WorldWideScience

Sample records for low-dose total skin

  1. A prospective, open-label study of low-dose total skin electron beam therapy in mycosis fungoides

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Specht, Lena; Skovgaard, Gunhild L

    2008-01-01

    causes and did not complete treatment. Acute side effects included desquamation, xerosis, and erythema of the skin. No severe side effects were observed. CONCLUSION: Low-dose total skin electron beam therapy can induce complete and partial responses in Stage IB-II mycosis fungoides; however, the duration......PURPOSE: To determine the effect of low-dose (4 Gy) total skin electron beam therapy as a second-line treatment of Stage IB-II mycosis fungoides in a prospective, open-label study. METHODS AND MATERIALS: Ten patients (6 men, 4 women, average age 68.7 years [range, 55-82 years......]) with histopathologically confirmed mycosis fungoides T2-T4 N0-N1 M0 who did not achieve complete remission or relapsed within 4 months after treatment with psoralen plus ultraviolet-A were included. Treatment consisted of low-dose total skin electron beam therapy administered at a total skin dose of 4 Gy given in 4...

  2. Low-dose total skin electron beam therapy for cutaneous lymphoma : Minimal risk of acute toxicities.

    Science.gov (United States)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor

    2017-12-01

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T‑cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses.

  3. Revisiting Low-Dose Total Skin Electron Beam Therapy in Mycosis Fungoides

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Cameron, E-mail: cameronh@stanford.edu [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Young, James; Navi, Daniel [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Riaz, Nadeem [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States); Lingala, Bharathi; Kim, Youn [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Hoppe, Richard [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States)

    2011-11-15

    Purpose: Total skin electron beam therapy (TSEBT) is a highly effective treatment for mycosis fungoides (MF). The standard course consists of 30 to 36 Gy delivered over an 8- to 10-week period. This regimen is time intensive and associated with significant treatment-related toxicities including erythema, desquamation, anhydrosis, alopecia, and xerosis. The aim of this study was to identify a lower dose alternative while retaining a favorable efficacy profile. Methods and Materials: One hundred two MF patients were identified who had been treated with an initial course of low-dose TSEBT (5-<30 Gy) between 1958 and 1995. Patients had a T stage classification of T2 (generalized patch/plaque, n = 51), T3 (tumor, n = 29), and T4 (erythrodermic, n = 22). Those with extracutaneous disease were excluded. Results: Overall response (OR) rates (>50% improvement) were 90% among patients with T2 to T4 disease receiving 5 to <10 Gy (n = 19). In comparison, OR rates between the 10 to <20 Gy and 20 to <30 Gy subgroups were 98% and 97%, respectively. There was no significant difference in median progression free survival (PFS) in T2 and T3 patients when stratified by dose group, and PFS in each was comparable to that of the standard dose. Conclusions: OR rates associated with low-dose TSEBT in the ranges of 10 to <20 Gy and 20 to <30 Gy are comparable to that of the standard dose ({>=} 30 Gy). Efficacy measures including OS, PFS, and RFS are also favorable. Given that the efficacy profile is similar between 10 and <20 Gy and 20 and <30 Gy, the utility of TSEBT within the lower dose range of 10 to <20 Gy merits further investigation, especially in the context of combined modality treatment.

  4. Total Skin Electron Beam Therapy in the Treatment of Mycosis Fungoides: A Review of Conventional and Low-Dose Regimens.

    Science.gov (United States)

    Chowdhary, Mudit; Chhabra, Arpit M; Kharod, Shivam; Marwaha, Gaurav

    2016-12-01

    Mycosis fungoides (MF) is the most prevalent subtype of cutaneous T-cell lymphoma, which is characterized by the proliferation of CD4 + T cells. While often an indolent disease, most patients eventually develop progression from isolated patches to tumors and finally nodal or visceral involvement. Treatment choice is largely based on disease burden, though prognostic factors such as disease stage, patient age, and extracutaneous involvement must be taken into consideration. Radiotherapy represents one of the most effective therapeutic modalities in the treatment of MF. Lymphocytes are exquisitely radiosensitive, and excellent responses are observed even with low doses of radiation. Total skin electron beam therapy (TSEBT) is a special technique that allows for the homogenous irradiation of the entire skin. There are well-documented radiation dose-response relationships for achieving a complete response. As such, TSEBT doses ≥ 30 Gy comprise the current standard of care. Although highly effective, most patients experience recurrent disease even after conventional-dose (≥ 30 Gy) TSEBT. In addition, toxicity is cumulatively dose dependent, and there is reluctance to administer multiple courses of conventional-dose TSEBT. Consequently, there has been renewed interest in determining the utility of TSEBT at lower total (≤ 30 Gy) doses. Advantages of low-total-dose (with standard dose per fraction) TSEBT include a shortened treatment course, the potential to minimize the risk of adverse events, and the opportunity to allow for retreatment in cases of disease recurrence. This comprehensive review compares the impact of different TSEBT dosing schemes on clinical outcomes of MF. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Low-Dose (10-Gy) Total Skin Electron Beam Therapy for Cutaneous T-Cell Lymphoma: An Open Clinical Study and Pooled Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kamstrup, Maria R., E-mail: mkam0004@bbh.regionh.dk [Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Gniadecki, Robert [Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Iversen, Lars [Department of Dermatology, Aarhus University Hospital, Aarhus (Denmark); Skov, Lone [Department of Dermatology, Gentofte Hospital, University of Copenhagen, Copenhagen (Denmark); Petersen, Peter Meidahl [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Loft, Annika [Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Specht, Lena [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark)

    2015-05-01

    Purpose: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments is limited to 2 to 3 courses in a lifetime due to skin toxicity. This study aimed to determine the clinical effect of low-dose TSEBT in patients with MF and SS. Methods and Materials: In an open clinical study, 21 patients with MF/SS stages IB to IV were treated with low-dose TSEBT over <2.5 weeks, receiving a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. Results: The overall response rate was 95% with a complete cutaneous response or a very good partial response rate (<1% skin involvement with patches or plaques) documented in 57% of the patients. Median duration of overall cutaneous response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. Conclusions: Low-dose (10-Gy) TSEBT offers a high overall response rate and is relatively safe. With this approach, reirradiation at times of relapse or progression is likely to be less toxic than standard dose TSEBT. It remains to be established whether adjuvant and combination treatments can prolong the beneficial effects of low-dose TSEBT.

  6. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma: an open clinical study and pooled data analysis.

    Science.gov (United States)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars; Skov, Lone; Petersen, Peter Meidahl; Loft, Annika; Specht, Lena

    2015-05-01

    Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments is limited to 2 to 3 courses in a lifetime due to skin toxicity. This study aimed to determine the clinical effect of low-dose TSEBT in patients with MF and SS. In an open clinical study, 21 patients with MF/SS stages IB to IV were treated with low-dose TSEBT over dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. The overall response rate was 95% with a complete cutaneous response or a very good partial response rate (dose (10-Gy) TSEBT offers a high overall response rate and is relatively safe. With this approach, reirradiation at times of relapse or progression is likely to be less toxic than standard dose TSEBT. It remains to be established whether adjuvant and combination treatments can prolong the beneficial effects of low-dose TSEBT. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Low-Dose Total Skin Electron Beam Therapy as a Debulking Agent for Cutaneous T-Cell Lymphoma: An open-label prospective phase II study

    DEFF Research Database (Denmark)

    Kamstrup, M R; Lindahl, Lise Maria; Gniadecki, R

    2012-01-01

    Background: Total skin electron beam therapy (TSEBT) is a powerful treatment for cutaneous T-cell lymphomas (CTCL). Based on the occurrence of relapses with low radiation doses, doses of 30-36 Gy are commonly used but most patients still eventually relapse and repeat treatment courses are limited...... due to the cumulative toxicity. Complete response rates are about 60-90% for T2-4 stages with a 5-year relapse-free survival of 10-25% for stages IB-III. Objectives: To evaluate prospectively the efficacy of low-dose TSEBT (10 Gy) in terms of complete cutaneous response rate, overall response rate...... and response duration in CTCL. Methods: Ten patients with stage IB-IV mycosis fungoides (MF) were treated in an open-label manner with 4 fractions of 1 Gy/week TSEB to a total skin dose of 10 Gy. Treatment responses were assessed at 1 and 3 months after treatment and subsequently at least every 6 months...

  8. Low-dose-rate total lymphoid irradiation: a new method of rapid immunosuppression

    International Nuclear Information System (INIS)

    Blum, J.E.; de Silva, S.M.; Rachman, D.B.; Order, S.E.

    1988-01-01

    Total Lymphoid Irradiation (TLI) has been successful in inducing immunosuppression in experimental and clinical applications. However, both the experimental and clinical utility of TLI are hampered by the prolonged treatment courses required (23 days in rats and 30-60 days in humans). Low-dose-rate TLI has the potential of reducing overall treatment time while achieving comparable immunosuppression. This study examines the immunosuppressive activity and treatment toxicity of conventional-dose-rate (23 days) vs low-dose-rate (2-7 days) TLI. Seven groups of Lewis rats were given TLI with 60Co. One group was treated at conventional-dose-rates (80-110 cGy/min) and received 3400 cGy in 17 fractions over 23 days. Six groups were treated at low-dose-rate (7 cGy/min) and received total doses of 800, 1200, 1800, 2400, 3000, and 3400 cGy over 2-7 days. Rats treated at conventional-dose-rates over 23 days and at low-dose-rate over 2-7 days tolerated radiation with minimal toxicity. The level of immunosuppression was tested using allogeneic (Brown-Norway) skin graft survival. Control animals retained allogeneic skin grafts for a mean of 14 days (range 8-21 days). Conventional-dose-rate treated animals (3400 cGy in 23 days) kept their grafts 60 days (range 50-66 days) (p less than .001). Low-dose-rate treated rats (800 to 3400 cGy total dose over 2-7 days) also had prolongation of allogeneic graft survival times following TLI with a dose-response curve established. The graft survival time for the 3400 cGy low-dose-rate group (66 days, range 52-78 days) was not significantly different from the 3400 cGy conventional-dose-rate group (p less than 0.10). When the total dose given was equivalent, low-dose-rate TLI demonstrated an advantage of reduced overall treatment time compared to conventional-dose-rate TLI (7 days vs. 23 days) with no increase in toxicity

  9. Low-dose total skin electron beam therapy for cutaneous lymphoma. Minimal risk of acute toxicities

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiation Oncology, Muenster (Germany)

    2017-12-15

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T-cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P < 0.001). A lower grade 3 AE rate was also observed in patients who had received the low-dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses. (orig.) [German] Eine niedrigdosierte Ganzhautelektronenbestrahlung (TSEBT) wird vermehrt zur effektiven palliativen Behandlung von Patienten mit primaer kutanen T-Zell-Lymphomen (pCTCL) eingesetzt. In dieser Studie vergleichen wir die Toxizitaetsprofile verschiedener Dosiskonzepte. Untersucht wurden 60 zwischen 2000 und 2016 am Universitaetsklinikum Muenster mittels TSEBT

  10. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars

    2015-01-01

    a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. RESULTS: The overall response rate was 95% with a complete cutaneous response......PURPOSE: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments...... or a very good partial response rate (response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. CONCLUSIONS...

  11. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment

  12. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    International Nuclear Information System (INIS)

    Lucero, J. F.; Rojas, J. I.

    2016-01-01

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  13. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, J. F., E-mail: fernando.lucero@hoperadiotherapy.com.gt [Universidad Nacional de Costa Rica, Heredia (Costa Rica); Hope International, Guatemala (Guatemala); Rojas, J. I., E-mail: isaac.rojas@siglo21.cr [Centro Médico Radioterapia Siglo XXI, San José (Costa Rica)

    2016-07-07

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  14. Dose characteristics of total-skin electron-beam irradiation with six-dual electron fields

    International Nuclear Information System (INIS)

    Choi, Tae Jin; Kim, Jin Hee; Kim, Ok Bae

    1998-01-01

    To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated. The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of Target-Skin Distance (TSD) and full collimator size (35x35 cm 2 on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cmx105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. The Full Width at Half Maximum(FWHM) of dose profile was 130 cm in large field of 105x105 cm 2 . The width of 100±10% of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose uniformity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80% depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within±10% difference excepts the protruding area of skin which needs a

  15. Total skin high-dose-rate electron therapy dosimetry using TG-51

    International Nuclear Information System (INIS)

    Gossman, Michael S.; Sharma, Subhash C.

    2004-01-01

    An approach to dosimetry for total skin electron therapy (TSET) is discussed using the currently accepted TG-51 high-energy calibration protocol. The methodology incorporates water phantom data for absolute calibration and plastic phantom data for efficient reference dosimetry. The scheme is simplified to include the high-dose-rate mode conversion and provides support for its use, as it becomes more available on newer linear accelerators. Using a 6-field, modified Stanford technique, one may follow the process for accurate determination of absorbed dose

  16. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    Energy Technology Data Exchange (ETDEWEB)

    Neubeck, Claere von [German Cancer Consortium DKTK partner site Dresden, OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Geniza, Matthew J. [Molecular and Cellular Biology Program, Oregon State University, Corvallis OR 97331 (United States); Kauer, Paula M.; Robinson, R. Joe; Chrisler, William B. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland WA 99352 (United States); Sowa, Marianne B., E-mail: marianne.sowa@pnnl.gov [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland WA 99352 (United States)

    2015-05-15

    Highlights: • Low doses of high LET radiation influence skin homeostasis. • Effects on proliferation and differentiation profiles are LET dependent. • Skin barrier function is not compromised following low dose exposure. - Abstract: Outside the protection of Earth's atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin's barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.

  17. Effects of low or high doses of short wavelength ultraviolet light (UVB) on Langerhans cells and skin allograft survival

    International Nuclear Information System (INIS)

    Odling, K.A.; Halliday, G.M.; Muller, H.K.

    1987-01-01

    Donor C57BL mouse shaved dorsal trunk or tail skin was exposed to high (200 mJ/cm 2 ) or low (40 mJ/cm 2 ) doses of short wavelength ultraviolet light (UVB) before grafting on to the thorax of BALB/c mouse recipients of the same sex. Skin grafted 1-14 days following a single high dose of UVB irradiation was ultrastructurally depleted of LC and survived significantly longer than unirradiated skin before being rejected. After a 21-day interval between exposure and grafting when LC were again present in the epidermis there was no significant difference between treated and control graft survival. Exposure to low dose UVB irradiation only significantly increased graft survival for skin transplanted 1-3 days after irradiation; skin grafted 4 days following irradiation survived for a similar period to unirradiated control skin grafts. Electronmicroscopy showed that the low UVB dose did not deplete LC from the epidermis. We conclude that after low dose UVB treatment the class II MHC antigens on the LC Plasma membrane were lost temporarily, thus prolonging graft survival, but when the plasma membrane antigens were re-expressed graft survival returned to normal. In contrast, high-dose UVB irradiation prolonged graft survival by depleting LC from the epidermis, with graft survival only returning to control values as LC repopulated the epidermis

  18. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.; Lien, Katie A.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Sacksteder, Colette A.

    2012-12-01

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, were significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.

  19. Use of an electron reflector to improve dose uniformity at the vertex during total skin electron therapy

    International Nuclear Information System (INIS)

    Peters, V.G.

    2000-01-01

    Purpose: The vertex of the scalp is always tangentially irradiated during total skin electron therapy (TSET). This study was conducted to determine the dose distribution at the vertex for a commonly used irradiation technique and to evaluate the use of an electron reflector, positioned above the head, as a means of improving the dose uniformity. Methods and Materials: Phantoms, simulating the head of a patient, were irradiated using our standard procedure for TSET. The technique is a six-field irradiation using dual angled electron beams at a treatment distance of 3.6 meters. Vertex dosimetry was performed using ionization methods and film. Measurements were made for an unmodified 6 MeV electron beam and for a 4 MeV beam obtained by placing an acrylic scattering plate in the beam line. Studies were performed to examine the effect of electron scattering on vertex dose when a lead reflector, 50 x 50 cm in area, was positioned above the phantom. Results: The surface dose at the vertex, in the absence of the reflector, was found to be less than 40% of the prescribed skin dose. Use of the lead reflector increased this value to 73% for the 6 MeV beam and 99% for the degraded 4 MeV beam. Significant improvements in depth dose were also observed. The dose enhancement is not strongly dependent on reflector distance or angulation since the reflector acts as a large source of broadly scattered electrons. Conclusion: The vertex may be significantly underdosed using standard techniques for total skin electron therapy. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation

  20. Immediate hypersensitivity to iodinated contrast media: diagnostic accuracy of skin tests and intravenous provocation test with low dose.

    Science.gov (United States)

    Sesé, L; Gaouar, H; Autegarden, J-E; Alari, A; Amsler, E; Vial-Dupuy, A; Pecquet, C; Francès, C; Soria, A

    2016-03-01

    The diagnosis of HSR to iodinated contrast media (ICM) is challenging based on clinical history and skin tests. This study evaluates the negative predictive value (NPV) of skin tests and intravenous provocation test (IPT) with low-dose ICM in patients with suspected immediate hypersensitivity reaction (HSR) to ICM. Thirty-seven patients with suspected immediate hypersensitivity reaction to ICM were included retrospectively. Skin tests and a single-blind placebo-controlled intravenous provocation test (IPT) with low-dose iodinated contrast media (ICM) were performed. Skin tests with ICM were positive in five cases (one skin prick test and five intradermal test). Thirty-six patients were challenged successfully by IPT, and only one patient had a positive challenge result, with a grade I reaction by the Ring and Messmer classification. Ten of 23 patients followed up by telephone were re-exposed to a negative tested ICM during radiologic examination; two experienced a grade I immediate reaction. For immediate hypersensitivity reaction to ICM, the NPV for skin tests and IPT with low dose was 80% (95% CI 44-97%). © 2016 John Wiley & Sons Ltd.

  1. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  2. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    The International Commission on Radiological Protection (Publication 26) has recommended a tissue depth of 5 to 10 mg.cm -2 for skin dose assessments. This requirement is generally not fulfilled by routine monitoring procedures because of practical difficulties in using very thin dosemeters with low sensitivity and therefore a high minimum detectable dose. Especially for low-energy beta-ray exposures underestimations of the skin dose by a factor of more than ten may occur. Low-transparent graphite-mixed sintered LiF and Li 2 B 4 0 7 : Mn dosemeters were produced which show a skin-equivalent response to beta and gamma exposures over a wide range of energies. These have found wide-spread application for extremity dosimetry but have not yet been generally introduced in routine personnel beta/gamma monitoring. The following adaptations of existing routine monitoring systems for improved skin dose assessments have been investigated: 1) Placement of a supplementary, thin, skin-dose equivalent dosemeter in the TLD badge to give additional information on low-energy exposures. 2) Introduction of a second photomultiplier in the read-out chamber which enables a simultaneous determination of emitted TL from both sides of the dosemeter separately. This method makes use of the selfshielding of the dosemeter to give information on the low-energy dose contribution. 3) By diffusion of Li 2 B 4 0 7 into solid LiF-dosemeters it was possible to produce a surface layer with a new distinct glow-peak at about 340 deg C which is not present in the undiffused part of the LiF chip, and which can be utilized for the assessment of the skin-dose. Data on energy response and accuracy of dose measurement for beta/gamma exposures are given for the three methods and advantages and disadvantages are discussed (H.K.)

  3. Underprediction of human skin erythema at low doses per fraction by the linear quadratic model

    International Nuclear Information System (INIS)

    Hamilton, Christopher S.; Denham, James W.; O'Brien, Maree; Ostwald, Patricia; Kron, Tomas; Wright, Suzanne; Doerr, Wolfgang

    1996-01-01

    Background and purpose. The erythematous response of human skin to radiotherapy has proven useful for testing the predictions of the linear quadratic (LQ) model in terms of fractionation sensitivity and repair half time. No formal investigation of the response of human skin to doses less than 2 Gy per fraction has occurred. This study aims to test the validity of the LQ model for human skin at doses ranging from 0.4 to 5.2 Gy per fraction. Materials and methods. Complete erythema reaction profiles were obtained using reflectance spectrophotometry in two patient populations: 65 patients treated palliatively with 5, 10, 12 and 20 daily treatment fractions (varying thicknesses of bolus, various body sites) and 52 patients undergoing prostatic irradiation for localised carcinoma of the prostate (no bolus, 30-32 fractions). Results and conclusions. Gender, age, site and prior sun exposure influence pre- and post-treatment erythema values independently of dose administered. Out-of-field effects were also noted. The linear quadratic model significantly underpredicted peak erythema values at doses less than 1.5 Gy per fraction. This suggests that either the conventional linear quadratic model does not apply for low doses per fraction in human skin or that erythema is not exclusively initiated by radiation damage to the basal layer. The data are potentially explained by an induced repair model

  4. Estimates of Health Detriments and Tissue Weighting Factors for Hong Kong Populations from Low Dose, Low Dose Rate and Low LET Ionising Radiation Exposure

    International Nuclear Information System (INIS)

    Lee, S.K.

    1998-01-01

    The total health detriments and the tissue weighting factors for the Hong Kong populations from low dose, low dose rate and low LET ionising radiation exposure are obtained according to the methodology recommended in ICRP Publication 60. The probabilities of fatal cancers for the general (ages 0-90) and working (ages 20-64) populations due to lifetime exposure at low dose and low dose rate are 4.9 x 10 -2 Sv -1 and 3.6 x 10 -2 Sv -1 respectively, comparing with the ICRP 60 estimates of 5.0 x 10 -2 Sv -1 and 4.0 x 10 -2 Sv -1 . The corresponding total health detriments for the general and working populations are 6.9 x 10 -2 Sv -1 and 4.9 x 10 -2 Sv -1 respectively comparing with the ICRP 60 estimates of 7.3 x 10 -2 Sv -1 and 5.6 x 10 -2 Sv -1 . Tissue weighting factors for the general population are 0.01 (bone surface and skin), 0.02 (liver, oesophagus and thyroid), 0.04 (bladder and breast), 0.08 (remainder), 0.10 (stomach), 0.11 (bone marrow), 0.15 (colon), 0.19 (lung) and 0.21 (gonads) and for the working population are 0.01 (bone surface and skin), 0.03 (liver, oesophagus and thyroid), 0.04 (breast), 0.06 (remainder), 0.07 (bladder), 0.08 (colon), 0.14 (bone marrow and stomach), 0.16 (lung) and 0.20 (gonads). (author)

  5. A simplified model for predicting skin dose received by patients from ...

    African Journals Online (AJOL)

    Use of ionising radiation in any sector requires doses to be kept as low as reasonable achievable (ARALA). Thus, in keeping radiation dose to skin from diagnostic X-rays, as low as is required by this philosophy, it is useful to obtain an estimate of skin dose before the actual dose is administered. The aim of this paper is to ...

  6. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film

    International Nuclear Information System (INIS)

    Gamble, Lisa M; Farrell, Thomas J; Jones, Glenn W; Hayward, Joseph E

    2003-01-01

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions

  7. Measurement and comparison of skin dose using OneDose MOSFET and Mobile MOSFET for patients with acute lymphoblastic leukemia.

    Science.gov (United States)

    Mattar, Essam H; Hammad, Lina F; Al-Mohammed, Huda I

    2011-07-01

    Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to bone marrow transplant. It is involved in the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore measuring and monitoring the skin dose during the treatment is important. Two kinds of metal oxide semiconductor field effect transistor (OneDose MOSFET and mobile MOSEFT) dosimeter are used during the treatment delivery to measure the skin dose to specific points and compare it with the target prescribed dose. The objective of this study was to compare the variation of skin dose in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using OneDose MOSFET detectors and Mobile MOSFET, and then compare both results with the target prescribed dose. The measurements involved 32 patient's (16 males, 16 females), aged between 14-30 years, with an average age of 22.41 years. One-Dose MOSFET and Mobile MOSFET dosimetry were performed at 10 different anatomical sites on every patient. The results showed there was no variation between skin dose measured with OneDose MOSFET and Mobile MOSFET in all patients. Furthermore, the results showed for every anatomical site selected there was no significant difference in the dose delivered using either OneDose MOSFET detector or Mobile MOSFET as compared to the prescribed dose. The study concludes that One-Dose MOSFET detectors and Mobile MOSFET both give a direct read-out immediately after the treatment; therefore both detectors are suitable options when measuring skin dose for total body irradiation treatment.

  8. Correlation of patient maximum skin doses in cardiac procedures with various dose indicators

    International Nuclear Information System (INIS)

    Domienik, J.; Papierz, S.; Jankowski, J.; Peruga, J.Z.; Werduch, A.; Religa, W.

    2008-01-01

    In most countries of European Union, legislation requires the determination of the total skin dose received by patients during interventional procedures in order to prevent deterministic damages. Various dose indicators like dose-area product (DAP), cumulative dose (CD) and entrance dose at the patient plane (EFD) are used for patient dosimetry purposes in clinical practice. This study aimed at relating those dose indicators with doses ascribed to the most irradiated areas of the patient skin usually expressed in terms of local maximal skin dose (MSD). The study was performed in two different facilities for two most common cardiac procedures coronary angiography (CA) and percutaneous coronary interventions (PCI). For CA procedures, the registered values of fluoroscopy time, total DAP and MSD were in the range (0.7-27.3) min, (16-317) Gy cm 2 and (43-1507) mGy, respectively, and for interventions, accordingly (2.1-43.6) min, (17-425) Gy cm 2 , (71-1555) mGy. Moreover, for CA procedures, CD and EFD were in the ranges (295-4689) mGy and (121-1768) mGy and for PCI (267-6524) mGy and (68-2279) mGy, respectively. No general and satisfactory correlation was found for safe estimation of MSD. However, results show that the best dose indicator which might serve for rough, preliminary estimation is DAP value. In the study, the appropriate trigger levels were proposed for both facilities. (authors)

  9. External contamination and skin dose. From ICRP and regulations to skin dose evaluation in practice

    International Nuclear Information System (INIS)

    Le Coulteulx, I.; Apretna, D.; Beaugerie, M.; Fenolland, J.; Frey, R.; Gonin, M.; Landry, B.; Laporte, E.; Le Guen, B.; Leval, D.

    2006-01-01

    Dose limitation to the skin is an objective of radiation protection. Our aim is to propose in case of skin contamination in EDF NPPs a simply, quickly and reproducible procedure for evaluating skin dose. French regulation admit an annual limit for skin dose over one square centimeter equal to 500 mSv. ICRP Publication 26 and 60 recommend that dose assessment be performed only if skin dose might be equal to or more than 50 mSv at basal cells. To respect this recommendation, an alert value (A) must be determined. This value is the lowest value of measurement from which dose assessment has to be made, based on the hypothesis that uninterrupted work time in controlled area is no more than four hours. This alert value (A) has been established for three external detection equipments, and for the ten radionuclides commonly detected. In case of external contamination, a first measurement is performed. If the value exceeds value (A), other measurements are instituted because skin dose evaluation needs to know other parameters as: - the radioactivity of the most contaminated square centimeter of the skin, - the identity of the radionuclides and their relative proportion. At the same time, we have to evaluate the length of the exposure. At last, we use different compiled results in a program developed from excel software which allow to calculate automatically the skin dose. This work has allowed us to publish an occupational health guideline about the assessment of skin dose in case of external contamination in EDF NPPs and to create an information booklet for workers. The authors propose to examine used methodology and to demonstrate the software. (authors)

  10. The response of mouse skin to multiple small doses of radiation

    International Nuclear Information System (INIS)

    Denekamp, J.; Harris, S.R.

    1975-01-01

    The response of mouse skin has been tested by irradiating the foot of albino mice and scoring erythema and desquamation during the following month. Multiple small doses of 150, 250 and 350 rad have been given 'daily', and the test dose necessary to achieve a given reaction has been determined one day after the last small fraction. This test dose has been compared with the single dose necessary to produce the same reaction level in previously untreated mice, in order to determine the ratio of the slopes of the dose-response curve at low and high doses: Slope ratio = (single dose - test dose)/total fractionated priming dose. In three separate experiments the slope ratio decreased as the dose per fraction was reduced from 350 to 150 rad. This conflicts with the data of Dutreix et al, who found a constant slope ratio over this dose range. The present data are compared with those obtained by Denekamp using 4, 9 and 14 fractions of 300 rad and by Douglas et al, using the same experimental technique, over the dose range 45 to 200 rad/fraction. In addition, the results from multifraction experiments in which equal dose increments were administered until the requisite skin reaction was achieved are also analysed in terms of their slope ratio (Fowler et al. Douglas et al). When all these results are plotted it is impossible to be sure whether the slope ratio is decreasing over the range 300 to 45 rad per fraction, although it seems likely. Most of the values at low doses lie in the range 0.15 to 0.25, indicating that at low doses the radiation is only 15 to 25% as effective per rad in causing cell death as at higher doses. (author)

  11. Late occurring lesions in the skin of rats after repeated doses of X-rays

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1985-01-01

    Late radiation damage, characterized by atrophy and necrosis in the skin and subcutaneous tissues, has been demonstrated in both the tail and feet of rats. The incidence of necrosis increased with total dose. These total doses, in the range 72-144 Gy, were given as 4-8 treatment of 18 Gy, each dose separated from the next by an interval of 28 days. This treatment protocol minimized acute epithelial skin reactions. The same regime applied to the skin on the back of rats resulted in a very severe acute reaction occurring after the second to fifth dose of 18 Gy. This was surprising since back skin, like tail skin, is less sensitive to large single doses of radiation than that of the foot. The late radiation reaction in the foot and tail of rats are compared and contrasted with other attempts to assess late effects in rodent skin and with late changes seen in pig skin. (author)

  12. Total-dose hardness assurance for low earth orbit

    International Nuclear Information System (INIS)

    Maurer, R.H.; Suter, J.J.

    1987-01-01

    The Low Earth Orbit radiation environment has two significant characteristics that make laboratory simulation exposures difficult: (1) a low dose rate and (2) many cycles of low dose accumulation followed by dose-free annealing. Hardness assurance considerations for this environment are discussed and related to data from the testing of Advanced Low Power Schottky and High-speed CMOS devices

  13. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  14. Total Skin Electron Beam for Primary Cutaneous T-cell Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Elsayad, Khaled; Kriz, Jan; Moustakis, Christos; Scobioala, Sergiu; Reinartz, Gabriele; Haverkamp, Uwe; Willich, Normann [Department of Radiation Oncology, University Hospital of Muenster, Muenster (Germany); Weishaupt, Carsten [Department of Dermatology, University Hospital of Muenster, Muenster (Germany); Stadler, Rudolf [Department of Dermatology, Johannes-Wesling-Klinikum Minden, Minden (Germany); Sunderkötter, Cord [Department of Dermatology, University Hospital of Muenster, Muenster (Germany); Eich, Hans Theodor, E-mail: Hans.Eich@ukmuenster.de [Department of Radiation Oncology, University Hospital of Muenster, Muenster (Germany)

    2015-12-01

    Purpose: Recent trials with low-dose total skin electron beam (TSEB) therapy demonstrated encouraging results for treating primary cutaneous T-cell lymphoma (PCTCL). In this study, we assessed the feasibility of different radiation doses and estimated survival rates of different pathologic entities and stages. Methods and Materials: We retrospectively identified 45 patients with PCTCL undergoing TSEB therapy between 2000 and 2015. Clinical characteristics, treatment outcomes, and toxicity were assessed. Results: A total of 49 courses of TSEB therapy were administered to the 45 patients. There were 26 pathologically confirmed cases of mycosis fungoides (MF) lymphoma, 10 cases of Sézary syndrome (SS), and 9 non-MF/SS PCTCL patients. In the MF patients, the overall response rate (ORR) was 92% (50% complete remission [CR]), 70% ORR in SS patients (50% CR), and 89% ORR in non-MF/SS patients (78% CR). The ORR for MF/SS patients treated with conventional dose (30-36 Gy) regimens was 92% (63% CR) and 75% (25% CR) for low-dose (<30-Gy) regimens (P=.09). In MF patients, the overall survival (OS) was 77 months with conventional dose regimens versus 14 months with low-dose regimens (P=.553). In SS patients, the median OS was 48 versus 16 months (P=.219), respectively. Median event-free survival (EFS) for MF in conventional dose patients versus low-dose patients was 15 versus 8 months, respectively (P=.264) and 19 versus 3 months for SS patients (P=.457). Low-dose regimens had shorter treatment time (P=.009) and lower grade 2 adverse events (P=.043). A second TSEB course was administered in 4 MF patients with 100% ORR. There is a possible prognostic impact of supplemental/boost radiation (P<.001); adjuvant treatment (P<.001) and radiation tolerability (P=.021) were detected. Conclusions: TSEB therapy is an efficacious treatment modality in the treatment of several forms of cutaneous T-cell lymphoma. There is a nonsignificant trend to higher and longer clinical benefit

  15. Rotational total skin electron irradiation with a linear accelerator

    Science.gov (United States)

    Evans, Michael D.C.; Devic, Slobodan; Parker, William; Freeman, Carolyn R.; Roberge, David; Podgorsak, Ervin B.

    2008-01-01

    The rotational total skin electron irradiation (RTSEI) technique at our institution has undergone several developments over the past few years. Replacement of the formerly used linear accelerator has prompted many modifications to the previous technique. With the current technique, the patient is treated with a single large field while standing on a rotating platform, at a source‐to‐surface distance of 380 cm. The electron field is produced by a Varian 21EX linear accelerator using the commercially available 6 MeV high dose rate total skin electron mode, along with a custom‐built flattening filter. Ionization chambers, radiochromic film, and MOSFET (metal oxide semiconductor field effect transistor) detectors have been used to determine the dosimetric properties of this technique. Measurements investigating the stationary beam properties, the effects of full rotation, and the dose distributions to a humanoid phantom are reported. The current treatment technique and dose regimen are also described. PACS numbers: 87.55.ne, 87.53.Hv, 87.53.Mr

  16. The biological basis for dose limitation to the skin

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1992-01-01

    Ionizing radiation may cause deterministic effects and cancer. It has been the policy to base dose limits for radiation protection of the skin on the prevention of deterministic effects (1). In the case of cancer in general, dose limitation for radiation protection is based on limiting excess cancer mortality to low levels of radiation. Since skin cancers are seldom lethal, the general radiation protection standards will protect against an increase in excess mortality from skin cancer. However, with the dose limits selected to prevent deterministic effects, there is a significant probability of an excess incidence of skin cancer occurring as a result of exposure during a working lifetime. The induction of skin cancer by radiation is influenced significantly by subsequent exposure to ultraviolet radiation (UVR) from sunlight. This finding raises not only interesting questions about the mechanisms involved, but also about the differences in risk of skin cancer in different populations. The amount and distribution of melanin in the skin determines the degree of the effect of UVR. This paper discusses the mechanisms of the induction of both deterministic and stochastic effects in skin exposed to radiation in relation to radiation protection. (author)

  17. Serum protein concentration in low-dose total body irradiation of normal and malnourished rats

    International Nuclear Information System (INIS)

    Viana, W.C.M.; Lambertz, D.; Borges, E.S.; Neto, A.M.O.; Lambertz, K.M.F.T.; Amaral, A.

    2016-01-01

    Among the radiotherapeutics' modalities, total body irradiation (TBI) is used as treatment for certain hematological, oncological and immunological diseases. The aim of this study was to evaluate the long-term effects of low-dose TBI on plasma concentration of total protein and albumin using prematurely and undernourished rats as animal model. For this, four groups with 9 animals each were formed: Normal nourished (N); Malnourished (M); Irradiated Normal nourished (IN); Irradiated Malnourished (IM). At the age of 28 days, rats of the IN and IM groups underwent total body gamma irradiation with a source of cobalt-60. Total protein and Albumin in the blood serum was quantified by colorimetry. This research indicates that procedures involving low-dose total body irradiation in children have repercussions in the reduction in body-mass as well as in the plasma levels of total protein and albumin. Our findings reinforce the periodic monitoring of total serum protein and albumin levels as an important tool in long-term follow-up of pediatric patients in treatments associated to total body irradiation. - Highlights: • Low-dose total body irradiation (TBI) in children have repercussions in their body-mass. • Long-term total protein and albumin levels are affected by TBI. • The monitoring of total protein and albumin levels are useful in the follow-up of TBI pediatric patients.

  18. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators

    Science.gov (United States)

    Moradi, F.; Ung, N. M.; Khandaker, M. U.; Mahdiraji, G. A.; Saad, M.; Malik, R. Abdul; Bustam, A. Z.; Zaili, Z.; Bradley, D. A.

    2017-08-01

    The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. Highlights: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin

  19. Identification of Differential Gene Expression Patterns after Acute Exposure to High and Low Doses of Low-LET Ionizing Radiation in a Reconstituted Human Skin Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Markillie, Lye Meng; Hays, Spencer; Taylor, Ronald C.; Stenoien, David L.

    2016-11-01

    Our goal here was to identify dose and temporal dependent radiation responses in a complex tissue, reconstituted human skin. Direct sequencing of RNA (RNA-seq) was used to quantify altered transcripts following exposure to 0.1, 2 and 10 Gy of ionizing radiation at 3 and 8 hours. These doses include a low dose in the range of some medical diagnostic procedures (0.1 Gy), a dose typically received during radiotherapy (2.0 Gy) and a lethal dose (10 Gy). These doses could be received after an intentional or accidental radiation exposure and biomarkers are needed to rapidly and accurately triage exposed individuals. A total of 1701 genes were deemed to be significantly affected by high dose radiation exposure with the majority of genes affected at 10 Gy. A group of 29 genes including GDF15, BBC3, PPM1D, FDXR, GADD45A, MDM2, CDKN1A, TP53INP1, CYCSP27, SESN1, SESN2, PCNA, and AEN were similarly altered at both 2 and 10 Gy, but not 0.1 Gy, at multiple time points. A much larger group of up regulated genes, including those involved in inflammatory responses, was significantly altered only after a 10 Gy exposure. At high doses, down regulated genes were associated with cell cycle regulation and exhibited an apparent linear response between 2 and 10 Gy. While only a handful of genes were significantly affected by 0.1 Gy exposure using stringent statistical filters, groups of related genes regulating cell cycle progression and inflammatory responses consistently exhibited opposite trends in their regulation compared to the high dose exposures. Differential regulation of PLK1 signaling at low and high doses was confirmed using qRT-PCR. These results indicate that some alterations in gene expression are qualitatively different at low and high doses of radiation in this model system.

  20. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Sterc, D.

    2012-01-01

    Our civilization is witnessing about century of nuclear age mixed with enormous promises and cataclysmic threats. Nuclear energy seems to encapsulate both potential for pure good and evil or at least we humans are able to perceive that. These images are continuously with us and they are both helping and distracting from making best of nuclear potentials for civilization. Today with nuclear use significantly present and with huge potential to further improve our life with energy and medical use it is of enormous importance to try to have calmed, rational, and objective view on potential risks and certain benefits. Because all use of nuclear energy proved that their immediate risks are negligible (i.e., Three Mile Island and Fukushima) or much smaller than from the other alternatives (i.e., Chernobyl) it seems that the most important issue is the amount of risk from the long term effects to people from exposure to small doses of radiation. A similar issue is present in the increased use of modern computational tomography and other radiation sources use in medicine for examination and therapy. Finally, extreme natural exposures are third such potential risk sources. Definition of low doses varies depending on the way of delivery (i.e., single, multiple or continuous exposures), and for this paper usual dose of 100 mSv is selected as yearly upper amount. There are three very different scientifically supported views on the potential risks from the low doses exposure. The most conservative theory is that all radiation is harmful, and even small increments from background levels (i.e., 2-3 mSv) present additional risk. This view is called linear no threshold theory (LNT) and it is accepted as a regulatory conservative simple approach which guarantees safety. Risk is derived from the extrapolation of the measured effects of high levels of radiation. Opposite theory to LNT is hormesis which assumes that in fact small doses of radiation are helpful and they are improving our

  1. Total skin electron beam therapy for cutaneous T-cell lymphoma: a nationwide cohort study from Denmark

    DEFF Research Database (Denmark)

    Lindahl, Lise M; Kamstrup, Maria Rørbæk; Petersen, Peter M

    2011-01-01

    Background. Total skin electron beam therapy (TSEBT) is an effective palliative treatment for cutaneous T-cell lymphoma (CTCL). In the present study we reviewed the clinical response to TSEBT in Danish patients with CTCL. Material and methods. This retrospective study included 35 patients with CTCL...... to treatment compared to patients treated with high-dose. Consequently the study with low-dose was discontinued and published. In patients treated with high-dose the overall response rate was 100%. Complete response (CR) rate was 68% and CR occurred after a median time of 2.1 months (range 1.8 months-2.0 years...

  2. Dose measurements in the treatment of mycosis fungoides with total skin irradiation using a 4 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Poli, M.E.R. [Hospital Real e Benemerita Sociedade Portuguesa de Beneficencia (Brazil); Todo, A.S.; Campos, L.L. [Instituto de Pesquisas Energeticas e Nucleares, CNEN/SP Travessa R, Sao Paulo (Brazil)

    2000-05-01

    The total skin irradiation (TSI) is one of the most efficient techniques in the treatment administered with curative intent of the mycosis fungoides. The cure may be obtained in 10% to 40% of cases. The original Stanford University technique, created in 1960, was applied in a 4.8 MeV linear accelerator, that provided 2.5 MeV electrons in the patient, by the use of 4 couple beams with the patient placed in front of the beam, 3 meters distant from the apparatus. In this work we describe a 4 MeV electrons beam treatment method. We intend to improve the uniformity of the dose in the patient, as well, to reduce the problems with the overlapping treatment fields, that occurs in conventional treatment that uses 1 meter of focus-skin distance, and the treatment time to the patient. Only one modification was done in the apparatus: the dose rate for this treatment was doubled. The patient is placed on a rotative base and he assumes successively 6 positions: stand up and perpendicular to the beam, distant 2.83 meters from the gantry, with 60 degrees of interval between the rotations. In each position, the patient receives a couple of beams (the beam angulation is 19.5 degrees above the transversal axis in the middle of the patient and 19.5 degrees below it). The dosimetric data obtained were compared to the international protocols (AAPM). The delivered doses in the patient were measured with thermoluminescent dosimeters placed on skin surface and with Kodak XV-2 films placed between different slabs of an anthropomorphic phantom. The dose distribution in the phantom shows a good uniformity, in all thickness of interest, so it is possible to use this technique in the treatment of the mycosis fungoides as well Kaposi's sarcoma. (author)

  3. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  4. Determination of Entrance Skin Doses and Organ Doses for Medical X Ray Examinations

    International Nuclear Information System (INIS)

    Tung, C.J.; Cheng, C.Y.; Chao, T.C.; Tsai, H.Y.

    1999-01-01

    A national survey of patient doses for diagnostic X ray radiographs is planned in Taiwan. Entrance skin doses and organ doses for all installed X ray machines will be investigated. A pilot study has been carried out for the national survey to develop a protocol for the dose assessment. Entrance skin doses and organ doses were measured by thermoluminescence dosemeters and calculated by Monte Carlo simulations for several X ray examinations. The conversion factor from free air entrance absorbed dose to entrance skin dose was derived. A formula for the computation of entrance skin doses from inputs of kV p , mA.s, source to skin distance, aluminium filtration, and generator rectifying was constructed. Organ doses were measured using a RANDO phantom and calculated using a mathematical phantom. All data will be passed to the Atomic Energy Council for developing a programme of national survey and regulatory controls for diagnostic X ray examinations. (author)

  5. Selection of skin dose calculation methodologies

    International Nuclear Information System (INIS)

    Farrell, W.E.

    1987-01-01

    This paper reports that good health physics practice dictates that a dose assessment be performed for any significant skin contamination incident. There are, however, several methodologies that could be used, and while there is probably o single methodology that is proper for all cases of skin contamination, some are clearly more appropriate than others. This can be demonstrated by examining two of the more distinctly different options available for estimating skin dose the calculational methods. The methods compiled by Healy require separate beta and gamma calculations. The beta calculational method is the derived by Loevinger, while the gamma dose is calculated from the equation for dose rate from an infinite plane source with an absorber between the source and the detector. Healy has provided these formulas in graphical form to facilitate rapid dose rate determinations at density thicknesses of 7 and 20 mg/cm 2 . These density thicknesses equate to the regulatory definition of the sensitive layer of the skin and a more arbitrary value to account of beta absorption in contaminated clothing

  6. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Webster, C.M.; Horrocks, J.; Hayes, D.

    2001-01-01

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm 2 and 22.5 mSv for RFCA, and 32 Gycm 2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  7. Skin dose measurement with MICROSPEC-2 trademark

    International Nuclear Information System (INIS)

    Hsu, H.H.

    1997-01-01

    For many years, the Eberline HP-260 trademark beta detectors were used for skin dose measurements at Los Alamos National Laboratory. This detector does not measure the beta spectrum and the skin dose can only be determined if the contaminating radioactive isotope is known. A new product MICROSPEC-2 trademark, has been developed which consists of a small portable computer with a multichannel analyzer and a beta probe consisting of a phoswich detector. The system measures the beta spectrum and automatically folds in the beta fluence-to-dose conversion function to yield the skin dose

  8. In vitro modeling of skin dose and monitoring of DCA following therapeutic intervention

    International Nuclear Information System (INIS)

    Balajee, Adayabalam S.; Dainiak, Nicholas

    2016-01-01

    Human skin is the largest organ of the body accounting for approximately 16% of the total bodyweight. Skin is readily exposed to ionizing radiation during either accidental or intentional exposure such as radiotherapy or other medical procedures because it constitutes the interface between environment and internal organs. Estimation of accurate entrance skin dose and maximum absorbed dose (MAD) is crucial to prevent serious skin injuries. Cutaneous Radiation Syndrome (CRS) is defined by a number of pathological changes manifested in the skin and severity of these changes depend on Liner Energy Transfer (LET), dose, dose-rate, geometry of exposure and volume of body part exposed. In most of the radiological accident scenarios, reconstructive dosimetry in the skin has been performed using physical (thermoluminescence and optical stimulated luminescence), biological (cytogenetics) and computational methods/models to manage radiation exposed victims.Results of the cytogenetic testing performed at the CBL on a few patients will be discussed to illustrate the potential use of DCA and other cytogenetic techniques such as micronuclei and multicolor FISH in monitoring the health of radiotherapy patients

  9. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  10. Dependence of total dose response of bipolar linear microcircuits on applied dose rate

    International Nuclear Information System (INIS)

    McClure, S.; Will, W.; Perry, G.; Pease, R.L.

    1994-01-01

    The effect of dose rate on the total dose radiation hardness of three commercial bipolar linear microcircuits is investigated. Total dose tests of linear bipolar microcircuits show larger degradation at 0.167 rad/s than at 90 rad/s even after the high dose rate test is followed by a room temperature plus a 100 C anneal. No systematic correlation could be found for degradation at low dose rate versus high dose rate and anneal. Comparison of the low dose rate with the high dose rate anneal data indicates that MIL-STD-883, method 1019.4 is not a worst-case test method when applied to bipolar microcircuits for low dose rate space applications

  11. Use of BEIR V and UNSCEAR 1988 in radiation risk assessment: Lifetime total cancer mortality risk estimates at low doses and low dose rates for low-LET radiation

    International Nuclear Information System (INIS)

    1992-12-01

    In November 1986, the Department of Defense (DoD) asked the Committee on Interagency Radiation Research and Policy Coordination (CIRRPC) to develop a coordinated Federal position on risk assessment for low levels of ionizing radiation. Since Federal risk assessment activities are based primarily on the scientific data and analyses in authoritative review documents prepared by groups like the National Academy of Sciences' Committee on the Biological Effects of Ionizing Radiation (BEIR), the National Council on Radiation Protection and Measurements (NCRP) and the United Nations' Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), DoD proposed that the CIRRPC Science Panel undertake the task of providing coordinated interagency positions on the use of information in the reports of such groups. The practice has been for individual Federal agencies to interpret and decide independently how to use the information provided in such reports. As a result of its deliberations, the Subpanel recommends two nominal risk estimates for lifetime total cancer mortality following whole-body exposure to low levels of low-LET ionizing radiation, one for the general population and one for the working-age population (see Section II). The recommended risk estimates reflect the general agreement of information in BEIR V and UNSCEAR 1988 for total cancer mortality. The Subpanel's risk estimates and associated statements are intended to meet the needs of the Federal agencies for: (a) values that are current; (b) values that are relevant to the low-dose and low dose-rate ionizing radiation exposures principally encountered in carrying out Federal responsibilities; (c) a statement of the change in the estimates of lifetime total cancer mortality relative to estimates in previous authoritative review documents; and (d) a practical statement on the scientific uncertainty associated with applying the lifetime total cancer mortality values at very low doses

  12. Normal tissue tolerance to external beam radiation therapy: Skin; Dose de tolerance des tissus sains: la peau et les phaneres

    Energy Technology Data Exchange (ETDEWEB)

    Ginot, A.; Doyen, J.; Hannoun-Levi, J.M.; Courdi, A. [Service d' oncologie-radiotherapie, centre Antoine-Lacassagne, 06 - Nice (France)

    2010-07-15

    Acute skin toxicity is frequent during radiation therapy and can lead to temporary arrest of the treatment. Chronic toxicity can occur and conduct to cosmetic problems. Alopecia is the most frequent toxicity concerning hair and is most of the time reversible. Several factors linked to patients influence skin toxicity, such as under-nutrition, old age, obesity, smoking, skin diseases, autoimmune diseases, failure of DNA reparation. Skin, hair and nail toxicities depend also on radiation schedule. Acute toxicity is greater when dose per fraction increases. Chronic and acute toxicities are more often when total dose increases. Under 45 Gy, the risk of severe skin toxicity is low, and begins above 50 Gy. Skin toxicity depends also on the duration of radiotherapy and split course schedules are associated with less toxicities. Irradiation surface seems to influence skin toxicity but interaction is more complex. Reirradiation is often feasible in case of cancer recurrence but with a risk of grade 3-4 toxicity above all in head and neck cancer. The benefit/risk ratio has to be always precisely evaluated. Permanent alopecia is correlated with the follicle dose. Modern techniques of radiation therapy allow to spare skin. (authors)

  13. Skin dose mapping for fluoroscopically guided interventions.

    Science.gov (United States)

    Johnson, Perry B; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E

    2011-10-01

    To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in-clinic monitor of an interventional

  14. Fast skin dose estimation system for interventional radiology.

    Science.gov (United States)

    Takata, Takeshi; Kotoku, Jun'ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru

    2018-03-01

    To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient's computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7-7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods.

  15. A beta skin dose monitor using an Eberline RO-2 ion chamber

    International Nuclear Information System (INIS)

    Jester, W.A.; Levine, S.H.; Lin, T.J.; Hock, R.

    1994-01-01

    The authors have developed a portable beta skin dose monitor that uses an Eberline RO-2trademark ion chamber. The development was based, in part, upon the previous development of a beta skin dose monitor employing silicon detectors. In this current work, the two entrance windows of the RO-2 were replaced by windows having a total mass thickness of 1.74 mg/cm 2 . A two section source-detector holder was constructed. One section fastens to the RO-2 and holds the detector at the right position to determine the contact skin dose from beta emitters located on surfaces. A second section attaches to the first, and provides fixed counting geometry for radioactive samples such as hot particles. The first section also contains a slide mechanism that allows the placement of absorbers of zero (0), 8.38, and 1000 mg/cm 2 between the detector window and the beta source. The detector response to these absorbers allows for the determination of beta skin dose. The system was modeled using a Monte Carlo beta attenuation code computing the beta skin dose to RO-2 detector response as a function of absorber thickness, average beta energy, source diameter and source position. Using the RO-2 reading from each of the three absorber configurations allows the calculation of beta skin dose and the average beta energy. The results of these calculations were confirmed through the use of three massless radioactive beta sources, traceable to the National Institute of Standards and Technology, and several utility-supplied hot particles having well-established contact skin doses. An extrapolation chamber was also used to confirm the results obtained from this monitor. This system is now use at the Pennsylvania Power and Light (PP and L) Company, the project sponsor. ((orig.))

  16. Evaluating low dose ionizing radiation effects on gene expression in human skin biopsy cores

    International Nuclear Information System (INIS)

    Goldberg, Z.; Schwietert, C.; Stern, R.L.; Lehnert, B.E.

    2003-01-01

    Significant biological effects can occur in animals, animal cells, immortalized human cell lines, and primary human cells after exposure to doses of ionizing radiation (IR) in the <1-10 cGy region. However it is unclear how these observations mimic or even pertain to the actual in vivo condition in humans, though such knowledge is required for reducing the uncertainty of assessing human risks due to low dose IR (LDIR) exposures. Further, low dose effects have increasing clinical relevance in the radiotherapeutic management of cancer as the volume of tissue receiving only LDIR increases as more targeted radiotherapy (i.e. IMRT) becomes more widely used. Thus, human translational data must be obtained with which to correlate in vitro experimental findings and evaluate their 'real-life' applicability. To evaluate LDIR effects in human tissue we have obtained freshly explanted full thickness human skin samples obtained from aesthetic surgery, and subjected them to ex vivo irradiation as a translational research model system of a complex human tissue. Ionizing radiation (IR) exposures were delivered at 1, 10, or 100 cGy. The temporal response to IR was assessed by harvesting RNA at multiple time points out to 24 hours post IR. Gene expression changes were assessed by real time PCR. We have shown that RNA can be reliably extracted with fidelity from 3 mm diameter punch biopsies of human tissue and provide good quality sample for the real time PCR evaluation. Genes of interest include those reported to have altered expression following LDIR from in vitro cell culture models. These include genes associated with cell cycle regulation, DNA repair and various cytokines. These feasibility studies in human skin irradiated ex vivo, have demonstrated that gene expression can be measured accurately from very small human tissue samples, thus setting the stage for biopsy acquisition of tissue irradiated in vivo from patients-volunteers. The clinical study has begun and the data from

  17. Comparative study on skin dose measurement using MOSFET and TLD for pediatric patients with acute lymphatic leukemia.

    Science.gov (United States)

    Al-Mohammed, Huda I; Mahyoub, Fareed H; Moftah, Belal A

    2010-07-01

    The object of this study was to compare the difference of skin dose measured in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using metal oxide semiconductor field-effect transistors (mobile MOSFET dose verification system (TN-RD-70-W) and thermoluminescent dosimeters (TLD-100 chips, Harshaw/ Bicron, OH, USA). Because TLD has been the most-commonly used technique in the skin dose measurement of TBI, the aim of the present study is to prove the benefit of using the mobile MOSFET (metal oxide semiconductor field effect transistor) dosimeter, for entrance dose measurements during the total body irradiation (TBI) over thermoluminescent dosimeters (TLD). The measurements involved 10 pediatric patients ages between 3 and 14 years. Thermoluminescent dosimeters and MOSFET dosimetry were performed at 9 different anatomic sites on each patient. The present results show there is a variation between skin dose measured with MOSFET and TLD in all patients, and for every anatomic site selected, there is no significant difference in the dose delivered using MOSFET as compared to the prescribed dose. However, there is a significant difference for every anatomic site using TLD compared with either the prescribed dose or MOSFET. The results indicate that the dosimeter measurements using the MOSFET gave precise measurements of prescribed dose. However, TLD measurement showed significant increased skin dose of cGy as compared to either prescribed dose or MOSFET group. MOSFET dosimeters provide superior dose accuracy for skin dose measurement in TBI as compared with TLD.

  18. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  19. The effect of low-dose total body irradiation on tumor control

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko; Miyamoto, Miyako; Watabe, Nobuyuki.

    1987-01-01

    Total body irradiation (TBI) is considered to bring about an immunosuppressive effect on an organism, on the basis of data obtained from sublethal doses of TBI. However, there are no data on how low-dose TBI affects an organism. Over the last five years, we have been studying the effects of low-dose TBI on normal or tumor-bearing mice and the immunological background of these effects. In experimental studies, an increase in the TD50 value (the number of cells required for a tumor incidence of 50 %) in mice exposed to 10 rad was recognized and showed a remarkable increase at 6 hours to 15 hours after irradiation. TBI of 10 rad also showed an enhancement effect on tumor cell killing when given 12 hours before local tumor irradiation. In order to clarify the mechanism of this kind of effect, some immunological studies were performed using several immunological procedures, and the results suggested that 10 rad of TBI caused increasing tumor immunity in irradiated mice. Clinical trials in some patients with advanced tumors are now being undertaken on the basis of these experimental data, and the effect of TBI on tumor control appears promising, although it is too early to draw conclusions. (author)

  20. Calculation of skin dose due to beta contamination using the new quantity of the ICRP 116: the local skin dose

    International Nuclear Information System (INIS)

    Bourgois, L.; Menard, S.; Comte, N.

    2017-01-01

    Values of the new protection quantity Local Skin Dose 'LSD', introduced by the International Commission on Radiological Protection (ICRP) Publication 116, were calculated for 134 β - or β + emitting radionuclides, using the Monte Carlo code MCNP6. Two types of source geometry are considered: a point source and disc-type surface contamination (the source is placed in contact with the skin). This new protection quantity is compared with the operational quantity H2 (0.07, 0 deg.), leading us to conclude that, in accordance with the rules of the ICRP, the operational quantity over-estimates the protection quantity to a reasonable extent, except in very rare cases for very low average beta energies. Thus, with the new skin model described in ICRP 116, there are no longer any major differences between the operational quantities and protection quantities estimated with the skin model described in ICRP 74. (authors)

  1. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    Science.gov (United States)

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  2. Total skin electron beam therapy for cutaneous T-cell lymphoma: A nationwide cohort study from Denmark

    International Nuclear Information System (INIS)

    Lindahl, Lise M.; Iversen, Lars; Kamstrup, Maria R.; Gniadecki, Robert; Petersen, Peter M.; Specht, Lena; Wiren, Johan; Fenger-Groen, Morten

    2011-01-01

    Background. Total skin electron beam therapy (TSEBT) is an effective palliative treatment for cutaneous T-cell lymphoma (CTCL). In the present study we reviewed the clinical response to TSEBT in Danish patients with CTCL. Material and methods. This retrospective study included 35 patients with CTCL treated with TSEBT in Denmark from 2001 to 2008 and followed for a median time of 7.6 months (range 3 days-3.7 years). Twenty five patients were treated with high-dose (30 Gy) and 10 patients in a protocol with low-dose (4 Gy) TSEBT. Results. Patients treated with low-dose therapy had inadequate response to treatment compared to patients treated with high-dose. Consequently the study with low-dose was discontinued and published. In patients treated with high-dose the overall response rate was 100%. Complete response (CR) rate was 68% and CR occurred after a median time of 2.1 months (range 1.8 months - 2.0 years). We found no difference in CR rate in patients with T2 (66.7%) and T3 disease (78.6%) (p = 0.64). Following CR 82.4% relapsed at a median time of four months (range 12 days-11.5 months). Relapse-free-survival was similar in patients with T2 and T3 disease (p 0.77). Progressive disease (PD) was experienced in 28.0% and the median time to PD was 9.0 months (range 4.6-44.3 months). Overall progression-free survival was 95.3%, 72.1% and 64.1% after 0.5-, 1- and 2-years. Effects of initial therapy on TSEBT treatment response and side effects to TSEBT were also analyzed. Conclusion. In conclusion, the present study confirms that high-dose TSEBT is an effective, but generally not a curative therapy in the management of CTCL. High-dose treatment yielded significantly better results than low-dose treatment with 4 Gy. TSEBT offers significant palliation in most patients when other skin-directed or systemic treatments have failed

  3. The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+

    Science.gov (United States)

    Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan

    2008-12-01

    Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.

  4. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  5. Maximum skin dose assessment in interventional cardiology: large area detectors and calculation methods

    International Nuclear Information System (INIS)

    Quail, E.; Petersol, A.

    2002-01-01

    Advances in imaging technology have facilitated the development of increasingly complex radiological procedures for interventional radiology. Such interventional procedures can involve significant patient exposure, although often represent alternatives to more hazardous surgery or are the sole method for treatment. Interventional radiology is already an established part of mainstream medicine and is likely to expand further with the continuing development and adoption of new procedures. Between all medical exposures, interventional radiology is first of the list of the more expansive radiological practice in terms of effective dose per examination with a mean value of 20 mSv. Currently interventional radiology contribute 4% to the annual collective dose, in spite of contributing to total annual frequency only 0.3% but considering the perspectives of this method can be expected a large expansion of this value. In IR procedures the potential for deterministic effects on the skin is a risk to be taken into account together with stochastic long term risk. Indeed, the International Commission on Radiological Protection (ICRP) in its publication No 85, affirms that the patient dose of priority concern is the absorbed dose in the area of skin that receives the maximum dose during an interventional procedure. For the mentioned reasons, in IR it is important to give to practitioners information on the dose received by the skin of the patient during the procedure. In this paper maximum local skin dose (MSD) is called the absorbed dose in the area of skin receiving the maximum dose during an interventional procedure

  6. Measurement and estimation of maximum skin dose to the patient for different interventional procedures

    International Nuclear Information System (INIS)

    Cheng Yuxi; Liu Lantao; Wei Kedao; Yu Peng; Yan Shulin; Li Tianchang

    2005-01-01

    Objective: To determine the dose distribution and maximum skin dose to the patient for four interventional procedures: coronary angiography (CA), hepatic angiography (HA), radiofrequency ablation (RF) and cerebral angiography (CAG), and to estimate the definitive effect of radiation on skin. Methods: Skin dose was measured using LiF: Mg, Cu, P TLD chips. A total of 9 measuring points were chosen on the back of the patient with two TLDs placed at each point, for CA, HA and RF interventional procedures, whereas two TLDs were placed on one point each at the postero-anterior (PA) and lateral side (LAT) respectively, during the CAG procedure. Results: The results revealed that the maximum skin dose to the patient was 1683.91 mGy for the HA procedure with a mean value of 607.29 mGy. The maximum skin dose at the PA point was 959.3 mGy for the CAG with a mean value of 418.79 mGy; While the maximum and the mean doses at the LAT point were 704 mGy and 191.52 mGy, respectively. For the RF procedure the maximum dose was 853.82 mGy and the mean was 219.67 mGy. For the CA procedure the maximum dose was 456.1 mGy and the mean was 227.63 mGy. Conclusion: All the measured dose values in this study are estimated ones which could not provide the accurate maximum value because it is difficult to measure using a great deal of TLDs. On the other hand, the small area of skin exposed to high dose could be missed as the distribution of the dose is successive. (authors)

  7. Objective method to report planner-independent skin/rib maximal dose in balloon-based high dose rate (HDR) brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Kim, Yongbok; Trombetta, Mark G.

    2011-01-01

    Purpose: An objective method was proposed and compared with a manual selection method to determine planner-independent skin and rib maximal dose in balloon-based high dose rate (HDR) brachytherapy planning. Methods: The maximal dose to skin and rib was objectively extracted from a dose volume histogram (DVH) of skin and rib volumes. A virtual skin volume was produced by expanding the skin surface in three dimensions (3D) external to the breast with a certain thickness in the planning computed tomography (CT) images. Therefore, the maximal dose to this volume occurs on the skin surface the same with a conventional manual selection method. The rib was also delineated in the planning CT images and its maximal dose was extracted from its DVH. The absolute (Abdiff=|D max Man -D max DVH |) and relative (Rediff[%]=100x(|D max Man -D max DVH |)/D max DVH ) maximal skin and rib dose differences between the manual selection method (D max Man ) and the objective method (D max DVH ) were measured for 50 balloon-based HDR (25 MammoSite and 25 Contura) patients. Results: The average±standard deviation of maximal dose difference was 1.67%±1.69% of the prescribed dose (PD). No statistical difference was observed between MammoSite and Contura patients for both Abdiff and Rediff[%] values. However, a statistically significant difference (p value max >90%) compared with lower dose range (D max <90%): 2.16%±1.93% vs 1.19%±1.25% with p value of 0.0049. However, the Rediff[%] analysis eliminated the inverse square factor and there was no statistically significant difference (p value=0.8931) between high and low dose ranges. Conclusions: The objective method using volumetric information of skin and rib can determine the planner-independent maximal dose compared with the manual selection method. However, the difference was <2% of PD, on average, if appropriate attention is paid to selecting a manual dose point in 3D planning CT images.

  8. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  9. SU-F-T-83: Infant Total Skin Electron Therapy Using Five Fields Technique

    International Nuclear Information System (INIS)

    Saleh, H; Howlin, T; Massey, V

    2016-01-01

    Purpose: We were presented with a 9 month old boy with Relapsed Acute Myeloid Leukemia (AML) involving the skin. The plan was to treat the entire skin using 6 MeV electrons with the infant under complete anesthesia. The purpose of this work is to commission the 6 MeV electron beam and to develop a technique that can be used to deliver total skin dose to infants with minimal patient immobilization. Methods: A baby mannequin phantom that mimics the child’s length was used to determine the best technique to treat the infant. The 76 cm long phantom was placed on the floor. The phantom was placed in four unique immobilization devices to simulate four different treatment positions (anterior, posterior, left lateral and right lateral). Radiochromic films were used to determine beam profile in both axial and radial directions, and percent depth dose (PDD). Absolute calibration of the machine output at 214 cm distance was measured using an Exradin A11 parallel-plate ion chamber. A 1.0 cm plexiglass scatter plate was inserted in the collimator. Mosfet dosimeters were used for dose verification for phantom and and patient. Results: At 214 cm source to surface distance (SSD) using gantry angle of + 20o from vertical beam flatness is + 10% in the radial direction over a region of 70 cm and + 4% in the axial direction over 60 cm. A five field arrangement was determined to optimally deliver the desired dose with > 90% uniformity. The fifth field was used to boost the head vertex. Conclusion: It is possible to treat sedated infants with total skin dose using five positions. Four positions were enough to cover the body and the fifth position boosts the vertex of the head. All fractions can be reproduced accurately daily because of the patient’s stable immobilization.

  10. SU-F-T-83: Infant Total Skin Electron Therapy Using Five Fields Technique

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H; Howlin, T; Massey, V [University of Kansas Hospital, Overland Park, KS (United States)

    2016-06-15

    Purpose: We were presented with a 9 month old boy with Relapsed Acute Myeloid Leukemia (AML) involving the skin. The plan was to treat the entire skin using 6 MeV electrons with the infant under complete anesthesia. The purpose of this work is to commission the 6 MeV electron beam and to develop a technique that can be used to deliver total skin dose to infants with minimal patient immobilization. Methods: A baby mannequin phantom that mimics the child’s length was used to determine the best technique to treat the infant. The 76 cm long phantom was placed on the floor. The phantom was placed in four unique immobilization devices to simulate four different treatment positions (anterior, posterior, left lateral and right lateral). Radiochromic films were used to determine beam profile in both axial and radial directions, and percent depth dose (PDD). Absolute calibration of the machine output at 214 cm distance was measured using an Exradin A11 parallel-plate ion chamber. A 1.0 cm plexiglass scatter plate was inserted in the collimator. Mosfet dosimeters were used for dose verification for phantom and and patient. Results: At 214 cm source to surface distance (SSD) using gantry angle of + 20o from vertical beam flatness is + 10% in the radial direction over a region of 70 cm and + 4% in the axial direction over 60 cm. A five field arrangement was determined to optimally deliver the desired dose with > 90% uniformity. The fifth field was used to boost the head vertex. Conclusion: It is possible to treat sedated infants with total skin dose using five positions. Four positions were enough to cover the body and the fifth position boosts the vertex of the head. All fractions can be reproduced accurately daily because of the patient’s stable immobilization.

  11. VARSKIN MOD 2 and SADDE MOD2: Computer codes for assessing skin dose from skin contamination

    International Nuclear Information System (INIS)

    Durham, J.S.

    1992-12-01

    The computer code VARSKIN has been modified to calculate dose to skin from three-dimensional sources, sources separated from the skin by layers of protective clothing, and gamma dose from certain radionuclides correction for backscatter has also been incorporated for certain geometries. This document describes the new code, VARSKIN Mod 2, including installation and operation instructions, provides detailed descriptions of the models used, and suggests methods for avoiding misuse of the code. The input data file for VARSKIN Mod 2 has been modified to reflect current physical data, to include the contribution to dose from internal conversion and Auger electrons, and to reflect a correction for low-energy electrons. In addition, the computer code SADDE: Scaled Absorbed Dose Distribution Evaluator has been modified to allow the generation of scaled absorbed dose distributions for mixtures of radionuclides and intereat conversion and Auger electrons. This new code, SADDE Mod 2, is also described in this document. Instructions for installation and operation of the code and detailed descriptions of the models used in the code are provided

  12. Fractional sunburn threshold UVR doses generate equivalent vitamin D and DNA damage in skin types I-VI, but with epidermal DNA damage gradient correlated to skin darkness.

    Science.gov (United States)

    Shih, Barbara B; Farrar, Mark D; Cooke, Marcus S; Osman, Joanne; Langton, Abigail K; Kift, Richard; Webb, Ann R; Berry, Jacqueline L; Watson, Rachel E B; Vail, Andy; de Gruijl, Frank R; Rhodes, Lesley E

    2018-05-03

    Public health guidance recommends limiting sun-exposure to sub-sunburn levels, but it's unknown whether these can gain vitamin D (for musculoskeletal health) whilst avoiding epidermal DNA damage (initiates skin cancer). Well-characterised healthy humans of all skin types (I-VI; lightest to darkest skin) were exposed to a low dose-series of solar simulated UVR of 20-80% their individual sunburn threshold dose (minimal erythemal dose, MED). Significant UVR dose-responses were seen for serum 25(OH)D and whole epidermal CPD, with as little as 0.2 MED concurrently producing 25(OH)D and CPD. Notably, fractional MEDs generated equivalent levels of whole epidermal CPD and 25(OH)D across all skin types. Crucially, we demonstrated an epidermal gradient of CPD formation strongly correlated with skin darkness (r=0.74; Pskin types, ranging from darkest skin, where high CPD levels occurred superficially with none in the germinative basal layer, through to lightest skin where CPD were induced evenly across the epidermal depth. Darker skin people can be encouraged to utilise sub-sunburn UVR-exposure to enhance their vitamin D. In lighter skin people, basal cell damage occurs concurrent with vitamin D synthesis at exquisitely low UVR levels, providing an explanation for their high skin cancer incidence; greater caution is required. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Exposure to low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Le Guen, B.

    2008-01-01

    The author discusses the knowledge about the effects of ionizing radiations on mankind. Some of them have been well documented (skin cancer and leukaemia for the pioneer scientists who worked on radiations, some other types of cancer for workers who handled luminescent paints, rock miners, nuclear explosion survivors, patients submitted to radiological treatments). He also evokes the issue of hereditary cancers, and discusses the issue of low dose irradiation where some surveys can now be performed on workers. He discusses the biological effects of these low doses. He outlines that many questions remain about these effects, notably the influence of dose level and of dose rate level on the biological reaction

  14. Comparison of three techniques for skin total irradiation with electrons

    International Nuclear Information System (INIS)

    Batista, Delano V.S.; Bardella, Lucia H.; Rosa, Luiz A.R. da

    2011-01-01

    This paper compared three techniques of skin total irradiation with electrons: 1) horizontal positioning, 2) vertical positioning - rotatory technique and 3) vertical positioning - six fields technique. For that, a anthropomorphic phantom was positioned according to the recommendation for each technique and was i radiated at the linear accelerator by using the 6 MeV electrons. Radiochromic films were positioned on the surface in various regions of the phantom for measurement of absorbed dose. A ionization chamber was positioned inside of equivalent issue plates for dose evaluation due to the photons produced by electron stopping. The technique 2 and 3 have shown too similar in the results and number or discrepant points (8 and 10 respectively) of prescription lower than the technique 1 (22 points). The total body dose of photons of the 1, 2 and 3 techniques was 2.2%, 5.3% and 5.2% respectively

  15. Long-term survival of skin allografts in mice treated with fractionated total lymphoid irradiation

    International Nuclear Information System (INIS)

    Slavin, S.; Strober, S.; Fuks, Z.; Kaplan, H.S.

    1976-01-01

    Treatment of recipient Balb/c mice with fractionated, high-dose total lymphoid irradiation, a procedure commonly used in the therapy of human malignant lymphomas, resulted in fivefold prolongation of the survival of C57BL/Ka skin allografts despite major histocompatibility differences between the strains (H-2/sup d/ and H-2/sup b/, respectively). Infusion of 10 7 (C57BL/Ka x Balb/c)F 1 bone marrow cells after total lymphoid irradiation further prolonged C57BL/Ka skin graft survival to more than 120 days. Total lymphoid irradiation may eventually prove useful in clinical organ transplantation

  16. Survey on patient doses in cardiology in Latin America. Criteria for high skin doses follow up

    International Nuclear Information System (INIS)

    Duran, Ariel; Duro, Ivanna; Lopez, Leonardo; Ramirez, Alfredo; Herrera, Carlos; Navarro, Joaquin; Rivarola, Carlos; Lopez, Jose A.

    2008-01-01

    Full text: As part of the International Action Plan for Protection of Patients and supporting by the IAEA, a survey on patient doses in fluoroscopy guided procedures in cardiology in Latin America has been conducted since 2006. One of the objectives of the survey was to set criteria for the identification and evaluation of high skin doses in a certain number of patients to recommend a clinical follow up for potential radiation injuries (more than 3 Gy at the skin). The used methodology for the survey was initiated with two dedicated workshops held in Santiago de Chile (2005) and San Jose de Costa Rica (2007) involving relevant cardiologists from 15 different Latin American Countries. Some sessions were also attended by experts from the Regulatory and Health Authorities. Standardized forms to collect demographic and patient dosimetric data were agreed. Considering that most of the involved centres had still not dosimeters installed in the cardiology x-ray systems, it was agreed to collect data on fluoroscopy time and total number of cine frames per procedure. Relevant factors influencing radio sensitivity of the skin were also collected. Data from 10 countries representing a sample of 709 patients were received during the first year. Procedures included were diagnostic (DG) (coronary angiography and electrophysiology studies), therapeutic (TH) (percutaneous transluminal coronary angioplasties, cardiac ablations and valvuloplasties) or including both DG and TH. A total of 26 patients (3.7%) were selected for potential high skin doses. Initial considered criteria for selection were more than 30 minutes of fluoroscopy, more than 3,000 cine frames per procedure or patients with more than 100 kg of weight. Maximum reported values were 72 minutes and 8,100 frames. In addition, 5 of these patients were diabetic, 6 have previous fluoroscopy procedures and 5 were over 95 kg. The percentage of selected cases for clinical follow up derived from potential skin injuries seem

  17. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  18. The dose penumbra of a custom-made shield used in hemibody skin electron irradiation.

    Science.gov (United States)

    Rivers, Charlotte I; AlDahlawi, Ismail; Wang, Iris Z; Singh, Anurag K; Podgorsak, Matthew B

    2016-11-08

    We report our technique for hemibody skin electron irradiation with a custom-made plywood shield. The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed at 50 cm from the patient. The shield is made of three layers of stan-dard 5/8'' thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield's transmission factor and the extent of the dose penumbra region for two different shield-phantom gaps. The shield transmission factor was found to be about 10%. The width of the penumbra (80%-to-20% dose falloff) was measured to be 12 cm for a 50 cm shield-phantom gap, and reduced slightly to 10 cm for a 35 cm shield-phantom gap. In vivo dosimetry of a real case confirmed the expected shielded area dose. © 2016 The Authors.

  19. Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture.

    Science.gov (United States)

    Mytych, Jennifer; Wnuk, Maciej; Rattan, Suresh I S

    2016-04-01

    Nanodiamonds (ND) and silica nanoparticles (SiO2-NP) have been much investigated for their toxicity at high doses, little is known about their biological activity at low concentrations. Here we report the biphasic dose response of ND and SiO2-NP in modulating normal human facial skin fibroblasts (FSF1) in culture. ND and SiO2-NP at low concentration (up to 0.5 μg/ml) had beneficial effects on FSF1 in terms of increasing their proliferation and metabolic activity. Exposure of FSF1 cells to low levels of NP enhanced their wound healing ability in vitro and slowed down aging during serial passaging as measured by maintenance of youthful morphology, reduction in the rate of loss of telomeres, and the over all proliferative characteristics. Furthermore, NP treatment induced the activation of Nrf2- and FOXO3A-mediated cellular stress responses, including an increased expression of heme oxygenease (HO-1), sirtuin (SIRT1), and DNA methyltransferase II (DNMT2). These results imply that ND and SiO2-NP at low doses are potential hormetins, which exert mild stress-induced beneficial hormetic effects through improved survival, longevity, maintenance, repair and function of human cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An experimental study of the effect of total lymphoid irradiation on the survival of skin allografts

    International Nuclear Information System (INIS)

    Park, Charn Il; Han, Man Chung

    1981-01-01

    The study was undertaken to determine the effect of fractionated high-dose total lymphoid irradiation (TLI) on the survival of skin allograft despite major histocompatibility difference. Total lymphoid irradiation is a relatively safe form of radiotherapy, has been used extensively to treat lymphoid malignancies in humans with few side effects. A total of 90 rats, Sprague-Dawley rat as recipient and Wistar rat as donor, were used for the experiment, of which 10 rats were used to determine mixed lymphocyte response (MLR) for antigenic difference and skin allografts was performed in 30 rats given total lymphoid irradiation to assess the immunosuppressive effect of total lymphoid irradiation despite major histocompatibility difference. In addition, the peripheral white blood cell counts and the proportion of lymphocytes was studied in 10 rats given total lymphoid irradiation but no skin graft to determine the effects of bone marrow suppression. The results obtained are summarized as follows. 1. The optimum dose of total lymphoid irradiation was between 1800 rads to 2400 rads. 2. The survival of skin graft on rats given total lymphoid irradiation (23.2 ± 6.0 days) was prolonged about three folds as compared to unirradiated control (8.7 ± 1.3 days). 3. Total lymphoid irradiation resulted in a severe leukopenia with marked lymphopenia, but the count was normal by the end of 3rd week. 4. The study suggests that total lymphoid irradiation is a nonlethal procedure that could be used successfully in animals to transplant allograft across major histocompatibility barriers

  1. An experimental study of the effect of total lymphoid irradiation on the survival of skin allografts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Charn Il; Han, Man Chung [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    1981-06-15

    The study was undertaken to determine the effect of fractionated high-dose total lymphoid irradiation (TLI) on the survival of skin allograft despite major histocompatibility difference. Total lymphoid irradiation is a relatively safe form of radiotherapy, has been used extensively to treat lymphoid malignancies in humans with few side effects. A total of 90 rats, Sprague-Dawley rat as recipient and Wistar rat as donor, were used for the experiment, of which 10 rats were used to determine mixed lymphocyte response (MLR) for antigenic difference and skin allografts was performed in 30 rats given total lymphoid irradiation to assess the immunosuppressive effect of total lymphoid irradiation despite major histocompatibility difference. In addition, the peripheral white blood cell counts and the proportion of lymphocytes was studied in 10 rats given total lymphoid irradiation but no skin graft to determine the effects of bone marrow suppression. The results obtained are summarized as follows. 1. The optimum dose of total lymphoid irradiation was between 1800 rads to 2400 rads. 2. The survival of skin graft on rats given total lymphoid irradiation (23.2 {+-} 6.0 days) was prolonged about three folds as compared to unirradiated control (8.7 {+-} 1.3 days). 3. Total lymphoid irradiation resulted in a severe leukopenia with marked lymphopenia, but the count was normal by the end of 3rd week. 4. The study suggests that total lymphoid irradiation is a nonlethal procedure that could be used successfully in animals to transplant allograft across major histocompatibility barriers.

  2. Radon dose to the skin and the possible induction of skin cancers

    International Nuclear Information System (INIS)

    Eatough, J.P.; Henshaw, D.L.

    1991-01-01

    The radon related alpha particle dose equivalent to the basal layer of the epidermis has been calculated and found to be at least 2 mSv.y -1 , for exposed skin at the UK average radon exposure of 20 Bq.m -3 . A considerably greater dose equivalent may be received at this same radon concentration depending on the plateout conditions. Using standard risk factors 13% of skin cancers would theoretically be attributed to radon at the UK average exposure of 20 Bq.m -3 . Direct studies of skin cancer and radon in the home are needed before the validity of this prediction can be established. There is little evidence from high dose studies suggesting the induction of malignant melanoma by ionising radiation, although some circumstantial evidence exists, and the possibility that radon may be a co-factor with UV light in the induction of malignant melanoma, should not be dismissed. Due to the nature of the radiation risk factors the majority of any skin cancers linked to radon will simultaneously be linked to ultraviolet light exposure. (author)

  3. Dose factors for contamination of skin and clothing

    International Nuclear Information System (INIS)

    Henrichs, K.; Eiberweiser, C.; Paretzke, H.G.

    1985-11-01

    Methods are described for quantifying the radiation dose administered through radioactive contamination of the skin (and of clothing, in an approximative manner). The calculated results are presented in tables. The dose values established are of significance with regard to radiological assessment of contamination for the definition of dose limits, and for use as a criterion to select appropriate decontamination activities. Alpha, beta and monoenergetic electrons are of importance for estimating the absorbed dose in various skin depths, whereas for other body regions (as e.g. body organs) photon radiation has to be considered. The calculations are based on the assumption of homogeneous exposure of the skin, with the linear extension being large compared to the range of the emitted particle radiation. In order to be able to take into account potential penetration of radioactivity into deeper skin layers by diffusion or solution processes, the calculations have been made for contamination into various depths of the horny layers of the epidermis. The scheme of specific absorbed fraction (SAF) served as a basis for the uniform treatment of different radiation types for the calculation of dose values. (orig./HP) [de

  4. Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L. DC. on Skin Wound in Rats

    Directory of Open Access Journals (Sweden)

    Yuxin Pang

    2017-12-01

    Full Text Available Chinese herbal medicine (CHM evolved through thousands of years of practice and was popular not only among the Chinese population, but also most countries in the world. Blumea balsamifera (L. DC. as a traditional treatment for wound healing in Li Nationality Medicine has a long history of nearly 2000 years. This study was to evaluate the effects of total flavonoids from Blumea balsamifera (L. DC. on skin excisional wound on the back of Sprague-Dawley rats, reveal its chemical constitution, and postulate its action mechanism. The rats were divided into five groups and the model groups were treated with 30% glycerol, the positive control groups with Jing Wan Hong (JWH ointment, and three treatment groups with high dose (2.52 g·kg−1, medium dose (1.26 g·kg−1, and low dose (0.63 g·kg−1 of total flavonoids from B. balsamifera. During 10 consecutive days of treatment, the therapeutic effects of rates were evaluated. On day 1, day 3, day 5, day 7, and day 10 after treatment, skin samples were taken from all the rats for further study. Significant increases of granulation tissue, fibroblast, and capillary vessel proliferation were observed at day 7 in the high dose and positive control groups, compared with the model group, with the method of 4% paraformaldehyde for histopathological examination and immunofluorescence staining. To reveal the action mechanisms of total flavonoids on wound healing, the levels of CD68, vascular endothelial growth factor (VEGF, transforming growth factor-β1 (TGF-β1, and hydroxyproline were measured at different days. Results showed that total flavonoids had significant effects on rat skin excisional wound healing compared with controls, especially high dose ones (p < 0.05. Furthermore, the total flavonoid extract was investigated phytochemically, and twenty-seven compounds were identified from the total flavonoid sample by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass

  5. Repair of skin damage during fractionated irradiation with gamma rays and low-LET carbon ions

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Uzawa, Akiko; Takai, Nobuhiko; Fukawa, Takeshi; Furusawa, Yoshiya; Aoki, Mizuho; Hirayama, Ryoichi

    2006-01-01

    In clinical use of carbon-ion beams, a deep-seated tumor is irradiated with a Spread-Out Bragg peak (SOBP) with a high-linear energy transfer (LET) feature, whereas surface skin is irradiated with an entrance plateau, the LET of which is lower than that of the peak. The repair kinetics of murine skin damage caused by an entrance plateau of carbon ions was compared with that caused by photons using a scheme of daily fractionated doses followed by a top-up dose. Right hind legs received local irradiations with either 20 keV/μm carbon ions or γ rays. The skin reaction of the irradiated legs was scored every other day up to Day 35 using a scoring scale that consisted of 10 steps, ranging from 0.5 to 5.0. An isoeffect dose to produce a skin reaction score of 3.0 was used to obtain a total dose and a top-up dose for each fractionation. Dependence on a preceding dose and on the time interval of a top-up dose was examined using γ rays. For fractionated γ rays, the total dose linearly increased while the top-up dose linearly decreased with an increase in the number of fractions. The magnitude of damage repair depended on the size of dose per fraction, and was larger for 5.2 Gy than 12.5 Gy. The total dose of carbon ions with 5.2 Gy per fraction did not change till 2 fractions, but abruptly increased at the 3rd fraction. Factors such as rapid repopulation, induced repair and cell cycle synchronization are possible explanations for the abrupt increase. As an abrupt increase/decrease of normal tissue damage could be caused by changing the number of fractions in carbon-ion radiotherapy, we conclude that, unlike photon therapy, skin damage should be carefully studied when the number of fractions is changed in new clinical trials. (author)

  6. Measurement of off-axis and peripheral skin dose using radiochromic film

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, P.K.N.; Metcalfe, P.E.

    1998-01-01

    A radiotherapy skin dose profile can be obtained with radiochromic film. The central axis skin dose relative to D max for a 10x10cm 2 field size was found to be 22%, 17% and 15.5% for 6 MV, 10 MV and 18 MV photon beams. Peripheral dose increased with increasing field size. At 10 MV the skin dose 2 cm outside the geometric field edge was measured as 6%, 10% and 17% for 10x10cm 2 , 20x20cm 2 and 30x30cm 2 field sizes respectively. Off-axis skin dose decreased as distance increased from central axis for fields with Perspex block trays. For a 20x20cm 2 field, an approximately 5-8% drop in percentage skin dose was observed from central axis to the beam edge. (author)

  7. Concentration of total proteins in blood plasma of chickens hatched from irradiated eggs with low dose gamma radiation

    International Nuclear Information System (INIS)

    Vilic, M.; Kraljevic, P.; Miljanic, S.; Simpraga, M.

    2005-01-01

    It is known that low-dose ionising radiation may have stimulating effects on chickens. Low doses may also cause changes in the concentration of blood plasma total proteins, glucose and cholesterol in chickens. This study investigates the effects of low dose gamma-radiation on the concentration of total proteins in the blood plasma of chickens hatched from eggs irradiated with a dose of 0.15 Gy on incubation days 7 and 19. Results were compared with the control group (chickens hatched from non-irradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from the heart, and later from the wing vein on days 1, 3, 5, 7,10, 20, 30 and 42. The concentration of total proteins was determined spectrophotometrically using Boehringer Mannheim GmbH optimised kits. The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 7 showed a statistically significant decrease on the sampling day 3 (P less than 0.05) and 7 (P less than 0.01). The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 19 showed a statistically significant increase only on sampling day 1 (P less than 0.05). These results suggest that exposure of eggs to 0.15 Gy of gamma-radiation on the 7th and 19th day of incubation could produce different effects on the protein metabolism in chickens.(author)

  8. Skin cancer in patients with chronic radiation dermatitis

    International Nuclear Information System (INIS)

    Davis, M.M.; Hanke, C.W.; Zollinger, T.W.; Montebello, J.F.; Hornback, N.B.; Norins, A.L.

    1989-01-01

    The cases of 76 patients with chronic radiation dermatitis resulting from low-dose ionizing radiation for benign disease were reviewed retrospectively for risk factors leading to the development of neoplasia. The patients were studied with respect to original hair color, eye color, sun reactive skin type, benign disease treated, area treated, age at treatment, and age at development of first skin cancer. Analysis of data showed 37% of patients had sun-reactive skin type I, 27% had type II, and 36% had type III. Types IV through VI were not represented. There appeared to be an overrepresentation of types I and II. Increased melanin pigmentation may therefore be either directly or indirectly protective against the development of skin cancers in patients who have received low-dose superficial ionizing radiation for benign disease. The sun-reactive skin type of patients with chronic radiation dermatitis may be used as a predictor of skin cancer risk when the total dose of ionizing radiation is not known

  9. Verification of skin dose according to the location of tumor in Tomotherapy

    International Nuclear Information System (INIS)

    Yoon, Bo Reum; Park, Su Yeon; Park, Byoung Suk; KIm, Jong Sik; Song, Ki Won

    2014-01-01

    To verify the skin dose in Tomotherapy-based radiation treatment according to the change in tumor locations, skin dose was measured by using Gafchromic EBT3 film and compared with the planned doses to find out the gap between them. In this study, to measure the skin dose, I'm RT Phantom(IBA Dosimetry, Germany) was utilized. After obtaining the 2.5 mm CT images, tumor locations and skin dose measuring points were set by using Pinnacle(ver 9.2, Philips Medical System, USA). The tumor location was decided to be 5 mm and 10 mm away from surface of the phantom and center. Considering the attenuation of a Tomo-couch, we ensured a symmetric placement between the ceiling and floor directions of the phantom. The measuring point of skin doses was set to have 3 mm and 5 mm thickness from the surface. Measurement was done 3 times. By employing TomoHD(TomoHD treatment system, Tomotherapy Inc., Madison, Wisconsin, USA), we devised Tomotherapy plans, measured 3 times by inserting Gafchromic EBT3 film into the phantom and compared the measurement with the skin dose treatment plans. The skin doses in the upper part of the phantom, when the tumor was located in the center, were found to be 7.53 cGy and 7.25 cGy in 5 mm and 3 mm respectively. If placed 5 mm away from the skin in the ceiling direction, doses were 18.06 cGy and 16.89 cGy; if 10 mm away, 20.37 cGy and 18.27 cGy, respectively. The skin doses in the lower part of the phantom, when the tumor was located in the center, recorded 8.82 cGy and 8.29 cGy in 5 mm and 3 mm, each; if located 5mm away from the lower part skin, 21.69 cGy and 19.78 cGy were respectively recorded; and if 10 mm away, 20.48 cGy and 19.57 cGy were recorded. If the tumor was placed in the center, skin doses were found to increase by 3.2-17.1% whereas if the tumor is 5 mm away from the ceiling part, the figure decreased to 2.8-9.0%. To the Tomo-couch direction, skin doses showed an average increase of 11% or over, compared to the planned treatment

  10. Prolonged bone marrow and skin allograft survival after pretransplant conditioning with cyclophosphamide and total lymphoid irradiation

    International Nuclear Information System (INIS)

    Kersey, J.H.; Kruger, J.; Song, C.; Kloster, B.

    1980-01-01

    Current studies were designed to provide long-term survival of allogeneic skin and bone marrow in mice preconditioned with various combinations of cyclophosphamide (CY) and/or total lymphoid irradiation (TLI). Long-term skin graft and bone marrow survival was obtained across the major histocompatibility barrier (BALB/c into C57BL/6) using pregrafting conditioning with either fractionated TLI or the combination of CY with a single dose of TLI. CY alone and a single dose of TLI alone were relatively ineffective as regrafting immunosuppressive combinations. Allogeneic bone marrow was required for long-term skin graft survival with either conditioning regimen. Allogeneic marrow transplantation resulted in somewhat more deaths than syngeneic transplantation with both CY + TLI and fractionated TLI

  11. Determination of entrance skin dose from diagnostic X-ray of human ...

    African Journals Online (AJOL)

    patient during x-ray examination in Federal Medical Centre, Keffi in Nasarawa state, Nigeria. Entrance skin doses (ESDs) for a common type of x-ray procedures, namely chest AP/PA (anterior/posterior) were measured. A total of 200 data were collected from patients who were exposed to diagnostic X-ray during their routine ...

  12. Skin dose variation: influence of energy

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: This research aimed to quantitatively evaluate the differences in percentage dose of maximum for 6MV and 18MV x-ray beams within the first lcm of interactions. Thus provide quantitative information regarding the basal, dermal and subcutaneous dose differences achievable with these two types of high-energy x-ray beams. Percentage dose of maximum build up curves are measured for most clinical field sizes using 6MV and 18MV x-ray beams. Calculations are performed to produce quantitative results highlighting the percentage dose of maximum differences delivered to various depths within the skin and subcutaneous tissue region by these two beams Results have shown that basal cell layer doses are not significantly different for 6MV and 18Mv x-ray beams At depths beyond the surface and basal cell layer there is a measurable and significant difference in delivered dose. This variation increases to 20% of maximum and 22% of maximum at Imm and 1cm depths respectively. The percentage variations are larger for smaller field sizes where the photon in phantom component of the delivered dose is the most significant contributor to dose By producing graphs or tables of % dose differences in the build up region we can provide quantitative information to the oncologist for consideration (if skin and subcutaneous tissue doses are of importance) during the beam energy selection process for treatment. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  13. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 gamma-ray beams. Either the Klein-Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source-surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  14. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 γ-ray beams. Either the Klein--Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source--surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  15. Kodak EDR2 film for patient skin dose assessment in cardiac catheterization procedures.

    Science.gov (United States)

    Morrell, R E; Rogers, A T

    2006-07-01

    Patient skin doses were measured using Kodak EDR2 film for 20 coronary angiography (CA) and 32 percutaneous transluminal coronary angioplasty (PTCA) procedures. For CA, all skin doses were well below 1 Gy. However, 23% of PTCA patients received skin doses of 1 Gy or more. Dose-area product (DAP) was also recorded and was found to be an inadequate indicator of maximum skin dose. Practical compliance with ICRP recommendations requires a robust method for skin dosimetry that is more accurate than DAP and is applicable over a wider dose range than EDR2 film.

  16. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin.

    Science.gov (United States)

    Wang, Frank; Smith, Noah R; Tran, Bao Anh Patrick; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Solar UV irradiation causes photoaging, characterized by fragmentation and reduced production of type I collagen fibrils that provide strength to skin. Exposure to UV-B irradiation (280-320 nm) causes these changes by inducing matrix metalloproteinase 1 and suppressing type I collagen synthesis. The role of UV-A irradiation (320-400 nm) in promoting similar molecular alterations is less clear yet important to consider because it is 10 to 100 times more abundant in natural sunlight than UV-B irradiation and penetrates deeper into the dermis than UV-B irradiation. Most (approximately 75%) of solar UV-A irradiation is composed of UV-A1 irradiation (340-400 nm), which is also the primary component of tanning beds. To evaluate the effects of low levels of UV-A1 irradiation, as might be encountered in daily life, on expression of matrix metalloproteinase 1 and type I procollagen (the precursor of type I collagen). In vivo biochemical analyses were conducted after UV-A1 irradiation of normal human skin at an academic referral center. Participants included 22 healthy individuals without skin disease. Skin pigmentation was measured by a color meter (chromometer) under the L* variable (luminescence), which ranges from 0 (black) to 100 (white). Gene expression in skin samples was assessed by real-time polymerase chain reaction. Lightly pigmented human skin (L* >65) was exposed up to 4 times (1 exposure/d) to UV-A1 irradiation at a low dose (20 J/cm2), mimicking UV-A levels from strong sun exposure lasting approximately 2 hours. A single exposure to low-dose UV-A1 irradiation darkened skin slightly and did not alter matrix metalloproteinase 1 or type I procollagen gene expression. With repeated low-dose UV-A1 irradiation, skin darkened incrementally with each exposure. Despite this darkening, 2 or more exposures to low-dose UV-A1 irradiation significantly induced matrix metalloproteinase 1 gene expression, which increased progressively with successive exposures. Repeated UV-A1

  17. Technical background for shallow (skin) dose equivalent evaluations

    International Nuclear Information System (INIS)

    Ashley, J.C.; Turner, J.E.; Crawford, O.H.; Hamm, R.N.; Reaves, K.L.; McMahan, K.L.

    1991-01-01

    Department of Energy Order 5480.11 describes procedures for radiation protection for occupational workers. The revisions dealing with non-uniform exposure to the skin are the subject of this report. We describe measurements and analysis required to assess shallow (skin) dose equivalent from skin contamination. 6 refs., 4 tabs

  18. Characteristics of dosemeter types for skin dose measurements in practice

    International Nuclear Information System (INIS)

    Van, D. J.; Bosmans, H.; Marchal, G.; Wambersie, A.

    2005-01-01

    A growing number of papers report deterministic effects in the skin of patients who have undergone interventional radiological procedures. Dose measurements, and especially skin dose measurements, are therefore increasingly important. Methods and acceptable dosemeters are, however, not clearly defined. This paper is the result of a literature overview with regard to assessing the entrance skin dose during radiological examinations by putting a dosemeter on the patient's skin. The relevant intrinsic characteristics, as well as some examples of clinical use of the different detector types, are presented. In this respect, thermoluminescence, scintillation, semiconductor and film dosemeters are discussed and compared with respect to their practical use. (authors)

  19. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  20. Total body photography for skin cancer screening.

    Science.gov (United States)

    Dengel, Lynn T; Petroni, Gina R; Judge, Joshua; Chen, David; Acton, Scott T; Schroen, Anneke T; Slingluff, Craig L

    2015-11-01

    Total body photography may aid in melanoma screening but is not widely applied due to time and cost. We hypothesized that a near-simultaneous automated skin photo-acquisition system would be acceptable to patients and could rapidly obtain total body images that enable visualization of pigmented skin lesions. From February to May 2009, a study of 20 volunteers was performed at the University of Virginia to test a prototype 16-camera imaging booth built by the research team and to guide development of special purpose software. For each participant, images were obtained before and after marking 10 lesions (five "easy" and five "difficult"), and images were evaluated to estimate visualization rates. Imaging logistical challenges were scored by the operator, and participant opinion was assessed by questionnaire. Average time for image capture was three minutes (range 2-5). All 55 "easy" lesions were visualized (sensitivity 100%, 90% CI 95-100%), and 54/55 "difficult" lesions were visualized (sensitivity 98%, 90% CI 92-100%). Operators and patients graded the imaging process favorably, with challenges identified regarding lighting and positioning. Rapid-acquisition automated skin photography is feasible with a low-cost system, with excellent lesion visualization and participant acceptance. These data provide a basis for employing this method in clinical melanoma screening. © 2014 The International Society of Dermatology.

  1. Assessment of peak skin dose in interventional cardiology: A comparison between Gafchromic film and dosimetric software em.dose.

    Science.gov (United States)

    Greffier, J; Van Ngoc Ty, C; Bonniaud, G; Moliner, G; Ledermann, B; Schmutz, L; Cornillet, L; Cayla, G; Beregi, J P; Pereira, F

    2017-06-01

    To compare the use of a dose mapping software to Gafchromic film measurement for a simplified peak skin dose (PSD) estimation in interventional cardiology procedure. The study was conducted on a total of 40 cardiac procedures (20 complex coronary angioplasty of chronic total occlusion (CTO) and 20 coronary angiography and coronary angioplasty (CA-PTCA)) conducted between January 2014 to December 2015. PSD measurement (PSD Film ) was obtained by placing XR-RV3 Gafchromic under the patient's back for each procedure. PSD (PSD em.dose ) was computed with the software em.dose©. The calculation was performed on the dose metrics collected from the private dose report of each procedure. Two calculation methods (method A: fluoroscopic kerma equally spread on cine acquisition and B: fluoroscopic kerma is added to one air Kerma cine acquisition that contributes to the PSD) were used to calculate the fluoroscopic dose contribution as fluoroscopic data were not recorded in our interventional room. Statistical analyses were carried out to compare PSD Film and PSD em.dose . The PSD Film median (1st quartile; 3rd quartile) was 0.251(0.190;0.336)Gy for CA-PTCA and 1.453(0.767;2.011)Gy for CTO. For method-A, the PSD em.dose was 0.248(0.182;0.369)Gy for CA-PTCA and 1.601(0.892;2.178)Gy for CTO, and 0.267(0.223;0.446)Gy and 1.75 (0.912;2.584)Gy for method-B, respectively. For the two methods, the correlation between PSD Film and PSD em.dose was strong. For all cardiology procedures investigated, the mean deviation between PSD Film and PSD em.dose was 3.4±21.1% for method-A and 17.3%±23.9% for method-B. The dose mapping software is convenient to calculate peak skin dose in interventional cardiology. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Genome Wide Evaluation of Normal Human Tissue in Response to Controlled, In vivo Low-Dose Low LET Ionizing Radiation Exposure: Pathways and Mechanisms Final Report, September 2013

    Energy Technology Data Exchange (ETDEWEB)

    Rocke, David M. [University of California Davis

    2013-09-09

    During course of this project, we have worked in several areas relevant to low-dose ionizing radiation. Using gene expression to measure biological response, we have examined the response of human skin exposed in-vivo to radation, human skin exposed ex-vivo to radiation, and a human-skin model exposed to radiation. We have learned a great deal about the biological response of human skin to low-dose ionizing radiation.

  3. Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    Ahn, Jong Ho; Hong, Chae Seon; Kim, Jin Man; Jang, Jun Young

    2008-01-01

    Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. But imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in separately H and N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. The results of the measured skin dose are described in here. The skin dose of Head and Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low m

  4. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  5. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.

    Science.gov (United States)

    Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam

    2017-08-01

    A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.

  6. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats

    Directory of Open Access Journals (Sweden)

    Nasrollah Jabbari

    2017-08-01

    Full Text Available A recent hypothesis has revealed that low-dose irradiation (LDI with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam and indirect (gamma-ray low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG–I and IG–II and respectively exposed to electron and gamma-radiations (75 cGy immediately after the surgical procedure. The third group was considered as the control (CG and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing.

  7. Persistent DNA damage after high dose in vivo gamma exposure of minipig skin.

    Directory of Open Access Journals (Sweden)

    Emad A Ahmed

    Full Text Available Exposure to high doses of ionizing radiation (IR can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin.IR-induced DNA damage, repair and cellular survival were studied in 15 cm(2 of minipig skin exposed in vivo to ~50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of 3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+ were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days.Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios.

  8. Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation

    DEFF Research Database (Denmark)

    Bogh, Morten K B; Schmedes, Anne; Philipsen, Peter A

    2010-01-01

    UVB radiation increases serum vitamin D level expressed as 25-hydroxyvitamin-D(3) (25(OH)D), but the influence of skin pigmentation, baseline 25(OH)D level, and total cholesterol has not been well characterized. To determine the importance of skin pigmentation, baseline 25(OH)D level, and total...... cholesterol on 25(OH)D production after UVB exposure, 182 persons were screened for 25(OH)D level. A total of 50 participants with a wide range in baseline 25(OH)D levels were selected to define the importance of baseline 25(OH)D level. Of these, 28 non-sun worshippers with limited past sun exposure were used...... to investigate the influence of skin pigmentation and baseline total cholesterol. The participants had 24% of their skin exposed to UVB (3 standard erythema doses) four times every second or third day. Skin pigmentation and 25(OH)D levels were measured before and after the irradiations. Total cholesterol...

  9. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    International Nuclear Information System (INIS)

    Canuto, K S; Sergio, L P S; Mencalha, A L; Fonseca, A S; Paoli, F

    2016-01-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases. (paper)

  10. Technical basis for beta skin dose calculations at the Y-12 Plant

    International Nuclear Information System (INIS)

    Thomas, J.M.; Bogard, R.S.

    1994-03-01

    This report describes the methods for determining shallow dose equivalent to workers at the Oak Ridge Y-12 Plant from skin contamination detected by survey instrumentation. Included is a discussion of how the computer code VARSKIN is used to calculate beta skin dose and how the code input parameters affect skin dose calculation results. A summary of Y-12 Plant specific assumptions used in performing VARSKIN calculations is presented. Derivations of contamination levels that trigger the need for skin dose assessment are given for both enriched and depleted uranium with the use of Y-12 Plant site-specific survey instruments. Department of Energy recording requirements for nonuniform exposure of the skin are illustrated with sample calculations

  11. Multilayer detector for measuring absorbed dose in skin

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method of skin dosimetry using multilayer dosimeters is described that allows the skin-depth distribution of absorbed dose to be estimated. A method of quantitative estimation and prediction of the degree of skin radiation damage using a three-layer dosimeter is demonstrated. Dosimeters are holders of tissue-equivalent material that contain photographic film, a scintillator, thermoluminophor, or any other radiation-sensitive element

  12. Research and development of a beta skin-dose monitor using silicon detectors

    International Nuclear Information System (INIS)

    Chung Manho.

    1991-01-01

    The purpose of the research is to develop improved ways to computer and measure the beta skin dose. Beta spectra for the various sources were calculated based on the Fermi beta decay theory. The calculated average energies of the spectra agreed with the literature values within 6%. Monte Carlo electron transport codes have been developed for use on microcomputers. The one-dimensional code ZEBRA has been converted to a microcomputer version called Eltran2 which runs on the Macintosh or any IBM compatible microcomputers. Eltran2 has then been modified into a two-dimensional program called Eltran3. Using Eltran2 and Eltran3, different source distributions and the hot particle dose have been studied. It has been found that the VARSKIN code overestimates the skin dose from hot particles by about 10 to 40% in comparison with Eltran3 calculations, because the VARSKIN code is based on the data tables for an unbounded medium. An ion-implanted silicon detector was selected because of its small size, high sensitivity, and low leakage current. To cover a wide range of dose rate, both the pulse and current mode operations of the silicon detector were used, with an overlap of one order of magnitude in the measurable dose rate ranges. By using a gradient shield of about 7 mg/cm 2 on the detector, dose gradient measurements have been performed. Five 60 Co hot particles received from GPU Nuclear Corporation have been measured by the silicon detector and the measurements agreed well with Eltran3 calculations. In the pulse mode, variation of the depletion depth of the silicon detector due to the changes of bias voltage was confirmed. Based on this research, a prototype beta skin dose monitor has been constructed. The device includes an 8-bit analogue-to-digital converter and a Z-80 microprocessor with a machine-coded program, to calculate the skin dose

  13. The role of low-dose total body irradiation in treatment of non-Hodgkin's lymphoma: a new look at an old method

    International Nuclear Information System (INIS)

    Safwat, A.

    2000-01-01

    The use of low-dose total body irradiation (LTBI) in treatment of lymphomatous malignancies dates back to the 1920s. The usual practice was to give very low individual TBI fraction sizes (0. 1-0.25 Gy) several times a week to a total dose of 1.5-2 Gy. Despite this very low total dose, LTBI could induce long term remissions and was always as effective as the chemotherapy to which it was compared. In modem radiotherapy, LTBI is still a valid option in treatment of chronic lymphocytic leukaemia (CLL) and the advanced stages of indolent low-grade non-Hodgkin's lymphoma (NHL). Its use in the early stages of low-grade NHL is under investigation in a large multi-institutional trial. The efficacy of LTBI is believed to stem from three mechanisms, namely; immune-enhancement, induction of apoptosis, and the intrinsic hypersensitivity to low-radiation doses demonstrated in many cell lines and tumour systems. Thus, LTBI seems to provide 'alternative' mechanisms of action against cancer cells. This should encourage researchers to explore strategies that integrate LTBI in new and innovative experimental treatment protocols that explore the possible synergism between LTBI and chemotherapy, biological response modifiers and/or immunotherapy. The increased incidence of secondary leukaemia that occurs when LTBI is combined with alkylating agents and/or total lymphoid irradiation should be kept in mind when designing such protocols as it may limit the use of LTBI in highly curable diseases and young patients in whom long survival is expected. (author)

  14. Relationship to carcinogenesis of repetitive low-dose radiation exposure

    International Nuclear Information System (INIS)

    Ootsuyama, Akira

    2016-01-01

    We studied the carcinogenic effects caused by repetitive irradiation at a low dose, which has received attention in recent years, and examined the experimental methods used to evaluate radiation-induced carcinogenesis. For this experiment, we selected a mouse with as few autochthonous cancers as possible. Skin cancer was selected as the target for analysis, because it is a rare cancer in mice. Beta-rays were selected as the radiation source. The advantage of using beta-rays is weaker penetration power into tissues, thus protecting organs, such as the digestive and hematogenous organs. The benefit of our experimental method is that only skin cancer requires monitoring, and it is possible to perform long-term experiments. The back skin of mice was exposed repetitively to beta-rays three times a week until the occurrence of cancer or death, and the dose per exposure ranged from 0.5 to 11.8 Gy. With the high-dose range (2.5-11.8 Gy), the latency period and carcinogenic rate were almost the same in each experimental group. When the dose was reduced to 1-1.5 Gy, the latency period increased, but the carcinogenic rate remained. When the dose was further reduced to 0.5 Gy, skin cancer never happened, even though we continued irradiation until death of the last mouse in this group. The lifespan of 0.5 Gy group mice was the same as that of the controls. We showed that the 0.5 Gy dose did not cause cancer, even in mice exposed repetitively throughout their life span, and thus refer to 0.5 Gy as the threshold-like dose. (author)

  15. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  16. Report of task group on the biological basis for dose limitation in the skin

    International Nuclear Information System (INIS)

    1989-08-01

    Researchers have drawn attention to what they consider inconsistencies in the manner in which ICRP have considered skin in relation to the effective dose equivalent. They urge that the dose to the skin should be considered routinely for inclusion in the effective dose equivalent in the context of protection of individuals and population groups. They note that even with a weighting factor of only 0.01 that the dose to the skin can be a significant contributor to the effective dose equivalent including skin for practical exposure conditions. In the case of many exposures the risk to the skin can be ignored but exposure in an uniformly contaminated cloud that might occur with 85 Kr the dose to the skin could contribute 60% of the stochastic risk if included in the effective dose equivalent with a W T of 0.01. Through the years and even today the same questions about radiation effects in the skin and dosimetry keep being asked. This report collates the available data and current understanding of radiation effects on the skin, and may make it possible to estimate risks more accurately and to improve the approach to characterizing skin irradiations. 294 refs., 29 figs

  17. Two-dimensional mapping of underdosed areas using radiochromic film for patients undergoing total skin electron beam radiotherapy

    International Nuclear Information System (INIS)

    Gamble, Lisa M.; Farrell, Thomas J.; Jones, Glenn W.; Hayward, Joseph E.

    2005-01-01

    Purpose: To demonstrate the viability of radiochromic film as an in vivo, two-dimensional dosimeter for the measurement of underdosed areas in patients undergoing total skin electron beam (TSEB) radiotherapy. The results were compared with thermoluminescent dosimeter measurements. Methods and Materials: Dosimetry results are reported for an inframammary fold of 2 patients treated using a modified version of the Stanford six-position (i.e., six-field and dual-beam) TSEB technique. The results are presented as contour plots of film optical density and percentage of dose. A linear dose profile measured from film was compared with the thermoluminescent dosimeter measurements. Results: The results showed that the percentage doses as measured by film are in good agreement with those measured by the thermoluminescent dosimeters. The isodose contour plots provided by film can be used as a two-dimensional dose map for a patient when determining the size of the supplemental patch fields. Conclusion: Radiochromic film is a viable dosimetry tool that the radiation oncologist can use to understand the surface dose heterogeneity better across complex concave regions of skin to help establish more appropriate margins to patch underdosed areas. Film could be used for patients undergoing TSEB for disorders such as mycosis fungoides or undergoing TSEB or regional skin electron beam for widespread skin metastases from breast cancer and other malignancies

  18. Guideline values for skin decontamination measures based on nuclidspecific dose equivalent rate factors

    International Nuclear Information System (INIS)

    Pfob, H.; Heinemann, G.

    1992-01-01

    Corresponding dose equivalent rate factors for various radionuclides are now available for determining the skin dose caused by skin contamination. These dose equivalent rate factors take into account all contributions from the types of radiation emitted. Any limits for skin decontamination measures are nowhere contained or determined yet. However, radiological protection does in practice require at least guideline values in order to prevent unsuitable or detrimental measures that can be noticed quite often. New calculations of dose equivalent rate factors for the skin now make the recommendation of guideline values possible. (author)

  19. Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation.

    Science.gov (United States)

    Bogh, Morten K B; Schmedes, Anne V; Philipsen, Peter A; Thieden, Elisabeth; Wulf, Hans C

    2010-02-01

    UVB radiation increases serum vitamin D level expressed as 25-hydroxyvitamin-D(3) (25(OH)D), but the influence of skin pigmentation, baseline 25(OH)D level, and total cholesterol has not been well characterized. To determine the importance of skin pigmentation, baseline 25(OH)D level, and total cholesterol on 25(OH)D production after UVB exposure, 182 persons were screened for 25(OH)D level. A total of 50 participants with a wide range in baseline 25(OH)D levels were selected to define the importance of baseline 25(OH)D level. Of these, 28 non-sun worshippers with limited past sun exposure were used to investigate the influence of skin pigmentation and baseline total cholesterol. The participants had 24% of their skin exposed to UVB (3 standard erythema doses) four times every second or third day. Skin pigmentation and 25(OH)D levels were measured before and after the irradiations. Total cholesterol was measured at baseline. The increase in 25(OH)D level after UVB exposure was negatively correlated with baseline 25(OH)D level (Ppigmentation. In addition, we paired a dark-skinned group with a fair-skinned group according to baseline 25(OH)D levels and found no differences in 25(OH)D increase after identical UVB exposure.

  20. MO-D-213-04: The Proximity to the Skin of PTV Affects PTV Coverage and Skin Dose for TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T; Higgins, P; Watanabe, Y [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: The proximity to the skin surface of the PTV for the patients with skin disease could be a concern in terms of the PTV coverage and actual surface dose (SD). IMRT optimization algorithms increase the beam intensity close to the skin in order to compensate for lack of scattering material, leading to enhanced SD but potential hot spots. This study aims to investigate the effect of PTV proximity to the skin on planning and measured SD Methods: All measurements were done for 6 MV X-ray beam of Helical TomoTherapy. An anthropomorphic phantom was scanned in a CT simulator in a routine manner with thermoplastic mask immobilization. PTVs were created with varying distances to the skin of 0 mm -(PTV1), 1 mm- (PTV2), 2 mm-(PTV3) and 3 mm-(PTV4). Also, a 5 mm bolus was used with PTV1 (PTV5). All planning constraints were kept the same in all studies (hard constraint: 95% of the prescription dose covered 95% of the PTV). Gafchromic film (EBT3) was placed under the mask on the phantom surface, and the resulting dose was estimated using RIT software. Results: Optimizing the dose using different PTVs lead to average planned target doses of 10.8, 10.3, 10.2, 10.3 and 10.0 Gy, with maximum doses 12.2, 11.2, 11.1, 11.1 and 10.0 Gy for PTV1, PTV2, PTV3, PTV4 and PTV5, respectively. EBT3 measurements indicated a significant decrease of SD with skin distance by 12.7% (PTV1), 21.9% (PTV2), 24.8% (PTV3) and 28.4% (PTV4) comparing to prescription dose. Placement of a 5 mm bolus on the phantom surface resulted in a SD close to prescribed (+0.5%). Conclusion: This work provides a clear demonstration of the relationship between the skin dose and the PTV to the skin distance. The results indicate the necessity of a bolus even for TomoTherapy when high skin dose is required.

  1. MO-D-213-04: The Proximity to the Skin of PTV Affects PTV Coverage and Skin Dose for TomoTherapy

    International Nuclear Information System (INIS)

    Reynolds, T; Higgins, P; Watanabe, Y

    2015-01-01

    Purpose: The proximity to the skin surface of the PTV for the patients with skin disease could be a concern in terms of the PTV coverage and actual surface dose (SD). IMRT optimization algorithms increase the beam intensity close to the skin in order to compensate for lack of scattering material, leading to enhanced SD but potential hot spots. This study aims to investigate the effect of PTV proximity to the skin on planning and measured SD Methods: All measurements were done for 6 MV X-ray beam of Helical TomoTherapy. An anthropomorphic phantom was scanned in a CT simulator in a routine manner with thermoplastic mask immobilization. PTVs were created with varying distances to the skin of 0 mm -(PTV1), 1 mm- (PTV2), 2 mm-(PTV3) and 3 mm-(PTV4). Also, a 5 mm bolus was used with PTV1 (PTV5). All planning constraints were kept the same in all studies (hard constraint: 95% of the prescription dose covered 95% of the PTV). Gafchromic film (EBT3) was placed under the mask on the phantom surface, and the resulting dose was estimated using RIT software. Results: Optimizing the dose using different PTVs lead to average planned target doses of 10.8, 10.3, 10.2, 10.3 and 10.0 Gy, with maximum doses 12.2, 11.2, 11.1, 11.1 and 10.0 Gy for PTV1, PTV2, PTV3, PTV4 and PTV5, respectively. EBT3 measurements indicated a significant decrease of SD with skin distance by 12.7% (PTV1), 21.9% (PTV2), 24.8% (PTV3) and 28.4% (PTV4) comparing to prescription dose. Placement of a 5 mm bolus on the phantom surface resulted in a SD close to prescribed (+0.5%). Conclusion: This work provides a clear demonstration of the relationship between the skin dose and the PTV to the skin distance. The results indicate the necessity of a bolus even for TomoTherapy when high skin dose is required

  2. Measurement of dose to skin using TLD of several radiodiagnostic studies in San Jose, Costa Rica

    International Nuclear Information System (INIS)

    Mora, P.

    1998-01-01

    It is quantified the radiation doses on skin for several radiodiagnostic studies in patients of the Calderon Guardia Hospital in San Jose, Costa Rica at the period October 1997-September 1998 using thermoluminescent dosemeters TLD 100. The crystals receive the decoction standard procedures and they are arranged at the middle of the irradiation field. For a total of 973 radiodiagnostic studies it was found that the dose on skin in mGy are: 2.09 for thorax AP/AP, 5.33 for thorax LAT, 5.35 for skull AP/PA, 2.98 for skull LAT, 10.74 for abdomen, hips and pelvis, 6.20 for spines AP, 9.35 for spines LAT, 11.48 for lumbar columns AP, 29.99 for lumbar columns LAT and 6.87 for intravenous skin diagrams (first plate ap). It is produced thus the first reference bank for the national hospitals, which is compared with the orientation levels of doses for IAEA. Recommendations to diminish the collective doses through quality control programs are discussed, taking as goal to have got radiographs of excellent diagnostic quality, but with the less possible doses. (Author)

  3. Changing Default Fluoroscopy Equipment Settings Decreases Entrance Skin Dose in Patients.

    Science.gov (United States)

    Canales, Benjamin K; Sinclair, Lindsay; Kang, Diana; Mench, Anna M; Arreola, Manuel; Bird, Vincent G

    2016-04-01

    Proper fluoroscopic education and protocols may reduce the patient radiation dose but few prospective studies in urology have been performed. Using optically stimulated luminescent dosimeters we tested whether fluoroscopy time and/or entrance skin dose would decrease after educational and radiation reduction protocols. At default manufacturer settings fluoroscopy time and entrance skin dose were prospectively measured using optically stimulated luminescent dosimeters in patients undergoing ureteroscopy, retrograde pyelogram/stent or percutaneous nephrolithotomy with access for stone disease. A validated radiation safety competency test was administered to urology faculty and residents before and after web based, hands-on fluoroscopy training. Default fluoroscopy settings were changed from continuous to intermittent pulse rate and from standard to half-dose output. Fluoroscopy time and entrance skin dose were then measured again. The cohorts of 44 pre-protocol and 50 post-protocol patients with stones were similarly matched. The change in mean fluoroscopy time and entrance skin dose from pre-protocol to post-protocol was -0.6 minutes and -11.6 mGy (33%) for percutaneous nephrolithotomy (p = 0.62 and default settings to intermittent pulse rate (12 frames per second) and half-dose lowered the entrance skin dose by 30% across all endourology patients but most significantly during percutaneous nephrolithotomy. To limit patient radiation exposure fluoroscopy default settings should be decreased before all endourology procedures and image equipment manufacturers should consider lowering standard default renal settings. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Skin and gonadal dose reduction during hip radiography of the bull

    International Nuclear Information System (INIS)

    Wood, A.K.W.; Blockey, deB.; Reynolds, K.M.; Leith, I.S.; Burns, P.A.

    1979-01-01

    Radiology is being used to an increasing extent in the clinical diagnosis of hip lameness in bulls. Consequent gonadal doses may have important implications in later breeding programmes. Skin and gonadal doses were recorded during hip radiography of 18 bulls. An additional 0.13 mm copper filtration reduced skin dose by more than one third, but had no effect on gonadal dose. The average radiation dose to the gonads was approximately halved by completely surrounding the scrotum with lead sheeting 0.95 mm in thickness. (author)

  5. Evaluation of skin entrance dose imparted on pediatric patients by thorax exams

    International Nuclear Information System (INIS)

    Oliveira, Mercia L.; Khoury, Helen; Drexler, Guenter; GSF-National Research Center for Environment and Health, Neuherberg; Barros, Edison

    2001-01-01

    In this work the results of a survey of skin entrance dose imparted on pediatric patients are present. Positioning the thermo luminescence dosimeters in contact with the patient's skin, in the center of the incident X-ray beam, collected the skin entrance dose data. The patients were grouped in five age groups: infants, 1,1 to 4 years, 4,1 to 6 years, 6,1 to 10 years and older than 10 years. The results show that the average of skin entrance doses is very higher as compared to the European Community Commission reference levels and to other values found in literature. (author)

  6. Response of pig skin to fractionated radiation doses

    International Nuclear Information System (INIS)

    Wiernik, G.; Hopewell, J.W.; Patterson, T.J.S.; Young, C.M.A.; Foster, J.L.

    1977-01-01

    The individual components of a fractionated course of irradiation treatment have been considered separately. Methods of accurate measurement of individual parameters has brought to light different interpretations of the observations. Reasons are given for the necessity of having a radiobiological model which has a direct relevance to the clinical situation. Results are reported for fractionated regimes of irradiation in which the dose has been varied above and below normal tissue tolerance which has been equated with clinical skin necrosis. The components of the acute skin reaction, erythema, pigmentation and desquamation have been analysed separately and their contribution as a method of measurement assessed. Initially, the range of numerical scores attributed to erythema did not reach the scores attributed to necrosis but we now believe that radiation damage expressed as erythema can move directly into necrosis without passing through desquamation. Desquamation, on the other hand, only became a useful parameter at higher dose levels; it has also been shown to be a component associated with skin breakdown. Pigmentation showed no dose response at the dose levels employed in our experiments and it is our belief that this is due to this system being fully saturated under these circumstances. Measurement of the late radiation reaction in the skin has been considered in detail and our results have been expressed by comparing the relative lengths of irradiated and control fields in the same pig. From these findings iso-effect graphs have been constructed and time and fractionation factors have been derived. (author)

  7. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  8. Enhancement of Skin Permeation and Skin Immunization of Ovalbumin Antigen via Microneedles.

    Science.gov (United States)

    Pamornpathomkul, Boonnada; Rojanarata, Theerasak; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2017-10-01

    The purpose of this study was to evaluate the use of different types of microneedles and doses of ovalbumin antigen for in vitro skin permeation and in vivo immunization. In vitro skin permeation experiments and confocal laser scanning microscopy revealed that hollow microneedles had a superior enhancing effect on skin permeation compared with a solid microneedle patch and untreated skin by efficiently delivering ovalbumin-fluorescein conjugate into the deep skin layers. The flux and cumulative amount of ovalbumin-fluorescein conjugate at 8 h after administering with various conditions could be ranked as follows: hollow MN; high dose > medium dose > low dose > MN patch; high dose > medium dose > low dose > untreated skin; high dose > medium dose > low dose > without ovalbumin-fluorescein conjugate. As the dose of ovalbumin-fluorescein conjugate was increased to 500 μg, the antigen accumulated in the skin to a greater extent, as evidenced by the increasing green fluorescence intensity. When the hollow microneedle was used for the delivery of ovalbumin into the skin of mice, it was capable of inducing a stronger immunoglobulin G immune response than conventional subcutaneous injection at the same antigen dose. Immunoglobulin G levels in the hollow MN group were 5.7, 11.6, and 13.3 times higher than those of the subcutaneous injection group for low, medium, and high doses, respectively. Furthermore, the mice immunized using the hollow microneedle showed no signs of skin infection or pinpoint bleeding. The results suggest that the hollow MN is an efficient device for delivering the optimal dose of antigen via the skin for successful immunization.

  9. Dose-response relationships and threshold levels in skin and respiratory allergy

    NARCIS (Netherlands)

    Arts, J.H.E.; Mommers, C.; Heer, C.de

    2006-01-01

    A literature study was performed to evaluate dose-response relationships and no-effect levels for sensitization and elicitation in skin- and respiratory allergy. With respect to the skin, dose-response relationships and no-effect levels were found for both intradermal and topical induction, as well

  10. Enoxaparin-induced skin necrosis at injection site after total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Max Haffner, BS

    2018-03-01

    Full Text Available Enoxaparin is a widely used low-molecular-weight heparin for perioperative thromboembolic prophylaxis. Enoxaparin-induced skin necrosis in the setting of arthroplasty has been rarely reported in the literature with varying outcomes and management decisions. Our patient developed skin necrosis at his injection site and thrombocytopenia 10 days following left total knee arthroplasty surgery and after receiving subcutaneous Lovenox injections postoperatively. The patient was started on an alternative anticoagulation based on a high suspicion for heparin-induced thrombocytopenia and the wound was monitored without surgical debridement. Our case highlights the key clinical management decisions when facing this potentially life-threatening adverse reaction. Keywords: Lovenox, Enoxaparin, Skin necrosis, Adverse reaction, Arthroplasty

  11. Comparison of three techniques for skin total irradiation with electrons; Comparacao de tres tecnicas de irradiacao total da pele com eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Delano V.S., E-mail: dbatista@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil); Bardella, Lucia H. [Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil); Rosa, Luiz A.R. da, E-mail: lrosa@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-10-26

    This paper compared three techniques of skin total irradiation with electrons: 1) horizontal positioning, 2) vertical positioning - rotatory technique and 3) vertical positioning - six fields technique. For that, a anthropomorphic phantom was positioned according to the recommendation for each technique and was i radiated at the linear accelerator by using the 6 MeV electrons. Radiochromic films were positioned on the surface in various regions of the phantom for measurement of absorbed dose. A ionization chamber was positioned inside of equivalent issue plates for dose evaluation due to the photons produced by electron stopping. The technique 2 and 3 have shown too similar in the results and number or discrepant points (8 and 10 respectively) of prescription lower than the technique 1 (22 points). The total body dose of photons of the 1, 2 and 3 techniques was 2.2%, 5.3% and 5.2% respectively

  12. Dose-modifying factors for skin ulceration in mouse legs exposed to gamma rays

    International Nuclear Information System (INIS)

    Masuda, Kouji; Miyoshi, Makoto; Uehara, Satoru; Omagari, Junichi; Withers, H.R.

    1996-01-01

    To assess the dose-modifying factors for skin ulceration, the hind legs of mice were irradiated using gamma-rays of various doses in single exposures. The skin ulceration began to occur 2 months after irradiation, after early skin reactions such as wet desquamation, had healed completely. No new skin ulceration was observed more than 8 months after irradiation even though the observations were continued until 12 months post-irradiation. The ulceration dose 50 (UD50), a dose required to produce skin ulceration in from 2 to 8 months in 50% of the tested animals, was calculated for each treatment schedule. The preliminary shaving procedure reduced the UD50 dose to 0.85 that of the untreated controls. The ventral aspect of the hind leg was more radioresistant to single-dose irradiation than was to the dorsal aspect. The UD50 for the ventral aspect was 1.29 times that for the dorsal aspect when the skin had been previously shaved, and 1.46 times that for the unshaved control legs. The UD50 was 7 and 14% larger when mice were kept in the dorsal rather than the abdominal position during irradiation, for the preliminarily shaved and unshaved skin, respectively. (author)

  13. Increased Skin Dose With the Use of a Custom Mattress for Prone Breast Radiotherapy

    International Nuclear Information System (INIS)

    Becker, Stewart J.; Patel, Rakesh R.; Mackie, Thomas R.

    2007-01-01

    The purpose of this study was to measure and compare the loss of buildup to the skin of the breast in the prone position due to 2 different positioning systems during tangential external beam irradiation. Two experiments were performed; one with a standard nylon-covered foam support and another with a novel helium-filled Mylar bag support. The choice of helium-filled Mylar was to reduce the contamination to as low as possible. The experiments were designed to allow a surface dose measurement and a depth dose profile with the pads placed in the path of the beam in front of the detector. All measurements were taken using a Capintec PS-033 thin-window parallel plate ionization chamber. The standard nylon-covered foam pad caused the surface dose to rise as it got closer to the skin. When the pad was directly touching the surface, the surface dose increased by 300% compared to the result when no pad was present. This loss of buildup to the surface was similar to that of a custom bolus material. The opposite effect occurred with the use of the helium-filled Mylar bag, namely the surface dose gradually decreased as the pad got closer to the phantom. When the Mylar pad was directly touching the phantom, the surface dose was decreased by 7% compared to when no pad was present. The use of a foam pad could potentially result in a significant higher dose to the skin, resulting in an enhanced acute skin reaction. Therefore, special care should be taken in this clinical scenario and further investigation of an air- or helium-based mylar support pad should be investigated in the context of definitive breast radiation treatment

  14. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source?

    International Nuclear Information System (INIS)

    Fatmi, Zafar; Azam, Iqbal; Ahmed, Faiza; Kazi, Ambreen; Gill, Albert Bruce; Kadir, Muhmmad Masood; Ahmed, Mubashir; Ara, Naseem; Janjua, Naveed Zafar

    2009-01-01

    A significant proportion of groundwater in south Asia is contaminated with arsenic. Pakistan has low levels of arsenic in groundwater compared with China, Bangladesh and India. A representative multi-stage cluster survey conducted among 3874 persons ≥15 years of age to determine the prevalence of arsenic skin lesions, its relation with arsenic levels and cumulative arsenic dose in drinking water in a rural district (population: 1.82 million) in Pakistan. Spot-urine arsenic levels were compared among individuals with and without arsenic skin lesions. In addition, the relation of age, body mass index, smoking status with arsenic skin lesions was determined. The geographical distribution of the skin lesions and arsenic-contaminated wells in the district were ascertained using global positioning system. The total arsenic, inorganic and organic forms, in water and spot-urine samples were determined by atomic absorption spectrophotometry. The prevalence of skin lesions of arsenic was estimated for complex survey design, using surveyfreq and surveylogistic options of SAS 9.1 software.The prevalence of definitive cases i.e. hyperkeratosis of both palms and soles, was 3.4 per 1000 and suspected cases i.e. any sign of arsenic skin lesions (melanosis and/or keratosis), were 13.0 per 1000 among ≥15-year-old persons in the district. Cumulative arsenic exposure (dose) was calculated from levels of arsenic in water and duration of use of current drinking water source. Prevalence of skin lesions increases with cumulative arsenic exposure (dose) in drinking water and arsenic levels in urine. Skin lesions were 2.5-fold among individuals with BMI 2 . Geographically, more arsenic-contaminated wells and skin lesions were alongside Indus River, suggests a strong link between arsenic contamination of groundwater with proximity to river.This is the first reported epidemiological and clinical evidence of arsenic skin lesions due to groundwater in Pakistan. Further investigations and

  15. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source?

    Energy Technology Data Exchange (ETDEWEB)

    Fatmi, Zafar, E-mail: zafar.fatmi@aku.edu [Department of Community Health Sciences, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi (Pakistan); Azam, Iqbal; Ahmed, Faiza; Kazi, Ambreen; Gill, Albert Bruce; Kadir, Muhmmad Masood; Ahmed, Mubashir; Ara, Naseem; Janjua, Naveed Zafar [Department of Community Health Sciences, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi (Pakistan)

    2009-07-15

    A significant proportion of groundwater in south Asia is contaminated with arsenic. Pakistan has low levels of arsenic in groundwater compared with China, Bangladesh and India. A representative multi-stage cluster survey conducted among 3874 persons {>=}15 years of age to determine the prevalence of arsenic skin lesions, its relation with arsenic levels and cumulative arsenic dose in drinking water in a rural district (population: 1.82 million) in Pakistan. Spot-urine arsenic levels were compared among individuals with and without arsenic skin lesions. In addition, the relation of age, body mass index, smoking status with arsenic skin lesions was determined. The geographical distribution of the skin lesions and arsenic-contaminated wells in the district were ascertained using global positioning system. The total arsenic, inorganic and organic forms, in water and spot-urine samples were determined by atomic absorption spectrophotometry. The prevalence of skin lesions of arsenic was estimated for complex survey design, using surveyfreq and surveylogistic options of SAS 9.1 software.The prevalence of definitive cases i.e. hyperkeratosis of both palms and soles, was 3.4 per 1000 and suspected cases i.e. any sign of arsenic skin lesions (melanosis and/or keratosis), were 13.0 per 1000 among {>=}15-year-old persons in the district. Cumulative arsenic exposure (dose) was calculated from levels of arsenic in water and duration of use of current drinking water source. Prevalence of skin lesions increases with cumulative arsenic exposure (dose) in drinking water and arsenic levels in urine. Skin lesions were 2.5-fold among individuals with BMI <18.5 kg/m{sup 2}. Geographically, more arsenic-contaminated wells and skin lesions were alongside Indus River, suggests a strong link between arsenic contamination of groundwater with proximity to river.This is the first reported epidemiological and clinical evidence of arsenic skin lesions due to groundwater in Pakistan. Further

  16. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source?

    Science.gov (United States)

    Fatmi, Zafar; Azam, Iqbal; Ahmed, Faiza; Kazi, Ambreen; Gill, Albert Bruce; Kadir, Muhmmad Masood; Ahmed, Mubashir; Ara, Naseem; Janjua, Naveed Zafar

    2009-07-01

    A significant proportion of groundwater in south Asia is contaminated with arsenic. Pakistan has low levels of arsenic in groundwater compared with China, Bangladesh and India. A representative multi-stage cluster survey conducted among 3874 persons > or = 15 years of age to determine the prevalence of arsenic skin lesions, its relation with arsenic levels and cumulative arsenic dose in drinking water in a rural district (population: 1.82 million) in Pakistan. Spot-urine arsenic levels were compared among individuals with and without arsenic skin lesions. In addition, the relation of age, body mass index, smoking status with arsenic skin lesions was determined. The geographical distribution of the skin lesions and arsenic-contaminated wells in the district were ascertained using global positioning system. The total arsenic, inorganic and organic forms, in water and spot-urine samples were determined by atomic absorption spectrophotometry. The prevalence of skin lesions of arsenic was estimated for complex survey design, using surveyfreq and surveylogistic options of SAS 9.1 software.The prevalence of definitive cases i.e. hyperkeratosis of both palms and soles, was 3.4 per 1000 and suspected cases i.e. any sign of arsenic skin lesions (melanosis and/or keratosis), were 13.0 per 1000 among > or = 15-year-old persons in the district. Cumulative arsenic exposure (dose) was calculated from levels of arsenic in water and duration of use of current drinking water source. Prevalence of skin lesions increases with cumulative arsenic exposure (dose) in drinking water and arsenic levels in urine. Skin lesions were 2.5-fold among individuals with BMI <18.5 kg/m2. Geographically, more arsenic-contaminated wells and skin lesions were alongside Indus River, suggests a strong link between arsenic contamination of groundwater with proximity to river.This is the first reported epidemiological and clinical evidence of arsenic skin lesions due to groundwater in Pakistan. Further

  17. Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation

    Science.gov (United States)

    Han, Hao; Gao, Hao; Xing, Lei

    2017-08-01

    Excessive radiation exposure is still a major concern in 4D cone-beam computed tomography (4D-CBCT) due to its prolonged scanning duration. Radiation dose can be effectively reduced by either under-sampling the x-ray projections or reducing the x-ray flux. However, 4D-CBCT reconstruction under such low-dose protocols is prone to image artifacts and noise. In this work, we propose a novel joint regularization-based iterative reconstruction method for low-dose 4D-CBCT. To tackle the under-sampling problem, we employ spatiotemporal tensor framelet (STF) regularization to take advantage of the spatiotemporal coherence of the patient anatomy in 4D images. To simultaneously suppress the image noise caused by photon starvation, we also incorporate spatiotemporal nonlocal total variation (SNTV) regularization to make use of the nonlocal self-recursiveness of anatomical structures in the spatial and temporal domains. Under the joint STF-SNTV regularization, the proposed iterative reconstruction approach is evaluated first using two digital phantoms and then using physical experiment data in the low-dose context of both under-sampled and noisy projections. Compared with existing approaches via either STF or SNTV regularization alone, the presented hybrid approach achieves improved image quality, and is particularly effective for the reconstruction of low-dose 4D-CBCT data that are not only sparse but noisy.

  18. Implications of the quadratic cell survival curve and human skin radiation ''tolerance doses'' on fractionation and superfractionation dose selection

    International Nuclear Information System (INIS)

    Douglas, B.G.

    1982-01-01

    An analysis of early published multifraction orthovoltage human acute skin irradiation tolerance isoeffect doses is presented. It indicates that human acute skin radiation reactions may result from the repetition, with each dose fraction, of a cell survival curve of the form: S = e/sup -(αD + βD 2 )/). The analysis also shows no need for an independent proliferation related time factor for skin, for daily treatments of six weeks or less in duration. The value obtained for the constant β/α for orthovoltage irradiation from these data is 2.9 x 10 -3 rad -1 for the cell line determining acute skin tolerance. A radiation isoeffect relationship, based on the quadratic cell survival curve, is introduced for human skin. This relationship has some advantages over the nominal standard dose (NSD). First, its use is not restricted to tolerance level reactions. Second, a modification of the relationship, which is also introduced, may be employed in the selection of doses per treatment when irradiation dose fractions are administered at short intervals where repair of sublethal injury is incomplete

  19. Transient Genome-Wide Transcriptional Response to Low-Dose Ionizing Radiation In Vivo in Humans

    International Nuclear Information System (INIS)

    Berglund, Susanne R.; Rocke, David M.; Dai Jian; Schwietert, Chad W.; Santana, Alison; Stern, Robin L.; Lehmann, Joerg; Hartmann Siantar, Christine L.; Goldberg, Zelanna

    2008-01-01

    Purpose: The in vivo effects of low-dose low linear energy transfer ionizing radiation on healthy human skin are largely unknown. Using a patient-based tissue acquisition protocol, we have performed a series of genomic analyses on the temporal dynamics over a 24-hour period to determine the radiation response after a single exposure of 10 cGy. Methods and Materials: RNA from each patient tissue sample was hybridized to an Affymetrix Human Genome U133 Plus 2.0 array. Data analysis was performed on selected gene groups and pathways. Results: Nineteen gene groups and seven gene pathways that had been shown to be radiation responsive were analyzed. Of these, nine gene groups showed significant transient transcriptional changes in the human tissue samples, which returned to baseline by 24 hours postexposure. Conclusions: Low doses of ionizing radiation on full-thickness human skin produce a definable temporal response out to 24 hours postexposure. Genes involved in DNA and tissue remodeling, cell cycle transition, and inflammation show statistically significant changes in expression, despite variability between patients. These data serve as a reference for the temporal dynamics of ionizing radiation response following low-dose exposure in healthy full-thickness human skin

  20. Clinical use of carbon-loaded thermoluminescent dosimeters for skin dose determination

    International Nuclear Information System (INIS)

    Ostwald, Patricia M.; Kron, Tomas; Hamilton, Christopher S.; Denham, James W.

    1995-01-01

    Purpose: Carbon-loaded thermoluminescent dosimeters (TLDs) are designed for surface/skin dose measurements. Following 4 years in clinical use at the Mater Hospital, the accuracy and clinical usefulness of the carbon-loaded TLDs was assessed. Methods and Materials: Teflon-based carbon-loaded lithium fluoride (LiF) disks with a diameter of 13 mm were used in the present study. The TLDs were compared with ion chamber readings and TLD extrapolation to determine the effective depth of the TLD measurement. In vivo measurements were made on patients receiving open-field treatments to the chest, abdomen, and groin. Skin entry dose or entry and exit dose were assessed in comparison with doses estimated from phantom measurements. Results: The effective depth of measurement in a 6 MV therapeutic x-ray beam was found to be about 0.10 mm using TLD extrapolation as a comparison. Entrance surface dose measurements made on a solid water phantom agreed well with ion chamber and TLD extrapolation measurements, and black TLDs provide a more accurate exit dose than the other methods. Under clinical conditions, the black TLDs have an accuracy of ± 5% (± 2 SD). The dose predicted from black TLD readings correlate with observed skin reactions as assessed with reflectance spectroscopy. Conclusion: In vivo dosimetry with carbon-loaded TLDs proved to be a useful tool in assessing the dose delivered to the basal cell layer in the skin of patients undergoing radiotherapy

  1. The dependence of skin lesions on the depth-dose distribution from β-irradiation of people in the Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Barabanova, A.

    1990-01-01

    A detailed study was made of conditions of exposure of 56 Chernobyl victims who suffered skin radiation lesions. The most typical conditions were experimentally reconstructed to investigate specific characteristics of dose distribution to the skin according to depth for different exposure conditions. Absorbed doses at depths of 7 mg cm -2 and 150 mg cm -2 were calculated on the basis of measurements with multilayer skin dosemeters. Patients were classified into four groups. Dosimetric characteristics for each group were compared with clinical pictures to establish critical factors in the occurrence of lesions. It was demonstrated that depth-dose distribution of β-radiation to the skin is of great influence not only for early effects of radiation but also for later effects. Radiation lesions in the skin led to death if the area of the lesions exceeded about 50% total body surface, and if doses to the skin were about 200-300 Gy at 7 mg cm -2 and more than about 30 Gy at 150 mg cm -2 . (author)

  2. Accelerated partial-breast irradiation with interstitial implants. The clinical relevance of the calculation of skin doses

    International Nuclear Information System (INIS)

    Ott, O.J.; Lotter, M.; Sauer, R.; Strnad, V.

    2007-01-01

    Purpose: To describe relative skin dose estimations and their impact on cosmetic outcome in interstitial multicatheter accelerated partial-breast irradiation (APBI). Patients and Methods: Between April 2001 and January 2005, 105 consecutive patients with early breast cancer were recruited in Erlangen, Germany, for this substudy of the German-Austrian APBI phase II trial. 51% (54/105) received pulsed-dose-rate (PDR), and 49% (51/105) high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy every hour. Total treatment time was 3-4 days. With a wire cross on the skin surface during the brachytherapy-planning procedure the minimal, mean and maximal relative skin doses (SD min% , SD max% , SD mean% ) were recorded. Endpoint of this evaluation was the cosmetic outcome in relation to the relative skin doses. Results: Median follow-up time was 38 months (range, 19-65 months). Cosmetic results for all patients were excellent in 57% (60/105), good in 36% (38/105), and fair in 7% (7/105). The SD min% (27.0% vs. 31.7%; p = 0.032), SD mean% (34.2% vs. 38.1%; p 0.008), and SD max% (38.2% vs. 46.4%; p 0.003) were significantly lower for patients with excellent cosmetic outcome compared to patients with a suboptimal outcome. SD mean% (37.6% vs. 34.2%; p = 0.026) and SD max% (45.4% vs. 38.2%; p = 0.008) were significantly higher for patients with good cosmetic outcome compared with the patients with excellent results. Conclusion: The appraisal of skin doses has been shown to be relevant to the achievement of excellent cosmetic outcome. Further investigations are necessary, especially on the basis of CT-based brachytherapy planning, to further improve the treatment results of multicatheter APBI. (orig.)

  3. Skin Dose Equivalent Measurement from Neutron-Deficient Isotopes

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Hua; Costigan, Steve A.; Romero, Leonard L.; Whicker, Jeffrey J.

    1997-12-01

    Neutron-deficient-isotopes decay via positron emission and/or electron capture often followed by x-ray, gamma-ray, and 0.511 MeV photons from positron annihilation. For cases of significant area and/or personnel contamination with these isotopes, determination of skin dose equivalent (SDE) is required by 10CFR835. For assessment of SDE, we evaluated the MICROSPEC-2(TM) system manufactured by Bubble Technology Industries of Canada which uses three different probes for dose measurement. We used two probes: (1) the X-probe which measures lower energy (4 - 120 keV) photon energy distributions and determines deep dose equivalent, SDE and dose equivalent to eyes, and (2) the B-probe which measures electron (positron) energy distributions, and determines skin dose equivalent. Also, the measured photon and beta spectra can be used to identify radioactive isotopes in the contaminated area. Measurements with several neutron-deficient sources showed that this system provided reasonably accurate SDE rate measurements when compared with calculated benchmark SDE rates with an average percent difference of 40%. Variations were expected because of differences between the assumed geometries used by MlCROSPEC-2 and the calculations when compared to the measurement conditions

  4. Evaluation of F/E·DOI method as an approximate estimate of skin dose during percutaneous coronary intervention procedure

    International Nuclear Information System (INIS)

    Nakahara, Makoto; Yoshino, Akira; Kitano, K.; Yamaguchi, M.; Morone, Takayuki; Tani, K.

    2005-01-01

    The purpose of this study was to evaluate the efficacy of fluoroscopy time/total exposure times exposure times · in direction of interest (F/E·DOI) method as an approximate estimate of skin dose during percutaneous coronary intervention (PCI) procedure. Up to March 10, 2004, fifty-seven patients (male: 46 cases, female: 11 cases, age range 38-85 years; mean age 67±11 years) had undergone PCI and 157 directions of exposure was measured using X-ray films (KONICA MINOLTA SR-DUP) placed under the back of each patient during the procedure. The fluoroscopy time (minutes), the times of exposure in each direction during the procedure, and the thickness of chest (cm) was recorded. The relation of the skin dose to fluoroscopic time, exposure times in direction of interest, and F/E·DOI was assessed. The relationship between fluoroscopy time and skin dose was shown as y=0.02x+0.22 (r=0.54, p<0.0001, m.e=0.00±0.71 Gy, e.a=-2.19∼l.53 Gy). In addition, the relation of skin dose to exposure times in the direction of interest was y=0.07x+0.27 (r=0.77, p<0.0001, m.e=-0.00±0.53 Gy, e.a=-2.45∼1.76 Gy). The relationship between skin dose and F/E·DOI was y=0.06x+0.30 (r=0.85, p<0.0001, m.e=-0.00±0.44 Gy, e.a=-1.28∼1.06 Gy). Moreover, the relationship between skin dose and (F/E·DOI x 0.06+0.30) x coefficient of direction x coefficient in thickness of chest was y=0.99x-0.02 (r=0.89, p<0.0001, m.e=0.00±0.38 Gy, e.a=-1.12∼l.27 Gy). The calculated results corresponded to the skin dose during the procedure. F/E·DOI method was simple and effective, moreover, that enabled us to inform the skin dose during the PCI procedure to the interventionalist easily. (authors)

  5. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    Three alternative methods are outlined by which substantial improvements of the capabilities of existing routine monitoring systems for skin dose assessment can be obtained. The introduction of a supplementary skin dosemeter may be an attractive method for systems with badges that have a capability for an additional dosemeter already built-in. The two-side reading method has limited possibilities because of reduced accuracy for mixed radiation and technical difficulties in using it for TLD systems with planchet heating. The use of a boron diffused LiF layer for skin dose assessment seems to be most attractive method since the only modification needed here is replacement of a dosemeter. However the study of this method is so far only in a preliminary stage and further investigations are needed. (U.K.)

  6. Skin entrance dose for digital and film radiography in Korean dental schools

    International Nuclear Information System (INIS)

    Cho, Eun Sang; Choi, Kun Ho; Kim, Min Gyu; Lim, Hoi Jeong; Yoon, Suk Ja; Kang, Byung Cheol

    2005-01-01

    This study was aimed to compare skin entrance dose of digital radiography with that of film radiography and to show the dose reduction achievement with digital systems at 11 dental schools in Korea. Forty six intraoral radiographic systems in 11 dental schools were included in this study. Digital sensors were used in 33 systems and film was used in 13 systems. Researchers and the volunteer visited 11 dental schools in Korea. Researchers asked the radiologic technician at each school to set the exposure parameters and aiming the x-ray tube for the peri apical view of the mandibular molar of the volunteer. The skin entrance doses were measured at the same exposure parameters and distance by the technician for each system with a dosimeter (Multi-O-Meter; Unifors instruments, Billdal, Sweden). The median dose was 491.2 μGy for digital radiography and 1,205.0 μGy for film radiography. The skin entrance dose in digital radiography was significantly lower than that of film radiography (p<0.05). Fifty-nine percent skin entrance dose reduction with digital peri apical radiography was achieved over the film radiography in Korean dental schools.

  7. Skin entrance dose for digital and film radiography in Korean dental schools

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sang; Choi, Kun Ho; Kim, Min Gyu; Lim, Hoi Jeong; Yoon, Suk Ja; Kang, Byung Cheol [Chonnam National University College of Medicine, Gwangju (Korea, Republic of)

    2005-12-15

    This study was aimed to compare skin entrance dose of digital radiography with that of film radiography and to show the dose reduction achievement with digital systems at 11 dental schools in Korea. Forty six intraoral radiographic systems in 11 dental schools were included in this study. Digital sensors were used in 33 systems and film was used in 13 systems. Researchers and the volunteer visited 11 dental schools in Korea. Researchers asked the radiologic technician at each school to set the exposure parameters and aiming the x-ray tube for the peri apical view of the mandibular molar of the volunteer. The skin entrance doses were measured at the same exposure parameters and distance by the technician for each system with a dosimeter (Multi-O-Meter; Unifors instruments, Billdal, Sweden). The median dose was 491.2 {mu}Gy for digital radiography and 1,205.0 {mu}Gy for film radiography. The skin entrance dose in digital radiography was significantly lower than that of film radiography (p<0.05). Fifty-nine percent skin entrance dose reduction with digital peri apical radiography was achieved over the film radiography in Korean dental schools.

  8. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy

    International Nuclear Information System (INIS)

    Kinhikar, Rajesh A.; Murthy, Vedang; Goel, Vineeta; Tambe, Chandrashekar M.; Dhote, Dipak S.; Deshpande, Deepak D.

    2009-01-01

    The purpose of this work was to estimate skin dose for the patients treated with tomotherapy using metal oxide semiconductor field-effect transistors (MOSFETs) and thermoluminescent dosimeters (TLDs). In vivo measurements were performed for two head and neck patients treated with tomotherapy and compared to TLD measurements. The measurements were subsequently carried out for five days to estimate the inter-fraction deviations in MOSFET measurements. The variation between skin dose measured with MOSFET and TLD for first patient was 2.2%. Similarly, the variation of 2.3% was observed between skin dose measured with MOSFET and TLD for second patient. The tomotherapy treatment planning system overestimated the skin dose as much as by 10-12% when compared to both MOSFET and TLD. However, the MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1% to 1.4%. MOSFETs may be used as a viable dosimeter for measuring skin dose in areas where the treatment planning system may not be accurate.

  9. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy.

    Science.gov (United States)

    Kinhikar, Rajesh A; Murthy, Vedang; Goel, Vineeta; Tambe, Chandrashekar M; Dhote, Dipak S; Deshpande, Deepak D

    2009-09-01

    The purpose of this work was to estimate skin dose for the patients treated with tomotherapy using metal oxide semiconductor field-effect transistors (MOSFETs) and thermoluminescent dosimeters (TLDs). In vivo measurements were performed for two head and neck patients treated with tomotherapy and compared to TLD measurements. The measurements were subsequently carried out for five days to estimate the inter-fraction deviations in MOSFET measurements. The variation between skin dose measured with MOSFET and TLD for first patient was 2.2%. Similarly, the variation of 2.3% was observed between skin dose measured with MOSFET and TLD for second patient. The tomotherapy treatment planning system overestimated the skin dose as much as by 10-12% when compared to both MOSFET and TLD. However, the MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1% to 1.4%. MOSFETs may be used as a viable dosimeter for measuring skin dose in areas where the treatment planning system may not be accurate.

  10. Dosimetric Aspects of Personnel Skin Contamination by Radionuclides - Estimate of a Skin Dose, Monitoring and Interpretation of Results

    International Nuclear Information System (INIS)

    Husak, V.; Kleinbauer, K.

    2001-01-01

    Full text: On the basis of a critical comparison of literary data, tables are compiled of beta and gamma dose rate in mSvh -1 (kBqcm -1 ) to the basal layer of the skin at 0.07 mm depth from contamination by 75 radionuclides unsealed sources; radioactive substances are assumed to reside on the skin surface. The residence time needed for the estimate of the skin dose is calculated assuming that a residual activity per unit area of any radionuclide on the skin, which could not be removed by the repeated careful decontamination, is supposed to be eliminated with the biological half-life of 116 h as a consequence of the natural sloughing off of the skin. Radionuclides are divided into five groups according to the dose estimate in mSv (kBqcm -2 ): ≥250 (e.g. 32 P, 89 Sr, 137 Cs/ 137m Ba), 100-250 (e.g. 90 Y, 131 I, 186 Re), 10-100 (e.g. 35 S, 67 Ga, 200 Tl), 1-10 (e.g. 18 F, 51 Cr, 99m Tc), ≤1 (e.g. 63 Ni, 144 Pr, 238 U). If it is possible, doses can be determined more precisely by measuring the effective half-life of the residual activity on the contaminated area. Our dose estimates are approximately valid on the condition that, after decontamination, residual activity of radionuclides persists predominantly in the superficial layers of epidermis. This and further uncertainties connected with the dose assessment are discussed. Our tables can help to determine easily rough values of doses to personnel in contamination incidents and to interpret them in relation to regulatory derived limits. This work was supported by State Office for Nuclear Safety in Prague. (author)

  11. Anti-tumor effect of total body irradiation of low doses on WHT/Ht mice

    International Nuclear Information System (INIS)

    Miyamoto, Miyako; Sakamoto, Kiyohiko

    1987-01-01

    The effect of low dose (0.05 - 1.0 Gy) of total body irradiation (TBI) on non-tumor bearing and tumor bearing mice were investigated. Mice received TBI of 0.1 Gy during 6 - 12 hours before tumor cell inoculation demonstrated to need larger number of tumor cells (approximately 2.5 times) for 50 per cent tumor incidence, compared to recipient mice not to receive TBI. On the other hand, in tumor bearing mice given 0.1 Gy of TBI only tumor cell killing effect was not detected, however enhancement of tumor cell killing effect and prolonged growth delay were observed when tumor bearing mice were treated with 0.1 Gy of TBI in combined with local irradiation on tumors, especially cell killing effect was remarkable in dose range over 6 Gy of local exposure. The mechanism of the effect of 0.1 Gy TBI is considered to be host mediated reactions from the other our experimental results. (author)

  12. Measurement of patient skin absorbed dose in ablation of paroxysmal atrial fibrillation, and examination of treatment protocol

    International Nuclear Information System (INIS)

    Shohji, Tomokazu; Hiramatsu, Masaki; Hasome, Hideki

    2005-01-01

    The ablation for atrial fibrillation minute movement done in our hospital is 250 minutes or less, within an average time of 150 minutes during a fluoroscopic time of about 7 hours, with very large average inspection times numerical values. However, the skin-absorbed dose could be understood only from the numerical value of the area dosimeter. It was considered that the total dose that reached the threshold was sufficient, although radiation injury would not be reported from the ablation currently done at our hospital. Therefore, we aimed to examine the inspection protocol in this hospital, and to request the patient be given an inspection dose that was the average skin-absorbed dose by using the acryl board. The amount of a total dose for an inspection of 150 minutes of fluoroscopic time was about 2.7 Gy. Moreover, a value of 1.5 Gy was indicated in the hot spot as a result of repetition in some exposure fields. However, it was thought that the possibility of exceeding the threshold of 2 Gy depending on the inspection situation in the future and other factors was tolerable because these measurements were done so as not to overvalue it more than the necessary. (author)

  13. A biological basis for the linear non-threshold dose-response relationship for low-level carcinogen exposure

    International Nuclear Information System (INIS)

    Albert, R.E.

    1981-01-01

    This chapter examines low-level dose-response relationships in terms of the two-stage mouse tumorigenesis model. Analyzes the feasibility of the linear non-threshold dose-response model which was first adopted for use in the assessment of cancer risks from ionizing radiation and more recently from chemical carcinogens. Finds that both the interaction of B(a)P with epidermal DNA of the mouse skin and the dose-response relationship for the initiation stage of mouse skin tumorigenesis showed a linear non-threshold dose-response relationship. Concludes that low level exposure to environmental carcinogens has a linear non-threshold dose-response relationship with the carcinogen acting as an initiator and the promoting action being supplied by the factors that are responsible for the background cancer rate in the target tissue

  14. New approach for food allergy management using low-dose oral food challenges and low-dose oral immunotherapies.

    Science.gov (United States)

    Yanagida, Noriyuki; Okada, Yu; Sato, Sakura; Ebisawa, Motohiro

    2016-04-01

    A number of studies have suggested that a large subset of children (approximately 70%) who react to unheated milk or egg can tolerate extensively heated forms of these foods. A diet that includes baked milk or egg is well tolerated and appears to accelerate the development of regular milk or egg tolerance when compared with strict avoidance. However, the indications for an oral food challenge (OFC) using baked products are limited for patients with high specific IgE values or large skin prick test diameters. Oral immunotherapies (OITs) are becoming increasingly popular for the management of food allergies. However, the reported efficacy of OIT is not satisfactory, given the high frequency of symptoms and requirement for long-term therapy. With food allergies, removing the need to eliminate a food that could be consumed in low doses could significantly improve quality of life. This review discusses the importance of an OFC and OIT that use low doses of causative foods as the target volumes. Utilizing an OFC or OIT with a low dose as the target volume could be a novel approach for accelerating the tolerance to causative foods. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  15. Low-dose computed tomographic imaging in orbital trauma

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, A.; Whitehouse, R.W. (Manchester Univ. (United Kingdom). Dept. of Diagnostic Radiology)

    1993-08-01

    The authors review findings in 75 computed tomographic (CT) examinations of 66 patients with orbital trauma who were imaged using a low-radiation-dose CT technique. Imaging was performed using a dynamic scan mode and exposure factors of 120 kVp and 80 mAs resulting in a skin dose of 11 mGy with an effective dose-equivalent of 0.22 mSv. Image quality was diagnostic in all cases and excellent in 73 examinations. Soft-tissue abnormalities within the orbit including muscle adhesions were well demonstrated both on primary axial and reconstructed multiplanar images. The benefits of multiplanar reconstructions are stressed and the contribution of soft-tissue injuries to symptomatic diplopia examined. (author).

  16. Association Between Maximal Skin Dose and Breast Brachytherapy Outcome: A Proposal for More Rigorous Dosimetric Constraints

    International Nuclear Information System (INIS)

    Cuttino, Laurie W.; Heffernan, Jill; Vera, Robyn; Rosu, Mihaela; Ramakrishnan, V. Ramesh; Arthur, Douglas W.

    2011-01-01

    Purpose: Multiple investigations have used the skin distance as a surrogate for the skin dose and have shown that distances 4.05 Gy/fraction. Conclusion: The initial skin dose recommendations have been based on safe use and the avoidance of significant toxicity. The results from the present study have suggested that patients might further benefit if more rigorous constraints were applied and if the skin dose were limited to 120% of the prescription dose.

  17. Validation of radiosterilization dose of human skin dressings for burnt treatment: preliminary study

    International Nuclear Information System (INIS)

    Castro, E.

    2008-01-01

    Full text: Due to the need for better materials to treat burnt patients, the Peruvian Institute of Nuclear Energy (IPEN) and the Rosa Guerzoni Chambergo Tissue Bank are collaborating for developing human skin dressings. Skin was procured from living donors, who surgically were performed a dermolipectomy. Exclusion criteria, stated by the Peruvian Organization for Transplant and Donation were observed. Glycerolized human skin dressings were processed at the tissue bank and sent to IPEN, where the gamma irradiation sterilizing dose was determined. The purpose of this work is to validate the radiation sterilization dose delivered to human skin dressings using the IAEA Code of Practice for the Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control. A batch of human skin dressings was tested. Average values of bioburden present in ten samples was 30 UFC/item, obtaining a sub-sterilization dose of 4 kGy. Irradiations were performed in the GammacellExcel 220. Sterility tests performed fulfilled the requirements established by the Code, achieving a validated dose value of 19.7 kGy. This preliminary study, that should be repeated in two other batches of processed human skin, allows to diminish 25 kGy the sterilizing dose to the stated above dose value, in a frame of a quality assurance system that also comprises the processes held at tissue banks previous irradiation. It also permit the availability of these materials in Peruvian hospitals. (Author)

  18. Contamination and decontamination of skin

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.

    1983-01-01

    In external contamination the beta radiation dose is the prevalent component of the total dose absorbed by the skin. There exist four types of radionUclide bonds to the skin: mechanical retention of solid particles or solution on the surface and in the pores, physical adsorption of nondissociated molecules or colloids, the ion exchange effect, and chemisorption. Radionuclides then penetrate the skin by transfollicular transfer. The total amount of radioactive substances absorbed into the skin depends on the condition of the skin. Skin is decontaminated by washing with lukewarm water and soap or with special decontamination solutions. The most widely used components of decontamination solutions are detergents, chelaton, sodium hexametaphosphate, oxalic acid, citric acid. The main principles of the decontamination of persons are given. (M.D.)

  19. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  20. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    International Nuclear Information System (INIS)

    Rocke, David

    2016-01-01

    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  1. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rocke, David [Univ. of California, Davis, CA (United States)

    2016-08-01

    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  2. Normal tissue tolerance to external beam radiation therapy: Skin

    International Nuclear Information System (INIS)

    Ginot, A.; Doyen, J.; Hannoun-Levi, J.M.; Courdi, A.

    2010-01-01

    Acute skin toxicity is frequent during radiation therapy and can lead to temporary arrest of the treatment. Chronic toxicity can occur and conduct to cosmetic problems. Alopecia is the most frequent toxicity concerning hair and is most of the time reversible. Several factors linked to patients influence skin toxicity, such as under-nutrition, old age, obesity, smoking, skin diseases, autoimmune diseases, failure of DNA reparation. Skin, hair and nail toxicities depend also on radiation schedule. Acute toxicity is greater when dose per fraction increases. Chronic and acute toxicities are more often when total dose increases. Under 45 Gy, the risk of severe skin toxicity is low, and begins above 50 Gy. Skin toxicity depends also on the duration of radiotherapy and split course schedules are associated with less toxicities. Irradiation surface seems to influence skin toxicity but interaction is more complex. Reirradiation is often feasible in case of cancer recurrence but with a risk of grade 3-4 toxicity above all in head and neck cancer. The benefit/risk ratio has to be always precisely evaluated. Permanent alopecia is correlated with the follicle dose. Modern techniques of radiation therapy allow to spare skin. (authors)

  3. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Jong, W. L. [Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Cutajar, D. L.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  4. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Zanca, F., E-mail: Federica.Zanca@med.kuleuven.be [Department of Radiology, Leuven University Center of Medical Physics in Radiology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium and Imaging and Pathology Department, UZ Leuven, Herestraat 49, Box 7003 3000 Leuven (Belgium); Jacobs, A. [Department of Radiology, Leuven University Center of Medical Physics in Radiology, UZ Leuven, Herestraat 49, 3000 Leuven (Belgium); Crijns, W. [Department of Radiotherapy, UZ Leuven, Herestraat 49, 3000 Leuven (Belgium); De Wever, W. [Imaging and Pathology Department, UZ Leuven, Herestraat 49, Box 7003 3000 Leuven, Belgium and Department of Radiology, UZ Leuven, Herestraat 49, 3000 Leuven (Belgium)

    2014-07-15

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure.

  5. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    International Nuclear Information System (INIS)

    Zanca, F.; Jacobs, A.; Crijns, W.; De Wever, W.

    2014-01-01

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure

  6. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  7. The minimal melanogenesis dose/minimal erythema dose ratio declines with increasing skin pigmentation using solar simulator and narrowband ultraviolet B exposure

    DEFF Research Database (Denmark)

    Ravnbak, Mette H; Philipsen, Peter A; Wulf, Hans Christian

    2010-01-01

    To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure.......To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure....

  8. Dose-rate effects of low-dropout voltage regulator at various biases

    International Nuclear Information System (INIS)

    Wang Yiyuan; Zheng Yuzhan; Gao Bo; Chen Rui; Fei Wuxiong; Lu Wu; Ren Diyuan

    2010-01-01

    A low-dropout voltage regulator, LM2941, was irradiated by 60 Co γ-rays at various dose rates and biases for investigating the total dose and dose rate effects. The radiation responses show that the key electrical parameters, including its output and dropout voltage, and the maximum output current, are sensitive to total dose and dose rates, and are significantly degraded at low dose rate and zero bias. The integrated circuits damage change with the dose rates and biases, and the dose-rate effects are relative to its electric field. (authors)

  9. Total dose effects on ATLAS-SCT front-end electronics

    CERN Document Server

    Ullán, M; Dubbs, T; Grillo, A A; Spencer, E; Seiden, A; Spieler, H; Gilchriese, M G D; Lozano, M

    2002-01-01

    Low dose rate effects (LDRE) in bipolar technologies complicate the hardness assurance testing for high energy physics applications. The damage produced in the ICs in the real experiment can be underestimated if fast irradiations are carried out, while experiments done at the real dose rate are usually unpractical due to the still high total doses involved. In this work the sensitivity to LDRE of two bipolar technologies proposed for the ATLAS-SCT experiment at CERN is evaluated, finding one of them free of those effects. (12 refs).

  10. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Matzke, Melissa M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States); Waters, Katrina M., E-mail: katrina.waters@pnnl.gov [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99338 (United States)

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  11. Technical specification of the NRPB thermoluminescent dosemeter used for the measurement of body dose and skin dose

    CERN Document Server

    Shaw, K B

    1977-01-01

    This report specifies the NRPB thermoluminescent dosemeter used for the measurement of radiation dose in tissue at a depth of 700 mg cm sup - sup 2 (body dose) and at a depth of 5-10 mg cm sup - sup 2 (skin dose).

  12. Dosimetry studies with 32P source and correlation of skin and eye lens doses

    International Nuclear Information System (INIS)

    Kumar, Munish; Gaonkar, U.P.; Koul, D.K.; Datta, D.; Saxena, S.K.; Kumar, Yogendra; Dash, A.

    2018-01-01

    Beta particles are one of the major contributors toward skin and eye lens doses at facilities handling beta sources. These sources find applications in industry, pharmaceuticals as well as in brachytherapy applications. The beta particles having maximum (E max ) energy > 0.07 MeV are capable of delivering skin dose whereas beta particles having maximum (E max ) energy > 0.7 MeV may also contribute towards dose to eye lens. Studies are performed using 32 P beta source as its maximum beta energy (E max ) is such that for sources having (E max ) of 1.71 MeV or beyond, there can be substantial contribution towards dose to eye lens even the dose limit recommended for skin is followed

  13. Evaluating the consistency of location of the most severe acute skin reaction and highest skin dose measured by thermoluminescent dosimeter during radiotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li-Min, E-mail: limin.sun@yahoo.com [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Huang, Chih-Jen [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chen, Hsiao-Yun [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chang, Gia-Hsin [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Tsao, Min-Jen [Department of General Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China)

    2016-10-01

    We conducted this prospective study to evaluate whether the location of the most severe acute skin reaction matches the highest skin dose measured by thermoluminescent dosimeter (TLD) during adjuvant radiotherapy (RT) for patients with breast cancer after breast conservative surgery. To determine whether TLD measurement can reflect the location of the most severe acute skin reaction, 80 consecutive patients were enrolled in this prospective study. We divided the irradiated field into breast, axillary, inframammary fold, and areola/nipple areas. In 1 treatment session when obvious skin reaction occurred, we placed the TLD chips onto the 4 areas and measured the skin dose. We determined whether the highest measured skin dose area is consistent with the location of the most severe skin reaction. The McNemar test revealed that the clinical skin reaction and TLD measurement are more consistent when the most severe skin reaction occurred at the axillary area, and the p = 0.0108. On the contrary, TLD measurement of skin dose is less likely consistent with clinical observation when the most severe skin reaction occurred at the inframammary fold, breast, and areola/nipple areas (all the p > 0.05). Considering the common site of severe skin reaction over the axillary area, TLD measurement may be an appropriate way to predict skin reaction during RT.

  14. Skin dose estimation due to a contamination by a radionuclide β emitter: are doses equivalent good estimator of protection quantities?

    International Nuclear Information System (INIS)

    Bourgois, L.

    2011-01-01

    When handling radioactive β emitters, measurements in terms of personal dose equivalents H p (0.07) are used to estimate the equivalent dose limit to skin or extremities given by regulations. First of all, analytical expressions for individual dose equivalents H p (0.07) and equivalent doses to the extremities H skin are given for a point source and for contamination with a radionuclide β emitter. Second of all, operational quantities and protection quantities are compared. It is shown that in this case the operational quantities significantly overstate the protection quantities. For a skin contamination the ratio between operational quantities and protection quantities is 2 for a maximum β energy of 3 MeV and 90 for a maximum β energy of 150 keV. (author)

  15. Evaluation of the breast plan using the TLD and MOSFET for the skin dose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Myeong; Kim, Young Bum; Bak, Sang Yun; Lee, Sang Rok; Jeong, Se Young [Dept. of Radiation Oncology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-12-15

    The measurement of skin dose is very important that treatment of breast cancer. On account of the cold or hot dose as compared with prescription dose, it is necessary to analyse the skin dose occurring during the various plan of the breast cancer treatment. At our hospital, we want to apply various analyses using a diversity of dosimeters to the breast cancer treatment. In the study, the anthropomorphic phantom is used to find out the dose difference of the skin(draining site), scar and others occurring from the tangential treatment plan of breast cancer. We took computed tomography scan of the anthropomorphic phantom and made plans for the treatment planing using open and wedge, Field-in-Field, Dose fluence. Using these, we made a comparative analysis of the dose date points by using the Eclipse. For the dose comparison, we place the anthropomorphic phantom in the treatment room and compared the measurement results by using the TLD and MOSFET on the dose data points. On the central point of treatment planing basis, the upward and downward skin dose measured by the MOSFET was the highest when the fluence was used. The skin dose of inner and outer was distinguished from the figure(5.7% - 10.3%) when the measurements were fulfilled by using TLD and MOSFET. The other side of breast dose was the lowest in the open beam, on the other hand, is highest in the Dose fluence plan. In the different kinds of treatment, the dose deviation of inner and outer was the highest, and so this was the same with the TLD and MOSFET measurement case. The outer deviation was highest in the TLD, and the Inner' was highest in the MOSFET. Skin dose in relation to the treatment plan was the highest in the planing using the fluence technique in general and it was supposed that the high dose had been caused by the movement of the MLC. There's some differences among the all the treatment planning, but the sites such as IM node occurring the lack of dose, scar, drain site are needed pay

  16. Evaluation of the breast plan using the TLD and MOSFET for the skin dose

    International Nuclear Information System (INIS)

    Kim, Seon Myeong; Kim, Young Bum; Bak, Sang Yun; Lee, Sang Rok; Jeong, Se Young

    2015-01-01

    The measurement of skin dose is very important that treatment of breast cancer. On account of the cold or hot dose as compared with prescription dose, it is necessary to analyse the skin dose occurring during the various plan of the breast cancer treatment. At our hospital, we want to apply various analyses using a diversity of dosimeters to the breast cancer treatment. In the study, the anthropomorphic phantom is used to find out the dose difference of the skin(draining site), scar and others occurring from the tangential treatment plan of breast cancer. We took computed tomography scan of the anthropomorphic phantom and made plans for the treatment planing using open and wedge, Field-in-Field, Dose fluence. Using these, we made a comparative analysis of the dose date points by using the Eclipse. For the dose comparison, we place the anthropomorphic phantom in the treatment room and compared the measurement results by using the TLD and MOSFET on the dose data points. On the central point of treatment planing basis, the upward and downward skin dose measured by the MOSFET was the highest when the fluence was used. The skin dose of inner and outer was distinguished from the figure(5.7% - 10.3%) when the measurements were fulfilled by using TLD and MOSFET. The other side of breast dose was the lowest in the open beam, on the other hand, is highest in the Dose fluence plan. In the different kinds of treatment, the dose deviation of inner and outer was the highest, and so this was the same with the TLD and MOSFET measurement case. The outer deviation was highest in the TLD, and the Inner' was highest in the MOSFET. Skin dose in relation to the treatment plan was the highest in the planing using the fluence technique in general and it was supposed that the high dose had been caused by the movement of the MLC. There's some differences among the all the treatment planning, but the sites such as IM node occurring the lack of dose, scar, drain site are needed pay

  17. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  18. Skin dose from radiotherapy X-ray beams: the influence of energy

    International Nuclear Information System (INIS)

    Butson, M.J.; Metcalfe, P.E.; University of Wollongong, Wollongong, NSW; Mathur, J.N.

    1997-01-01

    Skin-sparing properties of megavoltage photon beams are compromised by electron contamination. Higher energy beams do not necessarily produce lower surface and basal cell layer doses due to this electron contamination. For a 5x5 cm field size the surface doses for 6 MVp and 18 M)p X-ray beams are 10% and 7% of their respective maxima. However, at a field size of 40 x 40cm the percentage surface dose is 42% for both 6 MVp and 18 MVp beams. The introduction of beam modifying devices such as block trays can further reduce the skin-sparing advantages of high energy photon beams. Using a 10 mm perspex block tray, the surface doses for 6 MVp and 18 MVp beams with a 5 x 5 cm field size are 10% and 8%, respectively. At 40 x 40cm, surface doses are 61% and 63% for 6 MVp and 18 MVp beams, respectively. This trend is followed at the basal cell layer depth. At a depth of 1 mm, 18 MVp beam doses are always at least 5% smaller than 6 MVp doses for the same depth at all field sizes when normalized to their respective Dmax values. Results have shown that higher energy photon beams produce a negligible reduction of the delivered dose to the basal cell layer (0.1 mm). Only a small increase in skin sparing is seen at the dermal layer (1 mm), which can be negated by the increased exit dose from an opposing field. (authors)

  19. Low-dose CT imaging of a total hip arthroplasty phantom using model-based iterative reconstruction and orthopedic metal artifact reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wellenberg, R.H.H.; Streekstra, G.J.; Maas, M. [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Boomsma, M.F.; Osch, J.A.C. van [Department of Radiology, Zwolle (Netherlands); Vlassenbroek, A. [Philips Medical Systems, Brussels (Belgium); Milles, J. [Philips Medical Systems, Eindhoven (Netherlands); Edens, M.A. [Department of Innovation and Science, Zwolle (Netherlands); Slump, C.H. [University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Enschede (Netherlands)

    2017-05-15

    To compare quantitative measures of image quality, in terms of CT number accuracy, noise, signal-to-noise-ratios (SNRs), and contrast-to-noise ratios (CNRs), at different dose levels with filtered-back-projection (FBP), iterative reconstruction (IR), and model-based iterative reconstruction (MBIR) alone and in combination with orthopedic metal artifact reduction (O-MAR) in a total hip arthroplasty (THA) phantom. Scans were acquired from high- to low-dose (CTDI{sub vol}: 40.0, 32.0, 24.0, 16.0, 8.0, and 4.0 mGy) at 120- and 140- kVp. Images were reconstructed using FBP, IR (iDose{sup 4} level 2, 4, and 6) and MBIR (IMR, level 1, 2, and 3) with and without O-MAR. CT number accuracy in Hounsfield Units (HU), noise or standard deviation, SNRs, and CNRs were analyzed. The IMR technique showed lower noise levels (p < 0.01), higher SNRs (p < 0.001) and CNRs (p < 0.001) compared with FBP and iDose{sup 4} in all acquisitions from high- to low-dose with constant CT numbers. O-MAR reduced noise (p < 0.01) and improved SNRs (p < 0.01) and CNRs (p < 0.001) while improving CT number accuracy only at a low dose. At the low dose of 4.0 mGy, IMR level 1, 2, and 3 showed 83%, 89%, and 95% lower noise values, a factor 6.0, 9.2, and 17.9 higher SNRs, and 5.7, 8.8, and 18.2 higher CNRs compared with FBP respectively. Based on quantitative analysis of CT number accuracy, noise values, SNRs, and CNRs, we conclude that the combined use of IMR and O-MAR enables a reduction in radiation dose of 83% compared with FBP and iDose{sup 4} in the CT imaging of a THA phantom. (orig.)

  20. The role of natural and UV-induced skin pigmentation on low-fluence IPL-induced side effects: a randomized controlled trial.

    Science.gov (United States)

    Thaysen-Petersen, Daniel; Lin, Jennifer Y; Nash, Jf; Beerwerth, Frank; Wulf, Hans C; Philipsen, Peter A; Haedersdal, Merete

    2014-02-01

    The risk of adverse skin effects following light-based hair removal is greater in pigmented skin based on the theory of selective photothermolysis. Thus sunlight-induced pigment i.e., facultative pigmentation, increases the risk of adverse skin effects, perhaps disproportionately. The aim of this study was to evaluate the influence of constitutive and facultative skin pigmentation on low-fluence intense pulsed light (IPL)-induced adverse skin effects. Twenty-one subjects with Fitzpatrick skin type II-IV were enrolled. Two buttock blocks were randomized to receive 0 or 8 solar simulated ultraviolet radiation (UVR) exposures of consecutively increasing Standard Erythema Doses (2-4 SED). Each block was subdivided into four sites, randomized to receive IPL of 0, 7, 8, or 10 J/cm(2) , once a week for 3 weeks. Biopsies were taken 16-24 hours after the first IPL exposure and subjects were seen 1 and 4 weeks after the last IPL exposure. Outcome measures were: (i) skin reactions, (ii) pain, (iii) mRNA expression of pigment-markers microphthalmia-associated transcription factor (MITF) and pro-opiomelanocortin (POMC), and (iv) clinical appearance of biopsy wounds. Skin pigmentation increased after UVR (baseline median 13.8%, after UVR 28.1%, P = 0.0001) in all skin types. Subjects reported low pain intensities (median 1.5, scale 0-10) and experienced transient erythema immediately after IPL exposure. No persistent erythema, blisters, crusting, textual, or pigment changes were observed. The risk of erythema and pain intensities increased with IPL dose and skin pigmentation (P skin reactions in skin with similar degree of natural and facultative pigmentation (P ≥ 0.104). Expression of cellular pigment-markers was not influenced by IPL exposure, neither in constitutive nor in facultative pigmented skin. Clinical appearance of biopsy wounds was unaffected by IPL exposure. The prevalence and intensity of low-fluence IPL-induced adverse skin effects depended on IPL

  1. The Impact of Combining a Low-Tube Voltage Acquisition with Iterative Reconstruction on Total Iodine Dose in Coronary CT Angiography

    Directory of Open Access Journals (Sweden)

    Toon Van Cauteren

    2017-01-01

    Full Text Available Objectives. To assess the impact of combining low-tube voltage acquisition with iterative reconstruction (IR techniques on the iodine dose in coronary CTA. Methods. Three minipigs underwent CCTA to compare a standard of care protocol with two alternative study protocols combining low-tube voltage and low iodine dose with IR. Image quality was evaluated objectively by the CT value, signal-to-noise ratio (SNR, and contrast-to-noise ratio (CNR in the main coronary arteries and aorta and subjectively by expert reading. Statistics were performed by Mann–Whitney U test and Chi-square analysis. Results. Despite reduced iodine dose, both study protocols maintained CT values, SNR, and CNR compared to the standard of care protocol. Expert readings confirmed these findings; all scans were perceived to be of at least diagnostically acceptable quality on all evaluated parameters allowing image interpretation. No statistical differences were observed (all p values > 0.11, except for streak artifacts (p=0.02 which were considered to be more severe, although acceptable, with the 80 kVp protocol. Conclusions. Reduced tube voltage in combination with IR allows a total iodine dose reduction between 37 and 50%, by using contrast media with low iodine concentrations of 200 and 160 mg I/mL, while maintaining image quality.

  2. A Computer Program Method for Estimation of Entrance Skin Dose for some Individuals Undergoing X-ray Imaging

    International Nuclear Information System (INIS)

    Taha, T.M.; Allehyani, S.

    2012-01-01

    A computer program depends on practical measurements of entrance skin dose patients undergoing radiological examinations. Physical parameters such as field size, half value layer, backscatter factor, dose output, focal film distance, focal skin distance, normal operating conditions were taken into consideration for calculation entrance skin dose. It was measured by many techniques such as Thermo-luminescence dosimeters, ionization chambers. TLD technique characterized by high precision and reproducibility of dose measurement is checked by addressing pre-readout annealing, group sorting, dose evaluation, Fifty TLD chips were annealed for 1 hour at 400 degree C followed by 2 h at 100 degree C. After exposure to constant dose from X-ray generator. 0.6 cc Ionization chamber was located at surface of water chest phantom that has dimensions of 40 cm x 40 cm x 20 cm and connected with farmer dose master. Entrance Skin Dose was calculated using the generated software by changing the physical parameters and using the measured output doses. The obtained results were compared with the reference levels of International Atomic Energy Authority. The constructed computer program provides an easy and more practical mean of estimating skin dose even before exposure. They also provide the easiest and cheapest technique can be employed in any entrance skin dose measurement

  3. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  4. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    -LET radiation). Such phantom risks also may arise from risk assessments conducted for combined exposure to low- and high-LET radiations when based on the LNT or other models that exclude RR < 1. Our results for high-LET radiation are consistent with the LNT hypothesis but only where there is no additional low-LET contribution (e.g., gamma rays) to the total dose. For high-LET neutron sources, gamma rays arise (especially in vivo) for large mammals such as humans from neutron interactions with tissue. The gamma rays might provide some protection from low-dose-related stochastic effects via inducing the protective bystander apoptosis effect that is considered to contribute to tissue cleansing via removal of problematic cells.

  5. Entrances skin dose distribution maps for interventional neuroradiological procedures: A preliminary study

    International Nuclear Information System (INIS)

    Rampado, O.; Ropolo, R.

    2005-01-01

    Does estimation in interventional neuroradiology can be useful to limit skin radiation injuries. The purpose of this study was to evaluate the role of entrance skin dose (ESD) maps in planning exposure condition optimisation. Thirteen cerebral angiography and five embolisation procedures were monitored, measuring ESD, dose-area product (DAP) and other operational parameters. A transmission ionisation chamber, simultaneously measuring air kerma and DAP, measured dose-related quantities. Data acquisition software collected dosimetric and geometrical data during the interventional procedure and provided a distribution map of ESD on a standard phantom digital image, with maximum value estimation. Values of 88-1710 mGy for maximum skin dose and 16.7-343 Gy cm 2 for DAP were found. These data confirm the possibility of deterministic effects during therapeutic interventional neuroradiological procedures like cerebral embolisation. ESD maps are useful to retrospectively study the exposure characteristics of a procedure and plan patient exposure optimisation. (authors)

  6. Skin dose estimation for various beam modifiers and source-to-surface distances for 6MV photons

    Directory of Open Access Journals (Sweden)

    Yadav Girigesh

    2009-01-01

    Full Text Available The purpose of this study was to learn the skin dose estimation for various beam modifiers at various source-to-surface distances (SSDs for a 6 MV photon. Surface and buildup region doses were measured with an acrylic slab phantom and Markus 0.055 cc parallel plate (PP ionization chamber. Measurements were carried out for open fields, motorized wedge fields, acrylic block tray fields ranging from 3 x 3 cm 2 to 30 x 30 cm 2 . Twenty-five percent of the field was blocked with a cerrobend block and a Multileaf collimator (MLC. The effect of the blocks on the skin dose was measured for a 20 x 20 cm 2 field size, at 80 cm, 100 cm and 120 cm SSD. During the use of isocentric treatments, whereby the tumor is positioned at 100 cm from the source, depending on the depth of the tumor and size of the patient, the SSD can vary from 80 cm to 100 cm. To achieve a larger field size, the SSD can also be extended up to 120 cm at times. The skin dose increased as field size increased. The skin dose for the open 10 x10 cm 2 field was 15.5%, 14.8% and 15.5% at 80 cm, 100 cm and 120 cm SSDs, respectively. The skin dose due to a motorized 60 0 wedge for the 10 x 10 cm 2 field was 9.9%, 9.5%, and 9.5% at 80 cm, 100 cm and 120 cm SSDs. The skin dose due to acrylic block tray, of thickness 1.0 cm for a 10 x 10 cm 2 field was 27.0%, 17.2% and 16.1% at 80, 100 and 120 cm SSD respectively. Due to the use of an acrylic block tray, the surface dose was increased for all field sizes at the above three SSDs and the percentage skin dose was more dominant at the lower SSD and larger field size. The skin dose for a 30 x 30 cm 2 field size at 80 cm SSD was 38.3% and it was 70.4% for the open and acrylic block tray fields, respectively. The skin doses for motorized wedge fields were lower than for open fields. The effect of SSDs on the surface dose for motorized 60° wedge fields was not significant for a small field size (difference was less than 1% up to a 15 x 15 cm 2 field size

  7. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    International Nuclear Information System (INIS)

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-01-01

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  8. Intraoperative low-dose ketamine infusion reduces acute postoperative pain following total knee replacement surgery: a prospective, randomized double-blind placebo-controlled trial.

    Science.gov (United States)

    Cengiz, Pelin; Gokcinar, Derya; Karabeyoglu, Isil; Topcu, Hulya; Cicek, Gizem Selen; Gogus, Nermin

    2014-05-01

    To evaluate the effect of intraoperative low-dose ketamine with general anesthesia on postoperative pain after total knee replacement surgery. A randomized, double-blind comparative study. Ankara Numune Training and Research Hospital, Turkey, from January and June 2011. Sixty adults undergoing total knee arthroplasty were enrolled in this study. The patients were randomly allocated into two groups of equal size to receive either racemic ketamine infusion (6 μg/kg/minute) or the same volume of saline. A visual analogue scale (VAS) was used to measure each patient's level of pain at 1, 3, 6, 12, and 24 hours after surgery. Time to first analgesic request, postoperative morphine consumption and the incidence of side effects were also recorded. Low-dose ketamine infusion prolonged the time to first analgesic request. It also reduced postoperative cumulative morphine consumption at 1, 3, 6, 12, and 24 hours postsurgery (p < 0.001). Postoperative VAS scores were also significantly lower in the ketamine group than placebo, at all observation times. Incidences of side effects were similar in both study groups. Intraoperative continuous low-dose ketamine infusion reduced pain and postoperative analgesic consumption without affecting the incidence of side effects.

  9. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  10. Skin Dose Assessment Methodology for Military Personnel at McMurdo Station, Antarctica (1962-1979)

    Science.gov (United States)

    2014-06-01

    Particle size factor (unitless) = Moisture factor (unitless) = Enrichment factor (unitless) Values used for parameters in Equation A-1...forearm (fa) IRF (IRF/IRFfa) See Table A-5 Particle Size Factor (PS) 1.0 Moisture Factor (EM) High humidity, e.g. Pacific Ocean 3.0 Low humidity to... Interception and retention fractions, and effective retention factors ......................... 22 Table B-1. Standard height external skin doses (mSv

  11. Proposal of a dosemeter for skin beta radiation dose assessment

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.

    1987-08-01

    Beta radiation is, undoubtedly, less penetrating than X or gamma radiation. Thus, beta radiation sources external to the human body do not cause a significant irradiation of its deeper tissues. However, in some cases, they may contribute in a very important way to the irradiation of the lens of the eyes and, mainly, of the skin. Specially, the hands and finger tips may receive a high dose. In this work some relevant aspects of the individual monitoring in beta radiation fields are discussed and the importance of monitoring this kind of radiation in some activities where the skin absorbed dose may be a limiting factor is evidenced. The main characteristics of the thermoluminescent (TL) response of ultra-thin CaSO 4 : Dy detectors (UT-CaSO 4 : Dy) in the detection of this kind of radiation are also studied. The irradiation are performed with 90 Sr 90 Y, 204 TI and 147 Pm sources. The reproducibility, linearity, dependence on the absorbed dose rate, optical fading, energy and angular dependences of the detector TL responce are investigated. Transmission factors for different thicknesses of tissue equivalent material are obtained for the TL detectors using the three available beta sources. Based on the results obtained, a dosemeter for skin beta radiation absorbed dose assessment with an energy dependence better than 12% is proposed. (Author) [pt

  12. Time and dose-related changes in the thickness of pig skin after irradiation with single doses of 90Sr/90Y β-rays

    International Nuclear Information System (INIS)

    Rezvani, M.; Hamlet, R.; Hopewell, J.W.; Sieber, V.K.

    1994-01-01

    Time-related changes in pig skin thickness have been evaluated using a non-invasive ultrasound technique after exposure to a range of single doses of 90 Sr/ 90 Yr β-rays. The reduction in relative skin thickness developed in two distinct phases: the first was between 12 and 20 weeks postirradiation. No further changes were then seen until 52 weeks postirradiation when a second phase of skin thinning was observed. This was complete after 76 weeks and no further changes in relative skin thickness were seen in the maximum follow up period of 129 weeks. The timings of these phases of damage were independent of the radiation dose, however, the severity of both phases of radiation-induced skin thinning were dose related. (Author)

  13. The effects of an intraperitoneal single low dose of ketamine in attenuating the postoperative skin/muscle incision and retraction-induced pain related to the inhibition of N-methyl-D-aspartate receptors in the spinal cord.

    Science.gov (United States)

    Shen, Yu; Xu, Li; Liu, Ming; Lei, Yishan; Gu, Xiaoping; Ma, Zhengliang

    2016-03-11

    Chronic postoperative pain (CPOP) is a common clinical problem which might be related to central sensitization. It has been widely accepted that NMDA (N-methyl-D-aspartate) receptors are among the triggers of central sensitization. Ketamine is a non-competitive NMDA receptor antagonist that is widely used in alleviating postoperative pain, but its effect on CPOP has been rarely reported. In the present study, the skin/muscle incision and retraction (SMIR) model was used to investigate the role of NMDARs in chronic postoperative pain and the effect of an intraperitoneal single low dose ketamine (10mg/kg) of attenuating SMIR-induced CPOP. We assessed pain behaviours after a SMIR operation by paw withdrawal threshold (PWMT) and paw withdrawal latency (PWMTL). Western blotting were performed to examine the role of NMDARs in SMIR-induced CPOP and the effect of ketamine on the expression and phosphorylation of NMDARs. The SMIR operation induced long-lasting mechanical hyperalgesia, and the up-regulation of phosphorylated NMDARs and total NMDARs at the spinal level. A single intraperitoneal administration of low dose ketamine (10mg/kg) during surgery alleviated pain behaviors and inhibited the up-regulation of phosphorylated NMDARs and total NMDARs. Our datas suggested that NMDARs play important roles in SMIR-induced CPOP. A single intraperitoneal low dose of ketamine could attenuate SMIR-induced CPOP, which might be associated with the inhibition of NMDARs. Our finding might provide a new, simple method of addressing CPOP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Skin dose for head and neck cancer patients treated with intensity-modulated radiation therapy(IMRT)

    Science.gov (United States)

    Fu, Hsiao-Ju; Li, Chi-Wei; Tsai, Wei-Ta; Chang, Chih-Chia; Tsang, Yuk-Wah

    2017-11-01

    The reliability of thermoluminescent dosimeters (ultrathin TLD) and ISP Gafchromic EBT2 film to measure the surface dose in phantom and the skin dose in head-and-neck patients treated with intensity-modulated radiation therapy technique(IMRT) is the research focus. Seven-field treatment plans with prescribed dose of 180 cGy were performed on Eclipse treatment planning system which utilized pencil beam calculation algorithm(PBC). In calibration tests, the variance coefficient of the ultrathin TLDs were within 3%. The points on the calibration curve of the Gafchromic film was within 1% variation. Five measurements were taken on phantom using ultrathin TLD and EBT2 film respectively. The measured mean surface doses between ultrathin TLD or EBT2 film were within 5% deviation. Skin doses of 6 patients were measured for initial 5 fractions and the mean dose per-fraction was calculated. If the extrapolated doses for 30 fractions were below 4000 cGy, the skin reaction grading observed according to Radiation Therapy Oncology Group (RTOG) was either grade 1 or grade 2. If surface dose exceeded 5000 cGy in 32 fractions, then grade 3 skin reactions were observed.

  15. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  16. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  17. Gigapixel photography for skin cancer surveillance: a novel alternative to total-body photography.

    Science.gov (United States)

    Mikailov, Anar; Blechman, Adam

    2013-11-01

    There is substantial evidence supporting the use of cutaneous imaging in combination with standard total-body skin examinations for early detection and treatment of melanoma. In the last 2 decades, total-body photography (TBP) has been widely used in combination with standard total-body skin examinations for active skin cancer surveillance with proven clinical utility; however, the groundbreaking image detail provided by gigapixel photography (GP) could improve dermatologists' ability to monitor suspicious lesions and therefore could serve a critical role in supplementing traditional total-body skin examinations for skin cancer surveillance. Although it has been successfully implemented in other fields, future studies are required to determine the effectiveness of GP in dermatology.

  18. Measurement of Skin Dose from Using the Treatment Immobilization Devices

    International Nuclear Information System (INIS)

    Je, Jae Yong; Park, Chul Woo; Noh, Kyung Suk

    2009-01-01

    The research was about the relation between the dorsal side dose measured by using the phantom body (Alderson Rando Phantom) and factors like contacted material of the patients, the size of the field, angle of incidence. Compared with mylar (tennis racket), the dose on 10 x 10 cm 2 field size of cotton was increased by 2% and by 8% in the case of breast board. In the case of 15 x 15 cm 2 field size, the dose was increased by 6% compared with 10 x 10 cm 2 size. The field size of 20 x 20 cm 2 resulted in 10% increase of dose, while 5 x 5 cm 2 produced 13% decrease. Compared with incident angle 0 degree, the cases for the incident angle 5 degrees had 0.4% less dose for breast board, 0.5% for tennis racket, 1.1% for cotton. The cases for the incident angle 10 degrees had 1.5% less dose for breast board, 1.9% for tennis racket, 2.6% for cotton. For the incident angle 15 degrees, breast board, tennis racket, cotton caused decrease of dose by 3.9%, 2.6%, 3.86% respectively. Resultantly carbon material can cause more skin dose in treatment field. By the results of this study, we recommend that one should avoid the contact between the carbon material and skin.

  19. Total Body Photography as an Aid to Skin Self-examination: A Patient's Perspective.

    Science.gov (United States)

    Secker, Lisanne J; Bergman, Wilma; Kukutsch, Nicole A

    2016-02-01

    Skin self-examination can help patients who are at high risk for developing melanoma to become more involved in their own surveillance and treatment. This study examined the use of total body photography as an aid to skin self-examination from the patients' perspective. A total of 179 individuals at high risk for developing melanoma who had undergone total body photography (60.5% response rate) completed a self-reported questionnaire assessing the frequency of skin self-examination, perceived usefulness of total body photography, and a variety of potential demographic, clinical and psychological factors. Only approximately half of the participants indicated skin self-examination as useful and 78.9% preferred clinical skin examination by a specialist. Finding total body photography useful was associated with having received instructions on how to perform skin self-examination, the use of a (hand)mirror, and confidence to detect changing moles. These findings allow us to develop strategies to further improve patients' self-screening behaviours.

  20. Low Dose Gamma Irradiation Does Not Affect the Quality or Total Ascorbic Acid Concentration of "Sweetheart" Passionfruit (Passiflora edulis).

    Science.gov (United States)

    Golding, John B; Blades, Barbara L; Satyan, Shashirekha; Spohr, Lorraine J; Harris, Anne; Jessup, Andrew J; Archer, John R; Davies, Justin B; Banos, Connie

    2015-08-26

    Passionfruit ( Passiflora edulis , Sims, cultivar "Sweetheart") were subject to gamma irradiation at levels suitable for phytosanitary purposes (0, 150, 400 and 1000 Gy) then stored at 8 °C and assessed for fruit quality and total ascorbic acid concentration after one and fourteen days. Irradiation at any dose (≤1000 Gy) did not affect passionfruit quality (overall fruit quality, colour, firmness, fruit shrivel, stem condition, weight loss, total soluble solids level (TSS), titratable acidity (TA) level, TSS/TA ratio, juice pH and rot development), nor the total ascorbic acid concentration. The length of time in storage affected some fruit quality parameters and total ascorbic acid concentration, with longer storage periods resulting in lower quality fruit and lower total ascorbic acid concentration, irrespective of irradiation. There was no interaction between irradiation treatment and storage time, indicating that irradiation did not influence the effect of storage on passionfruit quality. The results showed that the application of 150, 400 and 1000 Gy gamma irradiation to "Sweetheart" purple passionfruit did not produce any deleterious effects on fruit quality or total ascorbic acid concentration during cold storage, thus supporting the use of low dose irradiation as a phytosanitary treatment against quarantine pests in purple passionfruit.

  1. Influence of a Commercial Lead Apron on Patient Skin Dose Delivered During Oral and Maxillofacial Examinations under Cone Beam Computed Tomography (CBCT).

    Science.gov (United States)

    Schulze, Ralf Kurt Willy; Sazgar, Mahssa; Karle, Heiko; de Las Heras Gala, Hugo

    2017-08-01

    The purpose of this paper is to investigate the impact of a commercial lead apron on patient skin dose delivered during maxillofacial CBCT in five critical regions by means of solid-state-dosimetry. Five anatomical regions (thyroid gland, left and right breast, gonads, back of the phantom torso) in an adult female anthropomorphic phantom were selected for dose measurement by means of the highly sensitive solid-state dosimeter QUART didoSVM. Ten repeated single exposures were assessed for each patient body region for a total of five commercial CBCT devices with and without a lead apron present. Shielded and non-shielded exposures were compared under the paired Wilcoxon test, with absolute and relative differences computed. Reproducibility was expressed as the coefficient of variation (CV) between the 10 repeated assessments. The highest doses observed at skin level were found at the thyroid (mean shielded ± SD: 450.5 ± 346.7 μGy; non-shielded: 339.2 ± 348.8 μGy, p = 0.4922). Shielding resulted in a highly significant (p < 0.001) 93% dose reduction in skin dose in the female breast region with a mean non-shielded dose of approximately 35 μGy. Dose reduction was also significantly lower for the back-region (mean: -65%, p < 0.0001) as well as for the gonad-region (mean: -98%, p < 0.0001) in the shielded situation. Reproducibility was inversely correlated to skin dose (Rspearman = -0.748, p < 0.0001) with a mean CV of 10.45% (SD: 24.53 %). Skin dose in the thyroid region of the simulated patient was relatively high and not influenced by the lead apron, which did not shield this region. Dose reduction by means of a commercial lead apron was significant in all other regions, particularly in the region of the female breast.

  2. Local superficial hyperthermia in combination with low-dose radiation therapy for palliation of superficially localized metastases

    International Nuclear Information System (INIS)

    Owczarek, G.; Miszczyk, L.

    2005-01-01

    Full text: The aim of this study is to evaluate the response of superficially located metastases and local toxicity to microwave hyperthermia combined with radiation therapy. From May 2003 through December 2004 58 patients (33 male, 25 female; mean age 60 years) with lymph nodes or skin metastases were treated with microwave superficial hyperthermia combined with low-dose radiation therapy. Hyperthermia was administered twice weekly with high frequency applicator (∼900 Mhz) with water bolus. The temperature was set to 43 o C for 45 minutes. Radiotherapy was performed daily with dose 2 Gy or 4 Gy per fraction, to a total dose 20 Gy. There were 47 patients with carcinoma, 4 with sarcoma, 7 with melanoma. Treated regions were: head and neck (37 patients), chest wall 8, abdomen wall and groins 4, upper and lower limb 2 and 8 patients respectively. Primary tumor sites were: head and neck region (9 patients), lung 15, alimentary tract 8, breast 5, soft tissue 8, urogenital 4 and 9 patients with primary tumor site unknown. The toxicity was evaluated using 6 step scale: 0-no skin reaction, 1-faint red mark, 2-distinct red mark, 3-blisters, 4-brown mark, 5-necrosis. Presence of pain and its intensity were also analyzed. Diameter of tumor after the treatment was observed. Complete response was achieved in 5 patients (8.5 %), and partial response in 29 patients (50 %), no response was observed in 12 patients (20 %) and progression of tumor in 7 patients (12 %). No skin reaction was observed in 3 patients, faint red mark in 14 patients, distinct red mark in 28 patients, blisters in 8 patients, brown mark in 4 patients and necrosis in 1 patient. The pain occurred in 9 patients but it was no the cause of stopping treatment. Local superficial hyperthermia combined with low-dose radiation therapy is an effective method of treatment in a proportion of patients with superficial metastases. This combination of treatment modalities is well tolerated and is useful for palliation

  3. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  4. Characterization of a team intraoperative Radiation therapy and measurement of dose in skin with film radiochromic

    International Nuclear Information System (INIS)

    Onses Segarra, A.; Sancho Kolster, I.; Eraso Urien, A.; Pla Farnos, M. J.; Picon Olmos, C.

    2015-01-01

    This paper presents the results of the initial reference state of intraoperative radiotherapy equipment lntraBeam, for performing breast treatments are analyzed. To the initial reference team was established for the following dosimetric and geometric beam parameters: percentage depth dose, beam quality, isotropy, linearity and mechanical and geometric integrity for both the source RX as for different spherical applicators of the team. Based on these checks, a program of periodic quality control was established. One of the exclusion criteria for this treatment is that the tumor is less than l cm of the skin, yaque give doses received in this organ can be high. For this reason it is important to know exactly the absorbed dose in skin during these treatments. In this regard we have implemented a system for measuring the skin dose during treatment with Radiochromic film, placing 4 film segments in fixed positions of the skin around the surgical incision. It .ha obtained calibration curve of sterilized films and compared the results with a calibration beam megavoltage. The results of the skin dose measurements are compared with theoretical estimates given by the planning system equipment. The results indicate the need to measure individually the skin dose for these treatments. (Author)

  5. Evaluation of patients skin dose undergoing interventional cardiology procedure using radiochromic films

    International Nuclear Information System (INIS)

    Silva, Mauro W. Oliveira da; Canevaro, Lucia V.; Rodrigues, Barbara B. Dias

    2011-01-01

    In interventional cardiology (IC), coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA) procedures are the most frequent ones. Since the 1990s, the number of IC procedures has increased rapidly. It is also known that these procedures are associated with high radiation doses due to long fluoroscopy time (FT) and large number of cine-frames (CF) acquired to document the procedure. Mapping skin doses in IC is useful to find the probability of skin injuries, to detect areas of overlapping field, and to get a permanent record of the most exposed areas of skin. The purpose of this study was to estimate the maximum skin dose (MSD) in patients undergoing CA and PTCA, and to compare these values with the reference levels proposed in the literature. Patients' dose measurements were carried out on a sample of 38 patients at the hemodynamic department, in four local hospitals in Rio de Janeiro, Brazil, using Gafchromic XR-RV2 films. In PTCA procedures, the median and third quartile values of MSD were estimated at 2.5 and 5.3 Gy, respectively. For the CA procedures, the median and third quartile values of MSD were estimated at 0.5 and 0.7 Gy, respectively. In this paper, we used the Pearson's correlation coefficient (r), and we found a fairly strong correlation between FT and MSD (r=0.8334, p<0.0001), for CA procedures. The 1 Gy threshold for deterministic effects was exceeded in nine patients. The use of Gafchromic XR-RV2 films was shown to be an effective method to measure MSD and the dose distribution map. The method is effective to identify the distribution of radiation fields, thus allowing the follow-up of the patient to investigate the appearance of skin injuries. (author)

  6. Skin dose reduction by a clinically viable magnetic deflector

    International Nuclear Information System (INIS)

    Butson, M.J.; Carolan, M.; Metcalfe, J.N.; University of Wollongong, NSW; Mathur, J.N.; Yu, P.; Young, E.; Kan, M.; City University of Hong Kong, Kowloon

    1997-01-01

    A variable magnetic deflector which attaches onto the treatment head of a linear accelerator has reduced skin dose by as much as 65% for 6MV x-rays. The magnetic deflector is constructed from Neodymium Iron Boron (NdFeB) rare earth magnets. It weighs approximately 15 kg and is designed to easily fit onto the accessory mount of a clinical linear accelerator. All field sizes are attainable up to 35 cm x 35 cm at 100 cm SSD. The gap between the magnetic poles can be adjusted, providing the highest field strength for each field size. Magnetic field strengths up to 0.55 Tesla are attainable. For a 6MV x-ray beam with a 10 mm perspex block tray, surface dose is reduced from 29% to 14% and from 59% to 37% for a 20 cm x 20 cm and 35 cm x 35 cm field size, respectively. Results at varying SSD's have shown at least 10 cm of space must be allowed between the magnets and patient for adequate reduction of skin dose through removal of electron contaminants. (authors)

  7. Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds

    International Nuclear Information System (INIS)

    Guix, Benjamin; Finestres, Fernando; Tello, Jose-Ignacio; Palma, Cesar; Martinez, Antonio; Guix, Jose-Ramon; Guix, Ricardo

    2000-01-01

    Purpose: To analyze the results obtained in a prospective group of patients with basal or squamous cell skin carcinomas of the face treated by high-dose-rate (HDR) brachytherapy via custom-made surface molds. Methods and Materials: A total of 136 patients with basal or squamous cell carcinomas of the face were treated between March 1992 and March 1997 by surface molds and HDR brachytherapy with iridium-192. Nineteen patients were treated with standard Brock applicators and 117 patients with custom-made polymethyl methacrylate applicators, built over a plaster mold obtained of the patient's face. Minimum dose administered to the tumor was 6000 to 6500 cGy in 33 to 36 fractions at 180 cGy/fraction in lesions of up to 4 cm. Lesions greater than 4 cm were boosted up to 7500-8000 cGy after a 3-week pause. Results: With the custom-made surface molds, the dose distribution was uniform in the surface of the skin and at 5 mm depth in the whole area of the applicator. Differences between the areas of maximum and minimum dose at this depth never reached values higher than 5% of the prescribed dose. At the edges of the custom-made molds dose gradient was sharp, with the detected dose at 5 mm from the applicator being negligible. All the patients were complete responders. There were 3 local recurrences, 1/73 patients treated for primary tumor and 2/63 patients treated for recurrent tumor. Actuarial local control at 5 years for all patients was 98%, for those patients with primary tumors 99%, and for recurrent patients 87%. The treatment tolerance was excellent in all cases. No severe, early, or late, complications were detected. Conclusions: Radiotherapy is a highly effective treatment of skin carcinomas of the face. Custom-made molds, to be used in conjunction with HDR brachytherapy equipment, make possible a uniform dose distribution, with a sharp dose gradient in the limits of applicators. Custom-made surface molds are easy and safe to use, and they fit very accurately for

  8. Intraoperative Low-Dose Ketamine Infusion Reduces Acute Postoperative Pain Following Total Knee Replacement Surgery: A Prospective, Randomized Double-Blind Placebo-Controlled Trial

    International Nuclear Information System (INIS)

    Pelin Cengiz, P.; Gokcinar, D.; Karabeyoglu, I.; Topcu, H.; Cicek, G. S.; Gogus, N.

    2014-01-01

    Objective: To evaluate the effect of intraoperative low-dose ketamine with general anesthesia on postoperative pain after total knee replacement surgery. Study Design: A randomized, double-blind comparative study. Place and Duration of Study: Ankara Numune Training and Research Hospital, Turkey, from January and June 2011. Methodology: Sixty adults undergoing total knee arthroplasty were enrolled in this study. The patients were randomly allocated into two groups of equal size to receive either racemic ketamine infusion (6.25 g/kg/minute) or the same volume of saline. A visual analogue scale (VAS) was used to measure each patient's level of pain at 1, 3, 6, 12, and 24 hours after surgery. Time to first analgesic request, postoperative morphine consumption and the incidence of side effects were also recorded. Results: Low-dose ketamine infusion prolonged the time to first analgesic request. It also reduced postoperative cumulative morphine consumption at 1, 3, 6, 12, and 24 hours postsurgery (p < 0.001). Postoperative VAS scores were also significantly lower in the ketamine group than placebo, at all observation times. Incidences of side effects were similar in both study groups. Conclusion: Intraoperative continuous low-dose ketamine infusion reduced pain and postoperative analgesic consumption without affecting the incidence of side effects. (author)

  9. A comparison of skin and chest wall dose delivered with multicatheter, Contura multilumen balloon, and MammoSite breast brachytherapy.

    Science.gov (United States)

    Cuttino, Laurie W; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W

    2011-01-01

    Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. A Comparison of Skin and Chest Wall Dose Delivered With Multicatheter, Contura Multilumen Balloon, and MammoSite Breast Brachytherapy

    International Nuclear Information System (INIS)

    Cuttino, Laurie W.; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W.

    2011-01-01

    Purpose: Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. Methods and Materials: 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. Results: The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). Conclusion: The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS.

  11. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    International Nuclear Information System (INIS)

    Poellaenen, R.

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has been higher

  12. Research on low radiation doses - A better understanding of low doses

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation doses below 100 mSv are called low doses. Epidemiological research on the health hazards of low doses are difficult to do because numerous pathologies, particularly cancer, appear lifelong for genetical or environmental causes without any link with irradiation and it is very difficult to identify the real cause of a cancer. Another concern is that the impact on human health is weak and are observed only after a long period after irradiation. These features make epidemiological studies cumbersome to implement since they require vast cohorts and a very long-term follow-up. The extrapolation of the effects of higher doses to the domain of low doses does not meet reality and it is why the European Union takes part into the financing of such research. In order to gain efficiency, scientists work together through various European networks among them: HLEG (High Level Expert Group On European Low Dose Risk Research) or MELODI (Multidisciplinary European Low Dose Initiative). Several programs are underway or have been recently launched: -) the impact of Cesium contamination on children's health (Epice program), -) the study of the impact of medical imaging on children, -) the study of the health of children living near nuclear facilities, -) the relationship between radon and lung cancer, -) the effect of occupational low radiation doses, -) the effect of uranium dissolved in water on living organisms (Envirhom program). (A.C.)

  13. Physiological and immunological changes following exposure to low versus high-dose ionizing irradiation; comparative analysis with dose rate and cumulative dose

    International Nuclear Information System (INIS)

    Heesun, Kim; Heewon, Jang; Soungyeon, Song; Shinhye, Oh; Cukcheul, Shin; Meeseon, Jeong; Chasoon, Kim; Kwnaghee, Yang; Seonyoung, Nam; Jiyoung, Kim; Youngwoo, Jin; Changyoung, Cha

    2008-01-01

    Full text: While high-dose of ionizing radiation is generally harmful and causes damage to living organisms some reports suggest low-dose of radiation may not be as damaging as previously thought. Despite increasing evidence regarding the protective effect of low-dose radiation, no studies have directly compared the exact dose-response pattern by high- and low-dose of radiation exposed at high-and low-dose rate. This study aims to explore the cellular and molecular changes in mice exposed to low- and high-dose of radiation exposed at low- and high-dose rate. When C57BL/6 mice (Female, 6 weeks) were exposed at high-dose rate, 0.8 Gy/min, no significant change on the level of WBC, RBC, or platelets was observed up to total dose of 0.5 Gy. However, 2 Gy of radiation caused dramatic reduction in the level of white blood cells (WBC) and platelets. This reduction was accompanied by increased DNA damage in hematopoietic environments. The reduction of WBC was mainly due to the reduction in the number of CD4+ T cells and CD19+ B cells. CD8+ T cells and NK cells appeared to be relatively resistant to high-dose of radiation. This change was also accompanied by the reduction of T- and B- progenitor cells in the bone marrow. In contrast, no significant changes of the number of CD4+ T, CD8+ T, NK, and B cells were observed in the spleen of mice exposed at low-dose-rate (0.7 m Gy/h or 3.95 mGy/h) for up to 2 Gy, suggesting that low-dose radiation does not alter cellular distribution in the spleen. Nevertheless, mice exposed to low-dose radiation exhibited elevation of VEGF, MCP-1, IL-4, Leptin, IL-3, and Tpo in the peripheral blood and slight increases in MIP-2, RANTES, and IL-2 in the spleen. This suggests that chronic γ-radiation can stimulate immune function without causing damage to the immune components of the body. Taken together, these data indicate hormesis of low-dose radiation, which could be attributed to the stimulation of immune function. Dose rate rather than total

  14. Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast.

    Science.gov (United States)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  15. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  16. Impact of total ionizing dose on the electromagnetic susceptibility of a single bipolar transistor

    International Nuclear Information System (INIS)

    Doridant, A.; Jarrix, S.; Raoult, J.; Blain, A.; Dusseau, L.; Chatry, N.; Calvel, P.; Hoffmann, P.

    2012-01-01

    Space or military electronic components are subject to both electromagnetic fields and total ionizing dose. This paper deals with the electromagnetic susceptibility of a discrete low frequency transistor subject to total ionizing dose deposition. The electromagnetic susceptibility is investigated on both non-irradiated and irradiated transistors mounted in common emitter configuration. The change in susceptibility to 100 MHz-1.5 GHz interferences lights up a synergy effect between near field electromagnetic waves and total ionizing dose. Physical mechanisms leading to changes in signal output are detailed. (authors)

  17. Moist skin care can diminish acute radiation-induced skin toxicity

    International Nuclear Information System (INIS)

    Momm, F.; Weissenberger, C.; Bertelt, S.; Henke, M.

    2003-01-01

    Background: Radiation treatment may induce acute skin reactions. There are several methods of managing them. Validity of these methods, however, is not sufficiently studied. We therefore investigated, whether moist skin care with 3% urea lotion will reduce acute radiation skin toxicity. Patients and Methods: 88 patients with carcinomas of the head and neck undergoing radiotherapy with curative intent (mean total dose 60 Gy, range: 50-74 Gy) were evaluated weekly for acute skin reactions according to the RTOG-CTC score. In 63 patients, moist skin care with 3% urea lotion was performed. The control group consisted of 25 patients receiving conventional dry skin care. The incidence of grade I, II, and III reactions and the radiation dose at occurrence of a particular reaction were determined and statistically analyzed using the log-rank test. The dose-time relations of individual skin reactions are described. Results: At some point of time during radiotherapy, all patients suffered from acute skin reactions grade I, > 90% from grade II reactions. 50% of patients receiving moist skin care experienced grade I reactions at 26 Gy as compared to 22 Gy in control patients (p = 0.03). Grade II reactions occurred at 51 Gy versus 34 Gy (p = 0.006). Further, 22% of the patients treated with moist skin care suffered from acute skin toxicity grade III as compared to 56% of the controls (p = 0.0007). Conclusion: Moist skin care with 3% urea lotion delays the occurrence and reduces the grade of acute skin reactions in percutaneously irradiated patients with head and neck tumors. (orig.)

  18. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Syh, J; Patel, B; Wu, H; Durci, M [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists of multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.

  19. Combination of MALDI-MSI and cassette dosing for evaluation of drug distribution in human skin explant

    DEFF Research Database (Denmark)

    Sørensen, Isabella S; Janfelt, Christian; Nielsen, Mette Marie B

    2017-01-01

    Study of skin penetration and distribution of the drug compounds in the skin is a major challenge in the development of topical drug products for treatment of skin diseases. It is crucial to have fast and efficacious screening methods which can provide information concerning the skin penetration ...... that combination of MALDI-MSI and cassette dosing can be used as a medium throughput screening tool at an early stage in the drug discovery/development process. Graphical abstract Investigation of drug distribution in human skin explant by MALDI-MSI after cassette dosing....

  20. Low Dose Ionizing Radiation Modulates Immune Function

    International Nuclear Information System (INIS)

    Nelson, Gregory A.

    2016-01-01

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a 'Th2 polarized' immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in

  1. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  2. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    International Nuclear Information System (INIS)

    Fonseca, A S; Mencalha, A L; Campos, V M A; Ferreira-Machado, S C; Peregrino, A A F; Magalhães, L A G; Geller, M; Paoli, F

    2013-01-01

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation. (paper)

  3. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics.

    Science.gov (United States)

    Souza-Barros, Leanna; Dhaidan, Ghaith; Maunula, Mikko; Solomon, Vaeda; Gabison, Sharon; Lilge, Lothar; Nussbaum, Ethne L

    2018-04-01

    To examine the role of skin color and tissue thickness on transmittance, reflectance, and skin heating using red and infrared laser light. Forty volunteers were measured for skin color and skin-fold thickness at a standardized site near the elbow. Transmittance, reflectance and skin temperature were recorded for energy doses of 2, 6, 9, and 12 Joules using 635 nm (36 mW) and 808 nm (40 mW) wavelength laser diodes with irradiances within American National Standards Institute safety guidelines (4.88 mm diameter, 0.192 W/cm 2 and 4.88 mm diameter, 0.214 W/cm 2 , respectively). The key factors affecting reflectance to an important degree were skin color and wavelength. However, the skin color effects were different for the two wavelengths: reflectance decreased for darker skin with a greater decrease for red light than near infrared light. Transmittance was greater using 808 nm compared with 635 nm. However, the effect was partly lost when the skin was dark rather than light, and was increasingly lost as tissue thickness increased. Dose had an increasing effect on temperature (0.7-1.6°C across the 6, 9, and 12 J doses); any effects of wavelength, skin color, and tissue thickness were insignificant compared to dose effects. Subjects themselves were not aware of the increased skin temperature. Transmittance and reflectance changes as a function of energy were very small and likely of no clinical significance. Absorption did not change with higher energy doses and increasing temperature. Skin color and skin thickness affect transmittance and reflectance of laser light and must be accounted for when selecting energy dose to ensure therapeutic effectiveness at the target tissue. Skin heating appears not to be a concern when using 635 and 808 nm lasers at energy doses of up to 12 J and irradiance within American National Standards Institute standards. Photobiomodulation therapy should never exceed the American National Standards Institute

  4. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  5. Increased dose near the skin due to electromagnetic surface beacon transponder.

    Science.gov (United States)

    Ahn, Kang-Hyun; Manger, Ryan; Halpern, Howard J; Aydogan, Bulent

    2015-05-08

    The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.

  6. Time and dose-related changes in the thickness of pig skin after irradiation with single doses of [sup 90]Sr/[sup 90]Y [beta]-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rezvani, M.; Hamlet, R.; Hopewell, J.W.; Sieber, V.K. (Churchill Hospital, Oxford (United Kingdom))

    1994-04-01

    Time-related changes in pig skin thickness have been evaluated using a non-invasive ultrasound technique after exposure to a range of single doses of [sup 90]Sr/[sup 90]Yr [beta]-rays. The reduction in relative skin thickness developed in two distinct phases: the first was between 12 and 20 weeks postirradiation. No further changes were then seen until 52 weeks postirradiation when a second phase of skin thinning was observed. This was complete after 76 weeks and no further changes in relative skin thickness were seen in the maximum follow up period of 129 weeks. The timings of these phases of damage were independent of the radiation dose, however, the severity of both phases of radiation-induced skin thinning were dose related. (Author).

  7. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    Science.gov (United States)

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  8. Skin dose reduction by a clinically viable magnetic deflector

    Energy Technology Data Exchange (ETDEWEB)

    Butson, M.J.; Carolan, M.; Metcalfe, J.N. [Illawarra Cancer Centre, NSW (Australia). Department of Radiotherapy]|[University of Wollongong, NSW (Australia). Department of Physics; Mathur, J.N. [University of Wollongong, NSW (Australia). Department of Physics; Yu, P.; Young, E. [City University of Hong Kong, Kowloon (Hong Kong). Department of Physics; Kan, M. [Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Optometry and Radiography]|[City University of Hong Kong, Kowloon (Hong Kong). Department of Physics

    1997-06-01

    A variable magnetic deflector which attaches onto the treatment head of a linear accelerator has reduced skin dose by as much as 65% for 6MV x-rays. The magnetic deflector is constructed from Neodymium Iron Boron (NdFeB) rare earth magnets. It weighs approximately 15 kg and is designed to easily fit onto the accessory mount of a clinical linear accelerator. All field sizes are attainable up to 35 cm x 35 cm at 100 cm SSD. The gap between the magnetic poles can be adjusted, providing the highest field strength for each field size. Magnetic field strengths up to 0.55 Tesla are attainable. For a 6MV x-ray beam with a 10 mm perspex block tray, surface dose is reduced from 29% to 14% and from 59% to 37% for a 20 cm x 20 cm and 35 cm x 35 cm field size, respectively. Results at varying SSD`s have shown at least 10 cm of space must be allowed between the magnets and patient for adequate reduction of skin dose through removal of electron contaminants. (authors). 14 refs., 6 figs.

  9. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  10. Skin damage probabilities using fixation materials in high-energy photon beams

    International Nuclear Information System (INIS)

    Carl, J.; Vestergaard, A.

    2000-01-01

    Patient fixation, such as thermoplastic masks, carbon-fibre support plates and polystyrene bead vacuum cradles, is used to reproduce patient positioning in radiotherapy. Consequently low-density materials may be introduced in high-energy photon beams. The aim of the this study was to measure the increase in skin dose when low-density materials are present and calculate the radiobiological consequences in terms of probabilities of early and late skin damage. An experimental thin-windowed plane-parallel ion chamber was used. Skin doses were measured using various overlaying low-density fixation materials. A fixed geometry of a 10 x 10 cm field, a SSD = 100 cm and photon energies of 4, 6 and 10 MV on Varian Clinac 2100C accelerators were used for all measurements. Radiobiological consequences of introducing these materials into the high-energy photon beams were evaluated in terms of early and late damage of the skin based on the measured surface doses and the LQ-model. The experimental ion chamber save results consistent with other studies. A relationship between skin dose and material thickness in mg/cm 2 was established and used to calculate skin doses in scenarios assuming radiotherapy treatment with opposed fields. Conventional radiotherapy may apply mid-point doses up to 60-66 Gy in daily 2-Gy fractions opposed fields. Using thermoplastic fixation and high-energy photons as low as 4 MV do increase the dose to the skin considerably. However, using thermoplastic materials with thickness less than 100 mg/cm 2 skin doses are comparable with those produced by variation in source to skin distance, field size or blocking trays within clinical treatment set-ups. The use of polystyrene cradles and carbon-fibre materials with thickness less than 100 mg/cm 2 should be avoided at 4 MV at doses above 54-60 Gy. (author)

  11. Clinical application of a OneDose(TM) MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast

    International Nuclear Information System (INIS)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-01-01

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose(TM) in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs. (note)

  12. The bovine tuberculosis burden in cattle herds in zones with low dose radiation pollution in Ukraine

    Directory of Open Access Journals (Sweden)

    Svitlana Pozmogova

    2009-06-01

    Full Text Available The authors describe a study of the tuberculosis (TB incidence in cattle exposed to low doses of radiation resulting from the Chernobyl (pronounced ‘Chornobyl’ in Ukrainian nuclear plant catastrophe in 1986. The purpose of the study was to determine if ionising radiation influences the number of outbreaks of bovine TB and their severity on farms in the Kyiv, Cherkasy and Chernigiv regions of Ukraine. These farms are all located within a 200 km radius of Chernobyl and have had low-dose radiation pollution. Pathological and blood samples were taken from cattle in those regions that had positive TB skin tests. Mycobacterium spp. were isolated, differentiated by PCR, analysed and tested in guinea-pigs and rabbits. Species differentiation showed a significant percentage of atypical mycobacteria, which resulted in the allergic reactions to tuberculin antigen in the skin test. Mixed infection of M. bovis and M. avium subsp. hominissuis was found in three cases. The results concluded that low-dose radiation plays a major role in the occurrence of bovine TB in regions affected by the Chernobyl nuclear disaster.

  13. Skin dose from distributed radioactive sources and hot particles - Regulations and recommendations

    International Nuclear Information System (INIS)

    Porter, S.W.

    1991-01-01

    The issues concerning Beta Dosimetry, Hot Particle Dosimetry, and associated dose to skin have been highlighted since the 1979 TMI-2 accident report of the Presidential Commission. The conclusions drawn from the DOE/EML International Beta Dosimetry Symposium of 1983 are still valid. The questions of location(s) of the radiosensitive layer of human skin, the most valid method of skin dose measurement and interpretation of associated radiobiological data are still lingering. The need for improving beta calculation standards and procedures are more evident now than in 1983. This paper will discuss the newest ICRP and NCRP recommendations, as well as the regulations and guidelines from the NRC. I would expect that the draft recommendations published in this paper will be considerably changed by the time of the January, 1991 presentation of this paper

  14. Dosimetric effects of thermoplastic immobilizing devices on skin dose

    International Nuclear Information System (INIS)

    Adu-Poku Olivia

    2017-07-01

    This work shows the increase in surface dose caused by thermoplastic immobilizing masks used for positioning and immobilization of patients. Thermoplastics are organic materials which soften when they are heated. They can be formed after softening and retain their final shape when cooled. The use of these thermoplastic masks are relevant during patient treatment. However, it can lead to an increased skin dose. Measurements were done at source-to-surface distance of 80 cm for external radiation beams produced by cobalt 60 using the Farmer type ionization chamber and the Unidos electrometer. Measurements were carried out using various mask thicknesses and no mask material on a solid water phantom. The thermoplastic percentage depth dose (PDD), equivalent thickness of water of the various thicknesses of the mask and surface doses were determined. The increase in the surface dose caused by the thermoplastic mask was compared by looking at the PDD at depth 0 with and without the mask present and was found to increase between 0.76 and 0.79% with no mask for a field size of 5 x 5 cm 2 . It was found that, the presence of the mask shifted the percentage depth dose curve to lower values. The physical thermoplastic thickness was measured to be between 2.30 and 1.80 mm, and the equivalent thicknesses of water, d e , were determined to be 1.2, 1.15, 1.10 and 1.09 and 1.00 mm for the unstretched, 5 cm stretched, 10 cm stretched, 15 cm stretched and 20 cm stretched masks, respectively. This meant that, as the mask thickness decreased, its water equivalent thickness also decreased. The presence of the mask material did not increase the skin dose significantly ( less than 1%). (au)

  15. Assessment of patients' skin dose during interventional cardiology procedures

    International Nuclear Information System (INIS)

    Tsapaki, V.; Vardalaki, E.; Kottou, S.; Molfetas, M.; Neofotistou, V.

    2002-01-01

    During the last 30 years the use of Interventional Cardiology (IC) procedures has increased significantly, mainly due to the benefits and advantages of the method that offers more accurate diagnosis and treatment along with less complications and hospitalization. However, IC procedures are based on the use of x-ray radiation, mostly localized at certain areas of patient's body and for extended periods of time. Consequently, patient may receive high radiation dose and deterministic effects, such as erythema, epilation or even dermal necrosis may be observed. Therefore, the need for reducing radiation dose is highly important. In order to achieve this, good knowledge of the dose levels delivered to the patient during IC procedures is essential since radiation effects are known to increase with dose. It is of great interest to know the point where the maximum skin dose (MSD) is noted since individual sensitivity may vary. MSDs greater than 1 Gy should be recorded. Patient dosimetry during IC procedures is a complex task since these type of procedures depend on various factors, such as complexity and severity of case, different specifications of x-ray equipment and patient's physical characteristics. Moreover, cardiologist's experience plays an important role. For these reasons, Food and Drug Administration (FDA), the International Commission on Radiological Protection (ICRP) as well as the World Health Organization (WHO), have published documents on radiation safety and ways to reduce skin injuries during IC procedures. Various methods have been proposed for measuring MSD such as the use of slow radiotherapy films, thermoluminescent detectors (TLD), scintillation detectors, Dose-Area Product (DAP) meter, as well as a combination of DAP and air kerma. A literature review on MSDs measured during IC procedures showed that doses ranged from 300 to 43000 mGy

  16. Assessment of skin dose modification caused by application of immobilizing cast in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Soleymanifard, Shokouhozaman; Toossi, Mohammad T.B.; Khosroabadi, Mohsen; Noghreiyan, Atefeh Vejdani; Shahidsales, Soodabeh; Tabrizi, Fatemeh Varshoee

    2014-01-01

    Skin dose assessment for radiotherapy patients is important to ensure that the dose received by skin is not excessive and does not cause skin reactions. Immobilizing casts may have a buildup effect, and can enhance the skin dose. This study has quantified changes to the surface dose as a result of head and neck immobilizing casts. Medtech and Renfu casts were stretched on the head of an Alderson Rando-Phantom. Irradiation was performed using 6 and 15 MV X-rays, and surface dose was measured by thermoluminescence dosimeters. In the case of 15MV photons, immobilizing casts had no effect on the surface dose. However, the mean surface dose increase reached up to 20 % when 6MV X-rays were applied. Radiation incidence angle, thickness, and meshed pattern of the casts affected the quantity of dose enhancement. For vertical beams, the surface dose increase was more than tangential beams, and when doses of the points under different areas of the casts were analysed separately, results showed that only doses of the points under the thick area had been changed. Doses of the points under the thin area and those within the holes were identical to the same points without immobilizing casts. Higher dose which was incurred due to application of immobilizing casts (20 %) would not affect the quality of life and treatment of patients whose head and neck are treated. Therefore, the benefits of head and neck thermoplastic casts are more than their detriments. However, producing thinner casts with larger holes may reduce the dose enhancement effect.

  17. WE-DE-201-11: Sensitivity and Specificity of Verification Methods Based On Total Reference Air Kerma (TRAK) Or On User Provided Dose Points for Graphically Planned Skin HDR Brachytherapy

    International Nuclear Information System (INIS)

    Damato, A; Devlin, P; Bhagwat, M; Buzurovic, I; Hansen, J; O’Farrell, D; Cormack, R

    2016-01-01

    Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of the clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.

  18. WE-DE-201-11: Sensitivity and Specificity of Verification Methods Based On Total Reference Air Kerma (TRAK) Or On User Provided Dose Points for Graphically Planned Skin HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Damato, A; Devlin, P; Bhagwat, M; Buzurovic, I; Hansen, J; O’Farrell, D; Cormack, R [Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of the clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.

  19. Skin Dose Assessment by Hot Particles in Domestic Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, Bo Yeol; Cho, Woon Kap; Lee, Jai Ki

    2009-01-01

    Since a contamination event by hot particles happened due to damaged nuclear fuel at a nuclear power plant (NPP) in the 1980's, skin exposure resulted from hot particles has gotten considerable attention from all the radiation workers in the nuclear industry. In particular, contamination incident caused by hot particles which happened at a NPP in Susquehanna proved that there existed hot particles with the radioactivity of 0.7 GBq, 0.78 GBq, and even 2.78 GBq at maximum. One of these particles was found on a worker's shoe and gave out a dose of 170 mSv. Although there has been no contamination event reported in domestic NPPs which are caused by hot particles, it is hard to conclude that there is no possibility of such contamination for radiation workers. The contaminated samples employed in this study were taken from local NPPs and supposes a case of a worker's skin contaminated by hot particles to evaluate the dose provided to the worker's skin

  20. Direct measurement of a patient's entrance skin dose during pediatric cardiac catheterization

    International Nuclear Information System (INIS)

    Sun, Lue; Mizuno, Yusuke; Goto, Takahisa; Iwamoto, Mari; Koguchi, Yasuhiro; Miyamoto, Yuka; Tsuboi, Koji; Chida, Koichi; Moritake, Takashi

    2014-01-01

    Children with complex congenital heart diseases often require repeated cardiac catheterization; however, children are more radiosensitive than adults. Therefore, radiation-induced carcinogenesis is an important consideration for children who undergo those procedures. We measured entrance skin doses (ESDs) using radio-photoluminescence dosimeter (RPLD) chips during cardiac catheterization for 15 pediatric patients (median age, 1.92 years; males, n = 9; females, n = 6) with cardiac diseases. Four RPLD chips were placed on the patient's posterior and right side of the chest. Correlations between maximum ESD and dose-area products (DAP), total number of frames, total fluoroscopic time, number of cine runs, cumulative dose at the interventional reference point (IRP), body weight, chest thickness, and height were analyzed. The maximum ESD was 80 ± 59 (mean ± standard deviation) mGy. Maximum ESD closely correlated with both DAP (r = 0.78) and cumulative dose at the IRP (r = 0.82). Maximum ESD for coiling and ballooning tended to be higher than that for ablation, balloon atrial septostomy, and diagnostic procedures. In conclusion, we directly measured ESD using RPLD chips and found that maximum ESD could be estimated in real-time using angiographic parameters, such as DAP and cumulative dose at the IRP. Children requiring repeated catheterizations would be exposed to high radiation levels throughout their lives, although treatment influences radiation dose. Therefore, the radiation dose associated with individual cardiac catheterizations should be analyzed, and the effects of radiation throughout the lives of such patients should be followed. (author)

  1. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has

  2. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Sergey [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Misra, Manoj; Shi, Shanling [Unilever Research and Development, Trumbull, CT 06611 (United States); Firlar, Emre [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Libera, Matthew, E-mail: mlibera@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2010-06-15

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10{sup 5} e/nm{sup 2} despite the fact that observable damage begins at doses as low as 10{sup 3} e/nm{sup 2}. The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  3. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yakovlev, Sergey; Misra, Manoj; Shi, Shanling; Firlar, Emre; Libera, Matthew

    2010-01-01

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10 5 e/nm 2 despite the fact that observable damage begins at doses as low as 10 3 e/nm 2 . The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  4. Skin entrance dose with and without lead apron in digital panoramic radiography for selected sensitive body regions.

    Science.gov (United States)

    Schulze, Ralf Kurt Willy; Cremers, Catrin; Karle, Heiko; de Las Heras Gala, Hugo

    2017-05-01

    The aim of this study was to compare the dose at skin level at five significant anatomical regions for panoramic radiography devices with and without lead apron by means of a highly sensitive dosimeter. A female RANDO-phantom was exposed in five different digital panoramic radiography systems, and the dose at skin level was assessed tenfold for each measurement region by means of a highly sensitive solid-state-dosimeter. The five measurement regions selected were the thyroid, both female breasts, the gonads, and a central region in the back of the phantom. For each panoramic machine, the measurements were performed in two modes: with and without a commercial lead apron specifically designed for panoramic radiography. Reproducibility of the measurements was expressed by absolute differences and the coefficient of variation. Values between shielded and unshielded doses were pooled for each region and compared by means of the paired Wilcoxon tests (p ≤ 0.05). Reproducibility as represented by the mean CV was 22 ± 52 % (median 2.3 %) with larger variations for small dose values. Doses at skin level ranged between 0.00 μGy at the gonads and 85.39 μGy at the unshielded thyroid (mean ± SD 15 ± 24 μGy). Except for the gonads, the dose in all the other regions was significantly lower (p < 0.001) when a lead apron was applied. Unshielded doses were between 1.02-fold (thyroid) and 112-fold (at the right breast) higher than those with lead apron shielding (mean: 14-fold ± 18-fold). Although the doses were entirely very low, we observed a significant increase in dose in the radiation-sensitive female breast region when no lead apron was used. Future discussions on shielding requirements for panoramic radiography should focus on these differences in the light of the linear non-threshold (LNT) theory which is generally adopted in medical imaging.

  5. Proposed derivation of skin contamination and skin decontamination limits

    International Nuclear Information System (INIS)

    Schieferdecker, H.; Koelzer, W.; Henrichs, K.

    1986-01-01

    From the primary dose limits for the skin, secondary dose limits were derived for skin contamination which can be used in practical radiation protection work. Analogous to the secondary dose limit for the maximum permissible body burden in the case of incorporation, dose limits for the 'maximum permissible skin burden' were calculated, with the help of dose factors, for application in the case of skin contamination. They can be derived from the skin dose limit values. For conditions in which the skin is exposed to temporary contamination, a limit of skin contamination was derived for immediately removable contamination and for one day of exposure. For non-removable contamination a dose limit of annual skin contamination was defined, taking into account the renewal of the skin. An investigation level for skin contamination was assumed, as a threshold, above which certain measures must be taken; these to include appropriate washing not more than three times, with the subsequent procedure determined by the level of residual contamination. The dose limits are indicated for selected radionuclides. (author)

  6. Evaluation of skin surface dose for head and neck cancer patients treated with intensity-modulated radiation therapy using in vivo dosimetry

    International Nuclear Information System (INIS)

    Kim, Yeon Sil; Lee, Dong Soo; Yoo, Mi Na; Hong, Joo Young; Yoon, Se Chul; Jang, Hong Suk

    2011-01-01

    Use of intensity-modulated radiation therapy (IMRT) for head and neck cancer is gradually increasing, because it could facilitate more sophsticated treatment of target volumes and reduction of acute and late sequelae. However, theoretically, there is a potential risk of increased skin surface dose resulting from multiple obliquity effects caused by multiple tangential beams. Moreover, we sometimes confronted with more skin reactions in the patients treated with IMRT than conventional techniques. In this study, we evaluated skin surface dose adjacent to the target volumes to verify whether the use of IMRT would increase the skin dose more than we predicted. This study had shown that the use of IMRT did not increase the skin surface hot point dose. The measured skin surface dose was 20 to 40 percent of the adjacent target prescription dose, and was within acceptable dose range. Our study had some limitations with small number of experimental patients and methodological problems. Potential risk of increasing skin dose with bolus effect of aquaplaster should be examined in the future trials. In addition, the accurate set-up verification should be maintained because of steep dose gradient between skin surface and target volumes within a short distance in the head and neck cancer patients.

  7. Low dose radiation exposure and atherosclerosis in ApoE-/- mice

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Hasu, M.; Bugden, M.; Wyatt, H.; Little, M.; Hildebrandt, G.; Priest, N.D.; Whitman, S.C.

    2010-01-01

    The hypothesis that single low dose exposures (0.025-0.5 Gy) to low LET radiation, given at either high (240 mGy/min) or low (1 mGy/min) dose rate, would promote aortic atherosclerosis was tested in female C57BI/6 mice genetically predisposed to this disease (ApoE-/-). Mice were exposed either at early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (8 months of age) and examined 2 or 4 months later. Compared to unexposed controls, all doses given at low or high dose rate at early stage disease had significant inhibitory effects on lesion growth and, at 25 or 50 mGy, on lesion frequency. No dose given at low dose rate had any effect on total serum cholesterol, but this was elevated by every dose given at high dose rate. Exposures at low dose rate had no effect on the percentage of lesion lipids contained within macrophages, and, at either high or low dose rate, had no significant effect on lesion severity. Exposure at late stage disease, to any dose at high dose rate, had no significant effect on lesion frequency, but at low dose rate some doses produced a small transient increase in this frequency. Exposure to low doses at low, but not high dose rate, significantly, but transiently reduced average lesion size, and at either dose rate transiently reduced lesion severity. Exposure to any dose at low dose rate (but not high dose rate) resulted in large and persistent decreases in serum cholesterol. These data indicate that a single low dose exposure, depending on dose and dose rate, generally protects against various measures of atherosclerosis in genetically susceptible mice. This result contrasts with the known, generally detrimental effects of high doses on this disease in the same mice, suggesting that a linear extrapolation of risk from high doses is not appropriate. (author)

  8. Accelerating an Ordered-Subset Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction with a Power Factor and Total Variation Minimization.

    Science.gov (United States)

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2016-01-01

    In recent years, there has been increased interest in low-dose X-ray cone beam computed tomography (CBCT) in many fields, including dentistry, guided radiotherapy and small animal imaging. Despite reducing the radiation dose, low-dose CBCT has not gained widespread acceptance in routine clinical practice. In addition to performing more evaluation studies, developing a fast and high-quality reconstruction algorithm is required. In this work, we propose an iterative reconstruction method that accelerates ordered-subsets (OS) reconstruction using a power factor. Furthermore, we combine it with the total-variation (TV) minimization method. Both simulation and phantom studies were conducted to evaluate the performance of the proposed method. Results show that the proposed method can accelerate conventional OS methods, greatly increase the convergence speed in early iterations. Moreover, applying the TV minimization to the power acceleration scheme can further improve the image quality while preserving the fast convergence rate.

  9. Effect of low-dose radiation on ocular circulation

    International Nuclear Information System (INIS)

    Baba, Keiko; Hiroishi, Goro; Honda, Masae; Yoshikawa, Hiroshi; Fujisawa, Kimihiko; Ishibashi, Tatsuro

    1999-01-01

    We treated 6 eyes of unilateral age-related macular degeneration by low-dose radiation. Each eye received daily dose of 2 Gy by 4MV lineac totalling 20 Gy over 2 weeks. Color doppler flowmetry was used to determine the mean blood flow velocity (Vmean) and vascular resistive index (RI) in the short posterior ciliary artery, central retinal artery and ophthalmic artery in the treated and fellow eyes before and up to 6 months of treatment. There were no significant differences in Vmean and RI before and after treatment. The findings show the absence of apparent influence of low-dose radiation on the ocular circulation in age-related macular degeneration. (author)

  10. Effect of low-dose radiation on ocular circulation

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Keiko; Hiroishi, Goro; Honda, Masae; Yoshikawa, Hiroshi; Fujisawa, Kimihiko; Ishibashi, Tatsuro [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1999-05-01

    We treated 6 eyes of unilateral age-related macular degeneration by low-dose radiation. Each eye received daily dose of 2 Gy by 4MV lineac totalling 20 Gy over 2 weeks. Color doppler flowmetry was used to determine the mean blood flow velocity (Vmean) and vascular resistive index (RI) in the short posterior ciliary artery, central retinal artery and ophthalmic artery in the treated and fellow eyes before and up to 6 months of treatment. There were no significant differences in Vmean and RI before and after treatment. The findings show the absence of apparent influence of low-dose radiation on the ocular circulation in age-related macular degeneration. (author)

  11. Multiple methods for assessing the dose to skin exposed to radioactive contamination

    International Nuclear Information System (INIS)

    Dubeau, J.; Heinmiller, B.E.; Corrigan, M.

    2017-01-01

    There is the possibility for a worker at a nuclear installation, such as a nuclear power reactor, a fuel production facility or a medical facility, to come in contact with radioactive contaminants. When such an event occurs, the first order of business is to care for the worker by promptly initiating a decontamination process. Usually, the radiation protection personnel performs a G-M pancake probe measurement of the contamination in situ and collects part or all of the radioactive contamination for further laboratory analysis. The health physicist on duty must then perform, using the available information, a skin dose assessment that will go into the worker's permanent dose record. The contamination situations are often complex and the dose assessment can be laborious. This article compares five dose assessment methods that involve analysis, new technologies and new software. The five methods are applied to 13 actual contamination incidents consisting of direct skin contact, contamination on clothing and contamination on clothing in the presence of an air gap between the clothing and the skin. This work shows that, for the cases studied, the methods provided dose estimates that were usually within 12% (1σ) of each other, for those cases where absolute activity information for every radionuclide was available. One method, which relies simply on a G-M pancake probe measurement, appeared to be particularly useful in situations where a contamination sample could not be recovered for laboratory analysis. (authors)

  12. Evaluation of radiological protection and dose of skin entrance in paediatric dentistry examinations

    International Nuclear Information System (INIS)

    Khoury, Helen Jamil; Silveira, Marcia Maria Fonseca da; Couto, Geraldo Bosco Lindoso; Brasileiro, Izabela Vanderley

    2005-01-01

    In this work the radiological protection conditions and dose at the entrance of pediatric patients undergoing dental intraoral radiographs were evaluated. The study was conducted in two clinics of the dentistry course at the Federal University of Pernambuco, Recife, PB, Brazil, equipped with conventional X-ray apparatus, with 60 and 70 kV. 254 exams of 113 patients between the ages of 3 to 12 years were evaluated. The skin entrance dose was estimated using TLD-100 thermoluminescent dosemeters. During the examination were also recorded information regarding the time of exposure, radiographic technique used, use of thyroid protectors and lead apron, angle and distance of the cone Locator to the patient's skin. The results showed that the input skin doses ranged from 0.3 mGy to 10mGy. The lead apron was used in 71% of exams while the thyroid shield was only used in 58% of the exams. The exposure times ranged from 0,5s to 1,5s. From the results it can be concluded that the radiological procedures are not optimized and that in some cases the patient dose is high.

  13. Using a thermoluminescent dosimeter to evaluate the location reliability of the highest–skin dose area detected by treatment planning in radiotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li-Min, E-mail: limin.sun@yahoo.com [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Huang, Chih-Jen [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan (China); Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan (China); College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan (China); Chen, Hsiao-Yun [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan (China); Meng, Fan-Yun [Department of General Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Lu, Tsung-Hsien [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Tsao, Min-Jen [Department of General Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China)

    2014-01-01

    Acute skin reaction during adjuvant radiotherapy for breast cancer is an inevitable process, and its severity is related to the skin dose. A high–skin dose area can be speculated based on the isodose distribution shown on a treatment planning. To determine whether treatment planning can reflect high–skin dose location, 80 patients were collected and their skin doses in different areas were measured using a thermoluminescent dosimeter to locate the highest–skin dose area in each patient. We determined whether the skin dose is consistent with the highest-dose area estimated by the treatment planning of the same patient. The χ{sup 2} and Fisher exact tests revealed that these 2 methods yielded more consistent results when the highest-dose spots were located in the axillary and breast areas but not in the inframammary area. We suggest that skin doses shown on the treatment planning might be a reliable and simple alternative method for estimating the highest skin doses in some areas.

  14. Using a thermoluminescent dosimeter to evaluate the location reliability of the highest–skin dose area detected by treatment planning in radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Sun, Li-Min; Huang, Chih-Jen; Chen, Hsiao-Yun; Meng, Fan-Yun; Lu, Tsung-Hsien; Tsao, Min-Jen

    2014-01-01

    Acute skin reaction during adjuvant radiotherapy for breast cancer is an inevitable process, and its severity is related to the skin dose. A high–skin dose area can be speculated based on the isodose distribution shown on a treatment planning. To determine whether treatment planning can reflect high–skin dose location, 80 patients were collected and their skin doses in different areas were measured using a thermoluminescent dosimeter to locate the highest–skin dose area in each patient. We determined whether the skin dose is consistent with the highest-dose area estimated by the treatment planning of the same patient. The χ 2 and Fisher exact tests revealed that these 2 methods yielded more consistent results when the highest-dose spots were located in the axillary and breast areas but not in the inframammary area. We suggest that skin doses shown on the treatment planning might be a reliable and simple alternative method for estimating the highest skin doses in some areas

  15. Total skin electron therapy as treatment for epitheliotropic lymphoma in a dog.

    Science.gov (United States)

    Santoro, Domenico; Kubicek, Lyndsay; Lu, Bo; Craft, William; Conway, Julia

    2017-04-01

    Mycosis fungoides (MF) is an uncommon cutaneous neoplasm in dogs. Treatment options are limited. Total skin electron therapy (TSET) has been suggested as a possible therapy for canine MF. To describe the use of TSET as palliative treatment for MF in a dog. An adult dog, previously diagnosed with nonepidermolytic ichthyosis, was presented with generalized erythroderma, alopecia and erosions. Histopathology revealed a densely cellular, well-demarcated, unencapsulated infiltrate extending from the epidermis to the mid-dermis compatible with MF. The infiltrate exhibited epitheliotropism multifocally for the epidermis, infundibula and adnexa. Due to a lack of response to chemotherapy, TSET was elected. Six megavoltage electrons were delivered using a 21EX Varian linear accelerator. A dose of 6 Gy was delivered to the skin surface and a 100 cm skin to surface distance was used for dog setup. The treatment time for the cranial half treatment was 3 h. The treatment was divided in two sessions (cranial and caudal halves of the body) 15 days apart. Clinical and histopathological complete remission was achieved and the dog was kept in remission with no additional treatments for 19 months before relapse and development of Sézary syndrome. To the best of the authors' knowledge, this is the first case reporting the use of TSET for medically refractory canine MF with post treatment follow-up. This case suggests that the use of TSET may be an effective palliative treatment for canine MF. © 2017 ESVD and ACVD.

  16. Hormesis of Low Doses of Ionizing Radiation Exposure on Immune System

    International Nuclear Information System (INIS)

    Ragab, M.H.; Abbas, M.O.; El-Asady, R.S.; Amer, H.A.; El-Khouly, W.A.; Shabon, M.H.

    2015-01-01

    The effect of low doses of ionizing radiation on the immune system has been a controversial subject. To evaluate the effect of low-doses γ-irradiation exposure on immune system. An animal model, using Rattus Rattus rats was used. The rats were divided into groups exposed to either continuous or fractionated 100, 200, 300, 400 and 500 mSv of radiation and compared to control rats that did not receive radiation. All groups were exposed to a total white blood count (Wcs), lymphocyte count and serum IgG level measurement, as indicators of the function of the cell-mediated (T lymphocytes) and the humoral (B lymphocytes) immune system. The results of the current study revealed that the counts of total leukocytes (WBCs) and lymphocytes, as well as the serum level of IgG were increased significantly in rats receiving low dose radiation, indicating enhancement of immune system. The data suggests that low-dose gamma-radiation improved hematological parameters and significantly enhances immune response indices of the exposed rats. These findings are similar to the radiation adaptive responses in which a small dose of pre irradiation would induce certain radiation resistance and enhances the cell response after exposure to further irradiation doses The applied low doses used in the present study may appear effective inducing the radio adaptive response. Farooqi and Kesavan (1993) and Bravard et al. (1999) reported that the adaptive response to ionizing radiation refers to the phenomenon by which cells irradiated with low (cGy) or sublethal doses (conditioning doses) become less susceptible to genotoxic effects of a subsequent high dose (challenge dose, several Gy).

  17. Low doses effects

    International Nuclear Information System (INIS)

    Tubiana, M.

    1997-01-01

    In this article is asked the question about a possible carcinogens effect of low dose irradiation. With epidemiological data, knowledge about the carcinogenesis, the professor Tubiana explains that in spite of experiments made on thousand or hundred of thousands animals it has not been possible to bring to the fore a carcinogens effect for low doses and then it is not reasonable to believe and let the population believe that low dose irradiation could lead to an increase of neoplasms and from this point of view any hardening of radiation protection standards could in fact, increase anguish about ionizing radiations. (N.C.)

  18. The study on clinical conditions and skin dose of upper-gastrointestinal x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Kim, Sung Chul; Ahn, Sung Min; Jang, Sang Sup

    2007-01-01

    This study examined present conditions of upper-gastrointestinal X-ray fluoroscopy and patient skin dose. The authors elected 21 equipment to check the X-ray equipment and exposure factor of fluoroscopy and spot exposure in university hospitals, hospitals, and clinics where perform upper-gastrointestinal X-ray fluoroscopy more than five times every day in Incheon areas. The amount of patient's skin dose during upper-gastrointestinal X-ray fluoroscopy was measured by ionization chamber

  19. The bovine tuberculosis burden in cattle herds in zones with low dose radiation pollution in the Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Weller, Richard E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skrypnyk, Artem [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zavgorodniy, Andriy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stegniy, Borys [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gerilovych, Anton [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kutsan, Oleksandr [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pozmogova, Svitlana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sapko, Svitlana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-01

    The authors describe a study of the tuberculosis (TB) incidence in cattle exposed to low doses of radiation resulting from the Chernobyl (pronounced ‘Chornobyl’ in Ukrainian) nuclear plant catastrophe in 1986. The purpose of the study was to determine if ionising radiation influences the number of outbreaks of bovine TB and their severity on farms in the Kyiv, Cherkasy and Chernigiv regions of the Ukraine. These farms are all located within a 200 km radius of Chernobyl and have had low-dose radiation pollution. Pathological and blood samples were taken from cattle in those regions that had positive TB skin tests. Mycobacterium spp. were isolated, differentiated by PCR, analysed and tested in guinea pigs and rabbits. Species differentiation showed a significant percentage of atypical mycobacteria, which resulted in the allergic reactions to tuberculin antigen in the skin test. Mixed infection of M. bovis and M. avium subsp. hominissuis was found in three cases. The results concluded that low-dose radiation plays a major role in the occurrence of bovine TB in regions affected by the Chernobyl nuclear disaster.

  20. The radiation dose from a proposed measurement of arsenic and selenium in human skin

    Energy Technology Data Exchange (ETDEWEB)

    Gherase, Mihai R; Mader, Joanna E; Fleming, David E B, E-mail: mgherase@mta.c [Department of Physics, Mount Allison University, 67 York Street, Sackville, NB E4L 1E6 (Canada)

    2010-09-21

    Dose measurements following 10 min irradiations with a portable x-ray fluorescence spectrometer composed of a miniature x-ray tube and a silicon PiN diode detector were performed using thermoluminescent dosimeters consisting of LiF:Mg,Ti chips of 3 mm diameter and 0.4 mm thickness. The table-top setup of the spectrometer was used for all measurements. The setup included a stainless steel lid which served as a radiation shield. Two rectangular polyethylene skin/soft tissue phantoms with two cylindrical plaster of Paris bone phantoms were used to study the effect of x-ray beam attenuation and backscatter on the measured dose. Eight different irradiation experiments were performed. The average dose rate values measured with TLD chips within a 1 x 1 cm{sup 2} area were between 4.8 and 12.8 mGy min{sup -1}. The equivalent dose for a 1 x 1 cm{sup 2} skin area was estimated to be 13.2 mSv. The maximum measured dose rate values with a single TLD chip were between 7.5 and 25.1 mGy min{sup -1}. The effective dose corresponding to a proposed arsenic/selenium skin measurement was estimated to be 0.13 {mu}Sv for a 2 min irradiation.

  1. Genomic instability in mutation induction on normal human fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field

    International Nuclear Information System (INIS)

    Suzuki, M.; Tsuruoka, C.; Uchihori, Y.; Yasuda, H.; Fujitaka, K.

    2003-01-01

    Full text: At a time when manned space exploration is more a reality with the planned the International Space Station (ISS) underway, the potential exposure of crews in a spacecraft to chronic low-dose radiations in the field of low-flux galactic cosmic rays (GCR) and the subsequent biological effects have become one of the major concerns of space science. We have studied both in vitro life span and genomic instability in cellular effects in normal human skin fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field. Cells were cultured in a CO2 incubator, which was set in the irradiation room for the biological study of heavy ions in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS), and irradiated with scattered radiations produced from heavy ions. Absorbed dose measured using a thermoluminescence dosimeter (TLD) and a Si-semiconductor detector was to be around 1.4 mGy per day when operating the HIMAC machine for biological experiments. The total population doubling number (tPDN) of low-dose irradiated cells was significantly smaller (79-93%) than that of unirradiated cells. The results indicate that the life span of the cell population shortens by irradiating with low-dose scattered radiations in the heavy-ion irradiation field. Genomic instability in cellular responses was examined to measure either cell killing or mutation induction in low-dose accumulated cells after exposing to X-ray challenging doses. The results showed that there was no enhanced effect on cell killing between low-dose accumulated and unirradiated cells after exposing to defined challenging doses of 200kV X rays. On the contrary, the mutation frequency on hprt locus of low-dose accumulated cells was much higher than that of unirradiated cells. The results suggested that genomic instability was induced in mutagenesis by the chronic low-dose irradiations in heavy-ion radiation field

  2. An effective dose assessment technique with NORM added consumer products using skin-point source on computational human phantom

    International Nuclear Information System (INIS)

    Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Hyun Cheol; Choi, Hyun Joon; Testa, Mauro; Lee, Jae Kook; Yeom, Yeon Soo; Kim, Chan Hyeong; Min, Chul Hee

    2016-01-01

    The aim of this study is to develop the assessment technique of the effective dose by calculating the organ equivalent dose with a Monte Carlo (MC) simulation and a computational human phantom for the naturally occurring radioactive material (NORM) added consumer products. In this study, we suggests the method determining the MC source term based on the skin-point source enabling the convenient and conservative modeling of the various type of the products. To validate the skin-point source method, the organ equivalent doses were compared with that by the product modeling source of the realistic shape for the pillow, waist supporter, sleeping mattress etc. Our results show that according to the source location, the organ equivalent doses were observed as the similar tendency for both source determining methods, however, it was observed that the annual effective dose with the skin-point source was conservative than that with the modeling source with the maximum 3.3 times higher dose. With the assumption of the gamma energy of 1 MeV and product activity of 1 Bq g"−"1, the annual effective doses of the pillow, waist supporter and sleeping mattress with skin-point source was 3.09E-16 Sv Bq"−"1 year"−"1, 1.45E-15 Sv Bq"−"1 year"−"1, and 2,82E-16 Sv Bq"−"1 year"−"1, respectively, while the product modeling source showed 9.22E-17 Sv Bq"−"1 year"−"1, 9.29E-16 Sv Bq"−"1 year"−"1, and 8.83E-17 Sv Bq"−"1 year"−"1, respectively. In conclusion, it was demonstrated in this study that the skin-point source method could be employed to efficiently evaluate the annual effective dose due to the usage of the NORM added consumer products. - Highlights: • We evaluate the exposure dose from the usage of NORM added consumer products. • We suggest the method determining the MC source term based on the skin-point source. • To validate the skin-point source, the organ equivalent doses were compared with that the modeling source. • The skin-point source could

  3. Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Daila S. Gridley, PhD

    2012-03-30

    FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findings remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information

  4. Skin dose rate conversion factors after contamination with radiopharmaceuticals: influence of contamination area, epidermal thickness and percutaneous absorption

    International Nuclear Information System (INIS)

    Covens, P; Berus, D; Caveliers, V; Struelens, L; Vanhavere, F; Verellen, D

    2013-01-01

    Skin contamination with radiopharmaceuticals can occur during biomedical research and daily nuclear medicine practice as a result of accidental spills, after contact with bodily fluids of patients or by inattentively touching contaminated materials. Skin dose assessment should be carried out by repeated quantification to map the course of the contamination together with the use of appropriate skin dose rate conversion factors. Contamination is generally characterised by local spots on the palmar surface of the hand and complete decontamination is difficult as a result of percutaneous absorption. This specific issue requires special consideration as to the skin dose rate conversion factors as a measure for the absorbed dose rate to the basal layer of the epidermis. In this work we used Monte Carlo simulations to study the influence of the contamination area, the epidermal thickness and the percutaneous absorption on the absorbed skin dose rate conversion factors for a set of 39 medical radionuclides. The results show that the absorbed dose to the basal layer of the epidermis can differ by up to two orders of magnitude from the operational quantity H p (0.07) when using an appropriate epidermal thickness in combination with the effect of percutaneous absorption. (paper)

  5. Correct statistical evaluation for total dose in rural settlement

    International Nuclear Information System (INIS)

    Vlasova, N.G.; Skryabin, A.M.

    2001-01-01

    Statistical evaluation of dose reduced to the determination of an average value and its error. If an average value of a total dose in general can be determined by simple summarizing of the averages of its external and internal components, the evaluation of an error can be received only from its distribution. Herewith, considering that both components of the dose are interdependent, to summarize their distributions, as a last ones of a random independent variables, is incorrect. It follows that an evaluation of the parameters of the total dose distribution, including an error, in general, cannot be received empirically, particularly, at the lack or absence of the data on one of the components of the last one, that constantly is happens in practice. If the evaluation of an average for total dose was defined somehow, as the best, as an average of a distribution of the values of individual total doses, as summarizing the individual external and internal doses by the random type, that an error of evaluation had not been produced. The methodical approach to evaluation of the total dose distribution at the lack of dosimetric information was designed. The essence of it is original way of an interpolation of an external dose distribution, using data on an internal dose

  6. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  7. Experiences with using a concept of organ-dose combination as a basis for practical measures in radiation protection

    International Nuclear Information System (INIS)

    Wernli, C.

    1977-01-01

    The concept of organ-dose combination is presented and its practical consequences for working-place and personnel monitoring and for the improvement of working methods are shown. Two years of practical experience have demonstrated the applicability and usefullness of the concept and have resulted in a better concentration and economization of the monitoring and protection efforts. The values for external total body dose and skin dose, in special cases also those for hand dose and internal contamination, are combined to form a criterion for the total radiation detriment which is easy to use and interpret: each measured external or internal exposure is registered as a fraction of the appropriate maximum permissible annual limit (expressed as dose for external exposures and as activity for incorporations). This fraction is called 'exposure index'. Over one year the sum of all registered 'exposure index' values for an employee must not exceed one. This 'total exposure index' values can also be expressed as an 'effective dose' if its value is multiplied by five rem. While the external body exposures clearly dominate in most departments of EIR, the 'effective doses' in the isotope production department are combinations of different organ doses. 'Low' and 'high risk' groups of employee differ by the relative importance of the four 'effective dose' components: 'low risk group' (effective dose 2 rem): (hand dose, total body dose, incorporation, skin dose). The total value of the 'effective dose' and the relative importance of its components determine the practical radiation protection measures and the appropriate combination and frequency of personnel monitoring for each employee

  8. Total dose behavior of partially depleted SOI dynamic threshold voltage MOS (DTMOS) for very low supply voltage applications (0.6 - 1 V)

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Musseau, O.; Leray, J.L.; Faynot, O.; Raynaud, C.; Pelloie, J.L.

    1999-01-01

    In this paper, we presented two DTMOS architectures processed with a partially depleted SOI technology. The first architecture, DTMOS without limiting transistor, is dedicated to ultra-low voltage applications, at 0.6 V. For 1V applications, the second architecture, DTMOS with limiting transistor, needs an additional transistor to limit the body-source diode current. The total dose irradiation of both DTMOS architectures induces no change of the drain current, but an increase of the body-source diode current. Total dose induced trapped charge in the buried oxide increases the body potential of the DTMOS transistor. It induces an increase of the current flow at the back interface of the silicon film. Irradiation of complex circuits using DTMOS transistors would lead to a degradation of the stand-by consumption. (authors)

  9. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.

    Science.gov (United States)

    Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G

    2012-10-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are

  10. Theoretic simulation for CMOS device on total dose radiation response

    International Nuclear Information System (INIS)

    He Baoping; Zhou Heqin; Guo Hongxia; He Chaohui; Zhou Hui; Luo Yinhong; Zhang Fengqi

    2006-01-01

    Total dose effect is simulated for C4007B, CC4007RH and CC4011 devices at different absorbed dose rate by using linear system theory. When irradiation response and dose are linear, total dose radiation and post-irradiation annealing at room temperature are determined for one random by choosing absorbed dose rate, and total dose effect at other absorbed dose rate can be predicted by using linear system theory. The simulating results agree with the experimental results at different absorbed dose rate. (authors)

  11. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    International Nuclear Information System (INIS)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu

    2001-01-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52±15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m 2 or higher were assigned to the high dose group and those given doses under 300 mg/m 2 to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3±218.2 mg/m 2 . In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m 2 appeared to be the borderline dose beyond which there were

  12. Clinical study on the adriamycin induced cardiomyopathy using the cardiac magnetic resonance imaging. Total dose and cardiac dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kyoko; Teraoka, Kunihiko; Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    2001-05-01

    We studied cardiac functional disorders caused by Adoriamycin using gadolinium (Gd) contrast cine MRI. Forty-eight patients were given ACT (31 men and 17 women; mean age, 52{+-}15 years). First, the relationship between dose and the left ventricular volume, cardiac function, left ventricular cardiac mass and localized wall motion were examined in all patients. Patients given a total dose of 300 mg/m{sup 2} or higher were assigned to the high dose group and those given doses under 300 mg/m{sup 2} to the low dose group. The same parameters were studied in both groups and compared. A 1.5-Tesla superconductive MRI was used for all studies. Cine images of the long and short axes at the papillary muscle level were obtained by ECG R-wave synchronized Gd contrast cine MRI. Left ventricular volume and cardiac function were analyzed using the long-axis cine images and the wall thickness in diastole and systole was measured at each site using the short-axis cine images. The percentage of wall thickness was calculated at each site. The mean ACT dose was 273.3{+-}218.2 mg/m{sup 2}. In all patients the total dose directly correlated with ESVI and inversely correlated with the ejection fraction (EF). In the high dose group, the total dose and EF were inversely correlated, but no significant differences were observed in the low dose group. In the high dose group, the ESVI was significantly greater and the SVI and EF were more significantly reduced than in the low dose group. In the high dose group, the thickness of the anterior, lateral and posterior walls, excluding the septum, was significantly lower than in the low dose group. However, changes in wall thickness were not significantly different between the groups. Gd contrast cine MRI was useful in examining cardiac functional disorders caused by anthracyclines. The total dose of anthracycline correlated directly with the ESVI, and inversely with the EF. A total dose of 300 mg/m{sup 2} appeared to be the borderline dose beyond

  13. Low Radiation Dose and Low Cell Dose Increase the Risk of Graft Rejection in a Canine Hematopoietic Stem Cell Transplantation Model.

    Science.gov (United States)

    Lange, Sandra; Steder, Anne; Glass, Änne; Killian, Doreen; Wittmann, Susanne; Machka, Christoph; Werner, Juliane; Schäfer, Stephanie; Roolf, Catrin; Junghanss, Christian

    2016-04-01

    The canine hematopoietic stem cell transplantation (HSCT) model has become accepted in recent decades as a good preclinical model for the development of new transplantation strategies. Information on factors associated with outcome after allogeneic HSCT are a prerequisite for designing new risk-adapted transplantation protocols. Here we report a retrospective analysis aimed at identifying risk factors for allograft rejection in the canine HSCT model. A total of 75 dog leukocyte antigen-identical sibling HSCTs were performed since 2003 on 10 different protocols. Conditioning consisted of total body irradiation at 1.0 Gy (n = 20), 2.0 Gy (n = 40), or 4.5 Gy (n = 15). Bone marrow was infused either intravenously (n = 54) or intraosseously (n = 21). Cyclosporin A alone or different combinations of cyclosporine A, mycophenolate mofetil, and everolimus were used for immunosuppression. A median cell dose of 3.5 (range, 1.0 to 11.8) total nucleated cells (TNCs)/kg was infused. Cox analyses were used to assess the influence of age, weight, radiation dose, donor/recipient sex, type of immunosuppression, and cell dose (TNCs, CD34(+) cells) on allograft rejection. Initial engraftment occurred in all dogs. Forty-two dogs (56%) experienced graft rejection at median of 11 weeks (range, 6 to 56 weeks) after HSCT. Univariate analyses revealed radiation dose, type of immunosuppression, TNC dose, recipient weight, and recipient age as factors influencing long-term engraftment. In multivariate analysis, low radiation dose (P rejection. Peripheral blood mononuclear cell chimerism ≥30% (P = .008) and granulocyte chimerism ≥70% (P = .023) at 4 weeks after HSCT were independent predictors of stable engraftment. In summary, these data indicate that even in low-dose total body irradiation-based regimens, the irradiation dose is important for engraftment. The level of blood chimerism at 4 weeks post-HSCT was predictive of long-term engraftment in the canine HSCT

  14. The evaluation of dose of TSEI with TLD and diode detector of the uterine cervix cancer

    International Nuclear Information System (INIS)

    Je, Young Wan; Na, Keyung Su; Yoon, Il Kyu; Park, Heung Deuk

    2005-01-01

    To evaluate radiation dose and accuracy with TLD and diode detector when treat total skin with electron beam. Using Stanford Technique, we treated patient with Mycosis Fungoides. 6 MeV electron beam of LINAC was used and the SSD was 300 cm. Also, acrylic speller(0.8 cm) was used. The patient position was 6 types and the gantry angle was 64, 90 and 116 degree. The patient's skin dose and the output were detected 5 to 6 times with TLD and diode. The deviations of dose detected with TLD from tumor dose were CA + 6%, thigh + 8%, umbilicus + 4%, calf - 8%, vertex - 74.4%, deep axillae - 10.2%, anus and testis - 87%, sole - 86% and nails shielded with 4 mm lead + 4%. The deviations of dose detected with diode were - 4.5% ∼ + 5% at the patient center and - 1.1% ∼ + 1% at the speller. The deviation of total skin dose was + 8% ∼ - 8% and that deviation was within the acceptable range(±10%). The boost dose was irradiated for the low dose areas(vertex, anus, sole). The electron beam output detected at the sootier was stable. It is thought that the deviation of dose at patient center detected with diode was induced by detection point and patient position.

  15. Low dose radiation exposure and atherosclerosis in ApoE{sup -/-} mice

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Hasu, M. [Univ. of Ottawa, Department of Pathology and Lab. Medicine, and Cellular and Molecular Medicine, Ottawa, ON (Canada); Univ. of Ottawa Heart Inst., Vascular Biology Group, Ottawa, ON (Canada); Bugden, M.; Wyatt, H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Little, M. [Imperial Coll., Faculty of Medicine, St. Marys Campus, London (United Kingdom); Hildebrandt, G. [Univ. Hospital, Dept. of Radiotherapy, Rostock (Germany); Priest, N.D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Whitman, S.C. [Univ. of Ottawa, Department of Pathology and Lab. Medicine, and Cellular and Molecular Medicine, Ottawa, ON (Canada); Univ. of Ottawa Heart Inst., Vascular Biology Group, Ottawa, ON (Canada)

    2010-07-01

    The hypothesis that single low dose exposures (0.025-0.5 Gy) to low LET radiation, given at either high (240 mGy/min) or low (1 mGy/min) dose rate, would promote aortic atherosclerosis was tested in female C57BI/6 mice genetically predisposed to this disease (ApoE-/-). Mice were exposed either at early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (8 months of age) and examined 2 or 4 months later. Compared to unexposed controls, all doses given at low or high dose rate at early stage disease had significant inhibitory effects on lesion growth and, at 25 or 50 mGy, on lesion frequency. No dose given at low dose rate had any effect on total serum cholesterol, but this was elevated by every dose given at high dose rate. Exposures at low dose rate had no effect on the percentage of lesion lipids contained within macrophages, and, at either high or low dose rate, had no significant effect on lesion severity. Exposure at late stage disease, to any dose at high dose rate, had no significant effect on lesion frequency, but at low dose rate some doses produced a small transient increase in this frequency. Exposure to low doses at low, but not high dose rate, significantly, but transiently reduced average lesion size, and at either dose rate transiently reduced lesion severity. Exposure to any dose at low dose rate (but not high dose rate) resulted in large and persistent decreases in serum cholesterol. These data indicate that a single low dose exposure, depending on dose and dose rate, generally protects against various measures of atherosclerosis in genetically susceptible mice. This result contrasts with the known, generally detrimental effects of high doses on this disease in the same mice, suggesting that a linear extrapolation of risk from high doses is not appropriate. (author)

  16. Estimate of ovarian dose and entrance skin dose in uterine artery embolization procedures

    International Nuclear Information System (INIS)

    Silva, Marcia C.; Nasser, Felipe; Affonso, Breno B.; Araujo Junior, Raimundo T.; Zlotnik, Eduardo; Messina, Marcos L.; Baracat, Edmund C.

    2010-01-01

    The goal of this study was to estimate the ovarian dose and entrance skin dose (ESD) of patients who underwent uterine artery embolization (UAE) procedure. To achieve this, 49 UAE procedures were accompanied where the parameters of image acquisition were recorded for the calculation of the DEP from the output of the X-ray tube. The estimation of the ovarian dose was carried out by the insertion of a vaginal probe containing 3 TLD's. The obtained values were compared with the results of other authors and a higher value of ovarian dose (28,97 cGy) and ESD (403,57 cGy) was found in this work. Analysis of the results allowed to observe that this result was obtained mainly as a result of the high number of arteriography series and the frames/second rates employed. Following on from these observations, the protocol of EMUT was altered reducing the frames/seg rate from 2 to 1. Efforts with a view to reducing the number of arteriography series also became part of the next proceedings. (author)

  17. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Jagetia

    2015-01-01

    Full Text Available Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation.

  18. Patient doses in interventional cardiology procedures

    International Nuclear Information System (INIS)

    Domienik, J.; Papierz, S.; Jankowski, J.; Peruga, J.Z.

    2008-01-01

    In most countries of European Union legislation requires the determination of the total skin dose to patient resulting from interventional procedures to assess the risk of deterministic effect. To this end, various dose indicators like dose area product (DAP), cumulative dose (CD) and entrance dose at the patient plane (EFD) are used in clinical practice. The study aims at relating those dose indicators with doses ascribe to the most irradiated areas of the patient skin usually expressed in terms of local maximal skin dose (MSD). For the study the local MSD and related to their areas are investigated and compared for coronary angiography CA and intervention (PCI). Two methods implying radiographic films Kodak EDR2 and matrixes of thermoluminescent dosimeters (TLDs) are applied for direct measurements of dose distribution for selected procedures. Both methods are compared. Additionally, for patient dosimetry the following data: MSD, CD, EFD, fluoroscopy time (FT), number of acquired images, total DAP, fluoro-DAP and record-DAP were collected for randomly selected procedure. The statistical quantities like: median, 3 rd quartile, mean and standard deviation for all dosimetric parameters are determined. Preliminary study showed that the values of data collected for coronary procedures are in the ranges 0,7 - 27,3 min for fluoroscopy time, 50 - 350 Gy cm 2 for total DAP, 300 - 2000 mGy for CD, 140 - 2000 mGy for EFD and 100 - 1500 mGy for local maximal skin dose. For interventions the ranges are, accordingly 3,0 - 43,6 min , 25 - 450 Gy cm 2 , 270 - 6600 mGy, 80 - 2600 mGy and 80 - 1500 mGy. As a result of the study the correlations between dose indicators and local MSD are analyzed. The concentration of dose on irradiated films are going to be investigated in some detail as well. (author)

  19. Dose response evaluation of gene expression profiles in the skin of K6/ODC mice exposed to sodium arsenite

    International Nuclear Information System (INIS)

    Ahlborn, Gene J.; Nelson, Gail M.; Ward, William O.; Knapp, Geremy; Allen, James W.; Ouyang Ming; Roop, Barbara C.; Chen Yan; O'Brien, Thomas; Kitchin, Kirk T.; Delker, Don A.

    2008-01-01

    Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, we characterized gene expression profiles from analysis of K6/ODC mice administered 0, 0.05, 0.25, 1.0 and 10 ppm sodium arsenite in their drinking water for 4 weeks. Following exposure, total RNA was isolated from mouse skin and processed to biotin-labeled cRNA for microarray analyses. Skin gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 GeneChips (registered) , and pathway analysis was conducted with DAVID (NIH), Ingenuity (registered) Systems and MetaCore's GeneGo. Differential expression of several key genes was verified through qPCR. Only the highest dose (10 ppm) resulted in significantly altered KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including MAPK, regulation of actin cytoskeleton, Wnt, Jak-Stat, Tight junction, Toll-like, phosphatidylinositol and insulin signaling pathways. Approximately 20 genes exhibited a dose response, including several genes known to be associated with carcinogenesis or tumor progression including cyclin D1, CLIC4, Ephrin A1, STAT3 and DNA methyltransferase 3a. Although transcription changes in all identified genes have not previously been linked to arsenic carcinogenesis, their association with carcinogenesis in other systems suggests that these genes may play a role in the early stages of arsenic-induced skin carcinogenesis and can be considered potential biomarkers

  20. Total-body photography in skin cancer screening: the clinical utility of standardized imaging.

    Science.gov (United States)

    Rosenberg, Alexandra; Meyerle, Jon H

    2017-05-01

    Early detection of skin cancer is essential to reducing morbidity and mortality from both melanoma and nonmelanoma skin cancers. Total-body skin examinations (TBSEs) may improve early detection of malignant melanomas (MMs) but are controversial due to the poor quality of data available to establish a mortality benefit from skin cancer screening. Total-body photography (TBP) promises to provide a way forward by lowering the costs of dermatologic screening while simultaneously leveraging technology to increase patient access to dermatologic care. Standardized TBP also offers the ability for dermatologists to work synergistically with modern computer technology involving algorithms capable of analyzing high-quality images to flag concerning lesions that may require closer evaluation. On a population level, inexpensive TBP has the potential to increase access to skin cancer screening and it has several specific applications in a military population. The utility of standardized TBP is reviewed in the context of skin cancer screening and teledermatology.

  1. Entrance skin dose on patients undergoing X-ray examinations at ...

    African Journals Online (AJOL)

    survey was conducted on the Entrance Skin Dose (ESD) in patients undergoing X-ray examinations [Skull Postero-Anterior (PA), Skull Lateral (LAT), Chest Postero-Anterior (PA), Chest Lateral (LAT), Abdomen Antero-Posterior (AP) and Pelvis Antero-Posterior (AP)] in five hospitals/Xray centres in Yaba, Lagos State, Nigeria ...

  2. Cancer and low dose responses in vivo: implications for radiation protection

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    2006-01-01

    Full text: Radiation protection practices assume that cancer risk is linearly proportional to total dose, without a threshold, both for people with normal cancer risk and for people who may be genetically cancer prone. Mice heterozygous for the Tp 53 gene are cancer prone, and their increased risk from high doses was not different from Tp 53 normal mice. However, in either Tp 53 normal or heterozygous mice, a single low dose of low LET radiation given at low dose rate protected against both spontaneous and radiation-induced cancer by increasing tumor latency. Increased tumor latency without a cancer frequency change implies that low doses in vivo primarily slow the process of genomic instability, consistent with the elevated capacity for correct DSB rejoining seen in low dose exposed cells. The in vivo animal data indicates that, for low doses and low dose rates in both normal and cancer prone adult mice, risk does not increase linearly with dose, and dose thresholds for increased risk exist. Below those dose thresholds (which are influenced by Tp 53 function) overall risk is reduced below that of unexposed control mice, indicating that Dose Rate Effectiveness Factors (DREF) may approach infinity, rather than the current assumption of 2. However, as dose decreases, different tissues appear to have different thresholds at which detriment turns to protection, indicating that individual tissue weighting factors (Wt) are also not constant, but vary from positive values to zero with decreasing dose. Measurements of Relative Biological Effect between high and low LET radiations are used to establish radiation weighting factors (Wr) used in radiation protection, and these are also assumed to be constant with dose. However, since the risk from an exposure to low LET radiation is not constant with dose, it would seem unlikely that radiation-weighting factors for high LET radiation are actually constant at low dose and dose rate

  3. Radiation doses in interventional neuroradiology

    International Nuclear Information System (INIS)

    Theodorakou, C.; Butler, P.; Horrocks, J.A.

    2001-01-01

    Patient radiation doses during interventional radiology (IR) procedures may reach the thresholds for radiation-induced skin and eye lens injuries. This study investigates the radiation doses received by patients undergoing cerebral embolization. Measurements were conducted using thermoluminescent dosimeters. Radiotherapy verification films were used in order to visualise the radiation field. For each procedure the fluoroscopic and digital dose-area product, the fluoroscopic time, the total number of acquired images and entrance-skin dose calculated by the angiographic unit were recorded. In this paper, the skin, eye and thyroid glands doses on a sample of patients are presented. From a preliminary study of 13 patients having undergone cerebral embolization, it was deduced that six of them have received a dose above 1 Gy. Detailed dose data from patients undergoing IR procedures will be collected in the future with the aim of developing a model to allow estimation of the dose prior to the procedure as well as to look at techniques of dose reduction. (author)

  4. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  5. The injury and cumulative effects on human skin by UV exposure from artificial fluorescence emission.

    Science.gov (United States)

    Tian, Yan; Liu, Wei; Niu, TianHui; Dai, CaiHong; Li, Xiaoxin; Cui, Caijuan; Zhao, Xinyan; E, Yaping; Lu, Hui

    2014-01-01

    The injury and cumulative effects of UV emission from fluorescence lamp were studied. UV intensity from fluorescence lamp was measured, and human skin samples (hips, 10 volunteers) were exposed to low-dose UV irradiation (three times per week for 13 consecutive weeks). Three groups were examined: control group without UV radiation; low-dose group with a cumulative dose of 50 J cm(-2) which was equivalent to irradiation of the face during indoor work for 1.5 years; and high-dose group with 1000 J cm(-2) cumulative dose equivalent to irradiation of the face during outdoor activities for 1 year. Specific indicators were measured before and after UVA irradiation. The findings showed that extending the low-dose UVA exposure decreased the skin moisture content and increased the transepidermal water loss as well as induced skin color changes (decreased L* value, increased M index). Furthermore, irradiated skin showed an increased thickness of cuticle and epidermis, skin edema, light color and unclear staining collagen fibers in the dermis, and elastic fiber fragmentation. In addition, MMP-1, p53 and SIRT1 expression was also increased. Long-term exposure of low-dose UVA radiation enhanced skin photoaging. The safety of the fluorescent lamp needs our attention. © 2014 The American Society of Photobiology.

  6. Determination of total phenolic compound contents and antioxidant capacity of persimmon skin

    Directory of Open Access Journals (Sweden)

    M Mohamadi

    2012-05-01

    Full Text Available Due to the adverse side effects of synthetic antioxidants, the search for natural and safe antioxidants has become crucial. In this study, the total phenolic compound contents and antioxidants activity of persimmon skin was investigated. The extraction was carried out by means of maceration method using ethanol and methanol solvents with ratio of 1 part persimmon skin to 5 parts of solvents. Afterwards, the total phenolic compounds and antioxidants activity was measured. According to the results, ethanolic and methanolic extracts contained 255.6 and 214.15 mg gallic acid per 100 g of persimmon skin, respectively. Moreover, ethanolic extracts showed a higher activity for scavenging free radicals compared to methanolic extracts.

  7. In pediatric leukemia, dose evaluation according to the type of compensators in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dongnam Inst. of Radiological and Medical science, Busan (Korea, Republic of); Kim, Chang Soo; Kim, Jung Hoon [Dept. of Radiological Science, College of Health Science, Catholic University of Busan, Busan (Korea, Republic of)

    2015-04-15

    Total body irradiation (TBI) and chemotherapy are the pre-treatment method of a stem cell transplantations of the childhood leukemia. in this study, we evaluate the Quantitative human body dose prior to the treatment. The MCNPX simulation program evaluated by changing the material of the tissue compensators with imitation material of pediatric exposure in a virtual space. As a result, first, the average skin dose with the material of the tissue compensators of Plexiglass tissue compensators is 74.60 mGy/min, Al is 73.96 mGy/min, Cu is 72.26 mGy/min and Pb 67.90 mGy/min respectively. Second, regardless of the tissue compensators material that organ dose were thyroid, gentile, digestive system, brain, lungs, kidneys higher in order. Finally, the ideal distance between body compensator and the patient were 50 cm aparting each other. In conclusion, tissue compensators Al, Cu, Pb are able to replace of the currently used in Plexiglass materials.

  8. Regeneration of Murine Hair Follicles is Inhibited by Low-Dose-Rate Gamma Irradiation.

    Science.gov (United States)

    Sugaya, Kimihiko; Hirobe, Tomohisa; Ishihara, Yoshie; Inoue, Sonoe

    2016-10-01

    To determine whether the effects of low-dose-rate gamma (γ) irradiation are identifiable in the regeneration of murine hair follicles, we irradiated whole bodies of C57BL/10JHir mice in the first telogen phase of the hair cycle with 137 Cs γ-rays. The mice were examined for effects on hair follicles, including number, morphology, and pigmentation in the second anagen phase. Effects of γ-radiation on melanocyte stem cells were also investigated by the indirect immunolabeling of tyrosinase-related protein 2 (TRP2). Irradiated skin showed a decrease in hair follicle density and the induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs. There was a small, but not significant, change in the number of TRP2-positive melanocyte stem cells in the hair bulge region of the irradiated skin. These results suggest that low-dose rate γ-irradiation does not deplete melanocyte stem cells, but can damage stem cells and progenitors for both keratinocytes and melanocytes, thereby affecting the structure and pigmentation of regenerated hair follicles in the 2 nd anagen phase.

  9. Low dose iodine-131 therapy in solitary toxic thyroid nodules

    International Nuclear Information System (INIS)

    Prakash, Rajeev

    1999-01-01

    Forty patients with solitary hyperfunctioning thyroid nodules were treated with relatively low dose radioiodine therapy, 131 I doses were calculated taking into account thyroid mass and radioiodine kinetics to deliver 100 μCi/g of estimated nodule weight corrected for uptake. Patients remaining persistently hyperthyroid at four months after the initial therapy were retreated with a similarly calculated dose. Cure of the hyperthyroid state was achieved in all patients, total administered dose in individual cases ranging from 3-17 mCi. 28 of the 40 patients required a single therapy dose. 36 patients were euthyroid after a 4.5 year mean follow-up period. Four cases developed post therapy hypothyroidism requiring replacement therapy. Nodules regressed completely in nine cases following 131 I treatment, with partial regression in size in 19 patients. Control of hyperthyroid state in cases of solitary toxic thyroid nodules can be satisfactorily achieved using relatively low dose radioiodine therapy with low incidence of post therapy hypothyroidism. (author)

  10. SU-F-P-47: Estimation of Skin Dose by Performing the Measurements On Cylindrical Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bosma, S; Sanders, M; Aryal, P [University Kentucky - Chandler Medical Ctr, Lexington, KY (United States)

    2016-06-15

    Purpose: To evaluate the skin dose by performing the measurements on cylindrical phantom with 6X beam. Methods: A cylindrical phantom was used to best model a patient surface. The source to surface distance (SSD) was 100 cm at phantom surface along central axis (CAX). The EBT2 films were cut into 2×2 cm2 pieces. Each piece of film was placed at CAX on phantom surface for each measurement at 0°, 15°, 30°, 45°, 60°, 75°, and 90° gantry angles for field sizes of 5×5, 10×10, 15×15, and 20×20 cm{sup 2} respectively. One hundred monitor units (MU) with 6X beam were delivered for each set up. Similarly, the measurements were repeated using lithium fluoride (LiF) thermoluminescent dosimeter (TLD) chips (1X1X1 mm{sup 3}). Two TLD chips were placed for each gantry angle and field size. The calibration curves were produced for both film and TLD. The computed tomography (CT) was also performed on the same cylindrical phantom and dose was evaluated at the phantom surface using Eclipse treatment planning system ( AAA algorithm) for skin dose comparison. Results: Data showed small differences at smaller angles among EBT2, TLD and Eclipse treatment planning system. But Eclipse treatment planning system under estimated the skin dose between 20% and 50% at larger gantry angles (between 40° and 80°) at all field sizes before dose differences began to converge. Conclusion: Given this data, we can conclude that Eclipse treatment planning system under estimated the dose especially between 40 and 80 degrees of obliquity compared to the measurements results. Ideally, this study can be applied largely to head and neck patients where contours differ drastically and where skin dose is paramount.

  11. Validation and dosimetric evaluation employing the techniques of TL and OSL of thermoluminescent materials for application in the dosimetry of clinical beams of electrons used in total irradiation of the skin - TSI

    International Nuclear Information System (INIS)

    Almeida, Shirlane Barbosa de

    2017-01-01

    In vivo dosimetry has become an important role for the treatment of total skin irradiation within a rigorous quality assurance program that should be an integral part of the radiotherapy departments. TSI dosimetry is difficult because of the complexity of the treatment in assessing dose uniformity and measuring the dose absorbed at shallow depths throughout the skin surface extent, resulting in a wide variation in dose distribution. The TLDs have proven to be very useful for the distribution and verification of the dose prescribed for the patient as the dose may differ from place to place due to patient body geometry, overlapping of structures and asymmetries of the radiation field. The use of TLDs in vivo can identify variations in the prescribed dose because its measurement accuracy and great precision. Several types of dosimeters have been used in the radiotherapy sectors, the most commonly used are Lithium Fluride (TLD-100), where it obtains a long history in this type of application. New dosimetric materials have gained great importance in the dosimetry of clinical electron beams, such as Dysprosium-doped Calcium Sulphate (TL) and Carbon doped (OSL) based Aluminum Oxide, This work evaluates the performance of the respective thermoluminescent dosimeters and the optically stimulated luminescence in the dosimetry of clinical electron beams used in total irradiation of the skin. (author)

  12. Total dose hardness of a commercial SiGe BiCMOS technology

    International Nuclear Information System (INIS)

    Van Vonno, N.; Lucas, R.; Thornberry, D.

    1999-01-01

    Over the past decade SiGe HBT technology has progress from the laboratory to actual commercial applications. When integrated into a BiMOS process, this technology has applications in low-cost space systems. In this paper, we report results of total dose testing of a SiGe/CMOS process accessible through a commercial foundry. (authors)

  13. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jerri [Duke Energy, York, SC (United States); Colorado State University, Fort Collins, CO (United States); Ryan, Stewart [Animal Cancer Center, Colorado State University, Fort Collins, CO (United States); Harmon, Joseph F., E-mail: joseph_harmon@bshsi.org [Bon Secours Cancer Institute, Henrico, VA (United States)

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  14. Total skin clearance results in improvements in health-related quality of life and reduced symptom severity among patients with moderate to severe psoriasis.

    Science.gov (United States)

    Viswanathan, Hema N; Chau, Dina; Milmont, Cassandra E; Yang, Wenjjing; Erondu, Ngozi; Revicki, Dennis A; Klekotka, Paul

    2015-06-01

    Newer therapies provide high levels of skin clearance in patients with moderate to severe psoriasis. However, insufficient evidence exists on the impact of total skin clearance from the patient's perspective. To examine effects of total skin clearance on health-related quality of life (HRQoL) and psoriasis symptom severity in subjects with moderate to severe psoriasis. Pooled data from a phase 2 dose-ranging trial in psoriasis using brodalumab (antibody to interleukin-17 receptor A) were used to compare subjects with static physician global assessment (sPGA) 1 versus sPGA 0 and subjects with Psoriasis Area and Severity Index (PASI) 75 to Quality Index (DLQI = 0) and no psoriasis symptoms (Psoriasis Symptom Inventory = 0). Of subjects with sPGA 0 (clear) and 1 (almost clear), 61.4% and 45.7% had a DLQI = 0 (p = 0.15), and 65.5% and 32.6% had a Psoriasis Symptom Inventory = 0 (p = 0.001), respectively. Significantly more subjects with sPGA 1 continued to report itching, redness, scaling, and flaking compared to subjects with sPGA 0. Similar results were observed based on PASI score. A higher proportion of subjects with total skin clearance reported no impairment in HRQoL and no psoriasis symptoms than those who were almost clear.

  15. Improvement of the equivalent sphere model for better estimates of skin or eye dose in space radiation environments

    International Nuclear Information System (INIS)

    Lin, Z.W.

    2011-01-01

    It is often useful to get a quick estimate of the dose or dose equivalent of an organ, such as blood-forming organs, the eye or the skin, in a radiation field. Sometimes an equivalent sphere is used to represent the organ for this purpose. For space radiation environments, recently it has been shown that the equivalent sphere model does not work for the eye or the skin in solar particle event environments. In this study, we improve the representation of the eye and the skin using a two-component equivalent sphere model. Motivated by the two-peak structure of the body organ shielding distribution for the eye and the skin, we use an equivalent sphere with two radius parameters, for example a partial spherical shell of a smaller thickness over a proper fraction of the full solid angle combined with a concentric partial spherical shell of a larger thickness over the rest of the full solid angle, to represent the eye or the skin. We find that using an equivalent sphere with two radius parameters instead of one drastically improves the accuracy of the estimates of dose and dose equivalent in space radiation environments. For example, in solar particle event environments the average error in the estimate of the skin dose equivalent using an equivalent sphere with two radius parameters is about 8%, while the average error of the conventional equivalent sphere model using one radius parameter is around 100%.

  16. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients

    International Nuclear Information System (INIS)

    Penoncello, Gregory P.; Ding, George X.

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm"3 for head and neck plans and brain plans and a contiguous volume of 5 cm"3 for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.

  17. SU-G-201-14: Is Maximum Skin Dose a Reliable Metric for Accelerated Partial Breast Irradiation with Brachytherapy?

    International Nuclear Information System (INIS)

    Park, S; Ragab, O; Patel, S; Demanes, J; Kamrava, M; Kim, Y

    2016-01-01

    Purpose: To evaluate the reliability of the maximum point dose (Dmax) to the skin surface as a dosimetric constraint, we investigated the correlation between Dmax at the skin surface and dose metrics at various definitions of skin thickness. Methods: 42 patients treated with APBI using a Strut Adjusted Volume Implant (SAVI) applicator between 2010 and 2014 were retrospectively reviewed. Target (PTV-EVAL) and organs at risk (OARs: skin, lung, and ribs) were delineated on a CT following NSABP B-39 guidelines. Six skin structures were contoured: a rind 3cm external to the body surface and 1, 2, 3, 4, and 5mm thick rinds deep to the body surface. Inverse planning simulated annealing optimization was used to deliver 32–34Gy in 8-10 fractions to the target while minimizing OAR doses. Dmax, D0.1cc, D1.0cc, and D2.0cc to the various skin structures were calculated. Linear regressions between the metrics were evaluated using the coefficient of determination (R"2). Results: The average±SD PTV-EVAL volume and cavity-to-skin distances were 71.1±28.5cc and 6.9±5.0mm. The target V90 and V95 were 97.3±2.3% and 95.1±3.2%. The Dmax to the skin structures were 78.7±10.2% (skin surface), 82.2±10.7% (skin-1mm), 89.4±12.6% (skin-2mm), 97.9±15.4% (skin-3mm), 114.1±32.5% (skin-4mm), and 157.0±85.3% (skin-5mm). Linear regression analysis showed D1.0cc and D2.0cc to the skin 1mm and Dmax to the skin-4mm and 5mm were poorly correlated with other metrics (R"2=0.413±0.204). Dmax to the skin surface was well correlated (R"2=0.910±0.047) and D1.0cc to the skin-3mm was strongly correlated with all subsurface skin layers (R"2=0.935±0.050). Conclusion: Dmax to the skin surface is a relevant metric for breast skin dose. Contouring discontinuities in the skin with a 1mm subsurface rind and the active dwells in the skin 4 and 5mm introduced significant variations in skin DVH. D0.1cc, D1.0cc, and D2.0cc to a 3mm skin rind are more robust metrics in breast brachytherapy.

  18. A model for predicting skin dose received by patients from an x-ray ...

    African Journals Online (AJOL)

    Patient dosimetry has raised concern on quality assurance in hospitals. Several organisations and research groups have been advocating ways of minimising radiation dose received by patients in hospitals. In this paper we have shown that it is possible to obtain in a simple way a reasonable estimate of skin dose received ...

  19. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  20. Application of combined TLD and CR-39 PNTD method for measurement of total dose and dose equivalent on ISS

    International Nuclear Information System (INIS)

    Benton, E.R.; Deme, S.; Apathy, I.

    2006-01-01

    To date, no single passive detector has been found that measures dose equivalent from ionizing radiation exposure in low-Earth orbit. We have developed the I.S.S. Passive Dosimetry System (P.D.S.), utilizing a combination of TLD in the form of the self-contained Pille TLD system and stacks of CR-39 plastic nuclear track detector (P.N.T.D.) oriented in three mutually orthogonal directions, to measure total dose and dose equivalent aboard the International Space Station (I.S.S.). The Pille TLD system, consisting on an on board reader and a large number of Ca 2 SO 4 :Dy TLD cells, is used to measure absorbed dose. The Pille TLD cells are read out and annealed by the I.S.S. crew on orbit, such that dose information for any time period or condition, e.g. for E.V.A. or following a solar particle event, is immediately available. Near-tissue equivalent CR-39 P.N.T.D. provides Let spectrum, dose, and dose equivalent from charged particles of LET ∞ H 2 O ≥ 10 keV/μm, including the secondaries produced in interactions with high-energy neutrons. Dose information from CR-39 P.N.T.D. is used to correct the absorbed dose component ≥ 10 keV/μm measured in TLD to obtain total dose. Dose equivalent from CR-39 P.N.T.D. is combined with the dose component <10 keV/μm measured in TLD to obtain total dose equivalent. Dose rates ranging from 165 to 250 μGy/day and dose equivalent rates ranging from 340 to 450 μSv/day were measured aboard I.S.S. during the Expedition 2 mission in 2001. Results from the P.D.S. are consistent with those from other passive detectors tested as part of the ground-based I.C.C.H.I.B.A.N. intercomparison of space radiation dosimeters. (authors)

  1. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy

    Science.gov (United States)

    Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2018-05-01

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  2. Successfully Managing Impending Skin Necrosis following Hyaluronic Acid Filler Injection, using High-Dose Pulsed Hyaluronidase

    Directory of Open Access Journals (Sweden)

    Kwok Thye David Loh, MBBS

    2018-02-01

    Full Text Available Summary:. Facial fillers are becoming increasingly popular as aesthetic procedures to temporarily reduce the depth of wrinkles or to contour faces. However, even in the hands of very experienced injectors, there is always a small possibility of vascular complications like intra-arterial injection of filler substance. We present a case report of a patient who developed features of vascular obstruction in right infraorbital artery and tell-tale signs of impending skin necrosis, after hyaluronic acid filler injection by an experienced injector. The diagnosis of a vascular complication was made quickly with the help of clinical features like blanching, livedo reticularis, and poor capillary refill. Patient was treated promptly with “high-dose pulsed hyaluronidase protocol” comprising three 1,000-unit pulses of hyaluronidase, administered hourly. There was no further increase in size of the involved area after the first dose of hyaluronidase. All of the involved area, along with 1 cm overlapping in uninvolved skin area, was injected during each injection pulse, using a combination of cannula and needle. Complete reperfusion and good capillary filling were achieved after completion of 3 pulses, and these were taken as the end-point of high-dose pulsed hyaluronidase treatment. Immediate skin changes after filler injections, as well as after hyaluronidase injections and during the 3-week recovery period, were documented with photographs and clinical notes. Involved skin was found to have been fully recovered from this vascular episode, thus indicating that complete recovery of the ischemic skin changes secondary to possible intra-arterial injection could be achieved using high-dose pulsed hyaluronidase protocol.

  3. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  4. What is the effect of different skin types on the required dose for photodynamic therapy?

    CSIR Research Space (South Africa)

    Karsten, AE

    2008-11-01

    Full Text Available For effective laser treatment it is very important to provide the correct dose at the required treatment depth. In South Africa we have a richness of ethnic groups contributing to a large variety in skin tones. Effective laser treatment of skin...

  5. Split-dose recovery in epithelial and vascular-connective tissue of pig skin

    International Nuclear Information System (INIS)

    Peel, D.M.; Hopewell, J.W.; Simmonds, R.H.; Dodd, P.; Meistrich, M.L.

    1984-01-01

    In the first 16 weeks after irradiation, two distinct waves of reaction can be observed in pig skin; the first wave (3-9 weeks) represents the expression of damage to the epithelium while the second is indicative of primary damage to the dermis, mediated through vascular injury. Following β-irradiation with a strontium-90 applicator, a severe epithelial reaction was seen with little subsequent dermal effects. X-rays (250 kV) on the other hand, produced a minimal epithelial response at doses which led to the development of dermal necrosis after 10-16 weeks. Comparison of single doses with two equal doses separated by 24 h produced a D 2 -D 1 value of 7.0 Gy at the doses which produced moist desquamation in 50% of fields (ED 50 ) after strontium-90 irradiation. After X-irradiation comparison of ED 50 doses for the later dermal reaction suggested a D 2 -D 1 value of 4.5 Gy. Over this same dose range of X-rays the D 2 -D 1 value for the first wave epithelial reaction was 3.5 Gy. These values of D 2 -D 1 for epithelial and dermal reactions in pig skin were compared with published data and were examined in relation to the theoretical predictions of a linear quadratic model for tissue target cell survival. The results were broadly in keeping with the productions of such a model. (Auth.)

  6. Pyrimidine dimer formation and repair in human skin

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Harber, L.C.; Kochevar, I.E.

    1980-01-01

    Cyclobutyl pyrimidine dimers have been detected in the DNA of human skin following in vivo irradiation with suberythermal doses of ultraviolet (UV) radiation from FS-20 sun lamp fluorescent tubes. Dimers were assayed by treatment of extracted DNA with Micrococus luteus UV-specific endonuclease, alkaline agarose electrophoresis, and ethidum bromide staining. This technique, in contrast to conventional dimer assays, can be used with nonradioactive DNA and is optimal at low UV light doses. These data suggest that some dimer disappearance by excision repair occurs within 20 min of UV irradiation and that photoreactivation of dimers can make a contribution to the total repair process

  7. SU-F-T-509: Investigation into the Impact of the Linear Accelerator Treatment Table On Skin Dose to Prone Breast Patients

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K; Irwin, J; Sansourekidou, P; Kriminski, S; Pavord, D [Health Quest, Poughkeepsie, NY (United States)

    2016-06-15

    Purpose: To investigate the impact of the treatment table on skin dose for prone breast patients for which the breast contacts the table and to develop a method to decrease skin dose. Methods: We used 12cm stack of 15cmx15cm solid water slabs to imitate breast. Calibrated EBT3 radiochromic film was affixed to the bottom of the phantom. Treatments for 32 patients were analyzed to determine typical prone breast beam parameters. Based on the analysis, a field size and a range of gantry angles were chosen for the test beams. Three experimental setups were used. The first represented the patient setup currently used in our clinics with the phantom directly on the table. The second was the skin sparing setup, with a 1.5cm Styrofoam slab between the phantom and the table. The third used a 7.5cm Styrofoam slab to examine the extent of skin sparing potential. The calibration curve was applied to each film to determine dose. Percent difference in dose between the current and skin sparing setups was calculated for each gantry angle and gantry angle pair. Results: Data showed that beams entering through the table showed a skin dose decrease ranging from 13%–30% with the addition of 7.5cm Styrofoam, while beams exiting through the table showed no significant difference. The addition of 1.5cm Styrofoam resulted in differences ranging from 0.5%–13% with the skin sparing setup. Conclusion: The results demonstrate that skin in contact with the table receives increased dose from beams entering through the table. By creating separation between the breast and the table with Styrofoam the skin dose can be lowered, but 1.5 cm did not fully mitigate the effect. Further investigation will be performed to identify a clinically practical thickness that maximizes this mitigation.

  8. Skin entrance dose - thyroid: comparison between three kinds of dental appliances; Dose de entrada na pele - tireóide: comparativo entre três tipos de aparelhos odontológicos

    Energy Technology Data Exchange (ETDEWEB)

    Savi, M.; Viana, E.; Soares, F.A., E-mail: matheus.savi@ifsc.edu.br [Dept. Acadêmico de Saúde e Serviços/CST em Radiologia, Instituto Federal de Santa Catarina, Florianópolis (Brazil)

    2017-07-01

    Patient dosimetry is necessary to determine dosimetric quantities, establish reference levels for radio-diagnosis and assess health risks. Part of the radiation beam of the appliances that penetrates the patient's body is absorbed by tissues and part is spread and its sum is known as the Dose of Entrance into the Skin. The objective of this study is to know and compare the DEP of dental radiology devices in the thyroid gland. Two periapical, panoramic and computerized conical beam tomographs were used in this study at a private dentistry clinic and at the Federal Institute of Santa Catarina. The periapical apparatus produced the highest total dose of radiation, as well as a higher dose rate, followed by CBCT and panoramic.

  9. Valorization of the GAFCHROMIC XR-R film for radiation dose estimation in the skin

    International Nuclear Information System (INIS)

    Sanchez Garcia, M.; Otero Martinez, C.; Camino, X. M.; Sendon del Rio, J. R.; Luna Vega, V.; Lobato Busto, R.; Mosquera Sueiro, J.; Pombar Camean, M.

    2006-01-01

    The adequacy of the couple formed by the GAFCHROMIC XR-R film and the MICROTEK Scan Maker 8700 for skin dose determination has been evaluated. The main advantages are the ease of use the films, since it can be manipulated without special care and the ability to archive it in the dosimetric history of the patient. The main limiting factors coming from the scanner are the reproducibility over time and noise in the digitization; it is shown that this last component can be minimized at the cost of resolution. From the film itself, the limiting factors are the inter and intra film uniformity. Contributing an 6,5% to the overall uncertainty in dose determination. Overall, it has been shown that skin dose determination is possible with this film with an uncertainty below 10%. (Author)

  10. Study of dose effect relationship at low doses for non quantitative reactions of skin intestinal mucosa and lung

    International Nuclear Information System (INIS)

    Dutreix, J.; Wambersie, A.

    1977-01-01

    Most of the biological reactions observed in animal experiments or in clinical studies are non quantitative and they only allow assessing an inequality between the effects produced by different irradiations. The method used in non quantitative studies is actually based on the relative contribution of irreparable events and reparable to the cell killing. It provides for the cell population involved in non quantitative biological effects some data which can be expressed in term of a cell survival curve. Such data can be useful in Radiation therapy particularly for maximizing the difference between biological effects by a proper choice of the fraction size. The initial part of the cell survival curve, within the range of doses actually used appears to be a straight exponential. This should allow the extrapolation to very low doses in the range of interest to Radiation Protection

  11. Radiation doses measured by TLD (thermoluminescent dosimeter) in x-ray examination, especially on the skin area beneath of which female gonads situate

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Hiraki, M; Murakami, S; Nishikawa, N; Yagi, T [Nissei Hospital, Osaka (Japan)

    1977-03-01

    By means of TLD, we measured the radiation doses to the skin in the central area of the field of radiation and doses scattered outside of the radiation field, utilizing a phantom to define a suitable radiation field. Clinically, when radiography of the gall bladder and the chest was done, we measured both the radiation doses of the central skin area where radiation was done and the skin above the area of the female gonads. In radiography of the chest, the radiation doses to the skin area above the female gonads situate was under 0.1 mR. When female gonads are less than 15 cm from the margin of the radiation field of the radiation dose can be decreased by 30% if gum sheets containing lead are used to cover the skin area outside the radiation field.

  12. Segmented phantoms reconstruction for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Furnari, Laura; Reis, Gabriela S.

    2009-01-01

    There are several radio-sensitive skin diseases. Skin dosimetry is a difficult task to be properly performed, not only due to skin extension and small thickness, but also because it is usually submitted to high dose gradients. High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic computational anatomical models, which after being coupled to these codes, retrieve reliable dosimetric assessments. However, present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of current medical images, once its thickness stands below image resolution, i.e. pixel characteristic sizes are larger than skin thickness. This paper proposes a methodology of voxelized phantom reconstruction and segmentation, by subdividing their basic elements - voxels. It is done in order to better discriminate the skin by assigning more adequate value for skin thickness and its actual localization. Aiming at a more realistic skin modeling one is expected to get more accurate skin dose evaluations. This task is an important issue in many radiotherapy procedures. A particular interest lays in Total Skin Electron Therapy (TSET), which highlights the treatment of the whole body irradiation, a radiotherapy procedure under implementation in the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  13. Modeling skin collimation using the electron pencil beam redefinition algorithm

    International Nuclear Information System (INIS)

    Chi, Pai-Chun M.; Hogstrom, Kenneth R.; Starkschall, George; Antolak, John A.; Boyd, Robert A.

    2005-01-01

    Skin collimation is an important tool for electron beam therapy that is used to minimize the penumbra when treating near critical structures, at extended treatment distances, with bolus, or using arc therapy. It is usually made of lead or lead alloy material that conforms to and is placed on patient surface. Presently, commercially available treatment-planning systems lack the ability to model skin collimation and to accurately calculate dose in its presence. The purpose of the present work was to evaluate the use of the pencil beam redefinition algorithm (PBRA) in calculating dose in the presence of skin collimation. Skin collimation was incorporated into the PBRA by terminating the transport of electrons once they enter the skin collimator. Both fixed- and arced-beam dose calculations for arced-beam geometries were evaluated by comparing them with measured dose distributions for 10- and 15-MeV beams. Fixed-beam dose distributions were measured in water at 88-cm source-to-surface distance with an air gap of 32 cm. The 6x20-cm 2 field (dimensions projected to isocenter) had a 10-mm thick lead collimator placed on the surface of the water with its edge 5 cm inside the field's edge located at +10 cm. Arced-beam dose distributions were measured in a 13.5-cm radius polystyrene circular phantom. The beam was arced 90 deg. (-45 deg. to +45 deg. ), and 10-mm thick lead collimation was placed at ±30 deg. . For the fixed beam at 10 MeV, the PBRA-calculated dose agreed with measured dose to within 2.0-mm distance to agreement (DTA) in the regions of high-dose gradient and 2.0% in regions of low dose gradient. At 15 MeV, the PBRA agreed to within a 2.0-mm DTA in the regions of high-dose gradient; however, the PBRA underestimated the dose by as much as 5.3% over small regions at depths less than 2 cm because it did not model electrons scattered from the edge of the skin collimation. For arced beams at 10 MeV, the agreement was 1-mm DTA in the high-dose gradient regions, and 2

  14. Preliminary study of using imaging plates to map skin dose of patients in interventional radiology procedures

    International Nuclear Information System (INIS)

    Ohuchi, H.; Satoh, T.; Eguchi, Y.; Mori, K.

    2005-01-01

    A method using europium-doped BaFBr imaging plates (IPs) has been studied for mapping entrance skin doses during interventional radiology (IR); the mapping is useful for detecting overlap between irradiation fields and determining the most exposed skin areas. IPs, which are two-dimensional radiation sensors made of photostimulated luminescence materials, have a linear dose response up to ∼100 Gy, can accurately measure doses from 1 μGy to 10 Gy and can be used repeatedly. Because the energy dependence of IPs is rather high, the IPs were characterised in this study and a sensitivity variation of ∼13% was observed for effective energies of 32.7 to 44.7 keV, which are used in IR procedures. Simulation of actual interventional cardiology procedures showed that the variation of sensitivity was within 5%, meaning that IPs are practical for measuring skin doses during IR. Moreover, the patient data can be stored online and easily called up when IR procedures must be repeated, helping to prevent radiation injuries. (authors)

  15. Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model.

    Directory of Open Access Journals (Sweden)

    Germain J P Fernando

    Full Text Available BACKGROUND: Over 14 million people die each year from infectious diseases despite extensive vaccine use [1]. The needle and syringe--first invented in 1853--is still the primary delivery device, injecting liquid vaccine into muscle. Vaccines could be far more effective if they were precisely delivered into the narrow layer just beneath the skin surface that contains a much higher density of potent antigen-presenting cells (APCs essential to generate a protective immune response. We hypothesized that successful vaccination could be achieved this way with far lower antigen doses than required by the needle and syringe. METHODOLOGY/PRINCIPAL FINDINGS: To meet this objective, using a probability-based theoretical analysis for targeting skin APCs, we designed the Nanopatch, which contains an array of densely packed projections (21025/cm(2 invisible to the human eye (110 microm in length, tapering to tips with a sharpness of <1000 nm, that are dry-coated with vaccine and applied to the skin for two minutes. Here we show that the Nanopatches deliver a seasonal influenza vaccine (Fluvax 2008 to directly contact thousands of APCs, in excellent agreement with theoretical prediction. By physically targeting vaccine directly to these cells we induced protective levels of functional antibody responses in mice and also protection against an influenza virus challenge that are comparable to the vaccine delivered intramuscularly with the needle and syringe--but with less than 1/100(th of the delivered antigen. CONCLUSIONS/SIGNIFICANCE: Our results represent a marked improvement--an order of magnitude greater than reported by others--for injected doses administered by other delivery methods, without reliance on an added adjuvant, and with only a single vaccination. This study provides a proven mathematical/engineering delivery device template for extension into human studies--and we speculate that successful translation of these findings into humans could

  16. The physiological and phenotypic determinants of human tanning measured as change in skin colour following a single dose of ultraviolet B radiation.

    Science.gov (United States)

    Wong, Terence H; Jackson, Ian J; Rees, Jonathan L

    2010-07-01

    Experimental study of the in vivo kinetics of tanning in human skin has been limited by the difficulties in measuring changes in melanin pigmentation independent of the ultravioletinduced changes in erythema. The present study attempted to experimentally circumvent this issue. We have studied erythemal and tanning responses following a single exposure to a range of doses of ultraviolet B irradiation on the buttock and the lower back in 98 subjects. Erythema was assessed using reflectance techniques at 24 h and tanning measured as the L* spectrophotometric score at 7 days following noradrenaline iontophoresis. We show that dose (P skin colour (P skin colour (P = 0.0365) or, as an alternative to skin colour, skin type (P = 0.0193) predict tanning, with those with lighter skin tanning slightly more to a defined UVB dose. If erythema is factored into the regression, then only dose and body site remain significant predictors of tanning: therefore neither phototype nor pigmentary factors, such as baseline skin colour, or eye or hair colour, predict change in skin colour to a unit erythemal response.

  17. Radiation exposure to patient's skin during percutaneous coronary intervention for various lesions, including chronic total occlusion

    International Nuclear Information System (INIS)

    Suzuki, Shigeru; Furui, Shigeru; Kohtake, Hiroshi; Yokoyama, Naoyuki; Kozuma, Ken; Yamamoto, Yoshito; Isshiki, Takaaki

    2006-01-01

    Radiation skin injuries have been reported as a result of various procedures, so in the present study the patients' entrance skin dose (ESD) during percutaneous coronary intervention (PCI) was evaluated. ESDs were assessed during 97 procedures (13 for chronic total occlusion (CTO), 14 for multivessel stenoses, 22 for single-vessel multiple stenoses, and 48 for single stenosis). The patients wore jackets that had 48 or 52 radiosensitive indicators placed on the back during the PCI procedures, with 8 other indicators placed on both upper arms. After the procedure, the color of the indicators was analyzed with a color measuring instrument, and the patients' ESDs were calculated from the color difference of the indicators. The average maximum ESDs of the patients were 4.5±2.8 Gy (median: 4.6 Gy) for CTO, 2.3±0.7 Gy (median: 2.4 Gy) for multi-vessel stenoses, 1.8±1.0 Gy (median: 1.5 Gy) for single-vessel multiple stenoses, and 1.4±0.9 Gy (median: 1.2 Gy) for single stenosis. Skin injury can occur during PCI, especially for CTO, so it is important to estimate each patient's ESD and attempt to reduce it. (author)

  18. Development of tumours in dogs exposed to low doses of gamma radiation for a long time

    International Nuclear Information System (INIS)

    Yakovleva, V.I.

    1974-01-01

    150 animals were exposed to chronic (doses 21, 63 and 125 rad/year, with dose rates of 0.06, 0.17 and 0.34 rad/day, respectively) or combined γ-irradiation (chronic irradiation at 63 rad/year and acute irradiation at 58 and 126 rad/year) for a total period of 6 years. Post-mortem examination of 74 irradiated a7 animals revealed malignant neoplasms in 5 (flat-cell pulmonary carcinoma, hepatocellular liver carcinoma, skin basalioma, osteogenic costal sarcoma, and eye melanoma) and bening neoplasms also in 5 (3 leidigomas, parenchymatous thyroid struma and angiofibroma of hypodermic tissue). Of the 19 dogs in the control group, 2 had mammary tumours (cystadenoma and adenofibroma that changed to adenocarcinoma). Most of the neoplasms were seen in animals exposed to chronic irradiation with the highest dose rates as well as in those which received the highest total doses used in chronic irradiation. Acute effects were noted twice as often as chronic ones

  19. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    International Nuclear Information System (INIS)

    Rana, V. K.; Rudin, S.; Bednarek, D. R.

    2016-01-01

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be

  20. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Rana, V. K., E-mail: vkrana@buffalo.edu [Toshiba Stroke and Vascular Research Center, Department of Neurosurgery, State University of New York at Buffalo, Buffalo, New York 14203 (United States); Rudin, S., E-mail: srudin@buffalo.edu; Bednarek, D. R., E-mail: bednarek@buffalo.edu [Toshiba Stroke and Vascular Research Center, Departments of Radiology, Neurosurgery, Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14203 (United States)

    2016-09-15

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be

  1. Repair and dose-response at low doses

    International Nuclear Information System (INIS)

    Totter, J.R.; Weinberg, A.M.

    1977-04-01

    The DNA of each individual is subject to formation of some 2-4 x 10 14 ion pairs during the first 30 years of life from background radiation. If a single hit is sufficient to cause cancer, as is implicit in the linear, no-threshold theories, it is unclear why all individuals do not succumb to cancer, unless repair mechanisms operate to remove the damage. We describe a simple model in which the exposed population displays a distribution of repair thresholds. The dose-response at low dose is shown to depend on the shape of the threshold distribution at low thresholds. If the probability of zero threshold is zero, the response at low dose is quadratic. The model is used to resolve a longstanding discrepancy between observed incidence of leukemia at Nagasaki and the predictions of the usual linear hypothesis

  2. Radiation-induced bystander effects in the Atlantic salmon (salmo salar L.) following mixed exposure to copper and aluminum combined with low-dose gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, Carmel; Seymour, Colin B. [McMaster University, Medical Physics and Applied Radiation Sciences Department, Hamilton, ON (Canada); Norwegian University of Life Sciences, Department of Plant and Environmental Sciences, Aas (Norway); Smith, Richard W. [McMaster University, Medical Physics and Applied Radiation Sciences Department, Hamilton, ON (Canada); Heier, Lene Soerlie; Teien, Hans-Christian; Land, Ole Christian; Oughton, Deborah; Salbu, Brit [Norwegian University of Life Sciences, Department of Plant and Environmental Sciences, Aas (Norway)

    2014-03-15

    Very little is known about the combined effects of low doses of heavy metals and radiation. However, such ''multiple stressor'' exposure is the reality in the environment. In the work reported in this paper, fish were exposed to cobalt 60 gamma irradiation with or without copper or aluminum in the water. Doses of radiation ranged from 4 to 75 mGy delivered over 48 or 6 h. Copper doses ranged from 10 to 80 μg/L for the same time period. The aluminum dose was 250 μg/L. Gills and skin were removed from the fish after exposure and explanted in tissue culture flasks for investigation of bystander effects of the exposures using a stress signal reporter assay, which has been demonstrated to be a sensitive indicator of homeostatic perturbations in cells. The results show complex synergistic interactions of radiation and copper. Gills on the whole produce more toxic bystander signals than skin, but the additivity scores show highly variable results which depend on dose and time of exposure. The impacts of low doses of copper and low doses of radiation are greater than additive, medium levels of copper alone have a similar level of effect of bystander signal toxicity to the low dose. The addition of radiation stress, however, produces clear protective effects in the reporters treated with skin-derived medium. Gill-derived medium from the same fish did not show protective effects. Radiation exposure in the presence of 80 μg/L led to highly variable results, which due to animal variation were not significantly different from the effect of copper alone. The results are stressor type, stressor concentration and time dependent. Clearly co-exposure to radiation and heavy metals does not always lead to simple additive effects. (orig.)

  3. Assessment of Patients’ Entrance Skin Dose from Diagnostic X-ray Examinations at Public Hospitals of Akwa Ibom State, Nigeria

    Directory of Open Access Journals (Sweden)

    Esen Nsikan U

    2015-07-01

    Full Text Available Introduction High doses of ionizing radiation can lead to adverse health outcomes such as cancer induction in humans. Although the consequences are less evident at very low radiation doses, the associated risks are of societal importance. This study aimed at assessing entrance skin doses (ESDs in patients undergoing selected diagnostic X-ray examinations at public hospitals of Akwa Ibom State, Nigeria. Materials and Methods In total, six examinations were performed on 720 patients in this study.   CALDose_X5 software program was used in estimating ESDs based on patients’ information and technical exposure parameters. Results The estimated ESDs ranged from 0.59 to 0.61 mGy for PA and RLAT projections of the thorax, respectively. ESDs for the AP and RLAT projections of the cranium were 1.65 and 1.48 mGy, respectively. Also, ESD values for the AP view of the abdomen and pelvis were 1.89 and 1.88 mGy, respectively. The mean effective dose was within the range of 0.021-0.075 mGy for the thorax (mean= 0.037, 0.008-0.045 mGy for the cranium (mean= 0.016, 0.215-0.225 mGy for the abdomen (mean= 0.219 and 0.101-0.119 mGy for the pelvis (mean= 0.112. Conclusion The obtained results were comparable to the international reference dose levels, except for the PA projection of the thorax. Therefore, quality assurance programs are required in diagnostic X-ray units of Nigeria hospitals. The obtained findings add to the available data and can help authorities establish reference dose levels for diagnostic radiography in Nigeria.

  4. Estimation of deep, eye lens and skin doses for high energy electron beams for dosimetry and protection purpose

    International Nuclear Information System (INIS)

    Reena Kumari; Rakesh, R.B.

    2018-01-01

    In the radiological protection especially for individual as well as area monitoring, it is generally considered that beta sources deposit skin and eye lens doses only as they do not have enough energy for depositing doses at 10 mm depth. Also, the skin and eye lens doses differ substantially due to attenuation of beta particles at 0.07 mm (skin) and 3 mm (eye lens) depths and the surface doses are always greater than eye lens doses even for the highest energy beta source used in brachytherapy applications. However, worldwide increase in the use of high energy electron accelerators, new challenges are being posed for radiological protection and the operational quantities defined previously by ICRU are being reviewed. In view of these developments, studies have been performed for different electron beams in the energy range from (4 - 20) MeV generated using a medical linear accelerator. The aim of the study is to measure doses deposited at various depths as defined by ICRU 39 for individual and area monitoring purposes

  5. Glove material, reservoir formation, and dose affect glove permeation and subsequent skin penetration.

    Science.gov (United States)

    Nielsen, Jesper Bo; Sørensen, Jens Ahm

    2012-02-15

    Protective gloves are used to reduce dermal exposure when managing chemical exposures at the work place. Different glove materials may offer different degrees of protection. The present study combined the traditional ASTM (American Society for Testing and Materials) model with the Franz diffusion cell to evaluate overall penetration through glove and skin as well as the deposition in the different reservoirs. Benzoic acid was applied on latex or nitrile gloves placed on top of human skin. The amounts of chemical were quantified in the glove material, between glove and skin, within the skin, and in the receptor chamber. Both glove materials reduce total penetration of benzoic acid, but nitrile gloves offer a significantly better protection than latex gloves. This difference was less pronounced at the higher of the two concentrations of benzoic acid applied. Thus, glove types that offer relevant protection at low concentrations does not necessarily give appropriate protection at high concentrations. Significant amounts of benzoic acid could be extracted from the glove materials after exposure. If a chemical is accumulated in the glove material, reuse of single-use gloves should be cautioned. The reuse of gloves is generally not to be recommended without effective decontamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Bolus effect to reduce skin dose of the caontralateral breast during breast cancer radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Young Jin [Dept. of Radiation Oncology, InJe University Ilsan Paik Hospital, Goyang (Korea, Republic of); Kim, Jong Won; Kim, Jung Hoon [Dept. of Radiology, Radiation Oncology, KonYang University Hospital, Daejeon (Korea, Republic of)

    2017-06-15

    The aim of this study was to evaluate the dose comparison using Radon phantom with 5 mm and 10 mm tissue equivalent materials, FIF, Wedge(15, 30 angle) and IMRT, to reduce the skin dose of the contralateral breast during breast cancer radiation therapy(Total dose: 50.4Gy). The dose was measured for each treatment plan by attaching to the 8 point of the contralateral breast of the treated region using a optical-stimulated luminance dosimeter(OSLD) as a comparative dose evaluation method. Of the OSLD used in the study, 10 were used with reproducibility within 3%. As a result, the average reduction rates of 5 mm and 10 mm in the FIF treatment plan were 37.23 cGy and 41.77 cGy, respectively, and the average reduction rates in the treatment plan using Wedge 15 degrees were 70.69 cGy and 87.57 cGy, respectively. The IMRT showed a reduction of 67.37 cGy and 83.17 cGy, respectively. The results of using bolus showed that as the thickness of the bolus increased in all treatments, the dose reduction increased. We concluded that mastectomy as well as general radiotherapy for breast cancer would be very effective for patients who are more likely to be exposed to scattered radiation due to a more demanding or complex treatment plan.

  7. Ultra-low Dose CT for Attenuation Correction of 82Rb Cardiac PET

    DEFF Research Database (Denmark)

    Sørensen, Maria Balshøj; Bouchelouche, Kirsten; Tolbod, Lars Poulsen

    Aim: Myocardial perfusion imaging (MPI) using cardiac PET with tracers like 82Rb and 15O-water is substantially lower in radiation dose than classic MIBI-based SPECT. However, for cardiac PET, the dose contribution of CT for attenuation correction (CTAC) is typically 20-30% of the total dose....... To reduce the total radiation dose of cardiac PET further, we set out to examine if the use of ultra-low dose CTAC (UL-CTAC) would affect the accuracy of the quantitative parameters related to MPI. Furthermore, we examined whether the low quality of the UL-CTAC would affect the technologist’s ability...... to perform manual adjustment for misalignment between PET and CTAC. The CT reconstruction algorithm Q.AC was used to improve quality and consistency of the CTAC. Method: 23 consecutive clinical patients (BMI: 26.9 [range: 15.4-38.8]) referred for 82Rb PET rest and stress imaging were included in the study...

  8. The dependence of percentage depth dose on the source-to-skin ...

    African Journals Online (AJOL)

    The variation of percentage depth dose (PDD) with source-to-skin distance (SSD) for kilovoltage X-rays used in radiotherapy has been investigated. Based on physical parameters of photon fluence, absorption and scatter during interaction of radiation with tissue, a mathematical model was developed to predict the PDDs at ...

  9. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma

    International Nuclear Information System (INIS)

    Schoenfeld, Gordon O.; Amdur, Robert J.; Schmalfuss, Ilona M.; Morris, Christopher G.; Keole, Sameer R.; Mendenhall, William M.; Marcus, Robert B.

    2006-01-01

    Purpose: To report outcomes of patients with localized intracranial germinoma treated with low-dose craniospinal irradiation (CSI) followed by a boost to the ventricular system and primary site. Methods and Materials: Thirty-one patients had pathologically confirmed intracranial germinoma and no spine metastases. Low-dose CSI was administered in 29 patients: usually 21 Gy of CSI, 9.0 Gy of ventricular boost, and a 19.5-Gy tumor boost, all at 1.5 Gy per fraction. Our neuroradiologist recorded three-dimensional tumor size on magnetic resonance images before, during, and after radiotherapy. Results: With a median follow-up of 7.0 years, 29 of 31 patients (94%) are disease free. One failure had nongerminomatous histology; the initial diagnosis was a sampling error. Of 3 patients who did not receive CSI, 1 died. No patient developed myelopathy, visual deficits, dementia, or skeletal growth problems. In locally controlled patients, tumor response according to magnetic resonance scan was nearly complete within 6 months after radiotherapy. Conclusions: Radiotherapy alone with low-dose prophylactic CSI cures almost all patients with localized intracranial germinoma. Complications are rare when the daily dose of radiotherapy is limited to 1.5 Gy and the total CSI dose to 21 Gy. Patients without a near-complete response to radiotherapy should undergo resection to rule out a nongerminomatous element

  10. Assessment of eye, hand and male gonadal skin dose in radiotherapy

    International Nuclear Information System (INIS)

    Pushap, M.P.S.

    1979-01-01

    An attempt has been made to gauge the dose to (1) the eye, (2) the skin of the hands and (3) the gonads from radiotherapy of other parts of the body. The study has been done on actual male patients at the Jorjani Medical Centre, Tehran. The study, indicated high dose to the eye lid i.e. about 3% of the tumour dose in the case of head irradiation. The eyes and gonads lie at unequal distances from thorax, so are their doses. It is further emphasised that a minimum dose of 400 rad in three weeks to one month has been reported to be cataractogenic in man. A 50% incidence of progressive loss of vision with a dose of 750 rad to 1000 rad in three weeks to three months time has been observed. If appropriate techniques are not employed to shield the eye, even from stray radiation, such limits may easily be reached. (K.B.)

  11. Epidemiological survey of the effects of low level radiation dose: a comparative assessment

    International Nuclear Information System (INIS)

    Rose, K.S.B.

    1993-10-01

    This is the fifth of six volumes containing synopses of surveys, notably from the U.K., U.S.A., Canada, Japan and New Zealand, that have studied the effects of low dose irradiation of adults. The effects of radon are also considered. Incidence and mortality of cancer of the following sites are included:-Prostate, Testis, Bladder, Urinogenital tract, uterus and cervix, pancreas, liver, gall bladder, skin, connective tissue, eyes. Melanomas are also listed. (UK)

  12. Responses of epithelial cells to low and very low doses of low let radiation

    International Nuclear Information System (INIS)

    Mothersill, Carmel; Seymour, Colin

    2003-01-01

    Recent advances in our knowledge of the biological effects of low doses of ionizing radiation have shown unexpected phenomena. These vary in the endpoint used to detect them and in the dose range examined but all occur as high-frequency events in cell populations. They include: 1. a 'bystander effect' which can be demonstrated at low doses as a transferable.factor(s) causing radiobiological effects in unexposed cells, 2. an assortment of delayed effects' occurring in progeny of cells exposed to low doses, 3. Low-dose Hypersensitivity (HRS) and Increased radioresistance (IRR) which can collectively be demonstrated as a change in the dose-effect relationship, occurring around 0.5-1 Gy of low LET radiation and 4. adaptive responses where cells exposed to very low doses followed by higher doses, exhibit an induced relatively resistant response to the second dose. In all cases, the effect of very low doses is greater than would be predicted by extrapolation of high dose data and is inconsistent with conventional DNA break/repair-based radiobiology. In practical risk assessment terms, the relative importance of the effects are high at low doses where they dominate the response, and small at high doses. This paper reviews these assorted phenomena and in particular seeks to explore whether related or distinct mechanisms underlie these various effects Understanding the mechanistic basis of these phenomena may suggest new approaches to controlling death or survival sectoring at low radiation doses. The key question is whether these low dose phenomena necessitate a new approach to risk assessment. (author)

  13. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients.

    Science.gov (United States)

    Penoncello, Gregory P; Ding, George X

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens. Copyright © 2016 American Association of Medical Dosimetrists. Published by

  14. A combination of high dose rate (10X FFF/2400 MU/min/10 MV X-rays) and total low dose (0.5 Gy) induces a higher rate of apoptosis in melanoma cells in vitro and superior preservation of normal melanocytes.

    Science.gov (United States)

    Sarojini, Sreeja; Pecora, Andrew; Milinovikj, Natasha; Barbiere, Joseph; Gupta, Saakshi; Hussain, Zeenathual M; Tuna, Mehmet; Jiang, Jennifer; Adrianzen, Laura; Jun, Jaewook; Catello, Laurice; Sanchez, Diana; Agarwal, Neha; Jeong, Stephanie; Jin, Youngjin; Remache, Yvonne; Goy, Andre; Ndlovu, Alois; Ingenito, Anthony; Suh, K Stephen

    2015-10-01

    The aim of this study was to determine the apoptotic effects, toxicity, and radiosensitization of total low dose irradiation delivered at a high dose rate in vitro to melanoma cells, normal human epidermal melanocytes (HEM), or normal human dermal fibroblasts (HDF) and to study the effect of mitochondrial inhibition in combination with radiation to enhance apoptosis in melanoma cells. Cells irradiated using 10X flattening filter-free (FFF) 10 MV X-rays at a dose rate of 400 or 2400 MU/min and a total dose of 0.25-8 Gy were analyzed by cell/colony counting, MitoTracker, MTT, and DNA-damage assays, as well as by quantitative real-time reverse transcriptase PCR in the presence or absence of mitochondrial respiration inhibitors. A dose rate of 2400 MU/min killed on average five-fold more melanoma cells than a dose rate 400 MU/min at a total dose of 0.5 Gy and preserved 80% survival of HEM and 90% survival of HDF. Increased apoptosis at the 2400 MU/min dose rate is mediated by greater DNA damage, reduced cell proliferation, upregulation of apoptotic genes, and downregulation of cell cycle genes. HEM and HDF were relatively unharmed at 2400 MU/min. Radiation induced upregulation of mitochondrial respiration in both normal and cancer cells, and blocking the respiration with inhibitors enhanced apoptosis only in melanoma cells. A high dose rate with a low total dose (2400 MU/min, 0.5 Gy/10X FFF 10 MV X-rays) enhances radiosensitivity of melanoma cells while reducing radiotoxicity toward HEM and HDF. Selective cytotoxicity of melanoma cells is increased by blocking mitochondrial respiration.

  15. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  16. SU-E-CAMPUS-I-04: Automatic Skin-Dose Mapping for An Angiographic System with a Region-Of-Interest, High-Resolution Detector

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, S; Rana, V [Department of Physiology and Biophysics, Toshiba Stroke and Vascular Research Center (United States); Setlur Nagesh, S [Toshiba Stroke and Vascular Research Center (United States); Ionita, C [Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY (United States); Rudin, S [Department of Radiology, Department of Physiology and Biophysics, Toshiba Stroke and Vascular Research Center, Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY (United States); Bednarek, D [Department of Radiology, Department of Physiology and Biophysics, Toshiba Stroke and Vascular Research Center (United States)

    2014-06-15

    Purpose: Our real-time skin dose tracking system (DTS) has been upgraded to monitor dose for the micro-angiographic fluoroscope (MAF), a high-resolution, small field-of-view x-ray detector. Methods: The MAF has been mounted on a changer on a clinical C-Arm gantry so it can be used interchangeably with the standard flat-panel detector (FPD) during neuro-interventional procedures when high resolution is needed in a region-of-interest. To monitor patient skin dose when using the MAF, our DTS has been modified to automatically account for the change in scatter for the very small MAF FOV and to provide separated dose distributions for each detector. The DTS is able to provide a color-coded mapping of the cumulative skin dose on a 3D graphic model of the patient. To determine the correct entrance skin exposure to be applied by the DTS, a correction factor was determined by measuring the exposure at the entrance surface of a skull phantom with an ionization chamber as a function of entrance beam size for various beam filters and kVps. Entrance exposure measurements included primary radiation, patient backscatter and table forward scatter. To allow separation of the dose from each detector, a parameter log is kept that allows a replay of the procedure exposure events and recalculation of the dose components.The graphic display can then be constructed showing the dose distribution from the MAF and FPD separately or together. Results: The DTS is able to provide separate displays of dose for the MAF and FPD with field-size specific scatter corrections. These measured corrections change from about 49% down to 10% when changing from the FPD to the MAF. Conclusion: The upgraded DTS allows identification of the patient skin dose delivered when using each detector in order to achieve improved dose management as well as to facilitate peak skin-dose reduction through dose spreading. Research supported in part by Toshiba Medical Systems Corporation and NIH Grants R43FD0158401, R44FD

  17. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  18. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams

    International Nuclear Information System (INIS)

    Sawakuchi, Gabriel O; Titt, Uwe; Mirkovic, Dragan; Ciangaru, George; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T; Mohan, Radhe

    2010-01-01

    Scanned proton pencil beams carry a low-dose envelope that extends several centimeters from the individual beam's central axis. Thus, the total delivered dose depends on the size of the target volume and the corresponding number and intensity of beams necessary to cover the target volume uniformly. This dependence must be considered in dose calculation algorithms used by treatment planning systems. In this work, we investigated the sources of particles contributing to the low-dose envelope using the Monte Carlo technique. We used a validated model of our institution's scanning beam line to determine the contributions to the low-dose envelope from secondary particles created in a water phantom and particles scattered in beam line components. Our results suggested that, for high-energy beams, secondary particles produced by nuclear interactions in the water phantom are the major contributors to the low-dose envelope. For low-energy beams, the low-dose envelope is dominated by particles undergoing multiple Coulomb scattering in the beam line components and water phantom. Clearly, in the latter situation, the low-dose envelope depends directly on beam line design features. Finally, we investigated the dosimetric consequences of the low-dose envelope. Our results showed that if not modeled properly the low-dose envelope may cause clinically relevant dose disturbance in the target volume. This work suggested that this low-dose envelope is beam line specific for low-energy beams, should be thoroughly experimentally characterized and validated during commissioning of the treatment planning system, and therefore is of great concern for accurate delivery of proton scanning beam doses.

  19. Alternatives to dose, quality factor and dose equivalent for low level irradiation

    International Nuclear Information System (INIS)

    Sondhaus, C.A.; Bond, V.P.; Feinendegen, L.E.

    1988-01-01

    Randomly occurring energy deposition events produced by low levels of ionizing radiation interacting with tissue deliver variable amounts of energy to the sensitive target volumes within a small fraction of the cell population. A model is described in which an experimentally derived function relating event size to cell response probability operates mathematically on the microdosimetric event size distribution characterizing a given irradiation and thus determines the total fractional number of responding cells; this fraction measures the effectiveness of the given radiation. Normalizing to equal numbers of events produced by different radiations and applying this cell response or hit size effectiveness function (HSEF) should define radiation quality, or relative effectiveness, on a more nearly absolute basis than do the absorbed dose and dose evaluation, which are confounded when applied to low level irradiations. Examples using both calculation and experimental data are presented. 15 refs., 18 figs

  20. Low and very low doses, new recommendations?

    International Nuclear Information System (INIS)

    Foucher, N.

    1999-01-01

    The topic of the seminar organized by the world council of nuclear workers (WONUC) was the effects of low or very low doses on human health. Discussions centred round the linearity of the relation between dose and effect in the evaluation and management of the health hazard. The recommendations proposed by ICPR (international commission for radiological protection) are based on this linearity as a precaution. On the one hand it is remembered that low dose irradiation might be beneficial. It has been proved that the irradiation of the whole body is efficient in case of Hodgkin lymphoma. On the other hand it is remembered that doses as low as 10 mSv in utero have led to an excess of cancer in children. Studies based on experimentally radio-induced cancers have been carried out in Japan, China, Canada and France.Their results seem to be not consistent with the hypothesis of linearity. During the last decade a lot of work has been made but a conclusion is far to be reached, it is said that the American department of energy (DOE) has invited bids in 1999 to launch research programs in order to clarify the situation. (A.C.)

  1. Intracranial germinomas: a case for low dose radiation therapy alone

    International Nuclear Information System (INIS)

    Harrigan, Patricia M.; Loeffler, Jay S.; Shrieve, Dennis; Tarbell, Nancy J.

    1995-01-01

    Purpose: To determine the optimal dose and treatment outcome of patients treated with radiation for intracranial germinoma. Materials and Methods: Between 1975 and 1995, 39 patients with a diagnosis of intracranial germinoma were treated with radiation (RT) to the central nervous system. All but one pt received whole brain (WB) RT, (median dose: 3240 cGy range: 1500-4437 cGy) and a boost to the tumor volume (median total tumor volume dose: 5200 cGy, range: 3960-5950 cGy). Thirty-one pts received RT to the spine (median dose: 2500, range: 1875-3750). Eleven pts were treated with low dose RT and a tumor volume boost, (WB dose ≤ 2550 cGy, and spine dose ≤ 2160 cGy). Five pts were treated with cisplatin-based chemotherapy and low dose WB RT. Fifteen pts were biopsy-proven and 18 presented with multiple midline germinomas (MMG). Among all pts, 33% had serum or CSF positive for low levels of HCG and none of 19 (9 biopsy-proven) germinomas measured positive for AFP tumor marker. Six of 22 (27%) pts who had spine imaging or CSF cytology had evidence of tumor seeding. The male-to female-ratio was 1.4. Median age at diagnosis was 14 yrs for male pts and 9.5 yrs for females (p=.02, overall age range: 1-31 yrs). Median follow-up for survivors is 64 months (range: 1-226 months). Toxicity of treatment relative to dose was assessed. Results: The 5-yr. actuarial rate of disease-free survival (DFS) and overall survival for presumed germinomas was 97%. No pts died of germinoma. One pt died of a shunt infection who had received concurrent chemotherapy and low dose whole brain RT. Among the low dose RT alone group 6 pts received whole brain RT of ≤ 2550 cGy and 9 pts were treated with spinal RT of ≤ 2160 cGy without chemotherapy. Two of these pts had CSF cytology positive for tumor seeding. Additionally, 8 pts received a total dose to the tumor volume of ≤ 4800 cGy without chemotherapy. The 5-yr DFS was 100%. Five pts were treated with cisplatin-based chemotherapy followed

  2. Intracranial germinomas: a case for low dose radiation therapy alone

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, Patricia M; Loeffler, Jay S; Shrieve, Dennis; Tarbell, Nancy J

    1995-07-01

    Purpose: To determine the optimal dose and treatment outcome of patients treated with radiation for intracranial germinoma. Materials and Methods: Between 1975 and 1995, 39 patients with a diagnosis of intracranial germinoma were treated with radiation (RT) to the central nervous system. All but one pt received whole brain (WB) RT, (median dose: 3240 cGy range: 1500-4437 cGy) and a boost to the tumor volume (median total tumor volume dose: 5200 cGy, range: 3960-5950 cGy). Thirty-one pts received RT to the spine (median dose: 2500, range: 1875-3750). Eleven pts were treated with low dose RT and a tumor volume boost, (WB dose {<=} 2550 cGy, and spine dose {<=} 2160 cGy). Five pts were treated with cisplatin-based chemotherapy and low dose WB RT. Fifteen pts were biopsy-proven and 18 presented with multiple midline germinomas (MMG). Among all pts, 33% had serum or CSF positive for low levels of HCG and none of 19 (9 biopsy-proven) germinomas measured positive for AFP tumor marker. Six of 22 (27%) pts who had spine imaging or CSF cytology had evidence of tumor seeding. The male-to female-ratio was 1.4. Median age at diagnosis was 14 yrs for male pts and 9.5 yrs for females (p=.02, overall age range: 1-31 yrs). Median follow-up for survivors is 64 months (range: 1-226 months). Toxicity of treatment relative to dose was assessed. Results: The 5-yr. actuarial rate of disease-free survival (DFS) and overall survival for presumed germinomas was 97%. No pts died of germinoma. One pt died of a shunt infection who had received concurrent chemotherapy and low dose whole brain RT. Among the low dose RT alone group 6 pts received whole brain RT of {<=} 2550 cGy and 9 pts were treated with spinal RT of {<=} 2160 cGy without chemotherapy. Two of these pts had CSF cytology positive for tumor seeding. Additionally, 8 pts received a total dose to the tumor volume of {<=} 4800 cGy without chemotherapy. The 5-yr DFS was 100%. Five pts were treated with cisplatin-based chemotherapy

  3. Total Defense + Repair: A Novel Concept in Solar Protection and Skin Rejuvenation.

    Science.gov (United States)

    McDaniel, David H; Hamzavi, Iltefat H; Zeichner, Joshua A; Fabi, Sabrina G; Bucay, Vivian W; Harper, Julie C; Comstock, Jody A; Makino, Elizabeth T; Mehta, Rahul C; Vega, Virginia L

    2015-07-01

    For more than a century, solar radiation has been known to contribute significantly to the extrinsic aging of skin. Until recently, this was almost exclusively attributed to the photodamage caused by ultraviolet (UV) light. However, a growing body of evidence now indicates that both infrared (IR) and visible light may also contribute to extrinsic skin aging. Infrared radiation, comprised of IR-A, IR-B, and IR-C, accounts for 54.3% of the total solar radiation reaching the skin. Studies have shown that IR radiation is also responsible for skin aging. Thus, IR-A radiation regulates hundreds of genes in skin, with roles in extracellular matrix (ECM) homeostasis regulation, apoptosis, cell growth, and stress responses. IR-B and IR-C radiation are primarily responsible for the increase in skin temperature associated with solar exposure, and are implicated in heat-related skin destruction of collagen and elastin, which is characterized by an increase in the expression of matrix metalloproteinases (MMPs). The contribution of visible light to photoaging is less well understood; however, some preliminary indication associates visible light with the upregulation of MMPs' expression, DNA damage, and keratinocyte proliferation. Interestingly, the common denominator that links skin damage to the different solar wavelengths is the enhanced production of reactive molecule species (RMS) and therewith increased oxidative stress. SkinMedica® Total Defense + Repair (TD+R; SkinMedica Inc., an Allergan company, Irvine, CA) is a "superscreen," which combines broad spectrum UV protection with a unique blend of antioxidants (SOL-IR Advanced Antioxidant Complex™) that provide protection from IR radiation while promoting skin repair. Preclinical studies have indicated that TD+R SPF34 prevents the formation of UV-induced sunburn cells and cyclobutane pyrimidine dimers while preserving or improving the expression of ECM genes. In addition, it prevents IR-A-triggered fragmentation of

  4. SU-G-TeP1-13: Reclined Total Skin Electron Treatment Technique

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, D; Gerbi, B [University of Minnesota, Minneapolis, MN (United States)

    2016-06-15

    Purpose: The purpose is to describe a new reclined technique for treatment of weakened patients that require total skin electron irradiation. Methods: This technique is a modification of a previously published reclined technique differing in that all six patient positions are treated with the gantry angled 60° from vertically down. The patient is located at a treatment distance of 330 cm SSD along the CA of the beam. The 3/8′ thick Lexan beam spoiler is placed 25 cm from the most proximal surface of the patient for all patient treatment positions. To produce a flat, uniform field of ∼190 cm length, the patient was moved longitudinally by an experimentally determined distance. Kodak EDR2 and EBT3 Radiochromic film were placed around the periphery of the phantom, and OSLs were placed every 30° around the phantom periphery to determine output and surface dose uniformity. A piece of Kodak EDR2 was sandwiched between the two slabs of the 30 cm diameter phantom to determine beam penetration. Results: Field uniformity shifting the patient ±75 cm was ±5% over a treatment span of 190 cm. The dose variation around the periphery of the 30 cm diameter phantom varied by <±5% with the maximum values observed at the 0°-300°, 60° locations with the minimum values at the 30°-330°, 60° locations. Results obtained using Kodak EDR2, EBT3 Radiochromic film, and OSLs agreed to within ±5%. Conclusion: This technique provides a very efficient and convenient means by which to treat the entire skin surface of patients incapable of standing for treatment. It provides a treatment field that is both large and uniform enough for adults along with a convenient way to treat four of the six patient treatment positions. The beam spoiler lies to the side of the patient allowing easy access for patient positioning.

  5. Methods of assessing total doses integrated across pathways

    International Nuclear Information System (INIS)

    Grzechnik, M.; Camplin, W.; Clyne, F.; Allott, R.; Webbe-Wood, D.

    2006-01-01

    Calculated doses for comparison with limits resulting from discharges into the environment should be summed across all relevant pathways and food groups to ensure adequate protection. Current methodology for assessments used in the radioactivity in Food and the Environment (R.I.F.E.) reports separate doses from pathways related to liquid discharges of radioactivity to the environment from those due to gaseous releases. Surveys of local inhabitant food consumption and occupancy rates are conducted in the vicinity of nuclear sites. Information has been recorded in an integrated way, such that the data for each individual is recorded for all pathways of interest. These can include consumption of foods, such as fish, crustaceans, molluscs, fruit and vegetables, milk and meats. Occupancy times over beach sediments and time spent in close proximity to the site is also recorded for inclusion of external and inhalation radiation dose pathways. The integrated habits survey data may be combined with monitored environmental radionuclide concentrations to calculate total dose. The criteria for successful adoption of a method for this calculation were: Reproducibility can others easily use the approach and reassess doses? Rigour and realism how good is the match with reality?Transparency a measure of the ease with which others can understand how the calculations are performed and what they mean. Homogeneity is the group receiving the dose relatively homogeneous with respect to age, diet and those aspects that affect the dose received? Five methods of total dose calculation were compared and ranked according to their suitability. Each method was labelled (A to E) and given a short, relevant name for identification. The methods are described below; A) Individual doses to individuals are calculated and critical group selection is dependent on dose received. B) Individual Plus As in A, but consumption and occupancy rates for high dose is used to derive rates for application in

  6. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  7. Development of a external exposure computational model for studying of input dose in skin for radiographs of thorax and vertebral column

    International Nuclear Information System (INIS)

    Muniz, Bianca C.; Menezes, Claudio J.M.; Vieira, Jose W.

    2014-01-01

    The dosimetric measurements do not always happen directly in the human body. Therefore, these assessments can be performed using anthropomorphic models (phantoms) evidencing models computational exposure (MCE) using techniques of Monte Carlo Method for virtual simulations. These processing techniques coupled with more powerful and affordable computers make the Monte Carlo method one of the tools most used worldwide in radiation transport area. In this work, the Monte Carlo EGS4 program was used to develop a computer model of external exposure to study the entrance skin dose for chest and column X-radiography and, aiming to optimize these practices by reducing doses to patients, professionals involved and the general public. The results obtained experimentally with the electrometer Radcal, model 9015, associated with the ionization chamber for radiology model 10X5-6, showed that the proposed computational model can be used in quality assurance programs in radiodiagnostic, evaluating the entrance skin dose when varying parameters of the radiation beam such as kilo voltage peak (kVp), current-time product (mAs), total filtration and distance surface source (DFS), optimizing the practices in radiodiagnostic and meeting the current regulation

  8. SKIN RADIATION IN PANORAMIC

    Directory of Open Access Journals (Sweden)

    Herry Irawan

    2015-06-01

    Full Text Available Dental panoramic radiograph in Indonesia has been widely used. Modern diagnostic imaging equipment with minimum radiation is still very limited. One of the conditions in nuclear safety law, UU 10/1997, is an optimization of all radiation sources with DRL through skin dose measurements. In Indonesia, the national DRL has not been established yet, and there were no reports on the study of panoramic skin dose in Indonesia. The aim of this preliminary study was to obtain a panoramic skin dose radiation as reference to establish DRL in Indonesia. Panoramic radiographs of sixteen female and fifteen male patients, aged 4 – 48 years, were taken using the standard conventional method, with TLD chips attached in location groups. The chips were then read with the detector and integrator of BATAN, in high and low temperature condition at the same time. It was revealed that behind the right and left ear were the regions with the highest radiation dose received, followed by the back of the neck, left jaw, right jaw, and chin. The result of this study has shown the importance of DRL in Indonesia since the use of modern diagnostic imaging equipement that limits radiation dose to the minimum level is still very limited.

  9. Dose response curves for effects of low-level radiation

    International Nuclear Information System (INIS)

    Myers, D.K.

    1980-01-01

    The linear dose-response model used by international committees to assess the genetic and carcinogenic hazards of low-level radiation appears to be the most reasonable interpretation of the available scientific data that are relevant to this topic. There are, of course, reasons to believe that this model may overestimate radiation hazards in certain instances, a fact acknowledged in recent reports of these committees. The linear model is now also being utilized to estimate the potential carcinogenic hazards of other agents such as asbestos and polycyclic aromatic hydrocarbons. This model implies that there is no safe dose for any of these agents and that potential health hazards will increase in direct proportion to total accumulated dose. The practical implication is the recommendation that all exposures should be kept 'as low as reasonably achievable, economic and social factors being taken into account'. (auth)

  10. In vivo percutaneous absorption of boric acid, borax, and disodium octaborate tetrahydrate in humans compared to in vitro absorption in human skin from infinite and finite doses.

    Science.gov (United States)

    Wester, R C; Hui, X; Hartway, T; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-09-01

    200-fold to 0.07 microgram/cm2/h and Kp of 1.4 x 10(-6) cm/h, while percentage of dose absorbed was 1.75%. Borax dosed at 5.0%/1000 microliters/cm2 had 0.41% dose absorbed, flux at 8.5 micrograms/cm2/h, and Kp was 1.7 x 10(-4) cm/h. Disodium octaborate tetrahydrate (DOT) dosed at 10%/1000 microliters/cm2 was 0.19% dose absorbed, flux at 7.9 micrograms/cm2/h, and Kp was 0.8 x 10(-4) cm/h. These in vitro results from infinite doses (1000 microliters/cm2) were 1000-fold greater than those obtained in the companion in vivo study. The results from the finite (2 microliters/cm2) dosing were closer (10-fold difference) to the in vivo results. General application of infinite dose percutaneous absorption values for risk assessment is questioned by these results. These in vivo results show that percutaneous absorption of boron, as boric acid, borax, and disodium octaborate tetrahydrate, through intact human skin, is low and is significantly less than the average daily dietary intake. This very low boron skin absorption makes it apparent that, for the borates tested, the use of gloves to prevent systemic uptake is unnecessary. These findings do not apply to abraded or otherwise damaged skin.

  11. Low Dose Suppression of Neoplastic Transformation in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  12. Association between cumulative radiation dose, adverse skin reactions, and changes in surface hemoglobin among women undergoing breast conserving therapy

    Directory of Open Access Journals (Sweden)

    Michael S. Chin

    2017-06-01

    Conclusion: HSI demonstrates promise in the assessment of skin dose as well as an objective measure of skin reaction. The ability to easily identify adverse skin reactions and to modify the treatment plan may circumvent the need for detrimental treatment breaks.

  13. Laparoscopic cholecystectomy under spinal anesthesia: comparative study between conventional-dose and low-dose hyperbaric bupivacaine

    Directory of Open Access Journals (Sweden)

    Imbelloni LE

    2011-10-01

    Full Text Available Luiz Eduardo Imbelloni1, Raphael Sant'Anna2, Marcos Fornasari2, José Carlos Fialho21Department of Anesthesiology, Faculty of Medecine Nova Esperança, Hospital de Mangabeira, João Pessoa, 2Hospital Rio Laranjeiras, Rio de Janeiro, BrazilBackground: Laparoscopic cholecystectomy has the advantages of causing less postoperative pain and requiring a short hospital stay, and therefore is the treatment of choice for cholelithiasis. This study was designed to compare spinal anesthesia using hyperbaric bupivacaine given as a conventional dose by lumbar puncture or as a low-dose by thoracic puncture.Methods: A total of 140 patients with symptomatic gallstone disease were randomized to undergo laparoscopic cholecystectomy with low-pressure CO2 pneumoperitoneum under spinal anesthesia using either conventional lumbar spinal anesthesia (hyperbaric bupivacaine 15 mg and fentanyl 20 mg or low-dose thoracic spinal anesthesia (hyperbaric bupivacaine 7.5 mg and fentanyl 20 µg. Intraoperative parameters, postoperative pain, complications, recovery time, and patient satisfaction at follow-up were compared between the two treatment groups.Results: All procedures were completed under spinal anesthesia, with no cases needing conversion to general anesthesia. Values for time for block to reach the T3 dermatomal level, duration of motor and sensory block, and hypotensive events were significantly lower with low-dose bupivacaine. Postoperative pain was higher for low-dose hyperbaric bupivacaine at 6 and 12 hours. All patients were discharged after 24 hours. Follow-up 1 week postoperatively showed all patients to be satisfied and to be keen advocates of spinal anesthesia.Conclusion: Laparoscopic cholecystectomy can be performed successfully under spinal anesthesia. A small dose of hyperbaric bupivacaine 7.5 mg and 20 µg fentanyl provides adequate spinal anesthesia for laparoscopy and, in comparison with hyperbaric bupivacaine 15% and fentanyl 20 µg, causes markedly

  14. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  15. SU-G-JeP2-09: Minimal Skin Dose Increase in Longitudinal Rotating Biplanar Linac-MR Systems: Examination of Radiation Energy and Flattening Filter Design

    Energy Technology Data Exchange (ETDEWEB)

    Fallone, B; Keyvanloo, A; Burke, B; St Aubin, J; Baillie, D; Wachowicz, K; Warkentin, B; Steciw, S [Cross Cancer Institute, Edmonton, AB (Canada)

    2016-06-15

    Purpose: To quantify increase in entrance skin-dose due to magnetic fields of the Alberta longitudinal linac-MR by examining the effect of radiation energy and flattening filter, using Monte Carlo calculations and accurate 3-D models of the magnetic field. Methods: The 3-D magnetic fields generated by the bi-planar Linac-MR are calculated with FEM using Opera-3D. BEAMnrc simulates the particle phase-space in the presence of the rapidly decaying fringe field of 0.5T MRI assembled with a Varian 600C linac with an isocentre distance of 130 cm for 6 MV and 10 MV beams. Skin doses are calculated at an average depth of 70 µm using DOSXYZnrc with varying SSDs and field sizes. Furthermore, flattening filters are reshaped to compensate for the significant drop in dose rate due to increased SAD of 130 cm and skin-doses are evaluated. Results: The confinement effect of the MRI fringe field on the contaminant electrons is minimal. For SSDs of 100 – 120 cm the increase in skin dose is ∼6% – 19% and ∼1% – 9% for the 6 and 10 MV beams, respectively. For 6MV, skin dose increases from ∼10.5% to 1.5%. for field-size increases of 5×5 cm2 to 20×20 cm2. For 10 MV, skin dose increases by ∼6% for a 5×5 cm2 field, and decreases by ∼1.5% for a 20×20 cm2 field. The reshaped flattening filter increases the dose rate from 355 MU/min to 529 MU/min (6 MV) or 604 MU/min (10 MV), while the skin-dose increases by only an additional ∼2.6% (all percent increases in skin dose are relative to Dmax). Conclusion: There is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. There is even lower skin-dose increase at 10 MV. Funding: Alberta Innovates - Health Solutions (AIHS) Conflict of Interest: Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)

  16. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  17. 8-MOP PUVA for psoriasis: a comparison of a minimal phototoxic dose-based regimen with a skin-type approach

    Energy Technology Data Exchange (ETDEWEB)

    Collins, P.; Wainwright, N.J.; Amorim, I.; Lakshmipathi, T.; Ferguson, J. [Ninewells Hospital and Medical School, Dundee (United Kingdom)

    1996-08-01

    Two ultraviolet A (UVA) regimens for oral 8-methoxypsoralen (8-MOP) photochemotherapy (PUVA) for moderate/severe chronic plaque psoriasis using a half-body study technique were compared. Each patient received both regimens. A higher-dose regimen based on minimal phototoxic dose (MPD) with percentage incremental increases was given to one-half of the body. The other half received a lower dose regimen based on skin type with fixed incremental UVA increases. Patients were treated twice weekly. Symmetrical plaques were scored to determine the rate of resolution with each regimen. In addition, the number of treatments, cumulative UVA dose and number of days in treatment to achieve overall clearance were recorded. Patients were reviewed monthly for one year to record remission data. Thirty-three patients completed the study. Both regimens were effective and well tolerated. With the MPD-based approach, number of exposures was significantly less for patients with skin types I and II but not III. Although the cumulative UVA dose was higher with the MPD regimen for all skin types studied, the reduced number of exposures required for clearance for skin types I and II but not III, combined with the security of individualized MPD testing, has practical attractions. MPD testing also identified five patients who required an increased psoralen dose and six patients who required a reduction of the initial UVA dose with the skin type regimen. Forty-two percent were still clear 1 year after treatment and there was no significant difference in the number of days in remission between the regimens for those whose psoriasis had recurred. The reduction in the number of exposures required for clearance with the MPD-based regimen may be safer and more cost effective in the long term. (author).

  18. Mechanisms of Low Dose Radio-Suppression of Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Engelward, Bevin P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2009-09-16

    The major goal of this project is to contribute toward the elucidation of the impact of long term low dose radiation on genomic stability. We have created and characterized novel technologies for delivering long term low dose radiation to animals, and we have studied genomic stability by applying cutting edge molecular analysis technologies. Remarkably, we have found that a dose rate that is 300X higher than background radiation does not lead to any detectable genomic damage, nor is there any significant change in gene expression for genes pertinent to the DNA damage response. These results point to the critical importance of dose rate, rather than just total dose, when evaluating public health risks and when creating regulatory guidelines. In addition to these studies, we have also further developed a mouse model for quantifying cells that have undergone a large scale DNA sequence rearrangement via homologous recombination, and we have applied these mice in studies of both low dose radiation and space radiation. In addition to more traditional approaches for assessing genomic stability, we have also explored radiation and possible beneficial effects (adaptive response), long term effects (persistent effects) and effects on communication among cells (bystander effects), both in vitro and in vivo. In terms of the adaptive response, we have not observed any significant induction of an adaptive response following long term low dose radiation in vivo, delivered at 300X background. In terms of persistent and bystander effects, we have revealed evidence of a bystander effect in vivo and with researchers at and demonstrated for the first time the molecular mechanism by which cells “remember” radiation exposure. Understanding the underlying molecular mechanisms by which radiation can induce genomic instability is fundamental to our ability to assess the biological impact of low dose radiation. Finally, in a parallel set of studies we have explored the effects of heavy

  19. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients

    Directory of Open Access Journals (Sweden)

    Nilgun Solak Tekin

    2007-01-01

    Full Text Available Background. Psoriasis is a chronic inflammatory skin disease characterized by an accelerated turnover of epidermal cells and an incomplete differentiation in epidermis with lesion. However, the exact etiology of psoriasis is unknown. Abnormalities in essential fatty acid metabolism, free radical generation, lipid peroxidation, and release of lymphokines have been proposed. Objective. Our purpose was to evaluate the plasma lipids and oxidized low-density lipoprotein accumulation in psoriatic skin lesion in order to ascertain the possible participation of oxidative stress and oxidative modification of lipids in pathogenesis of psoriasis. Methods. The study group included 84 patients with psoriasis, and 40 sex- and age-matched healthy volunteers. Blood lipid profile was determined. Psoriatic and nonlesional skin samples of psoriatic patients were evaluated for the presence of oxidized low-density lipoprotein by using an immune-fluorescent staining method. Results. The mean levels of lipids (total cholesterol, triglyceride, and LDL cholesterol in patients with psoriasis were found to be significantly higher than those of healthy subjects. Psoriatic skins were shown positive oxidized low-density lipoprotein staining. There was no staining in nonlesional skin samples of the same individuals. Conclusion. Lipid peroxidation mediated by free radicals is believed to be one of the important causes of cell membrane destruction and cell damage. This study shows for the first time the accumulation of oxidized low-density lipoprotein in psoriatic skin lesion. We believe that accumulation of ox-LDL in psoriatic skin may have an important role in the immune-inflammatory events that result in progressive skin damage.

  20. Effect of repeated ultraviolet irradiation on skin of hairless mice

    International Nuclear Information System (INIS)

    Alpermann, H.; Vogel, H.G.

    1978-01-01

    The effect of repeated UV-irradiation on mechanical and biochemical parameters was studied in skin of hairless mice. uV-A irradiation for a period of 1 h daily over 8 weeks caused only a slight increase in skin thickness and a decrease in ultimate strain. The changes induced by UV-B and C, however, were quite remarkable. Skin thickness was increased depending on the daily dose exposure time (15-90 s at an irradiation rate of 20mW/cm 2 UV-B and A and of 14mW/cm 2 UV-C) and the duration of treatment (1-6 weeks). Ultimate load, tensile strength and modulus of elasticity showed an increase following medium dosages after 1 and 2 weeks, however, a decrease after high dosages and longterm treatment. Ultimate strain was found to be the most sensitive parameter being decreased depending on exposure time and duration of treatment. Insoluble collagen and total collagen were decreased after long-term treatment thus being correlated with the mechanical parameters. The elastin content was only barely influenced and not correlated with the mechanical data, e.g. the modulus of elasticity. Thus, a favourable effect of short-treatment with low doses of UV-irradiation of mechanical parameters of skin could be demonstrated. Long-term treatment with relatively high doses of UV-B, however, resulted in unfavourable effects, whereby first ultimate strain, then ultimate load, modulus of elasticity and tensile strength were decreased. (orig.) [de

  1. Comparison of skin doses to large fields using tangential beams from cobalt-60 gamma rays and 4-MV x rays

    International Nuclear Information System (INIS)

    Gagnon, W.F.; Peterson, M.D.

    1978-01-01

    Excess radiation to the skin during external beam megavoltage radiation therapy has reportedly caused excessive erythema in patients treated with the Clinac 4 linear accelerator on sloping surfaces, but not for similar treatments with cobalt-60. Doses at the epidermal level were measured under geometries simulating sloping surfaces for a Clinac 4 and an Eldorado 8 cobalt-60 teletherapy machine. For equal doses to the axilla, doses to the epidermal layer were similar. When the tumor dose was calculated for the mediastinum, the dose to the skin in the axillary region was 12% higher for the Clinac 4

  2. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  3. Low power cw-laser signatures on human skin

    International Nuclear Information System (INIS)

    Lihachev, A; Lesinsh, J; Jakovels, D; Spigulis, J

    2011-01-01

    Impact of cw laser radiation on autofluorescence features of human skin is studied. Two methods of autofluorescence detection are applied: the spectral method with the use of a fibreoptic probe and spectrometer for determining the autofluorescence recovery kinetics at a fixed skin area of ∼12 mm 2 , and the multispectral visualisation method with the use of a multispectral imaging camera for visualising long-term autofluorescence changes in a skin area of ∼4 cm 2 . The autofluorescence recovery kinetics after preliminary laser irradiation is determined. Skin autofluorescence images with visible long-term changes - 'signatures' of low power laser treatment are acquired. (application of lasers and laser-optical methods in life sciences)

  4. Alteration of cytokine profiles in mice exposed to chronic low-dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Suk Chul [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Lee, Kyung-Mi [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kang, Yu Mi [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Kwanghee [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kim, Cha Soon; Yang, Kwang Hee; Jin, Young-Woo [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Chong Soon [Department of Nuclear Medicine, Haeundae Paik Hospital, Inje University, Busan 612-030 (Korea, Republic of); Kim, Hee Sun, E-mail: hskimdvm@khnp.co.kr [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of)

    2010-07-09

    While a high-dose of ionizing radiation is generally harmful and causes damage to living organisms, a low-dose of radiation has been shown to be beneficial in a variety of animal models. To understand the basis for the effect of low-dose radiation in vivo, we examined the cellular and immunological changes evoked in mice exposed to low-dose radiation at very low (0.7 mGy/h) and low (3.95 mGy/h) dose rate for the total dose of 0.2 and 2 Gy, respectively. Mice exposed to low-dose radiation, either at very low- or low-dose rate, demonstrated normal range of body weight and complete blood counts. Likewise, the number and percentage of peripheral lymphocyte populations, CD4{sup +} T, CD8{sup +} T, B, or NK cells, stayed unchanged following irradiation. Nonetheless, the sera from these mice exhibited elevated levels of IL-3, IL-4, leptin, MCP-1, MCP-5, MIP-1{alpha}, thrombopoietin, and VEGF along with slight reduction of IL-12p70, IL-13, IL-17, and IFN-{gamma}. This pattern of cytokine release suggests the stimulation of innate immunity facilitating myeloid differentiation and activation while suppressing pro-inflammatory responses and promoting differentiation of naive T cells into T-helper 2, not T-helper 1, types. Collectively, our data highlight the subtle changes of cytokine milieu by chronic low-dose {gamma}-radiation, which may be associated with the functional benefits observed in various experimental models.

  5. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  6. Estimating pediatric entrance skin dose from digital radiography examination using DICOM metadata: A quality assurance tool

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S. L., E-mail: samuel.brady@stjude.org; Kaufman, R. A., E-mail: robert.kaufman@stjude.org [Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States)

    2015-05-15

    Purpose: To develop an automated methodology to estimate patient examination dose in digital radiography (DR) imaging using DICOM metadata as a quality assurance (QA) tool. Methods: Patient examination and demographical information were gathered from metadata analysis of DICOM header data. The x-ray system radiation output (i.e., air KERMA) was characterized for all filter combinations used for patient examinations. Average patient thicknesses were measured for head, chest, abdomen, knees, and hands using volumetric images from CT. Backscatter factors (BSFs) were calculated from examination kVp. Patient entrance skin air KERMA (ESAK) was calculated by (1) looking up examination technique factors taken from DICOM header metadata (i.e., kVp and mA s) to derive an air KERMA (k{sub air}) value based on an x-ray characteristic radiation output curve; (2) scaling k{sub air} with a BSF value; and (3) correcting k{sub air} for patient thickness. Finally, patient entrance skin dose (ESD) was calculated by multiplying a mass–energy attenuation coefficient ratio by ESAK. Patient ESD calculations were computed for common DR examinations at our institution: dual view chest, anteroposterior (AP) abdomen, lateral (LAT) skull, dual view knee, and bone age (left hand only) examinations. Results: ESD was calculated for a total of 3794 patients; mean age was 11 ± 8 yr (range: 2 months to 55 yr). The mean ESD range was 0.19–0.42 mGy for dual view chest, 0.28–1.2 mGy for AP abdomen, 0.18–0.65 mGy for LAT view skull, 0.15–0.63 mGy for dual view knee, and 0.10–0.12 mGy for bone age (left hand) examinations. Conclusions: A methodology combining DICOM header metadata and basic x-ray tube characterization curves was demonstrated. In a regulatory era where patient dose reporting has become increasingly in demand, this methodology will allow a knowledgeable user the means to establish an automatable dose reporting program for DR and perform patient dose related QA testing for

  7. SU-F-T-82: Dosimetric Evaluation of a Shield Used for Hemi-Body Skin Electron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, C; Singh, A [Roswell Park Cancer Institute, Buffalo, NY (United States); AlDahlawi, I; Wang, I; Podgorsak, M [Roswell Park Cancer Institute, Buffalo, NY (United States); State University of New York at Buffalo, Buffalo, NY (United States)

    2016-06-15

    Purpose: We had several mycosis fungoides patients with a limited disease to about half of the skin surface. A custom-made plywood shield was used to protect the non-targeted skin region with our total skin electron irradiation (TSEI) technique. We report a dosimetric evaluation for our “hemi-body” skin electron irradiation technique. Methods: The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed 50 cm from the patient. The shield is made of three layers of standard 5/8″ thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield’s transmission factor and the extend of the dose penumbra region. To verify the dose delivered for hemi-body skin radiation in a real patient treatment, in-vivo dosimetry using Gafchromic EBT3 films were performed. Film pieces were taped on the patient skin to measure the dose received during the first two fractions, placed on the forehead and upper body (shielded region); and also at the level of pelvic area, left thigh, and left ankle. Results: The shield transmission factor was found to be 10%, and the width of the penumbra (80-to-20% dose fall-off) was about 12 cm. In-vivo dosimetry of a real case confirmed the expected shielded area dose. Conclusion: Hemi-Body skin electron irradiation at an extended SSD is feasible with the addition of a plywood shield at a distance from patient skin. The penumbra dose region and the shield’s transmission factor should be evaluated prior to clinical use. We have treated several hemi-body skin patients with our custom-made plywood shield, the current patient measurements are representative of these for other patients as well.

  8. TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head

    International Nuclear Information System (INIS)

    Nawfel, RD; Young, G

    2016-01-01

    Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dose metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.

  9. TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head

    Energy Technology Data Exchange (ETDEWEB)

    Nawfel, RD; Young, G [Brigham & Women’s Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dose metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.

  10. Effects of low doses

    International Nuclear Information System (INIS)

    Le Guen, B.

    2001-01-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  11. WE-E-18A-03: How Accurately Can the Peak Skin Dose in Fluoroscopy Be Determined Using Indirect Dose Metrics?

    International Nuclear Information System (INIS)

    Jones, A; Pasciak, A

    2014-01-01

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that Result in skin reactions can be reached during these procedures. The purpose of this study was to assess the accuracy of different indirect dose estimates and to determine if PSD can be calculated within ±50% for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures. Indirect dose metrics from procedures were collected, including reference air kerma (RAK). Four different estimates of PSD were calculated and compared along with RAK to the measured PSD. The indirect estimates included a standard method, use of detailed information from the RDSR, and two simplified calculation methods. Indirect dosimetry was compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the indirect estimates were examined. Results: PSD calculated with the standard calculation method were within ±50% for all 41 procedures. This was also true for a simplified method using a single source-to-patient distance (SPD) for all calculations. RAK was within ±50% for all but one procedure. Cases for which RAK or calculated PSD exhibited large differences from the measured PSD were analyzed, and two causative factors were identified: ‘extreme’ SPD and large contributions to RAK from rotational angiography or runs acquired at large gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±50% for embolization procedures, and usually to within ±35%. RAK can be used without modification to set notification limits and substantial radiation dose levels. These results can be extended to similar procedures, including vascular and interventional oncology

  12. Skin autofluorescence reflects individual seasonal UV exposure, skin photodamage and skin cancer development in organ transplant recipients.

    Science.gov (United States)

    Togsverd-Bo, Katrine; Philipsen, Peter Alshede; Hædersdal, Merete; Wulf, Hans Christian Olsen

    2018-01-01

    Ultraviolet radiation (UVR)-induced skin cancers varies among organ transplant recipients (OTRs). To improve individual risk assessment of skin cancer, objectively quantified skin photodamage is needed. We measured personal UVR-exposure dose in OTRs and assessed the relation between individual UVR exposure, skin cancer and objectively measured photodamage in terms of skin autofluorescence, pigmentation, and black light-evaluated solar lentigines. Danish OTRs with (n=15) and without a history of skin cancer (n=15) kept sun diaries from May to September and wore personal dosimeters recording time-stamped UVR doses in standard erythema doses (SED). Photodamage was quantified as skin autofluorescence with excitation at 370nm (F370) and 430nm (F430), skin pigmentation (pigment protection factor, PPF), and black light-evaluated solar lentigines. OTRs with skin cancer received a higher UVR dose than OTRs without skin cancer (median 116 SED vs. 67 SED, p=0.07) and UVR exposure doses were correlated with increased PPF (p=0.052) and F370 on the shoulder (F370 shoulder ) (p=0.04). We found that skin cancer was associated with F370 shoulder (OR 10.53, CI 3.3-31,938; p=0.018) and time since transplantation (OR 1.34, CI 0.95-1.91, p=0.097). A cut-off at 7.2 arbitrary units, 89% of OTRs with skin cancer had F370 shoulder values above 7.2 arbitrary units and F370 shoulder was additionally related to patient age (p=0.09) and black light-evaluated solar lentigines (p=0.04). F370 autofluorescence indicates objectively measured photodamage and may be used for individual risk assessment of skin cancer development in OTRs. Copyright © 2017. Published by Elsevier B.V.

  13. Dose-response models for the radiation-induction of skin tumours in mice

    International Nuclear Information System (INIS)

    Papworth, D.G.; Hulse, E.V.

    1983-01-01

    Extensive data on radiation-induced skin tumours in mice were examined using 8 models, all based on the concept that incidences of radiation-induced tumours depend on a combination of two radiation effects: a tumour induction process and the loss of reproductive integrity by the potential tumour cells. Models with and without a threshold were used, in spite of theoretical objections to threshold models. No model fitted well both the epidermal and the dermal tumour data and models which proved to be statistically satisfactory for some of the data were rejected for biological reasons. It is concluded that, for skin tumours, dose-response curves depending on a combination of cancer induction and loss of cellular reproductive integrity are distorted by some special, relatively radio-resistant, factor which we have previously postulated as being involved in radiation skin carcinogenesis. (author)

  14. Multicenter study on evaluation of the entrance skin dose by a direct measurement method in cardiac interventional procedures

    International Nuclear Information System (INIS)

    Kato, Mamoru; Chida, Koichi; Moritake, Takashi

    2016-01-01

    Deterministic effects have been reported in cardiac interventional procedures. To prevent radiation skin injuries in percutaneous coronary intervention (PCI), it is necessary to measure accurate patient entrance skin dose (ESD) and maximum skin absorbed dose (MSD). We measured the MSD on 62 patients in four facilities by using the Chest-RADIREC system. The correlation between MSD and fluoroscopic time, dose area product (DAP), and cumulative air kerma (AK) showed good results, with the correlation between MSD and AK being the strongest. The regression lines using MSD as an outcome value (y) and AK as predictor variables (x) was y=1.18x (R 2 =0.787). From the linear regression equation, MSD is estimated to be about 1.18 times that of AK in real time. The Japan diagnostic reference levels (DRLs) 2015 for IVR was established by the use of dose rates using acrylic plates (20 cm thick) at the interventional reference point. Preliminary reference levels proposed by International Atomic Energy Agency (IAEA) were provided using DAP. In this study, AK showed good correlation most of all. Hence we think that Japanese DRLs for IVR should reconsider by clinical patients' exposure dose such as AK. (author)

  15. Comparison of the uncertainties of several European low-dose calibration facilities

    Science.gov (United States)

    Dombrowski, H.; Cornejo Díaz, N. A.; Toni, M. P.; Mihelic, M.; Röttger, A.

    2018-04-01

    The typical uncertainty of a low-dose rate calibration of a detector, which is calibrated in a dedicated secondary national calibration laboratory, is investigated, including measurements in the photon field of metrology institutes. Calibrations at low ambient dose equivalent rates (at the level of the natural ambient radiation) are needed when environmental radiation monitors are to be characterised. The uncertainties of calibration measurements in conventional irradiation facilities above ground are compared with those obtained in a low-dose rate irradiation facility located deep underground. Four laboratories quantitatively evaluated the uncertainties of their calibration facilities, in particular for calibrations at low dose rates (250 nSv/h and 1 μSv/h). For the first time, typical uncertainties of European calibration facilities are documented in a comparison and the main sources of uncertainty are revealed. All sources of uncertainties are analysed, including the irradiation geometry, scattering, deviations of real spectra from standardised spectra, etc. As a fundamental metrological consequence, no instrument calibrated in such a facility can have a lower total uncertainty in subsequent measurements. For the first time, the need to perform calibrations at very low dose rates (< 100 nSv/h) deep underground is underpinned on the basis of quantitative data.

  16. Responses of rat R-1 cells to low dose rate gamma radiation and multiple daily dose fractions

    International Nuclear Information System (INIS)

    Kal, H.B.; Bijman, J.Th.

    1981-01-01

    Multifraction irradiation may offer the same therapeutic gain as continuous irradiation. Therefore, a comparison of the efficacy of low dose rate irradiation and multifraction irradiation was the main objective of the experiments to be described. Both regimens were tested on rat rhabdomyosarcoma (R-1) cells in vitro and in vivo. Exponentially growing R-1 cells were treated in vitro by a multifraction irradiation procedure with dose fractions of 2 Gy gamma radiation and time intervals of 1 to 3 h. The dose rate was 1.3 Gy.min -1 . The results indicate that multifractionation of the total dose is more effective with respect to cell inactivation than continuous irradiation. (Auth.)

  17. Efficacy and safety of total dose infusion of low molecular weight iron dextran in the treatment of iron deficiency anemia during pregnancy

    International Nuclear Information System (INIS)

    Ayub, R.; Tariq, N.; Iqbal, M.; Jafery, T.

    2008-01-01

    To determine the efficacy and safety of Total Dose Infusion (TDI) of low molecular weight iron dextran for the treatment of iron deficiency anemia compared to oral iron replacement during pregnancy through improvement in hemoglobin (Hb) after intervention. Non-randomized control trial. A group of 100 pregnant women with gestational age greater than 12 weeks with confirmed diagnosis of iron deficiency anemia attending the antenatal clinics were enrolled in this study. Total dose iron infusion of low molecular iron dextran was given to these patients after calculating iron deficit, in a monitored in-patient setting. Control comprised of a second group of 50 pregnant females matched for age, parity and baseline hemoglobin, tolerant to oral iron supplementation (ferrous sulphate 200 mg three times a day) attending the antenatal clinics during the same period. Post-treatment hemoglobin levels of study group as well as the oral control group were determined between 3 to 4 weeks. In the intervention group, mean pre-infusion hemoglobin level was 8.57 +- 0.9 gm/dl (range 5-10.5 gm/dl) and mean post-infusion Hb was 11.0 +- 1.1 (range 8.4-14.3 gm/dl). In control group, mean pre-oral intake Hb level was 9.5 +- 0.9 gm/dl (range 7-10.5 gm/dl) and mean post-oral intake Hb was 10.2 +- 1.2 gm/dl (range 6.4-12.8 gm/dl). Mean increase of Hb in intervention group was 2.43 gm/dl (95% CI 2.4 - 3.8) and for controls it was 0.7 gm/dl (95% CI 0.6-2.3). Flushing and palpitations were observed in 4% of interventional group patients and none in the control group. No significant adverse reactions were observed in either group. We conclude that the total parenteral iron replacement with low molecular weight iron dextran is an effective and safe method for the treatment of iron deficiency anemia in a selected group of pregnant women. (author)

  18. Mammography-oncogenecity at low doses

    International Nuclear Information System (INIS)

    Heyes, G J; Mill, A J; Charles, M W

    2009-01-01

    Controversy exists regarding the biological effectiveness of low energy x-rays used for mammography breast screening. Recent radiobiology studies have provided compelling evidence that these low energy x-rays may be 4.42 ± 2.02 times more effective in causing mutational damage than higher energy x-rays. These data include a study involving in vitro irradiation of a human cell line using a mammography x-ray source and a high energy source which matches the spectrum of radiation observed in survivors from the Hiroshima atomic bomb. Current radiation risk estimates rely heavily on data from the atomic bomb survivors, and a direct comparison between the diagnostic energies used in the UK breast screening programme and those used for risk estimates can now be made. Evidence highlighting the increase in relative biological effectiveness (RBE) of mammography x-rays to a range of x-ray energies implies that the risks of radiation-induced breast cancers for mammography x-rays are potentially underestimated by a factor of four. A pooled analysis of three measurements gives a maximal RBE (for malignant transformation of human cells in vitro) of 4.02 ± 0.72 for 29 kVp (peak accelerating voltage) x-rays compared to high energy electrons and higher energy x-rays. For the majority of women in the UK NHS breast screening programme, it is shown that the benefit safely exceeds the risk of possible cancer induction even when this higher biological effectiveness factor is applied. The risk/benefit analysis, however, implies the need for caution for women screened under the age of 50, and particularly for those with a family history (and therefore a likely genetic susceptibility) of breast cancer. In vitro radiobiological data are generally acquired at high doses, and there are different extrapolation mechanisms to the low doses seen clinically. Recent low dose in vitro data have indicated a potential suppressive effect at very low dose rates and doses. Whilst mammography is a low

  19. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  20. Effect of low dose ionizing radiation upon concentration of

    International Nuclear Information System (INIS)

    Viliae, M.; Kraljeviae, P.; Simpraga, M.; Miljaniae, S.

    2004-01-01

    It is known that low dose ionizing radiation might have stimulating effects (Luckey, 1982, Kraljeviae, 1988). This fact has also been confirmed in the previous papers of Kraljeviae et al. (2000-2000a; 2001). Namely, those authors showed that irradiation of chicken eggs before incubation by a low dose of 0.15 Gy gamma radiation increases the activity aspartateaminotrasferases (AST) and alanine-aminotransferases (ALT) in blood plasma of chickens hatched from irradiated eggs, as well as growth of chickens during the fattening period. Low doses might also cause changes in the concentration of some biochemical parameters in blood plasma of the same chickens such as changes in the concentration of total proteins, glucose and cholesterol. In this paper, an attempt was made to investigate the effects of low dose gamma radiation upon the concentration of sodium and potassium in the blood plasma of chickens which were hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy. Obtained results were compared with the results from the control group (chickens hatched from nonirradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from heart, and later from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of sodium and potassium was determined spectrophotometrically by atomic absorbing spectrophotometer Perkin-Elmer 1100B. The concentration of sodium and potassium in blood plasma of chickens hatched from eggs irradiated on the 19th day of incubation by dose of 0.15 Gy indicated a statistically significant increase (P>0.01) only on the first day of the experiment. Obtained results showed that irradiation of eggs on the 19th day of incubation by dose of 0.15 Gy gamma radiation could have effects upon the metabolism of electrolytes in chickens. (Author)

  1. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  2. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  3. Immune reactivity after high-dose irradiation

    International Nuclear Information System (INIS)

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-01-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient

  4. In vitro and in vivo effects of low dose HTO contamination modulated by dose rate

    International Nuclear Information System (INIS)

    Petcu, I.; Savu, D.; Moisoi, N.; Koeteles, G.J.

    1997-01-01

    The experiment performed in vitro intended to examine whether an adaptive response could be elicited on lymphocytes by low-level contamination of whole blood with tritiated water and if the modification of the dose rate has any influence on it. Lymphocytes pre-exposed to 3 HOH (0.2 - 6.6 MBq/ml) and subsequently irradiated with I Gy γ-rays showed micronuclei frequency significantly lower (40% - 45%) than the expected member (sum of the yields induced by 3 HOH and γ-rays separately). The degree of the radioresistance induced by HTO pre-treatments became higher with decreasing dose-rate for a rather similar total adapting dose. In vivo, the aim of the study was to investigate if different dose rates are inducing modulation of the lipid peroxidation level and of the thymidine uptake in different tissues of animals contaminated by HTO ingestion. The total doses varied between 5 and 20 cGy and were delivered as chronic (100 days) or acute contamination (5 days). It was observed that only doses about 20 cGy caused a dose-rate dependent increase of the lipid peroxidation level in the tissues of small intestine, kidney and spleen. Both chronic and acute contamination did produce reduced incorporation of thymidine in the cells of bone marrow. The most effective decrease of thymidine uptake was induced by the acute contamination in the lower dose domain (approx. 5 cGy). Our hypothesis is that in this dose domain the modification of thymidine uptake could be due to changes at the level of membrane transport. (author)

  5. Estimation of dose in skin through the use of radiochromic and radiographic films in patients subjected to interventional procedures

    International Nuclear Information System (INIS)

    Campos Garcia, Juan Pablo

    2014-01-01

    Radiation doses in skin of patients subjected to interventional procedures is estimated from the utilization and analysis of GAFCHROMIC® XR-RV2 radiochromic films and KODAK® X-Omat films with aid of the ImageJ software. The distribution of the radiation fields in the films is generated to obtain the distribution of dose in skin and to find peaks of dose by isodose curves using ImageJ software. The calibration curves are realized from GAFCHROMIC® XR-RV2 radiochromic films, through the use of a densitometer and two types of scanners (reflection scanner and transmission scanner). The reflection scanner has digitalized color images of 48 bit in TIFF format. The scanner transmission has digitalized in grayscale images to 16 bit in TIFF format. Each method has determined the points with maximum dose in skin. The images of the areas of regions with maximum doses are obtained of the scanner. The quantified doses are compared in the radiochromic films with the band of doses supplied by the manufacturer. The methodologies for the estimation of the doses obtained are compared of the radiochromic films with those obtained with the KODAK® X-Omat films. The procedure of obtaining of the doses is validated in patients with KODAK® X-Omat films. The doses obtained have covered a range from the 0,1Gy to 9 Gy. Radiographic films have allowed an assessment of the doses to 900 cGy due to the saturation thereof, the doses found in that range have been consistent with the doses in radiochromic films [es

  6. Evaluation of entrance skin dose to the skull in diagnostic radiology

    International Nuclear Information System (INIS)

    Mohamed, Anas Ali Elbushari

    2015-12-01

    Diagnostic x-ray radiology is a common diagnostic practice.Despite of its increasing hazard to human beings, imaging procedures should be achieved with less radiation dose and sufficient image quality. The aim of this study was to estimate the entrance skin dose(ESD) for patients undergoing selected diagnostic x-ray examinations in four hospitals.The study included the examinations of the skull; posterior- anterior(PA) and lateral projections. Fifty patients were enrolled in this study. ESDs were estimated from patients specific exposure parameters using established relation between output (μGy/mAs) and tube voltage(kVp). The estimated ESDs ranged from 0.0097-0.1846 mGy for skull (PA), 0.0097-0.1399 mGy for skull (LAT). These values were acceptable as compared with the international reference dose levels. This study provides additional data that can help the regulatory authority to establish reference dose levels for diagnostic radiology in Sudan.(Author)

  7. A clinical comparison of high dose and low dose of Suxamethonium

    Directory of Open Access Journals (Sweden)

    RK Yadav

    2014-01-01

    Full Text Available Background: Suxamethonium having its rapid onset and short duration of action makes this drug unique amongst the neuromuscular blocking drugs described so far. However, use of suxamethonium is associated with a large number of undesirable side effects. Objective: To evaluate clinical effects of high and low dose of suxamethonium and to determine whether lower dose of suxamethonium can be used for any beneficial effects in terms of its various adverse effects e.g. cardiovascular responses, post-operative muscle pains and intraocular pressure. Methods: A total of 100 patients were included in this prospective study. All these patients on preoperative clinical evaluation were assessed to have adequate airway. All the patients were divided in two groups, low dose group (group I and High dose group (group II with 50 patients in each at random. A standard anesthetic technique was adhered to all the patients and following parameters were observed on comparative basis: a. Fasciculation and post operative myalgia. b. Cardiovascular effects, c. Intraocular pressure. Observation: The incidence of post Suxamethonium pain was significantly greater in group II. Increase in heart rate from baseline was significant in both groups. There was no significant difference between the two groups in the diastolic pressure but rise in systolic blood pressure was significant at all assessment times in both groups. This rise from control was statistically significant. Conclusion: Suxamethonium can be used in lower doses (0.5 mg/kg in elective cases without airway compromise. It gives benefits of reduced muscle pains, cardiovascular responses and intraocular hypertension. Journal of College of Medical Sciences-Nepal, 2013, Vol-9, No-2, 1-8 DOI: http://dx.doi.org/10.3126/jcmsn.v9i2.9677

  8. Real significance of skin contamination is

    International Nuclear Information System (INIS)

    Sudmann, R.H.

    1983-01-01

    For five decades, health physicists have discussed the thickness, area, significance of radioactive contamination and the exposures to various portions of the skin. Concern about instances of skin contamination extend beyond the resultant organ dose simply because it is a recognizable and quantifiable event. As such, there is a tendency for management and regulatory agencies to use it as a trend indicator. The final result is a score card similar to the list of OSHA reportable accidents. In fact, the skin contamination incidence rate has a somewhat different meaning to the health physicist, to the manager, and to the regulator. The question must then be asked, What is the true significance of skin contamination, Is it the resultant skin dose, Is it an indicator of loss of control, Is it both or neither. In order to answer these questions, Rockwell Hanford Operations began analysis of the previous five years records of skin contamination cases. Since by policy each incidence of skin contamination is documented, a large percentage of the 425 records analyzed were of low level activity (less than 100 dpm/cm 2 ) on the extremeties, primarily hands and fingers. Most of these cases were readily decontaminated with soap and water. Individual elements studied included: detection/monitoring methods and limits; impact of type of operation on the incidence rate; causes of and methods for reduction of the incidence rate; reporting and documentation; and dose assessment. Results of the study indicate that skin contamination rarely presents a beta dose problem because it is normally highly localized on the extremeties. Only in unusual cases does it represent a potential for internal deposition. Thus, the real importance of skin contamination incidence is as an indicator of deteriorating conditions and should be reviewed by health physicists, managers and regulators as such

  9. Total dose induced latch in short channel NMOS/SOI transistors

    International Nuclear Information System (INIS)

    Ferlet-Cavrois, V.; Quoizola, S.; Musseau, O.; Flament, O.; Leray, J.L.; Pelloie, J.L.; Raynaud, C.; Faynot, O.

    1998-01-01

    A latch effect induced by total dose irradiation is observed in short channel SOI transistors. This effect appears on NMOS transistors with either a fully or a partially depleted structure. It is characterized by a hysteresis behavior of the Id-Vg characteristics at high drain bias for a given critical dose. Above this dose, the authors still observe a limited leakage current at low drain bias (0.1 V), but a high conduction current at high drain bias (2 V) as the transistor should be in the off-state. The critical dose above which the latch appears strongly depends on gate length, transistor structure (fully or partially depleted), buried oxide thickness and supply voltage. Two-dimensional (2D) numerical simulations indicate that the parasitic condition is due to the latch of the back gate transistor triggered by charge trapping in the buried oxide. To avoid the latch induced by the floating body effect, different techniques can be used: doping engineering, body contacts, etc. The study of the main parameters influencing the latch (gate length, supply voltage) shows that the scaling of technologies does not necessarily imply an increased latch sensitivity. Some technological parameters like the buried oxide hardness and thickness can be used to avoid latch, even at high cumulated dose, on highly integrated SOI technologies

  10. Comparison of radiosensitization by 41 deg. C hyperthermia during low dose rate irradiation and during pulsed simulated low dose rate irradiation in human glioma cells

    International Nuclear Information System (INIS)

    Raaphorst, G. Peter; Ng, Cheng E.; Shahine, Bilal

    1999-01-01

    Purpose: Long duration mild hyperthermia has been shown to be an effective radiosensitizer when given concurrently with low dose rate irradiation. Pulsed simulated low dose rate (PSLDR) is now being used clinically, and we have set out to determine whether concurrent mild hyperthermia can be an effective radiosensitizer for the PSLDR protocol. Materials and Methods: Human glioma cells (U-87MG) were grown to plateau phase and treated in plateau phase in order to minimize cell cycle redistribution during protracted treatments. Low dose rate (LDR) irradiation and 41 deg. C hyperthermia were delivered by having a radium irradiator inside a temperature-controlled incubator. PSLDR was given using a 150 kVp X-ray unit and maintaining the cells at 41 deg. C between irradiations. The duration of irradiation and concurrent heating depended on total dose and extended up to 48 h. Results: When 41 deg. C hyperthermia was given currently with LDR or PSLDR, the thermal enhancement ratios (TER) were about the same if the average dose rate for PSLDR was the same as for LDR. At higher average dose rates for PSLDR the TERs became less. Conclusions: Our data show that concurrent mild hyperthermia can be an effective sensitizer for PSLDR. This sensitization can be as effective as for LDR if the same average dose rate is used and the TER increases with decreasing dose rate. Thus mild hyperthermia combined with PSLDR may be an effective clinical protocol

  11. SU-E-T-632: Preliminary Study On Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Jin, L; Eldib, A; Li, J; Price, R; Ma, C

    2015-01-01

    Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin

  12. Low-dose computed tomography image restoration using previous normal-dose scan

    International Nuclear Information System (INIS)

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-01-01

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  13. Skin, eye, and testis: current exposure problems and recent advances in radiobiology

    International Nuclear Information System (INIS)

    Charles, M.W.

    1986-01-01

    Three organs, the skin, eye and testis are potentially at risk from poorly penetrating radiations such as beta particles or low energy X-Rays. They may be preferentially irradiated in fields with steep depth - dose gradients and thereby dictate radiological protection procedures. Since there is not a wide margin of safety in the annual permissible dose limits for these organs it is important to have clearly defensible methods of dose assessment. This requires both an adequate understanding of the radiobiology of these organs and the availability of experimental techniques for measuring doses at various depths near the surface of the body. This paper reviews the current state of knowledge in this field, drawing partly on information from two recent CEC workshops on the 'Dosimetry of Beta Particles and Low Energy X-Rays' and 'Radiation Damage to the Skin'. It is concluded that protection criteria for the limitation of skin dose are in need of revision. (author)

  14. Absorbed dose to the skin in radiological examinations of upper and lower gastrointestinal tract

    International Nuclear Information System (INIS)

    Zonca, G.; Brusa, A.; Somigliana, A.; Pasqualotto, C.; Sichirollo, A.E.; Bellomi, M.; Cozzi, G.; Severini, A.

    1995-01-01

    Absorbed doses to the skin in radiological examinations of the upper and lower gastronintestinal tract in conventional and digital radiology are evaluated and compared. Absorbed doses were measured with LiF thermoluminescence dosemeters placed on the lower pelvis, umbilicus and forehead of the patient to evaluate the absorbed dose in and outside the primary beam. On 10 patients a reduction in absorbed dose of about 34% for double contrast barium enema and of 66% for upper gastrointestinal tract examinations was revealed with digital radiography equipment. In our working conditions the lower dose requirement for digital radiography is mainly due to image intensifiers and television chains and also, due to our equipment settings, to the dose reduction with digital spot fluorography compared with conventional spot film radiography. (Author)

  15. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    International Nuclear Information System (INIS)

    Lee, Eun-Jung; Kim, Jun Won; Yoo, Hyun; Kwak, Woori; Choi, Won Hoon; Cho, Seoae; Choi, Yu Jeong; Lee, Yoon-Jin; Cho, Jaeho

    2015-01-01

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm 2 fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL-33

  16. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Jung, E-mail: forejs2@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jun Won, E-mail: JUNWON@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoo, Hyun, E-mail: gochunghee@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kwak, Woori, E-mail: asleo02@snu.ac.kr [Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Won Hoon, E-mail: wonhoon@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Cho, Seoae, E-mail: seoae@cnkgenomics.com [C& K Genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919 (Korea, Republic of); Choi, Yu Jeong, E-mail: yunk9275@daum.net [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Yoon-Jin, E-mail: yjlee8@kirams.re.kr [Division of Radiation Effects, Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences, Seoul 139-760 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-08-14

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL

  17. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    Science.gov (United States)

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  18. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, L; Fan, J; Eldib, A; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.

  19. Effect of interstitial low level laser stimulation in skin density

    Science.gov (United States)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  20. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  1. Main clinical, therapeutic and technical factors related to patient's maximum skin dose in interventional cardiology procedures

    Science.gov (United States)

    Journy, N; Sinno-Tellier, S; Maccia, C; Le Tertre, A; Pirard, P; Pagès, P; Eilstein, D; Donadieu, J; Bar, O

    2012-01-01

    Objective The study aimed to characterise the factors related to the X-ray dose delivered to the patient's skin during interventional cardiology procedures. Methods We studied 177 coronary angiographies (CAs) and/or percutaneous transluminal coronary angioplasties (PTCAs) carried out in a French clinic on the same radiography table. The clinical and therapeutic characteristics, and the technical parameters of the procedures, were collected. The dose area product (DAP) and the maximum skin dose (MSD) were measured by an ionisation chamber (Diamentor; Philips, Amsterdam, The Netherlands) and radiosensitive film (Gafchromic; International Specialty Products Advanced Materials Group, Wayne, NJ). Multivariate analyses were used to assess the effects of the factors of interest on dose. Results The mean MSD and DAP were respectively 389 mGy and 65 Gy cm−2 for CAs, and 916 mGy and 69 Gy cm−2 for PTCAs. For 8% of the procedures, the MSD exceeded 2 Gy. Although a linear relationship between the MSD and the DAP was observed for CAs (r=0.93), a simple extrapolation of such a model to PTCAs would lead to an inadequate assessment of the risk, especially for the highest dose values. For PTCAs, the body mass index, the therapeutic complexity, the fluoroscopy time and the number of cine frames were independent explanatory factors of the MSD, whoever the practitioner was. Moreover, the effect of technical factors such as collimation, cinematography settings and X-ray tube orientations on the DAP was shown. Conclusion Optimising the technical options for interventional procedures and training staff on radiation protection might notably reduce the dose and ultimately avoid patient skin lesions. PMID:22457404

  2. ICRP-26 and skin contamination

    International Nuclear Information System (INIS)

    Finnigan, T.; Huda, W.; Newbery, G.R.

    1979-01-01

    The experience of dealing with skin contamination incidents at The Radiochemical Centre over a 3-year period is presented. Data are given for the primary isotopes involved, the duration of skin contamination, and the skin doses that arise from these incidents. The methods employed in performing dosimetry for skin contamination are discussed and examples involving the isotopes carbon-14 and indium-111 are described. For skin contamination incidents, the mode of penetration of the activity into skin is normally not known and this can be of major significance for the final skin dose estimate. The operational health physics difficulties encountered in complying with both ICRP-26 and UK legislation for skin contamination are considered. In the event of multiple exposure (i.e. skin doses calculated from whole body film badges, extremity TLD dose meters and skin contamination) there is ambiguity in the precise meaning of the skin dose. The usefulness of Derived Working Levels is also discussed. Experience at The Radiochemical Centre has shown that good plant design, proper training and prompt action in dealing with contamination incidents ensures that overexposures to skin from accidental contamination are rare occurrences. (author)

  3. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  4. Measurement of dose to skin using TLD of several radiodiagnostic studies in San Jose, Costa Rica; Medicion de dosis a piel utilizando TLD de varios estudios radiodiagnosticos en San Jose, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Mora, P. [Laboratorio de Fisica Nuclear Aplicada, Escuela de Fisica, Universidad de Costa Rica, San Jose (Costa Rica)

    1998-12-31

    It is quantified the radiation doses on skin for several radiodiagnostic studies in patients of the Calderon Guardia Hospital in San Jose, Costa Rica at the period October 1997-September 1998 using thermoluminescent dosemeters TLD 100. The crystals receive the decoction standard procedures and they are arranged at the middle of the irradiation field. For a total of 973 radiodiagnostic studies it was found that the dose on skin in mGy are: 2.09 for thorax AP/AP, 5.33 for thorax LAT, 5.35 for skull AP/PA, 2.98 for skull LAT, 10.74 for abdomen, hips and pelvis, 6.20 for spines AP, 9.35 for spines LAT, 11.48 for lumbar columns AP, 29.99 for lumbar columns LAT and 6.87 for intravenous skin diagrams (first plate ap). It is produced thus the first reference bank for the national hospitals, which is compared with the orientation levels of doses for IAEA. Recommendations to diminish the collective doses through quality control programs are discussed, taking as goal to have got radiographs of excellent diagnostic quality, but with the less possible doses. (Author)

  5. SU-D-204-06: Dose and Image Quality Evaluation of a Low-Dose Slot-Scanning X-Ray System for Pediatric Orthopedic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z; Hoerner, M; Lamoureux, R; Rill, L; Arreola, M [Univ Florida, Jacksonville Beach, FL (United States)

    2015-06-15

    Purpose: Children in early teens with scoliosis require repeated radiographic exams over a number of years. The EOS (EOS imaging S.A., Paris, France) is a novel low-dose slot-scanning digital radiographic system designed to produce full-spine images of a free-standing patient. The radiation dose and image quality characteristics of the EOS were evaluated relative to those of a Computed Radiography (CR) system for scoliosis imaging. Methods: For dose evaluation, a full-torso anthropomorphic phantom was scanned five times using the default standard clinical protocols for both the EOS and a CR system, which include both posteroanterior and lateral full-spine views. Optically stimulated luminescent dosimeters (OSLDs), also known as nanoDots™ (Landauer, Inc., Glenwood, IL), were placed on the phantom’s surface to measure entrance skin dose. To assess image quality, MTF curves were generated from sampling the noise levels within the high-contrast regions of a line-pair phantom. Vertical and horizontal distortions were measured for the square line-pair phantom with the EOS system to evaluate the effects of geometric magnification and misalignment with the indicated imaging plane. Results: The entrance skin dose was measured to be 0.4 to 1.1 mGy for the EOS, and 0.7 to 3.6 mGy for the CR study. MTF comparison shows that CR greatly outperforms the EOS, despite both systems having a limiting resolution at 1.8 line-pairs per mm. Vertical distortion was unaffected by phantom positioning, because of the EOS slot-scanning geometry. Horizontal distortion increased linearly with miscentering distance. Conclusion: The EOS system resulted in approximately 70% lower radiation dose than CR for full-spine images. Image quality was found to be inferior to CR. Further investigation is required to see if EOS system is an acceptable modality for performing clinically diagnostic scoliosis examinations.

  6. SU-D-204-06: Dose and Image Quality Evaluation of a Low-Dose Slot-Scanning X-Ray System for Pediatric Orthopedic Studies

    International Nuclear Information System (INIS)

    Liu, Z; Hoerner, M; Lamoureux, R; Rill, L; Arreola, M

    2015-01-01

    Purpose: Children in early teens with scoliosis require repeated radiographic exams over a number of years. The EOS (EOS imaging S.A., Paris, France) is a novel low-dose slot-scanning digital radiographic system designed to produce full-spine images of a free-standing patient. The radiation dose and image quality characteristics of the EOS were evaluated relative to those of a Computed Radiography (CR) system for scoliosis imaging. Methods: For dose evaluation, a full-torso anthropomorphic phantom was scanned five times using the default standard clinical protocols for both the EOS and a CR system, which include both posteroanterior and lateral full-spine views. Optically stimulated luminescent dosimeters (OSLDs), also known as nanoDots™ (Landauer, Inc., Glenwood, IL), were placed on the phantom’s surface to measure entrance skin dose. To assess image quality, MTF curves were generated from sampling the noise levels within the high-contrast regions of a line-pair phantom. Vertical and horizontal distortions were measured for the square line-pair phantom with the EOS system to evaluate the effects of geometric magnification and misalignment with the indicated imaging plane. Results: The entrance skin dose was measured to be 0.4 to 1.1 mGy for the EOS, and 0.7 to 3.6 mGy for the CR study. MTF comparison shows that CR greatly outperforms the EOS, despite both systems having a limiting resolution at 1.8 line-pairs per mm. Vertical distortion was unaffected by phantom positioning, because of the EOS slot-scanning geometry. Horizontal distortion increased linearly with miscentering distance. Conclusion: The EOS system resulted in approximately 70% lower radiation dose than CR for full-spine images. Image quality was found to be inferior to CR. Further investigation is required to see if EOS system is an acceptable modality for performing clinically diagnostic scoliosis examinations

  7. p-MOSFET total dose dosimeter

    Science.gov (United States)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)

    1994-01-01

    A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.

  8. Physical activity and dark skin tone: protective factors against low bone mass in Mexican men.

    Science.gov (United States)

    Vivanco-Muñoz, Nalleli; Jo, Talavera; Gerardo, Huitron-Bravo; Juan, Tamayo; Clark, Patricia

    2012-01-01

    A cross-sectional study was conducted on 268 Mexican men between the ages of 13 and 80 yr to evaluate the association of clinical factors related with bone mass. Men from high schools, universities, and retirement homes were invited to participate. Body mass index (BMI) was measured, and bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry for L1-L4 and total hip. Factors related to bone mass were assessed by questionnaire and analyzed using a logistic regression model. Demographic factors (age, education, and occupation), clinical data (BMI, skin tone, previous fracture, history of osteoporosis [OP], and history of fractures), and lifestyle variables (diet, physical activity, sun exposure, and smoking) were evaluated. Physical activity (≥ 60 min/5 times a week) reduced the risk for low BMD for age, osteopenia, and OP at the spine and total hip (odds ratio [OR]: 0.276; 95% confidence interval [CI]: 0.099-0.769; p=0.014; and OR: 0.184; 95% CI: 0.04-0.849; p=0.03, respectively). Dark skin tone was a protective factor, decreasing the risk by up to 70%. In this population of healthy Mexican men (aged 13-80 yr), dark skin and physical activity were protective factors against low bone mass. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  9. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    Energy Technology Data Exchange (ETDEWEB)

    Balmain, Allan [University of California, San Francisco; Song, Ihn Young [University of California, San Francisco

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularly when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.

  10. Determination of the total indicative dose in drinking and mineral waters

    International Nuclear Information System (INIS)

    Flesch, K.; Schulz, H.; Knappik, R.; Koehler, M.

    2006-01-01

    In Europe and Germany administrative regulations exist for the surveillance of the total indicative dose of water supplied for human consumption. This parameter, which cannot be analyzed directly, has to be calculated using nuclide specific activity concentration and age specific dose conversion factors and consumption rates. Available calculation methods differ regarding the used radionuclides, consumption rates and whether they use age specific dose conversion factors or not. In Germany administrative guidelines for the determination of the total indicative dose are still not available. As they have analyzed a large number of waters in the past, the authors derive a praxis orientated concept for the determination of the total indicative dose which respects radiological, analytical and hydrochemical aspects as well. Finally it is suggested to handle sparkling waters in the same manner as drinking waters. (orig.)

  11. Radiologic exposure conditions and resultant skin doses in application of xeroradiography to the orthodontic diagnosis

    International Nuclear Information System (INIS)

    Nakasima, A.; Nakata, S.; Shimizu, K.; Takahama, Y.

    1980-01-01

    Xeroradiography is the recording of radiologic image by a photoelectric process rather than the photochemical one used in conventional radiography. In order to investigate the advantages and disadvantages of xeroradiography in the orthodontic field, minimum xeroradiologic exposure conditions for skull projections, joint projections, and hand projections were established by thirteen examiners and the relationship between the image production and x-ray radiation was compared with conventional film techniques. The advantages of xeroradiograph were finer and clear images caused by the edge effect and wide latitude of xeroradiography; the main hazard was the unavoidable larger skin dose required by the projection procedures. The skin doses with xeroradiography were 2.4 to 16.2 times larger than those with conventional film techniques

  12. Dose-response relationships and risk estimates for the induction of cancer due to low doses of low-LET radiation

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1981-01-01

    Risk estimates for radiation-induced cancer at low doses can be obtained only by extrapolation from the known effects at high doses and high dose rates, using a suitable dose-response model. The applicability of three different models, linear, sublinear and supralinear, are discussed in this paper. Several experimental studies tend to favour a sublinear dose-response model (linear-quadratic model) for low-LET radiation. However, human epidemiological studies do not exclude any of the dose-response relationships. The risk estimates based on linear and linear quadratic dose-response models are compared and it is concluded that, for low-LET radiation, the linear dose-response model would probably over-estimate the actual risk of cancer by a factor of two or more. (author)

  13. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  14. Determination of viability of preserved skin in low temperature

    International Nuclear Information System (INIS)

    Yang Hong Chang; Hao Zheng Ming; Zao Xiao Chun

    1999-01-01

    The skin from fresh human cadavers was stored in 4-18 degree C refrigerator. Before it was grafted for treatment of burn patients, it was quickly put into 40 degree C water and bring back to a former condition. The survival rate of skin was related with time and temperature of store. We used oxygen consumption to observe the change of viability of preserved skin. Oxygen consumption of skin was observed with apparatus made in the 304th Hospital of Peoples Liberation Army. The operating temperature was 5 - 45 degree C. Determination range was 0 - 199 mm Hg, resolving power of digital display was I mm Hg, instrumental error < 0.5 s'. Fresh human cadavers skin was made into 0.3 - 0.4 mm thick piece. Cleaned with NaCl 0.9% for three time. Then it was kept in neomycin solution for fifteen minutes. Then cut into 0.5 x 0.5 cm slices and stored in neomycin (2mg/ml). The skin was stored in 4 degree C refrigerator for five different periods (1, 2, 3, 5 and 7 days). Then the Oxygen consumption was determined immediately. The oxygen consumption was also determined before and after it was stored for 24 hours. After the skin was stored in 4 and -18 degree C for 24 hours the oxygen consumption was determined immediately. The prepared skin, which was stored in ordinary refrigerator, was useful and simple. The preserved skin was grafted onto the bum patient and survival rate was high and in short time. But the result showed the viability of preserved skin reduced with time. The result showed that the oxygen consumption of skin, which was stored at 4 degree C, on the fifth day was 62.23% and on day 7 was 30.5%. The study showed that the preserved skin which was stored at 4 degree C for five days was better while the vitality of skin evidently reduced after seven days and the survival rate was low. The oxygen consumption of preserved skin that was stored in -18 degree C refrigerator for 24 hours was 100%. But in 4 degree C refrigerator it was 89.1%. The result showed that the

  15. A biosafety evaluation of synchrotron radiation X-ray to skin and bone marrow: single dose irradiation study of rats and macaques.

    Science.gov (United States)

    Lu, Yifan; Tang, Guanghui; Lin, Hui; Lin, Xiaojie; Jiang, Lu; Yang, Guo-Yuan; Wang, Yongting

    2017-06-01

    Very limited experimental data is available regarding the safe dosages related to synchrotron radiation (SR) procedures. We used young rats and macaques to address bone marrow and skin tolerance to various doses of synchrotron radiation. Rats were subjected to 0, 0.5, 2.5, 5, 25 or 100 Gy local SR X-ray irradiation at left hind limb. Rat blood samples were analyzed at 2-90 days after irradiation. The SR X-ray irradiated skin and tibia were sectioned for morphological examination. For non-human primate study, three male macaques were subjected to 0.5 or 2.5 Gy SR X-ray on crus. Skin responses of macaques were observed. All rats that received SR X-ray irradiation doses greater than 2.5 Gy experienced hair loss and bone-growth inhibition, which were accompanied by decreased number of follicles, thickened epidermal layer, and decreased density of bone marrow cells (p X-ray but showed significant hair loss when the dose was raised above 2.5 Gy. The safety threshold doses of SR X-ray for rat skin, bone marrow and macaque skin are between 0.5 and 2.5 Gy. Our study provided essential information regarding the biosafety of SR X-ray irradiation.

  16. Development of a fibre-optic dosemeter to measure the skin dose and percentage depth dose in the build-up region of therapeutic photon beams

    International Nuclear Information System (INIS)

    Kim, K. A.; Yoo, W. J.; Jang, K. W.; Moon, J.; Han, K. T.; Jeon, D.; Park, J. Y.; Cha, E. J.; Lee, B.

    2013-01-01

    In this study, a fibre-optic dosemeter (FOD) using an organic scintillator with a diameter of 0.5 mm for photon-beam therapy dosimetry was fabricated. The fabricated dosemeter has many advantages, including water equivalence, high spatial resolution, remote sensing and real-time measurement. The scintillating light generated from an organic-dosemeter probe embedded in a solid-water stack phantom is guided to a photomultiplier tube and an electrometer via 20 m of plastic optical fibre. Using this FOD, the skin dose and the percentage depth dose in the build-up region according to the depths of a solid-water stack phantom are measured with 6- and 15-MV photon-beam energies with field sizes of 10310 and 20320 cm 2 , respectively. The results are compared with those measured using conventional dosimetry films. It is expected that the proposed FOD can be effectively used in radiotherapy dosimetry for accurate measurement of the skin dose and the depth dose distribution in the build-up region due to its high spatial resolution. (authors)

  17. Effect of field size on the reaction of pig skin to single doses of X rays

    Energy Technology Data Exchange (ETDEWEB)

    Hopewell, J W; Young, C M.A. [Churchill Hospital, Oxford (UK)

    1982-05-01

    The importance of the size of the treatment area for the response of the skin to radiation has been studied in the pig. The responses of skin areas of 16 cm/sup 2/ (4 x 4 cm) and 64cm/sup 2/ (16 x 4 cm) were compared after single doses of X rays. In the initial 3-9-week period after irradiation the severity of the erythema reaction, which is associated with epidermal cell death, was not influenced by the area of skin irradiated. For the later dermal response (10-16 weeks) a similar result was obtained. The dose required to produce dermal necrosis in 50% of the fields treated (ED/sub 50/) was approximately 2070 cGy for both field sizes. Additional studies have shown that the ED/sub 50/ for dermal necrosis was not influenced by the age of animals at the time of irradiation. This was despite considerable differences in the vascular density and blood flow in pig skin with increasing age. The apparent contradiction between the results of this experimental study in the pig, which shows no effect of field size, and currently accepted clinical practice is discussed.

  18. Synergistic effects of total ionizing dose on single event upset sensitivity in static random access memory under proton irradiation

    International Nuclear Information System (INIS)

    Xiao Yao; Guo Hong-Xia; Zhang Feng-Qi; Zhao Wen; Wang Yan-Ping; Zhang Ke-Ying; Ding Li-Li; Luo Yin-Hong; Wang Yuan-Ming; Fan Xue

    2014-01-01

    Synergistic effects of the total ionizing dose (TID) on the single event upset (SEU) sensitivity in static random access memories (SRAMs) were studied by using protons. The total dose was cumulated with high flux protons during the TID exposure, and the SEU cross section was tested with low flux protons at several cumulated dose steps. Because of the radiation-induced off-state leakage current increase of the CMOS transistors, the noise margin became asymmetric and the memory imprint effect was observed. (interdisciplinary physics and related areas of science and technology)

  19. Functional and morphological changes in pig skin after single or fractionated doses in x rays

    International Nuclear Information System (INIS)

    Young, C.M.A.; Hopewell, J.W.

    1982-01-01

    The flank skin of pigs has been treated with either single or fractionated doses of x-irradiation. A single dose (2070 cGy) was compared with treatment given as 6 fractions in 18 days (6f/18 days; 3780 cGy) or 30 fractions in 39 days (30f/39 days; 8000 cGy). The doses were selected on the basis that similar levels of late tissue damage would result. Radiation induced changes in the skin were assessed by observing the skin reactions and by the measurement of isotope clearance (functional study), relative field contraction, dermal and epidermal thickness and dermal vascular density (morphological studies). In the three treatment groups the early radiation reaction varied considerably. In the first wave reaction (3 to 6 weeks after treatment) bright red erythema was recorded in many fields but moist desquamation developed only in the 30f/39 days treatment group. The second wave (10-16 weeks) was characterized by an ischemic mauve/dusky reaction. Dermal necrosis developed in 50% of the single dose fields. In the 30f/39 days regimen persistent moist desquamation progressed to dermal necrosis. Neither desquamation nor necrosis developed after 6f/18 days. Different levels of vascular damage in the dermis were assessed using an isotope clearance technique; for example in the early reaction significant changes were recorded in the papillary dermis (faster clearance) prior to the development of moist desquamation (30f/39 days) and in the reticular dermis (slower clearance) before necrosis (single dose). Changes in clearance rates have been correlated with changes in the vascular density and thickness of the dermis. Between 26 and 52 weeks (the late reaction) relative field contraction was slightly greater in the 30f/39 days group than in the other treatment groups

  20. Low-dose X-ray CT reconstruction via dictionary learning.

    Science.gov (United States)

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  1. Low dose CBCT reconstruction via prior contour based total variation (PCTV) regularization: a feasibility study

    Science.gov (United States)

    Chen, Yingxuan; Yin, Fang-Fang; Zhang, Yawei; Zhang, You; Ren, Lei

    2018-04-01

    Purpose: compressed sensing reconstruction using total variation (TV) tends to over-smooth the edge information by uniformly penalizing the image gradient. The goal of this study is to develop a novel prior contour based TV (PCTV) method to enhance the edge information in compressed sensing reconstruction for CBCT. Methods: the edge information is extracted from prior planning-CT via edge detection. Prior CT is first registered with on-board CBCT reconstructed with TV method through rigid or deformable registration. The edge contours in prior-CT is then mapped to CBCT and used as the weight map for TV regularization to enhance edge information in CBCT reconstruction. The PCTV method was evaluated using extended-cardiac-torso (XCAT) phantom, physical CatPhan phantom and brain patient data. Results were compared with both TV and edge preserving TV (EPTV) methods which are commonly used for limited projection CBCT reconstruction. Relative error was used to calculate pixel value difference and edge cross correlation was defined as the similarity of edge information between reconstructed images and ground truth in the quantitative evaluation. Results: compared to TV and EPTV, PCTV enhanced the edge information of bone, lung vessels and tumor in XCAT reconstruction and complex bony structures in brain patient CBCT. In XCAT study using 45 half-fan CBCT projections, compared with ground truth, relative errors were 1.5%, 0.7% and 0.3% and edge cross correlations were 0.66, 0.72 and 0.78 for TV, EPTV and PCTV, respectively. PCTV is more robust to the projection number reduction. Edge enhancement was reduced slightly with noisy projections but PCTV was still superior to other methods. PCTV can maintain resolution while reducing the noise in the low mAs CatPhan reconstruction. Low contrast edges were preserved better with PCTV compared with TV and EPTV. Conclusion: PCTV preserved edge information as well as reduced streak artifacts and noise in low dose CBCT reconstruction

  2. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  3. Assessment of influence of OSL dosimeters in the skin dose in radiotherapy: study for Monte Carlo simulation; Avaliacao da influencia de dosimetros OSL na dose na pele em radioterapia: estudo por simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, Franciely F.; Nicolucci, Patricia, E-mail: franschuch@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeiraoo Preto, SP (Brazil)

    2017-11-01

    The interest in optically stimulated luminescence (OSL) dosimetry materials is growing due to its potential use in quality control in Radiotherapy. The use of these dosimeters for in vivo dosimetry, however, may influence the dose to the skin and deeper tissues in the patient. The goal of this study is to evaluate the influence of the OSL Al{sub 2}O{sub 3} material in dose deposited in the skin and deep in Radiotherapy. Monte Carlo simulation is used to evaluate this purpose when OSL dosimeters of Al{sub 2}O{sub 3} are positioned on the skin surface of the patient. Percentage depth dose curves for clinical beams of 6 and 10 MV were simulated with and without the presence of the dosimeter on the surface of a water phantom. The results showed a decrease of doses in regions close to the surface of the skin. In the build-up region, the maximum decreases of dose produced by the presence of the dosimeters were 52,5% and 47,5% for the 6 and 10 MV beams, respectively. After the build-up region, there are not significant changes in the doses for any of the used beams. The differences of doses found are due to the influence of the dosimetric material on the relative fluence of electrons near the end surface of the dosimeter. Thus, the results showed that the presence of the dosimetric material on the surface interferes on the skin dose. However, these dosimeters do not cause dose variations in depths of clinical interest, allowing its application in routine in vivo dosimetry in Radiotherapy. (author)

  4. Total body topical 5-fluorouracil for extensive non-melanoma skin cancer

    NARCIS (Netherlands)

    van Ruth, Serge; Jansman, Frank G. A.; Sanders, Cornelis J.

    Background Topical 5-fluorouracil 5% cream is one of the treatment modalities for non-melanoma skin cancer (NMSC). There is a lack of suitable therapies to treat patients with extensive NMSC. In this paper we report two patients with extensive NMSC treated by total body application of topical

  5. Application of work load spectra for estimative of the skin entrance dose

    International Nuclear Information System (INIS)

    Pereira, P.A.A.; Furquim, T.A.C.; Costa, P.R.

    2004-01-01

    The present work refers to obtaining data for the determination of workload spectra related to the use of different radiological equipment. The obtained information was stored in a data base developed for this working program. Values of skin entrance dose were obtained bu using the results of the field research (performed in radiological clinics and hospitals of Sao Paulo). (author)

  6. A model for predicting skin dose received by patients from an x-ray ...

    African Journals Online (AJOL)

    We have done this by modifying a model for predicting skin dose derived by Edmonds for a triple-phase generator. Results for 100 patients based on the triple-phase generator output show a reasonable average agreement (»1%) between our present model and the Edmonds's model. Although our earlier estimated ...

  7. The induction of a tumor suppressor gene (p53) expression by low-dose radiation and its biological meaning

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    1997-01-01

    I report the induced accumulation of wild-type p53 protein of a tumor suppressor gene within 12 h in various organs of rats exposed to X-ray irradiation at low doses (10-50 cGy). The levels of p53 in some organs of irradiated rats were increased about 2- to 3-fold in comparison with the basal p53 levels in non-irradiated rats. Differences in the levels of p53 induction after low-dose X-ray irradiation were observed among the small intestine, bone marrow, brain, liver, adrenal gland, spleen, hypophysis and skin. In contrast, there was no obvious accumulation of p53 protein in the testis and ovary. Thus, the induction of cellular p.53 accumulation by low-dose X-ray irradiation in rats seems to be organ-specific. I consider that cell type, and interactions with other signal transduction pathways of the hormone system, immune system and nervous system may contribute to the variable induction of p53 by low-dose X-ray irradiation. I discussed the induction of p53 by radiation and its biological meaning from an aspect of the defense system for radiation-induced cancer. (author)

  8. Protective effects of fermented honeybush (Cyclopia intermedia) extract (HU-018) against skin aging: a randomized, double-blinded, placebo-controlled study.

    Science.gov (United States)

    Choi, Sun Young; Hong, Ji Yeon; Ko, Eun Jung; Kim, Beom Joon; Hong, Sung-Woon; Lim, Mi Hyoung; Yeon, Sung Hum; Son, Rak Ho

    2018-02-01

    Oxidative stress and photodamage resulting from ultraviolet radiation exposure play key roles in skin aging. Fermented Cyclopia intermedia, which is used to brew honeybush tea, exerts antioxidant and anti-wrinkle effects by inhibiting reactive oxygen species production and downregulating matrix metalloproteinase activity. This randomized, double-blinded, placebo-controlled study aimed to evaluate the efficacy and safety of fermented honeybush (Cyclopia intermedia) extract (HU-018) for skin rejuvenation. 120 Korean subjects with crow's feet wrinkles were randomized to receive either low-dose extract (400 mg/day), high-dose extract (800 mg/day), or placebo (negative control, only dextran) for 12 weeks. Wrinkles were evaluated using JANUS ® and PRIMO pico ® . Skin elasticity, hydration and transepidermal water loss were measured. Global skin wrinkle grade was significantly improved in both low-dose and high-dose groups compared to placebo group, as well as for skin hydration and elasticity. Both the low- and high-dose groups showed significantly decreased TEWL compared to the placebo group. There were no adverse effects during the entire study period. Our data indicate that HU-018 is effective for improving skin wrinkles, elasticity, and hydration. Therefore, daily supplementation with fermented honeybush could be helpful for protecting against skin aging.

  9. Pulsed total dose damage effect experimental study on EPROM

    International Nuclear Information System (INIS)

    Luo Yinhong; Yao Zhibin; Zhang Fengqi; Guo Hongxia; Zhang Keying; Wang Yuanming; He Baoping

    2011-01-01

    Nowadays, memory radiation effect study mainly focus on functionality measurement. Measurable parameters is few in china. According to the present situation, threshold voltage testing method was presented on floating gate EPROM memory. Experimental study of pulsed total dose effect on EPROM threshold voltage was carried out. Damage mechanism was analysed The experiment results showed that memory cell threshold voltage negative shift was caused by pulsed total dose, memory cell threshold voltage shift is basically coincident under steady bias supply and no bias supply. (authors)

  10. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  11. Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation.

    Science.gov (United States)

    Parkinson, Leigh G; Toro, Ana; Zhao, Hongyan; Brown, Keddie; Tebbutt, Scott J; Granville, David J

    2015-02-01

    Extracellular matrix (ECM) degradation is a hallmark of many chronic inflammatory diseases that can lead to a loss of function, aging, and disease progression. Ultraviolet light (UV) irradiation from the sun is widely considered as the major cause of visible human skin aging, causing increased inflammation and enhanced ECM degradation. Granzyme B (GzmB), a serine protease that is expressed by a variety of cells, accumulates in the extracellular milieu during chronic inflammation and cleaves a number of ECM proteins. We hypothesized that GzmB contributes to ECM degradation in the skin after UV irradiation through both direct cleavage of ECM proteins and indirectly through the induction of other proteinases. Wild-type and GzmB-knockout mice were repeatedly exposed to minimal erythemal doses of solar-simulated UV irradiation for 20 weeks. GzmB expression was significantly increased in wild-type treated skin compared to nonirradiated controls, colocalizing to keratinocytes and to an increased mast cell population. GzmB deficiency significantly protected against the formation of wrinkles and the loss of dermal collagen density, which was related to the cleavage of decorin, an abundant proteoglycan involved in collagen fibrillogenesis and integrity. GzmB also cleaved fibronectin, and GzmB-mediated fibronectin fragments increased the expression of collagen-degrading matrix metalloproteinase-1 (MMP-1) in fibroblasts. Collectively, these findings indicate a significant role for GzmB in ECM degradation that may have implications in many age-related chronic inflammatory diseases. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Effective Treatment of Intestinal Behçet's Disease with Long-Term, Low-Dose Clarithromycin

    Directory of Open Access Journals (Sweden)

    Yukiya Hakozaki

    2013-03-01

    Full Text Available A 51-year-old man was referred for body weight loss and lower right abdominal pain. Total colonoscopy revealed discrete and round ulceration at the ileocecal valve, and he was diagnosed with intestinal Behçet's disease (BD. By treatment with glucocorticoid, colchicine and salazosulfapyridine, the symptoms and ulceration were improved, but cessation of glucocorticoid resulted in relapse of ulceration at the terminal ileum. Long-term, low-dose treatment with clarithromycin (CAM was implemented for chronic respiratory infections. Furthermore, we expected that this CAM treatment would also be effective in BD. During this long-term, low-dose treatment with CAM, discrete ulceration at the terminal ileum was never revealed by follow-up total colonoscopy once or twice per year for 7 years. No reports have described the effectiveness of this treatment in patients with intestinal BD; however, we confirm that long-term treatment with low-dose CAM might have clinical benefits for patients with intestinal BD.

  13. Biological effect of low-dose application beta-radiation on the gingival mucosa of dogs

    International Nuclear Information System (INIS)

    Ippolitov, Yu.A.; Kovtun, N.N.; Timofeev, L.V.

    1999-01-01

    Biological effect of low-dose application beta-radiation on the gingival mucosa of dogs is studied. Obtained data illustrate the interactions between tissues in local exposure of live tissue to beta-radiation and determine the threshold total dose as 400 sGy. Higher doses lead to secondary changes in the gingival mucosa after which the tissue barrier does not recover [ru

  14. Evaluation of two-dimensional bolus effect of immobilization/support devices on skin doses: A radiochromic EBT film dosimetry study in phantom

    International Nuclear Information System (INIS)

    Chiu-Tsao, Sou-Tung; Chan, Maria F.

    2010-01-01

    Purpose: In this study, the authors have quantified the two-dimensional (2D) perspective of skin dose increase using EBT film dosimetry in phantom in the presence of patient immobilization devices during conventional and IMRT treatments. Methods: For 6 MV conventional photon field, the authors evaluated and quantified the 2D bolus effect on skin doses for six different common patient immobilization/support devices, including carbon fiber grid with Mylar sheet, Orfit carbon fiber base plate, balsa wood board, Styrofoam, perforated AquaPlast sheet, and alpha-cradle. For 6 and 15 MV IMRT fields, a stack of two film layers positioned above a solid phantom was exposed at the air interface or in the presence of a patient alpha-cradle. All the films were scanned and the pixel values were converted to doses based on an established calibration curve. The authors determined the 2D skin dose distributions, isodose curves, and cross-sectional profiles at the surface layers with or without the immobilization/support device. The authors also generated and compared the dose area histograms (DAHs) and dose area products from the 2D skin dose distributions. Results: In contrast with 20% relative dose [(RD) dose relative to d max on central axis] at 0.0153 cm in the film layer for 6 MV 10x10 cm 2 open field, the average RDs at the same depth in the film layer were 71%, 69%, 55%, and 57% for Orfit, balsa wood, Styrofoam, and alpha-cradle, respectively. At the same depth, the RDs were 54% under a strut and 26% between neighboring struts of a carbon fiber grid with Mylar sheet, and between 34% and 56% for stretched perforated AquaPlast sheet. In the presence of the alpha-cradle for the 6 MV (15 MV) IMRT fields, the hot spot doses at the effective measurement depths of 0.0153 and 0.0459 cm were 140% and 150% (83% and 89%), respectively, of the isocenter dose. The enhancement factor was defined as the ratio of a given DAH parameter (minimum dose received in a given area) with and without

  15. Radiofrequency catheter ablation: Relationship between fluoroscopic time and skin doses according to diagnoses. Basis to establish a quality assurance programme

    International Nuclear Information System (INIS)

    Cotelo, E.; Pouso, J.; Reyes, W.

    2001-01-01

    Radiofrequency Cardiac Catheter Ablation is an Interventional Radiology procedure of great complexity because the cardiologist needs a simultaneous evaluation of fluoroscopic images and electrophysiologic information. Therefore, the procedure typically involves extended fluoroscopic time that may cause radiation-skin injures to patients. Skin doses depend on many factors: equipment design features and its proper use, cardiologist practice, fluoroscopic time, irradiated areas, application of radiation protection recommendations, etc. We evaluate fluoroscopic time in relation to pathology and we estimate skin doses on 233 procedures at the Electrophysiology Laboratory in Casa de Galicia, Montevideo, Uruguay. Significant differences among the medians of fluoroscopic time were found in those procedures depending on diagnoses and results. Higher fluoroscopic time was found in flutter and auricular tachycardia (median was 83 minutes, p=0.0001). In successful procedures (almost 90%), median skin doses was 2.0 Grays (p=0.0001). On the basis of records information, the standard operating procedure and the clinical protocol, expanding close cooperation between the cardiologists and the experts in Radiation Protection will secure the establishment of an Assurance Quality Program. (author)

  16. Diminution of acute radiation reaction of mouse skin with low-intensity infrared laser/red diodes-emitted light

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Klimakov, B.D.; Goldobenko, G.V.; Vajnson, A.A.

    2000-01-01

    Efficiency of the application of different regimes of laser treatment of radiation-induced skin reactions in mice feet is compared. Posterior limb feet of mice were exposed to acute X radiation at 30-36 Gy dose or fractionated radiation at 45 Gy dose. In the day of primary irradiation or different time later the feet were treated using magnetic infrared laser therapeutic MILTA-01 apparatus. Magnetic and light components of the MILTA-01 apparatus reduce the effect of radiation on mice skin corresponding two time decrease in X-radiation dose [ru

  17. Low-dose effects of hormones and endocrine disruptors.

    Science.gov (United States)

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately. © 2014 Elsevier Inc. All rights reserved.

  18. Low dose irradiation and biological defense mechanisms

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Sagan, L.A.; Aoyama, Takashi

    1992-01-01

    It has been generally accepted in the context of radiation protection that ionizing radiation has some adverse effect even at low doses. However, epidemiological studies of human populations cannot definitively show its existence or absence. Furthermore, recent studies of populations living in areas of different background radiation levels reported some decrease in adverse health effects at high background levels. Genetic studies of atomic bomb survivors failed to produce statistically significant findings on the mutagenic effects of ionizing radiation. A British study however, suggests that a father's exposure to low dose radiation on the job may increase his children's risk of leukemia. On the other hand, many experimental studies have raised the possibility that low doses of ionizing radiation may not be harmful or may even produce stimulating or adaptive responses. The term 'hormesis' has come to be used to describe these phenomena produced by low doses of ionizing radiation when they were beneficial for the organisms studied. At the end of the International Conference on Low Dose Irradiation one conclusion appeared to be justified: radiation produces an adaptive response, though it is not universally detected yet. The conference failed to obtain any consensus on risk assessment at low doses, but raised many problems to be dealt with by future studies. The editors therefore believe that the Proceedings will be useful for all scientists and people concerned with radiation protection and the biological effects of low-dose irradiation

  19. Topics on study of low dose-effect relationship

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takeshi [Toho Univ., School of Medicine, Tokyo (Japan); Ohyama, Harumi

    1999-09-01

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  20. Topics on study of low dose-effect relationship

    International Nuclear Information System (INIS)

    Yamada, Takeshi; Ohyama, Harumi

    1999-01-01

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  1. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  2. Total dose effects on the matching properties of deep submicron MOS transistors

    International Nuclear Information System (INIS)

    Wang Yuxin; Hu Rongbin; Li Ruzhang; Chen Guangbing; Fu Dongbing; Lu Wu

    2014-01-01

    Based on 0.18 μm MOS transistors, for the first time, the total dose effects on the matching properties of deep submicron MOS transistors are studied. The experimental results show that the total dose radiation magnifies the mismatch among identically designed MOS transistors. In our experiments, as the radiation total dose rises to 200 krad, the threshold voltage and drain current mismatch percentages of NMOS transistors increase from 0.55% and 1.4% before radiation to 17.4% and 13.5% after radiation, respectively. PMOS transistors seem to be resistant to radiation damage. For all the range of radiation total dose, the threshold voltage and drain current mismatch percentages of PMOS transistors keep under 0.5% and 2.72%, respectively. (semiconductor devices)

  3. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    Science.gov (United States)

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  4. Low-dose narrow-band UVB phototherapy combined with topical therapy is effective in psoriasis and does not inhibit systemic T-cell activation

    NARCIS (Netherlands)

    de Rie, M. A.; Out, T. A.; Bos, J. D.

    1998-01-01

    Psoriasis is a chronic T-cell-mediated inflammatory skin disease which can be treated with topical medication, phototherapy or systemic medication. A subgroup of psoriatic patients does not respond to monotherapy and needs combination therapy. We used low-dose narrow-band UVB phototherapy, combined

  5. Characterization of a cable-free system based on p-type MOSFET detectors for "in vivo" entrance skin dose measurements in interventional radiology.

    Science.gov (United States)

    Falco, Maria Daniela; D'Andrea, Marco; Strigari, Lidia; D'Alessio, Daniela; Quagliani, Francesco; Santoni, Riccardo; Bosco, Alessia Lo

    2012-08-01

    During radiological interventional procedures (RIP) the skin of a patient under examination may undergo a prolonged x-ray exposure, receiving a dose as high as 5 Gy in a single session. This paper describes the use of the OneDose(TM) cable-free system based on p-type MOSFET detectors to determine the entrance skin dose (ESD) at selected points during RIP. At first, some dosimetric characteristics of the detector, such as reproducibility, linearity, and fading, have been investigated using a C-arc as a source of radiation. The reference setting (RS) was: 80 kV energy, 40 cm × 40 cm field of view (FOV), current-time product of 50 mAs and source to skin distance (SSD) of 50 cm. A calibrated PMX III solid state detector was used as the reference detector and Gafchromic(®) films have been used as an independent dosimetric system to test the entire procedure. A calibration factor for the RS and correction factors as functions of tube voltage and FOV size have been determined. Reproducibility ranged from 4% at low doses (around 10 cGy as measured by the reference detector) to about 1% for high doses (around 2 Gy). The system response was found to be linear with respect to both dose measured with the PMX III and tube voltage. The fading test has shown that the maximum deviation from the optimal reading conditions (3 min after a single irradiation) was 9.1% corresponding to four irradiations in one hour read 3 min after the last exposure. The calibration factor in the RS has shown that the system response at the kV energy range is about four times larger than in the MV energy range. A fifth order and fourth order polynomial functions were found to provide correction factors for tube voltage and FOV size, respectively, in measurement settings different than the RS. ESDs measured with the system after applying the proper correction factors agreed within one standard deviation (SD) with the corresponding ESDs measured with the reference detector. The ESDs measured with

  6. Gamma radiation effects on peanut skin antioxidants

    International Nuclear Information System (INIS)

    Camargo, Adriano Costa de; Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d'Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia

    2011-01-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a 60 Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  7. Gamma radiation effects on peanut skin antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Adriano Costa de [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Canniatti-Brazaca, Solange Guidolin; Vieira, Thais Maria Ferreira de Souza; Regitano-d' Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia, E-mail: sgcbraza@usp.b, E-mail: tvieira@esalq.usp.b, E-mail: mabra@esalq.usp.b, E-mail: macdomin@esalq.usp.b [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao

    2011-07-01

    Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The viability of using natural sources of antioxidants to replace synthetic antioxidants was assessed. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays at a dose rate of 7.5 kGy/h using a {sup 60}Co source. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached deodorized (RBD) soybean oil that was free from synthetic antioxidants. The oxidative stability of the oil samples was determined using the Rancimat method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. Ethanolic extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Rancimat method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT but lower than THBQ. The present study confirmed that gamma radiation did not affect the peanut skin extracts' antioxidative level when added to soybean oil. The induction period of the control soybean oil was 5.7 h, while soybean oil with added ethanolic peanut skin extract had an induction period of 7.2 h, on average. (author)

  8. Estimating skin sensitization potency from a single dose LLNA.

    Science.gov (United States)

    Roberts, David W

    2015-04-01

    Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990 s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Evaluation of accelerated test parameters for CMOS IC total dose hardness prediction

    International Nuclear Information System (INIS)

    Sogoyan, A.V.; Nikiforov, A.Y.; Chumakov, A.I.

    1999-01-01

    The approach to accelerated test parameters evaluation is presented in order to predict CMOS IC total dose behavior in variable dose-rate environment. The technique is based on the analytical model of MOSFET parameters total dose degradation. The simple way to estimate model parameter is proposed using IC's input-output MOSFET radiation test results. (authors)

  10. Time-dose relationship of erythema in high energy photon irradiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hidetoshi (Gifu Prefectural Tajimi Hospital (Japan)); Sakuma, Sadayuki

    1992-01-01

    Skin doses of 100 patients who were treated with high energy ionizing irradiation during conventional irradiation therapy were measured by thermoluminescence dosimeter (TLD). In 87 of the 100 patients, acute hyperemic change of the skin (erythema) of the irradiated region was observed. In the other 13 patients, alopetia of the scalp was observed. The following conclusions were reached. The time-dose relationship was linear when erythema tolerance was used as an index, but not when alopecia was used. The tolerance dose for erythema was lower than previously reported. The slope of the isoeffect curve on the log-log plot of total absorbed skin dose against total number of days after the first irradiation was 0.68 when erythema was used as an index. This number is larger than previously reported results. We considered that erythema is significantly influenced by fraction size and that hyperfractionation is a promising method of irradiation, especially in Japan. Combined use of chemotherapeutic agents, such as 5-FU, accelerated erythema. The slope of combined treatment was 0.86. Observing acute hyperemic change of skin is considered to be a useful method of investigating the combined effects of chemotherapeutic agents on irradiation. (author).

  11. Method of examination of blood microcirculation in skin by multiple using of an identical dose of radioactive Xe/sup 133/ gas

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, J.; Bogdanowski, T.; Brzezinska-Wcislo, L. (Slaska Akademia Medyczna, Katowice (Poland))

    1981-01-01

    The introduced method of Xe/sup 133/ gas application on epidermis serves to the investigation of microcirculation of blood within skin. It consists in a single use a dose of radioactive gas which is injected under the plastic membrane adhering to the skin surface. Our method of gaseous Xe/sup 133/ contact with epidermis enabling the multiple utilization of once applied dose to further examination is described.

  12. Anti-tumor effect of low dose radiation in mice

    International Nuclear Information System (INIS)

    Fan Zhengping; Lu Jiaben; Zhu Bingchai

    1997-01-01

    The author reports the effects of the total body irradiation of low dose radiation (LDR) and/or the local irradiation of large dose on average tumor weights and tumor inhibitory rates in 170 mice inoculated S 180 sarcoma cell, and the influence of LDR on average longevity in 40 tumor-bearing animals. Results show (1) LDR in the range of 75∼250 mGy can inhibit tumor growth to some extent; (2) fractionated irradiation of 75 mGy and local irradiation of 10 Gy may produce a synergism in tumor growth inhibition; and (3)LDR may enhance average longevity in ascitic tumor-bearing mice

  13. SU-F-P-44: A Direct Estimate of Peak Skin Dose for Interventional Fluoroscopy Procedures

    International Nuclear Information System (INIS)

    Weir, V; Zhang, J

    2016-01-01

    Purpose: There is an increasing demand for medical physicist to calculate peak skin dose (PSD) for interventional fluoroscopy procedures. The dose information (Dose-Area-Product and Air Kerma) displayed in the console cannot directly be used for this purpose. Our clinical experience shows that the use of the existing methods may overestimate or underestimate PSD. This study attempts to develop a direct estimate of PSD from the displayed dose metrics. Methods: An anthropomorphic torso phantom was used for dose measurements for a common fluoroscopic procedure. Entrance skin doses were measured with a Piranha solid state point detector placed on the table surface below the torso phantom. An initial “reference dose rate” (RE) measurement was conducted by comparing the displayed dose rate (mGy/min) to the dose rate measured. The distance from table top to focal spot was taken as the reference distance (RD at the RE. Table height was then adjusted. The displayed air kerma and DAP were recorded and sent to three physicists to estimate PSD. An inverse square correction was applied to correct displayed air kerma at various table heights. The PSD estimated by physicists and the PSD by the proposed method were then compared with the measurements. The estimated DAPs were compared to displayed DAP readings (mGycm2). Results: The difference between estimated PSD by the proposed method and direct measurements was less than 5%. For the same set of data, the estimated PSD by each of three physicists is different from measurements by ±52%. The DAP calculated by the proposed method and displayed DAP readings in the console is less than 20% at various table heights. Conclusion: PSD may be simply estimated from displayed air kerma or DAP if the distance between table top and tube focal spot or if x-ray beam area on table top is available.

  14. SU-F-P-44: A Direct Estimate of Peak Skin Dose for Interventional Fluoroscopy Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Weir, V [Baylor Scott and White Healthcare System, Dallas, TX (United States); Zhang, J [University of Kentucky, Lexington, KY (United States)

    2016-06-15

    Purpose: There is an increasing demand for medical physicist to calculate peak skin dose (PSD) for interventional fluoroscopy procedures. The dose information (Dose-Area-Product and Air Kerma) displayed in the console cannot directly be used for this purpose. Our clinical experience shows that the use of the existing methods may overestimate or underestimate PSD. This study attempts to develop a direct estimate of PSD from the displayed dose metrics. Methods: An anthropomorphic torso phantom was used for dose measurements for a common fluoroscopic procedure. Entrance skin doses were measured with a Piranha solid state point detector placed on the table surface below the torso phantom. An initial “reference dose rate” (RE) measurement was conducted by comparing the displayed dose rate (mGy/min) to the dose rate measured. The distance from table top to focal spot was taken as the reference distance (RD at the RE. Table height was then adjusted. The displayed air kerma and DAP were recorded and sent to three physicists to estimate PSD. An inverse square correction was applied to correct displayed air kerma at various table heights. The PSD estimated by physicists and the PSD by the proposed method were then compared with the measurements. The estimated DAPs were compared to displayed DAP readings (mGycm2). Results: The difference between estimated PSD by the proposed method and direct measurements was less than 5%. For the same set of data, the estimated PSD by each of three physicists is different from measurements by ±52%. The DAP calculated by the proposed method and displayed DAP readings in the console is less than 20% at various table heights. Conclusion: PSD may be simply estimated from displayed air kerma or DAP if the distance between table top and tube focal spot or if x-ray beam area on table top is available.

  15. Study of dose modification in skin cancers induced by the kind of bolus used - Bibliography

    International Nuclear Information System (INIS)

    Camilleri, Jeremy

    2011-01-01

    As tumour irradiation modalities differ from one pathology to another, and are even proper to each pathology (they depend on tumour nature, histology, size, location, and so on), but as therapeutic objectives remain unchanged (to deliver the prescribed dose to the target-volume with the highest possible precision while preserving as much as possible sane tissues as well as neighbouring organs at risk), this bibliographical study aims, on the one hand, at quantifying the dose variation generated by heterogeneous structures crossed by the electron beam, and on the other hand, at optimising the use of boluses during surface irradiations, notably in the case of skin cancers. The author addresses therapeutic indications of irradiation of skin cancers and of thoracic wall for which the application of a bolus is required, and then the associated irradiation techniques as well as bolus characteristics

  16. Topical application of the synthetic triterpenoid RTA 408 activates Nrf2 and induces cytoprotective genes in rat skin.

    Science.gov (United States)

    Reisman, Scott A; Lee, Chun-Yue I; Meyer, Colin J; Proksch, Joel W; Ward, Keith W

    2014-07-01

    RTA 408 is a member of the synthetic oleanane triterpenoid class of compounds known to potently activate the cytoprotective transcription factor Nrf2. Because skin is constantly exposed to external oxidative stress, such as that from ultraviolet radiation, from chemical exposure, during improper wound healing, and throughout the course of cancer radiation therapy, it may benefit from activation of Nrf2. This study was conducted to evaluate the transdermal penetration properties and Nrf2 activation potential of RTA 408 in normal rat skin. RTA 408 (0.1, 1.0, or 3.0%) was applied topically to the shaved skin of male Sprague-Dawley rats twice daily for 4 days and once on Day 5. Topical application of RTA 408 resulted in transdermal penetration, with low but dose-dependent plasma exposure with AUC(0-24 h) values of 3.6, 26.0, and 41.1 h ng/mL for the 0.1, 1.0, and 3.0% doses, respectively. Further, topical application of RTA 408 resulted in increased translocation of Nrf2 to the nucleus, dose-dependent mRNA induction of Nrf2 target genes (e.g. Nqo1, Srxn1, Gclc, and Gclm), and induction of the protein expression of the prototypical Nrf2 target gene Nqo1 and increased total glutathione (GSH) in normal rat skin. Immunohistochemistry demonstrated that increased staining for Nqo1 and total GSH of structures in both the epidermis and dermis was consistent with the full transdermal penetration of RTA 408. Finally, topically administered RTA 408 was well tolerated with no adverse in-life observations and normal skin histology. Thus, the data support the further development of RTA 408 for the potential treatment of skin diseases.

  17. Late effects of low doses and dose rates

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    This paper outlines the spectrum of problems and approaches used in work on the derivation of quantitative prognoses of late effects in man of low doses and dose rates. The origins of principal problems encountered in radiation risks assessments, definitions and explanations of useful quantities, methods of deriving risk factors from biological and epidemiological data, and concepts of risk evaluation and problems of acceptance are individually discussed

  18. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  19. Dose equivalent distributions in the AAEC total body nitrogen facility

    International Nuclear Information System (INIS)

    Allen, B.J.; Bailey, G.M.; McGregor, B.J.

    1985-01-01

    The incident neutron dose equivalent in the AAEC total body nitrogen facility is measured by a calibrated remmeter. Dose equivalent rates and distributions are calculated by Monte Carlo techniques which take account of the secondary neutron flux from the collimator. Experiment and calculation are found to be in satisfactory agreement. The effective dose equivalent per exposure is determined by weighting organ doses, and the potential detriment per exposure is calculated from ICRP risk factors

  20. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, D; Zhang, P; Wang, B; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers.

  1. Influence of the Target Vessel on the Location and Area of Maximum Skin Dose during Percutaneous Coronary Intervention

    International Nuclear Information System (INIS)

    Chida, K.; Fuda, K.; Kagaya, Y.; Saito, H.; Takai, Y.; Kohzuki, M.; Takahash i, S.; Yamada, S.; Zuguchi, M.

    2007-01-01

    Background: A number of cases involving radiation-associated patient skin injury attributable to percutaneous coronary intervention (PCI) have been reported. Knowledge of the location and area of the patient's maximum skin dose (MSD) in PCI is necessary to reduce the risk of skin injury. Purpose: To determine the location and area of the MSD in PCI, and separately analyze the effects of different target vessels. Material and Methods: 197 consecutive PCI procedures were studied, and the location and area of the MSD were calculated by a skin-dose mapping software program: Caregraph. The target vessels of the PCI procedures were divided into four groups based on the American Heart Association (AHA) classification. Results: The sites of the MSD for AHA no.1-3, AHA no.4, and AHA no.11-15 were located mainly on the right back skin, the lower right or center back skin, and the upper back skin areas, respectively, whereas the MSD sites for the AHA no. 5-10 PCI were widely spread. The MSD area for the AHA no. 4 PCI was larger than that for the AHA no. 11-15 PCI (P<0.0001). Conclusion: Although the radiation associated with PCI can be widely spread and variable, we observed a tendency regarding the location and area of the MSD when we separately analyzed the data for different target vessels. We recommend the use of a smaller radiation field size and the elimination of overlapping fields during PCI

  2. The response of mouse skin and lung to fractionated x-rays

    International Nuclear Information System (INIS)

    Field, S.B.; Hornsey, S.

    1975-01-01

    The relationship between total dose and number of fractions has been investigated for damage to lung and skin in mice. Single doses and various numbers of fractions have been given and the results are analysed in two ways: (i) by comparing the fractionated treatment with a single dose. With this approach, and assuming that the observed damage to lung and skin is the result of cell killing, it is estimated that the ratio of initial to final slope of the cell survival curve is about 7:1; (ii) by measuring the additional dose required when the number of fractions is doubled. These results are roughly fitted by a single-hit times multitarget survival-curve model, with the ratio of slopes about 3:1. It is concluded from this discrepancy that the two-component model is an inadequate description of the survival curve for the cells of either skin or lung. (author)

  3. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E

    2003-07-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  4. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2003-01-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  5. Evaluation of radiological protection and dose of skin entrance in paediatric dentistry examinations; Avaliacao da protecao radiologica e da dose de entrada na pele em exames de odontologia pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Helen Jamil [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Vasconcelos, Flavia Maria Nassar de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Silveira, Marcia Maria Fonseca da [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Fac. de Odontologia; Couto, Geraldo Bosco Lindoso [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Fac. de Odontopediatria; Brasileiro, Izabela Vanderley

    2005-07-01

    In this work the radiological protection conditions and dose at the entrance of pediatric patients undergoing dental intraoral radiographs were evaluated. The study was conducted in two clinics of the dentistry course at the Federal University of Pernambuco, Recife, PB, Brazil, equipped with conventional X-ray apparatus, with 60 and 70 kV. 254 exams of 113 patients between the ages of 3 to 12 years were evaluated. The skin entrance dose was estimated using TLD-100 thermoluminescent dosemeters. During the examination were also recorded information regarding the time of exposure, radiographic technique used, use of thyroid protectors and lead apron, angle and distance of the cone Locator to the patient's skin. The results showed that the input skin doses ranged from 0.3 mGy to 10mGy. The lead apron was used in 71% of exams while the thyroid shield was only used in 58% of the exams. The exposure times ranged from 0,5s to 1,5s. From the results it can be concluded that the radiological procedures are not optimized and that in some cases the patient dose is high.

  6. Evaluation of dose to skin surface contamination in the factory Juzbado of fuel elements

    International Nuclear Information System (INIS)

    Ortiz Trujillo, D.; Agustin Perez Fonseca, A.; Alejandro Fuentes, A.

    2013-01-01

    The aim of this work is previously set a simple calculation methodology applicable to the boundary conditions surrounding the environment where skin contamination may have occurred so that you can evaluate in a simple and fast way the dose that the worker is receiving while enduring such pollution. (Author)

  7. Effect of wavelength, epidermal thickness and skin type on the required dose for photodynamic therapy

    CSIR Research Space (South Africa)

    Karsten, AE

    2008-10-01

    Full Text Available Effect of Wavelength, Epidermal Thickness and Skin Type on the Required Dose for Photodynamic Therapy A.E. Karsten1,2 1CSIR National Laser Centre, Biophotonics Group, PO Box 395, Pretoria, 0001, South Africa 2Physics Department, Faculty of Natural... a certain depth in the skin. For most laser treatments and diagnostics apllications, wavelengths ranging between 600 and 1 000 nm are used. 1.1 Photodynamic therapy (PDT) In South Africa, as in many other countries, cancer is a major health...

  8. New Insights into Fully-Depleted SOI Transistor Response During Total Dose Irradiation

    International Nuclear Information System (INIS)

    Burns, J.A.; Dodd, P.E.; Keast, C.L.; Schwank, J.R.; Shaneyfelt, M.R.; Wyatt, P.W.

    1999-01-01

    Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. No evidence was found for total-dose induced snap back. These results have implications for hardness assurance testing

  9. Modification of damage following low doses

    International Nuclear Information System (INIS)

    Braby, L.A.; Nelson, J.M.; Metting, N.F.

    1988-01-01

    At very low doses the damage-interaction mechanism is responsible for very little lethal or potentially lethal damage, and repair of the latter should essentially disappear. An alternative model suggests that potentially lethal damage is either repaired with a constant half time or misrepaired at a rate which is proportional to the square of the damage concentration. In this case, as the dose decreases, the probability of misrepair decreases faster than the probability of repair, and repair becomes a more pronounced feature of the cell response. Since the consequence of unrepaired damage is an important question in determining the effects of low doses of radiation delivered at low dose rates, we have attempted to determine which of these two types of models is consistent with the response of plateau-phase CHO cells. In the earlier experiments, there was no indication of repair after a 50-rad exposure with a 24-hour split dose or plating delay; in fact, immediate plating resulted in survival slightly above control and delayed plating in survival slightly below the control value

  10. Simulation experiment on total ionization dose effects of linear CCD

    International Nuclear Information System (INIS)

    Tang Benqi; Zhang Yong; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2004-01-01

    We carry out the ionization radiation experiment of linear CCDs operated in unbiased, biased, biased and driven mode respectively by Co-60 γ source with our self-designed test system, and offline test the Dark signal and Saturation voltage and SNR varied with total dose for TCD132D, and get some valuable results. On the basis of above work, we set forth a primary experiment approaches to simulate the total dose radiation effects of charge coupled devices. (authors)

  11. Clinical picture of delayed radiation effects in the skin

    International Nuclear Information System (INIS)

    Hundeiker, M.

    1987-01-01

    Chronic radiation injuries of the skin develop over years or decades. Gradually increasing atrophy, sclerosis, telangiectasis, possibly - in highly exposed parts of the skin - keratosis due to radiation ulcers, carcinomas and basilomas occur after a latency period of decades, not so much in X-ray-injured skin after tumour therapy as in diffusely altered X-ray-injured skin after multiple exposure to low doses. Radiotherapy is indispensable, but like other effective methods of treatment it requires stringent indications, accurate execution and careful after-treatment. (TRV) [de

  12. Low-dose biplanar skeletal survey versus digital skeletal survey in multiple myeloma

    International Nuclear Information System (INIS)

    Boutry, Nathalie; Dutouquet, Bastien; Cotten, Anne; Leleu, Xavier; Vieillard, Marie-Helene; Duhamel, Alain

    2013-01-01

    To evaluate the low-dose biplanar (LDB) skeletal survey (SS) for the assessment of focal bone involvement in patients with multiple myeloma (MM) as compared with digital SS and to compare the two techniques in terms of image quality, patient comfort and radiation exposure. Fifty-six consecutive patients with newly diagnosed or first relapsed MM underwent LDB and digital SS on the same day. These were assessed by two radiologists for the detection of focal bone lesions. In the case of discordance, whole-body MR imaging was performed. Image quality, patient comfort and radiation dose were also assessed. Fifty-six patients (M:30, F:26, mean age, 62 years) with newly diagnosed (n = 21) or first relapse MM (n = 35) were enrolled. A total of 473 bone lesions in 46 patients (82 %) were detected. Out of that total, digital SS detected significantly more lesions than LDB SS (451 [95.35 %] versus 467 [98.73 %]), especially in osteopenic and obese patients. Overall patient satisfaction was greater with LDB SS (48.6 %) compared with digital SS (2.7 %). The radiation dose was significantly reduced (by a factor of 7.8) with the LDB X-ray device. Low-dose biplanar skeletal surveys cannot replace digital SS in all patients suffering from multiple myeloma. (orig.)

  13. Low-dose biplanar skeletal survey versus digital skeletal survey in multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Boutry, Nathalie [University Hospital of Jeanne de Flandre and University of Lille 2, Departments of Pediatric and Musculoskeletal Imaging, Lille (France); University Hospital of Jeanne de Flandre and University of Lille 2, Department of Pediatric Imaging, Lille (France); Hopital Jeanne de Flandre, Service de Radiopediatrie, Lille (France); Dutouquet, Bastien; Cotten, Anne [University Hospital of Roger Salengro and University of Lille 2, Department of Musculoskeletal Imaging, Lille (France); Leleu, Xavier [University Hospital of Claude Huriez and University of Lille 2, Clinical Hematology Department, Lille (France); Vieillard, Marie-Helene [University Hospital of Roger Salengro and University of Lille 2, Rheumatology Department, Lille (France); Duhamel, Alain [University of Lille 2, Department of Medical Statistics, Lille (France)

    2013-08-15

    To evaluate the low-dose biplanar (LDB) skeletal survey (SS) for the assessment of focal bone involvement in patients with multiple myeloma (MM) as compared with digital SS and to compare the two techniques in terms of image quality, patient comfort and radiation exposure. Fifty-six consecutive patients with newly diagnosed or first relapsed MM underwent LDB and digital SS on the same day. These were assessed by two radiologists for the detection of focal bone lesions. In the case of discordance, whole-body MR imaging was performed. Image quality, patient comfort and radiation dose were also assessed. Fifty-six patients (M:30, F:26, mean age, 62 years) with newly diagnosed (n = 21) or first relapse MM (n = 35) were enrolled. A total of 473 bone lesions in 46 patients (82 %) were detected. Out of that total, digital SS detected significantly more lesions than LDB SS (451 [95.35 %] versus 467 [98.73 %]), especially in osteopenic and obese patients. Overall patient satisfaction was greater with LDB SS (48.6 %) compared with digital SS (2.7 %). The radiation dose was significantly reduced (by a factor of 7.8) with the LDB X-ray device. Low-dose biplanar skeletal surveys cannot replace digital SS in all patients suffering from multiple myeloma. (orig.)

  14. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    Energy Technology Data Exchange (ETDEWEB)

    Hattangadi, Jona A. [Harvard Radiation Oncology Program, Boston, MA (United States); Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Freer, Phoebe [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Lawenda, Brian [21st Century Oncology, Las Vegas, NV (United States); Alm El-Din, Mohamed A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Department of Clinical Oncology, Tanta University Hospital, Tanta (Egypt); Gadd, Michele A.; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2012-07-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall's tau ({tau}{sub {beta}}) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4-14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome ({tau}{sub {beta}} 0.6, p < .0001), lower patient satisfaction ({tau}{sub {beta}} 0.5, p < .001), and worse fibrosis ({tau}{sub {beta}} 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias {>=}1 cm{sup 2}. Grade 3-4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose ({tau}{sub {beta}} 0.3-0.5, p {<=} .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence

  15. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    International Nuclear Information System (INIS)

    Hattangadi, Jona A.; Powell, Simon N.; MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek; Freer, Phoebe; Lawenda, Brian; Alm El-Din, Mohamed A.; Gadd, Michele A.; Smith, Barbara L.; Taghian, Alphonse G.

    2012-01-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall’s tau (τ β ) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4–14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome (τ β 0.6, p β 0.5, p β 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias ≥1 cm 2 . Grade 3–4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose (τ β 0.3–0.5, p ≤ .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence-free survival, and overall survival rate was 85% (95% confidence interval, 70–97%), 72% (95% confidence interval, 54–86%), and 87% (95

  16. High dose rate versus low dose rate interstitial radiotherapy for carcinoma of the floor of mouth

    International Nuclear Information System (INIS)

    Inoue, Takehiro; Inoue, Toshihiko; Yamazaki, Hideya; Koizumi, Masahiko; Kagawa, Kazufumi; Yoshida, Ken; Shiomi, Hiroya; Imai, Atsushi; Shimizutani, Kimishige; Tanaka, Eichii; Nose, Takayuki; Teshima, Teruki; Furukawa, Souhei; Fuchihata, Hajime

    1998-01-01

    Purpose: Patients with cancer of the floor of mouth are treated with radiation because of functional and cosmetic reasons. We evaluate the treatment results of high dose rate (HDR) and low dose rate (LDR) interstitial radiation for cancer of the floor of mouth. Methods and Materials: From January 1980 through March 1996, 41 patients with cancer of the floor of mouth were treated with LDR interstitial radiation using 198 Au grains, and from April 1992 through March 1996 16 patients with HDR interstitial radiation. There were 26 T1 tumors, 30 T2 tumors, and 1 T3 tumor. For 21 patients treated with interstitial radiation alone, a total radiation dose of interstitial therapy was 60 Gy/10 fractions/6-7 days in HDR and 85 Gy within 1 week in LDR. For 36 patients treated with a combination therapy, a total dose of 30 to 40 Gy of external radiation and a total dose of 48 Gy/8 fractions/5-6 days in HDR or 65 Gy within 1 week in LDR were delivered. Results: Two- and 5-year local control rates of patients treated with HDR interstitial radiation were 94% and 94%, and those with LDR were 75% and 69%, respectively. Local control rate of patients treated with HDR brachytherapy was slightly higher than that with 198 Au grains (p = 0.113). For late complication, bone exposure or ulcer occurred in 6 of 16 (38%) patients treated with HDR and 13 of 41 (32%) patients treated with LDR. Conclusion: HDR fractionated interstitial brachytherapy can be an alternative to LDR brachytherapy for cancer of the floor of mouth and eliminate radiation exposure for the medical staff

  17. Determination of skin dose reduction by lead equivalent gloves

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Abd Aziz Mhd Ramli

    2006-01-01

    Radiation protective gloves are always used in medical facilities to protect radiation workers from unnecessary radiation exposure. A study on radiation protection gloves which are produced by local company had been performed by the Medical Physics Group, MINT. The gloves were made of lead equivalent material, as the attenuating element. The gloves were evaluated in term of the percentage of skin dose reduction by using a newly developed procedure and facilities in MINT. Attenuation measurements of the gloves had been carried out using direct beams and scattered radiations of different qualities. TLD rings were fitted on finger phantom; and water phantom were used in the measurement. The result were obtained and analysed based on data supplied by manufacturer. (Author)

  18. Low-dose vaporized cannabis significantly improves neuropathic pain.

    Science.gov (United States)

    Wilsey, Barth; Marcotte, Thomas; Deutsch, Reena; Gouaux, Ben; Sakai, Staci; Donaghe, Haylee

    2013-02-01

    We conducted a double-blind, placebo-controlled, crossover study evaluating the analgesic efficacy of vaporized cannabis in subjects, the majority of whom were experiencing neuropathic pain despite traditional treatment. Thirty-nine patients with central and peripheral neuropathic pain underwent a standardized procedure for inhaling medium-dose (3.53%), low-dose (1.29%), or placebo cannabis with the primary outcome being visual analog scale pain intensity. Psychoactive side effects and neuropsychological performance were also evaluated. Mixed-effects regression models demonstrated an analgesic response to vaporized cannabis. There was no significant difference between the 2 active dose groups' results (P > .7). The number needed to treat (NNT) to achieve 30% pain reduction was 3.2 for placebo versus low-dose, 2.9 for placebo versus medium-dose, and 25 for medium- versus low-dose. As these NNTs are comparable to those of traditional neuropathic pain medications, cannabis has analgesic efficacy with the low dose being as effective a pain reliever as the medium dose. Psychoactive effects were minimal and well tolerated, and neuropsychological effects were of limited duration and readily reversible within 1 to 2 hours. Vaporized cannabis, even at low doses, may present an effective option for patients with treatment-resistant neuropathic pain. The analgesia obtained from a low dose of delta-9-tetrahydrocannabinol (1.29%) in patients, most of whom were experiencing neuropathic pain despite conventional treatments, is a clinically significant outcome. In general, the effect sizes on cognitive testing were consistent with this minimal dose. As a result, one might not anticipate a significant impact on daily functioning. Published by Elsevier Inc.

  19. Low Dose Vaporized Cannabis Significantly Improves Neuropathic Pain

    Science.gov (United States)

    Wilsey, Barth; Marcotte, Thomas D.; Deutsch, Reena; Gouaux, Ben; Sakai, Staci; Donaghe, Haylee

    2013-01-01

    We conducted a double-blind, placebo-controlled, crossover study evaluating the analgesic efficacy of vaporized cannabis in subjects, the majority of whom were experiencing neuropathic pain despite traditional treatment. Thirty-nine patients with central and peripheral neuropathic pain underwent a standardized procedure for inhaling either medium dose (3.53%), low dose (1.29%), or placebo cannabis with the primary outcome being VAS pain intensity. Psychoactive side-effects, and neuropsychological performance were also evaluated. Mixed effects regression models demonstrated an analgesic response to vaporized cannabis. There was no significant difference between the two active dose groups’ results (p>0.7). The number needed to treat (NNT) to achieve 30% pain reduction was 3.2 for placebo vs. low dose, 2.9 for placebo vs. medium dose, and 25 for medium vs. low dose. As these NNT are comparable to those of traditional neuropathic pain medications, cannabis has analgesic efficacy with the low dose being, for all intents and purposes, as effective a pain reliever as the medium dose. Psychoactive effects were minimal and well-tolerated, and neuropsychological effects were of limited duration and readily reversible within 1–2 hours. Vaporized cannabis, even at low doses, may present an effective option for patients with treatment-resistant neuropathic pain. PMID:23237736

  20. Low dose epidemiologic studies

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this chapter the BEIR committee has reviewed low-dose irradiation studies since the BEIR III report. They have considered the carcinogenic effectiveness of low-LET in populations exposed to radiation from a number of different sources: diagnostic radiography; fallout from nuclear weapons testing; nuclear installations; radiation in the workplace and high levels of natural background radiation

  1. Low dose irradiation facilitates hepatocellular carcinoma genesis involving HULC.

    Science.gov (United States)

    Li, Yuan; Ge, Chang; Feng, Guoxing; Xiao, Huiwen; Dong, Jiali; Zhu, Changchun; Jiang, Mian; Cui, Ming; Fan, Saijun

    2018-03-24

    Irradiation exposure positive correlates with tumor formation, such as breast cancer and lung cancer. However, whether low dose irradiation induces hepatocarcinogenesis and the underlying mechanism remain poorly defined. In the present study, we reported that low dose irradiation facilitated the proliferation of hepatocyte through up-regulating HULC in vitro and in vivo. Low dose irradiation exposure elevated HULC expression level in hepatocyte. Deletion of heightened HULC erased the cells growth accelerated following low dose irradiation exposure. CDKN1, the neighbor gene of HULC, was down-regulated by overexpression of HULC following low dose irradiation exposure via complementary base pairing, resulting in promoting cell cycle process. Thus, our findings provide new insights into the mechanism of low dose irradiation-induced hepatocarcinogenesis through HULC/CDKN1 signaling, and shed light on the potential risk of low dose irradiation for the development of hepatocellular carcinoma in pre-clinical settings. © 2018 Wiley Periodicals, Inc.

  2. A Comparison of Clinical Outcomes with Regular- and Low-Profile Totally Implanted Central Venous Port Systems

    International Nuclear Information System (INIS)

    Teichgraeber, Ulf Karl-Martin; Steitparth, Florian; Cho, Chie Hee; Benter, Thomas; Gebauer, Bernhard

    2009-01-01

    The purpose of this study was to evaluate whether low-profile totally implanted central venous port systems can reduce the late complication of skin perforation. Forty patients (age, 57 ± 13 years; 22 females, 18 males) were randomized for the implantation of a low-profile port system, and another 40 patients (age, 61 ± 14 years; 24 females, 16 males) received a regular port system as control group. Indications for port catheter implantation were malignant disease requiring chemotherapy. All port implantations were performed in the angiography suite using sonographically guided central venous puncture and fluoroscopic guidance of the catheter placement. Procedure time, number of complications (procedure-related immediate, early, and late complications), and number of explantations were assessed. Follow-up was performed for 6 months. All port implantations were successfully completed in both study groups. There were two incidents of skin perforation observed in the control group. One skin perforation occurred 13 weeks and the other 16 weeks after port implantation (incidence, 5%) in patients with regular-profile port systems. Two infections were observed, one port infection in each study group. Both infections were characterized as catheter-related infections (infection rate: 0.15 catheter-related infections per 1000 catheter days). In conclusion, low-profile port systems can be placed as safely as traditional chest ports and reduce the risk of developing skin perforations, which occurs when the port system is too tight within the port pocket.

  3. Low-dose effect on blood chromosomes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Linear dose response relationships of biological effects at low doses are experimentally and theoretically disputed. Structural chromosome aberration rates at doses ranging from normal background exposures up to about 30 mGy/yr in vivo and up to 50 mGy in vitro were investigated by the author and other scientists. Results are comparable and dose effect curves reveal following shapes; within the normal burden and up to 2-10 mGy/yr in vivo rates they increase sharply to about 3-6 times the lowest values; subsequent doses either from natural, occupational or accidental exposures up to about 30 mGy/yr yield either constant aberration rates, assuming a plateau, or perhaps even a decrease. In vitro experiments show comparable results up to 50 mGy. Other biological effects seem to have similar dose dependencies. The non-linearity of low-dose effects can be explained by induction of repair enzymes at certain damage to the DNA. This hypothesis is sustained experimentally and theoretically by several papers in literature. (author). 14 refs., 5 figs

  4. Dose per unit area - a study of elicitation of nickel allergy

    DEFF Research Database (Denmark)

    Fischer, Louise Arup; Menné, Torkil; Johansen, Jeanne Duus

    2007-01-01

    BACKGROUND: Experimental sensitization depends upon the amount of allergen per unit skin area and is largely independent of the area size. OBJECTIVES: This study aimed at testing if this also applies for elicitation of nickel allergy. PATIENTS/METHODS: 20 nickel allergic individuals were tested...... with a patch test and a repeated open application test (ROAT). Nickel was applied on small and large areas. The varying parameters were area, total dose and dose per unit area. RESULTS: In the patch test, at a low concentration [15 microg nickel (microg Ni)/cm(2)], there were significantly higher scores...... on the large area with the same dose per area as the small area. At higher concentrations of nickel, no significant differences were found. In the ROAT at low concentration (6.64 microg Ni/cm(2)), it was found that the latency period until a reaction appeared was significantly shorter on the large area...

  5. Risk of radiation-induced cancer at low doses and low dose rates for radiation protection purposes

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this report is to provide an updated, comprehensive review of the data available for assessing the risk of radiation-induced cancer for radiation protection purposes. Particular emphasis is placed on assessing risks at low doses and low dose rates. The review brings together the results of epidemiological investigations and fundamental studies on the molecular and cellular mechanisms involved in radiation damage. Additionally, this information is supplemented by studies with experimental animals which provide further guidance on the form of the dose-response relationship for cancer induction, as well as on the effect of dose rate on the tumour yield. The emphasis of the report is on cancer induction resulting from exposure to radiations with a low linear energy transfer (LET). The work was performed under contract for the Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses, Paris, France, whose agreement to publish is gratefully ackowledged. It extends the advice on radiation risks given in Documents of the NRPB, 4 No. 4 (1993). (Author)

  6. Radiation Therapy in Elderly Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2008-06-15

    To evaluate the long term results (local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma (10 patients), basal cell carcinoma (3 patients), verrucous carcinoma (1 patient) and skin adnexal origin carcinoma (1 patient). The most common tumor location was the head (13 patients). The mean tumor diameter was 4.9 cm (range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from 50{approx}80 Gy (mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. The local control rates were 100% (15/15). In addition, the five year disease free survival rate (5YDFS) was 80% and twelve patients (80%) had no recurrence and skin cancer recurrence occurred in 3 patients (20%). Three patients have lived an average of 90 months (68{approx}120 months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin

  7. In vivo transcriptome modulation after low dose of high energy neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Amendola, R; Fratini, E; Piscitelli, M; Sallustio, D E [ENEA, BAS BIOTEC MED, Roma (Italy); Angelone, M; Pillon, M [ENEA, FUS TEC, Frascati (Italy); Chiani, F; Licursi, V; Negri, R [Universita La Sapienza, Roma (Italy). Dip. Biologia Cellulare e dello Sviluppo

    2007-07-01

    Complete text of publication follows. Objective: This project aims to the identification of an hypothetical transcriptome modulation of mouse peripheral blood lymphocytes and skin after exposure to high energy neutron in vivo. Positive candidate genes isolated from mice in in vivo experiments will be selected and evaluated for both radioprotection issues dealing with cosmic ray exposure, and for biomedical issues mainly for low doses and non-cancer effects. Methods: High energy neutron irradiation is performed at the ENEA Frascati, neutron generator facilities (FNG), specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} n/s 14 MeV neutrons via the D-T nuclear reaction. The dose-rate applied for this study is of 0.7 cGy/min. The functional genomic approach has been performed on six animals for each experimental points: un-irradiated; 20 cGy, 6 hours and 24 hours delayed time after exposure. Preliminarily, a pool of total RNA is evaluated on commercial micro-arrays containing large collections of mus musculus cDNAs. Statistical filtering and functional clustering of the data is carried out using dedicated software packages. Results: Candidate genes are selected on the basis of responsiveness to 20 cGy of exposure, with a defined temporal regulation. We plan to organize a systematic screen focused on genes responding to our selection criteria, in in vivo mouse experiments, and correlate their differential expression to the human counterparts. A specific cross species database will be created with all the functional information available in standardized format (MIAME: minimal information about micro-arrays experiments). Conclusions: A lack of information on in vivo experiments is still evident for low doses exposure, especially for neutron of cosmic interest. Individual susceptibility, extensive number of animals to be processed, lack of standardization methodologies are among problems to be solved

  8. Minimal erythema dose and minimal melanogenesis dose relate better to objectively measured skin type than to Fitzpatricks skin type

    DEFF Research Database (Denmark)

    Wulf, Hans Christian; Philipsen, Peter A; Ravnbak, Mette H

    2010-01-01

    Fitzpatrick skin type (FST I-IV) is a subjective expression of ultraviolet (UV) sensitivity based on erythema and tanning reactivity after a single exposure. Pigment protection factor (PPF) is an objective measurement of skin sensitivity in all skin types after a single exposure....

  9. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    Science.gov (United States)

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures. Copyright © 2015. Published by Elsevier B.V.

  10. Total dose meter development

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1986-09-01

    This report describes an alarming ''pocket'' monitor/dosimeter, based on a tissue-equivalent proportional counter, that measure both neutron and gamma dose and determines dose equivalent for the mixed radiation field. This report details the operation of the device and provides information on: the necessity for a device to measure dose equivalent in mixed radiation fields; the mathematical theory required to determine dose equivalent from tissue equivalent proportional; the detailed electronic circuits required; the algorithms required in the microprocessor used to calculate dose equivalent; the features of the instrument; program accomplishments and future plans

  11. Skin-sparing Helical Tomotherapy vs 3D-conformal Radiotherapy for Adjuvant Breast Radiotherapy: In Vivo Skin Dosimetry Study

    International Nuclear Information System (INIS)

    Capelle, Lisa; Warkentin, Heather; MacKenzie, Marc; Joseph, Kurian; Gabos, Zsolt; Pervez, Nadeem; Tankel, Keith; Chafe, Susan; Amanie, John; Ghosh, Sunita; Parliament, Matthew; Abdulkarim, Bassam

    2012-01-01

    Purpose: We investigated whether treatment-planning system (TPS)-calculated dose accurately reflects skin dose received for patients receiving adjuvant breast radiotherapy (RT) with standard three-dimensional conformal RT (3D-CRT) or skin-sparing helical tomotherapy (HT). Methods and Materials: Fifty patients enrolled in a randomized controlled trial investigating acute skin toxicity from adjuvant breast RT with 3D-CRT compared to skin-sparing HT, where a 5-mm strip of ipsilateral breast skin was spared. Thermoluminescent dosimetry or optically stimulated luminescence measurements were made in multiple locations and were compared to TPS-calculated doses. Skin dosimetric parameters and acute skin toxicity were recorded in these patients. Results: With HT there was a significant correlation between calculated and measured dose in the medial and lateral ipsilateral breast (r = 0.67, P V50 (1.4% vs 5.9%, respectively; P=.001) but higher skin V40 and skin V30 (71.7% vs 64.0%, P=.02; and 99.0% vs 93.8%, P=.001, respectively) than 3D-CRT plans. Conclusion: The 3D-CRT TPS more accurately reflected skin dose than the HT TPS, which tended to overestimate dose received by 14% in patients receiving adjuvant breast RT.

  12. Cellular sensitivity and low dose-rate recovery in Fanconi anaemia fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Burnet, N.G.; Wurm, R.; Tait, D.M.; Peacock, J.H. (Institute of Cancer Research, Sutton (United Kingdom). Surrey Branch Royal Marsden Hospital, Sutton (United Kingdom))

    1994-06-01

    Fanconi anaemia (FA) is a rare inherited condition characterized by developmental abnormalities and progressive bone marrow failure, which requires bone marrow transplantation for successful treatment. This involves the use of alkylating agents and total body or thoraco-abdominal irradiation. Both chemical clastogens and irradiation cause increased chromosome damage in FA cells compared with controls. In some studies FA fibroblasts have been found to be more radiosensitive than normal. From these data it has been inferred that patients with FA might be more sensitive than normal to radiotherapy. However, increased radiosensitivity of FA fibroblasts has not been a uniform finding. The radiosensitivity of fibroblasts from two FA patients was studied at high and low dose-rate (LDR), and their sensitivity compared with normal strains. Both FA strains fell at the sensitive end of the range, but both demonstrated marked dose-rate sparing, with D[sub 0.01] recovery factors of 1.23 and 1.27, similar to the normal strains. These recovery factors are inconsistent with the suggestion that FA patients are recovery deficient. The data indicate that at least some FA strains are capable of LDR recovery, and imply that these patients would probably have a clinical benefit from fractionated or low dose-rate total body irradiation. (Author).

  13. Cellular sensitivity and low dose-rate recovery in Fanconi anaemia fibroblasts

    International Nuclear Information System (INIS)

    Burnet, N.G.; Wurm, R.; Tait, D.M.; Peacock, J.H.

    1994-01-01

    Fanconi anaemia (FA) is a rare inherited condition characterized by developmental abnormalities and progressive bone marrow failure, which requires bone marrow transplantation for successful treatment. This involves the use of alkylating agents and total body or thoraco-abdominal irradiation. Both chemical clastogens and irradiation cause increased chromosome damage in FA cells compared with controls. In some studies FA fibroblasts have been found to be more radiosensitive than normal. From these data it has been inferred that patients with FA might be more sensitive than normal to radiotherapy. However, increased radiosensitivity of FA fibroblasts has not been a uniform finding. The radiosensitivity of fibroblasts from two FA patients was studied at high and low dose-rate (LDR), and their sensitivity compared with normal strains. Both FA strains fell at the sensitive end of the range, but both demonstrated marked dose-rate sparing, with D 0.01 recovery factors of 1.23 and 1.27, similar to the normal strains. These recovery factors are inconsistent with the suggestion that FA patients are recovery deficient. The data indicate that at least some FA strains are capable of LDR recovery, and imply that these patients would probably have a clinical benefit from fractionated or low dose-rate total body irradiation. (Author)

  14. Single event effects and total ionizing dose effects of typical VDMOSFET devices

    International Nuclear Information System (INIS)

    Lou Jianshe; Cai Nan; Liu Jiaxin; Wu Qinzhi; Wang Jia

    2012-01-01

    In this work, single event effects and total ionizing dose effects of typical VDMOSFET irradiated by 60 Co γ-rays and 252 Cf source were studied. The single event burnout and single event gate rupture (SEB/SEGR) effects were investigated, and the relationship between drain-source breakdown voltage and ionizing dose was obtained. The results showed that the VDMOSFET devices were sensitive to SEB and SEGR, and measures to improve their resistance to SEB and SEGR should be considered seriously for their space applications. The drain-source breakdown voltage was sensitive to total ionizing dose effects as the threshold voltage. In assessing the devices' resistance to the total ionizing dose effects, both the threshold voltage and the drain-source breakdown voltage should be taken into account. (authors)

  15. Pocket total dose meter

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; Endres, G.W.R.

    1984-10-01

    Laboratory measurements have demonstrated that it is possible to simultaneously measure absorbed dose and dose equivalent using a single tissue equivalent proportional counter. Small, pocket sized instruments are being developed to determine dose equivalent as the worker is exposed to mixed field radiation. This paper describes the electronic circuitry and computer algorithms used to determine dose equivalent in these devices

  16. Response of pig skin to single doses of irradiation from strontium-90 sources of differing surface area

    Energy Technology Data Exchange (ETDEWEB)

    Hopewell, J.W.; Hamlet, R.; Peel, D. (Churchill Hospital, Oxford (UK). Research Inst.)

    1985-08-01

    In the present investigations the effects of irradiation of pig skin with 22.5 and 40 mm diameter /sup 90/Sr plaques are compared. In addition to comparing peak epithelial reactions, comparisons were also made as to the healing times for comparable peak skin reactions for each field size. The ED/sub 50/ values (dose to produce moist desquamation in 50% of the skin fields) 26.5 +- 1.5 Gy for the 22.5 diameter field was not significantly different from that obtained for the larger 40 mm diameter source (ED/sub 50/ 29.0 +- 1.5 Gy).

  17. Reconstruction of segmented human voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo de Tarso D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Reis, Gabriela; Furnari, Laura

    2009-01-01

    High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic anatomical models, which after being coupled to these codes, may drive to better assessments of dose distributions on the patient. These anatomical models constructed from medical images are known as voxel phantoms (voxel - volume element of an image). Present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of the current medical images, once its thickness stands below the resolution of the pixels that form the image. This paper proposes the voxel phantom reconstruction by subdividing and segmenting the elements that form the phantom. It is done in order to better discriminate the skin by assigning it more adequate thickness and actual location, allowing a better dosimetric evaluation of the skin. This task is an important issue in many radiotherapy procedures. Particular interest lays in Total Skin Irradiation (TSI) with electron beams, where skin dose evaluation stands as the treatment key point of the whole body irradiation. This radiotherapy procedure is under implementation at the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  18. Effect of radiation on rat skin collagen

    International Nuclear Information System (INIS)

    Nogami, Akira

    1980-01-01

    I. Albino male rats were exposed for 16 weeks to ultraviolet light (UVL) which has principle emission at 305 nm. There were no significant changes between control and UVL-exposed skins in the total hydroxyproline content. However, a little increase of citrate-soluble collagen, a little decrease of insoluble collagen and a decrease of aldehyde content in soluble collagen were observed with UVL exposure. Total acid glycosaminoglycan in skin increased 30% or more from control. These results show that the effect of UVL on rat skin in vivo was merely inflammation phenomenon and that the 'aging' process of skin was not caused in our experimental conditions. II. The effects of radiation on the solubility of rat skin collagen were examined under various conditions. 1) When intact rats were exposed to a single dose of radiation from 43 kVp X-ray source, the solubility in skin collagen did not change at 4,000 R dosage, while in irradiation of 40,000 R a decreased solubility in collagen was observed. When rats were given 400 R a week for 12 weeks, there was no changes in the solubility of collagen during experimental period. 2) In vitro exposure to skins, an irradiation of 40,000 R from 43 kVp X-ray source caused a decrease in the solubility of collagen. While an irradiation of 40,000 R of dosage from 200 kVp X-ray source resulted in the increase in soluble collagen and the decrease in insoluble collagen. 3) When intact rats were given a single dose of 40,000 R from 60 Co- gamma -ray, insoluble collagen decreased in both young and adult rats. Similar changes in collagen solubility were observed in vitro gamma -irradiation. (author)

  19. Origins of Total-Dose Response Variability in Linear Bipolar Microcircuits

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.R.; Schrimpf, R.D.; Fleetwood, D.M.; Pease, R.L.; Shaneyfelt, Marty R.; Turflinger, T.; Krieg, J.F.; Maher, M.C.

    2000-01-01

    LM1ll voltage comparators exhibit a wide range of total-dose-induced degradation. Simulations show this variability may be a natural consequence of the low base doping of the substrate PNP (SPNP) input transistors. Low base doping increases the SPNP's collector to base breakdown voltage, current gain, and sensitivity to small fluctuations in the radiation-induced oxide defect densities. The build-up of oxide trapped charge (N ot ) and interface traps (N it ) is shown to be a function of pre-irradiation bakes. Experimental data indicate that, despite its structural similarities to the LM111, irradiated input transistors of the LM124 operational amplifier do not exhibit the same sensitivity to variations in pre-irradiation thermal cycles. Further disparities in LM111 and LM124 responses may result from a difference in the oxide defect build-up in the two part types. Variations in processing, packaging, and circuit effects are suggested as potential explanations

  20. Lateral topography for reducing effective dose in low-dose chest CT.

    Science.gov (United States)

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.