation doses of less than 200 mSv including the data on leukemia and solid cancer, as well as epidemiological studies in the regions of India and China with high level of natural radiation. Since the investigations of radiation risk is a base for formulating modern radiation protection regulations, their reliability and validity are of great importance. As follows from the analysis, the subsequent, during three decades, toughening of radiation protection regulations has already led to exceedingly prohibitive standards and impractical recommendations the science-based validity of which can cause serious doubts. Now, a number of world-wide known scientists and authoritative international organizations call for revision of these standards and of the radiation safety concept itself. (author)

  16. Toxicity risk of non-target organs at risk receiving low-dose radiation: case report

    International Nuclear Information System (INIS)

    Shueng, Pei-Wei; Lin, Shih-Chiang; Chang, Hou-Tai; Chong, Ngot-Swan; Chen, Yu-Jen; Wang, Li-Ying; Hsieh, Yen-Ping; Hsieh, Chen-Hsi

    2009-01-01

    The spine is the most common site for bone metastases. Radiation therapy is a common treatment for palliation of pain and for prevention or treatment of spinal cord compression. Helical tomotherapy (HT), a new image-guided intensity modulated radiotherapy (IMRT), delivers highly conformal dose distributions and provides an impressive ability to spare adjacent organs at risk, thus increasing the local control of spinal column metastases and decreasing the potential risk of critical organs under treatment. However, there are a lot of non-target organs at risk (OARs) occupied by low dose with underestimate in this modern rotational IMRT treatment. Herein, we report a case of a pathologic compression fracture of the T9 vertebra in a 55-year-old patient with cholangiocarcinoma. The patient underwent HT at a dose of 30 Gy/10 fractions delivered to T8-T10 for symptom relief. Two weeks after the radiotherapy had been completed, the first course of chemotherapy comprising gemcitabine, fluorouracil, and leucovorin was administered. After two weeks of chemotherapy, however, the patient developed progressive dyspnea. A computed tomography scan of the chest revealed an interstitial pattern with traction bronchiectasis, diffuse ground-glass opacities, and cystic change with fibrosis. Acute radiation pneumonitis was diagnosed. Oncologists should be alert to the potential risk of radiation toxicities caused by low dose off-targets and abscopal effects even with highly conformal radiotherapy

  17. Cancer and low dose responses in vivo: implications for radiation protection

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    2006-01-01

    Full text: Radiation protection practices assume that cancer risk is linearly proportional to total dose, without a threshold, both for people with normal cancer risk and for people who may be genetically cancer prone. Mice heterozygous for the Tp 53 gene are cancer prone, and their increased risk from high doses was not different from Tp 53 normal mice. However, in either Tp 53 normal or heterozygous mice, a single low dose of low LET radiation given at low dose rate protected against both spontaneous and radiation-induced cancer by increasing tumor latency. Increased tumor latency without a cancer frequency change implies that low doses in vivo primarily slow the process of genomic instability, consistent with the elevated capacity for correct DSB rejoining seen in low dose exposed cells. The in vivo animal data indicates that, for low doses and low dose rates in both normal and cancer prone adult mice, risk does not increase linearly with dose, and dose thresholds for increased risk exist. Below those dose thresholds (which are influenced by Tp 53 function) overall risk is reduced below that of unexposed control mice, indicating that Dose Rate Effectiveness Factors (DREF) may approach infinity, rather than the current assumption of 2. However, as dose decreases, different tissues appear to have different thresholds at which detriment turns to protection, indicating that individual tissue weighting factors (Wt) are also not constant, but vary from positive values to zero with decreasing dose. Measurements of Relative Biological Effect between high and low LET radiations are used to establish radiation weighting factors (Wr) used in radiation protection, and these are also assumed to be constant with dose. However, since the risk from an exposure to low LET radiation is not constant with dose, it would seem unlikely that radiation-weighting factors for high LET radiation are actually constant at low dose and dose rate

  18. Genetic radiation risks: a neglected topic in the low dose debate

    Directory of Open Access Journals (Sweden)

    Inge Schmitz-Feuerhake

    2016-01-01

    Full Text Available Objectives To investigate the accuracy and scientific validity of the current very low risk factor for hereditary diseases in humans following exposures to ionizing radiation adopted by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. The value is based on experiments on mice due to reportedly absent effects in the Japanese atomic bomb (Abomb survivors. Methods To review the published evidence for heritable effects after ionising radiation exposures particularly, but not restricted to, populations exposed to contamination from the Chernobyl accident and from atmospheric nuclear test fallout. To make a compilation of findings about early deaths, congenital malformations, Down’s syndrome, cancer and other genetic effects observed in humans after the exposure of the parents. To also examine more closely the evidence from the Japanese A-bomb epidemiology and discuss its scientific validity. Results Nearly all types of hereditary defects were found at doses as low as one to 10 mSv. We discuss the clash between the current risk model and these observations on the basis of biological mechanism and assumptions about linear relationships between dose and effect in neonatal and foetal epidemiology. The evidence supports a dose response relationship which is non-linear and is either biphasic or supralinear (hogs-back and largely either saturates or falls above 10 mSv. Conclusions We conclude that the current risk model for heritable effects of radiation is unsafe. The dose response relationship is non-linear with the greatest effects at the lowest doses. Using Chernobyl data we derive an excess relative risk for all malformations of 1.0 per 10 mSv cumulative dose. The safety of the Japanese A-bomb epidemiology is argued to be both scientifically and philosophically questionable owing to errors in the choice of control groups, omission of internal exposure effects and

  19. The assessment of effects of low doses of ionizing radiations: contributions of epidemiology

    International Nuclear Information System (INIS)

    Verger, P.; Hubert, Ph.; Bard, D.

    1998-01-01

    After a brief recall of the history of the application of epidemiological studies to the field of ionizing radiations (actually to study the consequences of Hiroshima and Nagasaki bombing), and after having outlined that most of these epidemiological studies addressed carcinogenic effects of radiations on populations exposed to doses greater than 0,2 Gy, this article more particularly addresses epidemiological studies for low doses (lower than 0,5-1 Gy). The authors present objectives and methods (monitoring, etiological research, risk quantification), and discuss the limitations of epidemiology and its strengths. In the next part, they comment and discuss the main data sources used for the epidemiological assessment of low doses. These sources respectively deal with Hiroshima and Nagasaki (the Life Span Study, its results in terms of solid cancers and leukaemia, its limitations), with occupational exposures (radiologists, workers in nuclear installations, crews of intercontinental flights, Chernobyl liquidators, uranium minors exposed to radon), with environmental exposures (domestic exposures to radon, exposure to natural radiation, to nuclear test fallouts, and to Chernobyl accident fallouts, exposure about nuclear installations), and with other types of exposure

  20. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  1. Modified Exponential (MOE) Models: statistical Models for Risk Estimation of Low dose Rate Radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Furukawa, C.; Kawakami, Y.; Magae, J.

    2004-01-01

    Simultaneous inclusion of dose and dose-rate is required to evaluate the risk of long term irradiation at low dose-rates, since biological responses to radiation are complex processes that depend both on irradiation time and total dose. Consequently, it is necessary to consider a model including cumulative dose,dose-rate and irradiation time to estimate quantitative dose-response relationship on the biological response to radiation. In this study, we measured micronucleus formation and (3H) thymidine uptake in U2OS, human osteosarcoma cell line, as indicators of biological response to gamma radiation. Cells were exposed to gamma ray in irradiation room bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and propidium iodide. The number of binuclear cells bearing a micronucleus was counted under a florescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and (3h) thymidine was pulsed for 4h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk at low dose/dose-rate. (Author)

  2. Studies of workers exposed to low doses of external radiation

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1991-04-01

    Currently, several epidemiologic studies of workers who have been exposed occupationally to low levels of radiation are being conducted, and include studies of workers in the United States, Great Britain, and Canada involved in the production of both defense materials and nuclear power. This paper focuses on studies that evaluate the possible adverse effects resulting from external exposure to radiation. The radiation risk estimates that have been used to establish radiation protection standards for workers and others have been obtained mainly from studies of persons exposed at high doses and dose rates. However, questions remain with regard to the extrapolation process that has been necessary for estimating low-level radiation risks. Occupational studies provide a direct assessment of risk based on data on persons exposed at the actual levels of interest. If current risk estimates are correct, these studies have very little chance of detecting risk, but can still be used to provide useful upper limits on risks. The studies are also adequate to detect serious underestimation of risks. 36 refs., 3 figs., 3 tabs

  3. The stochastic risks of radioactive radiation - risk assessment, risk proportions, dose limits

    International Nuclear Information System (INIS)

    Lindackers, K.H.

    1990-01-01

    The latest data on the delayed injury to the a-bomb survivors of Hiroshima and Nagasaki reveal that the effects of radiation are more severe than was estimated in the past. However, the application of these data to small dose rate radiation exposure over longer periods of time leads to an overestimation of the actual risk. The future supersonic aviation schemes for altitudes within 20,000 m should include early personnel check-ups for assessment of the required protective measures. (orig./DG) [de

  4. TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?

    International Nuclear Information System (INIS)

    Bushberg, J; Boreham, D; Ulsh, B

    2014-01-01

    At dose levels of (approximately) 500 mSv or more, increased cancer incidence and mortality have been clearly demonstrated. However, at the low doses of radiation used in medical imaging, the relationship between dose and cancer risk is not well established. As such, assumptions about the shape of the dose-response curve are made. These assumptions, or risk models, are used to estimate potential long term effects. Common models include 1) the linear non-threshold (LNT) model, 2) threshold models with either a linear or curvilinear dose response above the threshold, and 3) a hormetic model, where the risk is initially decreased below background levels before increasing. The choice of model used when making radiation risk or protection calculations and decisions can have significant implications on public policy and health care decisions. However, the ongoing debate about which risk model best describes the dose-response relationship at low doses of radiation makes informed decision making difficult. This symposium will review the two fundamental approaches to determining the risk associated with low doses of ionizing radiation, namely radiation epidemiology and radiation biology. The strengths and limitations of each approach will be reviewed, the results of recent studies presented, and the appropriateness of different risk models for various real world scenarios discussed. Examples of well-designed and poorly-designed studies will be provided to assist medical physicists in 1) critically evaluating publications in the field and 2) communicating accurate information to medical professionals, patients, and members of the general public. Equipped with the best information that radiation epidemiology and radiation biology can currently provide, and an understanding of the limitations of such information, individuals and organizations will be able to make more informed decisions regarding questions such as 1) how much shielding to install at medical facilities, 2) at

  5. TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?

    Energy Technology Data Exchange (ETDEWEB)

    Bushberg, J [UC Davis Medical Center, Sacramento, CA (United States); Boreham, D [McMaster University, Ontario, CA (Canada); Ulsh, B

    2014-06-15

    At dose levels of (approximately) 500 mSv or more, increased cancer incidence and mortality have been clearly demonstrated. However, at the low doses of radiation used in medical imaging, the relationship between dose and cancer risk is not well established. As such, assumptions about the shape of the dose-response curve are made. These assumptions, or risk models, are used to estimate potential long term effects. Common models include 1) the linear non-threshold (LNT) model, 2) threshold models with either a linear or curvilinear dose response above the threshold, and 3) a hormetic model, where the risk is initially decreased below background levels before increasing. The choice of model used when making radiation risk or protection calculations and decisions can have significant implications on public policy and health care decisions. However, the ongoing debate about which risk model best describes the dose-response relationship at low doses of radiation makes informed decision making difficult. This symposium will review the two fundamental approaches to determining the risk associated with low doses of ionizing radiation, namely radiation epidemiology and radiation biology. The strengths and limitations of each approach will be reviewed, the results of recent studies presented, and the appropriateness of different risk models for various real world scenarios discussed. Examples of well-designed and poorly-designed studies will be provided to assist medical physicists in 1) critically evaluating publications in the field and 2) communicating accurate information to medical professionals, patients, and members of the general public. Equipped with the best information that radiation epidemiology and radiation biology can currently provide, and an understanding of the limitations of such information, individuals and organizations will be able to make more informed decisions regarding questions such as 1) how much shielding to install at medical facilities, 2) at

  6. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    experiments with mice confirmed the physiological relevance of our cellular studies and suggests that the cellular radical level is critical for efficient DSB repair after low doses. In the third project, the inhomogeneous distribution of radon within the body of the mouse was investigated using a biological approach for the first time. To determine the distribution of radon, the DSBs induced by the decay of radon and its daughter nucleotides were quantified in several tissues. Radon is a naturally occurring noble gas, which can be found all over the world in different concentrations and contributes significantly to the natural radiation exposure of the population. Although the exposure to radon is a well-characterized risk factor for the development of lung cancer, radon is a popular remedy for the treatment of patients suffering from painful inflammatory diseases. Since conditions for the animal experiments were comparable to radon therapy sessions, the experimentally detected doses in the organs reflect their therapy-associated radiation exposure. Knowledge of the inhomogeneous radon distribution within the body and its resulting biological effects will help to shed light on the underlying mechanism that results in the therapeutic effect during the treatment of inflammatory diseases. The extensive biological data obtained here generally provides the unique possibility to verify and optimise mathematical models for risk assessment of radon exposures. Collectively, the three projects of this thesis investigated consequences of the exposure to low radiation doses. The controversy surrounding the effects of low doses is still standing and the presented results support the view that every exposure leads to non-negligible biological effects. Therefore, detailed knowledge of radiation effects is essential for the therapeutic application as well as for radiation protection.

  7. LOW DOSE RISK, DECISIONS, and RISK COMMUNICATION

    International Nuclear Information System (INIS)

    Flynn, James

    2002-01-01

    The objective of this project is to conduct basic research on how people receive, evaluate, and form positions on scientific information and its relationship to low-dose radiation exposure. There are three major areas of study in our research program. First is the development of theories, frameworks and concepts essential to guiding data collection and analysis. The second area is a program of experimental studies on risk perception, evaluation of science information, and the structure of individual positions regarding low-dose exposures. Third is the community-level studies to examine and record how the social conditions, under which science communications take place, influence the development of attitudes and opinions about: low-dose exposures, the available management options, control of radiation risks, and preferences for program and policy goals

  8. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  9. Systematic review on physician's knowledge about radiation doses and radiation risks of computed tomography

    International Nuclear Information System (INIS)

    Krille, Lucian; Hammer, Gael P.; Merzenich, Hiltrud; Zeeb, Hajo

    2010-01-01

    Background: The frequent use of computed tomography is a major cause of the increasing medical radiation exposure of the general population. Consequently, dose reduction and radiation protection is a topic of scientific and public concern. Aim: We evaluated the available literature on physicians' knowledge regarding radiation dosages and risks due to computed tomography. Methods: A systematic review in accordance with the Cochrane and PRISMA statements was performed using eight databases. 3091 references were found. Only primary studies assessing physicians' knowledge about computed tomography were included. Results: 14 relevant articles were identified, all focussing on dose estimations for CT. Overall, the surveys showed moderate to low knowledge among physicians concerning radiation doses and the involved health risks. However, the surveys varied considerably in conduct and quality. For some countries, more than one survey was available. There was no general trend in knowledge in any country except a slight improvement of knowledge on health risks and radiation doses in two consecutive local German surveys. Conclusions: Knowledge gaps concerning radiation doses and associated health risks among physicians are evident from published research. However, knowledge on radiation doses cannot be interpreted as reliable indicator for good medical practice.

  10. Cancer risk at low doses of ionizing radiation. Artificial neural networks inference from atomic bomb survivors

    International Nuclear Information System (INIS)

    Sasaki, Masao S.; Tachibana, Akira; Takeda, Shunichi

    2014-01-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the ‘integrate-and-fire’ algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (1) the presence of a threshold that varied with organ, gender and age at exposure, and (2) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to 239 Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation–environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. (author)

  11. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  12. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Gonzalez, Abel

    2008-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  13. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  14. What can be learned from epidemiologic studies of persons exposed to low doses of radiation?

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1993-04-01

    The main objective of radiation risk assessment is to determine the risk of various adverse health effects associated with exposure to low doses and low dose rates. Extrapolation of risks from studies of persons exposed at high doses (generally exceeding 1 Sv) and dose rates has been the primary approach used to achieve this objective. The study of Japanese atomic bomb survivors in Hiroshima and Nagasaki has played an especially important role in risk assessment efforts. A direct assessment of the dose-response function based on studies of persons exposed at low doses and dose rates is obviously desirable. This paper focuses on the potential of both current and future nuclear workers studies for investigating the dose-response functions at low doses, and also discusses analyses making use of the low dose portion of the atomic bomb survivor data. Difficulties in using these data are the statistical imprecision of estimated dose-response parameters, and potential bias resulting from confounding factors and from uncertainties in dose estimates

  15. Low-Dose Risk, Decisions, and Risk Communication

    International Nuclear Information System (INIS)

    Flynn, James; Slovic, Paul

    2001-01-01

    To conduct basic research on how people receive, evaluate, and form positions on scientific information and its relationship to low-dose radiation exposure. There are three major areas of study in our research program. First is the development of theories, frameworks and concepts essential to guiding data collection and analysis. The second area is a program of experimental studies on risk perception, evaluation of science information, and the structure of individual positions regarding low dose exposures. This involves the study of existing knowledge and the evaluation of science information presented within a variety of formats, as educational information, news media stories, and alternative communication methods (personal contact, small group interaction, email and internet, etc.). Third is the community-level studies to examine and record how the social conditions, under which science communications take place, influence the development of attitudes and opinions about: low- dose exposures, the available management options, control of radiation risks, and preferences for program and policy goals

  16. U.S.Department of energy low dose radiation research program: potential impact on Human health risk from Chornobyl

    International Nuclear Information System (INIS)

    Brooks, A.

    2002-01-01

    Radiation risks from low levels of radiation exposure, cannot be predicted with epidemiological studies alone. Combining advances in technology with those in cell and molecular biology make it possible to detect biological changes after low doses and dose-rates of radiation exposure, such as Chornobyl. Understanding the role of these biological changes in cancer risk may or may not impact radiation protection standards. However, they will help ensure that the standards are both adequate and appropriate

  17. Research on low radiation doses - A better understanding of low doses

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation doses below 100 mSv are called low doses. Epidemiological research on the health hazards of low doses are difficult to do because numerous pathologies, particularly cancer, appear lifelong for genetical or environmental causes without any link with irradiation and it is very difficult to identify the real cause of a cancer. Another concern is that the impact on human health is weak and are observed only after a long period after irradiation. These features make epidemiological studies cumbersome to implement since they require vast cohorts and a very long-term follow-up. The extrapolation of the effects of higher doses to the domain of low doses does not meet reality and it is why the European Union takes part into the financing of such research. In order to gain efficiency, scientists work together through various European networks among them: HLEG (High Level Expert Group On European Low Dose Risk Research) or MELODI (Multidisciplinary European Low Dose Initiative). Several programs are underway or have been recently launched: -) the impact of Cesium contamination on children's health (Epice program), -) the study of the impact of medical imaging on children, -) the study of the health of children living near nuclear facilities, -) the relationship between radon and lung cancer, -) the effect of occupational low radiation doses, -) the effect of uranium dissolved in water on living organisms (Envirhom program). (A.C.)

  18. Low Radiation Dose and Low Cell Dose Increase the Risk of Graft Rejection in a Canine Hematopoietic Stem Cell Transplantation Model.

    Science.gov (United States)

    Lange, Sandra; Steder, Anne; Glass, Änne; Killian, Doreen; Wittmann, Susanne; Machka, Christoph; Werner, Juliane; Schäfer, Stephanie; Roolf, Catrin; Junghanss, Christian

    2016-04-01

    The canine hematopoietic stem cell transplantation (HSCT) model has become accepted in recent decades as a good preclinical model for the development of new transplantation strategies. Information on factors associated with outcome after allogeneic HSCT are a prerequisite for designing new risk-adapted transplantation protocols. Here we report a retrospective analysis aimed at identifying risk factors for allograft rejection in the canine HSCT model. A total of 75 dog leukocyte antigen-identical sibling HSCTs were performed since 2003 on 10 different protocols. Conditioning consisted of total body irradiation at 1.0 Gy (n = 20), 2.0 Gy (n = 40), or 4.5 Gy (n = 15). Bone marrow was infused either intravenously (n = 54) or intraosseously (n = 21). Cyclosporin A alone or different combinations of cyclosporine A, mycophenolate mofetil, and everolimus were used for immunosuppression. A median cell dose of 3.5 (range, 1.0 to 11.8) total nucleated cells (TNCs)/kg was infused. Cox analyses were used to assess the influence of age, weight, radiation dose, donor/recipient sex, type of immunosuppression, and cell dose (TNCs, CD34(+) cells) on allograft rejection. Initial engraftment occurred in all dogs. Forty-two dogs (56%) experienced graft rejection at median of 11 weeks (range, 6 to 56 weeks) after HSCT. Univariate analyses revealed radiation dose, type of immunosuppression, TNC dose, recipient weight, and recipient age as factors influencing long-term engraftment. In multivariate analysis, low radiation dose (P rejection. Peripheral blood mononuclear cell chimerism ≥30% (P = .008) and granulocyte chimerism ≥70% (P = .023) at 4 weeks after HSCT were independent predictors of stable engraftment. In summary, these data indicate that even in low-dose total body irradiation-based regimens, the irradiation dose is important for engraftment. The level of blood chimerism at 4 weeks post-HSCT was predictive of long-term engraftment in the canine HSCT

  19. Assessment of risk from radiation sources

    International Nuclear Information System (INIS)

    Subbaratnam, T.; Madhvanath, U.; Somasundaram, S.

    1976-01-01

    Assessment of risk from exposure to ionizing radiations from man-made radiation sources and nuclear installations has to be viewed from three aspects, namely, dose-effect relationship (genetic and somatic) for humans, calculation of doses or dose-commitments to population groups, assessment of risk to radiation workers and the population at large from the current levels of exposure from nuclear industry and comparison of risk estimates with other industries in a modern society. These aspects are discussed in brief. On the basis of available data, it is shown that estimated incidence of genetic diseases and cancers due to exposure of population to radiation from nuclear industry is negligible in comparison with their natural incidence, and radiation risks to the workers in nuclear industry are much lower than the risks in other occupations. (M.G.B.)

  20. Low-dose extrapolation of radiation health risks: some implications of uncertainty for radiation protection at low doses.

    Science.gov (United States)

    Land, Charles E

    2009-11-01

    Ionizing radiation is a known and well-quantified human cancer risk factor, based on a remarkably consistent body of information from epidemiological studies of exposed populations. Typical examples of risk estimation include use of Japanese atomic bomb survivor data to estimate future risk from radiation-related cancer among American patients receiving multiple computed tomography scans, persons affected by radioactive fallout, or persons whose livelihoods involve some radiation exposure, such as x-ray technicians, interventional radiologists, or shipyard workers. Our estimates of radiation-related risk are uncertain, reflecting statistical variation and our imperfect understanding of crucial assumptions that must be made if we are to apply existing epidemiological data to particular situations. Fortunately, that uncertainty is also highly quantifiable, and can be presented concisely and transparently. Radiation protection is ultimately a political process that involves consent by stakeholders, a diverse group that includes people who might be expected to be risk-averse and concerned with plausible upper limits on risk (how bad could it be?), cost-averse and concerned with lower limits on risk (can you prove there is a nontrivial risk at current dose levels?), or combining both points of view. How radiation-related risk is viewed by individuals and population subgroups also depends very much on perception of related benefit, which might be (for example) medical, economic, altruistic, or nonexistent. The following presentation follows the lead of National Council on Radiation Protection and Measurements (NCRP) Commentary 14, NCRP Report 126, and later documents in treating radiation protection from the viewpoint of quantitative uncertainty analysis.

  1. Cardiovascular risks associated with low dose ionizing particle radiation.

    Directory of Open Access Journals (Sweden)

    Xinhua Yan

    Full Text Available Previous epidemiologic data demonstrate that cardiovascular (CV morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ((1H; 0.5 Gy, 1 GeV and iron ion ((56Fe; 0.15 Gy, 1GeV/nucleon irradiation with and without an acute myocardial ischemia (AMI event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in (56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, (56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  2. New risk estimates at low doses

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1992-01-01

    The age of molecular radiation epidemiology may be at hand. The techniques are available to establish with the degree of precision required to determine whether agent-specific mutations can be identified consistently. A concerted effort to examine radiation-induced changes in as many relevant genes as possible appears to be justified. Cancers in those exposed to low doses of ionizing radiation should be chosen for the investigation. Parallel studies of radiation-induced cancers in experimental animals would not only complement the human studies, but perhaps reveal approaches to extrapolation of risk estimates across species. A caveat should be added to this optimistic view of what molecular studies might contribute to the knotty problem of risk estimates at low doses. The suggestions are made by one with no expertise in the field of molecular biology

  3. We can do better than effective dose for estimating or comparing low-dose radiation risks

    International Nuclear Information System (INIS)

    Brenner, D.J.

    2012-01-01

    The effective dose concept was designed to compare the generic risks of exposure to different radiation fields. More commonly these days, it is used to estimate or compare radiation-induced cancer risks. For various reasons, effective dose represents flawed science: for instance, the tissue-specific weighting factors used to calculate effective dose are a subjective mix of different endpoints; and the marked and differing age and gender dependencies for different health detriment endpoints are not taken into account. This paper suggests that effective dose could be replaced with a new quantity, ‘effective risk’, which, like effective dose, is a weighted sum of equivalent doses to different tissues. Unlike effective dose, where the tissue-dependent weighting factors are a set of generic, subjective committee-defined numbers, the weighting factors for effective risk are simply evaluated tissue-specific lifetime cancer risks per unit equivalent dose. Effective risk, which has the potential to be age and gender specific if desired, would perform the same comparative role as effective dose, be just as easy to estimate, be less prone to misuse, be more directly understandable, and would be based on solid science. An added major advantage is that it gives the users some feel for the actual numerical values of the radiation risks they are trying to control.

  4. Cancer risk from low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, A

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.).

  5. Cancer risk from low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Auvinen, A.

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.)

  6. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  7. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  8. Risk assessment of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Kai, Michiaki

    2012-01-01

    This commentary describes the radiation cancer risk assessed by international organizations other than ICRP, assessed for radon and for internal exposure, in the series from the aspect of radiation protection of explaining the assessments done until ICRP Pub. 103. Statistic significant increase of cancer formation is proved at higher doses than 100-200 mSv. At lower doses, with use of mathematical model, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reported the death probability due to the excess lifetime risk (ELR) at 100 mSv of 0.36-0.77% for solid tumors and 0.03-0.05% for leukemia, and NRC in US, the risk of exposure-induced prevalence and death (REID) per 100 thousands persons of 800 (male)/1,310 (female) and 410/610, respectively. Both are essentially based on findings in A-bomb survivors. The assessment for Rn is described here not on dose. UK and US analyses of pooled raw data in case control studies revealed the significant increase of lung cancer formation at as low level as 100 Bq Rn/m3. Their analyses also showed the significance of smoking, which had been realized as a confounding factor in risk analysis of Rn for uranium miners. The death probability until the age of 85 y was found to be 1.2 x 10 -4 in non-smokers and 24 x 10 -4 in smokers/ Working Level Month (WLM). Increased thyroid cancer incidence has been known in Chernobyl Accident, which is realized as a result of internal exposure of radioiodine; however, the relationship between the internal dose to thyroid and its cancer prevalence resembles that in the case of external exposure. There is no certain evidence against the concept that risk of internal exposure is similar to and/or lower than, the external one although assessment of the internal exposure risk accompanies uncertainty depending on the used model and ingested dose. International Commission on Radiological Protection (ICRP) recommendations hitherto have been important and precious despite

  9. Exposure to low-dose radiation and the risk of breast cancer among women with a familial or genetic predisposition: a meta-analysis

    International Nuclear Information System (INIS)

    Jansen-van der Weide, Marijke C.; Greuter, Marcel J.W.; Pijnappel, Ruud M.; Jansen, Liesbeth; Oosterwijk, Jan C.; Bock, Geertruida H. de

    2010-01-01

    Women with familial or genetic aggregation of breast cancer are offered screening outside the population screening programme. However, the possible benefit of mammography screening could be reduced due to the risk of radiation-induced tumours. A systematic search was conducted addressing the question of how low-dose radiation exposure affects breast cancer risk among high-risk women. A systematic search was conducted for articles addressing breast cancer, mammography screening, radiation and high-risk women. Effects of low-dose radiation on breast cancer risk were presented in terms of pooled odds ratios (OR). Of 127 articles found, 7 were selected for the meta-analysis. Pooled OR revealed an increased risk of breast cancer among high-risk women due to low-dose radiation exposure (OR = 1.3, 95% CI: 0.9- 1.8). Exposure before age 20 (OR = 2.0, 95% CI: 1.3-3.1) or a mean of ≥5 exposures (OR = 1.8, 95% CI: 1.1-3.0) was significantly associated with a higher radiation-induced breast cancer risk. Low-dose radiation increases breast cancer risk among high-risk women. When using low-dose radiation among high-risk women, a careful approach is needed, by means of reducing repeated exposure, avoidance of exposure at a younger age and using non-ionising screening techniques. (orig.)

  10. Assessment of genetic risk for human exposure to radiation

    International Nuclear Information System (INIS)

    Sevcenko, V.A.; Rubanovic, A.V.

    2002-01-01

    Full text: The methodology of assessing the genetic risk of radiation exposure is based on the concept of 'hitting the target' in development of which N.V. Timofeeff-Ressovsky has played and important role. To predict genetic risk posed by irradiation, the U N Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has worked out direct and indirect methods of assessment, extrapolation, integral and palpitation criteria of risk analysis that together permit calculating the risk from human exposure on the basis of data obtained for mice. Based on the reports of UNSCEAR for the period from 1958 to 2001 the paper presents a retrospective analysis of the use of direct methods and the doubling dose method for quantitative determination of the genetic risk of human exposure expressed as different hereditary diseases. As early as 1962 UNSCEAR estimated the doubling dose (a dose causing as many mutations as those occurring spontaneously during one generation) at 1 Gy for cases of exposure to ionizing radiations with low LET at a low dose rate and this value was confirmed in the next UNSCEAR reports up to now. For cases of acute irradiation the doubling dose was estimated at 0,3-0,4 Gy for the period under review. The paper considers the evolution of the concepts of human natural hereditary variability which is a basis for assessing the risk of exposure by the doubling dose method. The level of human natural genetic variability per 1 000 000 newborns is estimated at 738 000 hereditary diseases including mendelian, chromosomal and multifactorial ones. The greatest difficulties in assessing the doubling dose value were found to occur in the case of multifactorial diseases the pheno typical expression of which depends on mutational events in polygenic systems and on numerous environmental factors. The introduction in calculations of the potential recoverability correction factor (RPCF) made it possible to assess the genetic risk taking into account this class of

  11. Influence of dose and its distribution in time on dose-response relationships for low-LET radiation

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This book examines the influence of dose rate and magnitude on the genetic and carcinogenic effects of radiation exposure in animals and man. It systematically examines a broad range of biological effects in simple systems, plants, laboratory animals, and man with special attention given to the effects of prenatal irradiation, changes in life span, and tumorigenesis. An enormous volume of data is provided about human tumorigenesis and the data and shortcomings are summarized. There is an extended general discussion of the consideration in quantitative dose and dose rate relationships and of the limitations of the data and analyses which have led to a linear interpolation of risk at low doses and dose rates. An argument is made for dose rate dependence in tumorigenesis as being consistent with all other radiation effects and for the applicability of Dose Rate Effectiveness Factors (DREF) in providing a more realistic assessment of the risk of radiation carcinogenesis. The report is documented with 24 pages of references. There are numerous graphs and tables, all clear and to the point. This book is a superb review and summary of the data on radiation risks

  12. Information from the National Institute of Radiation Protection about radiation doses and radiation risks at x-ray screening

    International Nuclear Information System (INIS)

    1975-05-01

    This report gives a specification of data concerning radiation doses and risks at x-ray investigations of lungs. The dose estimations are principally based on measurements performed in 1974 by the National Institute of Radiation Protection. The radiation doses at x-ray screening are of that magnitude that the risk for acute radiation injuries is non-existent. At these low doses it has not either been able to prove that the radiation gives long-range effects as changes in the genes or cancer of late appearance. At considerable higher doses, more than tens of thousands of millirads, a risk of cancer appearance at a small part of all irradiated persons has been proved, based on the assumption that the cancer risk is proportional to the radiation dose. Cancer can thus occure at low radiation doses too. Because of the mass radiography in Sweden 1974 about twenty cases of cancer may appear in the future. (M.S.)

  13. The risk of low doses of ionising radiation and the linear no threshold relationship debate

    International Nuclear Information System (INIS)

    Tubiana, M.; Masse, R.; Vathaire, F. de; Averbeck, D.; Aurengo, A.

    2007-01-01

    The ICRP and the B.E.I.R. VII reports recommend a linear no threshold (L.N.T.) relationship for the estimation of cancer excess risk induced by ionising radiations (IR), but the 2005 report of Medicine and Science French Academies concludes that it leads to overestimate of risk for low and very low doses. The bases of L.N.T. are challenged by recent biological and animal experimental studies which show that the defence against IR involves the cell microenvironment and the immunologic system. The defence mechanisms against low doses are different and comparatively more effective than for high doses. Cell death is predominant against low doses. DNA repairing is activated against high doses, in order to preserve tissue functions. These mechanisms provide for multicellular organisms an effective and low cost defence system. The differences between low and high doses defence mechanisms are obvious for alpha emitters which show several greys threshold effects. These differences result in an impairment of epidemiological studies which, for statistical power purpose, amalgamate high and low doses exposure data, since it would imply that cancer IR induction and defence mechanisms are similar in both cases. Low IR dose risk estimates should rely on specific epidemiological studies restricted to low dose exposures and taking precisely into account potential confounding factors. The preliminary synthesis of cohort studies for which low dose data (< 100 mSv) were available show no significant risk excess, neither for solid cancer nor for leukemias. (authors)

  14. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    Zielinski, J. M.; Band, P. R.; Ashmore, P. J.; Jiang, H.; Shilnikova, N. S.; Tait, V. K.; Krewski, D.

    2009-01-01

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  15. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  16. Radiation doses and risks from internal emitters

    International Nuclear Information System (INIS)

    Harrison, John; Day, Philip

    2008-01-01

    This review updates material prepared for the UK Government Committee Examining Radiation Risks from Internal Emitters (CERRIE) and also refers to the new recommendations of the International Commission on Radiological Protection (ICRP) and other recent developments. Two conclusions from CERRIE were that ICRP should clarify and elaborate its advice on the use of its dose quantities, equivalent and effective dose, and that more attention should be paid to uncertainties in dose and risk estimates and their implications. The new ICRP recommendations provide explanations of the calculation and intended purpose of the protection quantities, but further advice on their use would be helpful. The new recommendations refer to the importance of understanding uncertainties in estimates of dose and risk, although methods for doing this are not suggested. Dose coefficients (Sv per Bq intake) for the inhalation or ingestion of radionuclides are published as reference values without uncertainty. The primary purpose of equivalent and effective dose is to enable the summation of doses from different radionuclides and from external sources for comparison with dose limits, constraints and reference levels that relate to stochastic risks of whole-body radiation exposure. Doses are calculated using defined biokinetic and dosimetric models, including reference anatomical data for the organs and tissues of the human body. Radiation weighting factors are used to adjust for the different effectiveness of different radiation types, per unit absorbed dose (Gy), in causing stochastic effects at low doses and dose rates. Tissue weighting factors are used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, providing a simple set of rounded values chosen on the basis of age- and sex-averaged values of relative detriment. While the definition of absorbed dose has the scientific rigour required of a basic physical quantity

  17. Assessment of radiation risks as a result of the Chernobyl accident

    International Nuclear Information System (INIS)

    Ivanov, V.K.

    1998-01-01

    Full text of publication follows: the Government of the former USSR had made decision on establishing common registry of exposed persons in several months after the Chernobyl accident. The registry had served in Medical Radiological Research Centre of Russian Academy of Medical Sciences, Obninsk City till 1992 (the time of dissolution of the USSR). Individual medical and dosimetric information on 659292 persons, including 284907 emergency accident workers (liquidators) had been collected for the period between 1986 and 1991. As of 01.01.1998, National Chernobyl Registry of the Russian Federation has kept individual data on 508236 persons including 167726 liquidators. As it is known, long-term epidemiological study of Hiroshima and Nagasaki A-bomb survivors resulted in statistically significant assessments of radiation risks for induction of cancer at the dose level above 0.5 Gy. Radiation doses after the Chernobyl accident do not exceed 0.3-0.5 Gy. That is why assessment of radiation risks at low radiation doses is a problem of great importance. As a result of the epidemiological studies performed on the basis of the Russian Chernobyl registry we pioneered the assessment of statistically significant radiation risks for induction of cancer at low radiation dose. (author)

  18. Chronic low dose radiation exposure and oxidative stress in radiation workers

    International Nuclear Information System (INIS)

    Ali, S.S.; Bhatt, M.B.; Kulkarni, MM.; Rajan, R.; Singh, B.B.; Venkataraman, G.

    1996-01-01

    Free radicals have been implicated in the pathogenesis of several human diseases. In this study free radical stress due to low dose chronic radiation exposures of radiation workers was examined as a possible atherogenic risk factor. Data on lipid profiles, lipid peroxidation and reduced glutathione content in blood indicated an absence of correlation with radiation doses up to 125 mSv. (author). 13 refs., 1 fig

  19. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on

  20. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie; Haidar, Salwa; Moineddin, Rahim

    2006-01-01

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  1. Radiation in complex exposure situations. Assessing health risks at low levels from concomitant exposures to radiation and chemicals

    International Nuclear Information System (INIS)

    Hornhardt, S.; Jung, T.; Burkart, W.

    2000-01-01

    Health effects from exposures to ionizing radiation are in general the result of complex multi-step reaction chains involving changes and responses on the level of molecules, cells, tissues and organisms. In environmental low dose exposure situations ionizing radiation only contributes a small fraction to the life-long attack on DNA by other exogenous and endogenous genotoxins. Nevertheless, efforts to assess and quantify deleterious effects at low exposure levels are directed mainly towards radiation as a single isolated agent, and rarely towards the concomitant presence of other natural and anthropogenic toxicants. Only these combined exposures may lead to observable health risk effects. In addition they might differ from those expected from simple addition of the individual risks due to interaction. The existing data base on combined effects is rudimentary, mainly descriptive and rarely covers exposure ranges large enough to make direct inferences to present day low dose exposure situations. Therefore, any risk assessment will have to consider the question whether combined effects, i.e. interaction between two or more agents will influence the health outcome from specific exposure situations in such a way that predictions derived from simple standard exposure situations would have to be revised. In view of the multitude of possible interactions between the large number of potentially harmful agents in the human environment, descriptive approaches will have to be supplemented by the use of mechanistic models for critical health endpoints such as cancer. Agents will have to be grouped depending on their physical or chemical mode of action at the molecular and cellular level, to generalize and predict the outcome of combined exposures at low exposure levels and the possibility of interactions. (author)

  2. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  3. Problems linked to effects of ionizing radiations low doses

    International Nuclear Information System (INIS)

    Anon.

    1995-10-01

    The question of exposure to ionizing radiations low doses and risks existing for professional and populations has been asked again, with the recommendations of the International Commission of Radiation Protection (ICRP) to lower the previous standards and agreed as guides to organize radiation protection, by concerned countries and big international organisms. The sciences academy presents an analysis which concerned on epidemiological and dosimetric aspects in risk estimation, on cellular and molecular aspects of response mechanism to irradiation. The observation of absence of carcinogen effects for doses inferior to 200 milli-sieverts and a re-evaluation of data coming from Nagasaki and Hiroshima, lead to revise the methodology of studies to pursue, to appreciate more exactly the effects of low doses, in taking in part, particularly, the dose rate. The progress of molecular and cellular biology showed that the extrapolation from high doses to low doses is not in accordance with actual data. The acknowledge of DNA repair and carcinogenesis should make clearer the debate. (N.C.). 61 refs., 9 annexes

  4. Assessment of the radiation risk from diagnostic radiology

    International Nuclear Information System (INIS)

    Streffer, C.; Mueller, W.U.

    1995-01-01

    In any assessment of radiation risks from diagnostic radiology the main concern is the possible induction of cancer. It now appears to be beyond all doubt that ionizing rays invite the development of cancer in humans. The radiation doses encountered in diagnostic radiology generally vary from 1 to 50 mSv. For this dose range, no measured values are available to ascertain cancer risks from ionizing rays. The effects of such doses must therefore be extrapolated from higher dose levels under consideration of given dose-effect relationships. All relevant figures for diagnostic X-ray measures are therefore mathematically determined approximate values. The stochastic radiation risk following non-homogeneous radiation exposure is assessed on the basis of the effective dose. This dose was originally introduced to ascertain the risk from radioactive substances incorporated at the working place. A secondary intention was to trigger further developmental processes in radiation protection. Due to the difficulties previously outlined and the uncertainties surrounding the determination and assessment of the effective dose from diagnostic X-ray procedures, this dose should merely be used for technological refinements and comaprisons of examination procedures. It appears unreasonable that the effective doses determined for the individual examinations are summed up to obtain a collective effective dose and to multiply this with a risk factor so as to give an approximation of the resulting deaths from cancer. A reasonable alternative is to inform patients subjected to X-ray examinations about the associated radiation dose and to estimate form this the magnitude of the probable radiation risk. (orig./MG) [de

  5. Low doses of ionizing radiation and risk of cardiovascular disease: A review of epidemiological studies

    International Nuclear Information System (INIS)

    Metz-Flamant, C.; Bonaventure, A.; Tirmarche, M.; Laurier, D.; Bernier, M.O.; Milliat, F.

    2009-01-01

    Background While cardiovascular risks associated with high level of ionizing radiation are well-established, long-term effects of low and medium levels of exposure, between 0 and 5 gray (Gy), on the cardiovascular system are debated. Methods Available literature was reviewed considering various populations, such as survivors of atomic bombs, nuclear workers, Chernobyl liquidators, radiologists and radiological technologists and patients exposed for medical reasons. Results A significant increased risk of cardiovascular diseases associated with low doses of ionizing radiation was observed in 13 studies among the 27 analyzed. The ischemic heart diseases risk was detailed in 16 studies and seven of them showed a significant increase. The cerebrovascular risk was significantly increased in five studies among the 12 considered. Conclusion Some epidemiological and experimental data are clearly in favour of an increased cardiovascular risk associated with exposure to low doses. However, given the multi-factorial origin of cardiovascular diseases and the lack of a clear pathophysiologic mechanism, epidemiological results have to be carefully interpreted. Further research should be conducted in this area. (authors)

  6. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  7. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  8. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  9. Competing risk theory and radiation risk assessment

    International Nuclear Information System (INIS)

    Groer, P.G.

    1980-01-01

    New statistical procedures are applied to estimate cumulative distribution functions (c.d.f.), force of mortality, and latent period for radiation-induced malignancies. It is demonstrated that correction for competing risks influences the shape of dose response curves, estimates of the latent period, and of the risk from ionizing radiations. The equivalence of the following concepts is demonstrated: force of mortality, hazard rate, and age or time specific incidence. This equivalence makes it possible to use procedures from reliability analysis and demography for radiation risk assessment. Two methods used by reliability analysts - hazard plotting and total time on test plots - are discussed in some detail and applied to characterize the hazard rate in radiation carcinogenesis. C.d.f.'s with increasing, decreasing, or constant hazard rate have different shapes and are shown to yield different dose-response curves for continuous irradiation. Absolute risk is shown to be a sound estimator only if the force of mortality is constant for the exposed and the control group. Dose-response relationships that use the absolute risk as a measure for the effect turn out to be special cases of dose-response relationships that measure the effect with cumulative incidence. (H.K.)

  10. Molecular alterations in childhood thyroid cancer after Chernobyl accident and low-dose radiation risk

    International Nuclear Information System (INIS)

    Suzuki, Keiji; Mitsutake, Norisato; Yamashita, Shunichi

    2012-01-01

    The linear no-threshold (LNT) model of radiation carcinogenesis has been used for evaluating the risk from radiation exposure. While the epidemiological studies have supported the LNT model at doses above 100 mGy, more uncertainties are still existed in the LNT model at low doses below 100 mGy. Thus, it is urged to clarify the molecular mechanisms underlying radiation carcinogenesis. After the Chernobyl accident in 1986, significant amount of childhood thyroid cancer has emerged in the children living in the contaminated area. As the incidence of sporadic childhood thyroid cancer is very low, it is quite evident that those cancer cases have been induced by radiation exposure caused mainly by the intake of contaminated foods, such as milk. Because genetic alterations in childhood thyroid cancers have extensively been studied, it should provide a unique chance to understand the molecular mechanisms of radiation carcinogenesis. In a current review, molecular signatures obtained from the molecular studies of childhood thyroid cancer after Chernobyl accident have been overviewed, and new roles of radiation exposure in thyroid carcinogenesis will be discussed. (author)

  11. Do we need a new cost/benefit assessment for low radiation doses?

    International Nuclear Information System (INIS)

    Becker, K.

    1997-01-01

    Current cost/benefit estimates related to radiation protection, e.g. regarding the consequences of population exposures after accidents, decommissioning and waste management programs, etc., are based on the linear-no-threshold hypothesis and the related collective dose concept, as recommended in ICRP 60, the Basic Safety Standards (BSS), and EU directives. However, the extrapolation from very high to very low doses is increasingly questioned by radiation scientists for fundamental radiobiological reasons, as well as by epidemiological studies with exposed populations. Moreover, if also applied to natural radiation (e.g. in mining or high natural radiation areas, or radon in buildings), the resulting high costs justify, for ethical as well as socio-economical reasons, a careful analysis of the actual benefits of such measures, to be compared with demonstrable health detriments and the cost/benefit ratio in other public health and risk reduction programs in modern industrial societies. Some aspects of these problems will be discussed briefly, and summarized in questions addressed to the advisory bodies on whose recommendations current regulations are based. As a first step, abolishment of the use of the collective dose concept below about 100 mSv total of ''artificial'' radiation per person of the public, and below 50 mSv p.a. for radiation workers, appears advisable. (author)

  12. Do we need a new cost/benefit assessment for low radiation doses?

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K [DIN German Standards Inst., Berlin (Germany)

    1997-11-01

    Current cost/benefit estimates related to radiation protection, e.g. regarding the consequences of population exposures after accidents, decommissioning and waste management programs, etc., are based on the linear-no-threshold hypothesis and the related collective dose concept, as recommended in ICRP 60, the Basic Safety Standards (BSS), and EU directives. However, the extrapolation from very high to very low doses is increasingly questioned by radiation scientists for fundamental radiobiological reasons, as well as by epidemiological studies with exposed populations. Moreover, if also applied to natural radiation (e.g. in mining or high natural radiation areas, or radon in buildings), the resulting high costs justify, for ethical as well as socio-economical reasons, a careful analysis of the actual benefits of such measures, to be compared with demonstrable health detriments and the cost/benefit ratio in other public health and risk reduction programs in modern industrial societies. Some aspects of these problems will be discussed briefly, and summarized in questions addressed to the advisory bodies on whose recommendations current regulations are based. As a first step, abolishment of the use of the collective dose concept below about 100 mSv total of ``artificial`` radiation per person of the public, and below 50 mSv p.a. for radiation workers, appears advisable. (author). 16 refs.

  13. Nuclear energy and health: and the benefits of low-dose radiation hormesis.

    Science.gov (United States)

    Cuttler, Jerry M; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled.

  14. Dose-stress synergism in cancer risk assessment

    International Nuclear Information System (INIS)

    Pop-Jordanova, N.; Pop-Jordanov, J.

    2001-01-01

    Our hypothesis is that the relatively low risk of cancer or leukaemia from depleted uranium, as predicted by the World Health Organization and the International Atomic Energy Agency, is a result of neglecting the synergism between physico-chemical agents and psychological stress agents (here shortly denoted as dose-stress synergism). We use the modified risk assessment model that comprises a psycho-somatic extension, originally developed by us for assessing the risks of energy sources. Our preliminary meta-analysis of animal and human studies on cancers confirmed the existence of stress effects, including the amplifying synergism. Consequently, the psychological stress can increase the probability of even small toxic chemical or ionizing radiation exposure to produce malignancy. Such dose-stress synergism might influence the health risks among military personnel and the residents in the highly stressful environment in the Balkans. Further investigation is needed to estimate the order of magnitude of these combined effects in particular circumstances. (Original)

  15. Epidemiology and risk assessment for radiation

    International Nuclear Information System (INIS)

    Badwe, R.A.

    2014-01-01

    The hazard and exposures from radiation are known with reasonable accuracy. However, at 'low levels' uncertainty persists as to whether the dose response relationship is linear and whether there is a dose threshold, below which there is no risk. Some have proposed that 'low' exposures to radiation may be beneficial, a hypothesis referred to as 'hormesis'. Over recent decades, various expert groups have adopted linear no-threshold dose-response models for radiation and cancer, based on review of epidemiological and biological evidence. The unexpected epidemic of thyroid cancer among children following the Chernobyl disaster was noticed. The research with epidemiological data and knowledge of the radionuclides to which the children were exposed is needed. Currently a debate concerning potential risks of high frequency electromagnetic radiation from mobile phones illustrates another need for further research

  16. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  17. Three-dimensional dose-response models of risk for radiation injury carcinogenesis

    International Nuclear Information System (INIS)

    Raabe, O.G.

    1988-01-01

    The use of computer graphics in conjunction with three-dimensional models of dose-response relationships for chronic exposure to ionizing radiation dramaticly clarifies the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. As an example, the functionally injurious and carcinogenic responses after systemic uptake of Ra-226 by beagles, mice and people with consequent alpha particle irradiation of the bone are represented by three-dimensional dose-rate/time/response surfaces that demonstrate the contributions with the passage of time of the competing deleterious responses. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each effect. Radiation bone injury predominates at high dose rates and bone cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for bone cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to planning and evaluating epidemiological analyses and experimental studies

  18. What physicians think about the need for informed consent for communicating the risk of cancer from low-dose radiation

    International Nuclear Information System (INIS)

    Karsli, Tijen; Kalra, Mannudeep K.; Self, Julie L.; Rosenfeld, Jason Anders; Butler, Susan; Simoneaux, Stephen

    2009-01-01

    The National Institute of Environmental Health Sciences, a subsidiary of the Food and Drug Administration, has declared that X-ray radiation at low doses is a human carcinogen. The purpose of our study was to determine if informed consent should be obtained for communicating the risk of radiation-induced cancer from radiation-based imaging. Institutional review board approval was obtained for the prospective survey of 456 physicians affiliated with three tertiary hospitals by means of a written questionnaire. Physicians were asked to state their subspecialty, number of years in practice, frequency of referral for CT scanning, level of awareness about the risk of radiation-induced cancer associated with CT, knowledge of whether such information is provided to patients undergoing CT, and opinions about the need for obtaining informed consent as well as who should provide information about the radiation-induced cancer risk to patients. Physicians were also asked to specify their preference among different formats of informed consent for communicating the potential risk of radiation-induced cancer. Statistical analyses were performed using the chi-squared test. Most physicians stated that informed consent should be obtained from patients undergoing radiation-based imaging (71.3%, 325/456) and the radiology department should provide information about the risk of radiation-induced cancer to these patients (54.6%, 249/456). The informed consent format that most physicians agreed with included modifications to the National Institute of Environmental Health Services report on cancer risk from low-dose radiation (20.2%, 92/456) or included information on the risk of cancer from background radiation compared to that from low-dose radiation (39.5%, 180/456). Most physicians do not know if patients are informed about cancer risk from radiation-based imaging in their institutions. However, they believe that informed consent for communicating the risk of radiation-induced cancer

  19. Radioactivity Risk Assessment of Radon and Gamma Dose at One Uranium Tailings Pond in China

    Science.gov (United States)

    Lou, Yalong; Liu, Yong; Peng, Guowen; Zhao, Guodong; Zhang, Yan; Yang, Zhu

    2018-01-01

    A year-long monitoring of gamma radiation effective dose rate and radon concentration had been done in the reservoir area of one uranium tailings pond in Hunan province (The monitoring area included indoor and outdoor area of residential buildings and workshops, tailings dam slope). Afterwards, the annual effective radiation dose of the people in that radiation environment had been calculated based on the results of monitoring, as well as a radiation risk assessment. According to the assessment, gamma radiation effective dose rate and radon concentration in the monitoring area were low, and the annual effective radiation dose was far below the international standard (30mSv), which showed that the radiation would not put the people’s health at risk. However, the annual effective radiation dose of gamma was far above that of radon in the area of uranium tailings pond; therefore, it’s advisable to take quarantine measures in in the area of uranium tailings pond to keep the surrounding residents away from unnecessary ionizing radiation.

  20. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  1. Low dose radiation and ALARA: the potential risks to patients and staff from alpha-therapy

    International Nuclear Information System (INIS)

    Priest, N.D.

    2014-01-01

    This year a new drug containing radium-223, an alpha-emitting radionuclide, was approved for use by the US Food and Drug Administration for the palliative treatment of advanced prostate cancer metastases. Other drugs containing short-lived alpha-emitters are on clinical trial in Europe. Commonly, these employ a radionuclide attached to an antibody that specifically targets tumor cells to produce a highly localized radio-therapeutic dose to the tumor. However, normal tissues within the body will also be irradiated, albeit sometimes at low dose, and the question arises as to whether this presents a significant additional risk to the patient. Similarly, medical staff that handle these radionuclides could receive intakes of the radionuclides. What is the risk to staff? To assess the risk resulting from small tissue alpha-doses the toxicological, both human and animal, database was re-examined. The results of 20 epidemiological and toxicological studies with alpha-emitting radionuclides were analysed. In all cases a polynomial function provided a better fit to the data than a linear, no thresholds function. Also, in 19 cases a threshold dose below which no cancer is seen was indicated. The position of this threshold varied according to cancer type, but was typically in the range 0.1 to 1.0Gy of tissue dose - with a mean of 0.5Gy. It is concluded that alpha-radiation induced tumorogenesis is a threshold response and that as long as tissue doses are kept below these thresholds no additional cancers would be seen in either patients receiving alpha-therapy or in staff exposed to 'spilt' radionuclide. The presence of thresholds questions the appropriateness of current ALARA practices that are mostly used to drive occupational alpha-radiation exposures to as close to zero as possible. (author)

  2. Low dose radiation and ALARA: the potential risks to patients and staff from alpha-therapy

    Energy Technology Data Exchange (ETDEWEB)

    Priest, N.D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    This year a new drug containing radium-223, an alpha-emitting radionuclide, was approved for use by the US Food and Drug Administration for the palliative treatment of advanced prostate cancer metastases. Other drugs containing short-lived alpha-emitters are on clinical trial in Europe. Commonly, these employ a radionuclide attached to an antibody that specifically targets tumor cells to produce a highly localized radio-therapeutic dose to the tumor. However, normal tissues within the body will also be irradiated, albeit sometimes at low dose, and the question arises as to whether this presents a significant additional risk to the patient. Similarly, medical staff that handle these radionuclides could receive intakes of the radionuclides. What is the risk to staff? To assess the risk resulting from small tissue alpha-doses the toxicological, both human and animal, database was re-examined. The results of 20 epidemiological and toxicological studies with alpha-emitting radionuclides were analysed. In all cases a polynomial function provided a better fit to the data than a linear, no thresholds function. Also, in 19 cases a threshold dose below which no cancer is seen was indicated. The position of this threshold varied according to cancer type, but was typically in the range 0.1 to 1.0Gy of tissue dose - with a mean of 0.5Gy. It is concluded that alpha-radiation induced tumorogenesis is a threshold response and that as long as tissue doses are kept below these thresholds no additional cancers would be seen in either patients receiving alpha-therapy or in staff exposed to 'spilt' radionuclide. The presence of thresholds questions the appropriateness of current ALARA practices that are mostly used to drive occupational alpha-radiation exposures to as close to zero as possible. (author)

  3. Why we need new approaches to low-dose risk modeling

    International Nuclear Information System (INIS)

    Alvarez, J.L.; Seiler, F.A.

    1996-01-01

    The linear no-threshold model for radiation effects was introduced as a conservative model for the design of radiation protection programs. The model has persisted not only as the basis for such programs, but has come to be treated as a dogma and is often confused with scientific fact. In this examination a number of serious problems with the linear no-threshold model of radiation carcinogenesis were demonstrated, many of them invalidating the hypothesis. It was shown that the relative risk formalism did not approach 1 as the dose approaches zero. When morality ratios were used instead, the data in the region below 0.3 Sv were systematically below the predictions of the linear model. It was also shown that the data above 0.3 Sv were of little use in formulating a model at low doses. In addition, these data are valid only for doses accumulated at high dose rates, and there is no scientific justification for using the model in low-dose, low-dose-rate extrapolations for purposes of radiation protection. Further examination of model fits to the Japanese survivor data were attempted. Several such models were fit to the data including an unconstrained linear, linear-square root, and Weibull, all of which fit the data better than the relative risk, linear no-threshold model. These fits were used to demonstrate that the linear model systematically over estimates the risk at low doses in the Japanese survivor data set. It is recommended here that an unbiased re-analysis of the data be undertaken and the results used to construct a new model, based on all pertinent data. This model could then form the basis for managing radiation risks in the appropriate regions of dose and dose rate

  4. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  5. The risk philosophy of radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1996-01-01

    The processes of risk assessment and risk evaluation are described. The assumptions behind current radiation risk assessments, which are focused on the probability of attributable death from radiation-induced cancer, are reviewed. These assessments involve projection models to take account of future cancer death in irradiated populations, the transfer of risk estimates between populations and the assumptions necessary to derive risk assessments for low radiation doses from actual observations at high doses. The paper ends with a presentation of the basic radiation protection recommendations of the International Commission on Radiological Protection (ICRP) in the context of a risk philosophy. (author)

  6. Low dose effects of ionizing radiations in in vitro and in vivo biological systems: a multi-scale approach study

    International Nuclear Information System (INIS)

    Antoccia, A.; Berardinelli, F.; Argazzi, E.; Balata, M.; Bedogni, R.

    2011-01-01

    Long-term biological effects of low-dose radiation are little known nowadays and its carcinogenic risk is estimated on the assumption that risk remains linearly proportional to the radiation dose down to low-dose levels. However in the last 20 years this hypothesis has gradually begun to seem in contrast with a huge collection of experimental evidences, which has shown the presence of plethora of non-linear phenomena (including hypersensitivity and induced radioresistance, adaptive response, and non-targeted phenomena like bystander effect and genomic instability) occurring after low-dose irradiation. These phenomena might imply a non-linear behaviour of cancer risk curves in the low-dose region and question the validity of the Linear No-Threshold (LNT) model currently used for cancer risk assessment through extrapolation from existing high-dose data. Moreover only few information is available regarding the effects induced on cryo preserved cells by multi-year background radiation exposure, which might induce a radiation-damage accumulation, due to the inhibition of cellular repair mechanisms. In this framework, the multi-year Excalibur (Exposure effects at low doses of ionizing radiation in biological culture) experiment, funded by INFN-CNS5, has undertaken a multi-scale approach investigation on the biological effects induced in in vitro and in vivo biological systems, in culture and cryo preserved conditions, as a function of radiation quality (X/γ-rays, protons, He-4 ions of various energies) and dose, with particular emphasis on the low-dose region and non-linear phenomena, in terms of different biological endpoints.

  7. Injury of the blood-testies barrier after low-dose-rate chronic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Hoon; Bae Min Ji; Lee, Chang Geun; Yang, Kwang Mo; Jur, Kyu; Kim, Jong Sun [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-04-15

    The systemic effect of radiation increases in proportionally with the dose and dose rate. Little is known concerning the relationships between harmful effects and accumulated dose, which is derived from continuous low-dose rate radiation exposure. Recent our studies show that low-dose-rate chronic radiation exposure (3.49 mGy/h) causes adverse effects in the testis at a dose of 2 Gy (6 mGy/h). However, the mechanism of the low-dose-rate 2 Gy irradiation induced testicular injury remains unclear. The present results indicate that low-dose rate chronic radiation might affect the BTB permeability, possibly by decreasing levels of ZO-1, Occludin-1, and NPC-2. Furthermore, our results suggest that there is a risk of male infertility through BTB impairment even with low-dose-rate radiation if exposure is continuous.

  8. Health effects of low-dose radiation: Molecular, cellular, and biosystem response

    International Nuclear Information System (INIS)

    Pollycove, M.; Paperiello, C.J.

    1997-01-01

    Since the fifties, the prime concern of radiation protection has been protecting DNA from damage. UNSCEAR initiated a focus on biosystem response to damage with its 1994 report, ''Adaptive Responses to Radiation of Cells and Organisms''. The DNA damage-control biosystem is physiologically operative on both metabolic and radiation induced damage, both effected predominantly by free radicals. These adaptive responses are suppressed by high-dose and stimulated by low dose radiation. Increased biosystem efficiently reduces the number of mutations that accumulate during a lifetime and decrease DNA damage-control with resultant aging and malignancy. Several statistically significant epidemiologic studies have shown risk decrements of cancer mortality and mortality from all causes in populations exposed to low-dose radiation. Further biologic and epidemiologic research is needed to establish a valid threshold below which risk decrements occur. (author)

  9. Late effects of low doses and dose rates

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    This paper outlines the spectrum of problems and approaches used in work on the derivation of quantitative prognoses of late effects in man of low doses and dose rates. The origins of principal problems encountered in radiation risks assessments, definitions and explanations of useful quantities, methods of deriving risk factors from biological and epidemiological data, and concepts of risk evaluation and problems of acceptance are individually discussed

  10. Estimates of radiation doses and cancer risk from food intake in Korea

    International Nuclear Information System (INIS)

    Moon, Eun Kyeong; Lee, Won Jin; Ha, Wi Ho; Seo, Song Won; Jin, Young Woo; Jeong, Kyu Hwan; Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil; Choi, Hoon

    2016-01-01

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  11. Estimates of radiation doses and cancer risk from food intake in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Kyeong; Lee, Won Jin [Korea University, Seoul (Korea, Republic of); Ha, Wi Ho; Seo, Song Won; Jin, Young Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Kyu Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Yoon, Hae Jung; Kim, Hyoung Soo; Hwang, Myung Sil [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Choi, Hoon [Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    After the Fukushima Daiichi nuclear power plant accident, a widespread public concern for radiation exposure through the contamination of domestic or imported food has continued worldwide. Because the internal exposure from contaminated food is an important consideration for human health effect, some studies for estimating radiation doses and cancer risk from the Fukushima nuclear accident have been conducted in several countries (1). The aims of the study is to estimate internal radiation dose and lifetime risks of cancer from food ingestion in Korean population. Our findings suggest no discernible increase n radiation doses or excess fatal cancer risk from food ingestion at this stage in Korea, and provide scientific evidence of the risk communication with general public associated with low-dose radiation exposure.

  12. Donor-specific cell-based assays in studying sensitivity to low-dose radiation: a population-based perspective

    Directory of Open Access Journals (Sweden)

    Dora eIl'yasova

    2014-11-01

    Full Text Available Currently, a linear no-threshold model is used to estimate health risks associated with exposure to low-dose radiation, a prevalent exposure in the general population, because the direct estimation from epidemiological studies suffers from uncertainty. This model has been criticized based on unique biology of low-dose radiation. Whether the departure from linearity is toward increased or decreased risk is intensely debated. We present an approach based on individual radiosensitivity testing and discuss how individual radiosensitivity can be assessed with the goal to develop a quantifiable measure of cellular response that can be conducted via high-throughput population testing.

  13. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  14. Human health effects of low doses of ionizing radiation: the BEIR III controversy

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-01-01

    Controversy in the BEIR III Subcommittee on Somatic Effects concerning human health effects of low doses of low-LET radiation has centered on (a) the appropriate dose-response relationship by which extrapolation to low doses of data obtained at relatively high doses should be governed, and (b) the appropriate human evidence which should be the basis of estimation of lifetime cancer risk from radiation exposure. It is shown that the use of the linear no-threshold dose-response relationship for extrapolation purposes is an excellent approximation that is in agreement with widely accepted fundamental radiobiological principles. The appropriate human data for derivation of cancer risks are the composite age-specific risks derived from all epidemiologic studies of human cancer resulting from partial-body and whole-body radiation exposure; this composite is in good agreement with the currently available cancer incidence dose-response data obtained from the Nagasaki Tumor Registry. The current version of BEIR III significantly underestimates the radiation-induced cancer risk because it ignores the effect of high-dose-rate, low-LET radiation on cell survival in relation to cancer induction probability, and because it emphasizes cancer mortality rather than cancer incidence. The controversy and the way in which it was resolved raises important questions about how the public and its representatives can in the future obtain objective scientific evaluations of issues that may have significant economic, social, and political implications

  15. Radiation dose dependent risk of liver cancer mortality in the German uranium miners cohort 1946–2003

    International Nuclear Information System (INIS)

    Dufey, F; Walsh, L; Sogl, M; Tschense, A; Schnelzer, M; Kreuzer, M

    2013-01-01

    An increased risk of mortality from primary liver cancers among uranium miners has been observed in various studies. An analysis of the data from a German uranium miner cohort (the ‘Wismut cohort’) was used to assess the relationship with ionising radiation. To that end the absorbed organ dose due to high and low linear energy transfer radiation was calculated for 58 987 miners with complete information on radiation exposure from a detailed job–exposure matrix. 159 deaths from liver cancer were observed in the follow-up period from 1946 to 2003. Relative risk models with either linear or categorical dependence on high and low linear energy transfer radiation liver doses were fitted by Poisson regression, stratified on age and calendar year. The linear trend of excess relative risk in a model with both low and high linear transfer radiation is −0.8 (95% confidence interval (CI): −3.7, 2.1) Gy −1 and 48.3 (95% CI: −32.0, 128.6) Gy −1 for low and high linear energy transfer radiation, respectively, and thus not statistically significant for either dose. The increase of excess relative risk with equivalent liver dose is 0.57 (95% CI: −0.69, 1.82) Sv −1 . Adjustment for arsenic only had a negligible effect on the radiation risk. In conclusion, there is only weak evidence for an increase of liver cancer mortality with increasing radiation dose in the German uranium miners cohort considered. However, both a lack of statistical power and potential misclassification of primary liver cancer are issues. (paper)

  16. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    Trivedi, A.

    1990-12-01

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  17. The importance of radiation risk assessment

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1979-01-01

    In its Publication 26, ICRP recommends a system of radiation dose limitation that is designed to ensure adequate protection from the harmful effects of radiation in conditions both of occupational and of environmental exposure. Clearly, however, no such system can be recommended or accepted as sufficiently safe unless the risks of the resultant exposures have been quantitatively assessed. Publication 26 reflects the increasing quantitative information that is now available on (a) carcinogenic risks of radiation in man, both from exposure of the whole body and from that of individual organs, at moderate exposures; (b) theoretical bases for inference of risk, from moderate to lower exposures; (c) genetic risks in the mouse, and inferences from such risks to those in man; (d) the dose equivalent levels at which certain non-stochastic effects may be induced. Despite a number of uncertainties, substantially improved estimates can therefore be made of the levels of safety that are likely to be achieved by observing the Commission's recommended dose limits, and the associated system of limitation of exposures to levels as low as reasonably achievable below these limits. Both for occupational exposure and for the exposure of the members of the public, these estimates are expressed in Publication 26 in terms of the risk of inducing fatal malignancies or serious hereditary ill health. These frequencies are compared with those of occupational fatalities in other industries or with accidental fatalities amongst the general public. The comparison between harm from radiation and from other agents in different industries is extended in ICRP-27 (on ''Problems Involved in Developing an Index of Harm'') in a review of the time lost through occupational diseases and non-fatal accidents, as well as from fatal diseases and accidents, so that the levels of safety achievable by the Commission's recommendations can be reviewed in the general perspective of occupational safety. (author)

  18. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  19. Low-dose ionizing radiation – is it harmful to health?

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, A. H. [CERN Radiation Protection Group (European Organization for Nuclear Research (CERN))

    1987-09-15

    A conference on the health effects of low-dose ionizing radiation organized in London earlier this year by the British Nuclear Energy Society brought together epidemiologists who have been investigating the mortality of workers from the nuclear industry in an attempt to put low-level radiation risk estimates on a scientific basis.

  20. Stereotactic body radiation therapy for low- and low-intermediate risk prostate cancer: Is there a dose effect?

    Directory of Open Access Journals (Sweden)

    Alan Jay Katz

    2011-12-01

    Full Text Available This study examines the efficacy and toxicity of two stereotactic body radiation therapy (SBRT dose regimens for treatment of early prostate cancer. Forty-one patients treated with 35 Gy were matched with 41 patients treated with 36.25 Gy. Both patient groups received SBRT in 5 fractions over 5 consecutive days using the CyberKnife. Each group had 37 low-risk patients and 4 intermediate-risk patients. No statistically significant differences were present for age, prostate volume, PSA, Gleason score, stage, or risk between the groups. The dose was prescribed to the 83-87% isodose line to cover the prostate and a 5-mm margin all around, except 3 mm posteriorly. The overall median follow-up is 51 months (range, 45-58 months with a median 54 months and 48 months follow-up for the 35-Gy and 36.25-Gy dose groups, respectively. One biochemical failure occurred in each group yielding a 97.5% freedom from biochemical failure. The PSA response has been favorable for all patients with a mean PSA of 0.1 ng/ml at 4-years. Overall toxicity has been mild with 5% late grade 2 rectal toxicity in both dose groups. Late grade 1 urinary toxicity was equivalent between groups; grade 2 urinary toxicity was 5% (2/41 patients and 10% (4/41 patients in the 35-Gy and 36.25-Gy dose groups (p = 0.6969, respectively. Overall, the highly favorable PSA response, limited biochemical failures, limited toxicity, and limited impact on quality of life in these low- to low-intermediate-risk patients are supportive of excellent long-term results for CyberKnife delivered SBRT.

  1. Doses of low level ionizing radiation; a misunderstood risk, however unavoidable

    International Nuclear Information System (INIS)

    Nicolli, D.

    1988-01-01

    The treatment given by international organizations and associations to the problems of radiation exposures, and the recommendations and norms for calculating risks of low level radiation are analysed. It is shown that there are not zero risks for nuclear energy, and emphasis is given to the risks of natural radiation from environment. (M.C.K.) [pt

  2. Clarifying the paradigm for protection against low radiation doses; retrospective attribution of effects vis-á-vis prospective inference of risk

    International Nuclear Information System (INIS)

    González, Abel J.

    2014-01-01

    The aim of this paper is to describe a relatively recent international agreement on the vastly debated concepts of: attributing health effects to low-dose radiation exposure situations that have occurred in the past; and, inferring radiation risk to low-dose radiation exposure situations that are planned to occur in the future. An important global consensus has been recently achieved on these fundamental issues at the level of the highest international intergovernmental body, the United Nations. The General Assembly of the United Nations has welcomed with appreciation a scientific report on attributing health effects to radiation exposure and inferring risks that had been prepared by its United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). This paper presents the author's personal views on this extraordinary development.

  3. Risk of Low Dose/Low Dose Rate Ionizing Radiation to Humans Symposium Annual Meeting of the Environmental Mutagen Society: Agenda and Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Veigl, Martina L. [Environmental Mutagen Society (EMS), Reston, VA (United States); Case Western Reserve Univ., Cleveland, OH (United States). Case Comprehensive Cancer Center; Morgan, William F. [Univ. of Maryland, College Park, MD (United States); Schwartz, Jeffrey L. [Univ. of Washington, Seattle, WA (United States)

    2009-11-11

    The low dose symposium thoughtfully addressed controversy of risk from low dose radiation exposure, hormesis and radon therapy. The stem cell symposium cogently considered the role of DNA damage and repair in hematopoietic stem cells underlying aging and malignancy and provocatively presented evidence that stem cells may have distinct morphologies and replicative properties, as well as special roles in cancer initiation. In the epigenetics symposium, studies illustrated the long range interaction of epigenetic mechanisms, the roles of CTCF and BORIS in region/specific regulation of epigenetic processes, the impact of DNA damage on epigenetic processes as well as links between epigenetic mechanisms and early nutrition and bystander effects. This report shows the agenda and abstracts for this symposium.

  4. Review of the controversy on risks from low levels of radiation

    International Nuclear Information System (INIS)

    Higson, D.

    2001-01-01

    The need for regulation of low levels of radiation exposure, and the estimation of risks from such exposures, are based on the assumption that risk is proportional to dose without a threshold, the 'linear no-threshold (LNT) hypothesis'. This assumption is not supported by scientific data. There is no clear evidence of harm from low levels of exposure, up to at least 20 mSv (acute dose) or total dose rates of at least 50 mSv per year. Even allowing for reasonable extrapolation from radiation levels at which harmful effects have been observed, the LNT assumption should not be used to estimate risks from doses less than 100 mSv. Laboratory and epidemiological evidence, and evolutionary expectations of biological effects from low level radiation, suggest that beneficial health effects (sometimes called 'radiation hormesis') are at least as likely as harmful effects from such exposures. Controversy on this matter strikes at the basis of radiation protection practice

  5. A review of the uncertainties in internal radiation dose assessment for inhaled thorium

    International Nuclear Information System (INIS)

    Hewson, G.S.

    1989-01-01

    Present assessments of internal radiation dose to designated radiation workers in the mineral sands industry, calculated using ICRP 26/30 methodology and data, indicate that some workers approach and exceed statutory radiation dose limits. Such exposures are indicative of the need for a critical assessment of work and operational procedures and also of metabolic and dosimetric models used to estimate internal dose. This paper reviews past occupational exposure experience with inhaled thorium compounds, examines uncertainties in the underlying radiation protection models, and indicates the effect of alternative assumptions on the calculation of committed effective dose equivalent. The extremely low recommended inhalation limits for thorium in air do not appear to be well supported by studies on the health status of former thorium refinery workers who were exposed to thorium well in excess of presently accepted limits. The effect of cautious model assumptions is shown to result in internal dose assessments that could be up to an order of magnitude too high. It is concluded that the effect of such uncertainty constrains the usefulness of internal dose estimates as a reliable indicator of actual health risk. 26 refs., 5 figs., 3 tabs

  6. Radiation induced bystander effects: mechanisms and implication for low dose radiation risk assessment

    International Nuclear Information System (INIS)

    Hei, T.L.; Randers-Pehrson, G.; Zhou, H.

    2003-01-01

    Using a precision microbeam to target an exact fraction of cells in a population and irradiated their nuclei with exactly one alpha particle each, we found that the frequencies of induced mutations and chromosomal changes in populations where some known fractions of nuclei were hit are consistent with non-hit cells contributing significantly to the response. In fact, irradiation of 10% of a mammalian cell population with a single alpha particle per cell results in a mutant yield similar to that observed when all of the cells in the population are irradiated. Although the bystander observations have been well established, the underlying mechanism(s) remain largely unknown. There are indications that multiple pathways are involved in the bystander phenomenon and different cell types respond differently to the bystander signaling. In confluent monolayers, there is evident that gap junctional communication is crucial in mediating the bystander effect whereas reactive oxygen and reactive nitrogen species have been implicated as the mediating molecules in sub-confluent cultures. Although p53 is not necessary for the expression of bystander effect, there is evident that repair deficient cells may express a higher bystander response. Using cDNA microarrays, a number of cellular signaling genes have been shown to be differentially expressed among bystander cells. The functional roles of these genes in the bystander effect will be discussed. The bystander observations imply that the relevant target for various radiobiological endpoints is larger than an individual cell and suggest a need to reconsider the validity of the linear extrapolation in making risk estimate for low dose radiation exposure. (Work supported by NIH grants CA 49062 and CA-RR11623)

  7. Radiation induced cancer: risk assessment and prevention

    International Nuclear Information System (INIS)

    Shore, R.E.

    1984-01-01

    A number of factors have to be considered in defining the cancer risk from ionizing radiation. These include the radiation sensitivity of the target tissue(s), the temporal pattern of risk, the shape of the dose-incidence curve, the effects of low dose rates, host susceptibility factors, and synergism with other environmental exposures. For the population as a whole the largest sources of radiation exposure are natural background radiation and medical/dental radiation. Radiation exposures in the medical field make up the largest volume of occupational exposures as well. Although new technologies offer opportunities to lower exposures, worker training, careful exposure monitoring with remedial feedback, and monitoring to prevent unnecessary radiodiagnostic procedures may be even more important means of reducing radiation exposure. Screening of irradiated populations can serve a useful preventive function, but only for those who have received very high doses

  8. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  9. Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface

    Science.gov (United States)

    Cucinotta, Francis A.; Hu, Shaowen; Nounu, Hateni N.; Kim, Myung-Hee

    2011-01-01

    The integration of human space applications risk projection models of organ dose and acute radiation risk has been a key problem. NASA has developed an organ dose projection model using the BRYNTRN with SUM DOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUM DOSE are a Baryon transport code and an output data processing code, respectively. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN. A GUI for the ARR and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. BRYNTRN code operation requires extensive input preparation. Only a graphical user interface (GUI) can handle input and output for BRYNTRN to the response models easily and correctly. The purpose of the GUI development for ARRBOD is to provide seamless integration of input and output manipulations for the operations of projection modules (BRYNTRN, SLMDOSE, and the ARR probabilistic response model) in assessing the acute risk and the organ doses of significant Solar Particle Events (SPEs). The assessment of astronauts radiation risk from SPE is in support of mission design and operational planning to manage radiation risks in future space missions. The ARRBOD GUI can identify the proper shielding solutions using the gender-specific organ dose assessments in order to avoid ARR symptoms, and to stay within the current NASA short-term dose limits. The quantified evaluation of ARR severities based on any given shielding configuration and a specified EVA or other mission

  10. Cancer and low dose responses In Vivo: implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2006-12-15

    This paper discusses the linear no-threshold (LNT) hypothesis, risk prediction and radiation protection. The summary implications for the radiation protection system are that at low doses the conceptual basis of the present system appears to be incorrect. The belief that the current system embodies the precautionary principle and that the LNT assumption is cautious appears incorrect. The concept of dose additivity appears incorrect. Effective dose (Sievert) and the weighting factors on which it is based appear to be invalid. There may be no constant and appropriate value of DDREF for radiological protection dosimetry. The use of dose as a predictor of risk needs to be re-examined. The use of dose limits as a means of limiting risk need to be re-evaluated.

  11. Low dose irradiation and biological defense mechanisms

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Sagan, L.A.; Aoyama, Takashi

    1992-01-01

    It has been generally accepted in the context of radiation protection that ionizing radiation has some adverse effect even at low doses. However, epidemiological studies of human populations cannot definitively show its existence or absence. Furthermore, recent studies of populations living in areas of different background radiation levels reported some decrease in adverse health effects at high background levels. Genetic studies of atomic bomb survivors failed to produce statistically significant findings on the mutagenic effects of ionizing radiation. A British study however, suggests that a father's exposure to low dose radiation on the job may increase his children's risk of leukemia. On the other hand, many experimental studies have raised the possibility that low doses of ionizing radiation may not be harmful or may even produce stimulating or adaptive responses. The term 'hormesis' has come to be used to describe these phenomena produced by low doses of ionizing radiation when they were beneficial for the organisms studied. At the end of the International Conference on Low Dose Irradiation one conclusion appeared to be justified: radiation produces an adaptive response, though it is not universally detected yet. The conference failed to obtain any consensus on risk assessment at low doses, but raised many problems to be dealt with by future studies. The editors therefore believe that the Proceedings will be useful for all scientists and people concerned with radiation protection and the biological effects of low-dose irradiation

  12. Biological effects of low-dose ionizing radiation exposure; Biologische Wirkungen niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst (comps.)

    2009-07-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  13. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  14. The carcinogenic risks of low-LET and high-LET ionizing radiations

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1991-08-01

    This report presents a discussion on risk from ionizing radiations to human populations. Important new information on human beings has come mainly from further follow-up of existing epidemiological studies, notably the Japanese atomic bomb survivors and the ankylosing spondylitis patients; from new epidemiological surveys, such as the patients treated for cancer of the uterine cervix; and from combined surveys, including workers exposed in underground mines. Since the numerous and complex differences among the different study populations introduce factors that influence the risk estimates derived in ways that are not completely understood, it is not clear how to combine the different risk estimates obtained. These factors involve complex biological and physical variables distributed over time. Because such carcinogenic effects occur too infrequently to be demonstrated at low doses, the risks of low-dose radiation can be estimated only by interpolation from observations at high doses on the basis of theoretical concepts, mathematical models and available empirical evidence, primarily the epidemiological surveys of large populations exposed to ionizing radiation. In spite of a considerable amount of research, only recently has there has been efforts to apply the extensive laboratory data in animals to define the dose-incidence relationship in the low dose region. There simply are insufficient data in the epidemiological studies of large human populations to estimate risk coefficients directly from exposure to low doses. The risk estimates for the carcinogenic effects of radiation have been, in the past, somewhat low and reassessment of the numerical values is now necessary

  15. Assessment and recording of radiation doses to workers

    International Nuclear Information System (INIS)

    1986-01-01

    The assessment and recording of the radiation exposure of workers in activities involving radiation risks are required for demonstrating compliance with institutional dose limitations and for a number of other complementary purposes. A significant proportion of the labor force involved in radiation work is currently represented by those specialised workers who operate as itinerant contractors for different nuclear installations and in different countries. In order to ensure that the exposure of these workers is adequately and consistently controlled and kept within acceptable limits, there is a need for the criteria and methods for dose assessment and recording to be harmonised throughout the different countries. An attempt in that direction has been made in this report, which has been prepared by a group of experts convened by the Committee on Radiation Protection and Public Health of the OECD Nuclear Energy Agency. Its primary purpose is to describe recommended technical procedures for an unified approach to the assessment and recording of worker doses. The report is published under the responsibility of the Secretary-General of the OECD, and does not commit Member governments

  16. Biological evidence of low ionizing radiation doses; Biologischer Nachweis niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mirsch, Johanna

    2017-03-17

    vivo experiments with mice confirmed the physiological relevance of our cellular studies and suggests that the cellular radical level is critical for efficient DSB repair after low doses. In the third project, the inhomogeneous distribution of radon within the body of the mouse was investigated using a biological approach for the first time. To determine the distribution of radon, the DSBs induced by the decay of radon and its daughter nucleotides were quantified in several tissues. Radon is a naturally occurring noble gas, which can be found all over the world in different concentrations and contributes significantly to the natural radiation exposure of the population. Although the exposure to radon is a well-characterized risk factor for the development of lung cancer, radon is a popular remedy for the treatment of patients suffering from painful inflammatory diseases. Since conditions for the animal experiments were comparable to radon therapy sessions, the experimentally detected doses in the organs reflect their therapy-associated radiation exposure. Knowledge of the inhomogeneous radon distribution within the body and its resulting biological effects will help to shed light on the underlying mechanism that results in the therapeutic effect during the treatment of inflammatory diseases. The extensive biological data obtained here generally provides the unique possibility to verify and optimise mathematical models for risk assessment of radon exposures. Collectively, the three projects of this thesis investigated consequences of the exposure to low radiation doses. The controversy surrounding the effects of low doses is still standing and the presented results support the view that every exposure leads to non-negligible biological effects. Therefore, detailed knowledge of radiation effects is essential for the therapeutic application as well as for radiation protection.

  17. Long term effects of low doses of ionising radiation: facts and fallacies

    International Nuclear Information System (INIS)

    Iyer, G.K.

    1993-01-01

    Health effects of low doses of ionising radiation have been a public concern. The public perception of these low effects is that it causes cancer and genetic effects. Enormous amount of work regarding this cancer has been done all over the world, on occupational workers exposed to low doses of ionising radiation. These studies do not show any adverse effect on them. Epidemiological studies done on members of public staying near nuclear facilities also have shown that there is no health risk involved in staying near these facilities. Genetic effects have also shown negative results. These two aspects of health effects of low dose of radiation are discussed in detail. (author). 5 refs., 1 tab

  18. Low dose epidemiology

    International Nuclear Information System (INIS)

    Tirmarche, M.; Hubert, P.

    1992-01-01

    Actually, epidemiological studies have to establish if the assessment of cancer risk can be verified at low chronic radiation doses. The population surveillance must be very long, the side effects and cancers of such radiation appearing much later. In France, this epidemiological study on nuclear workers have been decided recently. Before describing the experiment and french projects in epidemiology of nuclear workers, the authors present the main english and american studies

  19. Radiobiological research at its best. Does a low radiation dose involve risks?

    International Nuclear Information System (INIS)

    Baatout, S.; Jacquet, P.; Derradji, H.

    2011-01-01

    Radiotherapy, radiation protection, nuclear medicine, etc.: there is a growing interest in radio(bio)logy in the health care sector. The number of medical treatments with ionising radiation per year will increase even more. It is therefore increasingly important to closely monitor the possible harmful effects of low radiation doses.

  20. Radiation therapy for stage IIA and IIB testicular seminoma: peripheral dose calculations and risk assessments

    Science.gov (United States)

    Mazonakis, Michalis; Berris, Theocharris; Lyraraki, Efrossyni; Damilakis, John

    2015-03-01

    This study was conducted to calculate the peripheral dose to critical structures and assess the radiation risks from modern radiotherapy for stage IIA/IIB testicular seminoma. A Monte Carlo code was used for treatment simulation on a computational phantom representing an average adult. The initial treatment phase involved anteroposterior and posteroanaterior modified dog-leg fields exposing para-aortic and ipsilateral iliac lymph nodes followed by a cone-down phase for nodal mass irradiation. Peripheral doses were calculated using different modified dog-leg field dimensions and an extended conventional dog-leg portal. The risk models of the BEIR-VII report and ICRP-103 were combined with dosimetric calculations to estimate the probability of developing stochastic effects. Radiotherapy for stage IIA seminoma with a target dose of 30 Gy resulted in a range of 23.0-603.7 mGy to non-targeted peripheral tissues and organs. The corresponding range for treatment of stage IIB disease to a cumulative dose of 36 Gy was 24.2-633.9 mGy. A dose variation of less than 13% was found by altering the field dimensions. Radiotherapy with the conventional instead of the modern modified dog-leg field increased the peripheral dose up to 8.2 times. The calculated heart doses of 589.0-632.9 mGy may increase the risk for developing cardiovascular diseases whereas the testicular dose of more than 231.9 mGy may lead to a temporary infertility. The probability of birth abnormalities in the offspring of cancer survivors was below 0.13% which is much lower than the spontaneous mutation rate. Abdominoplevic irradiation may increase the lifetime intrinsic risk for the induction of secondary malignancies by 0.6-3.9% depending upon the site of interest, patient’s age and tumor dose. Radiotherapy for stage IIA/IIB seminoma with restricted fields and low doses is associated with an increased morbidity. These data may allow the definition of a risk-adapted follow-up scheme for long

  1. Radiation risk estimation

    International Nuclear Information System (INIS)

    Roberts, P.B.

    1981-11-01

    This report outlines the major publications between 1976 and 1981 that have contributed to the evolution of the way in which radiation risks (cancer and hereditary birth defects) are assessed. The publications include the latest findings of the UNSCEAR, BEIR and ICRP committees, epidemiological studies at low doses and new assessments of the doses received by the Japanese A-bomb survivors. This report is not a detailed critique of those publications, but it highlights the impact of their findings on risk assessment

  2. Validity of the linear no-threshold theory of radiation carcinogenesis at low doses

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1999-01-01

    A great deal is known about the cancer risk of high radiation doses from studies of Japanese A-bomb survivors, patients exposed for medical therapy, occupational exposures, etc. But the vast majority of important applications deal with much lower doses, usually accumulated at much lower dose rates, referred to as 'low-level radiation' (LLR). Conventionally, the cancer risk from LLR has been estimated by the use of linear no-threshold theory (LNT). For example, it is assumed that the cancer risk from 0 01 Sr (100 mrem) of dose is 0 01 times the risk from 1 Sv (100 rem). In recent years, the former risk estimates have often been reduced by a 'dose and dose rate reduction factor', which is taken to be a factor of 2. But otherwise, the LNT is frequently used for doses as low as one hundred-thousandth of those for which there is direct evidence of cancer induction by radiation. It is the origin of the commonly used expression 'no level of radiation is safe' and the consequent public fear of LLR. The importance of this use of the LNT can not be exaggerated and is used in many applications in the nuclear industry. The LNT paradigm has also been carried over to chemical carcinogens, leading to severe restrictions on use of cleaning fluids, organic chemicals, pesticides, etc. If the LNT were abandoned for radiation, it would probably also be abandoned for chemical carcinogens. In view of these facts, it is important to consider the validity of the LNT. That is the purpose of this paper. (author)

  3. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  4. Physics must join with biology in better assessing risk from low-dose irradiation

    International Nuclear Information System (INIS)

    Feinendegen, L. E.; Neumann, R. D.

    2005-01-01

    This review summarises the complex response of mammalian cells and tissues to low doses of ionising radiation. This thesis encompasses induction of DNA damage, and adaptive protection against both renewed damage and against propagation of damage from the basic level of biological organisation to the clinical expression of detriment. The induction of DNA damage at low radiation doses apparently is proportional to absorbed dose at the physical/chemical level. However, any propagation of such damage to higher levels of biological organisation inherently follows a sigmoid function. Moreover, low-dose-induced inhibition of damage propagation is not linear, but instead follows a dose-effect function typical for adaptive protection, after an initial rapid rise it disappears at doses higher than ∼0.1-0.2 Gy to cells. The particular biological response duality at low radiation doses precludes the validity of the linear-no-threshold hypothesis in the attempt to relate absorbed dose to cancer. In fact, theory and observation support not only a lower cancer incidence than expected from the linear-no-threshold hypothesis, but also a reduction of spontaneously occurring cancer, a hormetic response, in the healthy individual. (authors)

  5. Implications of effects ''adaptive response'', ''low-dose hypersensitivity'' und ''bystander effect'' for cancer risk at low doses and low dose rates

    International Nuclear Information System (INIS)

    Jacob, P

    2006-01-01

    A model for carcinogenesis (the TSCE model) was applied in order to examine the effects of ''Low-dose hypersensitivity (LDH)'' and the ''Bystander effect (BE)'' on the derivation of radiation related cancer mortality risks. LDH has been discovered to occur in the inactivation of cells after acute exposure to low LET radiation. A corresponding version of the TSCE model was applied to the mortality data on the Abomb survivors from Hiroshima and Nagasaki. The BE has been mainly observed in cells after exposure to high LET radiation. A Version of the TSCE model which included the BE was applied to the data on lung cancer mortality from the workers at the Mayak nuclear facilities who were exposed to Plutonium. In general an equally good description of the A-bomb survivor mortality data (for all solid, stomach and lung tumours) was found for the TSCE model and the (conventional) empirical models but fewer parameters were necessary for the TSCE model. The TSCE model which included the effects of radiation induced cell killing resulted in non-linear dose response curves with excess relative risks after exposure at young ages that were generally lower than in the models without cell killing. The main results from TSCE models which included cell killing described by either conventional survival curves or LDH were very similar. A sub multiplicative effect from the interaction of smoking and exposure to plutonium was found to result from the analysis of the Mayak lung cancer mortality data. All models examined resulted in the predominant number of Mayak lung cancer deaths being ascribed to smoking. The interaction between smoking and plutonium exposures was found to be the second largest effect. The TSCE model resulted in lower estimates for the lung cancer excess relative risk per unit plutonium dose than the empirical risk model, but this difference was not found to be statistically significant. The excess relative risk dose responses were linear in the empirical model and

  6. Epidemiological studies on the effects of low-level ionizing radiation on cancer risk

    International Nuclear Information System (INIS)

    Akiba, Suminori

    2010-01-01

    The health effects of low-level ionizing radiation are yet unclear. As pointed out by Upton in his review (Upton, 1989), low-level ionizing radiation seems to have different biological effects from what high-level radiation has. If so, the hazard identification of ionizing radiation should he conducted separately for low- and high-level ionizing radiation; the hazard identification of low-level radiation is yet to be completed. What makes hazard identification of ionizing radiation difficult, particularly in the case of carcinogenic effect, is the difficulty in distinguishing radiation-induced cancer from other cancers with respect to clinicopathological features and molecular biological characteristics. Actually, it is suspected that radiation-induced carcinogenesis involves mechanisms not specific for radiation, such as oxidative stress. Excess risk per dose in medium-high dose ranges can be extrapolated to a low-dose range if dose-response can be described by the linear-non-threshold model. The cancer risk data of atomic-bomb survivors describes leukemia risk with a linear-quadratic (LQ) model and solid-cancer risk with linear non-threshold (LNT) model. The LQ model for leukemia and the LNT model for solid cancer correspond to the two-hit model and the one-hit model, respectively. Although the one-hit model is an unlikely dose-response for carcinogenesis, there is no convincing epidemiological evidence supporting the LQ model or non-threshold model for solid cancer. It should be pointed out, however, even if the true dose response is non-linear various noises involved in epidemiological data may mask the truth. In this paper, the potential contribution of epidemiological studies on nuclear workers and residents in high background radiation areas will be discussed. (author)

  7. Studies of health effects of low dose radiation and its application to medicare

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Ishida, Kenji; Iwasaki, Toshiyasu; Koana, Takao; Magae, Junji; Watanabe, Masami; Sakamoto, Kiyohiko

    2008-01-01

    The articles contain following 7 topics of low dose radiation effects. Studies of Health Effects of Low dose Radiation and Its Application to Medicare'', describes the indication of Rn therapy and investigations of its usefulness mechanism mainly in Misasa Spa, Okayama Pref. ''Challenges for the Paradigm Shift (CRIEPI Studies)'', introduces studies against the paradigm that radiation dose is linearly and proportionally hazardous. ''Studies of High Background Radiation Area (CRIEPI Studies)'', describes global HBRA studies on chromosome affection and effect of smoking in HBRA. ''Is the Radiation Effect on Man Proportional to Dose? (CRIEPI Studies)'', describes studies of immature sperm irradiated at low dose against Linear-Non-threshold Theory (LNT) hypothesis. ''Induction of Radiation Resistance by Low Dose Radiation and Assessment of Its Effect in Models of Human Diseases (CRIEPI Studies)'', explains the adoptive response in radiation effect, suppression of carcinogenesis and immune regulation by previous low dose radiation in the mouse, and improvement of diabetes in the db/db mouse. ''Modulation of Biological Effects of Low Dose Radiation: Adoptive Response, Bystander Effect, Genetic Instability and Radiation Hormesis'', summarizes findings of each item. ''Cancer Treatment with Low dose Radiation to the Whole Body'', describes basic studies in the mouse tumor in relation to suppression of carcinogenesis and metastasis, immune activation and treatment, and successful clinical studies in patients with ovary, colon cancers and malignant lymphoma where survival has been significantly improved: a base of recent European Organization for Research and Treatment of Cancer (EORTC) clinical trials. The mechanism is essentially based on immune activation of patients to cure the disease. (R.T.)

  8. Perception of low dose radiation risks among radiation researchers in Korea

    Science.gov (United States)

    Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert’s risk evaluation of radiation exposure strongly influences the public’s risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts’ radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual’s opinions have often exacerbated the public’s confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years’ research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects risk perception of radiation exposure. PMID:28166286

  9. Risks of low-level radiation - the evidence of epidemiology

    International Nuclear Information System (INIS)

    Gloag, D.

    1980-01-01

    The difficulties involved in estimating risks from very low levels of radiation and the use of dose-response models for cancer incidence are discussed with reference to the third BEIR Committee report on the Effects on Populations of Exposure to low levels of Ionizing Radiation (1980). Cancer risk estimates derived from different epidemiological studies are reviewed. They include atom bomb survivors, medically irradiated groups and occupational groups. (36 references). (author)

  10. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose

  11. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    International Nuclear Information System (INIS)

    Kettunen, A.

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose to a

  12. Radiation dose and cancer risk among pediatric patients undergoing interventional neuroradiology procedures

    International Nuclear Information System (INIS)

    Thierry-Chef, Isabelle; Simon, Steven L.; Miller, Donald L.

    2006-01-01

    During interventional neuroradiology procedures, patients can be exposed to moderate to high levels of radiation. Special considerations are required to protect children, who are generally more sensitive to the short- and long-term detrimental effects of radiation exposure. Estimates of dose to the skin of children from certain interventional procedures have been published elsewhere, but we are not aware of data on dose to the brain or on the long-term risk of cancer from brain radiation. Our goals were to estimate radiation doses to the brain in 50 pediatric patients who had undergone cerebral embolization and to assess their lifetime risks of developing radiation-related brain cancer. Entrance-peak skin dose and various assumptions on conditions of exposure were used as input for dosimetric calculations to estimate the spatial pattern of dose within the brain and the average dose to the whole brain for each child. The average dose and the age of the child at time of exposure were used to estimate the lifetime risk of developing radiation-related brain cancer. Among the 50 patients, average radiation doses to the brain were estimated to vary from 100 mGy to 1,300 mGy if exposed to non-collimated fields and from 20 mGy to 160 mGy for collimated, moving fields. The lifetime risk of developing brain cancer was estimated to be increased by 2% to 80% as a result of the exposure. Given the very small lifetime background risk of brain tumor, the excess number of cases will be small even though the relative increase might be as high as 80%. ALARA principles of collimation and dose optimization are the most effective means to minimize the risk of future radiation-related cancer. (orig.)

  13. On possible risks of low-dose irradiation

    International Nuclear Information System (INIS)

    Hug, O.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Neuherberg/Muenchen

    1974-01-01

    The survey on more recent experimental and epidemiological data and newer concepts for a realistic estimation of the radiation risk leads to the conclusion that for radiation late damages and possibly also for genetic damages with a chronical radiation exposure in the order of magnitude of the natural radiation exposure and probably also in the order of magnitude of the maximum permissible radiation dose, the risk is very probably lower than is to be expected based on the findings after relatively high doses and dose rates. A few less direct comparative studies have detected a time factor of 3 to 5. Considering the analysis of the RBW demely ionizing radiation which at high doses is not greater than 3, increases with decreasing dose and according to biophysical considerations, can possibly reach a value of 30, an effectiveness reduced by a factor of 10 of small doses and dose rates of loosely ionizing radiation would be even to be expected. All radiobiological knowledge on the effect of ionizing radiation allows one to expect that even smallest radiation doses can cause cellular damages due to the linear irreversable components of the radiation effect and probably that these damages can even be the starting point of a malignant tumour. Regarding this cancer-initiating effect however, the effectiveness of loosely ionizing radiation per rad in the region of natural radiation exposure lie considerably below that existing at high doses and dose rates. Whether however this initial carcinogenic effect of very small doses is at all noticeable during the average life duration in an increase of the spontaneous age-specific tumour rate is questionable if the assumption is confirmed that with decreasing dose, the time manifestation of the radiation induced tumours is delayed. (orig./LH) [de

  14. Estimation of radiation exposure from lung cancer screening program with low-dose computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Yeon; Jun, Jae Kwan [Graduate School of Cancer Science and Policy, National Cancer Center, Seoul (Korea, Republic of)

    2016-12-15

    The National Lung Screening Trial (NLST) demonstrated that screening with Low-dose Computed Tomography (LDCT) screening reduced lung cancer mortality in a high-risk population. Recently, the United States Preventive Services Task Force (USPSTF) gave a B recommendation for annual LDCT screening for individuals at high-risk. With the promising results, Korea developed lung cancer screening guideline and is planning a pilot study for implementation of national lung cancer screening. With widespread adoption of lung cancer screening with LDCT, there are concerns about harms of screening, including high false-positive rates and radiation exposure. Over the 3 rounds of screening in the NLST, 96.4% of positive results were false-positives. Although the initial screening is performed at low dose, subsequent diagnostic examinations following positive results additively contribute to patient's lifetime exposure. As with implementing a large-scale screening program, there is a lack of established risk assessment about the effect of radiation exposure from long-term screening program. Thus, the purpose of this study was to estimate cumulative radiation exposure of annual LDCT lung cancer screening program over 20-year period.

  15. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.

    2011-01-01

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  16. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  17. Energies, health, medicine. Low radiation doses

    International Nuclear Information System (INIS)

    2004-01-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  18. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  19. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  20. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek

    2007-07-01

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  1. [Use of ionizing radiation sources in metallurgy: risk assessment].

    Science.gov (United States)

    Giugni, U

    2012-01-01

    Use of ionizing radiation sources in the metallurgical industry: risk assessment. Radioactive sources and fixed or mobile X-ray equipment are used for both process and quality control. The use of ionizing radiation sources requires careful risk assessment. The text lists the characteristics of the sources and the legal requirements, and contains a description of the documentation required and the methods used for risk assessment. It describes how to estimate the doses to operators and the relevant classification criteria used for the purpose of radiation protection. Training programs must be organized in close collaboration between the radiation protection expert and the occupational physician.

  2. Mammography-oncogenecity at low doses

    International Nuclear Information System (INIS)

    Heyes, G J; Mill, A J; Charles, M W

    2009-01-01

    dose exposure, it is not a low dose rate examination, and protraction of dose should not be confused with fractionation. Although there is potential for a suppressive effect at low doses, recent epidemiological data, and several international radiation risk assessments, continue to promote the linear no-threshold (LNT) model. Finally, recent studies have shown that magnetic resonance imaging (MRI) is more sensitive than mammography in detecting invasive breast cancer in women with a genetic sensitivity. Since an increase in the risk associated with mammographic screening would blur the justification of exposure for this high risk subgroup, the use of other (non-ionising) screening modalities is preferable.

  3. A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure.

    Directory of Open Access Journals (Sweden)

    Mark P Little

    2009-10-01

    Full Text Available Atherosclerosis is the main cause of coronary heart disease and stroke, the two major causes of death in developed society. There is emerging evidence of excess risk of cardiovascular disease at low radiation doses in various occupationally exposed groups receiving small daily radiation doses. Assuming that they are causal, the mechanisms for effects of chronic fractionated radiation exposures on cardiovascular disease are unclear. We outline a spatial reaction-diffusion model for atherosclerosis and perform stability analysis, based wherever possible on human data. We show that a predicted consequence of multiple small radiation doses is to cause mean chemo-attractant (MCP-1 concentration to increase linearly with cumulative dose. The main driver for the increase in MCP-1 is monocyte death, and consequent reduction in MCP-1 degradation. The radiation-induced risks predicted by the model are quantitatively consistent with those observed in a number of occupationally-exposed groups. The changes in equilibrium MCP-1 concentrations with low density lipoprotein cholesterol concentration are also consistent with experimental and epidemiologic data. This proposed mechanism would be experimentally testable. If true, it also has substantive implications for radiological protection, which at present does not take cardiovascular disease into account. The Japanese A-bomb survivor data implies that cardiovascular disease and cancer mortality contribute similarly to radiogenic risk. The major uncertainty in assessing the low-dose risk of cardiovascular disease is the shape of the dose response relationship, which is unclear in the Japanese data. The analysis of the present paper suggests that linear extrapolation would be appropriate for this endpoint.

  4. Recent international regulations: low dose-low rate radiation protection and the demise of reason.

    Science.gov (United States)

    Okkalides, Demetrios

    2008-01-01

    The radiation protection measures suggested by the International Committee for Radiation Protection (ICRP), national regulating bodies and experts, have been becoming ever more strict despite the decrease of any information supporting the existence of the Linear no Threshold model (LNT) and of any adverse effects of Low Dose Low Rate (LDLR) irradiation. This tendency arises from the disproportionate response of human society to hazards that are currently in fashion and is unreasonable. The 1 mSv/year dose limit for the public suggested by the ICRP corresponds to a 1/18,181 detriment-adjusted cancer risk and is much lower than other hazards that are faced by modern societies such as e.g. driving and smoking which carry corresponding rate risks of 1/2,100 and 1/2,000. Even worldwide deadly work accidents rate is higher at 1/ 8,065. Such excessive safety measures against minimal risks from man made radiation sources divert resources from very real and much greater hazards. In addition they undermine research and development of radiation technology and tend to subjugate science and the quest for understanding nature to phobic practices.

  5. Neoplastic transformation in vitro by low doses of ionizing radiation: Role of adaptive response and bystander effects

    International Nuclear Information System (INIS)

    Ko, M.; Lao, X.-Y.; Kapadia, R.; Elmore, E.; Redpath, J.L.

    2006-01-01

    The shape of the dose-response curve for cancer induction by low doses of ionizing radiation is of critical importance to the assessment of cancer risk at such doses. Epidemiologic analyses are limited by sensitivity to doses typically greater than 50-100 mGy for low LET radiation. Laboratory studies allow for the examination of lower doses using cancer-relevant endpoints. One such endpoint is neoplastic transformation in vitro. It is known that this endpoint is responsive to both adaptive response and bystander effects. The relative balance of these processes is likely to play an important role in determining the shape of the dose-response curve at low doses. A factor that may influence this balance is cell density at time of irradiation. The findings reported in this paper indicate that the transformation suppressive effect of low doses previously seen following irradiation of sub-confluent cultures, and attributed to an adaptive response, is reduced for irradiated confluent cultures. However, even under these conditions designed to optimize the role of bystander effects the data do not fit a linear no-threshold model and are still consistent with the notion of a threshold dose for neoplastic transformation in vitro by low LET radiation

  6. Mortality from diseases other than cancer following low doses of ionizing radiation

    DEFF Research Database (Denmark)

    Vrijheid, M; Cardis, E; Ashmore, P

    2007-01-01

    BACKGROUND: Ionizing radiation at very high (radio-therapeutic) dose levels can cause diseases other than cancer, particularly heart diseases. There is increasing evidence that doses of the order of a few sievert (Sv) may also increase the risk of non-cancer diseases. It is not known, however......, whether such effects also occur following the lower doses and dose rates of public health concern. METHODS: We used data from an international (15-country) nuclear workers cohort study to evaluate whether mortality from diseases other than cancer is related to low doses of external ionizing radiation....... Analyses included 275 312 workers with adequate information on socioeconomic status, over 4 million person-years of follow-up and an average cumulative radiation dose of 20.7 mSv; 11 255 workers had died of non-cancer diseases. RESULTS: The excess relative risk (ERR) per Sv was 0.24 [95% CI (confidence...

  7. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  8. Implications for human and environmental health of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Mothersill, Carmel; Seymour, Colin

    2014-01-01

    The last 20 years have seen a major paradigm shift in radiation biology. Several discoveries challenge the DNA centric view which holds that DNA damage is the critical effect of radiation irrespective of dose. This theory leads to the assumption that dose and effect are simply linked – the more energy deposition, the more DNA damage and the greater the biological effect. This is embodied in radiation protection (RP) regulations as the linear-non-threshold (LNT) model. However the science underlying the LNT model is being challenged particularly in relation to the environment because it is now clear that at low doses of concern in RP, cells, tissues and organisms respond to radiation by inducing responses which are not readily predictable by dose. These include adaptive responses, bystander effects, genomic instability and low dose hypersensitivity, and are commonly described as stress responses, while recognizing that “stress” can be good as well as bad. The phenomena contribute to observed radiation responses and appear to be influenced by genetic, epigenetic and environmental factors, meaning that dose and response are not simply related. The question is whether our discovery of these phenomena means that we need to re-evaluate RP approaches. The so-called “non-targeted” mechanisms mean that low dose radiobiology is very complex and supra linear or sub-linear (even hormetic) responses are possible but their occurrence is unpredictable for any given system level. Issues which may need consideration are synergistic or antagonistic effects of other pollutants. RP, at present, only looks at radiation dose but the new (NTE) radiobiology means that chemical or physical agents, which interfere with tissue responses to low doses of radiation, could critically modulate the predicted risk. Similarly, the “health” of the organism could determine the effect of a given low dose by enabling or disabling a critical response. These issues will be discussed

  9. Perception of low dose radiation risks among radiation researchers in Korea.

    Science.gov (United States)

    Seong, Ki Moon; Kwon, TaeWoo; Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert's risk evaluation of radiation exposure strongly influences the public's risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts' radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual's opinions have often exacerbated the public's confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years' research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects perception of radiation exposure.

  10. Radiation protection standards: A practical exercise in risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Roger H [National Radiological Protection Board (United Kingdom)

    1992-07-01

    Within 12 months of the discovery of x-rays in 1895, it was reported that large doses of radiation were harmful to living human tissues. The first radiation protection standards were set to avoid the early effects of acute irradiation. By the 1950s, evidence was mounting for late somatic effects - mainly a small excess of cancers - in irradiated populations. In the late 1980's, sufficient human epidemiological data had been accumulated to allow a comprehensive assessment of carcinogenic radiation risks following the delivery of moderately high doses. Workers and the public are exposed to lower doses and dose-rates than the groups from whom good data are available so that risks have had to be estimated for protection purposes. However, in the 1990s, some confirmation of these risk factors has been derived occupationally exposed populations. If an estimate is made of the risk per unit dose, then in order to set dose limits, an unacceptable level of risk must be established for both workers and the public. There has been and continues to be a debate about the definitions of 'acceptable' and 'tolerable' and the attributing of numerical values to these definitions. This paper discusses the issues involved in the quantification of these terms and their application to setting dose limits on risk grounds. Conclusions are drawn about the present protection standards and the application of the methods to other fields of risk assessment. (author)

  11. Radiation protection standards: A practical exercise in risk assessment

    International Nuclear Information System (INIS)

    Clarke, Roger H.

    1992-01-01

    Within 12 months of the discovery of x-rays in 1895, it was reported that large doses of radiation were harmful to living human tissues. The first radiation protection standards were set to avoid the early effects of acute irradiation. By the 1950s, evidence was mounting for late somatic effects - mainly a small excess of cancers - in irradiated populations. In the late 1980's, sufficient human epidemiological data had been accumulated to allow a comprehensive assessment of carcinogenic radiation risks following the delivery of moderately high doses. Workers and the public are exposed to lower doses and dose-rates than the groups from whom good data are available so that risks have had to be estimated for protection purposes. However, in the 1990s, some confirmation of these risk factors has been derived occupationally exposed populations. If an estimate is made of the risk per unit dose, then in order to set dose limits, an unacceptable level of risk must be established for both workers and the public. There has been and continues to be a debate about the definitions of 'acceptable' and 'tolerable' and the attributing of numerical values to these definitions. This paper discusses the issues involved in the quantification of these terms and their application to setting dose limits on risk grounds. Conclusions are drawn about the present protection standards and the application of the methods to other fields of risk assessment. (author)

  12. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    Energy Technology Data Exchange (ETDEWEB)

    Neubeck, Claere von [German Cancer Consortium DKTK partner site Dresden, OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Geniza, Matthew J. [Molecular and Cellular Biology Program, Oregon State University, Corvallis OR 97331 (United States); Kauer, Paula M.; Robinson, R. Joe; Chrisler, William B. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland WA 99352 (United States); Sowa, Marianne B., E-mail: marianne.sowa@pnnl.gov [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland WA 99352 (United States)

    2015-05-15

    Highlights: • Low doses of high LET radiation influence skin homeostasis. • Effects on proliferation and differentiation profiles are LET dependent. • Skin barrier function is not compromised following low dose exposure. - Abstract: Outside the protection of Earth's atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin's barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.

  13. Low-dose x-radiation and congenital anomalies

    International Nuclear Information System (INIS)

    Kameyama, Yoshiro

    1983-01-01

    Among radiation effects on developing embryos and fetuses, occurrence of germinal mutation due to exposure of the gonads and postnatal manifestation of neoplasms are considered to be stochastic effects from the aspect of radiation protection. On the other hand, somatic effects such as teratogenic and embryo-toxic effects can be regarded as nonstochastic ones with threshold doses. In experimental teratological studies with mice and rats, the lowest radiation doses for manifestation of the non-stochastic somatic effects which have been recognized so far are:5 rad for resorption of preimplantation embryos; 5-10 rad for acute cytological changes such as pyknosis, cytoplasmic degeneration and mitotic delay; 5 rad for increasing frequency of spontaneous minor anomalies of the skeleton; 15-20 rad for malformations of the eye, brain and spinal cord; 20-25 rad for histogenetic and functional disorders of the central nervous system; and 20-25 rad for impaired fertility. Pregnant women who are subject to X-ray examinations are much concerned about potential hazard of radiation to their offspring in utero. The above experimental findings suggest that the possibility of non-stochastic somatic effects of diagnostic radiation on human embryos and fetuses is extremely low, and probably negligible, given the proper dose control measures. Possible effects which should be considered for risk evaluation of diagnostic exposure are two stochastic effects, carcinogenic and mutagenic. (author)

  14. Understanding and characterisation of the risks to human health from exposure to low levels of radiation

    International Nuclear Information System (INIS)

    Goodhead, D. T.

    2009-01-01

    Exposure to ionising radiation can lead to a wide variety of health effects. Cancer is judged to be the main risk from radiation at low doses and low dose rates, and controlling this risk has been the main factor in developing radiation protection practice. Conventional paradigms of radiobiology and radiation carcinogenesis have served to guide extrapolations of epidemiological data on exposed human populations, so as to estimate risks at low doses and low dose rates, to other types of ionising radiation and to non-uniform exposures. These paradigms are founded on a century of experimental and theoretical studies, but nevertheless there remain many uncertainties. Major assumptions and simplifications have been introduced to achieve a practical system of additive doses (and implied risks) for radiation protection. Advancing epidemiological studies and experimental research continue to reduce uncertainties in some areas while, in others, they raise new challenges to the generality and applicability of the conventional paradigms. (authors)

  15. Second International MELODI Workshop on Low Dose Risk Research - Slides of the presentations

    International Nuclear Information System (INIS)

    Repussard, J.; Weiss, W.; Quintana Trias, O.; Rosario Perez, M. del; Andersen, M.; Rudiger Trott, K.; Ottolenghi, A.; Smyth, V.; Graw, J.; Little, M.P.; Yonai, S.; Barcellos-Hoff, M.H.; Bouffler, S.; Chevillard, S.; Jeggo, P.; Sabatier, L.; Baatout, S.; Niwa, O.; Oesch, F.; Atkinson, M.; Averbeck, D.; Lloyd, D.; O'Neill, P.

    2011-01-01

    The MELODI (Multidisciplinary European Low Dose Initiative) mission is to impulse low dose risk research in Europe through a strategic research agenda (SRA) and road-map of priorities. The last presentation is dedicated to the SRA and its preference research programs. The other presentations deal principally with the low-dose exposure in medical uses of ionizing radiations, radiosensitivity, radiation-induced cataracts, or epidemiology and radiobiology of cardiovascular disease. This document is composed of the slides of the presentations

  16. Charophyte electrogenesis as a biomarker for assessing the risk from low-dose ionizing radiation to a single plant cell

    International Nuclear Information System (INIS)

    Sevriukova, Olga; Kanapeckaite, Auste; Lapeikaite, Indre; Kisnieriene, Vilma; Ladygiene, Rima; Sakalauskas, Vidmantas

    2014-01-01

    The impact of low-dose ionizing radiation on the electrical signalling pattern and membrane properties of the characea Nitellopsis obtusa was examined using conventional glass-microelectrode and voltage-clamp techniques. The giant cell was exposed to a ubiquitous radionuclide of high biological importance – tritium – for low-dose irradiation. Tritium was applied as tritiated water with an activity concentration of 15 kBq L −1 (an external dose rate that is approximately 0.05 μGy h −1 above the background radiation level); experiments indicated that this was the lowest effective concentration. Investigating the dynamics of electrical excitation of the plasma membrane (action potential) showed that exposing Characeae to tritium for half an hour prolonged the repolarization phase of the action potential by approximately 35%: the repolarization rate decreased from 39.2 ± 3.1 mV s −1 to 25.5 ± 1,8 mV s −1 due to tritium. Voltage-clamp measurements showed that the tritium exposure decreased the Cl – efflux and Ca 2+ influx involved in generating an action potential by approximately 27% (Δ = 12.4 ± 1.1 μA cm −2 ) and 64% (Δ = −5.3 ± 0.4 μA cm −2 ), respectively. The measured alterations in the action potential dynamics and in the chloride and calcium ion transport due to the exogenous low-dose tritium exposure provide the basis for predicting possible further impairments of plasma membrane regulatory functions, which subsequently disturb essential physiological processes of the plant cell. - Highlights: • We show some cellular details of the impact of low-dose ionizing radiation on biota. • Giant green algae cells provides a useful tool for studying HTO toxicity to a single plant cell. • Rapid real-time electrophysiological methods allowed to determine low dose tritium effect on transmembrane ion fluxes. • Pattern of charophyte cell membrane electrical excitation encodes tritium-caused alteration in cell homeostasis

  17. Assessment of health risks from exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1982-01-01

    Rapid development in the assessment of health risks from exposure to ionizing radiation has produced an impressive array of risk differentials of presumed biologic significance. In the human data these differentials involve: (1) the variety of cancer, especially its size; (2) host factors, especially age; (3) time following exposure; (4) magnitude of dose; and (5) type of radiation. From experimental work we may presume that dose-rate also plays a role, especially for sparsely ionizing radiation. Current research is extending the scope of differentials with respect to these and other variables, including cell type and concomitant environmental risk factors, and testing dose-response models suggested by experimental and theoretical work. As facts to be explained, differentials in risk may lead to hypotheses to be explored experimentally and improve our understanding of how ionizing radiation causes cancer. 74 references

  18. Techniques for detecting and determining risks from low-level radiation

    International Nuclear Information System (INIS)

    Boice, J.D.

    1980-01-01

    Epidemiology is the study of disease in man. In evaluating radiation hazards, analytic studies have utilized the cohort type of investigation (where persons exposed and not exposed to radiation are followed forward in time for determination of disease experience) or case-control approaches (where persons with and without a specific disease are evaluated for previous exposure to radiation). Most radiation studies have evaluated cohorts (e.g., radiologists), although important case-control studies have been conducted (e.g., childhood leukemia as related to prenatal x ray). At its best, epidemiology is capable fo evaluating relative risks (RR) on the order of 1.4 (i.e., a 40% relative excess). However, the RRs of interest following low doses of radiation (1 rad) are on the order of 1.02-1.002. Thus, not much should be anticipated from direct observations at 1 rad, and indirect approaches must be taken to estimate low-dose effects. Such indirect approaches include evaluating 1) populations exposed to a range of doses, both low and high, where interpolation models can be reasonably applied to estimate low-dose effects; and 2) populations exposed to fractionated doses over a long period of time where the resulting dose-effect relationship theoretically should be linear and the estimation of low-level health effects facilitated

  19. Assessing local patients' knowledge and awareness of radiation dose and risks associated with medical imaging: a questionnaire study

    International Nuclear Information System (INIS)

    Sin, Ho-kwan; Wong, Chun-Sing; Huang, Bingsheng; Yiu, Ka-ling; Wong, Wai-lam; Chu, Yin Ching Tiffany

    2013-01-01

    To assess the awareness of radiation dose and associated risks caused by radiological procedures among local patients. All subjects were recruited by randomly sampling the patients receiving radiological examinations. These subjects were stratified on age, sex and education. The questionnaire was in Chinese and consisted of 28 questions mostly in multiple choice/true-or-false format, divided into three sections examining demographic data, radiation knowledge/awareness and expectations. A total of 173 questionnaires were returned (83 females and 84 females; mean age of 53). Of these, 32.6% had attended college, 32.6% had completed matriculation and 24.4% secondary school. Most subjects underwent CT (75), MRI (70) and PET-CT (18). Education significantly affected the radiation knowledge (P=0.013). 60.7% and 32.7% were not aware of the radiation-free nature of MRI and USG, respectively. Respectively, 45.4% and 43.5% were of the misconception that Barium enema and Barium swallow studies do not involve radiation. Moreover, 77.6% and 87.9% were aware of the radiation-laden nature of CT and plain X-rays, respectively. Furthermore, 34% and 50%, respectively, think that they are not exposed to radiation at home and on a plane. Regarding the fatal cancer risk from CT, 17.8% chose the correct answer and 62% underestimated the risk. 32.2% correctly estimated the equivalent dose of CT in terms of number of conventional X-rays and 43.2% underestimated the dose. Most (98.2%) were told of the indication, and 42.7% were told the associated radiation dose. Patient radiation awareness is unsatisfactory. There is need to increase patient radiation awareness, and to provide them with the necessary information.

  20. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  1. Thyroid Radiation Dose and Other Risk Factors of Thyroid Carcinoma Following Childhood Cancer.

    Science.gov (United States)

    de Vathaire, Florent; Haddy, Nadia; Allodji, Rodrigue S; Hawkins, Mike; Guibout, Catherine; El-Fayech, Chiraz; Teinturier, Cécile; Oberlin, Odile; Pacquement, Hélène; Diop, Fara; Kalhouche, Amar; Benadjaoud, Mohamedamine; Winter, David; Jackson, Angela; Bezin Mai-Quynh, Giao; Benabdennebi, Aymen; Llanas, Damien; Veres, Cristina; Munzer, Martine; Nguyen, Tan Dat; Bondiau, Pierre-Yves; Berchery, Delphine; Laprie, Anne; Deutsch, Eric; Lefkopoulos, Dimitri; Schlumberger, Martin; Diallo, Ibrahima; Rubino, Carole

    2015-11-01

    Thyroid carcinoma is a frequent complication of childhood cancer radiotherapy. The dose response to thyroid radiation dose is now well established, but the potential modifier effect of other factors requires additional investigation. This study aimed to investigate the role of potential modifiers of the dose response. We followed a cohort of 4338 5-year survivors of solid childhood cancer treated before 1986 over an average of 27 years. The dose received by the thyroid gland and some other anatomical sites during radiotherapy was estimated after reconstruction of the actual conditions in which irradiation was delivered. Fifty-five patients developed thyroid carcinoma. The risk of thyroid carcinoma increased with a radiation dose to the thyroid of up to two tenths of Gy, then leveled off for higher doses. When taking into account the thyroid radiation dose, a surgical or radiological splenectomy (>20 Gy to the spleen) increased thyroid cancer risk (relative risk [RR] = 2.3; 95% confidence interval [CI], 1.3-4.0), high radiation doses (>5 Gy) to pituitary gland lowered this risk (RR = 0.2; 95% CI, 0.1-0.6). Patients who received nitrosourea chemotherapy had a 6.6-fold (95% CI, 2.5-15.7) higher risk than those who did not. The excess RR per Gy of radiation to the thyroid was 4.7 (95% CI, 1.7-22.6). It was 7.6 (95% CI, 1.6-33.3) if body mass index at time of interview was equal or higher than 25 kg/m(2), and 4.1 (95% CI, 0.9-17.7) if not (P for interaction = .1). Predicting thyroid cancer risk following childhood cancer radiation therapy probably requires the assessment of more than just the radiation dose to the thyroid. Chemotherapy, splenectomy, radiation dose to pituitary gland, and obesity also play a role.

  2. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  3. The Thule accident: Assessment of radiation doses from terrestrial radioactive contamination

    International Nuclear Information System (INIS)

    Ulbak, K.

    2011-12-01

    Risoe DTU has carried out research on the terrestrial contamination in the Thule area after the radioactive contents of four nuclear weapons were dispersed following the crash of an American B-52 bomber in 1968. The results of Risoe DTU's studies are described in the report Thule-2007 - Investigation of radioactive pollution on land, which covers all measurements that were carried out on land in Thule in the years 2003, 2006, 2007 and 2008. The present report uses Risoe DTU's report as a basis for assessing radiation doses and consequently the risk for individuals as a result of terrestrial radioactive contamination in the Thule area. The assessment of radiation doses involves a number of conservative assumptions, estimates, and measurements, all of which are subject to considerable uncertainty. In some cases, models have been used based on experiences from other contaminated areas elsewhere in the world, which are subject to climatic and other conditions that diverge from those in the Thule area. The calculated doses are thus associated with considerable uncertainty, which must be taken into account when the results are used for comparison and when the risks of staying in the Thule area are assessed. It has therefore been chosen to provide the assessed radiation doses in the form of indicative orders of magnitude, which are applicable to everyone who might stay in the area, across various age groups. If the estimated doses in this report are combined with the National Institute of Radiation Protections recommended reference level for contamination as a result of the Thule Accident of 1 mSv/year, the assessed magnitudes of radiation doses for inhalation and ingestion as exposure pathways are many orders of magnitude below the reference level (10,00010 million times smaller). The wound contamination exposure pathway has a magnitude of radiation dose that is smaller than the reference level by a factor of 101000, and it should be recalled that the probability of this

  4. The Thule accident: Assessment of radiation doses from terrestrial radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ulbak, K. (National Institute of Radiation Protection, Herlev (Denmark))

    2011-12-15

    Risoe DTU has carried out research on the terrestrial contamination in the Thule area after the radioactive contents of four nuclear weapons were dispersed following the crash of an American B-52 bomber in 1968. The results of Risoe DTU's studies are described in the report Thule-2007 - Investigation of radioactive pollution on land, which covers all measurements that were carried out on land in Thule in the years 2003, 2006, 2007 and 2008. The present report uses Risoe DTU's report as a basis for assessing radiation doses and consequently the risk for individuals as a result of terrestrial radioactive contamination in the Thule area. The assessment of radiation doses involves a number of conservative assumptions, estimates, and measurements, all of which are subject to considerable uncertainty. In some cases, models have been used based on experiences from other contaminated areas elsewhere in the world, which are subject to climatic and other conditions that diverge from those in the Thule area. The calculated doses are thus associated with considerable uncertainty, which must be taken into account when the results are used for comparison and when the risks of staying in the Thule area are assessed. It has therefore been chosen to provide the assessed radiation doses in the form of indicative orders of magnitude, which are applicable to everyone who might stay in the area, across various age groups. If the estimated doses in this report are combined with the National Institute of Radiation Protection's recommended reference level for contamination as a result of the Thule Accident of 1 mSv/year, the assessed magnitudes of radiation doses for inhalation and ingestion as exposure pathways are many orders of magnitude below the reference level (10,000-10 million times smaller). The wound contamination exposure pathway has a magnitude of radiation dose that is smaller than the reference level by a factor of 10-1000, and it should be recalled that the

  5. Radiation protection and environment day the low doses in everyday life

    International Nuclear Information System (INIS)

    2007-01-01

    The consequences of low doses exposures are difficult to explore and the studies give often place to controversies. According to the are, differences exist in the methodological approaches. It results from it a confusion on the acceptable levels of exposure, even on the definition of low dose. This day organised by the sections 'non ionizing and research and health of the French society of radiation protection (S.F.R.P.), will be a meeting between professionals of different disciplines, to compare the approaches used for the ionizing and non ionizing radiations as well as the chemical and microbiological agents. It will allow to share the knowledge and the abilities and to progress on methodologies adapted to the evaluation and the management of risks in relation with low doses. (N.C.)

  6. Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation

    International Nuclear Information System (INIS)

    DeWeese, Theodore L.; Walsh, Jonathan C.; Dillehay, Larry E.; Kessis, Theodore D.; Hedrick, Lora; Cho, Kathleen R.; Nelson, William G.

    1997-01-01

    Purpose: Low-dose-rate radiation therapy has been widely used in the treatment of urogenital malignancies. When continuously exposed to low-dose-rate ionizing radiation, target cancer cells typically exhibit abnormalities in replicative cell-cycle progression. Cancer cells that arrest in the G2 phase of the cell cycle when irradiated may become exquisitely sensitive to killing by further low-dose-rate radiation treatment. Oncogenic human papillomaviruses (HPVs), which play a major role in the pathogenesis of uterine cervix cancers and other urogenital cancers, encode E6 and E7 transforming proteins known to abrogate a p53-dependent G1 cell-cycle checkpoint activated by conventional acute-dose radiation exposure. This study examined whether expression of HPV E6 and E7 oncoproteins by cancer cells alters the cell-cycle redistribution patterns accompanying low-dose-rate radiation treatment, and whether such alterations in cell-cycle redistribution affect cancer cell killing. Methods and Materials: RKO carcinoma cells, which contain wild-type P53 alleles, and RKO cell sublines genetically engineered to express HPV E6 and E7 oncoproteins, were treated with low-dose-rate (0.25-Gy/h) radiation and then assessed for p53 and p21WAF1/CIP1 polypeptide induction by immunoblot analysis, for cell-cycle redistribution by flow cytometry, and for cytotoxicity by clonogenic survival assay. Results: Low-dose-rate radiation of RKO carcinoma cells triggered p53 polypeptide elevations, p21WAF1/CIP1 induction, and arrest in the G1 and G2 phases of the cell cycle. In contrast, RKO cells expressing E6 and E7 transforming proteins from high-risk oncogenic HPVs (HPV 16) arrested in G2, but failed to arrest in G1, when treated with low-dose-rate ionizing radiation. Abrogation of the G1 cell-cycle checkpoint activated by low-dose-rate radiation exposure appeared to be a characteristic feature of transforming proteins from high-risk oncogenic HPVs: RKO cells expressing E6 from a low-risk

  7. Dose response curves for effects of low-level radiation

    International Nuclear Information System (INIS)

    Myers, D.K.

    1980-01-01

    The linear dose-response model used by international committees to assess the genetic and carcinogenic hazards of low-level radiation appears to be the most reasonable interpretation of the available scientific data that are relevant to this topic. There are, of course, reasons to believe that this model may overestimate radiation hazards in certain instances, a fact acknowledged in recent reports of these committees. The linear model is now also being utilized to estimate the potential carcinogenic hazards of other agents such as asbestos and polycyclic aromatic hydrocarbons. This model implies that there is no safe dose for any of these agents and that potential health hazards will increase in direct proportion to total accumulated dose. The practical implication is the recommendation that all exposures should be kept 'as low as reasonably achievable, economic and social factors being taken into account'. (auth)

  8. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Alatas, Zubaidah

    2003-01-01

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  9. Low dose radiation effects: an integrative european approach (Risc-Rad Project) coordinated by the Cea

    International Nuclear Information System (INIS)

    Sabatier, L.

    2006-01-01

    RISC-RAD (Radiosensitivity of Individuals and Susceptibility to Cancer induced by ionizing Radiations) is an Integrated Project funded by the European Commission under 6. Framework Programme / EURATOM. RISC-RAD started on 1. January 2004 for a duration of four years. Coordinated by Cea (Dr Laure Sabatier), it involves 11 European countries (Austria, Denmark, Finland, France, Germany, Ireland, Italy, the Netherlands, Spain, Sweden and the United Kingdom) and 29 research institutions. Objectives: Exposures to low and protracted doses of ionizing radiation are very frequent in normal living environment, at work places, in industry and in medicine. Effects of these exposures on human health cannot be reliably assessed by epidemiological methods, nor is thoroughly understood by biologists. RISC-RAD project proposes to help bridging the gap of scientific knowledge about these effects. To achieve this goal, a necessary key step is to understand the basic mechanisms by which radiation induces cancer. Studying this multistage process in an integrated way, the project offers a new biological approach characterised by and clear-cut and objective-driven scientific policy: the project is focused on the effects of low doses (less than 100 mSv) and protracted doses of radiation. It aims at identifying new parameters that take into account the differences in radiation responses between individuals. A group of modelers works closely with the experimental teams in order to better quantify the risks associated with low and protracted doses. Research work is divided into five work packages interacting closely with each other. WP1 is dedicated to DNA damage. Ionizing Radiation (IR) produce a broad spectrum of base modifications and DNA strand breaks of different kinds, among which double-strand breaks and 'clustered damage' which is thought to be a major feature in biological effectiveness of IR. The aim of Work Package 1 is to improve understanding of the initial DNA damage induced by

  10. EDITORIAL Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment

    Science.gov (United States)

    Newhauser, Wayne

    2010-07-01

    -614 Stovall M, Weathers R, Kasper C, Smith S A, Travis L, Ron E and Kleinerman R 2006 Dose reconstruction for therapeutic and diagnostic radiation exposures: use in epidemiological studies Radiat. Res. 166 141-57 Taddei P J, Chell E, Hansen S, Gertner M and Newhauser W D 2010a Assessment of targeting accuracy of a low-energy stereotactic radiosurgery treatment for age-related macular degeneration Phys. Med. Biol. 55 7037-54 Taddei P J, Howell R M, Krishnan S, Scarboro S B, Mirkovic D and Newhauser W D 2010b Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma Phys. Med. Biol. 55 7055-65 Taddei P J, Mahajan A, Mirkovic D, Zhang R, Giebeler A, Kornguth D, Harvey M, Woo S and Newhauser W D 2010c Predicted risks of second malignant neoplasm incidence and mortality due to secondary neutrons in a girl and boy receiving proton craniospinal irradiation Phys. Med. Biol. 55 7067-80 Titt U, Mirkovic D, Sawakuchi G O, Perles L A, Newhauser W D, Taddei P J and Mohan R 2010 Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency Phys. Med. Biol. 55 7097-106 Travis L B 2006 The epidemiology of second primary cancers Cancer Epidemiol. Biomarkers Prev. 15 2020-6 Wolkenhauer O et al 2010 Systems biologists seek fuller integration of systems biology approaches in new cancer research programs Cancer Res. 70 12-3 Xu X G, Bednarz B and Paganetti H 2008 A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction Phys. Med. Biol. 53 R193-241 Yepes P, Mirkovic D and Taddei P J 2010 A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations Phys. Med. Biol. 55 7107-20 Zhang R, P\\'{e}rez-And\\'{u}jar A, Fontenot J D, Taddei P J and Newhauser W D 2010 An analytic model of neutron ambient dose equivalent and equivalent dose for proton radiotherapy Phys. Med

  11. Risk management or mind control? Possible messages in the report by the working group on the risk management of low-dose exposures

    International Nuclear Information System (INIS)

    Onai, Takayuki; Shirabe, Masashi

    2012-01-01

    Fukushima accident discharged a large amount of radioactive materials to the air and brought about a long-term low-dose radiation exposure risk in contaminated area. In December 2011 the government working group (WG) on the risk management of low-dose radiation exposure issued the report on subjects: (1) health effects from annual radiation exposure of 20 mSv, (2) special consideration necessary for children and pregnant women and (3) proper way communicating citizens on radioactive materials and radiation doses in relation to health risks from low-dose radiation exposure. This article recommended making radiation protection strategies based on discussions among experts, government and citizens in consideration of “uncertainty” of scientific knowledge, and it criticized the WG's report mainly in the following respects. 1) The report mixed evacuation order level and ICRP's reference level in its discussion on “20 mSv”. 2) It was over-optimistic and frequently misleading on health risks of low-dose radiation. For example, it sometimes discussed the risks employing data and knowledge against recommendations of international authorities like UNSCEAR and ICRP. 3) It regarded Fukushima residents’ anxieties and stresses to be controlled as the only source of health risks. This attitude offered a counterpoint to UNSCEAR's deliberate attitude to “radiophobia”. 4) Against the spirit of ICRP Publ.111, only experts of WG made decisions about radiation protection in the absence of stakeholders. As its result, 5) risk communication recommended in the report was not interactive, in fact, based on “deficit model” of science communication. (author)

  12. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1999-01-01

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  13. Knowledge of medical imaging radiation dose and risk among doctors.

    Science.gov (United States)

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  14. Radiation dose and cancer risk to children undergoing skull radiography

    International Nuclear Information System (INIS)

    Mazonakis, Michael; Damilakis, John; Raissaki, Maria; Gourtsoyiannis, Nicholas

    2004-01-01

    Background: Limited data exist in the literature concerning the patient-effective dose from paediatric skull radiography. No information has been provided regarding organ doses, patient dose during PA skull projection, risk of cancer induction and dose to comforters, i.e. individuals supporting children during exposure. Objective: To estimate patient-effective dose, organ doses, lifetime cancer mortality risk to children and radiation dose to comforters associated with skull radiography. Materials and methods: Data were collected from 136 paediatric examinations, including AP, PA and lateral skull radiographs. Entrance-surface dose (ESD) and dose to comforters were measured using thermoluminescent dosimeters. Patients were divided into the following age groups: 0.5-2, 3-7, 8-12 and 13-18 years. The patient-effective dose and corresponding organ doses were calculated using data from the NRPB and Monte Carlo techniques. The risk for fatal cancer induction was assessed using appropriate risk coefficients. Results: For AP, PA and lateral skull radiography, effective dose ranges were 8.8-25.4, 8.2-27.3 and 8.4-22.7 μSv respectively, depending upon the age of the child. For each skull projection, the organs receiving doses above 10 μGy are presented. The number of fatal cancers was found to be less than or equal to 2 per 1 million children undergoing a skull radiograph. The mean radiation dose absorbed by the hands of comforters was 13.4 μGy. Conclusions: The current study provides detailed tabular and graphical data on ESD, effective dose, organ doses and lifetime cancer mortality risk to children associated with AP, PA and lateral skull projections at all patient ages. (orig.)

  15. Exposure to low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Le Guen, B.

    2008-01-01

    The author discusses the knowledge about the effects of ionizing radiations on mankind. Some of them have been well documented (skin cancer and leukaemia for the pioneer scientists who worked on radiations, some other types of cancer for workers who handled luminescent paints, rock miners, nuclear explosion survivors, patients submitted to radiological treatments). He also evokes the issue of hereditary cancers, and discusses the issue of low dose irradiation where some surveys can now be performed on workers. He discusses the biological effects of these low doses. He outlines that many questions remain about these effects, notably the influence of dose level and of dose rate level on the biological reaction

  16. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    Science.gov (United States)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed

  17. A consideration of low dose radiation effects on human health

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Nishimura, Mayumi; Imaoka, Tatsuhiko; Kakinuma, Shizuko

    2011-01-01

    On March 11, 2011, an earthquake categorized as 9 Mw occurred off the northeast coast of Japan. The subsequent destructive tsunami disabled emergency units of Fukushima Dai'ichi Nuclear Power Plant and caused partial meltdown of reactors and explosions. Resulting radiation releases forced large evacuations, bore concerns about food and water and fears against human health. In this manuscript, we described the effect of radiation, especially low dose radiation below 100 mSv, on cancer risk, focusing on fetuses and children. (author)

  18. Epidemiological methods of assessing risks from low level occupational exposure to ionising radiation

    International Nuclear Information System (INIS)

    Reissland, J.A.

    1982-01-01

    The resolution of radiation-attributable malignancies from the background of malignancies which are responsible for about 20% of all deaths in the Western world, presents a formidable challenge to epidemiological methods. Some of the major difficulties facing those with the task of estimating the risks associated with exposure to low level ionising radiation are discussed, particularly in the context of radiological protection. Some of the studies currently in progress are summarised and suggestions are made for other work which may help to contribute to a better understanding of the quantitative aspects of radiation risk assessment. (author)

  19. Health risk assessment of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu

    2011-01-01

    Risk assessment is an essential process for evaluating the human health effects of exposure to ionizing radiation and for determining acceptable levels of exposure. There are two major components of radiation risk assessment: a measure of exposure level and a measure of disease occurrence. For quantitative estimation of health risks, it is important to evaluate the association between exposure and disease occurrence using epidemiological or experimental data. In these approaches, statistical risk models are used particularly for estimating cancer risks related to exposure to low levels of radiation. This paper presents a summary of basic models and methods of risk assessment for studying exposure-risk relationships. Moreover, quantitative risk estimates are subject to several sources of uncertainty due to inherent limitations in risk assessment studies. This paper also discusses the limitations of radiation risk assessment. (author)

  20. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  1. Radiation retinopathy caused by low dose irradiation and antithyroid drug-induced systemic vasculitis

    International Nuclear Information System (INIS)

    Sonoda, Koh-hei; Ishibashi, Tatsuro

    2005-01-01

    We report on a patient with Graves' disease with radiation retinopathy caused by low-dose irradiation and antithyroid drug-induced antineutrophil cytoplasmic antibody (ANCA)-positive vasculitis. A 38-year-old woman with Graves' disease presented with bilateral blurred vision, micro-aneurysms, telangiectasia, and macular edema. The patient was examined by ophthalmoscopy and fluorescein angiography, and radiation retinopathy was diagnosed. The patient had been treated with low-dose irradiation for her Graves' ophthalmopathy a few years earlier. She also had ANCA-positive vasculitis induced by the antithyroid drug (propylthiouracil, PTU) that had been prescribed for her at that time. Because of multiple avascular areas on both retinas, she was treated by intensive retinal photocoagulation to control progressive retinopathy. The radiation doses used to treat Graves' disease ophthalmopathy are low. Nevertheless, there is still a risk of radiation retinopathy developing in patients with PTU-induced ANCA-positive vasculitis. (author)

  2. A review of data on the effects of low and low dose-rate radiation with special reference to the dose limit problem

    International Nuclear Information System (INIS)

    Matsudaira, Hiromichi

    1977-01-01

    This is a review of data pertaining to detection and quantification of the effects after exposure to low LET radiations delivered at low and low dose-rate, i.e., at a level of maximum permissible dose for the radiation workers, on experimental materials ranging from plant to rodents and on some human populations. Irradiation at a dose of a few rad is reported to induce mutation or malignant transformation in some selected model systems, with a linear dose-effect relationship. Moreover, the incidence of the chromosome aberrations in spermatocytes is reported to be elevated in the scorpiones (Tityus bahiensis) collected in a region of high natural background radiations (several rem/year). An increase in the incidence of childhood malignancies is reported among children exposed in utero to diagnostic X-rays. Appreciable increase in the incidence of genetic diseases due possibly to chromosome aberrations is also reported among population living in a region of high natural background radiations. Points are raised and discussed as to the interpretation and particularly application of these data to the estimation of somatic and genetic risks of human population from man-made radiations. Recent attempts of risk-benefit analysis with populations subjected to mass X-ray examination of the chest and stomac are referred to. Since we are unaware of the actual injuries due to the exposure even at the level of radiation workers (5 rem/year), it is out of the capacity of a biologist to afford the basis for the decision of limiting the exposure of general population due to the light water reactor operation to 5 mrem/year. (auth.)

  3. Low Dose Suppression of Neoplastic Transformation in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  4. Improvement of quantification of somatic radiation risks at low doses

    International Nuclear Information System (INIS)

    Jacobi, W.; Paretzke, H.G.; Henrichs, K.; Hettig, H.; Jacob, P.; Merkle, W.; Messerer, P.; Schindel, F.

    1985-10-01

    In this research contract several selected topics of basic relevancy for assessment models of radiological consequences of hypothetical reactor accidents have been considered. The investigations focussed on the following areas: 1) Age dependent dose conversion factors for members of the public and their variability for radioisotopes of iodine, strontium, and caesium, - improvement of the accuracy of dose calculations for external gamma irradiation from cloud- and ground-shine; 2) analysis of data and models relevant for the assessment of exposure-time-effect relationships for lethal somatic late effects of lung and breast cancer and of leukemia; 3) analysis of various health status indices (e.g. ''loss of healthy life span'') with respect to their usefulness in addition to incidence, mortality, etc. for the evaluation of the magnitude of a health detriment due to a previous radiation exposure. (orig./HP) [de

  5. Health hazards of low doses of ionizing radiations. Vo. 1

    International Nuclear Information System (INIS)

    El-Naggar, M.A.

    1996-01-01

    Exposure to high doses of ionizing radiation results in clinical manifestations of several disease entities that may be fatal. The onset and severity of these acute radiation syndromes are deterministic in relation to dose magnitude. Exposure to ionizing radiations at low doses and low dose rates could initiate certain damage in critical molecules of the cell, that may develop in time into serious health effects. The incidence of such delayed effects in low, and is only detectable through sophisticated epidemiological models carried out on large populations. The radiation damage induced in critical molecules of cells may develop by stochastic biochemical mechanisms of repair, residual damage, adaptive response, cellular transformation, promotion and progression into delayed health effects, the most important of which is carcinogenesis. The dose response relationship of probabilistic stochastic delayed effects of radiation at low doses and low dose rates, is very complex indeed. The purpose of this review is to provide a comprehensive understanding of the underlying mechanisms, the factors involved, and the uncertainties encountered. Contrary to acute deterministic effects, the occurrence of probabilistic delayed effects of radiation remains to be enigmatic. 7 figs

  6. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  7. Late effects of low-dose ionizing radiation on man

    International Nuclear Information System (INIS)

    Brilliant, M.D.; Vorob'ev, A.I.; Gogin, E.E.

    1987-01-01

    One of the most important problems, being stated before the medicine by the accident, which took place in Chernobyl in 1986- the problem of the so-called ionizing radiation low dose effect on a man's organism, is considered because a lot of people were subjected to low dose action. The concept of low doses of radiaion action and specificity of its immediate action in comparison with high dose action is considered. One of the most important poit while studying low dose action is the necessity to develop a system including all irradiated people and dosimetry, and espicially to study frequencies and periods of tumor appearance in different irradiated tissues. The results obtained when examining people who survived the atomic explosion in Japan and on the Marshall islands are analyzed. They testify to the fact that radiation affets more tissues than the clinical picture about the acute radiation sickness tells, and that tumors developing in them many years after radiation action tell about radiosensitivity in some tissues

  8. What happens at very low levels of radiation exposure ? Are the low dose exposures beneficial ?

    International Nuclear Information System (INIS)

    Deniz, Dalji

    2006-01-01

    . This adaptive response seems to be the manifestation of a protective effect that may reduce risk at very low doses. Current knowledge in molecular biology shows no evidence of a threshold effect for Stochastic Effects. Therefore, any level of radiation may be considered to cause them. Conversely, some studies show that low levels of irradiation are in fact beneficial to the health (Radiation Hormesis). However, in the absence of clear scientific evidence, the regulators adopted a conservative approach and consider all levels of radiation as being potentially damaging to the human body (LNT theory). According to LNT theory; the effects of low doses of ionizing radiation can be estimated by linear extrapolation from effects observed by linear extrapolation from effects observed by high doses. There is not any safe dose because even very low doses of ionizing radiation produce some biological effect. The results of many investigations do not support the LNT theory. Furthermore relationship between environmental radon concentrations and lung cancer even contradict this theory and clearly suggest a hermetic effect -radiation hormesis-. Although data are still incomplete, extensive epidemiological studies have indicated that radiation hormesis is really exist. In this review, contradictory evidence Linear No-Threshold Theory and Radiation Hormesis Effect is discussed

  9. Current features on risk perception and risk communication of radiation

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1997-01-01

    Health effects and risks of radiation and radionuclides are being misunderstood by many members of general public. Many peoples have fear and anxieties for radiation. So far, the health effects from radiation at low dose and low dose rate have not been cleared on biological aspects. Then, we have quantitatively estimated health risks of low-dose radiation on the basis of linear dose response relationship without threshold from the viewpoints of radiation protection by using both epidemiological data, such as atomic bomb survivors, and some models and assumptions. It is important for researchers and relevant persons in radiation protection to understand the process of risk estimation of radiation and to communicate an exact knowledge of radiation risks of the public members. (author)

  10. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  11. Low doses effects of ionizing radiation on Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Durand, J.; Broock, M. van; Gillette, V.H.

    2000-01-01

    The exposure of living cells to low doses of ionizing radiation induce in response the activation of cellular protection mechanisms against subsequent larger doses of radiation. This cellular adaptive response may vary depending on radiation intensity and time of exposure, and also on the testing probes used whether they were mammalian cells, yeast, bacteria and other organisms or cell types. The mechanisms involved are the genome activation, followed by DNA repair enzymes synthesis. Due to the prompt cell response, the cell cycle can be delayed, and the secondary detoxification of free radicals and/or activation of membrane bound receptors may proceed. All these phenomena are submitted to intense scientific research nowadays, and their elucidation will depend on the complexity of the organism under study. In the present work, the effects of low doses of ionizing radiation (gamma rays) over a suspension of the yeast Saccharomyces cerevisiae (Baker's yeast) was studied, mainly in respect to survival rate and radio-adaptive response. At first, the yeast surviving curve was assessed towards increasing doses, and an estimation of Lethal Dose 50 (LD50) was made. The irradiation tests were performed at LINAC (electrons Linear Accelerator) where electron energy reached approximately 2.65 MeV, and gamma-radiation was produced for bremsstrahlung process over an aluminium screen target. A series of experiments of conditioning doses was performed and an increment surviving fraction was observed when the dose was 2.3 Gy and a interval time between this and a higher dose (challenging dose) of 27 Gy was 90 minutes. A value of 58 ± 4 Gy was estimated for LD50, at a dose rate of 0.44 ± 0.03 Gy/min These quantities must be optimized. Besides data obtained over yeast survival, an unusual increasing amount of tiny yeast colonies appeared on the agar plates after incubation, and this number increased as increasing the time exposure. Preliminary results indicate these colonies as

  12. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1997-01-01

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  13. Risk equivalent of exposure versus dose of radiation

    International Nuclear Information System (INIS)

    Bond, V.P.

    1986-01-01

    Radiation is perhaps unique among all agents of interest in the Health Sciences in that it alone is both a therapeutic agent for the control of cancer and an essentially ubiquitous environmental agent with a potential for increasing the cancer rate in human populations. Therapy of tumors is accomplished with the high-level exposure (HLE) to radiation in order to effect control or a cure. Thus, it conforms to the concepts and approaches of pharmacology, toxicology, and therapeutic medicine. Only one function, that which relates the object-oriented and nonstochastic independent variable organ dose to its effect on a cancer or an organ, is needed to estimate the probability, P 2 , of a quantal response. Only P 2 is needed because P 1 , that the cancer slated for such treatment will receive some amount of the agent and be affected to some degree, is effectively unity. The health problem involving low-level exposure (LLE) to radiation, in contrast, is not at all analogous to those of pharmacology, toxicology, and medicine. Rather, it presents a public health problem in that it is a health population, albeit of cells, that is exposed in a radiation field composed of moving radiation particles with some attendant low-order carcinogenic or mutagenic risk. Thus, the concepts, quantities, and terminology applied to low-level radiation must be modified from their present orientation toward pharmacology, toxicology, medicine, and dose to conform to those of public health and accident statistics, in which both P 1 and P 2 for the exposed cells must be estimated

  14. Radiation risks in perspective

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1987-01-01

    The problem of risk assessment is greater at the low effective dose rates now observed in the majority of all forms of exposure, usually of less than 3 mSv per year from natural causes, from occupational exposure, and from exposure of 'critical groups' of the general public. For most populations there are particular problems also in epidemiological studies at low dose, in addition to those due to the very large numbers of person-years that need to be studied and the long latencies of most radiation effects. Adequate estimates can, however, now be made of the carcinogenic risk of exposure at higher dose of various organs selectively and of the whole body uniformly, and of modes of inference to the risk at lower dose. Estimates can also be made of the risks of inducing major types of inheritable and developmental abnormality. An essential step in viewing the sum of all such radiation risks in the perspective of other occupational and public risks must now be to develop an informed consensus on the relative weight that is regarded as attaching to hazards of different kind and severity. (author)

  15. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    Science.gov (United States)

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    International Nuclear Information System (INIS)

    Gridley, Daila S.

    2008-01-01

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of 'dirty bombs' by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to

  17. Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Harada, Hideyuki; Asakura, Hirofumi; Nishimura, Tetsuo; Schneider, Uwe; Ishida, Yuji; Konno, Masahiro; Yamashita, Haruo; Kase, Yuki; Murayama, Shigeyuki; Onoe, Tsuyoshi; Ogawa, Hirofumi

    2013-01-01

    To compare proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) with conformal radiation therapy (CRT) in terms of their organ doses and ability to cause secondary cancer in normal organs. Five patients (median age, 4 years; range, 2–11 years) who underwent PBT for retroperitoneal neuroblastoma were selected for treatment planning simulation. Four patients had stage 4 tumors and one had stage 2A tumor, according to the International Neuroblastoma Staging System. Two patients received 36 Gy, two received 21.6 Gy, and one received 41.4 Gy of radiation. The volume structures of these patients were used for simulations of CRT and IMRT treatment. Dose–volume analyses of liver, stomach, colon, small intestine, pancreas, and bone were performed for the simulations. Secondary cancer risks in these organs were calculated using the organ equivalent dose (OED) model, which took into account the rates of cell killing, repopulation, and the neutron dose from the treatment machine. In all evaluated organs, the mean dose in PBT was 20–80% of that in CRT. IMRT also showed lower mean doses than CRT for two organs (20% and 65%), but higher mean doses for the other four organs (110–120%). The risk of secondary cancer in PBT was 24–83% of that in CRT for five organs, but 121% of that in CRT for pancreas. The risk of secondary cancer in IMRT was equal to or higher than CRT for four organs (range 100–124%). Low radiation doses in normal organs are more frequently observed in PBT than in IMRT. Assessments of secondary cancer risk showed that PBT reduces the risk of secondary cancer in most organs, whereas IMRT is associated with a higher risk than CRT

  18. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information

  19. Critical reevaluation of the dose-response relationships for carcinogenic effects of low-level ionizing radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    2003-01-01

    In recent decades, it has been customary, for radiation protection purposes, to assume that the overall risk of radiation-induced cancer increases as a linear-nonthreshold function of the dose. The existing data do not exclude the existence of a threshold, however, and the dose-response relationship is known to vary, depending on the type of cancer in queation, the dose, dose rate, and LET of the radiation, the age, sex, and physiological state of the exposed individuals, and other variables, including the potential influence of adaptive responses and bystander effects at low doses. In light of advncing knowledge, therefore, the dose-response relationship for carcinogenic effects of low-level radiation has been reevaluated periodically by the National Council on Radiation Protection and Measurements, the International Commission of Radiological Protection, the United Nations Scientific Committee on the Effects of Atomic Radiation, the U.S. National Academy of Sciences, and other organizations. The most recent such reviews have generally found the weight of evidence to suggest that lesions which are precursors to cancer (i.e., mutations and chromosome aberrations), and certain types of cancer as well, may increase in frequency linearly with the dose in the low-dose domain. On this basis, it is concluded that no alternative dose-response model for the carcinogenic effects of low-level radiation is more plausible than the linear-nonthreshold model, although other dose-response relationships cannot be excluded. (authors)

  20. Comparison of the dose-effect relationship for UV radiation and ionizing radiation

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Sijsma, M.J.; Chadwick, K.H.

    1990-06-01

    Ionizing radiation and ultraviolet radiation (UV) are both physical agents with mutagenic and carcinogenic properties. However, there are some basic differences in the fundamental mechanism of their interaction with biological material that may have consequences for risk assessment. In this paper the dose-effect relationships for gamma radiation and UV at cellular level will be used to demonstrate the different radio-biological effectiveness of both agents. The results will be discussed in the framework of a biophysical model, based on the assumption that DNA doublestranded lesions are crucial for the cytotoxic action. After exposure to ionizing radiation, the lesions are fixed immediately following irradiation, but after UV exposure the lethal lesions are recognized only in the next DNA synthesis phase. The combination of this concept with the mechanism of lesion induction and the possibility of repair, leads to different dose and time relationships for the radiation effects of both agents. The possible consequences for risk assessment at low levels will be discussed. (author). 9 refs.; 5 figs

  1. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  2. Risk assessment of intake of foods and soil, and air radiation dose after Fukushima Daiichi nuclear disaster

    International Nuclear Information System (INIS)

    Fujinaga, Aiichiro; Yoneda, Minoru; Ikegami, Maiko

    2012-01-01

    Risk assessment of soil contaminated with radionuclides, due to the accident of Fukushima nuclear power plant after the earthquake on March 11, 2011, was carried out by considering consumption of the contaminated food. The exposure routes were set as food intake, ingestion and inhalation of soil particles, and external radiation from the ground. As a result, exposures by ingestion, and inhalation of soil particles were negligible, and exposure by food intake and external exposure from the ground were comparatively large. This study shows air dose by the accident should be under 0.2 μSv/hour in order to control the radiation dose with consumption of food under 1 μSv/year. (author)

  3. Effective doses and standardised risk factors from paediatric diagnostic medical radiation exposures: Information for radiation risk communication

    International Nuclear Information System (INIS)

    Bibbo, Giovanni

    2018-01-01

    In the paediatric medical radiation setting, there is no consistency on the radiation risk information conveyed to the consumer (patient/carer). Each communicator may convey different information about the level of risk for the same radiation procedure, leaving the consumer confused and frustrated. There is a need to standardise risks resulting from medical radiation exposures. In this study, paediatric radiographic, fluoroscopic, CT and nuclear medicine examination data have been analysed to provide (i) effective doses and radiation induced cancer risk factors from common radiological and nuclear medicine diagnostic procedures in standardised formats, (II) awareness of the difficulties that may be encountered in communicating risks to the layperson, and (iii) an overview of the deleterious effects of ionising radiation so that the risk communicator can convey with confidence the risks resulting from medical radiation exposures. Paediatric patient dose data from general radiographic, computed tomography, fluoroscopic and nuclear medicine databases have been analysed in age groups 0 to <5 years, 5 to <10 years, 10 to <15 years and 15 to <18 years to determine standardised risk factors. Mean, minimum and maximum effective doses and the corresponding mean lifetime risks for general radiographic, fluoroscopic, CT and nuclear medicine examinations for different age groups have been calculated. For all examinations, the mean lifetime cancer induction risk is provided in three formats: statistical, fraction and category. Standardised risk factors for different radiological and nuclear medicine examinations and an overview of the deleterious effects of ionising radiation and the difficulties encountered in communicating the risks should facilitate risk communication to the patient/carer.

  4. Critical reevaluation of the dose-response relationships for carcinogenic effects of low-level ionizing radiation

    International Nuclear Information System (INIS)

    Upton, Arthur C.

    2002-01-01

    In recent decades, it has been customary, for radiation protection purposes, to assume that the overall risk of radiation- included cancer increases as a linear-nonthreshold function of the dose. The existing data do not exclude the existence of a threshold, however, and the dose-response relationship is known to vary depending on the type of cancer in question, the dose, dose rate and LET of the radiation, the age, sex and physiological state of the exposed individuals, and other variables, including the potential influence of adaptive responses and bystander effects at low doses. In light of advancing knowledge, therefore, the dose-response relationship for carcinogenic effects of low-level radiation has been reevaluated periodically by the National Council on Radiation Protection and Measurements, the International Commission of Radiological Protection, the United Nations Scientific Committee on the Effects of Atomic Radiation, the U.S. National Academy of Sciences Committee on the Effects of Atomic Radiation, the U.S. National Academy of Sciences, and other organizations. The most recent such reviews have generally found the weight of evidence to suggest that lesions which are precursors to cancer (i.e., mutations and chromosome aberrations), and certain types of cancer as well, may increase in frequency linearly aberrations), and certain types of cancer as well, may increase in frequency linearly with the dose in the low-dose domain. On this basis, it is concluded that no alternative dose-response model for the carcinogenic effects of low-level radiation is ore plausible than the linear-nonthreshold model, although other dose-response relationships cannot be excluded. (author)

  5. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  6. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  7. Mutation process at low or high radiation doses

    International Nuclear Information System (INIS)

    Abrahamson, S.; Wisconsin Univ., Madison

    1976-01-01

    A concise review is given of the status of research on the genetic effects of low-level radiation in general. The term ''low dose'' is defined and current theories on low dose are set out. Problems and their solutions are discussed. (author)

  8. What Becomes of Nuclear Risk Assessment in Light of Radiation Hormesis?

    International Nuclear Information System (INIS)

    Cuttler, J.M.

    2004-01-01

    A nuclear probabilistic risk or safety assessment (PRA or PSA) is a scientific calculation that uses very pessimistic assumptions and models to determine the likelihood of plant or fuel repository failures and the corresponding releases of radioactivity. Although PRAs demonstrate that nuclear power plants and fuel repositories are very safe compared with the risks of other generating options or other risks that people readily accept, frightening negative images are formed and exaggerated safety and health concerns are communicated. Large-scale tests and experience with nuclear accidents demonstrate that such incidents expose the public to low doses of radiation, and a century of research and experience have demonstrated that such exposures are beneficial to health. PRAs are valuable tools for improving plant designs, but if nuclear power is to play a significant role in meeting future energy needs, we must communicate its many real benefits and dispel the negative images formed by unscientific extrapolations of the harmful effects that occur at high radiation doses

  9. Low Dose Ionizing Radiation Modulates Immune Function

    International Nuclear Information System (INIS)

    Nelson, Gregory A.

    2016-01-01

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a 'Th2 polarized' immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in

  10. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  11. Dose limits cause unacceptable risk

    International Nuclear Information System (INIS)

    Collier, Sylvia.

    1985-01-01

    This paper on radiation dose limits for workers and the public discusses the following: Medical Research Council report; safety standards; risk assessment; deaths from cancers; biological radiation effects; UK legislation; low-level radiation; public concern; UKAEA staff survey; Ionising Radiations Regulations; United Nations Scientific Committee on Effects of Atomic Radiation; US studies on work force in nuclear establishments; problems of extrapolation; Japanese data from Hiroshima and Nagasaki; International Commission on Radiological Protection recommendations; studies on uranium miners; UK Health and Safety Executive; UK National Radiological Protection Board. (U.K.)

  12. Publication of new results from the INWORKS epidemiological study about the risk of cancer among nuclear industry workers chronically exposed to low ionizing radiation doses

    International Nuclear Information System (INIS)

    2015-01-01

    In this cohort study, 308297 workers in the nuclear industry from France, the United Kingdom, and the United States with detailed monitoring data for external exposure to ionising radiation were linked to death registries. Excess relative rate per Gy of radiation dose for mortality from cancer was estimated. Follow-up encompassed 8.2 million person years. Of 66632 known deaths by the end of follow-up, 17?957 were due to solid cancers. Results suggest a linear increase in the rate of cancer with increasing radiation exposure. The average cumulative colon dose estimated among exposed workers was 20.9 mGy (median 4.1 mGy). The estimated rate of mortality from all cancers excluding leukaemia increased with cumulative dose by 48% per Gy (90% confidence interval 20% to 79%), lagged by 10 years. Similar associations were seen for mortality from all solid cancers (47% (18% to 79%)), and within each country. The estimated association over the dose range of 0-100 mGy was similar in magnitude to that obtained over the entire dose range but less precise. Smoking and occupational asbestos exposure are potential confounders; however, exclusion of deaths from lung cancer and pleural cancer did not affect the estimated association. Despite substantial efforts to characterise the performance of the radiation dosimeters used, the possibility of measurement error remains. The study provides a direct estimate of the association between protracted low dose exposure to ionising radiation and solid cancer mortality. Although high dose rate exposures are thought to be more dangerous than low dose rate exposures, the risk per unit of radiation dose for cancer among radiation workers was similar to estimates derived from studies of Japanese atomic bomb survivors. Quantifying the cancer risks associated with protracted radiation exposures can help strengthen the foundation for radiation protection standards

  13. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  14. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  15. Hormesis of Low Doses of Ionizing Radiation Exposure on Immune System

    International Nuclear Information System (INIS)

    Ragab, M.H.; Abbas, M.O.; El-Asady, R.S.; Amer, H.A.; El-Khouly, W.A.; Shabon, M.H.

    2015-01-01

    The effect of low doses of ionizing radiation on the immune system has been a controversial subject. To evaluate the effect of low-doses γ-irradiation exposure on immune system. An animal model, using Rattus Rattus rats was used. The rats were divided into groups exposed to either continuous or fractionated 100, 200, 300, 400 and 500 mSv of radiation and compared to control rats that did not receive radiation. All groups were exposed to a total white blood count (Wcs), lymphocyte count and serum IgG level measurement, as indicators of the function of the cell-mediated (T lymphocytes) and the humoral (B lymphocytes) immune system. The results of the current study revealed that the counts of total leukocytes (WBCs) and lymphocytes, as well as the serum level of IgG were increased significantly in rats receiving low dose radiation, indicating enhancement of immune system. The data suggests that low-dose gamma-radiation improved hematological parameters and significantly enhances immune response indices of the exposed rats. These findings are similar to the radiation adaptive responses in which a small dose of pre irradiation would induce certain radiation resistance and enhances the cell response after exposure to further irradiation doses The applied low doses used in the present study may appear effective inducing the radio adaptive response. Farooqi and Kesavan (1993) and Bravard et al. (1999) reported that the adaptive response to ionizing radiation refers to the phenomenon by which cells irradiated with low (cGy) or sublethal doses (conditioning doses) become less susceptible to genotoxic effects of a subsequent high dose (challenge dose, several Gy).

  16. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  17. Dose inspection and risk assessment on radiation safety for the use of non-medical X-ray machines in Taiwan

    Science.gov (United States)

    Hsu, Fang-Yuh; Hsu, Shih-Ming; Chao, Jiunn-Hsing

    2017-11-01

    The subject of this study is the on-site visits and inspections of facilities commissioned by the Atomic Energy Council (AEC) in Taiwan. This research was conducted to evaluate the possible dose and dose rate of cabinet-type X-ray equipment with nominal voltages of 30-150 kV and open-beam (portable or handheld) equipment, taking both normal operation and possibly abnormal operation conditions into account. Doses and dose rates were measured using a plastic scintillation survey meter and an electronic personal dosimeter. In total, 401 X-ray machines were inspected, including 139 units with nominal voltages of 30-50 kV X-ray equipment, 140 units with nominal voltages of 50-150 kV, and 122 open-beam (portable or handheld) X-ray equipment. The investigated doses for radiation workers and non-radiation workers operating cabinet-type X-ray equipment under normal safety conditions were all at the background dose level. Several investigated dose rates at the position of 10 cm away from the surface of open-beam (portable or handheld) X-ray equipment were very high, such X-ray machines are used by aeronautical police for the detection of suspected explosives, radiation workers are far away (at least 10 m away) from the X-ray machine during its operation. The doses per operation in X-ray equipment with a 30-50 kV nominal voltage were less than 1 mSv in all cases of abnormal use. Some doses were higher than 1 mSv per operation for X-ray equipment of 50-150 kV nominal voltage X-ray. The maximum dose rates at the beam exit have a very wide range, mostly less than 100 μSv/s and the largest value is about 3.92 mSv/s for open-beam (portable or handheld) X-ray devices. The risk induced by operating X-ray devices with nominal voltages of 30-50 kV is extremely low. The 11.5 mSv dose due to one operation at nominal voltage of 50-150 kV X-ray device is equivalent to the exposure of taking 575 chest X-rays. In the abnormal use of open-beam (portable or handheld) X-ray equipment, the

  18. Low risk of pulmonary tuberculosis of residents in high background radiation area, Yangjiang, China

    International Nuclear Information System (INIS)

    Li Xiaojuan; Sun Quanfu

    2006-01-01

    Objective: To examine the pulmonary tuberculosis mortality risk of the residents in high background radiation area (HBRA), Yangjiang, China. Methods: A cohort including 89 694 persons in HBRA and 35 385 persons in control area (CA) has been established since 1979. Person-year tables based on classified variables including sex, attained age, follow-up calendar year, and dose-rate group (high, intermediate, and low in HBRA, and control group) were tabulated using DATAB in EPICURE. Poisson regression analysis was used to estimate the relative risks (RR) of infectious and parasitic disease especially for pulmonary tuberculosis. Cumulative dose for each cohort member was obtained. Results: Two million person-years were accumulated by follow-up and 612 cases of pulmonary tuberculosis ascertained. Compared with risk in the control area, statistically significant lower risk of pulmonary tuberculosis was observed in HBRA among those who aged 60 years and over; markedly decreased risk occurred among males; no significant difference was found among the 6 follow-up stages, two subregions in the HBRA, or different diagnostic facilities. A statistically significantly negative dose-response was observed (P<0.001), the higher accumulative dose, the lower dose the pulmonary tuberculosis mortality risk. Its excess relative risk (ERR/Sv) was estimated to be -1.09 (95% CI: -1.34, -0.85). No established risk factors could explain this lower risk. Conclusions: The mortality of puhnonary tuberculosis among residents in HBRA who were chronically exposed to low-dose radiation was statistically significantly lower than that in the control area, and a significant dose-response relationship was observed, which probably resulted from the immunoenhancement of low dose radiation. (authors)

  19. Dose Response Model of Biological Reaction to Low Dose Rate Gamma Radiation

    International Nuclear Information System (INIS)

    Magae, J.; Furikawa, C.; Hoshi, Y.; Kawakami, Y.; Ogata, H.

    2004-01-01

    time, and that dose rate effect changes as a function of dose-rate and irradiation time. Many epidemiological and experimental studies have been demonstrated that biological responses to radiation at low dose/low dose rate does not follow LNT. Our study supports their observations with sufficient statistical power. Threshold of radiation risk will be discussed. (Author)

  20. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  1. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimate human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.

  2. Low-dose ionizing radiation limitations to seed germination: Results from a model linking physiological characteristics and developmental-dynamics simulation strategy.

    Science.gov (United States)

    Liu, Hui; Hu, Dawei; Dong, Chen; Fu, Yuming; Liu, Guanghui; Qin, Youcai; Sun, Yi; Liu, Dianlei; Li, Lei; Liu, Hong

    2017-08-01

    There is much uncertainty about the risks of seed germination after repeated or protracted environmental low-dose ionizing radiation exposure. The purpose of this study is to explore the influence mechanism of low-dose ionizing radiation on wheat seed germination using a model linking physiological characteristics and developmental-dynamics simulation. A low-dose ionizing radiation environment simulator was built to investigate wheat (Triticum aestivum L.) seeds germination process and then a kinetic model expressing the relationship between wheat seed germination dynamics and low-dose ionizing radiation intensity variations was developed by experimental data, plant physiology, relevant hypotheses and system dynamics, and sufficiently validated and accredited by computer simulation. Germination percentages were showing no differences in response to different dose rates. However, root and shoot lengths were reduced significantly. Plasma governing equations were set up and the finite element analysis demonstrated H 2 O, CO 2 , O 2 as well as the seed physiological responses to the low-dose ionizing radiation. The kinetic model was highly valid, and simultaneously the related influence mechanism of low-dose ionizing radiation on wheat seed germination proposed in the modeling process was also adequately verified. Collectively these data demonstrate that low-dose ionizing radiation has an important effect on absorbing water, consuming O 2 and releasing CO 2 , which means the risk for embryo and endosperm development was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Radiation dose from Chernobyl forests: assessment using the 'forestpath' model

    International Nuclear Information System (INIS)

    Schell, W.R.; Linkov, I.; Belinkaia, E.; Rimkevich, V.; Zmushko, Yu.; Lutsko, A.; Fifield, F.W.; Flowers, A.G.; Wells, G.

    1996-01-01

    Contaminated forests can contribute significantly to human radiation dose for a few decades after initial contamination. Exposure occurs through harvesting the trees, manufacture and use of forest products for construction materials and paper production, and the consumption of food harvested from forests. Certain groups of the population, such as wild animal hunters and harvesters of berries, herbs and mushrooms, can have particularly large intakes of radionuclides from natural food products. Forestry workers have been found to receive radiation doses several times higher than other groups in the same area. The generic radionuclide cycling model 'forestpath' is being applied to evaluate the human radiation dose and risks to population groups resulting from living and working near the contaminated forests. The model enables calculations to be made to predict the internal and external radiation doses at specific times following the accident. The model can be easily adjusted for dose calculations from other contamination scenarios (such as radionuclide deposition at a low and constant rate as well as complex deposition patterns). Experimental data collected in the forests of Southern Belarus are presented. These data, together with the results of epidemiological studies, are used for model calibration and validation

  4. Radiation dose-reduction strategies in thoracic CT.

    Science.gov (United States)

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Epidemiological surveys on the effects of low-level radiation dose: a comparative assessment

    International Nuclear Information System (INIS)

    Rose, K.S.B.

    1988-01-01

    In this report, the health effects of low-level doses of radiation are considered by reference to published epidemiological surveys. The work was carried out with three objectives in mind: 1. to provide a comprehensive and critical review of the subject; 2. to seek consistent indications of particular health effects by collating results and comparing with those from surveys at moderate-level doses; 3. to provide an authoritative view on the epidemiology of low-level radiation-induced health effects. Vol E (DRAFT A) is appended and contains group collation tables. Epidemiological surveys can be conveniently divided into four classes (A, B, C, D) according to the phase of life when irradiation occurs or the effect is diagnosed. The first of the classes (A) is addressed here; this class is concerned with possible effects arising from radiation received by a parent before conception. Possible effects of preconception irradiation were identified under four broad groupings. These are Down's syndrome, ''Indicators of Reproductive Damage'' (mainly Primary Sterility, Congenital Abnormalities, Sex Ratio, Fetal Mortality, Infant Mortality), Childhood Malignancies, and Chromosomal Changes in Abortuses. Information about each survey, and comparisons with results from moderate-level dose surveys, are contained in synopses that are set out in the Appendix. (author)

  6. Write up of TIS seminar on effects of low doses of radiation

    International Nuclear Information System (INIS)

    Sullivan, A.H.

    1989-01-01

    Data that was presented at two recent conferences on the effects on humans of low levels of radiation, as well as data that has been used by the ICRP when setting dose limits is reviewed. The data comes from cancer mortality studies of A-bomb survivors and radiation workers, as well as from studies on populations exposed to varying levels of naturally occurring radiation. The problems of using the data to make realistic risk projections on which radiation safety norms can be based are discussed. (author)

  7. Write up of TIS seminar on effects of low doses of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, A H [CERN, Geneva (Switzerland)

    1989-06-05

    Data that was presented at two recent conferences on the effects on humans of low levels of radiation, as well as data that has been used by the ICRP when setting dose limits is reviewed. The data comes from cancer mortality studies of A-bomb survivors and radiation workers, as well as from studies on populations exposed to varying levels of naturally occurring radiation. The problems of using the data to make realistic risk projections on which radiation safety norms can be based are discussed. (author)

  8. Multilevel mechanisms of stimulatory effect of low dose radiation on immunity

    International Nuclear Information System (INIS)

    Shu-Zeng Liu

    1992-01-01

    Attention is paid to the effects of low level ionizing radiation on humans. The conference is devoted to low dose radiation and defense mechanisms of the body. Due to the importance of the immune system in body resistance, special attention has been given to host defense mechanisms following exposure to different doses of ionizing radiation. The immune system has long been known to be highly sensitive to moderate to high doses of ionizing radiation with immuno-depression as one of the most important causes of death in acute radiation syndrome. However, the dose-effect relationship of immune functions has been found to be quite different in the low dose range, especially with doses within 0.1 Gy. With doses above 0.5 Gy most immunologic parameters show a dose dependent depression. With doses between 0.1-0.5 Gy there may be no definite changes in immune functions. Doses within 0.1 Gy, given in single or chronic exposures, have been found to stimulate many immune responses. (author). 16 refs., 2 figs., 7 tabs

  9. Low-dose radiation employed in diagnostic imaging causes genetic effects in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Ponzinibbio, Maria V.; Peral-Garcia, Pilar; Seoane, Analia (Inst. de Genetica Veterinaria, Univ. Nacional de La Plata CONICET, La Plata (Argentina)), e-mail: aseoane@fcv.unlp.edu.ar; Crudeli, Cintia (Agencia Nacional de Promocion Cientifica y Tecnologica, La Plata (Argentina))

    2010-11-15

    Background: Exposure to environmental, diagnostic, and occupational sources of radiation frequently involves low doses. Although these doses have no immediately noticeable impact on human health there is great interest in their long-term biological effects. Purpose: To assess immediate and time-delayed DNA damage in two cell lines exposed to low doses of ionizing radiation by using the comet assay and micronucleus test, and to compare these two techniques in the analysis of low-dose induced genotoxicity. Material and Methods: CHO and MRC-5 cells were exposed to 50 milliSievert (mSv) of ionizing radiation and assayed immediately after irradiation and at 16 or 12 passages post-irradiation, respectively. Comet assay and micronucleus test were employed. Results: The comet assay values observed in 50 mSv-treated cells were significantly higher than in the control group for both sample times and cell lines (P < 0.001). Micronuclei frequencies were higher in treated cells than in the control group (P < 0.01, CHO cells passage 16; P < 0.05, MRC-5 cells immediately after exposure; P < 0.01 MRC-5 cells passage 12). Correlation analysis between the two techniques was statistically significant (correlation coefficient 0.82, P < 0.05 and correlation coefficient 0.86, P < 0.05 for CHO and MRC-5 cells, respectively). Cells scored at passages 12 or 16 showed more damage than those scored immediately after exposure in both cell lines (no statistically significant differences). Conclusion: Cytomolecular and cytogenetic damage was observed in cells exposed to very low doses of X-rays and their progeny. A single low dose of ionizing radiation was sufficient to induce such response, indicating that mammalian cells are exquisitely sensitive to it. Comet and micronucleus assays are sensitive enough to assess this damage, although the former seems to be more efficient

  10. Low-dose radiation employed in diagnostic imaging causes genetic effects in cultured cells

    International Nuclear Information System (INIS)

    Ponzinibbio, Maria V.; Peral-Garcia, Pilar; Seoane, Analia; Crudeli, Cintia

    2010-01-01

    Background: Exposure to environmental, diagnostic, and occupational sources of radiation frequently involves low doses. Although these doses have no immediately noticeable impact on human health there is great interest in their long-term biological effects. Purpose: To assess immediate and time-delayed DNA damage in two cell lines exposed to low doses of ionizing radiation by using the comet assay and micronucleus test, and to compare these two techniques in the analysis of low-dose induced genotoxicity. Material and Methods: CHO and MRC-5 cells were exposed to 50 milliSievert (mSv) of ionizing radiation and assayed immediately after irradiation and at 16 or 12 passages post-irradiation, respectively. Comet assay and micronucleus test were employed. Results: The comet assay values observed in 50 mSv-treated cells were significantly higher than in the control group for both sample times and cell lines (P < 0.001). Micronuclei frequencies were higher in treated cells than in the control group (P < 0.01, CHO cells passage 16; P < 0.05, MRC-5 cells immediately after exposure; P < 0.01 MRC-5 cells passage 12). Correlation analysis between the two techniques was statistically significant (correlation coefficient 0.82, P < 0.05 and correlation coefficient 0.86, P < 0.05 for CHO and MRC-5 cells, respectively). Cells scored at passages 12 or 16 showed more damage than those scored immediately after exposure in both cell lines (no statistically significant differences). Conclusion: Cytomolecular and cytogenetic damage was observed in cells exposed to very low doses of X-rays and their progeny. A single low dose of ionizing radiation was sufficient to induce such response, indicating that mammalian cells are exquisitely sensitive to it. Comet and micronucleus assays are sensitive enough to assess this damage, although the former seems to be more efficient

  11. Low dose radiation exposure and atherosclerosis in ApoE-/- mice

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Hasu, M.; Bugden, M.; Wyatt, H.; Little, M.; Hildebrandt, G.; Priest, N.D.; Whitman, S.C.

    2010-01-01

    The hypothesis that single low dose exposures (0.025-0.5 Gy) to low LET radiation, given at either high (240 mGy/min) or low (1 mGy/min) dose rate, would promote aortic atherosclerosis was tested in female C57BI/6 mice genetically predisposed to this disease (ApoE-/-). Mice were exposed either at early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (8 months of age) and examined 2 or 4 months later. Compared to unexposed controls, all doses given at low or high dose rate at early stage disease had significant inhibitory effects on lesion growth and, at 25 or 50 mGy, on lesion frequency. No dose given at low dose rate had any effect on total serum cholesterol, but this was elevated by every dose given at high dose rate. Exposures at low dose rate had no effect on the percentage of lesion lipids contained within macrophages, and, at either high or low dose rate, had no significant effect on lesion severity. Exposure at late stage disease, to any dose at high dose rate, had no significant effect on lesion frequency, but at low dose rate some doses produced a small transient increase in this frequency. Exposure to low doses at low, but not high dose rate, significantly, but transiently reduced average lesion size, and at either dose rate transiently reduced lesion severity. Exposure to any dose at low dose rate (but not high dose rate) resulted in large and persistent decreases in serum cholesterol. These data indicate that a single low dose exposure, depending on dose and dose rate, generally protects against various measures of atherosclerosis in genetically susceptible mice. This result contrasts with the known, generally detrimental effects of high doses on this disease in the same mice, suggesting that a linear extrapolation of risk from high doses is not appropriate. (author)

  12. Risk of low-doses in radiodiagnosis; Risque des faibles doses en radiodiagnostic. Mythes, reglementation et rationalite

    Energy Technology Data Exchange (ETDEWEB)

    Cordoliani, Y.S.; Sarrazin, J.L.; Le Frian, G.; Soulie, D.; Leveque, C. [Hopital d`Instruction des Armees du Val-de-Grace, 75 - Paris (France)

    1997-12-31

    The effect of low doses of X-rays is inferred from the indubitable effects of high doses in human carcinogenesis, Genetic and teratogenic effects are mainly inferred from animal experimentation because clinical surveys of irradiated pregnant women have failed to demonstrate such consequences in the children, except for mental retardation after Japanese atomic bombing. Since no evidence of carcinogenic effect has been produced by epidemiological studies for doses lower than 500 mSv. the estimation of the risk due to low doses has been extrapolated from the linear relation between dose and cancers at high doses. Such an extrapolation gives a maximal risk which is falsely used as a probability of cancer. The actual risk lies between zero and this maximal number, and many epidemiologic surveys in people receiving doses much higher than the mean level of background irradiation failed to demonstrate higher rate of cancer. The explanation of this fact, which is supported by the most recent biological data, is the efficacy of the DNA repair system at low level of exposure to ionizing radiations. We expose the principles of regulation of radioprotection for workers, and give estimations of the doses delivered to the patients and the personnel by diagnostic investigations, by comparing these doses with those of natural irradiation. Practical aspect for conventional and computed radiology are exposed for patients and workers. (authors)

  13. Effect of low-dose radiation on ocular circulation

    International Nuclear Information System (INIS)

    Baba, Keiko; Hiroishi, Goro; Honda, Masae; Yoshikawa, Hiroshi; Fujisawa, Kimihiko; Ishibashi, Tatsuro

    1999-01-01

    We treated 6 eyes of unilateral age-related macular degeneration by low-dose radiation. Each eye received daily dose of 2 Gy by 4MV lineac totalling 20 Gy over 2 weeks. Color doppler flowmetry was used to determine the mean blood flow velocity (Vmean) and vascular resistive index (RI) in the short posterior ciliary artery, central retinal artery and ophthalmic artery in the treated and fellow eyes before and up to 6 months of treatment. There were no significant differences in Vmean and RI before and after treatment. The findings show the absence of apparent influence of low-dose radiation on the ocular circulation in age-related macular degeneration. (author)

  14. Effect of low-dose radiation on ocular circulation

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Keiko; Hiroishi, Goro; Honda, Masae; Yoshikawa, Hiroshi; Fujisawa, Kimihiko; Ishibashi, Tatsuro [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1999-05-01

    We treated 6 eyes of unilateral age-related macular degeneration by low-dose radiation. Each eye received daily dose of 2 Gy by 4MV lineac totalling 20 Gy over 2 weeks. Color doppler flowmetry was used to determine the mean blood flow velocity (Vmean) and vascular resistive index (RI) in the short posterior ciliary artery, central retinal artery and ophthalmic artery in the treated and fellow eyes before and up to 6 months of treatment. There were no significant differences in Vmean and RI before and after treatment. The findings show the absence of apparent influence of low-dose radiation on the ocular circulation in age-related macular degeneration. (author)

  15. Patient doses and radiation risks in film-screen mammography in Finland

    International Nuclear Information System (INIS)

    Servomaa, A.; Parviainen, T.; Komppa, T.

    1995-01-01

    Screen-film mamography is the most sensitive method for the early detection of breast cancer. Breast doses in mamography should be measured for several reasons, especially for the evaluation of patient risk in a screening programme, but also for the assessment and comparison of imaging techniques and equipment performance. In this study, the factors affecting patient doses were assessed by making performance and patient dose measurements; about 50 mammographic units used for screening were included in the study. The lifetime risk as a function of age at exposure was calculated using the average glandular dose, the relative risk model shown in the BEIR V report, and the breast cancer mortality in Finland. The mean surface dose of a 4.5 cm thick phantom was 6.3 mGy, and the mean glandular dose 1.0 mGy. Analysis of the surface dose with respect to film optical density, relative speed of film processing, sensitivity of image receptors, and antiscatter grid showed that the mean surface dose could be decreased by more than 50%. For the screened age group of 50 to 59 years, the risk of exposure-induced death (REID) of breast cancer is about 1.4 x 10 -6 mSv -1 , and the average loss of life expectancy due to the radiation-induced breast cancer deaths (LLE/REID) is about 9.5 years. (Author)

  16. Low-dose radiation attenuates chemical mutagenesis in vivo. Cross adaptation

    International Nuclear Information System (INIS)

    Kakinuma, Shizuko; Yamauchi, Kazumi; Amasaki, Yoshiko; Nishimura, Mayumi; Shimada, Yoshiya

    2009-01-01

    The biological effects of low-dose radiation are not only of social concern but also of scientific interest. The radioadaptive response, which is defined as an increased radioresistance by prior exposure to low-dose radiation, has been extensively studied both in vitro and in vivo. Here we briefly review the radioadaptive response with respect to mutagenesis, survival rate, and carcinogenesis in vivo, and introduce our recent findings of cross adaptation in mouse thymic cells, that is, the suppressive effect of repeated low-dose radiation on mutation induction by the alkylating agent N-ethyl-N-nitrosourea. (author)

  17. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  18. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor

  19. Comparative risk assessment of radiation and other mutagenic agents. Low dose relative risk of different ionizing radiations and comparison with UV-radiation

    NARCIS (Netherlands)

    Leenhouts HP; Chadwick KH; Pruppers MJM; Wijngaard E; Sijsma MJ; Bouwens BT

    1990-01-01

    This report is the final report of a research contract of RIVM in the framework of the Radiation Protection Programme of the Commission of the European Communities. The aim of the project was to investigate the nature of the dose-effect relationship for radiobiological effects after different types

  20. Exposures at low doses and biological effects of ionizing radiations

    International Nuclear Information System (INIS)

    Masse, R.

    2000-01-01

    Everyone is exposed to radiation from natural, man-made and medical sources, and world-wide average annual exposure can be set at about 3.5 mSv. Exposure to natural sources is characterised by very large fluctuations, not excluding a range covering two orders of magnitude. Millions of inhabitants are continuously exposed to external doses as high as 10 mSv per year, delivered at low dose rates, very few workers are exposed above the legal limit of 50 mSv/year, and referring to accidental exposures, only 5% of the 116 000 people evacuated following the Chernobyl disaster encountered doses above 100 mSv. Epidemiological survey of accidentally, occupationally or medically exposed groups have revealed radio-induced cancers, mostly following high dose-rate exposure levels, only above 100 mSv. Risk coefficients were derived from these studies and projected into linear models of risk (linear non-threshold hypothesis: LNT), for the purpose of risk management following exposures at low doses and low dose-rates. The legitimacy of this approach has been questioned, by the Academy of sciences and the Academy of medicine in France, arguing: that LNT was not supported by Hiroshima and Nagasaki studies when neutron dose was revisited; that linear modelling failed to explain why so many site-related cancers were obviously nonlinearly related to the dose, and especially when theory predicted they ought to be; that no evidence could be found of radio-induced cancers related to natural exposures or to low exposures at the work place; and that no evidence of genetic disease could be shown from any of the exposed groups. Arguments were provided from cellular and molecular biology helping to solve this issue, all resulting in dismissing the LNT hypothesis. These arguments included: different mechanisms of DNA repair at high and low dose rate; influence of inducible stress responses modifying mutagenesis and lethality; bystander effects allowing it to be considered that individual

  1. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  2. The biological effects of low doses of radiation: medical, biological and ecological aspects

    International Nuclear Information System (INIS)

    Gun-Aajav, T.; Ajnai, L.; Manlaijav, G.

    2007-01-01

    Full text: The results of recent studies show that low doses of radiation make many different structural and functional changes in a cell and these changes are preserved for a long time. This phenomenon is called as effects of low doses of radiation in biophysics, radiation biology and radiation medicine. The structural and functional changes depend on doses and this dependence has non-linear and bimodal behaviour. More detail, the radiation effect goes up and reaches its maximum (Low doses maximum) in low doses region, then it goes down and takes its stationary means (there is a negative effect in a few cases). With increases in doses and with further increases it goes up. It is established that low dose's maximum depends on physiological state of a biological object, radiation quality and dose rate. During the experiments another special date was established. This specialty is that many different physical and chemical factors are mutually connected and have synergetic behaviour. At present, researches are concentrating their attention on the following three directions: 1. Direct and indirect interaction of radiation's low doses: 2. Interpretation of its molecular mechanism, regulation of the positive effects and elaboration of ways o removing negative effects: 3. Application of the objective research results into practice. In conclusion the authors mention the current concepts on interpretation of low doses effect mechanism, forward their own views and emphasize the importance of considering low doses effects in researches of environmental radiation pollution, radiation medicine and radiation protection. (author)

  3. An engagement factor for caregiver radiation dose assessment with radioiodine treatment

    International Nuclear Information System (INIS)

    Lee, Hyun Kuk; Hong, Seong Jong; Jeong, Kyu Hwan; Jung, Jae Won; Kim, Seong Min; Kang, Yun-Hee; Han, Man Seok

    2015-01-01

    This study aims to suggest ways to better manage thyroid cancer patients treated with high- and low-activity radioiodine ( 131 I) by assessing external radiation doses to family members and caregivers and the level of radiation in the surrounding environment. The radiation doses to caregivers of 33 inpatients (who were quarantined in the hospital for 2-3 d after treatment) and 31 outpatients who received radioiodine treatment after thyroidectomy were measured using passive thermoluminescence dosemeters. In this study, 33 inpatients were administered high-activity (100-200 mCi) 131 I, and 31 outpatients were administered low-activity (30 mCi) 131 I. The average doses to caregivers were measured at 0.61 mSv for outpatients and 0.16 mSv for inpatients. The total integrated dose of the recovery (recuperation) rooms where the patients stayed after release from hospital was measured to be 0.83 mSv for outpatients and 0.23 mSv for inpatients. To reflect the degree of engagement between the caregiver and the patient, considering the duration and distance between two during exposure, the authors used the engagement factor introduced by Jeong et al. (Estimation of external radiation dose to caregivers of patients treated with radioiodine after thyroidectomy. Health Phys 2014;106:466-474.). This study presents a new engagement factor (K-value) of 0.82 obtained from the radiation doses to caregivers of both in- and out-patients treated with high- and low-activity radioiodine, and based on this new value, this study presented a new predicted dose for caregivers. A patient treated with high-activity radioiodine can be released after 24 h of isolation, whereas outpatients treated with low-activity radioiodine should be isolated for at least 12 h. (authors)

  4. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Matzke, Melissa M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Waters, Katrina M., E-mail: katrina.waters@pnnl.gov [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States)

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  5. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  6. Low dose effects - is the fear more dangerous than the radiation?

    International Nuclear Information System (INIS)

    Malaxos, M.

    1996-01-01

    The use of hypothesis which assumes a dose / harmful effect relationship without a limit allows the calculation of risks attributable to doses too small to produce detectable, harmful biological effects. The daughter product of this hypothesis is ALARA concept which requires that the dose received is kept as low as reasonably achievable. This concept of prudent avoidance is generally accepted by international radiation protection organisations and universally applied by radiation health professionals. The acceptance of a hypothesis which assumes that a single nuclear event can cause carcinogenesis, has generated levels of anxiety which may have resulted in significant detriment to those possibly exposed to ionising radiation. The anxiety generated may have caused more detriment and a higher death rate than the worst case ' theoretical' value calculated using the Linear or Quadratic Linear Hypothesis. Information selected from reports and comments in relevant publications indicating that this possibility has become a realty is presented. 24 refs

  7. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shigemori, Yuji; Seki, Akiyuki

    2009-07-01

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC - INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC - DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  8. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  9. Implications of radiation risk for practical dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1984-01-01

    Radiobiological experiments with animals and cells have led to an expectation that the risks of cancer and hereditary effects are reduced at low doses and low dose rates of low LET radiation. Risk estimates derived from human exposures at high doses and dose rates usually contain an allowance for low dose effects in comparison with high dose effects, but no allowance may have been made for low dose rate effects. Although there are reasons for thinking that leukaemia risks may possibly have been underestimated, the total cancer risk assumed by ICRP for occupational exposures is reasonably realistic. For practical dosimetry the primary dose concepts and limits have to be translated into secondary quantities that are capable of practical realisation and measurement, and which will provide a stable and robust system of metrology. If the ICRP risk assumptions are approximately correct, it is extremely unlikely that epidemiological studies of occupational exposures will detect the influence of radiation. Elaboration of dosimetry and dose recording for epidemiological purposes is therefore unjustified except possibly in relation to differences between high and low LET radiations. (author)

  10. Individual-based model for radiation risk assessment

    Science.gov (United States)

    Smirnova, O.

    A mathematical model is developed which enables one to predict the life span probability for mammals exposed to radiation. It relates statistical biometric functions with statistical and dynamic characteristics of an organism's critical system. To calculate the dynamics of the latter, the respective mathematical model is used too. This approach is applied to describe the effects of low level chronic irradiation on mice when the hematopoietic system (namely, thrombocytopoiesis) is the critical one. For identification of the joint model, experimental data on hematopoiesis in nonirradiated and irradiated mice, as well as on mortality dynamics of those in the absence of radiation are utilized. The life span probability and life span shortening predicted by the model agree with corresponding experimental data. Modeling results show the significance of ac- counting the variability of the individual radiosensitivity of critical system cells when estimating the radiation risk. These findings are corroborated by clinical data on persons involved in the elimination of the Chernobyl catastrophe after- effects. All this makes it feasible to use the model for radiation risk assessments for cosmonauts and astronauts on long-term missions such as a voyage to Mars or a lunar colony. In this case the model coefficients have to be determined by making use of the available data for humans. Scenarios for the dynamics of dose accumulation during space flights should also be taken into account.

  11. Mechanisms of Low Dose Radio-Suppression of Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Engelward, Bevin P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2009-09-16

    The major goal of this project is to contribute toward the elucidation of the impact of long term low dose radiation on genomic stability. We have created and characterized novel technologies for delivering long term low dose radiation to animals, and we have studied genomic stability by applying cutting edge molecular analysis technologies. Remarkably, we have found that a dose rate that is 300X higher than background radiation does not lead to any detectable genomic damage, nor is there any significant change in gene expression for genes pertinent to the DNA damage response. These results point to the critical importance of dose rate, rather than just total dose, when evaluating public health risks and when creating regulatory guidelines. In addition to these studies, we have also further developed a mouse model for quantifying cells that have undergone a large scale DNA sequence rearrangement via homologous recombination, and we have applied these mice in studies of both low dose radiation and space radiation. In addition to more traditional approaches for assessing genomic stability, we have also explored radiation and possible beneficial effects (adaptive response), long term effects (persistent effects) and effects on communication among cells (bystander effects), both in vitro and in vivo. In terms of the adaptive response, we have not observed any significant induction of an adaptive response following long term low dose radiation in vivo, delivered at 300X background. In terms of persistent and bystander effects, we have revealed evidence of a bystander effect in vivo and with researchers at and demonstrated for the first time the molecular mechanism by which cells “remember” radiation exposure. Understanding the underlying molecular mechanisms by which radiation can induce genomic instability is fundamental to our ability to assess the biological impact of low dose radiation. Finally, in a parallel set of studies we have explored the effects of heavy

  12. Epidemiological survey of the effects of low level radiation dose: a comparative assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.S.B.

    1993-10-01

    This volume presents the collations tables of a six volume comparative epidemiological survey of the effects of low level radiation dose. Data are collated for the effects observed in the following irradiated groups:- Preconception irradiation, intra-uterine irradiation, childhood irradiation, adult irradiation. (UK).

  13. Low-frequency fields - health risk assessment

    International Nuclear Information System (INIS)

    Bernhardt, J.

    1993-01-01

    The author briefly reviews the biological actions and effects of low-frequency fields, epidemiological studies and discusses health risks in detail. He describes the assessment principles of the International Commission on Non-ionizing Radiation Protection (ICNIRP), medical principles for risk assessment, determination of limits and thesholds, and aspects of prevention. This is supplemented to by several fables and literature list. (Uhe) [de

  14. Scientific view of low-level radiation risks

    International Nuclear Information System (INIS)

    Hall, E.J.

    1991-01-01

    The average number of diagnostic x-ray procedures per year in the United States equals the total population and results in an annual collective effective dose equivalent of about 9 million person-rem. Possible deleterious effects include (a) genetic consequences, the risks of which can be assessed only from animal studies; (b) carcinogenesis, which can be assessed from survivors of nuclear bombings and patients exposed for medical reasons; and (c) effects on the developing embryo or fetus. For stochastic endpoints such as cancer and genetic anomalies, it is estimated that the current practice of radiology in the United States increases spontaneous frequency by less than 1%. No single procedure is likely to produce harm to the conceptus, but an accumulation of procedures in a pregnant woman could be hazardous during the sensitive period of 8-15 weeks after conception, with microcephaly and mental retardation the most likely deleterious effects. The balance of risk versus benefit in diagnostic radiology is heavily weighted toward benefit, but the risks are there, and constant efforts are needed to reduce radiation doses to the minimum necessary

  15. Human evidence on the shape of the dose-response curves for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Burkart, W.

    1981-09-01

    The carcinogenic effects of high levels of ionizing radiation are better understood than those of any other environmental agent. However, the somatic risk from low doses is highly disputed. The uncertainties stem from the fact that a direct estimation of small risks requires impracticably large samples. Therefore, risk estimates for low doses have to be derived indirectly by extrapolation from high exposure data and are heavily dependent on assumptions about the form of the dose-response curve. Although radiobiological theories tested on in vitro systems predict a quadratic term in the dose-response equation which should, at least for sparsely ionizing radiation, dominate the shape of the curve, the epidemiological data available cannot exclude the possibility of a pure linear relationship. In some cases, apparent thresholds may result from latent periods inversely related to dose. Besides depending on the quality of the radiation, the shape seems also to differ with the type of cancer induced. Studies on uranium miners, atomic bomb survivors and on irradiated patients are reviewed with emphasis on the shape of the dose-response. The credibility of the most publicized reports claiming a large cancer risk from low levels of radiation is assessed. The feasibility of a new study in an area of high natural background is explored. Finally, the influence of the uncertainties concerning the effect of low level radiation on future exposure limits set by regulatory bodies is discussed. (Auth.)

  16. Risks associated with low level ionizing radiation (with special reference to nuclear power workers)

    International Nuclear Information System (INIS)

    1989-01-01

    This document describes a project to use epidemiological studies of workers in the nuclear industry to estimate the cancer risk associated with low-dose chronic exposure to ionizing radiation. The project aims both to improve the basis for radiation risk assessment and to test the validity of currently used models for the extrapolation of radiation risk. This report focusses on the former aim, and summarizes discussions at two meetings held in June 1988. One of these was a small working group consisting mainly of epidemiologists who had carried out studies of nuclear workers; the other included nominees of the nuclear industries of eleven countries as well as epidemiologists and radiation physicists and biologists. As a result of the meetings, efforts are underway to pool existing data and a feasibility study is addressing the possibility of an international collaborative study of unstudied groups of nuclear workers

  17. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    Energy Technology Data Exchange (ETDEWEB)

    Balmain, Allan [University of California, San Francisco; Song, Ihn Young [University of California, San Francisco

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularly when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.

  18. Methodology in use for the assessment of carcinogenic risk. II. Radiation. Oncology overview

    International Nuclear Information System (INIS)

    1983-04-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Assessment of carcinogenic risk from environmental and occupational exposures to ionizing radiation; Assessment of carcinogenic risk from exposure to ionizing radiation used for medical diagnosis or treatment; Assessment of carcinogenic risk from exposure to ionizing radiation following nuclear bomb explosions; Comparison of risk from radiation sources with risk from nonradiation sources; Experimental studies to assess risk of carcinogenesis following exposure to ionizing radiation; Theoretical aspects of dose-response relationships in the assessment of carcinogenic risk from exposure to ionizing radiation; Public policy and standards for acceptable risk from exposure to ionizing radiation; General reviews on the assessment of risk from exposure to ionizing radiation

  19. Conceptus radiation dose and risk from chest screen-film radiography

    International Nuclear Information System (INIS)

    Damilakis, John; Perisinakis, Kostas; Dimovasili, Evangelia; Prassopoulos, Panos; Gourtsoyiannis, Nicholas; Varveris, Haralambos

    2003-01-01

    The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (d a ) was estimated for 51 women of childbearing age from chest CT examinations. The value of d a was estimated to be 22.3 cm (17.4-27.2 cm). The calculated maximum conceptus dose was 107 x 10 -3 mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and d a estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is no need for

  20. Conceptus radiation dose and risk from chest screen-film radiography.

    Science.gov (United States)

    Damilakis, John; Perisinakis, Kostas; Prassopoulos, Panos; Dimovasili, Evangelia; Varveris, Haralambos; Gourtsoyiannis, Nicholas

    2003-02-01

    The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (d(a)) was estimated for 51 women of childbearing age from chest CT examinations. The value of d(a) was estimated to be 22.3 cm (17.4-27.2 cm). The calculated maximum conceptus dose was 107 x 10(-3) mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and d(a) estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is no need for

  1. Conceptus radiation dose and risk from chest screen-film radiography

    Energy Technology Data Exchange (ETDEWEB)

    Damilakis, John; Perisinakis, Kostas; Dimovasili, Evangelia [Department of Medical Physics, University of Crete, Faculty of Medicine, P.O. Box 1393, 714 09 Iraklion, Crete (Greece); Prassopoulos, Panos; Gourtsoyiannis, Nicholas [Department of Radiology, University of Crete, Faculty of Medicine, P.O. Box 1393, 714 09 Iraklion, Crete (Greece); Varveris, Haralambos [Department of Radiotherapy, University of Crete, Faculty of Medicine, P.O. Box 1393, 714 09 Iraklion, Crete (Greece)

    2003-02-01

    The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (d{sub a}) was estimated for 51 women of childbearing age from chest CT examinations. The value of d{sub a} was estimated to be 22.3 cm (17.4-27.2 cm). The calculated maximum conceptus dose was 107 x 10{sup -3} mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and d{sub a} estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is

  2. Establishment of exposure dose assessment laboratory in National Radiation Emergency Medical Center (NREMC)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Ryong; Ha, Wi Ho; Yoon, Seok Won; Han, Eun Ae; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    As unclear industry grown, 432 of the nuclear power plants are operating and 52 of NPPs are under construction currently. Increasing use of radiation or radioisotopes in the field of industry, medical purpose and research such as non-destructive examination, computed tomography and x-ray, etc. constantly. With use of nuclear or radiation has incidence possibility for example the Fukushima NPP incident, the Goiania accident and the Chernobyl Nuclear accident. Also the risk of terror by radioactive material such as Radiological Dispersal Device(RDD) etc. In Korea, since the 'Law on protection of nuclear facilities and countermeasure for radioactive preparedness was enacted in 2003, the Korean institute of Radiological and Medical Sciences(KIRAMS) was established for the radiation emergency medical response in radiological disaster due to nuclear accident, radioactive terror and so on. Especially National Radiation Emergency Medical Center(NREMC) has the duty that is protect citizens from nuclear, radiological accidents or radiological terrors through the emergency medical preparedness. The NREMC was established by the 39-article law on physical protection of nuclear material and facilities and measures for radiological emergencies. Dose assessment or contamination survey should be performed which provide the radiological information for medical response. For this reason, the NREMC establish and re-organized dose assessment system based on the existing dose assessment system of the NREMC recently. The exposure dose could be measured by physical and biological method. With these two methods, we can have conservative dose assessment result. Therefore the NREMC established the exposure dose assessment laboratory which was re-organized laboratory space and introduced specialized equipment for dose assessment. This paper will report the establishment and operation of exposure dose assessment laboratory for radiological emergency response and discuss how to enhance

  3. Radiation exposure and radiation risk of the population

    International Nuclear Information System (INIS)

    Jacobi, W.; Paretzke, H.G.; Ehling, U.H.

    1981-02-01

    The major scientifically founded results concerning the assessment of the radiation exposure and the analysis and evaluation of the radiationhazards for the population, particularly in the range of low doses, are presented. As to the risk analysis special attention is paid to the rays with low ionization density (X-, γ-, β- and electronrays). Contents: 1) Detailed survey of the results and conclusions; 2) Data on the radiation load of the population; 3) Results to epidemiological questioning on the risk of cancer; 4) Genetical radiation hazards of the population. For quantification purposes of the risk of cancer by γ-radiation the observations with the a-bomb survivors in Japan are taken as a basis, as the available dosimetrical data have to be revised. Appendices: 1) German translation of the UNSCEAR-Report (1977); 2) BEIR-Report (1980); 3) Comments from the SSK on the comparability of the risks of natural-artificial radiation exposure; 4) Comments from the SSK on the importance of synergistical influences for the radiation protection (23.9.1977). (HP) [de

  4. A method to adjust radiation dose-response relationships for clinical risk factors

    DEFF Research Database (Denmark)

    Appelt, Ane Lindegaard; Vogelius, Ivan R

    2012-01-01

    Several clinical risk factors for radiation induced toxicity have been identified in the literature. Here, we present a method to quantify the effect of clinical risk factors on radiation dose-response curves and apply the method to adjust the dose-response for radiation pneumonitis for patients...

  5. Cancer risk as a radiation detriment

    International Nuclear Information System (INIS)

    Servomaa, A.; Komppa, T.; Servomaa, K.

    1992-11-01

    Potential radiation detriment means a risk of cancer or other somatic disease, genetic damage of fetal injury. Quantative information about the relation between a radiation dose and cancer risk is needed to enable decision-making in radiation protection. However, assessment of cancer risk by means of the radiation dose is controversial, as epidemiological and biological information about factors affecting the origin of cancers show that risk assessment is imprecise when the radiation dose is used as the only factor. Focusing on radiation risk estimates for breast cancer, lung cancer and leukemia, the report is based on the models given in the Beir V report, on sources of radiation exposure and the uncertainty of risk estimates. Risk estimates are assessed using the relative risk model and the cancer mortality rates in Finland. Cancer incidence and mortality rates for men and women are shown in graphs as a function of age and time. Relative risks are shown as a function of time after exposure and lifetime risks as a function of age at exposure. Uncertainty factors affecting the radiation risk are examined from the point of view of epidemiology and molecular biology. (orig.)

  6. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  7. Epidemiological surveys on the effects of low-level radiation dose: a comparative assessment. V. E

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.S.B.

    1990-01-01

    These tables present data on the effects of low-level radiation dose for the following effects:- pre-conception irradiation and Down's Syndrome, pre-conception irradiation and reproductive damage, surveys of effect in relation to the source of radiation, distribution by maternal preconception exposure of the 7 most common major congenital abnormalities in the Japanese, pre-conception irradiation and childhood malignancies, parental gonadal dose at Hiroshima and Nagasaki in relation to leukemia, sex chromosome aneuploids in children of A-bomb survivors, untoward pregnancy outcomes by parental gonad dose, pre-conception irradiation and chromosomal abnormalities, and intra-uterine irradiation and intelligence. (author).

  8. Epidemiological surveys on the effects of low-level radiation dose: a comparative assessment. V. E

    International Nuclear Information System (INIS)

    Rose, K.S.B.

    1990-01-01

    These tables present data on the effects of low-level radiation dose for the following effects:- pre-conception irradiation and Down's Syndrome, pre-conception irradiation and reproductive damage, surveys of effect in relation to the source of radiation, distribution by maternal preconception exposure of the 7 most common major congenital abnormalities in the Japanese, pre-conception irradiation and childhood malignancies, parental gonadal dose at Hiroshima and Nagasaki in relation to leukemia, sex chromosome aneuploids in children of A-bomb survivors, untoward pregnancy outcomes by parental gonad dose, pre-conception irradiation and chromosomal abnormalities, and intra-uterine irradiation and intelligence. (author)

  9. What do recent epidemiological studies tell us about the risk of cancer from radiation doses typical of diagnostic radiography?

    International Nuclear Information System (INIS)

    Harbron, R.W.

    2016-01-01

    The last five years have seen unprecedented efforts to gain further understanding of the cancer risks following exposure to radiation doses below 100 mGy. Research has focused on occupationally exposed groups, populations exposed to elevated background radiation levels and children undergoing computed tomography scans. This review summarises the main findings of these studies and discusses the implications for diagnostic radiography. On balance, recent studies strengthen the association between radiation exposure at diagnostic dose levels and the risk of developing cancer at low doses. Although subject to considerable uncertainties, the risks to patients and staff from exposure to X-rays at diagnostic dose levels appear to be small, but non-zero. Despite the improved statistical power of recent studies, a number of shortcomings are apparent. These include dosimetric uncertainties and the potential confounding effects of cancer pre-disposing conditions and pre-existing tumours. - Highlights: • The risk of cancer from radiation doses below around 100 mGy is uncertain. • A number of new studies have been published with reasonably high statistical power. • These studies strengthen the association between X-rays and cancer at low doses. • Large uncertainties remain, however.

  10. Assessment of radiation-induced cancer risks from the Chernobyl fallout in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A; Komppa, T; Suomela, M [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-09-01

    Application of detailed radiation risk models to populations affected by radiation doses from the Chernobyl fallout allows forecasting and estimation of the consequences of the accident in countries far from the place of the accident, and comparison of the model estimates with epidemiological observations in low-dose conditions among large populations. 14 refs, 11 figs, 1 tab.

  11. Assessment of radiation-induced cancer risks from the Chernobyl fallout in Finland

    International Nuclear Information System (INIS)

    Servomaa, A.; Komppa, T.; Suomela, M.

    1997-01-01

    Application of detailed radiation risk models to populations affected by radiation doses from the Chernobyl fallout allows forecasting and estimation of the consequences of the accident in countries far from the place of the accident, and comparison of the model estimates with epidemiological observations in low-dose conditions among large populations. 14 refs, 11 figs, 1 tab

  12. Applicability of the tissue stem cell turnover concept on the validity of cumulative dose based radiation risk evaluation

    International Nuclear Information System (INIS)

    Otsuka, Kensuke; Hamada, Nobuyuki; Iwasaki, Toshiyasu; Yoshida, Kazuo

    2011-01-01

    The radiation protection system adopts the linear no-threshold model to achieve proper radiation protection for considering cancer risks resulting from radiation exposure. This model uses cumulative dose to a tissue for risk evaluation in which cumulative dose is related to the amount of DNA damage and consequential induction of gene mutation. In this concept, gene mutation accumulates in tissue stem cells, the putative target of carcinogenesis, with total dose given to the tissue. Unlike high-dose-rate exposure, epidemiological studies in high radiation background areas, such as Kerala in India, revealed that cancer risks is not elevated by the dose to the inhabitants, suggesting that there exists some mechanisms to eliminate the damage/mutation in the exposed tissue under extremely low-dose-rate exposure situations. In this report, the dynamics of tissue stem cell turnover is evaluated as a possible mechanism under extremely low-dose-rate exposure situations. To this end, we reviewed recent literatures studying tissue stem cell turnover, and found that great advances in stem cell research have made it possible to trace a fate of stem cells in tissues. Furthermore, turnover of tissue stem cells is found to occur after irradiation, due to competition of stem cells within tissues. This raises a possibility that radiation effects may not accumulate in a tissue depending on the dose-rate and duration of exposure period. (author)

  13. Problems Concerning Dose Assessments in Epidemiology of High Background Radiation Areas of Yangjiang, China (invited paper)

    International Nuclear Information System (INIS)

    Wei, L.X.; Yuan, Y.L.

    1998-01-01

    The purpose of this study on radiation levels and dose assessments in the epidemiology of a high background radiation area (HBRA) and the control area (CA) is to respond to the needs of epidemiology in these areas, where the inhabitants are continuously exposed to low dose, low dose rate ionising radiation. A brief description is given of how the research group evaluated the feasibility of the investigation by analysing the population size and the radiation levels, how simple reliable methods were used to get the individual annual dose for every cohort member, and how the cohort members were classified into various dose groups for dose-effect relationship analysis. Finally, the use of dose group classification for cancer mortality studies is described. (author)

  14. Whole-body CT for lymphoma staging: Feasibility of halving radiation dose and risk by iterative image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M., E-mail: mathias.meyer@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Klein, S.A., E-mail: stefan.klein@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Brix, G., E-mail: gbrix@bfs.de [Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg (Germany); Fink, C., E-mail: Christian.Fink@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Pilz, L., E-mail: lothar.pilz@medma.uni-heidelberg.de [Department of Biostatistics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Jafarov, H., E-mail: Hashim.Jafarov@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Hofmann, W.K., E-mail: w.k.hofmann@umm.de [Department of Hematology and Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); Schoenberg, S.O., E-mail: Stefan.Schoenberg@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany); and others

    2014-02-15

    Objectives: Patients with lymphoma are at higher-risk of secondary malignancies mainly due to effects of cancer therapy as well as frequent radiological surveillance. We thus aimed to investigate the objective and subjective image quality as well as radiation exposure and risk of full-dose standard (FDS), full-dose iterative (FDI), and half-dose iterative (HDI) image reconstruction in patients with lymphoma. Material and methods: In 100 lymphoma patients, contrast-enhanced whole-body staging was performed on a dual-source CT. To acquire full-dose and half-dose CT data simultaneously, the total current-time product was equally distributed on both tubes operating at 120 kV. HDI reconstructions were calculated by using only data from one tube. Quantitative image quality was assessed by measuring image noise in different tissues of the neck, thorax, and abdomen. Overall diagnostic image quality was assessed using a 5-point Likert scale. Radiation doses and risks were estimated for a male and female reference person. Results: For all anatomical regions apart from the lungs image noise was significantly lower and the overall subjective image quality significantly better when using FDI and HDI instead of FDS reconstruction (p < 0.05). For the half-dose protocol, the risk to develop a radiation-induced cancer was estimated to be less than 0.11/0.19% for an adult male/female. Conclusions: Image quality of FDI and more importantly of HDI is superior to FDS reconstruction, thus enabling to halve radiation dose and risk to lymphoma patients.

  15. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    Swindon, T.N.; Morris, N.D.

    1981-12-01

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  16. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  17. Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    International Nuclear Information System (INIS)

    Jirtle, Randy L.

    2012-01-01

    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A vy ) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure ( vy locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in animals and humans needs to be defined

  18. An investigation of the interactions of low doses of ionising radiation and chemical pollutants on Artemia Salina

    International Nuclear Information System (INIS)

    Danova, D.; Benova, K.; Hromada, R.; Falis, M.; Dvorak, P.

    2004-01-01

    Nuclear reactor failures present a risk of global contamination which can be affected by other environmental factors, such as chemicals. The present study has investigated the effect of low doses of gamma radiation in relation to the presence of low doses of Cr and Cd. (authors)

  19. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    OpenAIRE

    Dobrescu, Lidia; Rădulescu, Gheorghe-Cristian

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase ...

  20. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    Science.gov (United States)

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  1. Study of genomic instability induced by low dose ionizing radiation

    International Nuclear Information System (INIS)

    Seoane, A.; Crudeli, C.; Dulout, F.

    2006-01-01

    The crews of commercial flights and services staff of radiology and radiotherapy from hospitals are exposed to low doses of ionizing radiation. Genomic instability includes those adverse effects observed in cells, several generations after the exposure occurred. The purpose of this study was to analyze the occurrence of genomic instability by very low doses of ionizing radiation [es

  2. Low radiation doses and antinuclear lobby

    International Nuclear Information System (INIS)

    Drobnik, J.

    1987-01-01

    The probability of mutations or diseases resulting from other than radiation causes is negatively dependent on radiation. Thus, for instance, the incidence of cancer, is demonstrably lower in areas with a higher radiation background. The hypothesis is expressed that there exist repair mechanisms for DNA damage which will repair the damage, and will give priority to those genes which are currently active. Survival and stochastic processes are not dependent on the overall repair of DNA but on the repair of critical function genes. New discoveries shed a different light on views of the linear dependence of radiation damage on the low level doses. (M.D.)

  3. Some concepts, terminology, and methodology for radiation risk assessment

    International Nuclear Information System (INIS)

    Groer, P.G.; Barlow, R.E.

    1982-01-01

    The controversy concerning cancer risk estimates for human populations exposed to low doses of ionizing radiations is discussed. The authors note that while little can be done to obtain more and better data on human populations, the analysis of available data can be sharpened through the consistent use of appropriate statistical techniques. Some probabilistic concepts that will help to define ''dose-response curve'' are given

  4. Risks for radiation workers

    International Nuclear Information System (INIS)

    Rotblat, J.

    1978-01-01

    The following topics are discussed: recommendations of the International Commission on Radiological Protection; methods for determining dose limits to workers; use of data from survivors of Hiroshima and Nagasaki for estimating risk factors; use of data from survivors of nuclear explosions in Marshall Islands, uranium miners, and patients exposed to diagnostic and therapeutic radiation; risk factors for radioinduced malignancies; evidence that risk factors for persons exposed to partial-body radiation and Japanese survivors are too low; greater resistance of A-bomb survivors to radiation; and radiation doses received by U.K. medical workers and by U.K. fuel reprocessing workers. It is suggested that the dose limit for radiation workers should be reduced by a factor of 5

  5. Carcinogenic risk assessment and management of ionising radiation, asbestos and nickel: a comparative approach

    International Nuclear Information System (INIS)

    Schneider, T.; Lepicard, S.; Oudiz, A.; Heriard Dubreuil, G.; Gadbois, S.

    2000-01-01

    The objective of this study is to identify the similarities as well as the differences of risk assessment and management of ionizing radiation, asbestos and nickel in France. The comparison has been performed at three levels of analysis: concepts, regulation and practices. Ionizing radiation (IR) is compared with asbestos as far as occupational exposure is concerned and to nickel and nickel compounds as far as general population exposure is concerned. The three main stages of risk assessment were considered: hazard identification, exposure-risk relationship, exposure assessment. Alternative risk management policies were reviewed. The main results are the following: At the conceptual level, the risk assessment and management frameworks present many similarities: exposure-risk relationships exist, and low dose extrapolation is considered as legitimate. Comparison of protection strategies can be carried out with reference to the 'optimization' principle developed for IR. At the regulatory level, the status of the IR dose limits differs from the status of the exposure limit values set for asbestos and nickel. For IR, compliance with the dose limit cannot be seen as the final objective of protection: the burden is put on the requirement to maintain the doses as low as reasonably achievable, social and economical factors being taken into account (ALARA). In most of the situations, actual exposure to IR in industry appear to be significantly lower than the dose limit. In the case of asbestos and nickel, the exposure limit values are very low and compliance with the limits is indeed a quite ambitious objective. At the practical level, some noticeable differences exist as far as the decision aiding procedures are concerned. A process which may be considered as an ALARA approach is applied, in the case of nickel: seeking for the 'best available technologies', defining and implementing with stakeholdes regional plans for air quality. In the case of asbestos, the predictive

  6. Low doses of ionizing radiation: Relationship between biological benefit and damage induction. A synopsis

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2005-01-01

    Absorption of ionizing radiation in biological tissue stochastically interacts with constituent atoms and molecules and always generates energy deposition (track) events accompanied by bursts of reactive oxygen species (ROS). These ROS are quite similar to those ROS that arise abundantly and constantly by normal oxidative metabolism. ROS effects from either source need attention when assessing radiation-induced alterations in biological structure and function. Endogenous ROS alone induce about 10 6 DNA oxyadducts per cell per day compared to about 5x10 -3 total DNA damage per average cell per day from background radiation exposure (1 mGy per year). At this background level, the corresponding ratio of probabilities of endogenous versus radiogenic DNA double strand breaks (DSBs) per cell per day is about 103 with some 25-40 % of low-LET caused radiogenic DNA-DSBs being of the multi-damage-site type. Radiogenic DNA damage increases in proportion to absorbed dose over a certain dose range. By evolution, tissues possess physiological mechanisms of protection against an array of potentially toxic agents, externally from the environment and endogenously from metabolism, mainly against the abundantly and constantly produced ROS. Ad hoc protection operates at a level that is genetically determined. Following small to moderate perturbation of cell-tissue homeostasis by a toxic impact, adaptive responses develop with a delay and may last from hours to weeks, even months, and aim at protecting the system against renewed insults. Protective responses encompass defense by scavenging mechanisms, DNA repair, damage removal largely by apoptosis and immune responses, as well as changes in cell proliferation. Acute low-dose irradiation below about 0.2 Gy can not only disturb cell-tissue homeostasis but also initiate adaptived protection that appears with a delay of hours and may last from less than a day to months. The balance between damage production and adaptive protection favors

  7. The linear non threshold conception 'Dose-effect' as a base for standardization of human exposure to ionizing radiation. Arguments pro and con

    International Nuclear Information System (INIS)

    Vassilev, G.

    2000-01-01

    Examples and argument are presented for reconsidering of the application of the threshold conception in low dose risk assessment. Some of the reasons mentioned are: inapplicability of the quantity 'collective dose' for low doses; serious reassessment of risk coefficients for radiation mutagenesis; report on increasing data on the so called hormesis - stimulation and potential effects from exposure of test animals nas humans to low doses of ionizing radiation

  8. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  9. Low dose radiation exposure and atherosclerosis in ApoE{sup -/-} mice

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Hasu, M. [Univ. of Ottawa, Department of Pathology and Lab. Medicine, and Cellular and Molecular Medicine, Ottawa, ON (Canada); Univ. of Ottawa Heart Inst., Vascular Biology Group, Ottawa, ON (Canada); Bugden, M.; Wyatt, H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Little, M. [Imperial Coll., Faculty of Medicine, St. Marys Campus, London (United Kingdom); Hildebrandt, G. [Univ. Hospital, Dept. of Radiotherapy, Rostock (Germany); Priest, N.D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Whitman, S.C. [Univ. of Ottawa, Department of Pathology and Lab. Medicine, and Cellular and Molecular Medicine, Ottawa, ON (Canada); Univ. of Ottawa Heart Inst., Vascular Biology Group, Ottawa, ON (Canada)

    2010-07-01

    The hypothesis that single low dose exposures (0.025-0.5 Gy) to low LET radiation, given at either high (240 mGy/min) or low (1 mGy/min) dose rate, would promote aortic atherosclerosis was tested in female C57BI/6 mice genetically predisposed to this disease (ApoE-/-). Mice were exposed either at early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (8 months of age) and examined 2 or 4 months later. Compared to unexposed controls, all doses given at low or high dose rate at early stage disease had significant inhibitory effects on lesion growth and, at 25 or 50 mGy, on lesion frequency. No dose given at low dose rate had any effect on total serum cholesterol, but this was elevated by every dose given at high dose rate. Exposures at low dose rate had no effect on the percentage of lesion lipids contained within macrophages, and, at either high or low dose rate, had no significant effect on lesion severity. Exposure at late stage disease, to any dose at high dose rate, had no significant effect on lesion frequency, but at low dose rate some doses produced a small transient increase in this frequency. Exposure to low doses at low, but not high dose rate, significantly, but transiently reduced average lesion size, and at either dose rate transiently reduced lesion severity. Exposure to any dose at low dose rate (but not high dose rate) resulted in large and persistent decreases in serum cholesterol. These data indicate that a single low dose exposure, depending on dose and dose rate, generally protects against various measures of atherosclerosis in genetically susceptible mice. This result contrasts with the known, generally detrimental effects of high doses on this disease in the same mice, suggesting that a linear extrapolation of risk from high doses is not appropriate. (author)

  10. Molecular radiobiology and risk assessment

    International Nuclear Information System (INIS)

    Georgieva, R.

    2009-01-01

    Full text: Attitudes towards the radiation protection standards on in Europe and the world largely depends on scientific knowledge, periodically published by the United Nations Scientific Committee (UNSCEAR) and the recommendations of the International Commission on Radiation Protection (ICRP), which also comply with the research. The new scientific evidence by conducting an additional research is a crucial element in the process of protection of people, workers and patients in medicine from the adverse health effects. Although these standards are clear and easy to apply, there is serious doubt from a scientific perspective about the level of health risk at low doses, which keep up a fierce debate, both eight scientific and political society. The answer to this question requires the integrated efforts of many scientific disciplines. Increasingly rapid advances in biological and medical knowledge provide the necessary conditions for achieving this aim. This lecture tries to shed light on the current state of knowledge, the main unresolved problems in science in the context of radiation protection and risk assessment, and on those lines of research that have the greatest potential to address the issues. They mainly concern issues of doses and biological effects of different types of ionisation radiation, biological effects in cells/tissues which initiate health effects at low doses, individual variability and direct health risk assessment by epidemiological studies of groups exposed to lower doses irradiation

  11. Risk and dose assessment methods in gamma knife QA

    International Nuclear Information System (INIS)

    Banks, W.W.; Jones, E.D.; Rathbun, P.

    1992-10-01

    Traditional methods used in assessing risk in nuclear power plants may be inappropriate to use in assessing medical radiation risks. The typical philosophy used in assessing nuclear reactor risks is machine dominated with only secondary attention paid to the human component, and only after critical machine failure events have been identified. In assessing the risk of a misadministrative radiation dose to patients, the primary source of failures seems to stem overwhelmingly, from the actions of people and only secondarily from machine mode failures. In essence, certain medical misadministrations are dominated by human events not machine failures. Radiological medical devices such as the Leksell Gamma Knife are very simple in design, have few moving parts, and are relatively free from the risks of wear when compared with a nuclear power plant. Since there are major technical differences between a gamma knife and a nuclear power plant, one must select a particular risk assessment method which is sensitive to these system differences and tailored to the unique medical aspects of the phenomena under study. These differences also generate major shifts in the philosophy and assumptions which drive the risk assessment (Machine-centered vs Person-centered) method. We were prompted by these basic differences to develop a person-centered approach to risk assessment which would reflect these basic philosophical and technological differences, have the necessary resolution in its metrics, and be highly reliable (repeatable). The risk approach chosen by the Livermore investigative team has been called the ''Relative Risk Profile Method'' and has been described in detail by Banks and Paramore, (1983)

  12. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  13. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  14. Monitoring of high-radiation areas for the assessment of operational and body doses

    International Nuclear Information System (INIS)

    Chen, T.J.; Tung, C.J.; Yeh, W.W.; Liao, R.Y.

    2004-01-01

    The International Commission on Radiological Protection (ICRP) recommended a system of dose limits for the protection of ionizing radiation. This system was established based on the effective dose, E, and the equivalent dose to an organ or tissue, H T , to assess stochastic and deterministic effects. In radiation protection monitoring for external radiation, operational doses such as the deep dose equivalent index, H I,d , shallow dose equivalent index, H I,s , ambient dose equivalent [1,4-6], H*, directional dose equivalent, H', individual dose equivalent-penetrating, H p , and individual dose equivalent-superficial, H s , are implemented. These quantities are defined in an International Commission on Radiation Units and Measurements (ICRU) sphere and in an anthropomorphic phantom under simplified irradiation conditions. They are useful when equivalent doses are below the corresponding limits. In the case of equivalent doses far below the limits, the exposure or air kerma is commonly applied. For workers exposed to high levels of radiation, accurate assessments of effective doses and equivalent doses may be needed in order to acquire legal and health information. In the general principles of monitoring for radiation protection of workers, ICRP recommended that: 'A graduated response is advocated for the monitoring of the workplace and for individual monitoring - graduated in the sense that a greater degree of monitoring is deemed to be necessary as doses increase of as unpredictability increases. Gradually more complex or realistic procedures should be adopted as doses become higher. Thus, at low dose equivalents (corresponding say to those within Working Condition B) dosimetric quantities might be used directly to assess exposure, since accuracy is not crucial. At intermediate dose equivalents (corresponding say to Working Condition A and slight overexposures) somewhat greater accuracy is warranted, and the conversion coefficients from dosimetric to radiation

  15. Application of low-dose radiation protocols in survey CT scans

    International Nuclear Information System (INIS)

    Fu Qiang; Liu Ting; Lu Tao; Xu Ke; Zhang Lin

    2009-01-01

    Objective: To characterize the protocols with low-dose radiation in survey CT scans for localization. Methods: Eighty standard adult patients, head and body phantoms were recruited. Default protocols provided by operator's manual setting were that all the tube voltage for head, chest, abdomen and lumbar was 120 kV; the tube currents were 20,10,20 and 40 mA, respectively. Values of kV and mA in the low-dose experiments were optimized according to the device options. For chest and abdomen, the tube position were compared between default (0 degree) and 180 degree. Phantoms were scanned with above protocols, and the radiation doses were measured respectively. Paired t-test were used for comparisons of standard deviation in CT value, noise and exposure surface dose (ESD) between group with default protocols and group with optimized protocols. Results: The optimized protocols in low-dose CT survey scans were 80 kV, 10 mA for head, 80 kV, 10 mA for chest, 80 kV, 10 mA for abdomen and 100 kV, 10 mA for lumbar. The values of ESD for phantom scan in default and optimized protocols were 0.38 mGy/0.16 mGy in head, 0.30 mGy/0.20 mGy in chest, 0.74 mGy/0.30 mGy in abdomen and 0.81 mGy/0.44 mGy in lumbar, respectively. Compared with default protocols, the optimized protocols reduced the radiation doses 59%, 33%, 59% and 46% in head, chest, abdomen and lumbar. When tube position changed from 0 degree to 180 degree, the ESD were 0.24 mGy/0.20 mGy for chest; 0.37 mGy/0.30 mGy for abdomen, and the radiation doses were reduced 20% and 17%. Conclusion: A certain amount of image noise is increased in low-dose protocols, but image quality is still acceptable without problem in CT localization. The reduction of radiation dose and the radiation harm to patients are the superiority. (authors)

  16. The Australasian radiation protection society's position statement on risks from low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Don, Higson; Ches, Mason; Andrew, McEwan; Peter, Burns; Riaz, Akber; Ron, Cameron; Pamela, Sykes; Joe, Young

    2006-01-01

    At its Annual General Meeting in 2004, the Australasian Radiation Protection Society (A.R.P.S.) set up a working group to draft a statement of the Society's position on risks from low levels of exposure to ionizing radiation. The resulting position statement was adopted by the Society at its Annual General Meeting in 2005. Its salient features are as follows: First, there is insufficient evidence to establish a dose-effect relationship for doses that are less than a few tens of milli sieverts in a year. A linear extrapolation from higher dose levels should be assumed only for the purpose of applying regulatory controls. Secondly, estimates of collective dose arising from individual doses that are less than some tens of milli sieverts in a year should not be used to predict numbers of fatal cancers. Thirdly, the risk to an individual of doses significantly less than 100 micro sieverts in a year is so small, if it exists at all, that regulatory requirements to control exposure at this level are not warranted. (authors)

  17. Alteration of cytokine profiles in mice exposed to chronic low-dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Suk Chul [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Lee, Kyung-Mi [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kang, Yu Mi [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Kwanghee [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kim, Cha Soon; Yang, Kwang Hee; Jin, Young-Woo [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Chong Soon [Department of Nuclear Medicine, Haeundae Paik Hospital, Inje University, Busan 612-030 (Korea, Republic of); Kim, Hee Sun, E-mail: hskimdvm@khnp.co.kr [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of)

    2010-07-09

    While a high-dose of ionizing radiation is generally harmful and causes damage to living organisms, a low-dose of radiation has been shown to be beneficial in a variety of animal models. To understand the basis for the effect of low-dose radiation in vivo, we examined the cellular and immunological changes evoked in mice exposed to low-dose radiation at very low (0.7 mGy/h) and low (3.95 mGy/h) dose rate for the total dose of 0.2 and 2 Gy, respectively. Mice exposed to low-dose radiation, either at very low- or low-dose rate, demonstrated normal range of body weight and complete blood counts. Likewise, the number and percentage of peripheral lymphocyte populations, CD4{sup +} T, CD8{sup +} T, B, or NK cells, stayed unchanged following irradiation. Nonetheless, the sera from these mice exhibited elevated levels of IL-3, IL-4, leptin, MCP-1, MCP-5, MIP-1{alpha}, thrombopoietin, and VEGF along with slight reduction of IL-12p70, IL-13, IL-17, and IFN-{gamma}. This pattern of cytokine release suggests the stimulation of innate immunity facilitating myeloid differentiation and activation while suppressing pro-inflammatory responses and promoting differentiation of naive T cells into T-helper 2, not T-helper 1, types. Collectively, our data highlight the subtle changes of cytokine milieu by chronic low-dose {gamma}-radiation, which may be associated with the functional benefits observed in various experimental models.

  18. Effect of low dose ionizing radiation upon concentration of

    International Nuclear Information System (INIS)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-01-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  19. Interest and limits of epidemiology for the evaluation of radiation induced cancer risks and the setting up of radiation protection standards

    International Nuclear Information System (INIS)

    Hubert, D.

    1990-01-01

    Epidemiological studies allow to confirm that a risk does exist for some types of cancer following high-dose exposures often at high dose-rates. However, no conclusion can be drawn for low doses and low dose-rates. Therefore we have to extrapolate from known high-dose risks to low doses and low dose-rates by various dose-response patterns. Another difficulty in assessing radiation cancer risks comes from the long latency time, which explains that all excess cancers have not yet been observed in the irradiated population studied. Once more, mathematical models are used to project excess lifetime cancer mortality. The estimations of radiation cancer risks are therefore marked by a great number of uncertainties, since they change accordingly to the model used. Other uncertainties come from the data, especially the dose estimates and are heightened when extrapolating to other populations. In 1988, UNSCEAR assessed new estimates for excess lifetime cancer mortality in the range of 4 to 11% per gray. These values mean a revaluation of the previous estimates by a 1.6 to 4.4 factor, which is mainly consecutive to the use of different projection models. Besides, they are solely based on the Hiroshima and Nagasaki survivors, whereas patient studies assess a lower risk. Finally UNSCEAR does not precisely state what is the available reduction factor to modify risks for low doses and low dose rates which should lie between 2 and 10. Due to a number of persistent uncertainties, we should not consider it justified to revise protection standards presently. 9 tabs.; 45 refs [fr

  20. Interests and limits of epidemiology for the evaluation of risks of radiation induced cancer and the establishing of radiation protection standards

    International Nuclear Information System (INIS)

    Hubert, D.

    1991-04-01

    Epidemiological studies allow to confirm that a risk does exist for some types of cancer following high-dose exposures often at high dose-rates. However, no conclusion can be drawn for low doses and low dose-rates. Therefore we have to extrapolate from known high-dose risks to low doses and low dose-rates by various dose-response patterns. Another difficulty in assessing radiation cancer risks comes from the long latency time, which explains that all excess cancers have not yet been observed in the irradiated population studied. Once more, mathematical models are used to project excess lifetime cancer mortality. The estimations of radiation cancer risks are therefore marked by a great number of uncertainties, since they change accordingly to the model used. Other uncertainties come from the data, especially the dose estimates and are heightened when extrapolating to other populations. In 1988, UNSCEAR assessed new estimates for excess lifetime cancer mortality in the range of 4 to 11% per gray. These values mean a revaluation of the previous estimates by a 1.6 to 4.4 factor, which is mainly consecutive to the use of different projection models. Besides, they are solely based on the Hiroshima and Nagasaki survivors, whereas patient studies assess a lower risk. Finally UNSCEAR does not precisely state what is the available reduction factor to modify risks for low doses and low dose rates which should lie between 2 and 10. Due to a number of persistent uncertainties, we should not consider it justified to revise protection standards presently. (author)

  1. Investigation of radioactive pollution on land at Thule and assessment of radiation doses

    International Nuclear Information System (INIS)

    2011-12-01

    Risoe National Laboratory at the Technical University of Denmark has carried out research on the terrestrial contamination in the Thule area, Greenland, after the radioactive contents of four nuclear weapons were dispersed following the crash of an American B-52 bomber in 1968. The results of this research are described in the report ''Thule-2007 - Investigation of radioactive pollution on land''. Based on this report, the National Board of Health made an assessment of radiation doses and the risk for individuals in the Thule area. The results of the assessment are described in the report ''The Thule accident. Assessment of radiation doses from terrestrial radioactive contamination''. The present report is a summary of these two reports. (ln)

  2. Low-dose radiation-induced endothelial cell retraction

    International Nuclear Information System (INIS)

    Kantak, S.S.; Onoda, J.M.; Diglio, C.A.; Harper Hospital, Detroit, MI

    1993-01-01

    The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema. (author)

  3. Assessing doses of radiotherapy with the risk of developing cancer in the head and neck

    International Nuclear Information System (INIS)

    Yu, Cheng-Ching; Hsu, Fang-Yuh; Yu, Wan-Hsuan; Liu, Mu-Tai; Huang, Sheng-Shien

    2011-01-01

    Radiation is known to be a major cause of cancer in normal tissue. After treatment with radiotherapy, for young patients or the patients can survive for a long time, the radiation-induced cancer risk is noteworthy. This research investigated the dose delivered by the treatment of intensity modulated radiation therapy (IMRT) for head and neck cancer, such as NPC and oral cancer, and assessed the risk of developing radiation-induced secondary cancer in non-targeted normal tissues. A Rando phantom was used to simulate a patient with NPC or oral cancer, and thermoluminescent dosimeter (TLD) chips were placed inside the phantom to estimate the doses delivered by IMRT. In summary, the risks to patients with NPC was somewhat higher than for those with oral cancer, because the region of the PTV was lower, requiring larger field sizes be used for cases of NPC. The smaller the field size used, the less the risk was of developing secondary cancer. In addition, the higher the value of MU used, the higher the dose delivered to normal tissues was. The risk of radiation-induced secondary cancer was proportional to the delivered dose.

  4. Task-based measures of image quality and their relation to radiation dose and patient risk

    International Nuclear Information System (INIS)

    Barrett, Harrison H; Kupinski, Matthew A; Myers, Kyle J; Hoeschen, Christoph; Little, Mark P

    2015-01-01

    The theory of task-based assessment of image quality is reviewed in the context of imaging with ionizing radiation, and objective figures of merit (FOMs) for image quality are summarized. The variation of the FOMs with the task, the observer and especially with the mean number of photons recorded in the image is discussed. Then various standard methods for specifying radiation dose are reviewed and related to the mean number of photons in the image and hence to image quality. Current knowledge of the relation between local radiation dose and the risk of various adverse effects is summarized, and some graphical depictions of the tradeoffs between image quality and risk are introduced. Then various dose-reduction strategies are discussed in terms of their effect on task-based measures of image quality. (topical review)

  5. The special cell effects and somatic consequences of exposure to low dose radiation

    International Nuclear Information System (INIS)

    Regina Fedortseva; Sergei Aleksanin; Eugene Zheleznyakov; Irina Bychkovskaya

    2007-01-01

    effects, are not connected to cell division. They appear according to the principle 'all or nothing' in low doses of radiation (in mammals less than 1 Gy). In slowly regenerating tissues these effects (we called them 'alternative effects' result in various subcellular disorders (mostly cytoplasmic). An irreversible change of intracellular homeostasis and dystrophic processes occur within a few hours after exposure. This can result in morphological and functional changes in tissues (depopulation), thus providing for the development of non-carcinogenic somatic consequences of low-dose irradiation. Presumably the changes of this kind are responsible for pathogenesis of the remote somatic disorders following a moderate radiation exposure. The alternative effects are based on special hidden non-mutational alterations. Unlike the traditionally studied alterations they involve all cells of the population and can be inherited by all off-springs (at least in F1). This substantially broadens our notion of biological and applied significance of this phenomenon. Conclusion: The most typical manifestation of alternative effects is a persistently increasing predisposition of cells to damage and death. It is likely that other manifestations are also possible, including a non-specific increase of likelihood (due to impairment of reparation capability) of genome damage. This could give a better insight into the problem of biological risks of cancer transformation and occurrence of hereditary disorders after exposure to low-dose irradiation. It is essential that different biological organisms may develop alternative effects not only due to radiation but other kinds of exposure. This represents a substantial ecological importance of alternative effects and requires development of new methods of assessment of external factors.

  6. Radiation protection and environment day the low doses in everyday life; Radioprotection et environnement les faibles doses dans la vie quotidienne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The consequences of low doses exposures are difficult to explore and the studies give often place to controversies. According to the are, differences exist in the methodological approaches. It results from it a confusion on the acceptable levels of exposure, even on the definition of low dose. This day organised by the sections 'non ionizing and research and health of the French society of radiation protection (S.F.R.P.), will be a meeting between professionals of different disciplines, to compare the approaches used for the ionizing and non ionizing radiations as well as the chemical and microbiological agents. It will allow to share the knowledge and the abilities and to progress on methodologies adapted to the evaluation and the management of risks in relation with low doses. (N.C.)

  7. Radiation dose reduction in paediatric coronary computed tomography: assessment of effective dose and image quality

    International Nuclear Information System (INIS)

    Habib Geryes, Bouchra; Calmon, Raphael; Boddaert, Nathalie; Khraiche, Diala; Bonnet, Damien; Raimondi, Francesca

    2016-01-01

    To assess the impact of different protocols on radiation dose and image quality for paediatric coronary computed tomography (cCT). From January-2012 to June-2014, 140 children who underwent cCT on a 64-slice scanner were included. Two consecutive changes in imaging protocols were performed: 1) the use of adaptive statistical iterative reconstruction (ASIR); 2) the optimization of acquisition parameters. Effective dose (ED) was calculated by conversion of the dose-length product. Image quality was assessed as excellent, good or with significant artefacts. Patients were divided in three age groups: 0-4, 5-7 and 8-18 years. The use of ASIR combined to the adjustment of scan settings allowed a reduction in the median ED of 58 %, 82 % and 85 % in 0-4, 5-7 and 8-18 years group, respectively (7.3 ± 1.4 vs 3.1 ± 0.7 mSv, 5.5 ± 1.6 vs 1 ± 1.9 mSv and 5.3 ± 5.0 vs 0.8 ± 2.0 mSv, all p < 0,05). Prospective protocol was used in 51 % of children. The reduction in radiation dose was not associated with reduction in diagnostic image quality as assessed by the frequency of coronary segments with excellent or good image quality (88 %). cCT can be obtained at very low radiation doses in children using ASIR, and prospective acquisition with optimized imaging parameters. (orig.)

  8. The Australasian radiation protection society's position statement on risks fro low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Higson, D.J.

    2006-01-01

    Full text: Controversy continues in the radiation protection literature on whether or not ionizing radiation is harmful at low doses, with unresolved scientific uncertainty about effects below a few tens of millisieverts. To settle what regulatory controls (if any) should apply in this dose region, an assumption has to be made relating dose to the possibility of harm or benefit. The assumption made and the way it is applied can have far-reaching effects, not only on the scale of regulatory compliance required but also on public perception of risk, and therefore on the technological choices made by society. It is important therefore that decisions reached concerning the regulation of low doses of ionizing radiation derive from rational arguments and are perceived to have an ethical basis. It is also important that such decisions are neither portrayed nor perceived as resolving the scientific uncertainties: rather, they serve merely to facilitate the implementation of appropriate measures to ensure safety. At its Annual General Meeting in 2004, the Australasian Radiation Protection Society (ARPS) set up a working group to draft a statement of the Society's position on this matter. The resulting position statement was adopted by the Society at its Annual General Meeting on 14 November 2005. Its salient features are as follows: There is insufficient evidence to establish a dose-effect relationship for doses that are less than a few tens of millisieverts in a year. A linear extrapolation from higher dose levels should be assumed only for the purpose of applying regulatory controls; Estimates of collective dose arising from individual doses that are less than some tens of millisieverts in a year should not be used to predict numbers of fatal cancers; The risk to an individual of doses significantly less than 100 microsieverts in a year is so small, if it exists at all, that regulatory requirements to control exposure at this level are not warranted. The paper will

  9. Whole body exposure to low-dose γ-radiation enhances the antioxidant defense system

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2008-01-01

    It is believed that the extent of cellular damage by low- radiation dose is proportional to the effects observed at high radiation dose as per the Linear-No-Threshold (LNT) hypothesis. However, this notion may not be true at low-dose radiation exposure in the living system. Recent evidence suggest that the living organisms do not respond to ionizing radiations in a linear manner in the low dose range 0.01-0.5Gy and rather restore the homeostasis both in vivo and in vitro by normal physiological mechanisms such as cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions, stimulation of growth etc. In this study, we have attempted to find the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated in these organs after whole body exposure of the animals to low-dose radiation

  10. Low radiation doses - Book of presentations (slides)

    International Nuclear Information System (INIS)

    2013-03-01

    This document brings together all the available presentations (slides) of the conference on low radiation doses organised by the 'research and health' department of the French society of radiation protection (SFRP). Ten presentations are available and deal with he following topics: 1 - Cyto-toxicity, geno-toxicity: comparative approach between ionizing radiations and other geno-toxic agents (F. Nesslany, Institut Pasteur, Lille); Succession of events occurring after a radio-induced DNA damage (D. Averbeck, IRSN/CEA); Importance of stem cells in the response to ionizing radiations (J. Lebeau, CEA); Relation between energy deposition at the sub-cell scale and early biological effects (C. Villagrasa, IRSN); Natural history of breast cancer: predisposition, susceptibility with respect to irradiation (S. Rivera, IGR); Pediatrics scanner study and the EPI-CT project (M.O Bernier, IRSN); What future for an irradiated cell: survival or apoptosis? (E. Sage, Institut Curie); Differential effect of a 137 Cs chronic contamination on the different steps of the atheromatous pathology (T. Ebrahimian, IRSN); Variability of the individual radiosensitivity (S. Chevillard, CEA); What definitions for individual sensitivity? (A. Schmidt, CEA); Low doses: some philosophical remarks (A. Grinbaum, CEA)

  11. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  12. Low Dose Radiation Cancer Risks: Epidemiological and Toxicological Models

    Energy Technology Data Exchange (ETDEWEB)

    David G. Hoel, PhD

    2012-04-19

    The basic purpose of this one year research grant was to extend the two stage clonal expansion model (TSCE) of carcinogenesis to exposures other than the usual single acute exposure. The two-stage clonal expansion model of carcinogenesis incorporates the biological process of carcinogenesis, which involves two mutations and the clonal proliferation of the intermediate cells, in a stochastic, mathematical way. The current TSCE model serves a general purpose of acute exposure models but requires numerical computation of both the survival and hazard functions. The primary objective of this research project was to develop the analytical expressions for the survival function and the hazard function of the occurrence of the first cancer cell for acute, continuous and multiple exposure cases within the framework of the piece-wise constant parameter two-stage clonal expansion model of carcinogenesis. For acute exposure and multiple exposures of acute series, it is either only allowed to have the first mutation rate vary with the dose, or to have all the parameters be dose dependent; for multiple exposures of continuous exposures, all the parameters are allowed to vary with the dose. With these analytical functions, it becomes easy to evaluate the risks of cancer and allows one to deal with the various exposure patterns in cancer risk assessment. A second objective was to apply the TSCE model with varing continuous exposures from the cancer studies of inhaled plutonium in beagle dogs. Using step functions to estimate the retention functions of the pulmonary exposure of plutonium the multiple exposure versions of the TSCE model was to be used to estimate the beagle dog lung cancer risks. The mathematical equations of the multiple exposure versions of the TSCE model were developed. A draft manuscript which is attached provides the results of this mathematical work. The application work using the beagle dog data from plutonium exposure has not been completed due to the fact

  13. Cytogenetic Low-Dose Hyperradiosensitivity Is Observed in Human Peripheral Blood Lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Seth, Isheeta [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Joiner, Michael C. [Department of Radiation Oncology, Wayne State University, Detroit, Michigan (United States); Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States)

    2015-01-01

    Purpose: The shape of the ionizing radiation response curve at very low doses has been the subject of considerable debate. Linear-no-threshold (LNT) models are widely used to estimate risks associated with low-dose exposures. However, the low-dose hyperradiosensitivity (HRS) phenomenon, in which cells are especially sensitive at low doses but then show increased radioresistance at higher doses, provides evidence of nonlinearity in the low-dose region. HRS is more prominent in the G2 phase of the cell cycle than in the G0/G1 or S phases. Here we provide the first cytogenetic mechanistic evidence of low-dose HRS in human peripheral blood lymphocytes using structural chromosomal aberrations. Methods and Materials: Human peripheral blood lymphocytes from 2 normal healthy female donors were acutely exposed to cobalt 60 γ rays in either G0 or G2 using closely spaced doses ranging from 0 to 1.5 Gy. Structural chromosomal aberrations were enumerated, and the slopes of the regression lines at low doses (0-0.4 Gy) were compared with doses of 0.5 Gy and above. Results: HRS was clearly evident in both donors for cells irradiated in G2. No HRS was observed in cells irradiated in G0. The radiation effect per unit dose was 2.5- to 3.5-fold higher for doses ≤0.4 Gy than for doses >0.5 Gy. Conclusions: These data provide the first cytogenetic evidence for the existence of HRS in human cells irradiated in G2 and suggest that LNT models may not always be optimal for making radiation risk assessments at low doses.

  14. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    Science.gov (United States)

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-11-01

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  15. Radiation effects after low dose chronic long-term exposure

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Friesecke, I.

    1997-01-01

    This document approaches the radiation effects after low dose chronic long-term exposure, presenting examples occurred, the pathophysiologic mechanisms for cell system tolerance in elevated radiation fields, and the diagnostic and therapeutic possibilities

  16. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity

    International Nuclear Information System (INIS)

    Kudryasheva, N.S.; Rozhko, T.V.

    2015-01-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1 – absence of effects (stress recognition), 2 – activation (adaptive response), and 3 – inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. - Highlights: • Luminous bacteria demonstrate nonlinear dose-effect relation in radioactive solutions. • Response to low-dose radiation includes 3 stages: threshold, activation, inhibition. • ROS are responsible for low-dose effects of alpha-emitting radionuclides. • Luminous marine bacteria are a convenient tool to study radiation hormesis

  17. Radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Cohnen, M.; Kemper, J.; Moedder, U.; Moebes, O.; Pawelzik, J.

    2002-01-01

    The aim of this study was to compare radiation exposure in panoramic radiography (PR), dental CT, and digital volume tomography (DVT). An anthropomorphic Alderson-Rando phantom and two anatomical head phantoms with thermoluminescent dosimeters fixed at appropriate locations were exposed as in a dental examination. In PR and DVT, standard parameters were used while variables in CT included mA, pitch, and rotation time. Image noise was assessed in dental CT and DVT. Radiation doses to the skin and internal organs within the primary beam and resulting from scatter radiation were measured and expressed as maximum doses in mGy. For PR, DVT, and CT, these maximum doses were 0.65, 4.2, and 23 mGy. In dose-reduced CT protocols, radiation doses ranged from 10.9 to 6.1 mGy. Effective doses calculated on this basis showed values below 0.1 mSv for PR, DVT, and dose-reduced CT. Image noise was similar in DVT and low-dose CT. As radiation exposure and image noise of DVT is similar to low-dose CT, this imaging technique cannot be recommended as a general alternative to replace PR in dental radiology. (orig.)

  18. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections

    Directory of Open Access Journals (Sweden)

    Adeleye Bamise

    2017-12-01

    Full Text Available The preference for computed tomography (CT for the clinical assessment of pulmonary tuberculosis (PTB infections has increased the concern about the potential risk of cancer in exposed patients. In this study, we investigated the correlation between cancer risk and radiation doses from different CT scanners, assuming an equivalent scan protocol. Radiation doses from three 16-slice units were estimated using the CT-Expo dosimetry software version 2.4 and standard CT scan protocol for patients with suspected PTB infections. The lifetime risk of cancer for each scanner was determined using the methodology outlined in the BEIR VII report. Organ doses were significantly different (P < 0.05 between the scanners. The calculated effective dose for scanner H2 is 34% and 37% higher than scanners H3 and H1 respectively. A high and statistically significant correlation was observed between estimated lifetime cancer risk for both male (r2 = 0.943, P < 0.05 and female patients (r2 = 0.989, P < 0.05. The risk variation between the scanners was slightly higher than 2% for all ages but was much smaller for specific ages for male and female patients (0.2% and 0.7%, respectively. These variations provide an indication that the use of a scanner optimizing protocol is imperative.

  19. Radiation dose and cancer risk estimates in helical CT for pulmonary tuberculosis infections

    Science.gov (United States)

    Adeleye, Bamise; Chetty, Naven

    2017-12-01

    The preference for computed tomography (CT) for the clinical assessment of pulmonary tuberculosis (PTB) infections has increased the concern about the potential risk of cancer in exposed patients. In this study, we investigated the correlation between cancer risk and radiation doses from different CT scanners, assuming an equivalent scan protocol. Radiation doses from three 16-slice units were estimated using the CT-Expo dosimetry software version 2.4 and standard CT scan protocol for patients with suspected PTB infections. The lifetime risk of cancer for each scanner was determined using the methodology outlined in the BEIR VII report. Organ doses were significantly different (P < 0.05) between the scanners. The calculated effective dose for scanner H2 is 34% and 37% higher than scanners H3 and H1 respectively. A high and statistically significant correlation was observed between estimated lifetime cancer risk for both male (r2 = 0.943, P < 0.05) and female patients (r2 = 0.989, P < 0.05). The risk variation between the scanners was slightly higher than 2% for all ages but was much smaller for specific ages for male and female patients (0.2% and 0.7%, respectively). These variations provide an indication that the use of a scanner optimizing protocol is imperative.

  20. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Di Trano, J.L.

    1998-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author) [es

  1. The Dose Response Relationship for Radiation Carcinogenesis

    Science.gov (United States)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  2. Plants as warning signal for exposure to low dose radiation

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Norhafiz Talib

    2012-01-01

    The stamen-hair system of Tradescantia for flower colour has proven to be one of the most suitable materials to study the frequency of mutations induced by low doses of various ionizing radiations and chemical mutagens. The system has also been used successfully for detecting mutagenic synergisms among chemical mutagens and ionizing radiations as well as for studying the variations of spontaneous mutation frequency. In this study of radiobiology, the main objective is to observe somatic mutation (occurrence of pink cells from blue cells) induced on stamen hairs of five Tradescantia sp. available in Malaysia after exposure to low doses of chronic gamma irradiation using Gamma Green House. Pink cells appeared only on Tradescantia Pallida Purpurea stamen hairs after 13 days of exposure to irradiation with different doses of gamma rays. The highest number of stamens with pink cells was recorded from flowers irradiated with the highest dose of 6.37 Gy with 0.07 Gy/ h of dose rate. The lowest number of stamens with pink cells was recorded with an average of 0.57, irradiated with the lowest dose of 0.91 Gy with 0.01 Gy/ h of dose rate. There were no pink cells observed on Tradescantia Spathaceae Discolor after exposure to different doses of gamma rays. Similar negative results were observed for the control experiments. The principal cells in this assay are the mitotic stamen hair cells developing in the young flower buds. After exposure to radiation, the heterozygous dominant blue character of the stamen hair cell is prevented, resulting in the appearance of the recessive pink color. Furthermore, no pink cell appears on all species of Tradescantia spathaceae after irradiated with different doses of gamma rays. The sensitivity of the Tradescantia has been used widely and has demonstrated the relation between radiation dose and frequency of mutation observed at low doses which can contribute to the effects of low doses and their consequences for human health. This system

  3. Do non-targeted effects increase or decrease low dose risk in relation to the linear-non-threshold (LNT) model?

    International Nuclear Information System (INIS)

    Little, M.P.

    2010-01-01

    In this paper we review the evidence for departure from linearity for malignant and non-malignant disease and in the light of this assess likely mechanisms, and in particular the potential role for non-targeted effects. Excess cancer risks observed in the Japanese atomic bomb survivors and in many medically and occupationally exposed groups exposed at low or moderate doses are generally statistically compatible. For most cancer sites the dose-response in these groups is compatible with linearity over the range observed. The available data on biological mechanisms do not provide general support for the idea of a low dose threshold or hormesis. This large body of evidence does not suggest, indeed is not statistically compatible with, any very large threshold in dose for cancer, or with possible hormetic effects, and there is little evidence of the sorts of non-linearity in response implied by non-DNA-targeted effects. There are also excess risks of various types of non-malignant disease in the Japanese atomic bomb survivors and in other groups. In particular, elevated risks of cardiovascular disease, respiratory disease and digestive disease are observed in the A-bomb data. In contrast with cancer, there is much less consistency in the patterns of risk between the various exposed groups; for example, radiation-associated respiratory and digestive diseases have not been seen in these other (non-A-bomb) groups. Cardiovascular risks have been seen in many exposed populations, particularly in medically exposed groups, but in contrast with cancer there is much less consistency in risk between studies: risks per unit dose in epidemiological studies vary over at least two orders of magnitude, possibly a result of confounding and effect modification by well known (but unobserved) risk factors. In the absence of a convincing mechanistic explanation of epidemiological evidence that is, at present, less than persuasive, a cause-and-effect interpretation of the reported

  4. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  5. Comparative risk assessment: an element for a more rational and ethical approach to radiation risk

    International Nuclear Information System (INIS)

    Danesi, P.R.

    2006-01-01

    Peaceful nuclear technologies are still perceived by a large fraction of the general public, the media as well as by some decision makers, as more risky than many other 'conventional' technologies. One of the approaches that can help bringing more rationality and ethics into the picture is to present the risk associated with radiation and nuclear technologies in the frame of correctly conducted comparative risk assessments. However, comparing different risks is not so straightforward because quantifying different risks on a comparable scale requires overcoming both conceptual and practical difficulties. Risk (R) can be expressed as the product of the probability (P) that a given undesired event, the risk, will occur, times the consequences of this event (C), i.e. R = P x C. Although in principle risks could be compared by simply ranking them according to the different values of R, this simplistic approach is not always possible because to correctly compare risks all factors, circumstances and assumptions should be mutually equivalent and quantified and the (often large) uncertainties taken into proper account. In the case of radiation risk, ICRP has assumed as valid the LNT model, (probability coefficient of 5 % per Sievert for attributable death from cancer) and selected the present equivalent dose limit of 1 mSv per year for public exposure. This dose corresponds to 50 lethal cancers by 1 million people exposed and is approximately equivalent (in terms of probability of death) to the risk of bicycling for 600 km, driving for 3200 km, crossing a busy road twice a day for 1 year, smoking 2.5 packets of cigarettes or being X-rayed once for kidney metabolism. However, according to many scientists on the basis of both epidemiological and biological results and considerations, the actual risk is far lower than that predicted by the LNT model. Nevertheless, the policies and myths that were created about half a century ago are still persisting and have lead the general

  6. Critical review of the Hanford worker studies: cancer risk and low-level radiation

    International Nuclear Information System (INIS)

    Savitz, D.A.

    1983-01-01

    Current estimates of cancer risks attributable to low-level radiation exposure are extrapolated from effects observed at higher doses. The inherent uncertainties in this approach make direct study of low-dose effects in human populations of great significance. Employees of the Hanford works in Richland, Washington constitute a large group of workers exposed to low-level radiation. The cancer mortality patterns in relation to radiation dose have been discussed by numerous investigators beginning with Mancuso, Stewart, and Kneale in 1977 and continuing to the present. These studies and their published critiques are summarized, with an effort to account for discrepant results by careful review of the analytic methods. Detailed consideration is given to exposure definition, classification of health outcomes, latency, the statistical methods employed, and selection biases. From this, it is concluded that (a) total cancers are unrelated to radiation exposure among these workers; (b) multiple myeloma and pancreatic cancer show a positive association with radiation dose based upon a few highly exposed cases; and (c) the relationship of radiosensitive cancers in the aggregate to radiation exposure is unresolved. Further study of the temporal course of exposure and latency in a classical cohort analysis of radiosensitive cancers might be informative, with special attention to the possibility of selection for jobs within the cohort

  7. Risk approaches in setting radiation standards

    International Nuclear Information System (INIS)

    Whipple, C.

    1984-01-01

    This paper discusses efforts to increase the similarity of risk regulation approaches for radiation and chemical carcinogens. The risk assessment process in both cases involves the same controversy over the extrapolation from high to low doses and dose rates, and in both cases the boundaries between science and policy in risk assessment are indistinct. Three basic considerations are presented to approach policy questions: the economic efficiency of the regulatory approach, the degree of residual risk, and the technical opportunities for risk control. It is the author's opinion that if an agency can show that its standard-setting policies are consistent with those which have achieved political and judicial acceptance in other contexts, the greater the predictability of the regulatory process and the stability of this process

  8. Nonparametric estimation of benchmark doses in environmental risk assessment

    Science.gov (United States)

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  9. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  10. The researches on the effects of low doses irradiation

    International Nuclear Information System (INIS)

    2009-02-01

    All research conducted as part of 'Risc-Rad' and those conducted by actors in international programs on low doses allow progress in understanding mechanisms of carcinogenesis associated with irradiation. The data do not question the use in radiation protection, risk estimation models based on a linear increase of the risk with the dose of radiation. Nevertheless, they show that the nature of biological responses induced by low doses of radiation has differences with the responses induced by high doses of radiation. They also show the diversity of effects/dose relationships as the mechanism observed and the importance of genetic predisposition in the individual sensitivity to low doses of radiation. It is therefore essential to continue to bring new data to better understand the complex biological effects and their impact on the establishment of radiation protection standards. In addition, the results have often been at the cellular level. The diversity of responses induced by radiations is also a function of cell types observed, the aging of cells and tissue organization. It is essential to strengthen researches at the tissue and body level, involving in vitro and in vivo approaches while testing the hypothesis in epidemiology with a global approach to systems biology. Over the past four years, the collaboration between partners of 'Risc-Rad' using experimental biology approaches and those using mathematical modeling techniques aimed at developing a new model describing the carcinogenesis induced by low radiation doses. On an other hand, The High level expert group on European low dose risk research (H.L.E.G.) develop programmes in the area of low dose irradiation (Germany, Finland, France, Italy and United Kingdom). It proposed a structure of trans national government called M.E.L.O.D.I. ( multidisciplinary european low dose initiative). Its objective is to structure and integrate European research by gathering around a common programme of multidisciplinary

  11. Radiation risk and radiation protection concepts

    International Nuclear Information System (INIS)

    Doerschel, B.

    1989-01-01

    The revised dosimetry for the survivors of Hiroshima and Nagasaki implies an increased risk from low LET radiation compared with that currently used. During its meeting in 1987 the ICRP stated that the new data at present do not require any change in the dose limits. However, two other factors can cause larger changes in the present risk estimates. Firstly, for some types of cancer the relative risk model seems to describe the observed data better than the absolute risk model currently used by the ICRP. Secondly, the shape of the dose-response relationship considerably influences the derived risks. In the present paper the factor causing a substantial increase in radiation risk are analyzed. Conclusions are drawn in how far a change in the currently recommended dose limits seems to be necessary. (author)

  12. Image quality and radiation dose of low dose coronary CT angiography in obese patients: Sinogram affirmed iterative reconstruction versus filtered back projection

    International Nuclear Information System (INIS)

    Wang, Rui; Schoepf, U. Joseph; Wu, Runze; Reddy, Ryan P.; Zhang, Chuanchen; Yu, Wei; Liu, Yi; Zhang, Zhaoqi

    2012-01-01

    Purpose: To investigate the image quality and radiation dose of low radiation dose CT coronary angiography (CTCA) using sinogram affirmed iterative reconstruction (SAFIRE) compared with standard dose CTCA using filtered back-projection (FBP) in obese patients. Materials and methods: Seventy-eight consecutive obese patients were randomized into two groups and scanned using a prospectively ECG-triggered step-and-shot (SAS) CTCA protocol on a dual-source CT scanner. Thirty-nine patients (protocol A) were examined using a routine radiation dose protocol at 120 kV and images were reconstructed with FBP (protocol A). Thirty-nine patients (protocol B) were examined using a low dose protocol at 100 kV and images were reconstructed with SAFIRE. Two blinded observers independently assessed the image quality of each coronary segment using a 4-point scale (1 = non-diagnostic, 4 = excellent) and measured the objective parameters image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Radiation dose was calculated. Results: The coronary artery image quality scores, image noise, SNR and CNR were not significantly different between protocols A and B (all p > 0.05), with image quality scores of 3.51 ± 0.70 versus 3.55 ± 0.47, respectively. The effective radiation dose was significantly lower in protocol B (4.41 ± 0.83 mSv) than that in protocol A (8.83 ± 1.74 mSv, p < 0.01). Conclusion: Compared with standard dose CTCA using FBP, low dose CTCA using SAFIRE can maintain diagnostic image quality with 50% reduction of radiation dose.

  13. The carcinogenic risks of low-LET and high-LET ionizing radiations

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1989-08-01

    New information is available concerning the carcinogenic effects of radiation and the implications for risk assessment and risk management. This information comes from further follow-up of the epidemiological studies of the Japanese atomic bomb survivors, patients irradiated medically for cancer and allied conditions, and workers exposed in various occupations. In the Japanese atomic bomb survivors the carcinogenic risks are estimated to be somewhat higher than previously, due to the reassessment of the atomic-bomb dosimetry, further follow-up with increase in the number of excess cancer deaths, particularly in survivors irradiated early in life, and changes in the methods of analysis to compute the age-specific risks of cancer. Because of the characteristics of the atomic bomb survivor series as regards sample size, age and sex distribution, duration for follow-up, person-years at risk, and type of dosimetry, the mortality experience of the atomic bomb survivors was selected by the UNSCEAR Committee and the BEIR V Committee as the more appropriate basis for projecting risk estimates for the general population. In the atomic bomb survivors, the dose-effect relationship for overall cancer mortality other than leukemia is consistent with linearity below 3 Gy, while the dose-effect relationship for leukemia, excluding chronic lymphatic leukemia, conforms best to a linear-quadratic function. The shape of the dose-incidence curve at low doses still remains uncertain, and the data do not rule out the possible existence of a threshold for an neoplasm. The excess relative risk of mortality from all cancers combined is estimated to be 1.39 per Gy (shielded kerma), which corresponds to an absolute risk of 10.0 excess cancer deaths per 10,000 PYGy; the relative risks is 1.41 at 1 Gy (organ-absorbed dose), and an absolute risk of 13.07 excess cancer deaths per 10,000 PYGy. 19 refs

  14. On the risk to low doses (<100 mSv) of ionizing radiation during medical imaging procedures - IOMP policy statement

    International Nuclear Information System (INIS)

    Pradhan, A.S.

    2013-01-01

    The science committee of International Organization for Medical Physics (IOMP) developed a policy statement on the predictions of radiation-induced cancers and cancer deaths in patients exposed to low doses (<100 mSv) of ionizing radiation during medical imaging; this statement has been approved by the IOMP council. In order to attract the attention of medical physicists, an editorial (1) titled 'Risk of Medical Imaging' that includes the said statement has recently been published in Medical Physics journal of American Association of Physicists in Medicine (AAPM). As stated, IOMP represents 80 national and 6 regional medical physics organizations and 18,000 medical physicists worldwide. The IOMP affiliated bodies/organizations in different countries (such as Association of Medical Physicists of India, AMPI) have been encouraged to reproduce the IOMP statement in their journals/newsletters for the benefit of larger community of medical physicists. The IOMP statement is reproduced below (readers may also go through the supportive literature listed in references). It is hoped that this policy statement will have some deterrent influence on the continued propagation of unproven risk related to medical imaging procedures conducted with small doses.

  15. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    International Nuclear Information System (INIS)

    Gomez-Cardona, Daniel; Nagle, Scott K.; Li, Ke; Chen, Guang-Hong; Robinson, Terry E.

    2015-01-01

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo TM , GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  16. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cardona, Daniel [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Nagle, Scott K. [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Robinson, Terry E. [Department of Pediatrics, Stanford School of Medicine, 770 Welch Road, Palo Alto, California 94304 (United States)

    2015-10-15

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  17. Experimental RBE values of high LET radiations at low doses and the implications for quality factor assignment

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1985-01-01

    RBE determinations of special relevance to the quality factor assigned for radiation protection purposes are those relating to the effects of special importance at low doses, namely carcinogenesis and mutagenesis. Measurements of RBE that enable the maximum value of RBE, namely RBEsub(M), to be determined at low doses require data points as low as 0.1 Gy or even 0.01 Gy or high LET radiation. Corresponding data points as low as 0.5 Gy to 0.25 Gy or less of low LET radiation are also needed. Relatively few such measurements have been made, but many more are available now than formerly. A review of recent RBEs for tumour induction, life shortening, transformation, cytogenetics and genetic endpoints, which updated an earlier review, indicates a broad range of results. The principle findings are that X rays are more effective than hard γ rays at low doses by a factor of about 2, and that fission neutrons, alpha particles and heavy ions may be 30-50 times more effective, on the average, (some endpoints give higher, some lower values) than hard γ rays. The data would seem to indicate that in order to provide approximately equal protection against the risks at low doses from all radiations, adjustments upward in the quality factors for high LET radiations need to be considered. (author)

  18. Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster

    Science.gov (United States)

    Lei, Huang; Fanjun, Kong; Sun, Yeqing

    For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.

  19. 'Reasonable' regulation of low doses in the Netherlands?

    International Nuclear Information System (INIS)

    Zuur, Ciska

    2002-01-01

    As long as it is not clear exactly what the risks of low doses are, exposures should be regulated to be 'as low as reasonably achievable' (ALARA). In radiation protection, for normal situations, this means that a projected dose reduction can only be obligatory when the efforts needed to achieve the reduction are 'reasonable' in comparison with it, economical and social aspects being taken into account. In the recent Dutch regulations, 'reasonable' values have been established for the relevant parameters used in the ALARA concept and the paper discusses the values required to calculate the doses for the critical group due to a source. In some cases, the effort expended in making the ALARA dose assessments might not be reasonable in comparison with the dose reduction to be expected. The system which has been developed in the Netherlands to avoid these 'unreasonable' dose calculations, measurements and assessments is explained. (author)

  20. Risk evaluation - conventional and low level effects of radiation

    International Nuclear Information System (INIS)

    Bond, V.P.; Varma, M.N.

    1984-04-01

    Any discussion of the risk of exposure to potentially-hazardous agents in the environment inevitably involves the question of whether the dose effect curve is of the threshold or linear, non-threshold type. A principal objective of this presentation is to show that the function is actually two separate relationships, each representing distinctly different functions with differing variables on the axes, and each characteristic of quite different functions with differing variables on the axes, and each characteristic of quite different disciplines (i.e., the threshold function, of Pharmacology, Toxicology and Medicine [PTM]; the linear, non-threshold function, of Public Health including safety and accident statistics [PHS]). It is shown that low-level exposure (LLE) to radiation falls clearly in the PHS category. A function for cell dose vs. the fraction of single cell quantal responses is characterized, which reflects the absolute and relative sensitivities of cells. Acceptance of this function would obviate any requirement for the use in Radiation Protection of the concepts of a standard radiation, Q, dose equivalent and rem. 9 references, 4 figures

  1. Epidemiological data and radiation risk estimates

    International Nuclear Information System (INIS)

    Cardis, E.

    2002-01-01

    The results of several major epidemiology studies on populations with particular exposure to ionizing radiation should become available during the first years of the 21. century. These studies are expected to provide answers to a number of questions concerning public health and radiation protection. Most of the populations concerned were accidentally exposed to radiation in ex-USSR or elsewhere or in a nuclear industrial context. The results will complete and test information on risk coming from studies among survivors of the Hiroshima and Nagasaki atomic bombs, particularly studies on the effects of low dose exposure and prolonged low-dose exposure, of different types of radiation, and environmental and host-related factors which could modify the risk of radiation-induced effects. These studies are thus important to assess the currently accepted scientific evidence on radiation protection for workers and the general population. In addition, supplementary information on radiation protection could be provided by formal comparisons and analyses combining data from populations with different types of exposure. Finally, in order to provide pertinent information for public health and radiation protection, future epidemiology studies should be targeted and designed to answer specific questions, concerning, for example, the risk for specific populations (children, patients, people with genetic predisposition). An integrated approach, combining epidemiology and studies on the mechanisms of radiation induction should provide particularly pertinent information. (author)

  2. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

  3. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    International Nuclear Information System (INIS)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment

  4. Quantifying Cancer Risk from Radiation.

    Science.gov (United States)

    Keil, Alexander P; Richardson, David B

    2017-12-06

    Complex statistical models fitted to data from studies of atomic bomb survivors are used to estimate the human health effects of ionizing radiation exposures. We describe and illustrate an approach to estimate population risks from ionizing radiation exposure that relaxes many assumptions about radiation-related mortality. The approach draws on developments in methods for causal inference. The results offer a different way to quantify radiation's effects and show that conventional estimates of the population burden of excess cancer at high radiation doses are driven strongly by projecting outside the range of current data. Summary results obtained using the proposed approach are similar in magnitude to those obtained using conventional methods, although estimates of radiation-related excess cancers differ for many age, sex, and dose groups. At low doses relevant to typical exposures, the strength of evidence in data is surprisingly weak. Statements regarding human health effects at low doses rely strongly on the use of modeling assumptions. © 2017 Society for Risk Analysis.

  5. An overview of measuring and modelling dose and risk from ionising radiation for medical exposures

    International Nuclear Information System (INIS)

    Tootell, Andrew; Szczepura, Katy; Hogg, Peter

    2014-01-01

    Purpose: This paper gives an overview of the methods that are used to calculate dose and risk from exposure to ionizing radiation as a support to other papers in this special issue. Background: The optimization of radiation dose is a legal requirement in medical exposures. This review paper aims to provide the reader with knowledge of dose by providing definitions and concepts of absorbed, effective and equivalent dose. Criticisms of the use of effective dose to infer the risk of an exposure to an individual will be discussed and an alternative approach considering the lifetime risks of cancer incidence will be considered. Prior to any dose or risk calculation, data concerning the dose absorbed by the patient needs to be collected. This paper will describe and discuss the main concepts and methods that can be utilised by a researcher in dose assessments. Concepts behind figures generated by imaging equipment such as dose-area-product, computed tomography dose index, dose length product and their use in effective dose calculations will be discussed. Processes, advantages and disadvantages in the simulation of exposures using the Monte Carlo method and direct measurement using digital dosimeters or thermoluminescent dosimeters will be considered. Beyond this special issue, it is proposed that this paper could serve as a teaching or CPD tool for personnel working or studying medical imaging

  6. Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(Fluorescence In Situ Hybridization) and SCGE(Single Cell Gel Electrophoresis)

    International Nuclear Information System (INIS)

    Chung, Hai Won; Kim, Su Young; Kim, Byung Mo; Kim, Sun Jin; Ha, Sung Whan; Kim, Tae Hwan; Cho, Chul Koo

    2000-01-01

    Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using Fluorescence In Situ Hybridization(FISH) and Single Cell Gel Electrophoresis(SCGE). Chromosomal aberrations in human lymphocyte exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method for detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.0407, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single Cell Gel Electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method for detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses

  7. Cancer Control Related to Stimulation of Immunity by Low-Dose Radiation

    OpenAIRE

    Liu, Shu-Zheng

    2006-01-01

    Previous studies showed that low dose radiation (LDR) could stimulate the immune system in both animal and human populations. This paper reviews the present status of relevant research as support to the use of LDR in clinical practice for cancer prevention and treatment. It has been demonstrated that radiation-induced changes in immune activity follows an inverse J-shaped curve, i.e., low dose stimulation and high dose suppression. The stimulation of immunity by LDR concerns most anticancer p...

  8. Recent developments in carcinogenic risk assessment

    International Nuclear Information System (INIS)

    Krewski, D.; Murdoch, D.; Withey, J.R.

    1989-01-01

    In this paper, recent developments in the quantitative assessment of carcinogenic risks based on toxicological and epidemiological data are reviewed. In particular, model-free approaches to low-dose risk assessment which involve only the assumption of low-dose linearity are considered. Measures of carcinogenic potency which avoid the need to extrapolate to low doses are also described. The allometric bases for converting risk estimates between species are then discussed. Pharmacokinetic models for determining the dose delivered to the target tissue are examined, and the implications of using such models in extrapolating between doses, of exposure, and species are examined. The application of these concepts in chemical and radiation carcinogenesis is illustrated by means of brief case studies of methylene chloride and Rn. Biologically motivated cancer models based on the initiation-promotion-progression theory of carcinogenesis are discussed and compared with the classical multistage model. The estimation of risks with time-dependent exposure patterns is considered, and conditions under which the use of a time-weighted average dose is appropriate are identified. Finally, the estimation of carcinogenic risks posed by exposure to complex mixtures is explored. 92 references

  9. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Abdel Hamid, S. M.

    2010-12-01

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  10. Overview of Graphical User Interface for ARRBOD (Acute Radiation Risk and BRYNTRN Organ Dose Projection)

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.

    2010-01-01

    Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts, because organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. Assessment of astronauts organ doses and ARS from the exposure to historically large SPEs is in support of mission design and operation planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI product, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.

  11. Evaluating low dose ionizing radiation effects on gene expression in human skin biopsy cores

    International Nuclear Information System (INIS)

    Goldberg, Z.; Schwietert, C.; Stern, R.L.; Lehnert, B.E.

    2003-01-01

    Significant biological effects can occur in animals, animal cells, immortalized human cell lines, and primary human cells after exposure to doses of ionizing radiation (IR) in the <1-10 cGy region. However it is unclear how these observations mimic or even pertain to the actual in vivo condition in humans, though such knowledge is required for reducing the uncertainty of assessing human risks due to low dose IR (LDIR) exposures. Further, low dose effects have increasing clinical relevance in the radiotherapeutic management of cancer as the volume of tissue receiving only LDIR increases as more targeted radiotherapy (i.e. IMRT) becomes more widely used. Thus, human translational data must be obtained with which to correlate in vitro experimental findings and evaluate their 'real-life' applicability. To evaluate LDIR effects in human tissue we have obtained freshly explanted full thickness human skin samples obtained from aesthetic surgery, and subjected them to ex vivo irradiation as a translational research model system of a complex human tissue. Ionizing radiation (IR) exposures were delivered at 1, 10, or 100 cGy. The temporal response to IR was assessed by harvesting RNA at multiple time points out to 24 hours post IR. Gene expression changes were assessed by real time PCR. We have shown that RNA can be reliably extracted with fidelity from 3 mm diameter punch biopsies of human tissue and provide good quality sample for the real time PCR evaluation. Genes of interest include those reported to have altered expression following LDIR from in vitro cell culture models. These include genes associated with cell cycle regulation, DNA repair and various cytokines. These feasibility studies in human skin irradiated ex vivo, have demonstrated that gene expression can be measured accurately from very small human tissue samples, thus setting the stage for biopsy acquisition of tissue irradiated in vivo from patients-volunteers. The clinical study has begun and the data from

  12. Excess Cancer Risk Assessment from Some Common X-Ray Examinations in Sabzevar County

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2011-09-01

    Full Text Available Introduction: Nowadays ionizing radiation has a considerable contribution in medical diagnostic and treatment. Using ionizing radiation is increasing rapidly, so biological effects of ionizing radiation should be considered more. X-rays in the range of diagnostic radiology have hazardous effects and risks that are defined as random effects. These effects obey the LNT hypothesis that occur at low doses and include many types of cancer and genetic mutations. So it is very important to assess the risk of exposure in medical examinations. Cancer is one of these hazardous risks caused by low dose ionizing radiation that may occur during life after exposure. According to BEAR 7, low dose radiation is defined as radiation that produces doses near zero up to 100 mSv. Materials and Methods: This work was carried out in eight radiology centers in the Sabzevar county of Iran for 485 patients in eight typical x-ray examinations chosen for the study: chest PA, chest AP, lumbar spine AP, lumbar spine LAT, pelvis AP, abdomen AP, skull AP and Lat. In order to estimate the excess cancer risk, we need to obtain collective effective dose caused by radiation in the study population. Usually effective dose offers precise assessment of radiography examination injuries in adult patients. In this study, we used the PCXMC Monte Carlo based software to obtain effective dose and organ dose. This software calculates organ and effective dose following input of patient and radiographic conditions. Results: Average patient weight and height, entrance surface dose, parameters used for each type of examination, and DAP values were entered. Effective dose, collective effective dose, number of radiographs per year and the excess cancer risk arising from these radiographic examinations were then calculated.  Discussion and Conclusion: Excess risk of fatal cancer due to x-ray examinations in the study population was calculated by collective effective dose. This risk in the

  13. Effects of low dose radiation on repair processes in human lymphocytes

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Egg, D.; Guenther, R.

    1978-10-01

    DNA excision repair was investigated in lymphocytes of persons occupationally exposed to low dose radiation of 222 Rn. Autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine incorporation by repair replication into double stranded and single-strand containing DNA fractions obtained by BND cellulose chromatography seem to indicate a stimulatory effect of repeated low dose radiation on repair enzymes. (author)

  14. Radiation risks for patients having X rays

    International Nuclear Information System (INIS)

    Hale, J.; Thomas, J.W.

    1985-01-01

    In addition to radiation from naturally occurring radioactive materials and cosmic rays, individuals in developed countries receive radiation doses to bone marrow and gonads from the medical diagnostic use of X rays. A brief discussion of radiation epidemiology shows that deleterious effects are low even when doses are high. The concept of acceptable risk is introduced to help evaluate the small, but still existent, risks of radiation dose. Examples of bone marrow and gonadal doses for representative X-ray examinations are presented along with the current best estimates, per unit of X-ray dose, of the induction of leukemia or of genetic harm. The risk to the patient from an examination can then be compared with the normal risk of mortality from leukemia or of the occurrence of genetic defects. The risk increase is found to be very low. The risks to unborn children from radiographic examinations are also discussed. The benefit to the patient from information obtained from the examination must be balanced against the small risks

  15. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E

    2003-07-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  16. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2003-01-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  17. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    found that: 1) high-LET irradiation of mice with all doses in both dose rates leads to an increase in the level of cytogenetic damage compared with the level of spontaneous lesions; 2) high-LET irradiation of mice with these doses leads to no decrease in the yield of cytogenetic damage after irradiation with the challenging dose of 1.5 Gy, i. e., no AR takes place in PCE as opposite to low doses of chronic X-radiation; 3) mean size of the tumor in males irradiated with dose of 16 cGy of low-dose-rate high-LET radiation was increased as compared to unirradiated males. These findings may be used to estimate radiation risks from long-term high-altitude aircraft and space flights and to elaborate the theoretical basis for radiotherapy of tumor.

  18. Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure

    International Nuclear Information System (INIS)

    Ang, W C; Hashim, S; Karim, M K A; Bahruddin, N A; Salehhon, N; Musa, Y

    2017-01-01

    The widespread use of computed tomography (CT) has increased the medical radiation exposure and cancer risk. We aimed to evaluate the impact of AIDR 3D in CT abdomen-pelvic examinations based on image quality and radiation dose in low dose (LD) setting compared to standard dose (STD) with filtered back projection (FBP) reconstruction. We retrospectively reviewed the images of 40 patients who underwent CT abdomen-pelvic using a 80 slice CT scanner. Group 1 patients ( n =20, mean age 41 ± 17 years) were performed at LD with AIDR 3D reconstruction and Group 2 patients ( n =20, mean age 52 ± 21 years) were scanned with STD using FBP reconstruction. Objective image noise was assessed by region of interest (ROI) measurements in the liver and aorta as standard deviation (SD) of the attenuation value (Hounsfield Unit, HU) while subjective image quality was evaluated by two radiologists. Statistical analysis was used to compare the scan length, CT dose index volume (CTDI vol ) and image quality of both patient groups. Although both groups have similar mean scan length, the CTDI vol significantly decreased by 38% in LD CT compared to STD CT ( p <0.05). Objective and subjective image quality were statistically improved with AIDR 3D ( p <0.05). In conclusion, AIDR 3D enables significant dose reduction of 38% with superior image quality in LD CT abdomen-pelvis. (paper)

  19. Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jirtle, Randy L.

    2012-10-11

    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiological terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in

  20. Ionizing radiation risk assessment, BEIR IV

    International Nuclear Information System (INIS)

    1991-10-01

    This report of the Subpanel discusses the potential impact on Federal agencies and indicates individual risk factors that could be used by them in risk assessment. The approach used in this CIRRPC report was to consider the risk factors presented in BEIR IV for each radionuclide (or group radioelements) and to make some judgments regarding their validity and/or the uncertainties involved. The coverage of Radon-222 and its progeny dominated the BEIR IV report and this Subpanel felt is was proper to devote more attention to this radionuclide family. This risk factor presented in BEIR IV for radon is 350 cancer deaths per million person-working level months (WLM) of exposure for a lifetime. There is a range of opinions on the conversion from WLM to absorbed dose. As discussed in the text, the use of the WLM concept makes it difficult or infeasible to compare the risk factor for radon with that of other radionuclides which are based on organ dose. This report also includes a discussion of certain fundamental scientific and operational issues that may have decisive effect upon risk factor selection. These adjunct items are dealt with under separate headings and include discussions of threshold dose considerations, extrapolation to low doses, and age at exposure

  1. Radiation risk estimation

    International Nuclear Information System (INIS)

    Schull, W.J.; Texas Univ., Houston, TX

    1992-01-01

    Estimation of the risk of cancer following exposure to ionizing radiation remains largely empirical, and models used to adduce risk incorporate few, if any, of the advances in molecular biology of a past decade or so. These facts compromise the estimation risk where the epidemiological data are weakest, namely, at low doses and dose rates. Without a better understanding of the molecular and cellular events ionizing radiation initiates or promotes, it seems unlikely that this situation will improve. Nor will the situation improve without further attention to the identification and quantitative estimation of the effects of those host and environmental factors that enhance or attenuate risk. (author)

  2. Very Low Dose Fetal Exposure to Chernobyl Contamination Resulted in Increases in Infant Leukemia in Europe and Raises Questions about Current Radiation Risk Models

    Directory of Open Access Journals (Sweden)

    Christopher C. Busby

    2009-12-01

    Full Text Available Following contamination from the Chernobyl accident in April 1986 excess infant leukemia (0–1 y was reported from five different countries, Scotland, Greece, Germany, Belarus and Wales and Scotland combined. The cumulative absorbed doses to the fetus, as conventionally assessed, varied from 0.02 mSv in the UK through 0.06 mSv in Germany, 0.2 mSv in Greece and 2 mSv in Belarus, where it was highest. Nevertheless, the effect was real and given the specificity of the cohort raised questions about the safety of applying the current radiation risk model of the International Commission on Radiological Protection (ICRP to these internal exposures, a matter which was discussed in 2000 by Busby and Cato [7,8] and also in the reports of the UK Committee examining Radiation Risk from Internal Emitters. Data on infant leukemia in the United Kingdom, chosen on the basis of the cohorts defined by the study of Greece were supplied by the UK Childhood Cancer Research Group. This has enabled a study of leukemia in the combined infant population of 15,466,845 born in the UK, Greece, and Germany between 1980 and 1990. Results show a statistically significant excess risk RR = 1.43 (95% CI 1.13 < RR < 1.80 (2-tailed; p = 0.0025 in those born during the defined peak exposure period of 01/07/86 to 31/12/87 compared with those born between 01/01/80 and 31/12/85 and 01/01/88 and 31/12/90. The excess risks in individual countries do not increase monotonically with the conventionally calculated doses, the relation being biphasic, increasing sharply at low doses and falling at high doses. This result is discussed in relation to fetal/cell death at higher doses and also to induction of DNA repair. Since the cohort is chosen specifically on the basis of exposure to internal radionuclides, the result can be expressed as evidence for a significant error in the conventional modeling for such internal fetal exposures.

  3. Low-Dose Radiation Exposure and Atherosclerosis in ApoE(-/-) Mice

    NARCIS (Netherlands)

    Mitchel, R. E. J.; Hasu, M.; Bugden, M.; Wyatt, H.; Little, M. P.; Gola, A.; Hildebrandt, G.; Priest, N. D.; Whitman, S. C.

    The hypothesis that single low-dose exposures (0.025-0.5 Gy) to low-LET radiation given at either high (about 150 mGy/min) or low (1 mGy/min) dose rate would promote aortic atherosclerosis was tested in female C57BL/6J mice genetically predisposed to this disease (ApoE(-/-)). Mice were exposed

  4. Researches and Applications of ESR Dosimetry for Radiation Accident Dose Assessment

    International Nuclear Information System (INIS)

    Wu, K.; Guo, L.; Cong, J.B.; Sun, C.P.; Hu, J.M.; Zhou, Z.S.; Wang, S.; Zhang, Y.; Zhang, X.; Shi, Y.M.

    1998-01-01

    The aim of this work was to establish methods suitable for practical dose assessment of people involved in ionising radiation accidents. Some biological materials of the human body and materials possibly carried or worn by people were taken as detection samples. By using electron spin resonance (ESR) techniques, the basic dosimetric properties of selected materials were investigated in the range above the threshold dose of human acute haemopoietic radiation syndrome. The dosimetric properties involved included dose response properties of ESR signals, signal stabilities, distribution of background signals, the lowest detectable dose value, radiation conditions, environmental effects on the detecting process, etc. Several practical dose analytical indexes and detecting methods were set up. Some of them (bone, watch glass and tooth enamel) had also been successfully used in the dose assessment of people involved in three radiation accidents, including the Chernobyl reactor accident. This work further proves the important role of ESR techniques in radiation accident dose estimation. (author)

  5. Health effects of low-level radiations

    International Nuclear Information System (INIS)

    Tubiana, M.

    1982-01-01

    Epidemiological surveys have attempted to assess the carcinogenic risk induced by exposure to low doses of ionizing radiation. Such studies are difficult to carry out because the incidence of radiation induced cancers is of only a few per cent, even following relativity large doses, and because there is no way to distinguish radiation induced cancer from the background of natural human cancers; moreover these surveys are exposed to many biases due to relatively small sizes of the populations studied and the difficulties of finding an appropriate control group, of estimating the absorbed doses and of collecting the data. A few national or international expert committees have analysed the available data and evaluated the carcinogenic effects. Their estimations of the risk, are similar and allow one to quantify the carcinogenic risk for doses above 100 rads. The risks of lower doses must be determined by extrapolation from human data at high doses. This extrapolation requires the knowledge of the dose-effect relationship. A linear extrapolation is most common and probably leads to a conservative estimate of the risk. A linear-quadratic function is probably more realistic and in better accordance with most scientific data. However the validity of its use for the estimation of carcinogenic risk is still debated. In experimental animals, the influence of dose-rate is important and some data suggest that this is the same for the carcinogenic effect in human beings. The genetic effects are probably less important than was feared a few years ago. The most important recent observation is the absence of any significant genetic effect in the progeny of the survivors of the A. bombs in Hiroshima and Nagasaki. This allows a conservative estimate of the maximum genetic risk for human beings [fr

  6. Malignant melanoma of the tongue following low-dose radiation

    International Nuclear Information System (INIS)

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-01-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented

  7. Malignant melanoma of the tongue following low-dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-03-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented.

  8. Scientific uncertainties associated with risk assessment of radiation

    International Nuclear Information System (INIS)

    Hubert, P.; Fagnani, F.

    1989-05-01

    The proper use and interpretation of data pertaining to biological effects of ionizing radiations is based on a continuous effort to discuss the various assumptions and uncertainties in the process of risk assessment. In this perspective, it has been considered useful by the Committee to review critically the general scientific foundations that constitute the basic framework of data for the evaluation of health effects of radiation. This review is an attempt to identify the main sources of uncertainties, to give, when possible, an order of magnitude for their relative importance, and to clarify the principal interactions between the different steps of the process of risk quantification. The discussion has been restricted to stochastic effects and especially to cancer induction in man: observations at the cellular levels and animal and in vitro experiments have not been considered. The consequences which might result from abandoning the hypothesis of linearity have not been directly examined in this draft, especially in respect to the concept of collective dose. Since another document dealing with 'Dose-response relationships for radiation-induced cancer' is in preparation, an effort has been made to avoid any overlap by making reference to that document whenever necessary

  9. Scientific uncertainties associated with risk assessment of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, P; Fagnani, F

    1989-05-01

    The proper use and interpretation of data pertaining to biological effects of ionizing radiations is based on a continuous effort to discuss the various assumptions and uncertainties in the process of risk assessment. In this perspective, it has been considered useful by the Committee to review critically the general scientific foundations that constitute the basic framework of data for the evaluation of health effects of radiation. This review is an attempt to identify the main sources of uncertainties, to give, when possible, an order of magnitude for their relative importance, and to clarify the principal interactions between the different steps of the process of risk quantification. The discussion has been restricted to stochastic effects and especially to cancer induction in man: observations at the cellular levels and animal and in vitro experiments have not been considered. The consequences which might result from abandoning the hypothesis of linearity have not been directly examined in this draft, especially in respect to the concept of collective dose. Since another document dealing with 'Dose-response relationships for radiation-induced cancer' is in preparation, an effort has been made to avoid any overlap by making reference to that document whenever necessary.

  10. Mitochondrial-Derived Oxidants and Cellular Responses to Low Dose/Low LET Ionizing Radiation

    International Nuclear Information System (INIS)

    Spitz, Douglas R.

    2009-01-01

    Exposure to ionizing radiation results in the immediate formation of free radicals and other reactive oxygen species (ROS). It has been assumed that the subsequent injury processes leading to genomic instability and carcinogenesis following radiation, derive from the initial oxidative damage caused by these free radicals and ROS. It is now becoming increasingly obvious that metabolic oxidation/reduction (redox) reactions can be altered by irradiation leading to persistent increases in steady-state levels of intracellular free radicals and ROS that contribute to the long term biological effects of radiation exposure by causing chronic oxidative stress. The objective during the last period of support (DE-FG02-05ER64050; 5/15/05-12/31/09) was to determine the involvement of mitochondrial genetic defects in metabolic oxidative stress and the biological effects of low dose/low LET radiation. Aim 1 was to determine if cells with mutations in succinate dehydrogenase (SDH) subunits C and D (SDHC and SDHD in mitochondrial complex II) demonstrated increases in steady-state levels of reactive oxygen species (ROS; O 2 - and H 2 O 2 ) as well as demonstrating increased sensitivity to low dose/low LET radiation (10 cGy) in cultured mammalian cells. Aim No.2 was to determine if mitochondrially-derived ROS contributed to increased sensitivity to low dose/low LET radiation in mammalian cells containing mutations in SDH subunits. Aim No.3 was to determine if a causal relationship existed between increases in mitochondrial ROS production, alterations in electron transport chain proteins, and genomic instability in the progeny of irradiated cells. Evidence gathered in the 2005-2009 period of support demonstrated that mutations in genes coding for mitochondrial electron transport chain proteins (ETC); either Succinate Dehydrogenase (SDH) subunit C (SDHC) or subunit D (SDHD); caused increased ROS production, increased genomic instability, and increased sensitivity to low dose/low LET

  11. The risk of childhood cancer from low doses of ionizing radiation received in utero

    International Nuclear Information System (INIS)

    Wakeford, R.; Doll, R.; Bithell, J.F.

    1997-01-01

    Radiological protection is based upon the assumption that any additional exposure to ionising radiation leads to an increased risk of stochastic adverse health effects. The validity of this assumption is supported by the epidemiological association between childhood cancer and X-ray exposure of the fetus in utero for diagnostic purposes. Evidence for a direct causal interpretation of this association is compelling: the association has high statistical significance, it is consistent across many case-control studies carried out worldwide, and an appropriate dose-response relationship is indicated. Evidence against bias and confounding as alternative explanations is strong. Nonetheless, objections to causality have been raised. Four grounds for controversy are examined in detail, with the conclusion that they do not provide persuasive evidence against a cause and effect relationship. We conclude that acute doses of the order of 10 mGy received by the fetus in utero cause a subsequent increase in the risk of cancer in childhood, and that, in these circumstances, the excess absolute risk coefficient for childhood cancer incidence is 6-12% per Gy. (author)

  12. Improvements to the Ionizing Radiation Risk Assessment Program for NASA Astronauts

    Science.gov (United States)

    Semones, E. J.; Bahadori, A. A.; Picco, C. E.; Shavers, M. R.; Flores-McLaughlin, J.

    2011-01-01

    To perform dosimetry and risk assessment, NASA collects astronaut ionizing radiation exposure data from space flight, medical imaging and therapy, aviation training activities and prior occupational exposure histories. Career risk of exposure induced death (REID) from radiation is limited to 3 percent at a 95 percent confidence level. The Radiation Health Office at Johnson Space Center (JSC) is implementing a program to integrate the gathering, storage, analysis and reporting of astronaut ionizing radiation dose and risk data and records. This work has several motivations, including more efficient analyses and greater flexibility in testing and adopting new methods for evaluating risks. The foundation for these improvements is a set of software tools called the Astronaut Radiation Exposure Analysis System (AREAS). AREAS is a series of MATLAB(Registered TradeMark)-based dose and risk analysis modules that interface with an enterprise level SQL Server database by means of a secure web service. It communicates with other JSC medical and space weather databases to maintain data integrity and consistency across systems. AREAS is part of a larger NASA Space Medicine effort, the Mission Medical Integration Strategy, with the goal of collecting accurate, high-quality and detailed astronaut health data, and then securely, timely and reliably presenting it to medical support personnel. The modular approach to the AREAS design accommodates past, current, and future sources of data from active and passive detectors, space radiation transport algorithms, computational phantoms and cancer risk models. Revisions of the cancer risk model, new radiation detection equipment and improved anthropomorphic computational phantoms can be incorporated. Notable hardware updates include the Radiation Environment Monitor (which uses Medipix technology to report real-time, on-board dosimetry measurements), an updated Tissue-Equivalent Proportional Counter, and the Southwest Research Institute

  13. The Australasian radiation protection society's position statement on risks from low levels of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Don, Higson; Ches, Mason; Andrew, McEwan; Peter, Burns; Riaz, Akber; Ron, Cameron; Pamela, Sykes; Joe, Young [Australasian Radiation Protection Society (Australia)

    2006-07-01

    At its Annual General Meeting in 2004, the Australasian Radiation Protection Society (A.R.P.S.) set up a working group to draft a statement of the Society's position on risks from low levels of exposure to ionizing radiation. The resulting position statement was adopted by the Society at its Annual General Meeting in 2005. Its salient features are as follows: First, there is insufficient evidence to establish a dose-effect relationship for doses that are less than a few tens of milli sieverts in a year. A linear extrapolation from higher dose levels should be assumed only for the purpose of applying regulatory controls. Secondly, estimates of collective dose arising from individual doses that are less than some tens of milli sieverts in a year should not be used to predict numbers of fatal cancers. Thirdly, the risk to an individual of doses significantly less than 100 micro sieverts in a year is so small, if it exists at all, that regulatory requirements to control exposure at this level are not warranted. (authors)

  14. An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure

    Science.gov (United States)

    Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.

    2015-01-01

    The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.

  15. Risk estimation and decision making: the health effects on populations of exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1982-01-01

    Presented is a background for an understanding of the potential health effects in populations exposed to low-level radiation. Discussed is the knowledge about the health effects of low-level radiation. Comments on how the risks of radiation-induced cancer and genetically-related ill-health in man may be estimated, the sources of the scientific and epidemiological data, the dose-response models used, and the uncertainties which limit precise estimates of excess risks from radiation. Also discussed are the implications of numerical risk estimation for radiation protection and decision-making for public health policy

  16. Radiation induced cancer risk, detriment and radiation protection

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1992-01-01

    Recommendations on radiation protection limits for workers and for the public depend mainly on the total health detriment estimated to be the result of low dose ionizing radiation exposure. This detriment includes the probability of a fatal cancer, an allowance for the morbidity due to non-fatal cancer and the probability of severe hereditary effects in succeeding generations. In a population of all ages, special effects on the fetus particularly the risk of mental retardation at defined gestational ages, should also be included. Among these components of detriment after low doses, the risk of fatal cancer is the largest and most important. The estimates of fatal cancer risk used by ICRP in the 1990 recommendations were derived almost exclusively from the study of the Japanese survivors of the atomic bombs of 1945. How good are these estimates? Uncertainties associated with them, apart from those due to limitations in epidemiological observation and dosimetry, are principally those due to projection forward in time and extrapolation from high dose and dose rate to low dose and dose rate, each of which could after the estimate by a factor of 2 or so. Recent estimates of risk of cancer derived directly from low dose studies are specific only within very broad ranges of risk. Nevertheless, such studies are important as confirmation or otherwise of the estimates derived from the atomic bomb survivors. Recent U.S. British and Russian studies are examined in this light. (author)

  17. Low-dose ionizing radiation alleviates Aβ42-induced defective phenotypes in Drosophila Alzheimer's disease models

    International Nuclear Information System (INIS)

    Hwang, SooJin; Jeong, Hae Min; Nam, Seon Young

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease that is characterized by amyloid plaques, progressive neuronal loss, and gradual deterioration of memory. Amyloid imaging using positron emission tomography (PET) radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disease, including AD. Particularly, previous studies involving low-dose ionizing radiation on Aβ 42-treated mouse hippocampal neurons have suggested a potential role for low-dose ionizing radiation in the treatment of AD. However, associated in vivo studies involving the therapy effects of low-dose ionizing radiation on AD are still insufficient. As a powerful cell biological system, Drosophila AD models have been generated and established a useful model organism for study on the etiology of human AD. In this study, we investigated the hormesis effects of low-dose ionizing radiation on Drosophila AD models. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation.

  18. Dose-response characteristics of low- and intermediate-risk prostate cancer treated with external beam radiotherapy

    International Nuclear Information System (INIS)

    Cheung, Rex; Tucker, Susan L.; Lee, Andrew K.; Crevoisier, Renaud de; Dong Lei; Kamat, Ashish; Pisters, Louis; Kuban, Deborah

    2005-01-01

    Purpose: In this era of dose escalation, the benefit of higher radiation doses for low-risk prostate cancer remains controversial. For intermediate-risk patients, the data suggest a benefit from higher doses. However, the quantitative characterization of the benefit for these patients is scarce. We investigated the radiation dose-response relation of tumor control probability in low-risk and intermediate-risk prostate cancer patients treated with radiotherapy alone. We also investigated the differences in the dose-response characteristics using the American Society for Therapeutic Radiology and Oncology (ASTRO) definition vs. an alternative biochemical failure definition. Methods and materials: This study included 235 low-risk and 387 intermediate-risk prostate cancer patients treated with external beam radiotherapy without hormonal treatment between 1987 and 1998. The low-risk patients had 1992 American Joint Committee on Cancer Stage T2a or less disease as determined by digital rectal examination, prostate-specific antigen (PSA) levels of ≤10 ng/mL, and biopsy Gleason scores of ≤6. The intermediate-risk patients had one or more of the following: Stage T2b-c, PSA level of ≤20 ng/mL but >10 ng/mL, and/or Gleason score of 7, without any of the following high-risk features: Stage T3 or greater, PSA >20 ng/mL, or Gleason score ≥8. The logistic models were fitted to the data at varying points after treatment, and the dose-response parameters were estimated. We used two biochemical failure definitions. The ASTRO PSA failure was defined as three consecutive PSA rises, with the time to failure backdated to the mid-point between the nadir and the first rise. The second biochemical failure definition used was a PSA rise of ≥2 ng/mL above the current PSA nadir (CN + 2). The failure date was defined as the time at which the event occurred. Local, nodal, and distant relapses and the use of salvage hormonal therapy were also failures. Results: On the basis of the

  19. RISC-RAD. A European integrated approach to the problem of low doses

    International Nuclear Information System (INIS)

    Meunier, A.; Sabatier, L.; Atkinson, M.; Paretzke, H.; Bouffler, S.; Mullenders, L.

    2007-01-01

    Complete text of publication follows. Funded by the European Commission in the framework of a dedicated programme supporting research in the Nuclear sector (FP6 Euratom), the project RISC-RAD undertakes experimental and modelling studies ultimately to improve low dose radiation cancer risk assessment by exploring and providing evidence for the most appropriate radiation cancer risk projection and interpolation models. It started on 1st January 2004 and is running until 31 st October 2008. It mobilizes a consortium of 31 partners and is coordinated by Dr. Laure Sabatier from the French atomic energy commission. Indeed the project represents an unprecedented attempt to integrate horizontally the research on the effects of low doses of IR at the European level. A multipartner project supporting objective-driven research, RISC-RAD aims at contributing to bridge the remaining gap of scientific knowledge about effects of lows doses of ionizing radiation. It spans a large part of the research spectrum, including many topics addressed during the LOWRAD2007 conference. This presentation intends to give an account of the integrative aspects of the project, insights on the innovative solutions found to approach a complex and controversial scientific topic like the biological effects of low doses of ionizing radiation, and links with some areas of social studies on science.The concept of 'integration' implies the development of a new kind of activity in the research field, which crosses its traditional boundaries : controversies of several kinds must temporarily be overcome within the project management board in order to define and follow a common strategy. Among them, how to reconcile the creative part of fundamental research with the compliance to strict project planning rules has come up as a debate which questions the best way a significant collective and coordinated action can address the issue of the low dose cancer risk assessment on the long term. The knowledge and

  20. The impact of radiation dose and fractionation on the risk factor of radiation pneumonitis on four radiation therapy oncology group (RTOG) lung cancer trials

    International Nuclear Information System (INIS)

    Roach, Mack; Pajak, Thomas F; Byhardt, Roger; Graham, Mary L; Asbell, Sucha O; Russell, Anthony H; Fu, Karen K; Urtasun, Raul C; Herskovic, Arnold M; Cox, James D

    1997-01-01

    Purpose/Objective: To assess the relationship between total dose of radiation delivered, the fractionation scheme used, age, and Karnofsky Performance Status (KPS) on the risk of moderate to severe (≥ Grade 2) radiation pneumonitis in patients treated with radiotherapy alone for lung cancer on four RTOG Trials. Materials and Methods: Between February of 1984 and April of 1989, 1701 patients with clinically localized (I-IIIb) lung cancer were entered on clinical trials employing radiotherapy alone. Twelve hundred and forty-seven patients were entered on RTOG 8311 or 8407 (phase I/II trials) and 454 patients were entered on RTOG 8321 or 8403 (phase III trials). RTOG 8403 and 8321 patients received once-a-day irradiation to 60 Gy. Patients treated on RTOG 8407 were treated with a concomitant boost technique in a non-randomized fashion to 64.8, 69.6, 74.4 or 79.2 Gy. Patients treated on RTOG 8407 were treated with a concomitant boost technique in a non-randomized fashion to 63 Gy or 70.2 Gy. All patients were assessed for the incidence of Grade 2-5, radiation pneumonitis. One hundred and seven (6%) of patients were either ineligible or canceled (n=60), or were excluded because of incomplete data (n=47). The factors evaluated included total dose of radiation, the fractionation scheme, age and pre-treatment KPS. Patients treated to doses ≥ 72 Gy were considered to have received high doses (72.0 - 81.6 Gy), while the remaining patients treated to doses < 72 Gy (57.6 - 71.9 Gy) were considered to have received standard dose radiation. For the this analysis, information regarding field size and baseline pulmonary function was not available. Results: Age, sex, stage distribution, and the percentage of patients with a KPS ≥90 were similar among the patients treated on these four studies. Patients receiving hyperfractionated radiotherapy to doses ≥ 72 Gy experienced a higher incidence of radiation pneumonitis ≥ Grade 2, than patients treated with standard doses < 72

  1. Average annual doses, lifetime doses and associated risk of cancer death for radiation workers in various fuel fabrication facilities in India

    International Nuclear Information System (INIS)

    Iyer, P.S.; Dhond, R.V.

    1980-01-01

    Lifetime doses based on average annual doses are estimated for radiation workers in various fuel fabrication facilities in India. For such cumulative doses, the risk of radiation-induced cancer death is computed. The methodology for arriving at these estimates and the assumptions made are discussed. Based on personnel monitoring records from 1966 to 1978, the average annual dose equivalent for radiation workers is estimated as 0.9 mSv (90 mrem), and the maximum risk of cancer death associated with this occupational dose as 1.35x10 -5 a -1 , as compared with the risk of death due to natural causes of 7x10 -4 a -1 and the risk of death due to background radiation alone of 1.5x10 -5 a -1 . (author)

  2. Thyroid neoplasia following low-dose radiation in childhood

    International Nuclear Information System (INIS)

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr.

    1989-01-01

    The thyroid gland is highly sensitive to the carcinogenic effects of ionizing radiation. Previously, we reported a significant increase of thyroid cancer and adenomas among 10,834 persons in Israel who received radiotherapy to the scalp for ringworm. These findings have now been extended with further follow-up and revised dosimetry. Overall, 98 thyroid tumors were identified among the exposed and 57 among 10,834 nonexposed matched population and 5392 sibling comparison subjects. An estimated thyroid dose of 9 cGy was linked to a fourfold (95% Cl = 2.3-7.9) increase of malignant tumors and a twofold (95% Cl = 1.3-3.0) increase of benign tumors. The dose-response relationship was consistent with linearity. Age was an important modifier of risk with those exposed under 5 years being significantly more prone to develop thyroid tumors than older children. The pattern of radiation risk over time could be described on the basis of a constant multiplication of the background rate, and an absolute risk model was not compatible with the observed data. Overall, the excess relative risk per cGy for thyroid cancer development after childhood exposure is estimated as 0.3, and the absolute excess risk as 13 per 10(6) PY-cGy. For benign tumors the estimated excess relative risk was 0.1 per cGy and the absolute risk was 15 per 10(6) PY-cGy

  3. The Increase in Animal Mortality Risk following Exposure to Sparsely Ionizing Radiation Is Not Linear Quadratic with Dose

    OpenAIRE

    Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.; Woloschak, Gayle E.

    2015-01-01

    Introduction The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bo...

  4. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-06-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  5. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi

    2001-01-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  6. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    β-cells against superoxide generated by glycation reaction evoked by high glucose environment. Continuous irradiation at 0.63 mGy/hr from 28 days of age elongates life span, and recovers splenic inflammatory response in Klotho-mice bearing ageing syndrome. The radiation increases anti-oxidants in liver, implicating the prevention of ageing through the suppression of cellular oxidative damages. Our results suggest that low dose/low dose-rate radiation effectively ameliorates diseases related to reactive oxygen species, and elongates life span of animals, at least in part through the stimulation of protective responses against oxidative stress. These findings are important not only for clinical use of low dose/low dose-rate radiation for human diseases, but also for non-cancerous risk estimation at dose and dose rate range argued in legal restrictions. (author)

  7. Low-Dose and Standard-Dose Unenhanced Helical Computed Tomography for the Assessment of Acute Renal Colic: Prospective Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Hwang, Im Kyung; Choi, Yo Won; Namkung, Sook; Kim, Heung Cheol; Hwang, Woo Cheol; Choi, Kuk Myung; Park, Ji Kang; Han, Tae Il; Kang, Weechang [Cheju National Univ. College of Medicine, Jeju (Korea, Republic of). Dept. of Diagnostic Radiology

    2005-11-01

    Purpose: To compare the efficacy of low-dose and standard-dose computed tomography (CT) for the diagnosis of ureteral stones. Material and Methods: Unenhanced helical CT was performed with both a standard dose (260 mAs, pitch 1.5) and a low dose (50 mAs, pitch 1.5) in 121 patients suspected of having acute renal colic. The two studies were prospectively and independently interpreted for the presence and location of ureteral stones, abnormalities unrelated to stone disease, identification of secondary signs, i.e. hydronephrosis and perinephric stranding, and tissue rim sign. The standard-dose CT images were interpreted by one reviewer and the low-dose CT images independently by two reviewers unaware of the standard-dose CT findings. The findings of the standard and low-dose CT scans were compared with the exact McNemar test. Interobserver agreements were assessed with kappa analysis. The effective radiation doses resulting from two different protocols were calculated by means of commercially available software to which the Monte-Carlo phantom model was given. Results: The sensitivity, specificity, and accuracy of standard-dose CT for detecting ureteral stones were 99%, 93%, and 98%, respectively, whereas for the two reviewers the sensitivity of low-dose CT was 93% and 95%, specificity 86%, and accuracy 92% and 94%. We found no significant differences between standard-dose and low-dose CT in the sensitivity and specificity for diagnosing ureter stones ( P >0.05 for both). However, the sensitivity of low-dose CT for detection of 19 stones less than or equal to 2 mm in diameter was 79% and 68%, respectively, for the two reviewers. Low-dose CT was comparable to standard-dose CT in visualizing hydronephrosis and the tissue rim sign. Perinephric stranding was far less clear on low-dose CT. Low-dose CT had the same diagnostic performance as standard-dose CT in diagnosing alternative diseases. Interobserver agreement between the two low-dose CT reviewers in the diagnosis of

  8. MELODI - Multidisciplinary European Low dose Initiative - First Draft of Strategic Research Agenda (SRA)

    International Nuclear Information System (INIS)

    Averbeck, D.; Lloyd, D.; O'Neill, P.

    2010-01-01

    The SRA Working Group of MELODI (Multidisciplinary European Low Dose Initiative) was tasked to develop a long-term strategic research agenda (SRA) to guide the coherent integration of national low dose research programmes. Priorities that need to be addressed concern fundamental mechanistic research ranging from radiation track structure and the deposition of energy in biologically important molecules; the resultant homeostatic perturbations and the steps in the cellular and tissue metabolic pathways that eventually lead to disease pathologies. In fact, the main priorities are here the step-wise elucidation of the mechanisms of radiation-induced (oxidative) stress responses and their impact on radiation-induced cancers and non cancer diseases. To achieve this a holistic approach is proposed staring with radiation-specific effects, radiation-induced molecular, biological and pathological effects involving a systems biology approach as well as molecular epidemiology and mathematical modelling in order to come up with more solid low dose health risk assessments. The pathologies considered are outlined in the report where the need is stressed for the MELODI platform to involve a constellation of classical and emerging technologies in a highly multidisciplinary approach. Elucidating the shapes of low-dose response relationships and resolving the question of thresholds is paramount to resolving questions of risk for both populations and individuals. Much is known about radiation-induced cancer in humans and animal models but this needs to be pursued particularly at low doses. More recently, the scientific community has realised that low radiation-induced health effects range well beyond cancer. The priority non-cancer areas that need to be brought into focus are cardiovascular, neurological and ophthalmic. (A.C.)

  9. Final Report - Epigenetics of low dose radiation effects in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga

    2014-10-22

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis of induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low

  10. Radiation exposure and risk assessment for critical female body organs

    International Nuclear Information System (INIS)

    Atwell, W.; Weyland, M.D.; Hardy, A.C.

    1991-07-01

    Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed. 13 refs

  11. Cytogenetic damage at low doses and the problem of bioindication of chronic low level radiation exposure

    International Nuclear Information System (INIS)

    Geras'kin, S.A.; Dikarev, V.G.; Nesterov, E.B.; Vasiliev, D.V.; Dikareva, N.S.

    2000-01-01

    radioactive wastes located at Sosnovy Bor in the Leningrad region was carried out in 1995-1999. Results of this research give evidence on pronounced genotoxic influence presence in investigated sites and as against the 30-km ChNPP zone in the Sosnovy Bor region chemical toxicants make the significant contribution to pollution of the environment. The seeds collected in control and experimental population were compared by acute γ-irradiation resistance. This comparison has revealed the selection toward the increase of repair system efficiency. The received results give evidence that although the cytogenetic damage frequency within low dose range cannot be used in biological dosimetry, but the indexes based on it are informative and important for the man-made effect bioindication and for identification of groups at risk of long term health consequences of radiation. (author)

  12. Roentgen's heritage and radiation phobia, a challenge to radiation research and radiation protection

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    1996-01-01

    Present practice of applying linearity to assessing risk even from very low dose exposure of complex tissues to ionising radiation has been evaluated in terms of microdosimetric approach to energy deposition in tissues, nature of radiation and also the magnitudes of conditioning and challenging doses. This paper discusses the probability of radiation risk at quite low doses on the tissues in terms of simple mathematical terms. (author). 13 refs., 2 figs., 1 tab

  13. Low-dose radiation as an environmental agent affecting intrauterine development

    International Nuclear Information System (INIS)

    Kameyama, Yoshiro

    1982-01-01

    The low-dose radiation effects which have been recognized in mammalian teratological studies are direct injuries to the particularly radiosensitive tissues of embryo and fetus, and increased incidences of spontaneous malformations and minor anomalies. The lowest radiation doses for manifestation of those effects in mice and rats are: 5 rad for resorption of preimplantation embryos; 5-10 rad for acute cytological changes such as pyknosis, cytoplasmic degeneration and mitotic delay; 5 rad for increasing frequency of spontaneous minor anomalies of the skeleton; 15-20 rad for malformations of the eye, brain and spinal cord; 20-25 rad for histogenetic and functional disorders of the central nervous system; and 20-25 rad for impaired fertility. Pregnant women who are subject to X-ray examination are much concerned about potential hazard of radiation to their offspring in utero. The above experimental findings suggest that the possibility of teratogenic effects of diagnostic radiation on human embryos and fetuses is extremely low, and probably negligible, given the proper dose control measures. (author)

  14. Perspectives of decision-making and estimation of risk in populations exposed to low levels of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1979-01-01

    The setting of any permissible radiation level or guide remains essentially an arbitrary procedure. Based on the radiation risk estimates derived, any lack of precision does not minimize either the need for setting public health policies nor the conclusion that such risks are extremely small when compared with those avialable of alternative options, and those normally accepted by society as the hazards of everyday life. When compared with the benefits that society has established as goals derived from the necessary activities of medical care and energy production, it is apparent that society must establish appropriate standards and seek appropriate controlling procedures which continue to assure that its needs are being met with the lowest possible risks. This implies continuing decision-making processes in which risk-benefit and cost-effectiveness assessments must be taken into account. Much of the practical information necessary for determination of radiation protection standards for public health policy is still lacking. It is now assumed that any exposure to radiaion at low levels of dose carries some risk of deleterious effects. However, how low this level may be, or the probability, or magnitude of the risk, still are not known. Radiation and the public health becomes a societal and political problem and not solely a scientific one. Our best scientific knowledge and our best scientific advice are essential for the protection of the public health, for the effective application of new technologies in medicine, and for guidance in the production of energy in industry. Unless man wishes to dispense with those activities which inevitably involve exposure to low levels of ionizing radiations, he must recognize that some degree of risk, however small, exists. In the evaluation of such risks from radiation, it is necessary to limit the radiation exposure to a level at which the risk is acceptable both to the individual and to society.

  15. Perspectives of decision-making and estimation of risk in populations exposed to low levels of ionizing radiations

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1979-01-01

    The setting of any permissible radiation level or guide remains essentially an arbitrary procedure. Based on the radiation risk estimates derived, any lack of precision does not minimize either the need for setting public health policies nor the conclusion that such risks are extremely small when compared with those avialable of alternative options, and those normally accepted by society as the hazards of everyday life. When compared with the benefits that society has established as goals derived from the necessary activities of medical care and energy production, it is apparent that society must establish appropriate standards and seek appropriate controlling procedures which continue to assure that its needs are being met with the lowest possible risks. This implies continuing decision-making processes in which risk-benefit and cost-effectiveness assessments must be taken into account. Much of the practical information necessary for determination of radiation protection standards for public health policy is still lacking. It is now assumed that any exposure to radiaion at low levels of dose carries some risk of deleterious effects. However, how low this level may be, or the probability, or magnitude of the risk, still are not known. Radiation and the public health becomes a societal and political problem and not solely a scientific one. Our best scientific knowledge and our best scientific advice are essential for the protection of the public health, for the effective application of new technologies in medicine, and for guidance in the production of energy in industry. Unless man wishes to dispense with those activities which inevitably involve exposure to low levels of ionizing radiations, he must recognize that some degree of risk, however small, exists. In the evaluation of such risks from radiation, it is necessary to limit the radiation exposure to a level at which the risk is acceptable both to the individual and to society

  16. Medical radiation workers and the risk of cancer: A retrospective follow-up study

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seul Ki; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Medical radiation workers are important population to study of chronic low dose radiation exposure and the numbers are continuously increasing worldwide. We have launched a retrospective cohort for medical radiation workers to investigate their health status and to assess the association with occupational radiation exposure. In this first analysis of cancer incidence using data from national dose registry, a number of significant findings at specific cancer sites were observed. Further investigation is needed to assess the association with observed cancer risk and occupational radiation exposure. In this first analysis of cancer incidence using data from national dose registry, a number of significant findings at specific cancer sites were observed.

  17. Three-dimensional dose-response models of competing risks and natural life span

    International Nuclear Information System (INIS)

    Raabe, O.G.

    1987-01-01

    Three-dimensional dose-rate/time/response surfaces for chronic exposure to carcinogens, toxicants, and ionizing radiation dramatically clarify the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. An illustration with computer graphics shows the contributions with the passage of time of the competing risks of death from radiation pneumonitis/fibrosis, lung cancer, and natural aging consequent to the inhalation of plutonium-239 dioxide by beagles. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each fatal effect. Radiation pneumonitis predominates at high dose rates and lung cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for lung cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to the planning and evaluation of epidemiological analyses and experimental studies involving chronic exposure to toxicants

  18. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men: (specific-locus mutations/dose-rate effect/doubling dose/risk estimation)

    International Nuclear Information System (INIS)

    Russell, W.L.; Kelly, E.M.

    1982-01-01

    Estimation of the genetic hazards of ionizing radiation in men is based largely on the frequency of transmitted specific-locus mutations induced in mouse spermatogonial stem cells at low radiation dose rates. The publication of new data on this subject has permitted a fresh review of all the information available. The data continue to show no discrepancy from the interpretation that, although mutation frequency decreases markedly as dose rate is decreased from 90 to 0.8 R/min (1 R = 2.6 X 10 -4 coulombs/kg) there seems to be no further change below 0.8 R/min over the range from that dose rate to 0.0007 R/min. Simple mathematical models are used to compute: (a) a maximum likelihood estimate of the induced mutation frequency at the low dose rates, and (b) a maximum likelihood estimate of the ratio of this to the mutation frequency at high dose rates in the range of 72 to 90 R/min. In the application of these results to the estimation of genetic hazards of radiation in man, the former value can be used to calculate a doubling dose - i.e., the dose of radiation that induces a mutation frequency equal to the spontaneous frequency. The doubling dose based on the low-dose-rate data compiled here is 110 R. The ratio of the mutation frequency at low dose rate to that at high dose rate is useful when it becomes necessary to extrapolate from experimental determinations, or from human data, at high dose rates to the expected risk at low dose rates. The ratio derived from the present analysis is 0.33

  19. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    International Nuclear Information System (INIS)

    Lowe, Xiu R.; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p -53 ) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease

  20. Biological effects of very low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Evseev, V.S.

    1987-01-01

    The paper deals with a qualitative microdosimetric analysis of a new radiobiological phenomenon (physiological reaction of the cell as a whole to very low doses of ionizing radiations). The analysis is aimed at identifying the type of the primary interaction of radiation with the cell and finding its place in the cell

  1. Biological effects of low-dose radiation on human population living in high-background radiation areas of Kerala coast

    International Nuclear Information System (INIS)

    Das, Birajalaxmi

    2016-01-01

    High-level natural radiation areas (HLNRA) of Kerala coast is densely populated and known for its wide variation in background radiation dose levels due to uneven distribution of monazite in the beach sand. The background radiation dose varies from 1 to 45 mGv/y. The areas with >1.5mGy/y is considered as HLNRA. Human population inhabiting in this area are exposed to low-dose chronic radiation since generations. Hence, this population provides an ideal situation to study dose response and adaptive response, if any, due to natural chronic low-dose exposure. It has been investigated extensively to study the biological and health effects of long-term low-dose/low-dose radiation exposure. So far over 150, 000 newborns monitored from hospital-based study did not reveal any significant difference in the incidence of any of the malformations and stillbirth between HLNRA and adjacent control areas. A case-control study on cleft lip/palate and mental retardation did not show any association with background radiation dose. Cytogenetic investigation of over 27,000 newborns did not show any significant increase in the frequency of chromosome aberrations and karyotype anomalies. DNA damage endpoints, such as micronuclei, telomere length and DNA strand breaks, did not reveal any significant difference between control and exposed population. Studies on DNA damage and repair revealed efficient repair of DNA strand breaks in HLNRA individuals. Molecular studies using high throughput microarray analysis indicated a large number of genes involved in various molecular and cellular pathways. Indications of in vivo radioadaptive response due to natural chronic low-dose exposure in this population have important implications to human health. (author)

  2. Cytogenetic dose-response and adaptive response in cells of ungulate species exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Ulsh, B.A.; Miller, S.M.; Mallory, F.F.; Mitchel, R.E.J.; Morrison, D.P.; Boreham, D.R.

    2004-01-01

    In the studies reported here, the micronucleus assay, a common cytogenetic technique, was used to examine the dose-responses in fibroblasts from three ungulate species (white-tailed deer, woodland caribou, and Indian muntjac) exposed to high doses of ionizing radiation (1-4 Gy of 60 Co gamma radiation). This assay was also used to examine the effects of exposure to low doses (1-100 mGy) typical of what these species experience in a year from natural and anthropogenic environmental sources. An adaptive response, defined as the induction of resistance to a stressor by a prior exposure to a small 'adapting' stress, was observed after exposure to low doses. This work indicates that very small doses are protective for the endpoint examined. The same level of protection was seen at all adapting doses, including 1 radiation track per cell, the lowest possible cellular dose. These results are consistent with other studies in a wide variety of organisms that demonstrate a protective effect of low doses at both cellular and whole-organism levels. This implies that environmental regulations predicated on the idea that even the smallest dose of radiation carries a quantifiable risk of direct adverse consequences to the exposed organism require further examination. Cytogenetic assays provide affordable and feasible biological effects-based alternatives that are more biologically relevant than traditional contaminant concentration-based radioecological risk assessment

  3. Risk concepts in various fields including radiation protection. A historical review and some recent topics

    International Nuclear Information System (INIS)

    Kai, Michiaki

    2000-01-01

    This is a review by the expert group concerning risks in radiation protection and in chemical management, recent state of protection and of health-risk assessment of low dose radiation, and risk concepts in other fields. Risk concepts in radiation protection are described mainly on ICRP: Its history leading to its Publication 1 (1958), Pub. 9 (1965), Pub. 26 (1977) and Pub. 60 (1990). In that recent publication, the term, risk, is used only for the established one like estimated risk or excess relative risk. Risk management of chemicals involves that against pollution from environmental and ecological aspects, and assessment of dioxin and chemicals from toxicology and carcinogenicity aspects. Recently, risks of low dose radiation have been actively discussed conceivably because of possible reduction of the exposure limit in ICRP Recommendation 1990, Chernobyl accident, advances of radiation biology and radiation protection problem in the radioactive waste disposition. Globally, many academic societies such as American Health-Physics Society published Position Statements and Reports and there are activities like the Research program plan for the risk and an international conference of bridging radiation policy and science. Risk concepts involve technological and ecological ones, insurance ones and health ones. Risk assessment or analysis is done through recognition, measurement and prediction, thus through the scientific process based on objective facts. (K.H.)

  4. Assessment of pediatrics radiation dose from routine x-ray ...

    African Journals Online (AJOL)

    Background: Given the fact that children are more sensitive to ionizing radiation than adults,with an increased risk of developing radiation-induced cancer,special care should be taken when they undergo X-ray examinations. The main aim of the current study was to determine Entrance Surface Dose (ESD) to pediatric ...

  5. Radiation risks and benefits: politics and morality

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1983-01-01

    The bioethical framework from which moral reasoning concerning nuclear technology has been derived is both seriously flawed and conceptually inadequate. The reasons are examined and are arranged in response to three questions. First, what is the status of alleged scientific evidence from which moral conclusions about the unacceptability of man-made radiation exposures are derived. Secondly, what criticisms of risk assessment reasoning are pertinent to ethical reflection. Finally, what revisions in an ethical framework are necessary if risk estimates of low-dose radiation exposure are to be conducted properly

  6. Potential pre-cataractous markers induced by low-dose radiation effects in cultured human lens cells

    Science.gov (United States)

    Blakely, E.; McNamara, M.; Bjornstad, K.; Chang, P.

    The human lens is one of the most radiosensitive organs of the body. Cataract, the opacification of the lens, is a late-appearing response to radiation damage. Recent evidence indicates that exposure to relatively low doses of space radiation are associated with an increased incidence and early appearance of human cataracts (Cucinotta et al., Radiat. Res. 156:460-466, 2001). Basic research in this area is needed to integrate the early responses of various late-responding tissues into our understanding and estimation of radiation risk for space travel. In addition, these studies may contribute to the development of countermeasures for the early lenticular changes, in order to prevent the late sequelae. Radiation damage to the lens is not life threatening but, if severe, can affect vision unless surgically corrected with synthetic lens replacement. The lens, however, may be a sensitive detector of radiation effects for other cells of ectodermal origin in the body for which there are not currently clear endpoints of low-dose radiation effects. We have investigated the dose-dependent expression of several radiation-responsive endpoints using our in vitro model of differentiating human lens epithelial cells (Blakely et al., Investigative Ophthalmology &Visual Sciences, 41(12):3898-3907, 2000). We have investigated radiation effects on several gene families that include, or relate to, DNA damage, cytokines, cell-cycle regulators, cell adhesion molecules, cell cytoskeletal function and apoptotic cell death. In this paper we will summarize some of our dose-dependent data from several radiation types, and describe the model of molecular and cellular events that we believe may be associated with precataractous events in the human lens after radiation exposure. This work was supported by NASA Grant #T-965W.

  7. Hiroshima and Nagasaki: from fear through science to risk assessment

    International Nuclear Information System (INIS)

    Sugahara, T.

    1996-01-01

    This presentation summarises the data of Japanese epidemiological studies in the light of the recent progresses made in radiation biology which do not support the present radiation paradigm for cancer risk assessment at low doses. The possible paradigm shift and its effect on the dose limits for protection of individuals is also discussed. (author). 27 refs., 1 tab

  8. Low-level radiation risks in people

    International Nuclear Information System (INIS)

    Goloman, M.; Filjushkin, V. lgor

    1993-01-01

    Using the limited human data plus the relationships derived from the laboratory, a leukemia risk model has been developed as well as a suggested model for other cancers in people exposed to low levels of radiation. Theoretical experimental and epidemiological evidence will be presented in an integrated stochastic model for projection of radiation-induced cancer risks

  9. Radiation in space: risk estimates

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    2002-01-01

    The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial population. In deep space the duration of the mission, position of the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainties in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons; (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts; and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable. (author)

  10. Review and Evaluation of Updated Research on the Health Effects Associated with Low-Dose Ionizing Radiation

    International Nuclear Information System (INIS)

    Dauer, Lawrence T.; Brooks, Antone L.; Hoel, David G.; Morgan, William F.; Stram, Daniel; Tran, Phung

    2010-01-01

    Potential health effects of low levels of radiation have predominantly been based on those effects observed at high levels of radiation. The authors have reviewed more than 200 percent publications in radiobiology and epidermiology related to low dose radiation and concluded that recent radiobiological studies at low-doses; that doses <100 mSv in a single exposure appear to be too small to allow epidermiological detection of statistically significant excess cancers in the presence of naturally occurring cancers; that low dose radiation research should to holistic, systems-based approaches to develop models that define the shape of the dose-response relationships at low doses; and that these results should be combined with the latest epidermiology to produce a comprehensive understanding of radiation effects that addresses both damage, likely with a linear effect, and response, possibly with non-linear consequences.

  11. Proceedings of the 8. LOWRAD: International conference on the effects of low doses and very low doses of ionizing radiation on human health and biotopes

    International Nuclear Information System (INIS)

    2009-01-01

    Theoretical and experimental papers are presented in these proceedings covering the following subjects: radiation protection, dosimetry, radiation dosimetry, cells, technetium, plutonium, uranium, thorium, low dose irradiation, radiation doses, cesium, radiation chemistry, nuclear medicine, safety and occupational exposure, neoplasm, cytology and radioisotopes

  12. Effect of low dose radiation on somatic intrachromosomal recombination in vivo and in vitro

    International Nuclear Information System (INIS)

    Hooker, A.M.; Cormack, J.; Morley, A.A.; Sykes, P.J.; Bhat, M.

    2003-01-01

    Full text: High doses of ionising radiation are mutagenic in a wide range of mutation assays. The majority of radiation exposure studies in in vivo mouse mutation assays have been performed at high doses, eg greater than 1 Gy. However, these doses are not relevant to the low doses of ionising radiation that the majority of the population might likely come into contact with. Radiation protection levels tend to be based on a simple linear no-threshold model which suggests that any radiation above zero is potentially harmful. The pKZ1 recombination mutagenesis mouse model has proven to be a sensitive assay for the detection of mutations caused by low doses of chemical agents. In pKZ1 mice, somatic intrachromosomal recombination (SICR) inversion events can be detected in cells using histochemistry for the E. coli LacZ transgene. We exposed pKZ1 mice to a single radiation dose ranging from 0.001 to 2 Gy. A significant increase in SICR was observed in spleen at the two highest doses of 0.1 and 2 Gy and a significant reduction in SICR below the endogenous frequency was observed at the two lowest doses of 0.01 and 0.001 Gy. After exposing a pKZ1 cell line to the same dose range, a similar J curve response was observed with significant increases in SICR observed at the 3 highest doses and a significant decrease below the endogenous frequency at the lowest dose (0.001 Gy). The next experiments will be to determine the dose where the SICR frequency returns to the endogenous level. The important question posed by these results is 'Is a reduction below the endogenous SICR level caused by low doses of ionising radiation anti-mutagenic?' Studies now need to be performed to investigate the effect of low doses of radiation on other mutation end-points, and the mechanism for the reduction in SICR

  13. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry

    International Nuclear Information System (INIS)

    Metz-Flamant, Camille

    2011-01-01

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  14. Intracranial germinomas: a case for low dose radiation therapy alone

    International Nuclear Information System (INIS)

    Harrigan, Patricia M.; Loeffler, Jay S.; Shrieve, Dennis; Tarbell, Nancy J.

    1995-01-01

    Purpose: To determine the optimal dose and treatment outcome of patients treated with radiation for intracranial germinoma. Materials and Methods: Between 1975 and 1995, 39 patients with a diagnosis of intracranial germinoma were treated with radiation (RT) to the central nervous system. All but one pt received whole brain (WB) RT, (median dose: 3240 cGy range: 1500-4437 cGy) and a boost to the tumor volume (median total tumor volume dose: 5200 cGy, range: 3960-5950 cGy). Thirty-one pts received RT to the spine (median dose: 2500, range: 1875-3750). Eleven pts were treated with low dose RT and a tumor volume boost, (WB dose ≤ 2550 cGy, and spine dose ≤ 2160 cGy). Five pts were treated with cisplatin-based chemotherapy and low dose WB RT. Fifteen pts were biopsy-proven and 18 presented with multiple midline germinomas (MMG). Among all pts, 33% had serum or CSF positive for low levels of HCG and none of 19 (9 biopsy-proven) germinomas measured positive for AFP tumor marker. Six of 22 (27%) pts who had spine imaging or CSF cytology had evidence of tumor seeding. The male-to female-ratio was 1.4. Median age at diagnosis was 14 yrs for male pts and 9.5 yrs for females (p=.02, overall age range: 1-31 yrs). Median follow-up for survivors is 64 months (range: 1-226 months). Toxicity of treatment relative to dose was assessed. Results: The 5-yr. actuarial rate of disease-free survival (DFS) and overall survival for presumed germinomas was 97%. No pts died of germinoma. One pt died of a shunt infection who had received concurrent chemotherapy and low dose whole brain RT. Among the low dose RT alone group 6 pts received whole brain RT of ≤ 2550 cGy and 9 pts were treated with spinal RT of ≤ 2160 cGy without chemotherapy. Two of these pts had CSF cytology positive for tumor seeding. Additionally, 8 pts received a total dose to the tumor volume of ≤ 4800 cGy without chemotherapy. The 5-yr DFS was 100%. Five pts were treated with cisplatin-based chemotherapy followed

  15. Intracranial germinomas: a case for low dose radiation therapy alone

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, Patricia M; Loeffler, Jay S; Shrieve, Dennis; Tarbell, Nancy J

    1995-07-01

    Purpose: To determine the optimal dose and treatment outcome of patients treated with radiation for intracranial germinoma. Materials and Methods: Between 1975 and 1995, 39 patients with a diagnosis of intracranial germinoma were treated with radiation (RT) to the central nervous system. All but one pt received whole brain (WB) RT, (median dose: 3240 cGy range: 1500-4437 cGy) and a boost to the tumor volume (median total tumor volume dose: 5200 cGy, range: 3960-5950 cGy). Thirty-one pts received RT to the spine (median dose: 2500, range: 1875-3750). Eleven pts were treated with low dose RT and a tumor volume boost, (WB dose {<=} 2550 cGy, and spine dose {<=} 2160 cGy). Five pts were treated with cisplatin-based chemotherapy and low dose WB RT. Fifteen pts were biopsy-proven and 18 presented with multiple midline germinomas (MMG). Among all pts, 33% had serum or CSF positive for low levels of HCG and none of 19 (9 biopsy-proven) germinomas measured positive for AFP tumor marker. Six of 22 (27%) pts who had spine imaging or CSF cytology had evidence of tumor seeding. The male-to female-ratio was 1.4. Median age at diagnosis was 14 yrs for male pts and 9.5 yrs for females (p=.02, overall age range: 1-31 yrs). Median follow-up for survivors is 64 months (range: 1-226 months). Toxicity of treatment relative to dose was assessed. Results: The 5-yr. actuarial rate of disease-free survival (DFS) and overall survival for presumed germinomas was 97%. No pts died of germinoma. One pt died of a shunt infection who had received concurrent chemotherapy and low dose whole brain RT. Among the low dose RT alone group 6 pts received whole brain RT of {<=} 2550 cGy and 9 pts were treated with spinal RT of {<=} 2160 cGy without chemotherapy. Two of these pts had CSF cytology positive for tumor seeding. Additionally, 8 pts received a total dose to the tumor volume of {<=} 4800 cGy without chemotherapy. The 5-yr DFS was 100%. Five pts were treated with cisplatin-based chemotherapy

  16. Biochemical and immunological responses to low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Shabon, M.H.; Sayed, Z.S.; Mahdy, E.M.; El-Gawish, M.A.; Shosha, W.

    2006-01-01

    Malondialdehyde, lactate dehydrogenase, iron concentration, IL-6 and IL-1b concentration, hemoglobin content, red cells, white cells and platelet counts were determined in seventy-two male albino rats divided into two main groups. The first one was subdivided into 7 subgroups; control and 6 irradiated subgroups with 0.1, 0.2, 0.3, 0.5, 0.7 and 1 Gy single dose of gamma radiation. The other was subdivided into 4 subgroups irradiated with fractionated doses of gamma radiation; three groups were irradiated with 0.3, 0.7 and 1 Gy (0.1 Gy/day) and the last subgroup with 1 Gy (0.2 Gy/day). All animals were sacrificed after three days of the last irradiation dose. The results revealed that all biochemical parameters were increased in rats exposed to fractionated doses more than the single doses. Hematological parameters were decreased in rats exposed to single doses more than the fractionated ones. In conclusion, the data of this study highlights the stimulatory effect of low ionizing radiation doses (= 1 Gy), whether single or fractionated, on some biochemical and immunological parameters

  17. Wound trauma alters ionizing radiation dose assessment

    Directory of Open Access Journals (Sweden)

    Kiang Juliann G

    2012-06-01

    Full Text Available Abstract Background Wounding following whole-body γ-irradiation (radiation combined injury, RCI increases mortality. Wounding-induced increases in radiation mortality are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to bacterial infection. Among these factors, cytokines along with other biomarkers have been adopted for biodosimetric evaluation and assessment of radiation dose and injury. Therefore, wounding could complicate biodosimetric assessments. Results In this report, such confounding effects were addressed. Mice were given 60Co γ-photon radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, body-weight loss, and wound healing. Analyses of DNA damage in bone-marrow cells and peripheral blood mononuclear cells (PBMCs, changes in hematology and cytokine profiles, and fundamental clinical signs were evaluated. Early biomarkers (1 d after RCI vs. irradiation alone included significant decreases in survivin expression in bone marrow cells, enhanced increases in γ-H2AX formation in Lin+ bone marrow cells, enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood, and concomitant decreases in γ-H2AX formation in PBMCs and decreases in numbers of splenocytes, lymphocytes, and neutrophils. Intermediate biomarkers (7 – 10 d after RCI included continuously decreased γ-H2AX formation in PBMC and enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood. The clinical signs evaluated after RCI were increased water consumption, decreased body weight, and decreased wound healing rate and survival rate. Late clinical signs (30 d after RCI included poor survival and wound healing. Conclusion Results suggest that confounding factors such as wounding alters ionizing radiation dose assessment and agents inhibiting these responses may prove therapeutic for radiation combined

  18. Patient absorbed dose and radiation risk in nuclear medicine

    International Nuclear Information System (INIS)

    Hetherington, E.; Cochrane, P.

    1992-01-01

    Since the introduction of technetium-99m labelled radiopharmaceuticals used as imaging agents in the nuclear medicine departments of Australian hospitals, patients have voiced concern about the effect of having radioactive materials injected into their bodies. The danger of X-ray exposure is widely known and well accepted, as is exposure to ultrasound, computed tomography scans and other imaging techniques. However, radioactivity is an unknown, and fear of the unknown can occasionally lead to patients refusing to undergo a nuclear medicine procedure. The authors emphasised that the radiation dose to a patient from a typical procedure would depend on the patient's medical history and treatment; the average dose being approximately 50 times the exposure received from the natural environmental background radiation. Furthermore, over an extended period the body can repair most minor damage caused by radiation, just as the body can repair the damage caused by sunburn resulting from too much exposure to sunlight. The risk of genetic effects as a result of a medical radiation dose is than very small

  19. Contamination and cancers: low-dose risks and standards of radioprotection

    International Nuclear Information System (INIS)

    Vignes, S.

    1980-01-01

    Irradiation of the population due to the running of nuclear power stations represents less than 1% of the natural radioactivity today, and should amount to 3% at most by the year 2 000. The main effects of ionizing radiations are reviewed and their undetectability below 100 rems is underlined. Thus the evaluation of low-dose risks can only be speculative and the cautions hypothesis adopted is that of a linear relationship between dose and effect, together with the absence of threshold. According to calculations the worker, supposedly exposed to 500 mrem a year between ages 18 and 65, would run a 22.2% instead of the normal 22% risk of dying of cancer. As for the population, the risk would increase by only 1 per 10 000 in the year 2 000. This means that no other mutagenic and carcinogenic agent is as well regulated as radioactive pollution and efforts directed at a better control of harmful chemicals, for instance, are only taking an example from the ruling on radioprotection [fr

  20. Concomitant Imaging Dose and Cancer Risk in Image Guided Thoracic Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yibao; Wu, Hao [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing (China); Chen, Zhe [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Knisely, Jonathan P.S. [Department of Radiation Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York (United States); Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Feng, Zhongsu [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing (China); Bao, Shanglian [Beijing Key Laboratory of Medical Physics and Engineering, Peking University, Beijing (China); Deng, Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States)

    2015-11-01

    Purpose: Kilovoltage cone beam computed tomography (CT) (kVCBCT) imaging guidance improves the accuracy of radiation therapy but imposes an extra radiation dose to cancer patients. This study aimed to investigate concomitant imaging dose and associated cancer risk in image guided thoracic radiation therapy. Methods and Materials: The planning CT images and structure sets of 72 patients were converted to CT phantoms whose chest circumferences (C{sub chest}) were calculated retrospectively. A low-dose thorax protocol on a Varian kVCBCT scanner was simulated by a validated Monte Carlo code. Computed doses to organs and cardiac substructures (for 5 selected patients of various dimensions) were regressed as empirical functions of C{sub chest}, and associated cancer risk was calculated using the published models. The exposures to nonthoracic organs in children were also investigated. Results: The structural mean doses decreased monotonically with increasing C{sub chest}. For all 72 patients, the median doses to the heart, spinal cord, breasts, lungs, and involved chest were 1.68, 1.33, 1.64, 1.62, and 1.58 cGy/scan, respectively. Nonthoracic organs in children received 0.6 to 2.8 cGy/scan if they were directly irradiated. The mean doses to the descending aorta (1.43 ± 0.68 cGy), left atrium (1.55 ± 0.75 cGy), left ventricle (1.68 ± 0.81 cGy), and right ventricle (1.85 ± 0.84 cGy) were significantly different (P<.05) from the heart mean dose (1.73 ± 0.82 cGy). The blade shielding alleviated the exposure to nonthoracic organs in children by an order of magnitude. Conclusions: As functions of patient size, a series of models for personalized estimation of kVCBCT doses to thoracic organs and cardiac substructures have been proposed. Pediatric patients received much higher doses than did the adults, and some nonthoracic organs could be irradiated unexpectedly by the default scanning protocol. Increased cancer risks and disease adverse events in the

  1. Low-dose radiation induces drosophila innate immunity through toll pathway activation

    International Nuclear Information System (INIS)

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Jin, Young-Woo; Park, Joong-Jean; Min, Kyung-Jin

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and N-terminal kinase (JNK). These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila. (author)

  2. Acute dose and low dose-rate irradiation of carcinoma cells expressing human papillomavirus E6 and E7 oncoproteins - the significance of p53, Rb and G1 arrest status

    International Nuclear Information System (INIS)

    DeWeese, Theodore L.; Walsh, Jonathan C.; Dillehay, Larry E.; Shao, Y.; Kessis, Theodore D.; Cho, Kathleen R.; Nelson, William G.

    1995-01-01

    Purpose: The development of carcinomas in a number of sites including the cervix, vulva and anus have been associated with cellular infection by human papillomaviruses (HPV), including HPV 16 and HPV 18. The mechanism by which these viruses contribute to tumor development or progression seems in part to be related to the integration of the viral genome into the host cells DNA, and the binding of p53 protein by the HPV E6 oncoprotein as well as the binding of the retinoblastoma (Rb) protein and Rb-like proteins by the HPV E7 oncoprotein. These interactions lead to loss of p53 and Rb function including loss of the G 1 cell cycle checkpoint. Although it is believed that both p53 and Rb play a role in the radiosensitivity of the cell, whether alteration in either protein enhances or diminishes cellular radiation response is not clear from the literature. Because HPV-associated tumors such as cervical cancer are often treated with acute dose and/or low dose-rate radiation, we set out to evaluate the radiation response of several carcinoma cell sublines expressing either oncogenic E6 or E7 to both types of radiation, and to determine if p53/Rb dependent G 1 arrest is an important determinant of cell fate after irradiation. Materials and Methods: We have previously developed a series of RKO colorectal carcinoma cell sublines expressing both low-risk (HPV 11) and high-risk (HPV 16) E6 and E7 genes. p53-dependent G 1 arrest is intact in RKO parental cells and cells expressing low-risk E6 proteins, while the G 1 arrest is abrogated in cells expressing high-risk E6 or E7. Clonogenic survival was assessed after exposure to acute dose (1 Gy/min) and low dose-rate (0.25 Gy/hour) radiation. The radiobiologic parameters α, β and the surviving fraction at 2 Gy (SF2) were determined. SDS-PAGE/immunoblotting was carried out to assess both p53 and p21 WAF1/CIP1 levels after exposure to radiation. Flow cytometry was performed before and after exposure to low dose-rate radiation to

  3. Risk of cardiovascular disease following radiation exposure

    International Nuclear Information System (INIS)

    Trivedi, A.; Vlahovich, S.; Cornett, R.J.

    2001-01-01

    Excess radiation-induced cardiac mortalities have been reported among radiotherapy patients. Many case reports describe the occurrence of atherosclerosis following radiotherapy for Hodgkin's disease and breast cancer. Some case reports describe the cerebral infarction following radiotherapy to neck region, and of peripheral vascular disease of the lower extremities following radiotherapy to the pelvic region. The association of atomic bomb radiation and cardiovascular disease has been examined recently by incidence studies and prevalence studies of various endpoints of atherosclerosis; all endpoints indicated an increase of cardiovascular disease in the exposed group. It is almost certain that the cardiovascular disease is higher among atomic bomb survivors. However, since a heavy exposure of 10-40 Gy is delivered in radiotherapy and the bomb survivors were exposed to radiation at high dose and dose-rate, the question is whether the results can be extrapolated to individuals exposed to lower levels of radiation. Some recent epidemiological studies on occupationally exposed workers and population living near Chernobyl have provided the evidence for cardiovascular disease being a significant late effect at relatively low doses of radiation. However, the issue of non-cancer mortality from radiation is complicated by lack of adequate information on doses, and many other confounding factors (e.g., smoking habits or socio-economic status). This presentation will evaluate possible radiobiological mechanisms for radiation-induced cardiovascular disease, and will address its relevance to radiation protection management at low doses and what the impact might be on future radiation risk assessments. (authors)

  4. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  5. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  6. Risk equivalent of exposure versus dose of radiation

    International Nuclear Information System (INIS)

    Bond, V.P.

    1986-01-01

    This report describes a risk analysis study of low-dose irradiation and the resulting biological effects on a cell. The author describes fundamental differences between the effects of high-level exposure (HLE) and low-level exposure (LLE). He stresses that the concept of absorbed dose to an organ is not a dose but a level of effect produced by a particular number of particles. He discusses the confusion between a linear-proportional representation of dose limits and a threshold-curvilinear representation, suggesting that a LLE is a composite of both systems

  7. Radiation and health: low-level-ionizing radiation exposure and effects

    International Nuclear Information System (INIS)

    Kant, Krishan

    2013-01-01

    In the present paper, brief review of the available literature, data and reports of various radiation exposure and protection studies is presented. An in-depth analysis of reports available suggests that the possible beneficial outcomes of exposure to LLIR are: increased Growth rate, Development, Neurogenesis, Memory, Fecundity (Fertility), Immunity (Resistance to diseases due to large doses of radiation) and Lifespan (Longevity) Decreased Cancer deaths, Cardiovascular deaths, Respiratory deaths, Neonatal deaths, Sterility, Infection, Premature deaths. The findings also suggest that the LNT theory is overly stated for assessing carcinogenic risks at low doses. It is not scientifically justified and should be banned as it creates radio phobia thereby blocking the efforts to supply reliable, environmentally friendly nuclear energy and important medical therapies. There is no need for anyone to live in fear of serious health consequences from the radioactivity that comes out from nuclear installations and exposures in the range of background radiation. A linear quadratic model has been given illustrating the validity of radiation hormesis, besides the comparison of the dose rates arising from natural and manmade sources to Indian population

  8. Bleeding Risk with Long-Term Low-Dose Aspirin: A Systematic Review of Observational Studies

    Science.gov (United States)

    García Rodríguez, Luis A.; Martín-Pérez, Mar; Hennekens, Charles H.; Rothwell, Peter M.; Lanas, Angel

    2016-01-01

    Background Low-dose aspirin has proven effectiveness in secondary and primary prevention of cardiovascular events, but is also associated with an increased risk of major bleeding events. For primary prevention, this absolute risk must be carefully weighed against the benefits of aspirin; such assessments are currently limited by a lack of data from general populations. Methods Systematic searches of Medline and Embase were conducted to identify observational studies published between 1946 and 4 March 2015 that reported the risks of gastrointestinal (GI) bleeding or intracranial hemorrhage (ICH) with long-term, low-dose aspirin (75–325 mg/day). Pooled estimates of the relative risk (RR) for bleeding events with aspirin versus non-use were calculated using random-effects models, based on reported estimates of RR (including odds ratios, hazard ratios, incidence rate ratios and standardized incidence ratios) in 39 articles. Findings The incidence of GI bleeding with low-dose aspirin was 0.48–3.64 cases per 1000 person-years, and the overall pooled estimate of the RR with low-dose aspirin was 1.4 (95% confidence interval [CI]: 1.2–1.7). For upper and lower GI bleeding, the RRs with low-dose aspirin were 2.3 (2.0–2.6) and 1.8 (1.1–3.0), respectively. Neither aspirin dose nor duration of use had consistent effects on RRs for upper GI bleeding. The estimated RR for ICH with low-dose aspirin was 1.4 (1.2–1.7) overall. Aspirin was associated with increased bleeding risks when combined with non-steroidal anti-inflammatory drugs, clopidogrel and selective serotonin reuptake inhibitors compared with monotherapy. By contrast, concomitant use of proton pump inhibitors decreased upper GI bleeding risks relative to aspirin monotherapy. Conclusions The risks of major bleeding with low-dose aspirin in real-world settings are of a similar magnitude to those reported in randomized trials. These data will help inform clinical judgements regarding the use of low-dose aspirin

  9. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  10. Charpak, Garwin, propose unit for radiation dose

    CERN Multimedia

    Feder, Toni

    2002-01-01

    Becquerels, curries, grays, rads, rems, roentgens, sieverts - even for specialists the units of radiation can get confusing. That's why two eminent physicists, Georges Charpak of France, and Richard Garwin, are proposing the DARI as a unit of radiation dose they hope will help the public evaluate the risks associated with low-level radiation exposure (1 page)

  11. Risk assessment of occupational radiation dose at the teletherapy facility of the Korle-Bu Teaching Hospital, Ghana

    International Nuclear Information System (INIS)

    Gollo, Selasie Richie Valens Kweku

    2016-07-01

    The National centre for Radiotherapy and Nuclear Medicine at the Korle-bu Teaching Hospital in Ghana uses a Theratron Equinox 100 Cobalt-60 teletherapy machine that was commissioned in 2014 with a source activity of 370.4TBq. The prime objective of this research was to estimate the risk and probability of cancer induction to workers and also to evaluate the level of radiation safety at the facility. Data was collected by means of TLDs and personal dose records available between the periods February 2010 and April 2016. The results from 2010-2016 were used to compute the mean annual dose, mean annual collective dose as well as risk assessments using the ICRP 1990 and 2007 recommendations. Ambient dose rate measurements were also done using a Thermo electron survey meter. The Results showed that mean effective dose recorded from TLDs used in this research ranged from 0.08mSv-0.36mSv whiles dose records from 2010-2016 showed mean annual effective doses ranged between 0.23mSv-0.65mSv. Mean annual collective dose was 0.09 mSv. Annual cancer risk estimates also showed that workers probability of developing cancers had a mean value of 2.37 x 10"-"2±7.75 x 10"-"3 whiles risk of passing hereditary traits to offspring born after exposure showed a mean value 3.96 x 10"-"3± 1.29 x 10"-"3 according to the ICRP 1990 recommendations and ICRP 2007 showed that possibility of cancer induction to workers showed a mean value of 2.03 x 10"-"2±1.61 x 10"-"3. Mean annual dose rates did not exceed 14.8mSv/a,5mSv/a and 0.74mSv/a for the treatment room, control console room and the controlled area respectively. This shows that workers at the facility are not likely to exceed the recommended dose limit within a year while working at the facility. Ambient dose rates did not exceed 7.39μSv/hr, 2.80μSv/hr and 0.37μSv/hr for the treatment room, control console room and the controlled area respectively. These values obtained are below the recommended limit of 20μSv/hr. (au)

  12. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts.

    Science.gov (United States)

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R; Medlin, Donald; Zheng, Leon; Wilson, R Kevin; Rusin, Matthew; Takacs, Endre; Dean, Delphine

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial "pause" in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature.

  13. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Picano, Eugenio; Vano, Eliseo; Domenici, Luciano; Bottai, Matteo; Thierry-Chef, Isabelle

    2012-01-01

    According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed

  14. Assessment of cosmic radiation doses received by air crew

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1998-01-01

    Cosmic radiation in the atmosphere is such a complex mixture of radiation type that it is difficult to get a single instrument which is suitable for such measurements. Passive devices such as film badges and track etch detectors have also been used, but again present difficulties of interpretation and requirements of multiple devices to accommodate the different types of radiation encountered. In summary, air crew are the occupational group most highly exposed to radiation. The radiation doses experienced by them are sufficiently high as to require assessment on a regular basis and possible control by appropriate rostering. There appears little possibility of the dose limit for workers being exceeded, except possibly in the case of pregnant female crew. This category of air crew should be the subject of special controls aimed at ensuring that the dose limits for the foetus should not be exceeded

  15. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    Science.gov (United States)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  16. Factors that modify risks of radiation-induced cancer

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors)

  17. Biochemical and cellular mechanisms of low-dose effects

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Booz, J.; Muehlensiepen, H.

    1988-01-01

    The question of health effects from small radiation doses remains open. Individual cells, when being hit by single elemental doses - in low-dose irradiation - react acutely and temporarily by altering control of enzyme activity, as is demonstrated for the case of thymidine kinase. This response is not constant in that it provides a temporary protection of enzyme activity against a second irradiation, by a mechanism likely to be via improved detoxification of intracellular radicals. It must be considered that in the low-dose region radiation may also exert protection against other challenges involving radicals, causing a net beneficial effect by temporarily shielding the hit cell against radicals produced by metabolism. Since molecular alterations leading to late effects are considered a consequence of the initial cellular response, late effects from small radiation doses do not necessarily adhere to a linear dose-effect relationship. The reality of the linear relationship between the risk of late effects from high doses to small doses is an assumption, for setting dose limits, but it must not be taken for predicting health detriment from low doses. (author)

  18. Low-Dose Radiation Induces Genes Promoting Cell Survival

    International Nuclear Information System (INIS)

    Liu, Shu-Zheng; Chen, Dong; Mu, Ying

    1999-01-01

    Apoptosis is an important process controlling homeostasis of the body. It is influenced by stimuli constantly arising from the external and internal environment of the organism. It is well known that radiation could induce apoptosis of cells in vitro and in vivo. However, the dose-effect relationship of apoptosis extending to the low-dose range has scarcely been studied. Here, the molecular basis of the phenomenon is explored by examining the changes in expression of some of the proapoptotic and antiapoptotic genes

  19. Non-targeted effects of ionising radiation—Implications for low dose risk

    DEFF Research Database (Denmark)

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric

    2013-01-01

    and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly......Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects....... Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE...

  20. Genomic instability in mutation induction on normal human fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field

    International Nuclear Information System (INIS)

    Suzuki, M.; Tsuruoka, C.; Uchihori, Y.; Yasuda, H.; Fujitaka, K.

    2003-01-01

    Full text: At a time when manned space exploration is more a reality with the planned the International Space Station (ISS) underway, the potential exposure of crews in a spacecraft to chronic low-dose radiations in the field of low-flux galactic cosmic rays (GCR) and the subsequent biological effects have become one of the major concerns of space science. We have studied both in vitro life span and genomic instability in cellular effects in normal human skin fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field. Cells were cultured in a CO2 incubator, which was set in the irradiation room for the biological study of heavy ions in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS), and irradiated with scattered radiations produced from heavy ions. Absorbed dose measured using a thermoluminescence dosimeter (TLD) and a Si-semiconductor detector was to be around 1.4 mGy per day when operating the HIMAC machine for biological experiments. The total population doubling number (tPDN) of low-dose irradiated cells was significantly smaller (79-93%) than that of unirradiated cells. The results indicate that the life span of the cell population shortens by irradiating with low-dose scattered radiations in the heavy-ion irradiation field. Genomic instability in cellular responses was examined to measure either cell killing or mutation induction in low-dose accumulated cells after exposing to X-ray challenging doses. The results showed that there was no enhanced effect on cell killing between low-dose accumulated and unirradiated cells after exposing to defined challenging doses of 200kV X rays. On the contrary, the mutation frequency on hprt locus of low-dose accumulated cells was much higher than that of unirradiated cells. The results suggested that genomic instability was induced in mutagenesis by the chronic low-dose irradiations in heavy-ion radiation field

  1. Natural radiation dose due to 210Po and associated risk to certain fishes of Kudankulam Waters, Gulf of Mannar

    International Nuclear Information System (INIS)

    Praveen Pole, R.P.; Godwin Wesley, S.; Vijayakumar, B.

    2014-01-01

    With increasing emphasis on environmental protection, concern has switched over from the earlier target human being to non-human species regarding possible radiation risk. Alpha-emitter 210 Po (t 1/2 = 138.4 d) is the most important radionuclide, considering it as a potential natural source of internal radiation dose to marine organisms. Fishes are known to accumulate 210 Po to a large extent through food chains and certain marine fishes are potential bioindicators as they bioaccumulate the target radionuclide from surrounding waters. Hence it is imperative to assess the level of 210 Po and the radiological risk (risk quotient) due to the radiation dose received by different fish species collected from the coastal areas around the nuclear installation at Kudankulam

  2. Harderian Gland Tumorigenesis: Low-Dose and LET Response

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Polly Y. [SRI International, Menlo Park, CA (United States). Biosciences Div.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Cucinotta, Francis A. [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Health Physics and Diagnostic Sciences; Bjornstad, Kathleen A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Bakke, James [SRI International, Menlo Park, CA (United States). Biosciences Div.; Rosen, Chris J. [SRI International, Menlo Park, CA (United States). Biosciences Div.; Du, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Fairchild, David G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Cacao, Eliedonna [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Health Physics and Diagnostic Sciences; Blakely, Eleanor A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2016-04-19

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ~70 keV/μm) and 1,000 MeV/u titanium (LET ~100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the

  3. SU-E-I-54: Effective Dose and Radiation Cancer Risks for Scoliosis Patients Undergoing Full Spine Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y [Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road., Kwei-Shan, Taoyuan 333, Taiwan (China); Hwang, Y [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan (China); Tsai, H [Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road., Kwei-Shan, Taoyuan 333, Taiwan (China); Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan (China); Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan (China)

    2015-06-15

    Purpose: Scoliotic patients underwent a lot of radiologic examinations during the control and treatment periods. This study used the PCXMC program to calculate the effective dose of the patients and assess the radiation cancer risks. Methods: Seventy five scoliotic patients were examined using CR or DR systems during the control and treatment periods in Chang Gung Memorial Hospital. The technical factors were recorded for each patient during his/her control and treatment period. The entrance surface dose was measured using thermoluminence dosimeters and derived from technical factors and irradiated geometry. The effective dose of patients and relative radiation cancer risks were calculated by the PCXMC program. All required information regarding patient age and sex, the x-ray spectra, and the tube voltage and current were registered. The radiation risk were estimated using the model developed by the BEIR VII committee (2006). Results: The effective doses of full spine radiography with anteroposterior and lateral projections were 0.626 mSv for patients using DR systems, and 0.483mSv for patients using CR systems, respectively. The dose using DR system was 29.6% higher than those using CR system. The maximum organ dose was observed in the breast for both projections in all the systems. The risk of exposure—induced cancer death (REID) of patients for DR and CR systems were 0.009% and 0.007%, respectively. Conclusion: The risk estimates were regarded with healthy skepticism, placed more emphasis on the magnitude of the risk. The effective doses estimated in this study could be served as a reference for radiologists and technologists and demonstrate the necessity to optimize patient protection for full spine radiography though the effective doses are not at the level to induce deterministic effects and not significant in the stochastic effect. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1D0421)

  4. Low-level radiation

    International Nuclear Information System (INIS)

    Myers, D.K.

    1982-05-01

    It is known that the normal incidence of cancer in human populations is increased by exposure to moderately high doses of ionizing radiation. At background radiation levels or at radiation levels which are 100 times greater, the potential health risks are considered to be directly proportional to the total accumulated dose of radiation. Some of the uncertainties associated with this assumption and with the accepted risk estimates have been critically reviewed in this document. The general scientific consensus at present suggests that the accepted risk estimates may exaggerate the actual risk of low levels of sparsely ionizing radiations (beta-, gamma- or X-rays) somewhat but are unlikely to overestimate the actual risks of densely ionizing radiations (fast neutrons, alpha-particles). At the maximum permissible levels of exposure for radiation workers in nuclear power stations, the potential health hazards in terms of life expectancy would be comparable to those encountered in transportation and public utilities or in the construction industry. At the average radiation exposures received by these workers in practice, the potential health hazards are similar to those associated with safe categories of industries. Uranium mining remains a relativly hazardous occupation. In terms of absolute numbers, the genetic hazards, which are less well established, are thought to be smaller than the carcinogenic hazards of radiation when only the first generation is considered but to be of the same order of magnitude as the carcinogenic hazards when the total number of induced genetic disorders is summed over all generations

  5. Risk at Low Doses: Scientific knowledge, uncertainties and management

    International Nuclear Information System (INIS)

    Giusssani, A.; Ballarini, F.; Ottolenghi, A.

    2002-01-01

    Most of the applications of ionizing radiation in the medical field, for the exposed workers as well as the majority of patients undergoing diagnostic examinations, can be seen as low situations. Epidemiological information is however available for dose and dose rates higher than the values typical of most medical situation. Main source of information is the Life Span Study (LSS) of Japanese. A-bomb survivors, supplemented by studies of selected groups of exposed workers (uranium miners, radium painters) or radiotherapy patients with a detailed follow-up history. All of these group studies, however, suffer from one or more of the following limitations: - lack of adequate dosimetry - lack of a reliable control group for the necessary comparison - influence of concomitant factors (not always easy to find out) - influence of social conditions. In addition exposed study populations are different than the population of patients for which the risk estimates are needed in the medical situation. Recent studies aimed to evaluate the available data on the cohorts of the inhabitants of the Techa river settlements as well as of the workers of the Mayak nuclear facilities may provide in the future useful information on large populations chronically exposed to relatively low doses. (Author)

  6. Risk assessment perspectives in radiation protection

    International Nuclear Information System (INIS)

    Rowe, W.D.

    1980-01-01

    Risk evaluation involves a) optimization, where collective dose is reduced by application of controls, b) justification, where benefits and costs are balanced, and c) application of dose limits. Justification may be determined in general by examining the difference between the new practice and a reference condition in the form of a diference equation. This equation is expanded to take into account other risks in addition to radiation risks. The relative potencies of some toxic chemicals are compared with those of some isotopes. Nuclear and waste disposal accidents are also considered. It is concluded that a probablistic analysis may be useful for resolving the high level radioactive waste question but not for nuclear accidents. However, in the latter case, relative risk models may provide insight into the causes of risk and where resources for reducing the risk may be best spent. (H.K.)

  7. Radiation doses to Finns

    International Nuclear Information System (INIS)

    Rantalainen, L.

    1996-01-01

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  8. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  9. Assessment of population external irradiation doses with consideration of Rospotrebnadzor bodies equipment for monitoring of photon radiation dose

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2016-01-01

    Full Text Available This paper provides review of equipment and methodology for measurement of photon radiation dose; analysis of possible reasons for considerable deviation between the Russian Federation population annual effective external irradiation doses and the relevant average global value. Data on Rospotrebnadzor bodies dosimetry equipment used for measurement of gamma radiation dose are collected and systematized. Over 60 kinds of dosimeters are used for monitoring of population external irradiation doses. Most of dosimeters used in the country have gas-discharge detectors (Geiger-Mueller counters, minor biochemical annunciators, etc. which have higher total values of own background level and of space radiation response than the modern dosimeters with scintillation detectors. This feature of dosimeters is apparently one of most plausible reasons of a bit overstating assessment of population external irradiation doses. The options for specification of population external irradiation doses assessment are: correction of gamma radiation dose measurement results with consideration of dosimeters own background level and space radiation response, introduction of more up-to-date dosimeters with scintillation detectors, etc. The most promising direction of research in verification of population external irradiation doses assessment is account of dosimetry equipment.

  10. Low-dose ionizing radiation alleviates Aβ42-induced defective phenotypes in Drosophila Alzheimer's disease models

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, SooJin; Jeong, Hae Min; Nam, Seon Young [Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2017-04-15

    Alzheimer's disease (AD) is the most common neurodegenerative disease that is characterized by amyloid plaques, progressive neuronal loss, and gradual deterioration of memory. Amyloid imaging using positron emission tomography (PET) radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disease, including AD. Particularly, previous studies involving low-dose ionizing radiation on Aβ 42-treated mouse hippocampal neurons have suggested a potential role for low-dose ionizing radiation in the treatment of AD. However, associated in vivo studies involving the therapy effects of low-dose ionizing radiation on AD are still insufficient. As a powerful cell biological system, Drosophila AD models have been generated and established a useful model organism for study on the etiology of human AD. In this study, we investigated the hormesis effects of low-dose ionizing radiation on Drosophila AD models. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation.

  11. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  12. Radiation dose from initial trauma assessment and resuscitation: review of the literature.

    Science.gov (United States)

    Hui, Catherine M; MacGregor, John H; Tien, Homer C; Kortbeek, John B

    2009-04-01

    Trauma care benefits from the use of imaging technologies. Trauma patients and trauma team members are exposed to radiation during the continuum of care. Knowledge of exposure amounts and effects are important for trauma team members. We performed a review of the published literature; keywords included "trauma," "patients," "trauma team members," "wounds," "injuries," "radiation," "exposure," "dose" and "computed tomography" (CT). We also reviewed the Board on Radiation Effects Research (BEIR VII) report, published in 2005 and 2006. We found no randomized controlled trials or studies. Relevant studies demonstrated that CT accounts for the single largest radiation exposure in trauma patients. Exposure to 100 mSv could result in a solid organ cancer or leukemia in 1 of 100 people. Trauma team members do not exceed the acceptable occupation radiation exposure determined by the National Council of Radiation Protection and Management. Modern imaging technologies such as 16- and 64-slice CT scanners may decrease radiation exposure. Multiple injured trauma patients receive a substantial dose of radiation. Radiation exposure is cumulative. The low individual risk of cancer becomes a greater public health issue when multiplied by a large number of examinations. Though CT scans are an invaluable resource and are becoming more easily accessible, they should not replace careful clinical examination and should be used only in appropriate patients.

  13. Risk ratios for use in establishing dose limits for occupational exposure to radiation

    International Nuclear Information System (INIS)

    Metcalf, P.E.; Winkler, B.C.

    1980-01-01

    Dose limits for occupational exposure to radiation may be established by comparing the associated mortality risk with apparently accepted levels of industrial mortality risk due to conventional hazards. Average levels of industrial mortality risk rates are frequently quoted and used in such comparisons. However, within particular occupations or industries certain groups of workers will be exposed to higher levels of risk than the average, again an apparently accepted situation. A study has been made of the ratios of maximum to average industrial mortality risk currently experienced in some South African industries. Such a ratio may be used to assess the acceptability of maximum individual-to-average exposures in particular groups of exposed individuals. (author)

  14. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    Science.gov (United States)

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  15. Gene expression analysis after low dose ionising radiation exposure of the developing organism

    International Nuclear Information System (INIS)

    Abderrafi Benotmane, M.

    2007-01-01

    Measuring gene expression using microarrays is relevant to many areas of biology and medicine, such as follow up of developmental stages and diseases onset, and treatment study. Since there can be tens of thousands of distinct probes on an array, each micro array experiment can accomplish the equivalent number of genetic tests in parallel. Arrays have therefore dramatically accelerated many types of investigations. For example, microarrays can be used to identify stress response genes by comparing gene expression in challenged versus normal cells. In the Molecular and Cellular Biology lab (MCB), the micro array experiments are performed within the Genomic Platform, fully equipped to analyse either the behaviour of bacteria during long space flight, the effect of low dose ionising radiation on the developing organism in mice, or the human individual radiation sensitivity. For the low dose effect, two main stages of development are of interest; 1) the gastrula stage at which ionizing radiation can induce several malformations. 2) the organogenesis. During brain development, epidemiological studies of the atomic bomb survivors of Hiroshima/Nagasaki showed increased risk of mental retardation in children of women exposed between weeks 8-15 of pregnancy or at a lower extend between weeks 15 to 25

  16. Radiation dose assessment of musa acuminata - triploid (AAA)

    International Nuclear Information System (INIS)

    Maravillas, Mart Andrew S.; Locaylocay, Jocelyn R.; Mendoza, Concepcion S.

    2008-01-01

    Bananas are radioactive due to the presence of the radioisotope- 40 K. This imposes a possible health risk to the general public. This study intended to assess the annual equivalent dosages and the annual effective dosage committed by the body. This seeks to benefit the general public, students and researchers, and entrepreneurs. Using atomic absorption spectrophotometry, lakatan banana (Musa acuminata-triploid (AAA), the most purchased variety cultivated in Barangay Adlawon, Cebu City, Philippines, was found to contain 0.53 g of total potassium for every 100 g of its fresh fruit wherein 6.2 x 10 -5 g of which is potassium-40. Based on its 40 K content banana was calculated to have a radioactivity of 16 Bq/100 g. it was found out that the body is exposed to radiation dosages ranging from 2.8 x 10 -3 rem annually by eating 100 g of lakatan bananas everyday. Conversely, it is equivalent to the annual effective dosage of 0.0043 rem; the amount at which the body of an individual is uniformly exposed. However, no or extremely minute health risk was determined by just eating bananas. In fact, to exceed the radiation dose limits set by the International Commission on Radiation Protection, an individual may eat 116 kg of lakatan bananas everyday for a year. Fertilizers may be the major source of the radioisotope - 40 K and assimilated by the plants. (author)

  17. The European initiative on low-dose risk research: from the HLEG to MELODI

    International Nuclear Information System (INIS)

    Belli, Mauro; Tabocchini, Maria Antonella; Jourdain, Jean-Rene; Repussard, Jacques; Salomaa, Sisko

    2015-01-01

    The importance of low-dose risk research for radiation protection is now widely recognised. The European Commission (EC) and five European Union (EU) Member States involved in the Euratom Programme set up in 2008 a 'High Level and Expert Group on European Low Dose Risk Research' (HLEG) aimed at identifying research needs and proposing a better integration of European efforts in the field. The HLEG revised the research challenges and proposed a European research strategy based on a 'Multidisciplinary European Low Dose Initiative' (MELODI). In April 2009, five national organisations, with the support of the EC, created the initial core of MELODI (http://www.melodi-online.eu) with a view to integrate the EU institutions with significant programmes in the field, while being open to other scientific organisations and stakeholders, and to develop an agreed strategic research agenda (SRA) and roadmap. Since then, open workshops have been organised yearly, exploring ideas for SRA implementation. As of October 2014, 31 institutions have been included as members of MELODI. HLEG recommendations and MELODI SRA have become important reference points in the radiation protection part of the Euratom Research Programme. MELODI has established close interactions through Memorandum of Understanding with other European platforms involved in radiation protection (Alliance, NERIS and EURADOS) and, together with EURADOS, with the relevant medical European Associations. The role of Joint Programming in priority setting, foreseen in the forthcoming EU Horizon 2020, calls for keeping MELODI an open, inclusive and transparent initiative, able to avoid redundancies and possible conflicts of interest, while promoting common initiatives in radiation protection research. An important issue is the establishment of a proper methodology for managing these initiatives, and this includes the set-up of an independent MELODI Scientific Committee recently extended to Alliance, NERIS

  18. The European initiative on low-dose risk research: from the HLEG to MELODI.

    Science.gov (United States)

    Belli, Mauro; Tabocchini, Maria Antonella; Jourdain, Jean-René; Salomaa, Sisko; Repussard, Jacques

    2015-09-01

    The importance of low-dose risk research for radiation protection is now widely recognised. The European Commission (EC) and five European Union (EU) Member States involved in the Euratom Programme set up in 2008 a 'High Level and Expert Group on European Low Dose Risk Research' (HLEG) aimed at identifying research needs and proposing a better integration of European efforts in the field. The HLEG revised the research challenges and proposed a European research strategy based on a 'Multidisciplinary European LOw Dose Initiative' (MELODI). In April 2009, five national organisations, with the support of the EC, created the initial core of MELODI (http://www.melodi-online.eu) with a view to integrate the EU institutions with significant programmes in the field, while being open to other scientific organisations and stakeholders, and to develop an agreed strategic research agenda (SRA) and roadmap. Since then, open workshops have been organised yearly, exploring ideas for SRA implementation. As of October 2014, 31 institutions have been included as members of MELODI. HLEG recommendations and MELODI SRA have become important reference points in the radiation protection part of the Euratom Research Programme. MELODI has established close interactions through Memorandum of Understanding with other European platforms involved in radiation protection (Alliance, NERIS and EURADOS) and, together with EURADOS, with the relevant medical European Associations. The role of Joint Programming in priority setting, foreseen in the forthcoming EU Horizon 2020, calls for keeping MELODI an open, inclusive and transparent initiative, able to avoid redundancies and possible conflicts of interest, while promoting common initiatives in radiation protection research. An important issue is the establishment of a proper methodology for managing these initiatives, and this includes the set-up of an independent MELODI Scientific Committee recently extended to Alliance, NERIS and EURADOS, with

  19. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    International Nuclear Information System (INIS)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-01-01

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology

  20. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of

  1. Campylobacter radicidation of poultry meat by means of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Tarjan, Veronika

    1984-01-01

    The effect of ionizing radiation on the number of sprouts of pathogenic Campylobacter was studied in the function of time, storage temperature and radiation dose. Culture-media and minced poultry meat treated with isolated bacteria were irradiated by sup(60)Co up to a dose of 1 kGy. It would be established that low irradiation doses of 3-5 kGy used to eliminate Salmonella infection satisfactorily destroy Campylobacter in chilled meat. (V.N.)

  2. Teratogenic radiation effects: Phenomena, dose-response relationships and risk levels

    International Nuclear Information System (INIS)

    Konermann, G.

    1991-01-01

    The report in hand informs about a study performed within the framework of the research project 'Animal experiments with albino mice for establishing a model for the detection and assessment of radiation-induced, developmental risks in man due to low-dose irradiation'. The subjects investigated in this study are: (1) Dose-response relationships for postnatal developmental disturbances of the brain as a result of prenatal X-ray treatment. (2) Biokinetics, distribution patterns and effects of inorganically and organically bonded radioiodine (I-125) during the phase of development of the brain. For investigation of the first-mentioned subject, computerized microphotograph analysis was applied for detecting and assessing disturbances of the alignment of axons, as well as deviations from normal cross-sectional data of the Cortex layer, and cerebral commissures as final locations of neurogenetic damage. With all parameters studied, the slope of the relevant curves was found to decrease as a function of age of the fetus at the time of exposure. In addition, time factor effects were investigated. For the parameter cross-sectional area of the Cortex, a clear decrease of effect was found, but for all other parameters, reactions were ambiguous. The study into the second subject was done with cell cultures, showing that the I-125 bonded to the cell nucleus has a much stronger radiotoxic effect than I-125 bonded to the cytoplasma. This difference in effect was studied in mice after incorporation of equal doses administered by way of (I-125)-sodium iodide or (I-125)-iododesoxyuridine. Long-term effects on Cortex cross-sectional areas, cerebral commissures or the texture of axons were quantified by microphotograph analysis. Acute cell death and initial disturbances of the neuronal cell growth were evident after incorporation of (I-125)-IdUR, but not detectable after administration of (I-125)-NaI. (orig./MG) [de

  3. The limiting dose rate and its importance in radiation protection

    International Nuclear Information System (INIS)

    Bakkiam, D.; Sonwani, Swetha; Arul Ananthakumar, A.; Mohankumar, Mary N.

    2012-01-01

    The concept of defining a low dose of ionizing radiation still remains unclear. Before attempting to define a low dose, it is more important to define a low-dose rate since effects at low dose-rates are different from those observed at higher dose-rates. Hence, it follows that low dose-rates rather than a low dose is an important criteria to determine radio-biological effects and risk factors i.e. stochastic health effects. Chromosomal aberrations induced by ionizing radiations are well fitted by quadratic model Y= áD + âD 2 + C with the linear coefficient of dose predominating for high LET radiations and low doses of low LET. At higher doses and dose rates of sparsely ionizing radiation, break pairs produced by inter-track action leads to the formation of exchange type aberrations and is dependent on dose rate. Whereas at lower doses and dose rates, intra-track action produces break pairs and resulting aberrations are in direct proportion to absorbed dose and independent of dose rate. The dose rate at which inter-track ceases to be observable and where intra-track action effectively becomes the sole contributor of lesion-pair formation is referred to as limiting dose rate (LDR). Once the LDR is reached further reduction in dose rates will not affect the slope of DR since breaks produced by independent charged particle tracks are widely separated in time to interact with each other for aberration yield. This linear dependency is also noticed for acute exposures at very low doses. Existing reports emphasizes the existence of LDR likely to be e6.3cGyh -1 . However no systematic studies have been conducted so far to determine LDR. In the present investigation DR curves were constructed for the dose rates 0.002 and 0.003 Gy/min and to define LDR at which a coefficient approaches zero. Extrapolation of limiting low dose rate data can be used to predict low dose effects regardless of dose rate and its definition ought to serve as a useful index for studies pertaining

  4. Biologically based analysis of lung cancer incidence in a large Canadian occupational cohort with low-LET low-dose radiation exposure, and comparison with Japanese atomic bomb survivors

    International Nuclear Information System (INIS)

    Hazelton, W.D.; Curtis, S.B.; Moolgavkar, S.H.; Hutchinson, F.; Krewski, D.

    2003-01-01

    Lung cancer incidence is analyzed in a large Canadian National Dose Registry (CNDR) cohort with individual annual dosimetry for low-dose occupational exposure to gamma and tritium radiation using several types of multistage models. The primary analysis utilizes the two-stage clonal expansion model (TSCE), with sensitivity analyses using extensions of this model incorporating additional stages. Characteristic and distinct temporal patterns of risk are found for dose-response affecting early, middle, or late stages of carcinogenesis, e.g. initiation with one or more stages, clonal expansion, or malignant conversion. Fixed lag or lag distributions are used to model time from first malignant cell to incidence. Background rates are analyzed by gender, job classification and birth cohort. Lacking individual smoking data, surrogate doses based on US annual per capita cigarette consumption appear to account for much of the birth cohort effect. Males, with mean cumulative exposure for gamma and tritium of 11.5 mSv and 322 incident lung cancer cases have a significant dose-response with 33 cases attributable to radiation. Female dose-response, with mean cumulative exposure of 1.7 mSv and 78 incident cases, appears similar but is not statistically significant. Findings for males include an inverse-dose-rate effect (increased risk with protraction of a given dose) and dose-response effects on initiation, promotion and malignant conversion, although the effect on initiation is not statistically significant. The excess relative risk (ERR) and excess absolute risk (EAR) depend on age at exposure, duration, dose, and age at follow-up. The ERR increases with dose, tapering off at higher doses, making a plot of ERR against dose concave-downward, similar to apparent low-dose results seen below 1 Sv for solid tumor mortality of atomic bomb survivors. The concave-downward trend of ERR and the inverse-dose-rate effect are both counter to prevailing beliefs about effects of low

  5. Assessment of patient radiation doses during routine diagnostic radiography examinations

    International Nuclear Information System (INIS)

    Adam, Asim Karam Aldden Adam

    2015-11-01

    Medical applications of radiation represent the largest source of exposure to general population. Accounting for 3.0 mSv against an estimated 2.4 mSv from a natural back ground in United States. The association of ionizing radiation an cancer risk is assumed to be continuos and graded over the entire range of exposure, The objective of this study is to evaluate the patient radiation doses in radiology departments in Khartoum state. A total of 840 patients ? during two in the following hospitals Khartoum Teaching Hospital (260 patients), Fedail specialized hospital ( 261 patients). National Ribat University hospital ( 189 patients) and Engaz hospital (130 patients). Patient doses were measured for 9 procedures. The Entrance surface Air Kerma (ESAK) was quantified using x-ray unit output by Unifiers xi dose rate meter( Un fore inc. Billdal. Sweden) and patient exposure parameters. The mean patient age. Weight and Body Mass index (BMI) were 42.6 year 58/4 kg and 212 kg/m respectively. The mean patient doses, kv and MAS and E.q was 0.35 mGy per procedures 59.9 volt 19.8 Ampere per second 0.32 Sv . Patient doses were comparable with previous studies. Patient radiation doses showed considerable difference between hospitals due to x- ray systems exposure settings and patient weight. Patient are exposed to unnecessary radiation.(Author)

  6. Panel discussion on health effects of low-dose ionizing radiation. Scientific findings and non-threshold hypothesis

    International Nuclear Information System (INIS)

    1995-06-01

    This is a record of a panel discussion in the IAEA Interregional Training Course. In current radiation work, protection measures are taken on the assumption that any amount of radiation, however small, entails a risk of deleterious effects. This so-called non-threshold assumption of radiation effects, on the one hand, creates public distrust of radiation use. However, because the health effects of low-dose ionizing radiation are difficult to verify, wide views ranging from the non-threshold hypothesis to one which sees small amounts of radiation as rather useful and necessary are presented. In this panel discussion, how the health effects of low-dose ionizing radiation should be considered from the standpoint of radiation protection was discussed. Panelists included such eminent scientists as Dr. Sugahara and Dr. Okada, who are deeply interested in this field and are playing leading parts in radiobiology research in Japan, and Dr. Stather, deputy Director of NRPB, UK, who, in UNSCEAR and ICRP, is actively participating in the international review of radiation effects and the preparation of reports on radiation protection recommendations. They agreed with each other that although it is reasonable, under the current scientific understanding, to follow the recommendation of ICRP, research in this area should be strongly promoted hereafter, for basing radiation protection on firm scientific grounds. Many participants actively asked about and discussed problems in their own field. (author)

  7. Low dose radiation enhances the Locomotor activity of D. melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ki Moon; Lee, Buyng Sub; Nam Seon Young; Kim, Ji Young; Yang, Kwang Hee; Choi, Tae In; Kim, Cha Soon [Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Gyeongju (Korea, Republic of)

    2013-04-15

    Mild stresses at low level including radiation can induce the beneficial effects in many vertebrate and invertebrate species. However, a large amount of studies in radiation biology have focused on the detrimental effects of high dose radiation (HDR) such as the increased incidence of cancers and developmental diseases. Low dose radiation (LDR) induces biologically favorable effects in diverse fields, for example, cancer development, genomic instability, immune response, and longevity. Our previous data indicated that LDR promotes cells proliferation of which degree is not much but significant, and microarray data explained that LDR irradiated fruit flies showing the augmented immunity significantly changed the program for gene expression of many genes in Gene Ontology (GO) categories related to metabolic process. Metabolic process in development one of major contributors in organism growth, interbreeding, motility, and aging. Therefore, it is valuable to examine whether LDR change the physiological parameters related to metabolism, and how LDR regulates the metabolism in D. melanogaster. In this study, to investigate that LDR influences change of the metabolism, a representative parameter, locomotor activity. In addition, the activation of several cellular signal molecules was determined to investigate the specific molecular mechanism of LDR effects on the metabolism. We explored whether ionizing radiation affects the motility activity. We performed the RING assays to evaluate the locomotor activity, a representative parameter presenting motility of fruit flies. HDR dramatically decreased the motor activity of irradiated flies. Surprisingly, the irradiated flies at low dose radiation in both acute and chronic showed the significantly increased locomotor activity, compared to non-irradiated flies. Irradiation would induce change of the several signal pathways for flies to respond to it. The activation of some proteins involved in the cells proliferation and stress

  8. Epidemiology and effects on health of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Rodriguez Artalejo, F.; Andres Manzano, B. de; Rel Calero, J. del

    1997-01-01

    This article describes the concept and aims of epidemiology, its methods and contribution to the knowledge of the effects of low ionizing radiation doses on health. The advantages of epidemiological studies for knowing the consequences of living near nuclear facilities and the effects of occupational exposure to radiations are also described. (Author) 43 refs

  9. Application of low dose radiation and low concentration contrast media in enhanced CT scans in children with congenital heart disease.

    Science.gov (United States)

    Liu, Zhimin; Song, Lei; Yu, Tong; Gao, Jun; Zhang, Qifeng; Jiang, Ling; Liu, Yong; Peng, Yun

    2016-09-01

    The aim of this study was to explore the feasibility of using low dose radiation and low concentration contrast media in enhanced CT examinations in children with congenital heart disease. Ninety patients with congenital heart disease were randomly divided into three groups of 30 patients each who underwent contrast-enhanced cardiac scans on a Discovery CT750 HD scanner. Group A received 270 mg I/mL iodixanol, and group B received 320 mg I/mL iodixanol contrast media and was scanned with prospective ECG triggering mode. Group C received 320 mg I/mL iodixanol and was scanned with conventional retrospective ECG gating mode. The same weight-based contrast injection protocol was used for all three groups. Images were reconstructed using a 30% adaptive statistical iterative reconstruction (ASIR) algorithm and a 50% ASIR in groups A and B and a 30% ASIR in group C. The subjective and objective image quality evaluations, diagnostic accuracies, radiation doses and amounts of contrast media in the three groups were measured and compared. All images in the three groups met the diagnostic requirements, with the same diagnostic accuracy and image quality scores greater than 3 in a 4-point scoring system. However, ventricular enhancement and the objective noise, signal-to-noise ratio, contrast-to-noise ratio and subjective image quality scores in group C were better than those in groups A and B (all Pcontrast dose (14% lower than that of groups B and C). Enhanced CT scan images with low dose radiation and low concentration contrast media can meet the diagnostic requirements for examining children with congenital heart disease while reducing the potential risk of radiation damage and contrast-induced nephropathy. © 2016 John Wiley & Sons Ltd.

  10. Low-level radiation effects: a fact book

    International Nuclear Information System (INIS)

    Brill, A.B.; Adelstein, S.J.; Saenger, E.L.; Webster, E.W.

    1982-01-01

    Low Level Raidation Effects: A Fact Book, prepared by the Society of Nuclear Medicine Subcommittee on the Risks of Low-Level Ionizing Radiation, attempts to examine the health effects of small doses of radiation. For immediate questions, this work provides a well-organized brief summary of recent radiologic data from refereed scientific literature and from the publications of advisory groups such as the National Council of Radiation Protection and Measurement (NCRP), the International Commission on Radiological Protection (ICRP), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the National Academy of Sciences (NAS). Since it consists almost entirely of tables and graphs from the above-mentioned sources along with summary paragraphs, the Fact Book is very useful in the preparation of lectures. The book is divided into seven sections. Chapter One, Glossary, Units and Conversion Factors, is useful because nearly all data given in the rest of the book is in conventional units and should be converted to SI units for future technical audiences. Chapter 2, Radiobiology, covers the fundamental principles of the field. Chapter 3, Radiation Doses, can be used to help an audience appreciate the relative magnitudes of radiation exposures they may read about or encounter. Chapter 4, Late Somatic Effects of Low Doses of Ionizing Radiation, gives data concerning cancer induction and embryonic effects, and Chapter 5 provides data on genetic effects Chapter 6, Risks, Statistical Facts and Public Perception can be used to compare the risks of radiation exposure with more commonly encountered risks

  11. A system of dose-effects relationships for the Northern wildlife: radiation protection criteria

    International Nuclear Information System (INIS)

    Sazykina, T.G.

    2004-01-01

    The key issue in the assessment system for radiation protection of wildlife is the establishment of a set of dose-effects relationships for reference representatives of natural biota, based on scientific data from a range of doses and a range of radiation effects. Risks to natural populations in particular habitats can be evaluated from a comparison of estimated doses to biota with the scale of dose-effects relationships for different types of biota. Within the frame of the EC Project EPIC 'Environmental Protection from Ionizing Contaminants' 2000-2003), a database has been created, which include the published and unpublished data relating to dose effects relationships for flora and fauna in the Northern and Arctic areas. The EPIC database contains information based exclusively on Russian/FSU experimental and field studies; chronic/lifetime exposures were the focus of the work, owing to the fact that such exposures are the most typical in radiological assessments for biota. In total, the EPIC database radiation effects on biota contains about 1600 records from 440 publications, including datasets on terrestrial and aquatic animals, plants, soil fauna and microorganisms. The EPIC database information cover a very wide range of radiation dose rates to wild flora and fauna: from below 10 -5 Gy d -1 up to more than 1 Gy d -1 . A great variety of radiation effects are registered in the EPIC database, from stimulation at low doses up to death from acute radiation syndrome at high doses. From data, compiled in the EPIC database, the dose-effects relationships were derived for different types of northern organisms. The system of dose-effects relationships forms the scale of severity of radiation effects at increasing levels of chronic radiation exposure. With its focus on the effects of low-to-moderate chronic exposure, the system of dose effects relationships provides a useful tool for scientists and decision-makers to establish safety standards for protecting the

  12. Low earth orbit radiation dose distribution in a phantom head

    International Nuclear Information System (INIS)

    Konradi, A.; Badhwar, G.D.; Cash, B.L.; Hardy, K.A.

    1992-01-01

    In order to compare analytical methods with data obtained during exposure to space radiation, a phantom head instrumented with a large number of radiation detectors was flown on the Space Shuttle on three occasions: 8 August 1989 (STS-28), 28 February 1990 (STS-36), and 24 April 1990 (STS-31). The objective of this experiment was to obtain a measurement of the inhomogeneity in the dose distribution within a phantom head volume. The orbits of these missions were complementary-STS-28 and STS-36 had high inclination and low altitude, while STS-31 had a low inclination and high altitude. In the cases of STS-28 and STS-36, the main contribution to the radiation dose comes from galactic cosmic rays (GCR) with a minor to negligible part supplied by the inner belt through the South Atlantic Anomaly (SAA), and for STS-28 an even smaller one from a proton enhancement during a solar flare-associated proton event. For STS-31, the inner belt protons dominate and the GCR contribution is almost negligible. The internal dose distribution is consistent with the mass distribution of the orbiter and the self-shielding and physical location of the phantom head. (author)

  13. Inconsistencies and open questions regarding low-dose health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Nussbaum, R.H.; Koehnlein, W.

    1994-01-01

    The state of knowledge of health effects from low-dose exposures to ionizing radiation has recently been reviewed in extensive reports by three prestigious national and international commissions of scientific and medical experts with partially overlapping membership, known by their acronyms UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), BEIR V (Biological Effects of Ionizing Radiation), and ICRP (International Commission on Radiological Protection). Publication of these reports was followed by a number of summaries in scientific journals, authored by recognized radiation experts, that purport to present a scientific consensus of low-dose effects in a more accessible format for health professionals. A critical comparison between various presentations of accepted views, however, reveals inconsistencies regarding open-quotes establishedclose quotes facts and unsettled questions

  14. Low level radiation: how low can you get?

    International Nuclear Information System (INIS)

    Townsley, M.

    1990-01-01

    Information stored on the world's largest data bank concerning the health of nuclear industry workers is to be handed over to researchers at Birmingham University by the US Department of Energy. The data bank contains detailed information on 300,000 nuclear employees, going back to the 1940s. Such a large sample size will allow the results of a previous study conducted on workers in the US nuclear industry to be verified. That study was concluded in 1978 and showed that the risk estimates set by the International Commission on Radiological Protection (ICRP) were between 10 and 30 times too low. The current ICRP estimate allows workers up to 50mSv of exposure to low level radiation per year. Risk estimates have been derived from data relating to the atomic bombings of Hiroshima and Nagasaki. However in those cases the radiation doses were relatively high but over a short period. In the nuclear industry the doses are lower but are long term and this may account for the apparent anomalies such as the incidence of leukaemia amongst children whose fathers have worked in the nuclear industry compared with that for the children whose fathers received radiation doses from the atomic bombings. It is expected the study will show that low-level radiation is more damaging than has previously been thought. (author)

  15. Influence of Comorbidity on the Risk of Mortality in Men With Unfavorable-Risk Prostate Cancer Undergoing High-Dose Radiation Therapy Alone

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Mai Anh, E-mail: mahuynh@lroc.harvard.edu [Harvard Radiation Oncology Program, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Chen, Ming-Hui; Wu, Jing [Department of Statistics, University of Connecticut, Storrs, Connecticut (United States); Braccioforte, Michelle H.; Moran, Brian J. [Prostate Cancer Foundation of Chicago, Westmont, Illinois (United States); D' Amico, Anthony V. [Department of Radiation Oncology, Brigham and Women' s Hospital–Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2016-07-15

    Purpose: To explore whether a subgroup of men with unfavorable-risk prostate cancer (PC) exists in whom high-dose radiation therapy (RT) alone is sufficient to avoid excess PC death due to competing risk from cardiometabolic comorbidity. Methods and Materials: This was a cohort study of 7399 men in whom comorbidity (including congestive heart failure, diabetes mellitus, or myocardial infarction) was assessed and recorded with T1-3NxM0 PC treated with brachytherapy with or without neoadjuvant RT, October 1997 to May 2013 at a single providing institution. Cox and competing risks regression analyses were used to assess whether men with unfavorable–intermediate/high-risk versus favorable–intermediate/low-risk PC were at increased risk of PC-specific, all-cause, or other-cause mortality (PCSM, ACM, OCM), adjusting for number of comorbidities, age at and year of brachytherapy, RT use, and an RT treatment propensity score. Results: After a median follow-up of 7.7 years, 935 men died: 80 of PC and 855 of other causes. Among men with no comorbidity, PCSM risk (adjusted hazard ratio [AHR] 2.74 [95% confidence interval (CI) 1.49-5.06], P=.001) and ACM risk (AHR 1.30 [95% CI 1.07-1.58], P=.007) were significantly increased in men with unfavorable–intermediate/high-risk PC versus favorable–intermediate/low-risk PC, with no difference in OCM (P=.07). Although PCSM risk was increased in men with 1 comorbidity (AHR 2.87 [95% CI 1.11-7.40], P=.029), ACM risk was not (AHR 1.03 [95% CI 0.78-1.36], P=.84). Neither PCSM risk (AHR 4.39 [95% CI 0.37-51.98], P=.24) or ACM risk (AHR 1.43 [95% CI 0.83-2.45], P=.20) was increased in men with 2 comorbidities. Conclusions: To minimize death from PC, high-dose RT alone may be sufficient treatment in men with 2 or more cardiometabolic comorbidities and unfavorable–intermediate- and high-risk PC.

  16. Effects of Low Doses of Ionizing Radiation Exposures on Stress-Responsive Gene Expression in Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Mykyta Sokolov

    2014-01-01

    Full Text Available There is a great deal of uncertainty on how low (≤0.1 Gy doses of ionizing radiation (IR affect human cells, partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests’ radiation, natural background radiation, and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types, we established a novel, human embryonic stem cell (hESC-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and, as a reference, relatively high dose of 1 Gy of IR. Here, we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes, including CDKN1A, GADD45A, etc. at 2 and 16 h post-IR, representing “early” and “late” radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures.

  17. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kleinerman, Ruth A., E-mail: kleinerr@mail.nih.gov [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland (United States); Smith, Susan A. [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, Texas (United States); Holowaty, Eric [Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario (Canada); Hall, Per [Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm (Sweden); Pukkala, Eero [Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki (Finland); Vaalavirta, Leila [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Stovall, Marilyn; Weathers, Rita [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, Houston, Texas (United States); Gilbert, Ethel [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Rockville, Maryland (United States); Aleman, Berthe M.P. [Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam (Netherlands); Kaijser, Magnus [Clinical Epidemiology Unit, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Andersson, Michael [Department of Oncology, Copenhagen University Hospital, Copenhagen (Denmark); Storm, Hans [Cancer Prevention and Documentation, Danish Cancer Society, Copenhagen (Denmark); Joensuu, Heikki [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Lynch, Charles F. [Department of Epidemiology, University of Iowa, Iowa City, Iowa (United States); and others

    2013-08-01

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P{sub trend}=.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P{sub trend}=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P{sub trend}=.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer.

  18. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    International Nuclear Information System (INIS)

    Kleinerman, Ruth A.; Smith, Susan A.; Holowaty, Eric; Hall, Per; Pukkala, Eero; Vaalavirta, Leila; Stovall, Marilyn; Weathers, Rita; Gilbert, Ethel; Aleman, Berthe M.P.; Kaijser, Magnus; Andersson, Michael; Storm, Hans; Joensuu, Heikki; Lynch, Charles F.

    2013-01-01

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ≥5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P trend =.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P trend =.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P trend =.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer

  19. A comparison of radiation doses and risks between spent fuel transport/storage and selected non-nuclear activities

    International Nuclear Information System (INIS)

    Pennington, C.W.

    2003-01-01

    Spent fuel transport and storage have achieved an exemplary safety record over four decades within both the United States (US) and the global community at large. This paper offers an assessment demonstrating the safety of spent fuel transport and storage packagings relative to currently accepted but unregulated non-nuclear activities and practices within society. Over the last quarter of a century, several spent fuel transport and storage packaging test programmes have produced data that allow calculation of potential releases and population doses resulting from a terrorist attack. The US Department of Energy (DOE) has used this information to develop projected worst-case, low probability population exposures as part of the Final Environmental Impact Statement (FEIS) for the Yucca Mountain repository. The paper discusses potential population exposures from these packagings based on analysis and testing under beyond-design-basis (BDB) events, including missile attacks, and then defines and defends an acceptance criterion for the bounding outcomes of these events, based upon current accepted activities within society that produce high radiation doses to the general public. These activities involve unregulated technologies and practices within society that yield population doses significantly exceeding those that would result from such hypothetical and highly improbable events as a terrorist missile attack on a spent fuel transport or storage packaging. In particular, technologically enhanced natural radiation (TENR) exposures from building materials, farming, and masonry construction are highlighted. Recent landmark work by the US National Academy of Sciences (NAS) and by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) are cited in support of this assessment, along with work from the US Environmental Protection Agency (EPA). From this compelling evidence, it is concluded that spent fuel transport and storage represent a low

  20. Low-cost teleoperator-controlled vehicle for damage assessment and radiation dose measurement

    International Nuclear Information System (INIS)

    Tyree, W.H.

    1991-01-01

    A low-cost, disposable, radio-controlled, remote-reading, ionizing radiation and surveillance teleoperator re-entry vehicle has been built. The vehicle carries equipment, measures radiation levels, and evaluates building conditions. The basic vehicle, radio control with amplifiers, telemetry, elevator, and video camera with monitor cost less than $2500. Velcro-mounted alpha, beta-gamma, and neutron sensing equipment is used in the present system. Many types of health physics radiation measuring equipment may be substituted on the vehicle. The system includes a black-and-white video camera to observe the environment surrounding the vehicle. The camera is mounted on a vertical elevator extendible to 11 feet above the floor. The present vehicle uses a video camera with an umbilical cord between the vehicle and the operators. Preferred operation would eliminate the umbilical. Video monitoring equipment is part of the operator control system. Power for the vehicle equipment is carried on board and supplied by sealed lead-acid batteries. Radios are powered by 9-V alkaline batteries. The radio control receiver, servo drivers, high-power amplifier and 49-MHz FM transceivers were irradiated at moderate rates with neutron and gamma doses to 3000 Rem and 300 Rem, respectively, to ensure system operation