WorldWideScience

Sample records for low-dose spiral ct

  1. Clinical application of low-dose spiral CT for orthodontics

    International Nuclear Information System (INIS)

    Xie Na; Gan Yungen; Shu Huang; Lin FeiFei; Li Zhiyong; Sun Jie

    2009-01-01

    Objective: To determine the effect of reducing the value of mA or kV on the image quality and the radiation dose of the patients undergoing low-dose spiral CT for orthodontics. Methods: Thirty patients were divided into three groups, each group has 10 patients. They were group 1 (80 kV and 200 mA), group 2 (120 kV and 80 mA), group 3 (120 kV and 200 mA) The volume CT dose index (CTDI) was recorded and the average dose-length produce (DLP) was calculated in three groups,respectively. Image quality of three groups were compared and scored by two radiologists, and the results were statistically analysed. Results: The CTDI and DLP of 80 kV group (group 2) were 8.7 mGy and (36.80 ± 3.60) mGy · cm, respectively, those of 80 mA group (group 3) were 19.6 mGy and (82.14 ± 7.18) mGy · cm, respectively, and those of conventional-dose group (group 1) were 19.6 mGy and (82.14 ± 7.18) mGy · cm, respectively. There was no significant difference among three groups in diagnostic image quality. Conclusions: Low-dose spiral CT for orthodontics, especially the low-kV scan, may decrease the radiation exposure and guarantee the image quality. (authors)

  2. [Application of Low Dose Spiral CT in Diagnosing Impacted Teeth in Children and Adolescents].

    Science.gov (United States)

    Wang, Meng-tian; Li, Xue-sheng; Li, Kai-ming; Bao, Li; Ning, Gang

    2015-09-01

    [ABSTRACT] To determine the value of low dose spiral CT scanning in diagnosing impacted teeth of children and adolescents. A total of 153 children and adolescents with confirmed impacted teeth in West China Second University Hospital, Sichuan University were enrolled in this study. They were divided into 5 groups according to the different spiral CT scan parameters (tube current time product, scanning thickness and collimation value): Group A (n=30, 330 mAs, 6 X 0. 75 mm and 3. 0 mm), Group B (n=30, 140 mAs, 6 X 0. 75 mm and 3. 0 mm), Group C (n=30, 80 mAs, 6 X 0. 75 mm and 3. 0 mm), Group D (n=31, 80 mAs, 6 X 1. 50 mm and 5. 0 mm), and Group E (n=32, 50 mAs, 6 X 1. 50 mm and 5. 0 mm). There were no significant differences in general clinical features (P>0. 05) among the participants of the five groups. The phantoms were used to measure spatial resolution and contrast resolution of the scan images. Dose length product (DLP) was recorded during CT scanning for calculating effective dose (ED) of exposure. The quality of images was evaluated using a list of quality scoring criteria. (1) Under 330, 140, 80, 80 and 50 mAs, the images had a spatial resolution of 1.0 mm, with contrast resolution of 2. 0, 3. 0, 4. 5, 4. 5 and 6. 0 mm, respectively. (2) Significant differences in ED values were found among the five groups (F=1 064. 119, P=0. 000) and between every two of those groups (P0. 05). The diagnostic results of the spiral CT were consistent with those of orthodontic surgery. Low dose spiral CT scanning can meet the image quality requirements for diagnosing impacted teeth, minimizing radiation exposure effectively.

  3. Detection of lung nodules with low-dose spiral CT: comparison with conventional dose CT

    International Nuclear Information System (INIS)

    Zhu Tianzhao; Tang Guangjian; Jiang Xuexiang

    2004-01-01

    Objective: To investigate the effect of reducing scan dose on the lung nodules detection rate by scanning a lung nodule model at low dose and conventional dose. Methods: The lung and the thoracic cage were simulated by using a cyst filled with water surrounded by a roll bandage. Flour, butter, and paraffin wax were mixed together by a certain ratio to simulate lung nodules of 10 mm and 5 mm in diameter with the CT values ranging from -10 to 50 HU. Conventional-dose scan (240 mA, 140 kV) and low-dose scan of three different levels (43 mA, 140 kV; 50 mA, 120 kV; 75 mA, 80 kV) together with three different pitches (1.0, 1.5, and 2.0) were performed. The images of the simulated nodules were combined with the CT images of a normal adult's upper, middle, and inferior lung. Three radiologists read the images and the number of the nodules they detected including both the real ones and the false-positive ones was calculated to investigate weather there was any difference among different doses, pitch groups, and different locations. Results: The detection rate of the 10 mm and 5 mm nodules was 100% and 89.6% respectively by the low-dose scan. There was no difference between low-dose and conventional-dose CT (χ 2 =0.6907, P>0.70). The detection rate of 5 mm nodules declined when large pitch was used. Conclusion: The detection rates of 10 mm and 5 mm nodules had no difference between low-dose CT and conventional-dose CT. As the pitch augmented, the detection rate for the nodules declined

  4. Relationship of radiation dose and spiral pitch for multi-slice CT system

    International Nuclear Information System (INIS)

    Song Shaojuan; Wang Wei; Liu Chuanya

    2006-01-01

    Objective: To study the relations of radiation dose and spiral pitch for multi-slice CT system. Methods: 16 mm dose phantom with solidose 300/400 pen-style ion chamber inserted into each of five holes in turn was scanned with different spiral pitch by LightSpeed 16-slice CT and Sensation 16-slice and 64-slice CT and radiation dose. Results: CTDI vol of axial scan and spiral scan for the three types of CT system are: (1) LightSpeed 16-slice CT: 28.9 (axial), 51.4 (pitch 0.562), 30.8 (pitch 0.938) and 16.5 ( pitch 1.75 ); (2) Sensation 16-slice CT: 41.2(axial) and 40.3(pitch 0.5) ,41.5(pitch 1) and 43.2(pitch 1.5); (3) Sensation 64- slice CT: 41.2(axial) and 40.3(pitch 0.5),41.5(pitch 1),43.2(pitch 1.5). Conclusions: For LightSpeed 16-slice CT, the measured radiation dose decreased with the increase of spiral pitch, the image quality could keep constant only if we increase mAs. While for Sensation 16-slice and 64-slice CT system, the measured radiation dose was identical for different pitch, and the image quality was identical because of the use of mAs auto control technique The mAs should be adjusted in different way according to the type of CT system when the pitch is changed in daily operation. (authors)

  5. Screenings of lung cancer with low dose spiral CT: results of a three year pilot study and design of the randomised controlled trial Italung-CT

    International Nuclear Information System (INIS)

    Picozzi, Giulia; Paci, Enrico; Lopes Pegna, Andrea

    2005-01-01

    Purpose: To report the results of a three-year observational pilot study of lung cancer screening with low dose computed tomography (CT) and to present the study design of a randomised clinical trial named as Italung CT. Materials and methods: Sixty (47 males and 13 females, mean age 64±4.5 years) heavy smokers (at least 20 packs-year) underwent three low-dose spiral CT screening tests one year apart on a single slice or multislice CT scanner. Indeterminate nodules were managed according to the recommendations of the Early Lung Cancer Action Project. Results: Indeterminate nodules were observed in 33 (55%) of the subjects (60% at the baseline screening test, 24% at the first annual test and 16% at the second annual test). The size of the largest indeterminate nodule was [it

  6. Low dose CT in early lung cancer diagnosis: prevalence data

    International Nuclear Information System (INIS)

    Cardinale, Luciano; Cortese, Giancarlo; Ferraris, Fabrizio; Perotto, Fabio; Fava, Cesare; Borasio, Piero; Dogliotti, Luigi; Novello, Silvia; Scagliotti, Giorgio

    2005-01-01

    Purpose. Lung cancer has a high mortality rate and its prognosis largely depends on early detection. We report the prevalence data of the study on early detection of lung cancer with low-dose spiral CT underway at our hospital. Materials and methods. Since the beginning of 2001, 519 asymptomatic volunteers have undergone annual blood tests, sputum tests, urinalyses and low-dose spiral CT. The inclusion criteria were age (55 years old), a history of cigarette smoking and a negative history for previous neoplastic disease. The diagnostic workup varied depending on the size and CT features of the nodules detected. Results. At baseline, the CT scan detected nodules> 5 mm in 22% of subjects; the nodules were single in 42 and multiple in 71. In 53% of cases the findings were completely negative, while in 122 (23.4%) nodules with a diameter [it

  7. Prevalence of emphysematous changes as shown by low-dose spiral CT screening images in 6144 healthy subjects

    International Nuclear Information System (INIS)

    Nawa, Takeshi

    2002-01-01

    We assessed the prevalence of emphysematous changes among healthy workers and retired persons, using subjective evaluations of low-dose spiral CT images obtained during thoracic CT screenings for lung cancer. Among 6144 male participants (50-69 years old; mean age, 57), we detected 686 cases (11.2%) with emphysematous changes. The majority (95.3%) of CT-detected emphysema cases were in current or former smokers, and 169 cases (24.6%) showed significant obstructive impairment. Of 236 cases with emphysematous changes in the internal region (more than 20 mm from the costal margin), 98 (41.5%) had significant obstructive impairment. Smoking was found to be the major risk factor for CT-detected emphysema. Longitudinal observation of the emphysema cases, as well as health care support for cessation of smoking, is very important. (author)

  8. Spiral CT and radiation dose

    International Nuclear Information System (INIS)

    Imhof, H.; Schibany, N.; Ba-Ssalamah, A.; Czerny, C.; Hojreh, A.; Kainberger, F.; Krestan, C.; Kudler, H.; Noebauer, I.; Nowotny, R.

    2003-01-01

    Recent studies in the USA and Europe state that computed tomography (CT) scans compromise only 3-5% of all radiological exams, but they contribute 35-45% of total radiation dose to the patient population. These studies lead to concern by several public authorities. Basis of CT-dose measurements is the computed tomography dose index (CTDI), which was established 1981. Nowadays there are several modifications of the CTDI values, which may lead to confusion. It is suggested to use the standardized CTDI-100 w. value together with the dose length product in all CT-examinations. These values should be printed on all CT-images and allows an evaluation of the individualized patient dose. Nowadays, radiologist's aim must be to work at the lowest maximal diagnostic acceptable signal to noise ratio. To decrease radiation dose radiologist should use low kV and mA, but high pitches. Newly developed CT-dose-reduction soft-wares and filters should be installed in all CT-machines. We should critically compare the average dose used for a specific examination with the reference dose used in this country and/or Europe. Greater differences should caution the radiologist. Finally, we as radiologists must check very carefully all indications and recommend alternative imaging methods. But we have also to teach our customers--patients and medical doctors who are non-radiologists--that a 'good' image is not that which show all possible information, but that which visualize 'only' the diagnostic necessary information

  9. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    International Nuclear Information System (INIS)

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Groden, Christoph; Henzler, Thomas

    2016-01-01

    •Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose.•Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT.•State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean

  10. Measurement error of spiral CT volumetry: influence of low dose CT technique

    International Nuclear Information System (INIS)

    Chung, Myung Jin; Cho, Jae Min; Lee, Tae Gyu; Cho, Sung Bum; Kim, Seog Joon; Baik, Sang Hyun

    2004-01-01

    To examine the possible measurement errors of lung nodule volumetry at the various scan parameters by using a small nodule phantom. We obtained images of a nodule phantom using a spiral CT scanner. The nodule phantom was made of paraffin and urethane and its real volume was known. For the CT scanning experiments, we used three different values for both the pitch of the table feed, i.e. 1:1, 1:15 and 1:2, and the tube current, i.e. 40 mA, 80 mA and 120 mA. All of the images acquired through CT scanning were reconstructed three dimensionally and measured with volumetry software. We tested the correlation between the true volume and the measured volume for each set of parameters using linear regression analysis. For the pitches of table feed of 1:1, 1:1.5 and 1:2, the mean relative errors were 23.3%, 22.8% and 22.6%, respectively. There were perfect correlations among the three sets of measurements (Pearson's coefficient = 1.000, p< 0.001). For the tube currents of 40 mA, 80 mA and 120 mA, the mean relative errors were 22.6%, 22.6% and 22.9%, respectively. There were perfect correlations among them (Pearson's coefficient=1.000, p<0.001). In the measurement of the volume of the lung nodule using spiral CT, the measurement error was not increased in spite of the tube current being decreased or the pitch of table feed being increased

  11. Dose reduction in spiral CT angiography of thoracic outlet syndrome by anatomically adapted tube current modulation

    International Nuclear Information System (INIS)

    Mastora, I.; Remy-Jardin, M.; Remy, J.; Suess, C.; Scherf, C.; Guillot, J.P.

    2001-01-01

    The aim of this study was to evaluate dose reduction in spiral CT angiography of the thoracic outlet by on-line tube-current control. Prospectively, 114 patients undergoing spiral CT angiography of the subclavian artery for thoracic outlet arterial syndromes were evaluated with and without tube-current modulation at the same session (scanning parameters for the two successive angiograms, one in the neutral position and one after the postural maneuver): 140 kV; 206 mA; scan time 0.75 s; collimation 3 mm; pitch = (1). The dose reduction system was applied in the neutral position in the first 92 consecutive patients and after postural maneuver in the remaining 22 consecutive patients. Dose reduction and image quality were analyzed in the overall study group (group 1; n = 114). The influence of the arm position was assessed in 44 of the 114 patients (group 2), matched by the transverse diameter of the upper thorax. The mean dose reduction was 33 % in group 1 (range 22-40 %) and 34 % in group 2 (range 26-40 %). In group 2 the only difference in image quality was a significantly higher frequency of graininess on low-dose scans compared with reference scans whatever the patient's arm position, graded as minimal in 38 of the 44 patients (86 %). When the low-dose technique was applied after postural maneuver in group 2: (a) the mean dose reduction was significantly higher (35 vs 32 % in the neutral position; p = 0.006); (b) graininess was less frequent (82 vs 91 % in the neutral position); and (c) the percentage of graininess graded as minimal was significantly higher (83 vs 70 % in the neutral position; p = 0.2027). On-line tube-current modulation enables dose reduction on high-quality, diagnostic spiral CT angiograms of the thoracic outlet and should be applied during data acquisition in the neutral position and after postural maneuver for optimal use. (orig.)

  12. Dose reduction in spiral CT angiography of thoracic outlet syndrome by anatomically adapted tube current modulation

    Energy Technology Data Exchange (ETDEWEB)

    Mastora, I.; Remy-Jardin, M.; Remy, J. [Dept. of Radiology, University Center Hospital Calmette, Lille (France); Medical Research Group, Lille (France); Suess, C.; Scherf, C. [Siemens Medical Systems, Forcheim (Germany); Guillot, J.P. [Dept. of Radiology, University Center Hospital Calmette, Lille (France)

    2001-04-01

    The aim of this study was to evaluate dose reduction in spiral CT angiography of the thoracic outlet by on-line tube-current control. Prospectively, 114 patients undergoing spiral CT angiography of the subclavian artery for thoracic outlet arterial syndromes were evaluated with and without tube-current modulation at the same session (scanning parameters for the two successive angiograms, one in the neutral position and one after the postural maneuver): 140 kV; 206 mA; scan time 0.75 s; collimation 3 mm; pitch = (1). The dose reduction system was applied in the neutral position in the first 92 consecutive patients and after postural maneuver in the remaining 22 consecutive patients. Dose reduction and image quality were analyzed in the overall study group (group 1; n = 114). The influence of the arm position was assessed in 44 of the 114 patients (group 2), matched by the transverse diameter of the upper thorax. The mean dose reduction was 33 % in group 1 (range 22-40 %) and 34 % in group 2 (range 26-40 %). In group 2 the only difference in image quality was a significantly higher frequency of graininess on low-dose scans compared with reference scans whatever the patient's arm position, graded as minimal in 38 of the 44 patients (86 %). When the low-dose technique was applied after postural maneuver in group 2: (a) the mean dose reduction was significantly higher (35 vs 32 % in the neutral position; p = 0.006); (b) graininess was less frequent (82 vs 91 % in the neutral position); and (c) the percentage of graininess graded as minimal was significantly higher (83 vs 70 % in the neutral position; p = 0.2027). On-line tube-current modulation enables dose reduction on high-quality, diagnostic spiral CT angiograms of the thoracic outlet and should be applied during data acquisition in the neutral position and after postural maneuver for optimal use. (orig.)

  13. Low-dose dental CT

    International Nuclear Information System (INIS)

    Rustemeyer, P.; Eich, H.T.; John-Mikolajewski, V.; Mueller, R.D.

    1999-01-01

    Purpose: The intention of this study was to reduce patient dose during dental CT in the planning for osseointegrated implants. Methods and Materials: Dental CTs were performed with a spiral CT (Somatom Plus 4, Siemens) and a dental software package. Use of the usual dental CT technique (120 kVp; 165 mA, 1 s rotation time, 165 mAs; pitch factor 1) was compared with a new protocol (120 kVp; 50 mA; 0.7 s rotation time; 35 mAs; pitch factor 2) which delivered the best image quality at the lowest possible radiation dose, as tested in a preceding study. Image quality was analysed using a human anatomic head preparation. Four radiologists analysed the images independently. A Wilcoxon rank pair-test was used for statistic evaluation. The doses to the thyroid gland, the active bone marrow, the salivary glands, and the eye lens were determined in a tissue-equivalent phantom (Alderson-Rando Phantom) with lithium fluoride thermoluminescent dosimeters at the appropriate locations. Results: By mAs reduction from 165 to 35 and using a pitch factor of 2, the radiation dose could be reduced by a factor of nine (max.) (e.g., the bone marrow dose could be reduced from 23.6 mSv to 2.9 mSv, eye lens from 0.5 mSv to 0.3 mSv, thyroid gland from 2.5 mSv to 0.5 mSv, parotid glands from 2.3 mSv to 0.4 mSv). The dose reduction did not lead to an actual loss of image quality or diagnostic information. Conclusion: A considerable dose reduction without loss of diagnostic information is achievable in dental CT. Dosereducing examination protocols like the one presented may further expand the use of preoperative dental CT. (orig.) [de

  14. Spiral CT versus conventional CT in the preoperative assessment of metallic intraocular foreign bodies

    International Nuclear Information System (INIS)

    Prokesch, R.; Bankier, A.; Ba-Ssalamah, A.; Imhof, H.; Lakits, A.; Scholda, C.

    1998-01-01

    Purpose: To compare the effectiveness of spiral CT versus conventional CT in the preoperative assessment of metallic intraocular foreign bodies. Results: All foreign bodies were detected by each scanning modality on the axial and on the reconstructed planes. The quality of the axial images was similar for spiral and conventional CT. The spiral technique provided high-quality reconstructed images which allowed accurate localization of the foreign bodies in all cases. Reconstructions by conventional technique were inadequate for preoperative assessment. The examination time for the total orbital volume was 18 s for spiral CT and 52 s for conventional CT. Radiation dose delivered to the lens was 35 mGy for spiral CT and 56 mGy for conventional CT axial scanning. Conclusion: Spiral CT multiplanar offers several significant advantages for the preoperative assessment of metallic intraocular foreign bodies compared to the conventional CT technique in clinical practice, including short examination time, minimized motion artifacts, reduced radiation exposure, and accurate localization. (orig.) [de

  15. Usefulness of low-dose CT in the detection of pulmonary metastasis of gestational trophoblastic tumours

    International Nuclear Information System (INIS)

    Xu, X.J.; Lou, F.L.; Zhang, M.M.; Pan, Z.M.; Zhang, L.

    2007-01-01

    Aim: To determine whether a low-dose spiral chest computed tomography (CT) examination could replace standard-dose chest CT in detecting pulmonary metastases in patients with gestational trophoblastic tumour (GTT). Materials and methods: In a prospective investigation, 67 chest CT examinations of 39 GTT patients were undertaken. All the patients underwent CT examinations using standard-dose (150 mAs, pitch 1, standard reconstruction algorithm) and low-dose (40 mAs, pitch 2, bone reconstruction algorithm) protocols. Two radiologists interpreted images independently. A metastasis was defined as a nodule within lung parenchyma that could not be attributed to a pulmonary vessel. The number of metastases detected with each protocol was recorded. The size of each lesion was measured and categorized as <5, 5-9.9, and ≥10 mm. Wilcoxon's signed rank test was used to assess the difference between the numbers of lesion detected by the two protocols. Results: The CT dose index (CTDI) for the standard-dose and low-dose CT protocols was 10.4 mGy and 1.4 mGy, respectively. One thousand, six hundred, and eighty-two metastases were detected by standard-dose CT, and 1460 lesions by the low-dose protocol. The numbers detected by low-dose CT were significantly less than those detected by standard-dose CT (Z = -3.776, p < 0.001), especially for nodules smaller than 5 mm (Z = -4.167, p < 0.001). However, the disease staging and risk score of the patients were not affected by use of the low-dose protocol. Conclusion: Low-dose chest CT can be used as a staging and follow-up procedure for patients with GTT

  16. Measurements of computed tomography dose index for axial and spiral CT scanners

    International Nuclear Information System (INIS)

    Breiki, G; Abbas, Y.; Diab, H.M.; Gomaa, M

    2007-01-01

    The energy deposited in the patient by the rotating x-ray beam in computed tomography produces more uniform absorbed dose values within the section of imaged tissue than those produced in conventional radiological procedures. The dose values within a specific section are determined by factors such as voltage, current, scan field, rotation angle, filtration, collimation, and section thickness and spacing. This study is a part of extensive project, aiming to investigate practice of computed tomography at various hospitals and to implement a Reference Dose Levels (RDLs) to routine CT examinations in Egypt. The dosimetric quantities proposed in the European Guidelines (EG) for CT are weighted computed tomography dose index (CTDI w ) for a single slice and dose-length product (DLP) for a complete examination. Patient-related data as well as technical parameters for head, chest, abdomen and pelvis examinations were collected for seven CT scanners in public and private hospitals.Dose measurements were performed for both axial and spiral models for a range of CT examinations using CT dosimetry head and body phantoms, and ion chamber designed for CT dosimetry. The determined CTDI w and DLP values were compared with the European Commission reference dose levels (ECRDLs) and also with some international survey results. Mean values of CTDI w had a range of 36-69 m Gy with average 55 m Gy for head, and 11-35 mGy with average 23 mGy for chest, abdomen and pelvis examinations. The current reference CTDI w values are 60 m Gy for adult head and 25 m Gy for adult Abdomen

  17. Spiral CT for evaluation of chest trauma; Spiral-CT beim Thoraxtrauma

    Energy Technology Data Exchange (ETDEWEB)

    Roehnert, W. [Universitaetsklinikum Dresden (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik; Weise, R. [Universitaetsklinikum Dresden (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik

    1997-07-01

    After implementation of spiral CT in our department, we carried out an analysis for determining anew the value of CT as a modality of chest trauma diagnosis in the emergency department. The retrospective study covers a period of 10 months and all emergency patients with chest trauma exmined by spiral CT. The major lesions of varying seriousness covered by this study are: pneumothorax, hematothorax, pulmonary contusion or laceration, mediastinal hematoma, rupture of a vessel, injury of the heart and pericardium. The various fractures are not included in this study. In many cases, spiral CT within relatively short time yields significant diagnostic findings, frequently saving additional angiography. A rigid diagnostic procedure cannot be formulated. Plain-film chest radiography still remains a diagnostic modality of high value. (Orig.) [Deutsch] Nach Einfuehrung der Spiral-CT in unserer Einrichtung versuchten wir, den Stellenwert der Computertomographie in der Notfalldiagnostik des Thoraxtraumas neu zu bestimmen. Dazu wurden retrospektiv ueber einen Zeitraum von 10 Monaten alle mittels Spiral-CT untersuchten Notfallpatienten mit Thoraxverletzungen ausgewertet. Im Vordergrund standen folgende Befunde unterschiedlichen Schweregrades: Pneumothorax, Haematothorax, Lungenkontusion/-lazeration, Mediastinalhaematom, Gefaessruptur, Herz- und Herzbeutelverletzung. Auf die unterschiedlichen Frakturen wird bewusst nicht naeher eingegangen. In vielen Faellen liefert die Spiral-CT mit relativ geringem Zeitaufwand wesentliche diagnostische Aussagen. Haeufig kann auf eine Angiographie verzichtet werden. Ein starres diagnostisches Stufenschema laesst sich nicht definieren. Die Thoraxuebersichtsaufnahme besitzt einen unveraendert hohen Stellenwert. (orig.)

  18. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  19. Ultra-low dose CT attenuation correction for PET/CT

    International Nuclear Information System (INIS)

    Xia Ting; Kinahan, Paul E; Alessio, Adam M; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. (paper)

  20. Ultra-low dose CT attenuation correction for PET/CT

    Science.gov (United States)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for PET/CT quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently-available, lowest dose CT techniques, extended duration CINE CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. Methods We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. Results CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. Conclusion When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. PMID:22156174

  1. Evaluation of radiation exposure with singleslice- and a multislice-spiral CT system (a phantom study)

    International Nuclear Information System (INIS)

    Giacomuzzi, S.M.; Rieger, M.; Lottersberger, C.; Peer, S.; Peer, R.; Buchberger, W.; Bale, R.; Mallouhi, A.; Jaschke, W.; Torbica, P.; Perkmann, R.

    2001-01-01

    The purpose of study was to compare patient dose applying singleslice- and multislice-spiral CT. Methods: The examinations were performed with a singleslice-spiral CT (Highspeed Advantage; GE Medical Systems; Milwaukee, USA) and with a multislice CT systems (LightSpeed QX/i GE Medical Systems; Milwaukee, USA). For the determination of the radiation exposure (absorbed dose) a selection of most executed protocols (thorax-helical, abdomen-helical, petrous bone-axial, head-axial) were simulated using an Alderson Rando Phantom. The dose was determined by means of lithiumfluorid-thermoluminescence dosimeters (TLD-GR 200). Results: For thorax and abdomen protocols higher energy dose values could be found using a multislice CT. On the average the energy dose values were increased by 2.6 on an average in relation to single slice spiral CT. The energy dose values of the multisclice CT using head protocols could be reduced by 30% in relation to single slice spiral CT due to suitable parameter selections. The energy dose applying a petrous bone protocol resulted in an average increase by a factor 1.5 using a multislice CT. Conclusion: Using the new multislice CT technique protocol strategies must be optimized regarding the patient doses. Users can operate critically in the sense of the radiation protection only if they are aware of the occurring dose amounts to the patient. (orig.) [de

  2. Percutaneous CT-guided lung biopsy: sequential versus spiral scanning. A randomized prospective study

    International Nuclear Information System (INIS)

    Ghaye, B.; Dondelinger, R.F.; Dewe, W.

    1999-01-01

    The aim of this study was to evaluate in a prospective and randomized study spiral versus sequential scanning in the guidance of percutaneous lung biopsy. Fifty thoracic lesions occurring in 48 patients were biopsied by a senior and a junior operator. Six different time segments of the procedure were measured. Scanning mode versus length of procedure, pathological results, irradiation and complications were evaluated. Total duration of the procedure and of the first sampling was significantly longer with spiral CT for the senior operator (p < 0.004). No significant time difference was observed for the junior operator. Diameter of the lesion, depth of location, position of the patient and needle entry site did not influence the results. The sensitivity was 90.9, specificity 100, positive predictive value 100 and negative predictive value 60 % for spiral CT, and 94.7, 100, 100 and 85.7 % for sequential CT, respectively. Eleven pneumothoraces and ten perinodular hemorrhages were seen with spiral CT and six and ten, respectively, with sequential CT. The mean dose of irradiation was 4027 mAs for spiral CT and 2358 mAs for conventional CT. Spiral CT does neither reduce procedure time nor the rate of complications. Pathological results do not differ compared with sequential CT, and total dose of irradiation is higher with spiral scanning. (orig.)

  3. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    Directory of Open Access Journals (Sweden)

    Holger Wenz

    2016-01-01

    Conclusions: Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.

  4. The application and shielding value of low-dose CT scanning in hypoxic ischemic encephalopathy of neonate

    International Nuclear Information System (INIS)

    Wu Aiqin; Zheng Wenlong; Xu Chongyong; Cheng Jianmin; Chen Yu; Chen Tinggang

    2006-01-01

    Objective: To investigate the application and shielding value of multi-slice spiral CT scanning with low-dose in hypoxic ischemic encephalopathy (HIE) of neonate. Methods: 60 neonates with HIE diagnosed by clinic were prospectively selected and randomly divided into two groups averagely. The technical parameters were tube tension 120 kV, slice thickness and gap 6 mm, conventional tube current 250 mAs and low dose 50 mAs. Weighted CT dose index (CTDI w ) and dose length product (DLP) were compared to each other. The image noise were analyzed with water phantom of children's skull. The mean and standard deviation of CT value were statistically analyzed. The image quality was blindly evaluated in two different dose groups. Results: (1) The mAs, CTDI w and DLP in low dose group were 20 % of conventional dose group; (2) The noise of water phantom in low dose group was larger than in conventional dose group with the significant difference (t=34.533, P < 0.01 ); (3) The imaging quality in low dose group was mostly better, but inferior to conventional dose group, while there is no poor images to influence the diagnosis of HIE. Conclusions: The low dose scanning will be practical in diagnosis of HIE, and beneficial to protect the newborn which corresponds to the optimizing principle of ICRP in medical radiation protection. (authors)

  5. Lung studies with spiral CT. pitch 1 versus pitch 2

    International Nuclear Information System (INIS)

    Sartoni Galloni, S.; Miceli, M.; Lipparino, M.; Burzi, M.; Gigli, F.; Rossi, M.S.; Santoli, G.; Guidarelli, G.

    1999-01-01

    In Spiral CT, the pitch is the ratio of the distance to tabletop travels per 360 degrees rotation to nominal slice width, expressed in mm. Performing Spiral CT examination with pitch 2 allows to reduce examination time, exposure and contrast dose, and X-ray tube overload. The authors investigated the yield of pitch 2 in lung parenchyma studies, particular relative to diagnostic image quality [it

  6. Spiral CT scanning technique in the detection of aspiration of LEGO foreign bodies.

    Science.gov (United States)

    Applegate, K E; Dardinger, J T; Lieber, M L; Herts, B R; Davros, W J; Obuchowski, N A; Maneker, A

    2001-12-01

    Radiolucent foreign bodies (FBs) such as plastic objects and toys remain difficult to identify on conventional radiographs of the neck and chest. Children may present with a variety of respiratory complaints, which may or may not be due to a FB. To determine whether radiolucent FBs such as plastic LEGOs and peanuts can be seen in the tracheobronchial tree or esophagus using low-dose spiral CT, and, if visible, to determine the optimal CT imaging technique. Multiple spiral sequences were performed while varying the CT parameters and the presence and location of FBs in either the trachea or the esophagus first on a neck phantom and then a cadaver. Sequences were rated by three radiologists blinded to the presence of a FB using a single scoring system. The LEGO was well visualized in the trachea by all three readers (both lung and soft-tissue windowing: combined sensitivity 89 %, combined specificity 89 %) and to a lesser extent in the esophagus (combined sensitivity 31 %, combined specificity 100 %). The peanut was not well visualized (combined sensitivity LEGO was 120 kV, 90 mA, 3-mm collimation, 0.75 s/revolution, and 2.0 pitch. This allowed for coverage of the cadaver tracheobronchial tree (approximately 11 cm) in about 18 s. Although statistical power was low for detecting significant differences, all three readers noted higher average confidence ratings with lung windowing among 18 LEGO-in-trachea scans. Rapid, low-dose spiral CT may be used to visualize LEGO FBs in the airway or esophagus. Peanuts were not well visualized.

  7. Principles of spiral CT: III. Quality assurance

    International Nuclear Information System (INIS)

    Suess, C.; Kalender, W.A.

    1998-01-01

    Since its introduction in 1989 spiral CT has gained wide clinical acceptance and meanwhile it covers a large range of CT applications. This new technology, however, has not yet been recognized and acknowledged in the national or international regulations on scanner quality assurance (QA) programs. The conventional QA procedures should be extended to check the distribution of resolution and noise within the image plane. Imaging performance in the axial direction constitutes one of the major advantages of spiral scanning. Therefore, the slice sensitivity profiles and the spatial and low-contrast resolution along the z-axis have to be assessed. The high demands on table feed accuracy require additional tests. We suggest phantoms and procedures to check and quantify these parameters. Thereby, we hope to support the ongoing discussion about spiral CT quality assurance. (orig.) [de

  8. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose.

    Science.gov (United States)

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (pspiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels.

  9. Evaluation of image quality and dose in renal colic: comparison of different spiral-CT protocols

    International Nuclear Information System (INIS)

    Rimondini, A.; Mucelli, R.P.; Dalla Palma, L.; De Denaro, M.; Bregant, P.

    2001-01-01

    The aim of this study was to test different technical spiral-CT parameters to obtain optimal image quality with reduced X-ray dose. Images were acquired with a spiral-CT system Philips Tomoscan AVE1, using 250 mA, 120 kV, and 1-s rotational time. Three protocols were tested: protocol A with 5-mm thickness, pitch 1.6, slice reconstruction every 2.5 mm; protocol B with 3-mm thickness, pitch 1.6, slice reconstruction every 1.5 mm; and protocol C with 3-mm thickness, pitch 2, slice reconstruction every 1.5 mm. Two phantoms were employed to evaluate the image quality. Axial images were acquired, then sagittal and coronal images were reconstructed. Finally, the absorbed X-ray dose for each protocol was measured. Regarding image quality, 5-mm-thick images (protocol A) showed greater spatial resolution and lower noise compared with 3-mm-thick images (protocols B and C) on the axial plane; 3-mm reconstructed sagittal and coronal images (protocols B and C) showed an improved image quality compared with 5-mm reformatted images (protocol A). Concerning X-ray dose, the mean dose was: protocol A 19.6±0.8 mGy; protocol B 14.4±0.6 mGy; protocol C 12.5±1.0 mGy. Our study supports the use of thin slices (3 mm) combined with pitch of 1.6 or 2 in renal colic for X-ray dose reduction to the patient and good image quality. (orig.)

  10. Spiral CT scanning technique in the detection of aspiration of LEGO foreign bodies

    International Nuclear Information System (INIS)

    Applegate, K.E.; Dardinger, J.T.; Herts, B.R.; Davros, W.J.; Obuchowski, N.A.; Lieber, M.L.; Maneker, A.

    2001-01-01

    Background:. Radiolucent foreign bodies (FBs) such as plastic objects and toys remain difficult to identify on conventional radiographs of the neck and chest. Children may present with a variety of respiratory complaints, which may or may not be due to a FB. Objective: To determine whether radiolucent FBs such as plastic LEGOs and peanuts can be seen in the tracheobronchial tree or esophagus using low-dose spiral CT, and, if visible, to determine the optimal CT imaging technique. Materials and methods: Multiple spiral sequences were performed while varying the CT parameters and the presence and location of FBs in either the trachea or the esophagus first on a neck phantom and then a cadaver. Sequences were rated by three radiologists blinded to the presence of a FB using a single scoring system. Results: The LEGO was well visualized in the trachea by all three readers (both lung and soft-tissue windowing: combined sensitivity 89 %, combined specificity 89 %) and to a lesser extent in the esophagus (combined sensitivity 31 %, combined specificity 100 %). The peanut was not well visualized (combined sensitivity < 35 %). The optimal technique for visualizing the LEGO was 120 kV, 90 mA, 3-mm collimation, 0.75 s/revolution, and 2.0 pitch. This allowed for coverage of the cadaver tracheobronchial tree (approximately 11 cm) in about 18 s. Although statistical power was low for detecting significant differences, all three readers noted higher average confidence ratings with lung windowing among 18 LEGO-in-trachea scans. Conclusion: Rapid, low-dose spiral CT may be used to visualize LEGO FBs in the airway or esophagus. Peanuts were not well visualized. (orig.)

  11. Whole-body CT. Spiral and multislice CT. 2. tot. rev. and enl. ed.; Ganzkoerper-Computertomographie. Spiral- und Multislice-CT

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, M.; Galanski, M.; Schaefer-Prokop, C.; Molen, A.J. van der

    2007-07-01

    Spiral and multidetector techniques have improved the diagnostic possibilities of CT, so that image analysis and interpretation have become increasingly complex. This book represents the current state of the art in CT imaging, including the most recent technical scanner developments. The second edition comprises the current state of knowledge in cT imaging. There are new chapters on image processing, application of contrasting agents and radiation dose. All organ-specific pathological findings are discussed in full. There are hints for optimum use and interpretation of CT, including CT angiography, CT colonography, CT-IVPL, and 3D imaging. There is an introduction to cardio-CT, from calcium scoring and CTA of the coronary arteries to judgement of cardiac morphology. There are detailed scan protocols with descriptions of how to go about parameter selection. Practical hints are given for better image quality and lower radiation exposure of patients, guidelines for patient preparation and complication management, and more than 1900 images in optimum RRR quality. (orig.)

  12. Accuracy of low dose CT in the diagnosis of appendicitis in childhood and comparison with USG and standard dose CT.

    Science.gov (United States)

    Yi, Dae Yong; Lee, Kyung Hoon; Park, Sung Bin; Kim, Jee Taek; Lee, Na Mi; Kim, Hyery; Yun, Sin Weon; Chae, Soo Ahn; Lim, In Seok

    Computed tomography should be performed after careful consideration due to radiation hazard, which is why interest in low dose CT has increased recently in acute appendicitis. Previous studies have been performed in adult and adolescents populations, but no studies have reported on the efficacy of using low-dose CT in children younger than 10 years. Patients (n=475) younger than 10 years who were examined for acute appendicitis were recruited. Subjects were divided into three groups according to the examinations performed: low-dose CT, ultrasonography, and standard-dose CT. Subjects were categorized according to age and body mass index (BMI). Low-dose CT was a contributive tool in diagnosing appendicitis, and it was an adequate method, when compared with ultrasonography and standard-dose CT in terms of sensitivity (95.5% vs. 95.0% and 94.5%, p=0.794), specificity (94.9% vs. 80.0% and 98.8%, p=0.024), positive-predictive value (96.4% vs. 92.7% and 97.2%, p=0.019), and negative-predictive value (93.7% vs. 85.7% and 91.3%, p=0.890). Low-dose CT accurately diagnosed patients with a perforated appendix. Acute appendicitis was effectively diagnosed using low-dose CT in both early and middle childhood. BMI did not influence the accuracy of detecting acute appendicitis on low-dose CT. Low-dose CT is effective and accurate for diagnosing acute appendicitis in childhood, as well as in adolescents and young adults. Additionally, low-dose CT was relatively accurate, irrespective of age or BMI, for detecting acute appendicitis. Therefore, low-dose CT is recommended for assessing children with suspected acute appendicitis. Copyright © 2017. Published by Elsevier Editora Ltda.

  13. Generative Adversarial Networks for Noise Reduction in Low-Dose CT.

    Science.gov (United States)

    Wolterink, Jelmer M; Leiner, Tim; Viergever, Max A; Isgum, Ivana

    2017-12-01

    Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.

  14. Diagnosis of pancreatic tumors by spiral angio CT

    International Nuclear Information System (INIS)

    Miura, Kohi; Nakao, Norio; Takayasu, Yukio; Okawa, Tomohisa

    1995-01-01

    Spiral angio were performed with injection of 30 ml of contrast material at a rate of 1 ml/sec with a scan delay of 6 sec through catheter into the celiac artery while the blood flow of the superior mesenteric artery (SMA) was occluded by the inflated balloon catheter. Spiral CT scans were obtained using Somatom Plus (Siemens). Parameter for spiral CT were 24-sec acquisition time, 5 mm collimation, 5 mm/sec table incrementation. Reconstructions were performed every 5 mm. Pancreatic cancers were characteristically depicted with spiral angio CT as hypodensity relative to normal enhanced pancreatic parenchyma. On dynamic angio CT studies performed in pancreatic cancers, the area of cancer and normal parenchyma had maximum level of enhancement at 10-15 sec after injection of contrast material via catheter into the celiac, and there was no difference in enhancement between tumor and normal parenchyma. On the other hand, the lesions of cancer were revealed as hypodensity with spiral angio CT. In case of chronic pancreatitis, the enhancement of the entire pancreas obtained with spiral angio CT was homogeneous. Insulinoma in the tail of pancreas was detected by spiral angio CT but was not detected by both selective angiography and conventional CT. Three-dimensional (3-D) rendering spiral angio CT data shows the extent of vascular involvement by pancreatic cancer and provides useful information for surgical planning. Spiral angio CT is the most useful procedure for diagnosis of pancreatic tumor. (author)

  15. Deep learning for low-dose CT

    Science.gov (United States)

    Chen, Hu; Zhang, Yi; Zhou, Jiliu; Wang, Ge

    2017-09-01

    Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods. Especially, our method has been favorably evaluated in terms of noise suppression and structural preservation.

  16. Enhancement pattern of small hepatic hemangioma: findings on multiphase spiral CT and dynamic MRI

    International Nuclear Information System (INIS)

    Choi, Byung In; Lee, Seung Koo; Kim, Myeong Jin; Chung, Jae Joon; Yoo, Hyung Sik; Lee, Jong Tae

    1999-01-01

    To compare the enhancement characteristics of small hemangiomas seen on multiphase spiral CT and dynamic MR imaging. Thirteen patients with 20 hepatic hemangiomas less than 25mm in diameter underwent both multiphase spiral CT and dynamic MR imaging. All lesions were assigned to one of three classified into 3 categories according to the enhancement pattern seen on multiphase spiral CT : typical delayed pooling, atypical early enhancement, or continuous low attenuation. The enhancement patterns seen on spiral CT and on dynamic MRI were correlated. On CT scans, ten lesions (50%) showed delayed pooling. Six (30%) showed early arterial enhancement and four (20%) showed continuous low attenuation. On delayed-phase MRI, all lesions showed delayed high signal intensity compared to adjacent liver parenchyma. Four of six lesions with early enhancement on CT showed peripheral globular enhancement on early arterial-phase MRI. On multiphase spiral CT scans, small hemangiomas can show variable atypical enhancement features. In this situation, contrast-enhanced dynamic MRI is helpful for the diagnosis of hemangiomas

  17. The experimental study and clinical application on the detection of pulmonary nodules with low-dose multislice spiral CT

    International Nuclear Information System (INIS)

    Wu Xiaohua; Ma Daqing; Zhang Zhongjia; Ji Jingling; Zhang Yansong

    2004-01-01

    Objective: To investigate the detection rate of pulmonary nodules ,especially nodules ≤5 mm, in variable low-doses, and to evaluate the imaging quality of low-dose MSCT. Methods: Six postmortem specimens of patients with pneumoconiosis after necropsy were fixed at end-inspiratory volume. The fixed specimens were examined by using MSCT with standard dose (130 mA) and low-dose (50, 30, 10 mA, respectively). Low-dose MSCT scans of 40 asymptomatic volunteers and 60 patients with pulmonary metastasis were also examined with 30 mA. The numbers of pulmonary nodules less than 5 mm at standard-dose and different low-dose were recorded. Nodules were assessed by diagnostic confidence ('definite nodule', 'questionable nodule', and 'definite not nodule'). The number of images with artifact in specimens and in 40 volunteers and 60 patients with pulmonary metastasis were recorded. Results: In specimen's study, the Kappa values of groups of low-dose (50, 30, 10 mA) were 0.515, 0.242, and 0.154, respectively. The group of 50 mA had a good coincidence with standard-dose group by U test. The sensitivity of group 50, 30, 10 mA was 88.0%, 78.4%, and 75.0%, respectively. The positive predictive values of which were 98%, 94%, and 93%, respectively. The correction rates of which were 85%, 73%, and 69%, respectively. In specimens' images, subtle linear artifact was showed only in paravertebral lung field in 21 images of 31 at the group of 10 mA. Linear artifacts that affected small nodule detection were showed in lung apexes in 3 of 100 subjects. Conclusion: Low-dose MSCT is expected to improve early detection of lung cancer. Pulmonary nodules less than 5 mm could be reliably detected at 50 mA tube current in specimens. Low-dose CT (30 mA) showed satisfactory imaging quality in our study. Low-dose CT screening for lung cancer may be applied if situation permits. (authors)

  18. Low-dose Dental-CT

    International Nuclear Information System (INIS)

    Gahleitner, A.; Imhof, H.; Homolka, P.; Fuerhauser, R.; Freudenthaler, J.; Watzek, G.

    2000-01-01

    Dental-CT is a relatively new, increasingly used investigation technique in dental radiology. Several authors have stated that the indication for Dental-CT has to be chosen on a strict basis, due to high dose values. This article describes the technique of performing dental-CT and calculates the effective dose based on published data and own measurements as well as the dose reduction potential to achieve an optimized protocol for Dental-CT investigations. (orig.) [de

  19. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    Science.gov (United States)

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  20. Automatic exposure control to reduce the dose in subsecond multislice spiral CT: phantom measurements and clinical results

    International Nuclear Information System (INIS)

    Greess, H.; Bautz, W.; Baum, U.; Wolf, H.; Suess, C.; Kalender, W.A.

    2004-01-01

    Purpose: To investigate the potential of dose reduction in multislice spiral CT (MSCT) with automatic exposure control. Materials and Methods: The study was performed on a Sensation 4 multislice scanner. This prototype implementation analyzed the distribution of the attenuation along the z-axis in the lateral and sagittal directions of the digital radiogram. Depending on this distribution of the attenuation, the tube current (mA) is defined for every tube rotation. In addition, the tube current was modulated during each tube rotation. First, a three step oval water phantom was measured to evaluate the potential of this method with respect to dose reduction and image quality. In a patient study (n=26), four different scan regions (shoulder, thorax, abdomen, pelvis) were examined and dose (mAs) and image quality evaluated in comparison to examinations with a standard protocol for these regions in adults and a weight-adjusted standard protocol in children. The image quality was classified in consensus as good, sufficient and poor image quality. Results: By adapting and modulating the tube current, we substantially reduced the variation of noise in one spiral scan and in one scan region of our patient collective. The dose (average mAs) was reduced by 31% to 66% in children (mean 44%) and between 35% and 64% in adults (mean 53%), depending on the scan region. The image quality was substantially improved in regions with high attenuation and did not suffer in low attenuation regions. Conclusion: The dose can be reduced substantially by an automatic exposure control including angular tube current modulation with the same or improved image quality. (orig.) [de

  1. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations

    International Nuclear Information System (INIS)

    Montes, C.; Hernandez, J.; Gomez-Caminero, F.; Garcia, S.; Martin, C.; Rosero, A.; Tamayo, P.

    2013-01-01

    Hybrid imaging, such as single photon emission computed tomography (SPECT)/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose. (author)

  2. Optimising imaging parameters in experimental spiral CT

    International Nuclear Information System (INIS)

    Tiitola, M.; Vehmas, T.; Kivisaari, R.P.; Kivisaari, L.

    1997-01-01

    Purpose: This in vitro study was conducted to analyse lesion detection and relative radiation exposure in different CT techniques. Material and Methods: We used a plastic phantom (12 x 8 x 2 cm) containing holes filled with air or fluid of varying densities to simulate lesions. This was imaged with Siemens Somatom Plus S and GE High Speed Advantage units. We varied table feeds (3 and 6 mm/s in Siemens and 3 and 4.5 mm/s in GE) and increments (2 mm and 4 mm) while keeping collimation at 3 mm. The SmartScan program of GE and the reformating algorithm of Siemens were also analysed. To evaluate the different methods, the phatnom lesions were counted by 3 observers. Radiation exposures associated with each technique were also measured. Results: The images reformatted to a coronal direction were significantly inferior (p<0.01) to those in other techniques. The use of SmartScan did not influence lesion detection, nor did changes in pitch or increment. Spiral and non-spiral techniques proved to be equal. Radiation exposure was lowest when a greater pitch or the SmartScan program was used. Conclusion: Radiation exposure in CT can be limited without significantly impairing the image quality by using low-dose techniques. Reformatting to a coronal direction should be used with care as it debases the image quality. (orig.)

  3. Spiral CT findings of inflammatory pseudotumor of the liver

    International Nuclear Information System (INIS)

    Lee, Ha Jong; Nam, Kyung Jin; Lee, Ki Nam; Park, Byeong Ho; Choi, Jong Cheol; Koo, Bong Sik; Nam, Ki Dong; Kim, Chan Seong

    1998-01-01

    To assess the spiral CT findings of inflammatory pseudotumor of the liver(IPTL), in order to distinguish this tumor from hepatocellular carcinoma, hepatic abscess or other space occupying liver lesions. The spiral CT findings of IPTL were retrospectively evaluated in six patients. All cases were confirmed by ultrasonography-guided gun biopsy. Four patients were men and two were women, and they were aged between 37 and 74 (mean, 49) years. The site, size, and number of IPTL were assessed, and their enhancement patterns were evaluated during the arterial, portal and delayed phases of spiral CT. Five cases involved a solitary mass and in one there were multiple masses with surrounding small nodules. Four cases occurred in the right lobe and two in the left lobe. Four of five surrounding nodules were in the left lobe. During the arterial phase of spiral CT scanning, three layers were separated from four of five cases of solitary mass;they were composed of central and peripheral portions of low attenuation, and an intermediate portion of isoattenuation. Delayed enhancement of the peripheral portion was prominent during the delayed phase. In the case involving multiple masses three layers were not seen during the arterial phase, but during the delayed phase enhancement was noted. The features of three layers, as seen on spiral CT, is considered to be very specific for distinguishing IPTL from other hepatic focal lesions.=20

  4. Lateral topography for reducing effective dose in low-dose chest CT.

    Science.gov (United States)

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  5. Screening for early lung cancer with low-dose spiral computed tomography: results of annual follow-up examinations in asymptomatic smokers

    International Nuclear Information System (INIS)

    Diederich, Stefan; Thomas, Michael; Semik, Michael; Lenzen, Horst; Roos, Nikolaus; Weber, Anushe; Heindel, Walter; Wormanns, Dag

    2004-01-01

    The aim of this study was analysis of incidence results in a prospective one-arm feasibility study of lung cancer screening with low-radiation-dose spiral computed tomography in heavy smokers. Eight hundred seventeen smokers (≥40 years, ≥20 pack years of smoking history) underwent baseline low-dose CT. Biopsy was recommended in nodules >10 mm with CT morphology suggesting malignancy. In all other lesions follow-up with low-dose CT was recommended. Annual repeat CT was offered to all study participants. Six hundred sixty-eight (81.8%) of the 817 subjects underwent annual repeat CT with a total of 1735 follow-up years. Follow-up of non-calcified nodules present at baseline CT demonstrated growth in 11 of 792 subjects. Biopsy was performed in 8 of 11 growing nodules 7 of which represented lung cancer. Of 174 new nodules, 3 represented lung cancer. The 10 screen-detected lung cancers were all non-small cell cancer (6 stage IA, 1 stage IB, 1 stage IIIA, 2 stage IV). Five symptom-diagnosed cancers (2 small cell lung cancer: 1 limited disease, 1 extensive disease, 3 central/endobronchial non-small cell lung cancer, 2 stage IIIA, 1 stage IIIB) were diagnosed because of symptoms in the 12-month interval between two annual CT scans. Incidence of lung cancer was lower than prevalence, screen-detected cancers were smaller, and stage I was found in 70% (7 of 10) of screen-detected tumors. Only 27% (4 of 15) of invasive procedures was performed for benign lesions; however, 33% (5 of 15) of all cancers diagnosed in the population were symptom-diagnosed cancers (3 central NSCLC, all stage III, 2 SCLC) demonstrating the limitations of CT screening. (orig.)

  6. Assessment of pulmonary function using pixel indexes of multiple-slice spiral CT low-dose two-phase scanning in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Zhang Lihua; Wang Yunhua; Jiang Zhongbiao; Zhang Lejun; Sun Wanli; Zhang Chunming

    2012-01-01

    Objective: To explore the values of pixel indexes (PI) with multiple-slice spiral CT low-dose two-phase scanning for assessing the pulmonary function in chronic obstructive pulmonary disease (COPD). Methods: Thirty-six patients with COPD (COPD group)and 30 healthy people (control group)underwent pulmonary function test (PFT). Chest 64-MSCT low-dose (50 mAs) scanning at full inspiration and expiration, routine scanning (100 mAs) at inspiration were performed. The effective dose (ED) was calculated. The lung was divided into three regions (upper, middle, lower). PI of lung were divided into five groups: -960--1024, -910--960, -800--910, -700--800, -400--700. The PI -910 (sum of the PI under -910 HU) of low-dose scanning at each region were measured and calculated using pulmo software. All PI included PIin -910 , PIiex -910 , PIin -910 -PIiex -910 , PIiex -910 /PIin -910 and (PIin -910 -PIiex -910 )/PIin -910 . All patients underwent PFT within 3 days after 64-MSCT canning, FEV1% and FEV1/FVC were selected for comparison. Results: The PIin in three regions (-960 - -1024, -910 - -960, -800 - -910) were statistically significant between normal and COPD groups (U=0.00, 57.00, 20.50, P<0.01). The PIex in all regions were statistically significant (U=0.00, 0.00, 71.52, 191.00, 6.00, P<0.01). PI -910--1024 at expiration and inspiration were correlated with FEV1% and FEV1/FVC (r=-0.548, -0.664, -0.752, -0.781, P<0.01). PIin -910 , PIex -910 ,PIiex -910 /PIin -910 , (PIin -910 -PIex -910 )/PIin -910 had a good correlation with FEV1% and FEV1/FVC (r=-0.548, -0.664, -0.752, -0.781, -0.674, -0.642, 0.674, 0.642, P<0.01). Conclusion: Pixel indexes of 64-MSCT low-dose two-phase scanning can be used to evaluate pulmonary function in COPD patients. (authors)

  7. The effect of pitch in multislice spiral/helical CT

    International Nuclear Information System (INIS)

    Wang, G.; Vannier, M.W.

    2000-01-01

    The purpose of this study is to understand the effect of pitch on raw data interpolation in multislice spiral/helical computed tomography (CT) and provide guidelines for scanner design and protocol optimization. Multislice spiral CT is mainly characterized by the three parameters: the number of detector arrays, the detector collimation, and the table increment per x-ray source rotation. The pitch in multislice spiral CT is defined as the ratio of the table increment over the detector collimation in this study. In parallel to the current framework for studying longitudinal image resolution, the central fan-beam rays of direct and opposite directions are considered, assuming a narrow cone-beam angle. Generally speaking, sampling in the Radon domain by the direct and opposite central rays is nonuniform along the longitudinal axis. Using a recently developed methodology for quantifying the sensibility of signal reconstruction from non-uniformly sampled finite points, the effect of pitch on raw data interpolation is analyzed in multislice spiral CT. Unlike single-slice spiral CT, in which image quality decreases monotonically as the pitch increases, the sensibility of raw data interpolation in multislice spiral CT increases, suggesting that image quality does not decrease monotonically in this case. The most favorable pitch can be found from the sensitivity-slice spiral CT is provided. The study on the effect of pitch using the sensitivity analysis approach reveals the fundamental characteristics of raw data interpolation in multislice spiral CT, and gives insights into interaction between pitch and image quality. These results may be valuable for design of multislice spiral CT scanners and imaging protocol optimization in clinical applications. (authors)

  8. Diagnosis of tracheal instability: inspiratory and expiratory spiral CT and cine CT

    International Nuclear Information System (INIS)

    Heussel, C.P.; Thelen, M.; Kauczor, H.U.; Hafner, B.; Lill, J.

    2000-01-01

    Purpose: In tracheo- and bronchomalacia, localization and determination of collapse is necessary for planning a surgical procedure. We compared inspiratory and spiral CT, cine CT, and bronchoscopy and evaluated the relevance of each method. Methods: Seventeen patients with suspected or verified tracheal stonosis or collapse underwent paired inspiratory and exspiratory spiral CT and cine CT during continuous respiration (temporal increment 100 ms). The tracheal cross-sectional area was calculated and compared. Results: In addition to bronchoscopy, further information concerning localization, extent, collapse, stability of the tracheal wall, distal portions of the stenosis, and extraluminal compressions was obtained. A significantly higher degree of tracheal collapse was seen using cine CT compared to paired spiral CT (p [de

  9. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    International Nuclear Information System (INIS)

    Jarry, G; De Marco, J J; Beifuss, U; Cagnon, C H; McNitt-Gray, M F

    2003-01-01

    The purpose of this work is to develop and test a method to estimate the relative and absolute absorbed radiation dose from axial and spiral CT scans using a Monte Carlo approach. Initial testing was done in phantoms and preliminary results were obtained from a standard mathematical anthropomorphic model (MIRD V) and voxelized patient data. To accomplish this we have modified a general purpose Monte Carlo transport code (MCNP4B) to simulate the CT x-ray source and movement, and then to calculate absorbed radiation dose in desired objects. The movement of the source in either axial or spiral modes was modelled explicitly while the CT system components were modelled using published information about x-ray spectra as well as information provided by the manufacturer. Simulations were performed for single axial scans using the head and body computed tomography dose index (CTDI) polymethylmethacrylate phantoms at both central and peripheral positions for all available beam energies and slice thicknesses. For comparison, corresponding physical measurements of CTDI in phantom were made with an ion chamber. To obtain absolute dose values, simulations and measurements were performed in air at the scanner isocentre for each beam energy. To extend the verification, the CT scanner model was applied to the MIRD V model and compared with published results using similar technical factors. After verification of the model, the generalized source was simulated and applied to voxelized models of patient anatomy. The simulated and measured absolute dose data in phantom agreed to within 2% for the head phantom and within 4% for the body phantom at 120 and 140 kVp; this extends to 8% for the head and 9% for the body phantom across all available beam energies and positions. For the head phantom, the simulated and measured absolute dose data agree to within 2% across all slice thicknesses at 120 kVp. Our results in the MIRD phantom agree within 11% of all the different organ dose values

  10. Floating venous thrombi: diagnosis with spiral-CT-venography; Diagnose flottierender venoeser Thromben mittels Phlebo-Spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Gartenschlaeger, M. [Mainz Univ. (Germany). Klinik fuer Radiologie; Klose, K.J. [Univ. Marburg, Medizinisches Zentrum fuer Innere Medizin, Abt. Poliklinik (Germany); Schmidt, J.A. [Univ. Marburg, Medizinisches Zentrum fuer Radiologie, Abt. fuer Strahlendiagnostik (Germany)

    1996-05-01

    Local application of contrast agent into an ipsilateral dorsal foot vein and spiral CT were used to examine 16 consecutive cases with deep venous thrombosis proven at conventional venography; in addition, colour Doppler flow imaging was performed. At conventional venography, 8/16 thrombi appeared to be floating and the remaining 8/16 were adherent to the vessel wall. Spiral-CT showed 15/16 thrombi to be adherent to the vessel wall; the floating thrombus correlated with findings in conventional venography. At colour Doppler flow imaging 3/16 thrombi were considered floating, one of them was discordant to conventional venography. The comparison of conventional venography to spiral-CT demonstrates complete agreement for adherence to vessel wall seen in conventional venography (p=1,0) and significant discordance in cases with free-floating appearance in conventional venography. Adherence of thrombi to the wall of the vessel at conventional venography is in agreement with computed tomography. Conventional venography probably overestimates the prevalence of free floating thrombi. (orig./MG) [Deutsch] Mittels lokaler Kontrastmittelapplikation in eine ipsilaterale Fussrueckenvene und Spiral-CT wurden 16 konsekutive Faelle konventionell phlebographisch gesicherter Phlebothrombose untersucht, zusaetzlich wurde die farbkodierte Doppler-Ultraschalluntersuchung durchgefuehrt. In der konventionellen Phlebographie waren 8/16 Thromben flottierend, die uebrigen 8/16 wandadhaerent. In der Spiral-CT zeigten sich Wandadhaerenzen in 15/16 Faellen; der nachgewiesene flottierende Thrombus stimmte mit der konventionellen Phlebographie ueberein. Im farbkodierten Doppler-Ultraschall erschienen die Thromben in 3/16 Faellen flottierend, darunter ein von der konventionellen Phlebographie abweichender Befund. Der Vergleich von konventioneller und CT-Phlebographie ergab eine komplette Uebereinstimmung fuer konventionell phlebographisch nachgewiesene Wandadhaerenz und eine signifikante Abweichung

  11. Risk-benefit analysis and cost-effectiveness analysis of lung cancer screening by spiral CT

    International Nuclear Information System (INIS)

    Iinuma, Takeshi

    1999-01-01

    Mass screening of lung cancer has been widely performed using indirect chest X-ray method in Japan. However reduction of the mortality for lung cancer is questioned. We have proposed that recently developed spiral CT should be adopted for the screening of lung cancer, since CT has an excellent detectability for small nodule. Lung Cancer Screening CT (LSCT) has been developed by author's group using spiral CT with low dose and light weight in order to make a mobile unit. In this paper risk-benefit analysis and cost-effectiveness analysis are described for the LSCT screening of lung cancer. As a risk, radiation carcinogenesis due to exposure from LSCT are compared with gain of life-expectancy by screening and men of 40 years or more and women of 45 years or more are justified. The cost per person-year is estimated for LSCT screening which is better than that of present method, although total cost is higher. The LSCT screening could be recommended if total cost is affordable. (author)

  12. Spiral CT manifestations of spherical pneumonia

    International Nuclear Information System (INIS)

    Li Xiaohong; Yang Hongwei; Xu Chunmin; Qin Xiu

    2008-01-01

    Objective: To explore the Spiral CT manifestations and differential diagnosis of spherical pneumonia. Methods: 18 cases of spherical pneumonia and 20 cases of peripheral pulmonary carcinoma were selected, both of them were confirmed by clinic and/or pathology. The SCT findings of both groups were compared retrospectively. Results: Main spiral CT findings of spherical pneumonia were showed as followings: square or triangular lesions adjacent to pleura; with irregular shape, blurry, slightly lobulated margin, sometimes with halo sign. Small inflammatory patches and intensified vascular markings around the lesions were seen. Lesions became smaller or vanished after short-term anti-inflammatory treatment. Conclusion: Spherical pneumonia showed some characteristics on Spiral CT scan, which are helpful in diagnosis and differential diagnosis of this disease. (authors)

  13. Measurement of lung volumes : usefulness of spiral CT

    International Nuclear Information System (INIS)

    Kang, Ho Yeong; Kwak, Byung Kook; Lee, Sang Yoon; Kim, Soo Ran; Lee, Shin Hyung; Lee, Chang Joon; Park, In Won

    1996-01-01

    To evaluate the usefulness of spiral CT in the measurement of lung volumes. Fifteen healthy volunteers were studied by both spirometer and spiral CT at full inspiration and expiration in order to correlated their results, including total lung capacity (TLC), vital capacity (VC) and residual volume (RV). 3-D images were reconstructed from spiral CT, and we measured lung volumes at a corresponding CT window range ; their volumes were compared with the pulmonary function test (paired t-test). The window range corresponding to TLC was from -1000HU to -150HU (p=0.279, r=0.986), and for VC from -910HU to -800HU (p=0.366, r=0.954) in full-inspiratory CT. The optimal window range for RV in full-expiratory CT was from -1000HU to -450HU (p=0.757, r=0.777), and TLC-VC in full-inspiratory CT was also calculated (p=0.843, r=0.847). Spiral CT at full inspiration can used to lung volumes such as TLC, VC and RV

  14. The value of spiral CT scan on fracture of ankle joint and tarsal bones

    International Nuclear Information System (INIS)

    Li Zhaoli; Liang Jingyin; Pan Zhifeng

    2009-01-01

    Objective: To study the value of spiral CT scan on the fracture of ankle joint and tarsal bones. Methods: 43 cases with the fracture of ankle joint and tarsal bones were collected and analyzed. All the cases were examined by plain film radiography and spiral CT thin slice scan. Multi-planar reformation (MPR), surface shaded display (SSD) and other techniques of image post-processing were performed in 35 cases of them. Results: Spiral CT scan could demonstrate more fractures than plain film radiography in 28 cases(65.1%). There are 15 cases (34.9%) which are normal in plain film radiography but abnormal in Spiral CT scan. Spiral CT could demonstrate the different length, width, direction and number of linear low density shadow. SSD and MPR were performed again in the cases with avulsion fracture and fragmental fracture to demonstrate the fracture direction and the shape, size and location of fragments more clearly. Conclusion: Spiral CT thin slice scan with image post-processing techniques can play an important role in fracture of ankle joint and tarsal bones. (authors)

  15. Low-dose CT image reconstruction using gain intervention-based dictionary learning

    Science.gov (United States)

    Pathak, Yadunath; Arya, K. V.; Tiwari, Shailendra

    2018-05-01

    Computed tomography (CT) approach is extensively utilized in clinical diagnoses. However, X-ray residue in human body may introduce somatic damage such as cancer. Owing to radiation risk, research has focused on the radiation exposure distributed to patients through CT investigations. Therefore, low-dose CT has become a significant research area. Many researchers have proposed different low-dose CT reconstruction techniques. But, these techniques suffer from various issues such as over smoothing, artifacts, noise, etc. Therefore, in this paper, we have proposed a novel integrated low-dose CT reconstruction technique. The proposed technique utilizes global dictionary-based statistical iterative reconstruction (GDSIR) and adaptive dictionary-based statistical iterative reconstruction (ADSIR)-based reconstruction techniques. In case the dictionary (D) is predetermined, then GDSIR can be used and if D is adaptively defined then ADSIR is appropriate choice. The gain intervention-based filter is also used as a post-processing technique for removing the artifacts from low-dose CT reconstructed images. Experiments have been done by considering the proposed and other low-dose CT reconstruction techniques on well-known benchmark CT images. Extensive experiments have shown that the proposed technique outperforms the available approaches.

  16. Kidney spiral CT, indications, realization, results

    International Nuclear Information System (INIS)

    Braunschweig, R.; Beilicke, M.; Hundt, W.; Breiteneder, T.; Reiser, M.

    1999-01-01

    The introduction of spiral computed tomography (spiral CT) has vastly enriched the methodologically diversity of computer-tomographic scans. It allows for the recording of different perfusion or excretion stages of the kidney parenchyma of the urine draining paths by carrying out long-distance, phase-identical multiple examinations of the retroperitoneum. The description of the findings which are characterized by their local and contrasts behavior is possible. The following report describes the indications and technological process of kidney spiral CT using kidney-typical intravenous contrast media. Special emphasis is put on the advantages and limits of multiple phase spiral CT. Decisive preconditions are: 1. Specific clinical query, 2. selection of the corresponding phase contrasts of the kidneys and uretra or bladder, 3. exact technical and temporal adjustment of the acquisition parameters. Scanning times are in the range of seconds. The overall examination can be carried out quick and without any major strain on the part of the patient. A sound proof and a general differentiation of focal kideny lesions can be derived from the acquired data. This is also true for kidneys and ureters findings. Bladder findings can be localized and differentiated according to stage. More than two 'spiral acquisitions' should be carried out with restraint taking exposure to radiation into account. Due to the sound registration of focal lesions, its capability of reproduction and its short-time examination, the spiral CT of the kidneys can be said to be the most effective current scanning method of the retroperitoneum following clinical examinations and sonography. (orig.) [de

  17. The potentials of spiral CT for detection of focal liver lesions; Moeglichkeiten der Spiral-CT zur Diagnostik fokaler Leberlaesionen

    Energy Technology Data Exchange (ETDEWEB)

    Helmberger, H. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Kersting-Sommerhoff, B. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Lenz, M. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Kirsten, R. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany); Bautz, W. [Technische Univ. Muenchen, Klinikum rechts der Iser, Inst. fuer Roentgendiagnostik (Germany)

    1996-03-01

    Spiral CT currently is the modality of choice for all aspects of diagnostic evaluation of the liver. Optimal selection of treatment should be based inter alia on the findings obtained by spiral CT with arterial application of contrast medium, as for example S-CTA (primary liver tumors), or S-CTAP (secondary liver tumors). Ultrasonography is the major supplementing modality. In the near future, MR imaging applying liver-specific contrast-enhancing agents is expected to become an important competing technique, and further developments of interest in diagnostic imaging of the liver are in the offing: it is not yet known which technique will be the modality of choice at the onset of the 21st century. (orig.) [Deutsch] Die Spiral-CT ist zur Zeit das empfehlenswerte Verfahren fuer alle Fragen der Leberdiagnostik. Zur optimalen praetherapeutischen Beurteilung der Leber sollte die Spiral-CT mit arterieller Kontrastmittelapplikation als S-CTA (primaere Lebertumoren) bzw. S-CTAP (sekundaere Lebertumoren) durchgefuehrt werden. Der US kommt ein Stellenwert als ergaenzende Methode zu. In Zukunft wird die MRT mit leberspezifischen Kontrastmitteln ein konkurrierendes Verfahren zur Spiral-CT darstellen, wobei eine weitere interessante Entwicklung auf dem Gebiet der hepatischen Bildgebung zu erwarten ist: Das diagnostische Verfahren der Wahl fuer die Leber zu Beginn des 21. Jahrhunderts ist noch nicht definiert. (orig.)

  18. The relationship between image quality and CT dose index of multi-slice low-dose chest CT

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Shao Jiang; Shi Jingyun; You Zhengqian; Li Shijun; Xue Yongming

    2003-01-01

    Objective: To explore the rationality and possibility of multi-slice low-dose CT scan in the examination of the chest. Methods: (1) X-ray dose index measurement: 120 kV tube voltage, 0.75 s rotation, 8 mm and 3 mm slice thickness, and the tube current setting of 115.0, 40.0, 25.0, and 7.5 mAs were employed in every section. The X-ray radiation dose was measured and compared statistically. (2) phantom measurement of homogeneity and noise: The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm sections, and every slice was scanned using tube current of 115.0, 40.0, 25.0, and 7.5 mAs. Five same regions of interest were measured on every image. The homogeneity and noise level of CT were appraised. (3) The multi-slice low-dose CT in patients: 30 patients with mass and 30 with patch shadow in the lung were selected randomly. The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm slice thickness. 115.0, 40.0, 25.0, 15.0, and 7.5 mAs tube current were employed in each same slice. Otherwise, 15 cases with helical scan were examined using 190, 150, 40, 25, and 15 mAs tube current. The reconstruction images of MIP, MPR, CVR, HRCT, 3D, CT virtual endoscopy, and variety of interval reconstruction were compared. (4) Evaluation of image quality: CT images were evaluated by four doctors using single-blind method, and 3 degrees including normal image, image with few artifact, and image with excessive artifact, were employed and analyzed statistically. Results: (1) The CT dose index with 115.0 mAs tube current exceeded those of 40.0, 25.0, and 7.5 mAs by about 60%, 70%, and 85%, respectively. (2) The phantom measurement showed that the lower of CT dose the lower of homogeneity, the lower of CT dose the higher of noise level. (3) Result of image quality evaluation: The percentage of the normal image had no significant difference between 8 and 3 mm in 115, 40, and 25 mAs (P>0.05). Conclusion: Multi-slice low-dose chest CT technology may protect the patients and guarantee the

  19. Spiral CT for evaluation of chest trauma

    International Nuclear Information System (INIS)

    Roehnert, W.; Weise, R.

    1997-01-01

    After implementation of spiral CT in our department, we carried out an analysis for determining anew the value of CT as a modality of chest trauma diagnosis in the emergency department. The retrospective study covers a period of 10 months and all emergency patients with chest trauma exmined by spiral CT. The major lesions of varying seriousness covered by this study are: pneumothorax, hematothorax, pulmonary contusion or laceration, mediastinal hematoma, rupture of a vessel, injury of the heart and pericardium. The various fractures are not included in this study. In many cases, spiral CT within relatively short time yields significant diagnostic findings, frequently saving additional angiography. A rigid diagnostic procedure cannot be formulated. Plain-film chest radiography still remains a diagnostic modality of high value. (Orig.) [de

  20. Screenings of lung cancer with low dose spiral CT: results of a three year pilot study and design of the randomised controlled trial Italung-CT; Screening della neoplasia polmonare con TC spirale a bassa dose: risultati di uno studio pilota triennale e disegno dello studio clinico randomizzato Italung-CT

    Energy Technology Data Exchange (ETDEWEB)

    Picozzi, Giulia [Firenze Univ., Firenze (Italy). Radiodiagnostica I-Dipartimento di Fisiopatologia Clinica; Paci, Enrico [Azienda Ospedaliera Universitaria di Careggi, Firenze (Italy). Unita' di Epidemiologia Clinica e Descrittiva Centro per lo Studio e la Prevenzione Oncologica; Lopes Pegna, Andrea [Azienda Ospedaliera Universitaria di Careggi, Firenze (Italy). U.O. Pneumologia] [and others

    2005-02-01

    Purpose: To report the results of a three-year observational pilot study of lung cancer screening with low dose computed tomography (CT) and to present the study design of a randomised clinical trial named as Italung CT. Materials and methods: Sixty (47 males and 13 females, mean age 64{+-}4.5 years) heavy smokers (at least 20 packs-year) underwent three low-dose spiral CT screening tests one year apart on a single slice or multislice CT scanner. Indeterminate nodules were managed according to the recommendations of the Early Lung Cancer Action Project. Results: Indeterminate nodules were observed in 33 (55%) of the subjects (60% at the baseline screening test, 24% at the first annual test and 16% at the second annual test). The size of the largest indeterminate nodule was <5mm in diameter in 20 subjects. 10 of whom showed the nodule at the baseline test. Forty-five subjects (75%) completed the first annual test and 42 (70%) the second annual test. One (1.6%) prevalent lung cancer (adenosquamous carcinoma) and one (2.2%) incident lung cancer (small cell cancer at the first annual examination) were observed, as well as pulmonary localisation of Hodgkin's lymphoma (at the second annual test). In addition, one subject underwent lung surgery for a chondromatous hamartoma. Conclusions: The results of the pilot study are substantially in line with those of other observational studies of greater sample size. This justifies optimism about the reliability of the results in the screened arm of the Italung Ct trial which hast just began. [Italian] Scopo: Riportare i risultati di uno studio pilota osservazionale di screening della neoplasia polmonare con TC a bassa dose della durata di tre anni e presentare il disegno dello studio clinico randomizzato Italung-CT. Materiale e metodi: Sessanta (47 uomini e 13 donne, eta' media 64{+-}4,5 anni) forti fumatori (almeno 20 pacchetti/anno) sono stati sottoposti ad un esame basale e a due controlli annuali con TC single o

  1. Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction

    Science.gov (United States)

    Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.

    2017-10-01

    One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.

  2. Clinical application of low-dose CT in patients with rib fractures

    International Nuclear Information System (INIS)

    Ge Xiaojun; Wu Hao; Hua Yanqing; Wang Mingpeng; Mao Dingbiao; Tang Ping; Hu Fei; Zhang Guozhen

    2011-01-01

    Objective: To evaluate images quality and diagnostic feasibility of low-dose CT in patients with traumatic rib fractures. Methods: Twenty-five patients presented with thoracic injury were underwent 64-slice spiral CT scanning in inspiration breath-hold technique. Two scan protocols were performed. In one scan protocol noise index (NI) is 11, and in another NI is 21, but the other scan parameters were no difference. The mean value of tube current, the volume CT dose index (CTDI vol ), and effective dose (ED) were recorded. Image quality was scored by 2 experienced radiologists using the 5-points scale. The numbers and degrees of rib fractures were recorded. The data were tested by using the Wilcoxon signed rank sum test. The differences of the inter-observer were determined by Kappa statistics. Results: The mean CTDIvol and ED in scan protocol with NI of 11 were (13.88±5.17) mGy and (8.14± 3.21) mSv, and that with NI of 21 were (3.91±1.57) mGy and (2.31±0.97) mSv. Compared the scan with NI of 11, there was 72% intrinsic dose reduction in the scan with NI of 21. The mean value of tube current in scan with NI of 11 and 21 were (195.88±69.33) mAs and (54.56±21.54) mAs. All patients with Ⅱ and Ⅲ degree and most patients with Ⅰ degree rib fractures that identified by the scan with NI of 11 were detected by the scan with NI of 21. There were no statistical difference between two scans with the Wilcoxon, signed rank sum test. The diagnostic acceptability and image noise score in the scan with NI of 11 were 4.9±0.2 and 4.6±0.5, and that with NI = 21 were 3.5±0.5 and 3.3±0.5. There was prefect concordance in the inter-observers in diagnostic, acceptability on finding of rib fractures, diagnostic acceptability and image noise (Kappa =0.876, 0.820, 0.792, P<0.01) between two scan protocols. Conclusion: Rib fractures can be diagnosed by the low-dose CT using the scan protocol with NI of 21. (authors)

  3. Bibliometrics analysis of the PubMed literatures on low-dose CT

    International Nuclear Information System (INIS)

    Wang Qian; Xia Guanghui; Ma Xiaohong; Zhao Xinming

    2012-01-01

    Objective: The purposes of this study were to evaluate the developmental rule and feature in low-dose CT examinations and to provide useful references for study in the future. Materials and Methods: The journal articles on PubMed from 2002 to 2011 were processed by Thomson Data Analyzer and five aspects were analysed: time, authors, institutions, journals, countries, and keywords. Results: The number of journal articles in low-dose CT examinations were 6 433, 3165 were from US (49.2%), 112 from China (1.4%); 3664 authors (80.42%) published only one article, the famous authors published more than 4 articles; there were 9 core journals in this area. In the last decade, the number and quality of the journal articles in low -dose CT have been dramatically increased. Conclusion: The interest on the low -dose CT examination has been steadily increasing, and world famous research teams have been established. The research in low-dose CT is a multi-discipline involving medicine, medical physics, and mathematics. Cooperation between multiple scientific domains is needed for the future studies. (authors)

  4. Dose reduction in subsecond multislice spiral CT examination of children by online tube current modulation

    International Nuclear Information System (INIS)

    Greess, H.; Lutze, J.; Noemayr, A.; Bautz, W.; Wolf, H.; Hothorn, T.; Kalender, W.A.

    2004-01-01

    The potential of online tube current modulation in subsecond multislice spiral CT (MSCT) examinations of children to reduce the dose without a loss in image quality is investigated in a controlled patient study. The dose can be reduced for oval patient sectional view without an increase in noise if the tube current is reduced where the patient diameter and, consequently, attenuation are small. We investigated a product version of an online control for tube current in a SOMATOM Sensation 4 (Siemens, Forchheim). We evaluated image quality, noise and dose reduction for examinations with online tube current modulation in 30 MSCT of thorax/abdomen and abdomen and compared mA s for tube current modulation to the mA s in standard weight-adapted children protocols. Image quality was rated as ''very good,'' ''good,'' ''diagnostic'' and ''poor'' in a consensus by three radiologists. Noise was assessed in comparison to 24 MSCT examinations without tube current modulation measured as SD in ROIs. The dose was reduced from 26 to 43% (mean 36%), depending on the patient's geometry and weight. (orig.)

  5. Whole-body CT. Spiral and multislice CT. 2. tot. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Prokop, M.; Galanski, M.; Schaefer-Prokop, C.; Molen, A.J. van der

    2007-01-01

    Spiral and multidetector techniques have improved the diagnostic possibilities of CT, so that image analysis and interpretation have become increasingly complex. This book represents the current state of the art in CT imaging, including the most recent technical scanner developments. The second edition comprises the current state of knowledge in cT imaging. There are new chapters on image processing, application of contrasting agents and radiation dose. All organ-specific pathological findings are discussed in full. There are hints for optimum use and interpretation of CT, including CT angiography, CT colonography, CT-IVPL, and 3D imaging. There is an introduction to cardio-CT, from calcium scoring and CTA of the coronary arteries to judgement of cardiac morphology. There are detailed scan protocols with descriptions of how to go about parameter selection. Practical hints are given for better image quality and lower radiation exposure of patients, guidelines for patient preparation and complication management, and more than 1900 images in optimum RRR quality. (orig.)

  6. Dose assessment of head CT examination by volume scanning with 320-area-detector

    International Nuclear Information System (INIS)

    Suzuki, Shoichi; Kobayashi, Masanao

    2009-01-01

    CT with the 320-area-detector (320-ADCT), first presented in 2007, still requires further basic studies, particularly in the field of dose assessment, as the CT has been widely spread in clinic due to its many advantages compared with the usual spiral CT. In this paper, the assessment in the title was thereby done in human phantom and a patient with suspicious acute cerebral infarction under different scanning modes (non-spiral, spiral and volume) for their comparison. Machines for 320-ADCT, and non-spiral and spiral CT were Toshiba Aquilion ONE, and Aquilion 64-MD, respectively. Scanning of the phantom and patient was individually conducted under similar conditions of tube voltage/ current, rotation time and length with the same field of view with defined nominal slice thicknesses. Alderson human body phantom in which 240 thermoluminescent dosimeters were indwelled, was used; doses were read by the thermoluminescence dosimeter (TLD) reader model 3000 (Kyokko Co.) after scanning; and effective doses were calculated with reference to ICRP publ. 102/103 equations for patient's head to be 4.2 (64-MDCT) and 6.6 (320-ADCT) mSv, which were respectively 6.4 and 5.4 mSv when estimated using the conversion coefficient and DLP (dose length product) in the texts. It was suggested that the exposure dose at the volume scanning by 320-ADCT can be reduced in the routine examination, and in the exact diagnosis, possibly increases. These doses can be reduced further by optimization of scanning conditions by additional basic investigations. (K.T.)

  7. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    International Nuclear Information System (INIS)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung

    2010-01-01

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in μSv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  8. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-03-15

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in {mu}Sv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  9. Feasibility of low-dose contrast medium high pitch CT angiography for the combined evaluation of coronary, head and neck arteries.

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    Full Text Available PURPOSE: To evaluate the image quality and radiation dose of combined heart, head, and neck CT angiography (CTA using prospectively electrocardiography (ECG-triggered high-pitch spiral scan protocol, compared with single coronary CTA. MATERIALS AND METHODS: 151 consecutive patients were prospectively included and randomly divided into three groups. Group 1 (n = 47 underwent combined heart, neck, and head CTA using prospectively ECG-triggered high-pitch spiral (Flash scan protocol with a single-phase intravenous injection of iodinated contrast and saline flush; Group 2 (n = 51 underwent single coronary CTA with Flash scan protocol; and Group 3 (n = 53 underwent single coronary CTA with prospective sequence scan protocol. All patients were examined on a dual source CT (Definition FLASH. The image quality was determined for each CT study. RESULTS: Patients of scanning protocol Group 1, 2, and 3 showed no significant differences in age, sex, heart rates, and BMI. Evaluation of coronary artery image quality showed comparable results in the three scanning protocol groups on a per patient-based analysis. In group 1, image quality was found to be sufficient to be diagnostic in all arterial segments of carotid arteries. The mean dose-length product (DLP for group 1 was 256.3±24.5 mGy×cm and was significantly higher in comparison with group 2 (93.4±19.9 mGy×cm; p < 0.001. However, there was no significant difference of DLP between group 1 and group 3 (254.1±69.9 mGy×cm. CONCLUSIONS: The combined heart, neck, and head arteries scan using prospectively electrocardiography (ECG-triggered high-pitch spiral scan protocol in 1 single examination resulted in an excellent opacification of the aorta, the carotid arteries, and the coronary arteries and provided a good image quality with low radiation dose.

  10. Hepatic hemangioma: contrast enhancement patterns on two-phase spiral CT

    International Nuclear Information System (INIS)

    Yun, Eun Joo; Choi, Byung Ihn; Han, Joon Koo; Jang, Hyun Jung; Kim, Tae Kyoung; Kim, Ah Young; Lee, Ki Yeol

    1998-01-01

    To evaluate contrast enhancement patterns of hemangioma according to size, as seen during the arterial and portal venous phase of spiral CT. Overall, the most common enhancement pattern was peripheral high (44/82, 53.7%), during the arterial and portal venous phase. The second and third most common patterns were uniform high (11/82, 13.4%) and peripheral high-uniform high (9/82, 11.0%), also during the arterial and portal venous phase. In tumors smaller than 20 mm, low-low attenuation was seen in eight (9.8%), and iso-low attenuation in two (2.4%), during the arterial and portal venous phase, respectively. On two-phase spiral CT, the most common enhancement pattern of hemangioma was peripheral high, seen during the arterial and portal venous phase. However, a small hemangioma less than 2cm may show atypical patterns, including low and iso attenuation. (author). 23 refs., 1 tab., 4 figs

  11. Low-dose X-ray CT reconstruction via dictionary learning.

    Science.gov (United States)

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  12. Evaluation of image quality and dose in thoracic spiral CT examination in patients with pulmonary carcinoma. Preliminary results

    International Nuclear Information System (INIS)

    Moran-Blanco, L. M.; Rodriguez-Gonzalez, R.; Calzado-Cantera, A.; Arenas de Pablo, A.; Baeza-Trujillo, M.; Cuevas-Ibanez, A.; Garcia-Castano, B.; Gomez-Leon, N.; Turrero-Nogues, A.; Moran-Penco, P.

    2002-01-01

    We have applied criteria for CT quality defined in the European Guidelines to a samples of thoracic CT examinations for the indication of pulmonary carcinoma of 5 institutions of the Community of Madrid that have spiral CT equipment. The selected examinations have been evaluated independently by five radiologists to determine the degree of adherence to the quality criteria for image defined in the Guidelines s for examinations of general thorax. Dosimetric measurements carried out in parallel have served to estimate the values of CT (CTDI w ) dose indices, dose-length product (DLP) and effective dose for every patient. The result show a high global adherence to the quality criteria (96%), with averages per institution being between 94% (in two institutions) and 98% (in three institutions). There are 10 of 16 criteria that are adhered to in all examinations of the sample: those which are not adhered to systematically are: two of visualization (1.1 and 1.4), with 92-96% fulfillment, and four of critical reproduction (2.6; 2.8; 2.9 and 2.10), with percentages of adherence between 91% and 96%. The average CTDI w values per institution are in the interval 12.9-19.1 mGy; those of DLP between 263 and 577 mGy cm and those of effective dose between 4.2 and 9.2 mSv. The DLP-image quality correlation in institutions with the best image quality was null in two of them and direct and moderate in the third. In both institutions with the poorest image: (Author) 20 refs

  13. Diagnosing extracranial atherosclerotic diseases with spiral CT

    International Nuclear Information System (INIS)

    Moran, C.J.; Vannier, M.W.; Erickson, K.K.; Broderick, D.F.; Kido, D.K.; Yoffie, R.L.

    1991-01-01

    This paper reports that this discovery study was performed to determine whether extracranial carotid artery plaques could be diagnosed with a new CT technique (spiral CT) that allows nondistorted three-dimensional (3D) reconstructions in the z axis. Twenty carotid arteries were examined with spiral CT in normal volunteers and in patients suspected of having atherosclerotic plaques in the extracranial carotid arteries. The Somatom Plus CT table was advanced at a constant rate, the x-ray tube was continuously rotated, and 3D data were continuously acquired. Sixty milliliters of nonionic contrast medium was injected intravenously previous to and during the acquisition of data. The carotid bifurcations were identified in all patients. Planar images, similar to conventional intraarterial angiograms, were routinely produced from the volumetric CT data

  14. Low-dose multislice CT in febrile neutropenic patients

    International Nuclear Information System (INIS)

    Wendel, F.; Jenett, M.; Hahn, D.; Sandstede, J.; Geib, A.

    2005-01-01

    Purpose: to define the value of low-dose multislice CT in a clinical setting for early detection of pneumonia in neutropenic patients with fever of unknown origin. Materials and methods: thirty-five neutropenic patients suffering from fever of unknown origin with normal chest X-ray underwent unenhanced low-dose CT of the chest (120 kV, 10 eff. mAs, collimation 4 x 1 mm) using a multislice CT scanner. Axial und frontal slices with a thickness of 5 mm were calculated. If no pneumonia was found, standard antibiotics were given and a repeated examination was performed if fever continued. In case of pneumonia, antimycotic therapy was added and a follow-up CT was performed within one week. Regression or progression of pneumonia at follow-up served as evidence of pneumonia; lowering of fever within 48 h or inconspicuous follow-up CT was regarded as absence of pneumonia. Results: ten of 35 patients had pneumonic infiltration, which decreased or increased on follow-up CT in 3 and 6 patients, respectively. One patient revealed leucemic infiltration by bronchoalveolar lavage. Twenty-five of 35 patients had no evidence of pneumonia. Twenty of these patients were free of fever within 48 h under antibiotics; one patient died due to his basic illness. Out of 4 patients with persisting fever, 3 patients had no pneumonia on repeated examination; one patient showed disseminated micronodular infiltration. Frontal reconstructions helped to differentiate infiltration from atelectasis in 4 patients. Sensitivity and specificity for the detection of pneumonia at the first examination were 90% and 96%, negative predictive value was 96%. Conclusion: low-dose multislice CT should be performed in neutropenic patients having a fever of unknown origin and normal chest X-ray. (orig.)

  15. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    Science.gov (United States)

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  16. Abdominal spiral CT in children: which radiation exposure is required?

    Energy Technology Data Exchange (ETDEWEB)

    Wormanns, D.; Diederich, S.; Lenzen, H.; Ludwig, K.; Papke, Karsten; Hagedorn, Claudia; Heindel, Walter [Muenster Univ. (Germany). Inst. fuer Klinische Radiologie; Lange, P.; Link, T.M. [Muenster Univ. (Germany). Inst. fuer Klinische Radiologie; Dept. of Radiology, Technical Univ. Muenchen (Germany)

    2001-11-01

    We decided to test to what extent dose reduction is possible in abdominal spiral computed tomography (CT) in young children without loss of anatomic diagnostic information. A retrospective study was performed of 30 abdominal CT examinations of children aged 3 months to 7 years. These were divided into two groups: group A with reduced radiation exposure (tube current 50 mA, CT dose index CTDI{sub FDA} {<=}0.83 mGy) and group B with standard radiation exposure (tube current {>=}100 mA, CTDI{sub FDA} {>=}1.66 mGy). Image quality was assessed using a four-part scale ('excellent', 'good', 'sufficient', 'poor') on visual image impression and visibility of 32 anatomical details. Five experienced radiologists read the CT scans independently who were blinded to the examination parameters. Differences in ranked data were evaluated with Wilcoxon's rank sum test. No difference between groups A and B was observed in visual image impression. Detail visibility was significantly lower in group A, but the differences were limited to right upper quadrant structures (portal vein, common bile duct, pancreatic head, adrenals) and to arterial branches. Significant differences in visibility rated as 'poor' were only found for the hepatic, splenic and renal arteries; all other structures showed no difference between groups A and B. A protocol with reduced radiation exposure (50 mA, CTDI{sub FDA} {<=}0.83 mGy) allowed the demonstration of most anatomic structures in abdominal spiral CT in young children. For the precise demonstration of small details (e.g. structures of the right upper quadrant), a protocol with standard radiation exposure ({>=}100 mAs) was superior. (orig.)

  17. CT pulmonary angiography using 64-row multi-slice spiral CT: a comparative study in low tube voltage setting combined with personalized contrast agent application

    International Nuclear Information System (INIS)

    Zhou Xuhui; Peng Zhenpeng; Zheng Lili; Li Shurong; Yang Zhiyun; Meng Quanfei; Chen Xing

    2009-01-01

    Objective: To investigate the feasibility of the low tube voltage setting and personalized contrast agent application in 64-row multi-slice spiral CT pulmonary angiography. Methods: Ninety patients with high risk of pulmonary artery embolism were sequentially enrolled in the study and divided into 3 groups employing completely randomized design: (l)Regular group included 30 patients using 120 kV and fixed dose of 70 ml contrast agent, (2)Another 30 patients were in 120 kV group, using 120 kV and the contrast amount was determined according to the patient weight (1.0 ml/kg), (3) The remaining 30 patients were included in 100 kV group, using 100 kV and the contrast amount was also determined according to the patient weight(1.0 ml/kg). Administration of contrast agent was completed within 20 seconds for all the patients, followed by 20 ml of saline. The objective and subjective indexes for assessing CT image quality, CT dose index volume (CTDIvol) and effective received dose (ERD) were compared between 120 kV group and 100 kV group; then the contrast media volume, injection rate, objective CT image indexes and subjective indexes for image quality was compared between the 100 kV group and regular group. The variance analysis and post hoc test were employed for the statistical analysis. Results: Compared with 120 kV group (3.4±0.7), the image quality of 100 kV group (5.2±1.8) had higher noise (52.9%), but subjective index for the image quality demonstrated no differences (q=0.272, P=0.063) in mediastinum window while CTDIvol and ERD decreased for 34.9% [(9.5±0.0) vs (14.6±0.0) mGy] and 36.8% [(3.8±0.6) vs (2.4±0.4) mSv]. The mean CT values on pulmonary artery of 100 kV group[ (269.2±54.7) HU] were 13.4% (31.8/237.4) higher than the 120 kV group [(237.4±62.9)HU], but there was no statistical differences compared to normal group (q=0.172,P=0.260). Conclusion: Using low kV setting (100 kV) to reduce radiation dose is proved to be effective and feasible in 64-MSCT

  18. Low-dose respiratory-gated PET/CT: based on 30 mA tube current

    International Nuclear Information System (INIS)

    Wu Ping; Li Sijin; Zhang Yanlan; Hao Xinzhong; Qin Zhixing; Yan Min; Cheng Pengliang; Wu Zhifang

    2013-01-01

    Objective: To establish a low-dose but image-comparable respiratory-gated PET/CT (RG PET/CT) protocol based on 30 mA tube current plus other improved scanning parameters, such as the tube current, the number of respiratory phase and length of breathing cycle. Methods: Twenty-six patients with 18 F-FDG-intaking lung nodules underwent one-bed standard-dose PET/CT (120 mA, 2 min/bed) and low dose RG PET/CT (30 mA, 6 respiratory phases, 1 min/phase). The radiation dose and image quality were analyzed subsequently with signal to noise ratio (SNR) for PET and the homogeneity, noise level for CT in the water phantom respectively. Otherwise the CT images were both visual evaluated by two experienced doctors. In addition, different respiratory cycle was simulated to observe its relation with radiation dose. Results: The effective dose of low-dose RG PET/CT was 4.88∼7.69 mSv [mean (5.68±0.83) mSv]. The PET SNR showed no significance between groups. The homogeneity of 30 mA is good (< 5 HU), although noise level was high, the visual character like lobulation, speculation of lung nodule was superior in some respiratory phases. The radiation dose was positively correlated with respiratory cycle. Conclusions: The performance of low-dose RG PET/CT was comparable to those of standard-dose PET/CT based on a protocol with 30 mA tube current, 6 respiratory phases and breathing state of eupnoea. It produced a much lower radiation exposure and the image quality was enough for clinical use such as delineation of tumor active target, characterization and staging of lung nodules, etc. (authors)

  19. Low-dose helical computed tomography (CT) in the perioperative workup of adolescent idiopathic scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Abul-Kasim, Kasim; Overgaard, Angelica; Maly, Pavel [Malmoe University Hospital, Department of Radiology, Section of Neuroradiology, University of Lund, Malmoe (Sweden); Ohlin, Acke [Malmoe University Hospital, Department of Orthopaedic Surgery, University of Lund, Malmoe (Sweden); Gunnarsson, Mikael [Malmoe University Hospital, Department of Radiation Physics, University of Lund, Malmoe (Sweden); Sundgren, Pia C. [University of Michigan Health Systems, Department of Radiology, Division of Neuroradiology, Ann Arbor (United States)

    2009-03-15

    The study aims were to estimate the radiation dose in patients examined with low dose spine CT and to compare it with that received by patients undergoing standard CT for trauma of the same region, as well as to evaluate the impact of dose reduction on image quality. Radiation doses in 113 consecutive low dose spine CTs were compared with those in 127 CTs for trauma. The inter- and intraobserver agreement in measurements of pedicular width, and vertebral rotation, measurements of signal-to-noise ratio and assessment of hardware status were the indicators in the evaluation of image quality. The effective dose of the low dose spine CT (0.37 mSv) was 20 times lower than that of a standard CT for trauma (13.09 mSv). This dose reduction conveyed no impact on image quality. This low dose spine CT protocol allows detailed evaluation that is necessary for preoperative planning and postoperative evaluation. (orig.)

  20. Comparison of Adsorbed Skin Dose Received by Patients in Cone Beam Computed Tomography, Spiral and Conventional Computed Tomography Scanninng

    Directory of Open Access Journals (Sweden)

    Rahimi A

    2011-12-01

    Full Text Available Background and Aims: The evaluation of absorbed dose received by patients could give useful information for radiation risk estimation. This study was performed to compare the entrance skin dose received by patients in cone beam computed tomography (CBCT, conventional and spiral computed tomography (CT.Materials and Methods: In this experimental study, 81 calibrated TLD chips were used. the TLD chips were placed on facial, thyroid and end of sternum skin surface in patients referred for CT of the paranasal sinuses(3 TLD chips for each area to estimate the absorbed dose received by central part of radiation field, thyroid and out of field areas, respectively. The data were analyzed using one-way ANOVA and Tukey tests. Results: The dose delivered to the center of irradiated field was about 0.79±0.09 mGy in CBCT technique compared with 16.31±3.71 and 18.84±4.12 mGy for spiral and conventional CT, respectively. The received dose by the out of field areas was about 54 percent of central area dose. There was statistical significant relationship between the imaging modalities and absorbed dose received by patients (P=0.016. The least absorbed dose was for CBCT and the greatest dose was for conventional CT imaging technique.Conclusion: The dose delivered to central area of irradiated field in conventional and spiral CT imaging modalities was about 24 times greater than of that in CBCT. Also, the highest received dose was for central area of radiated field and the lowest dose was for the out of field areas.

  1. Lung cancer screening with low-dose CT

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2003-01-01

    Screening for lung cancer is hoped to reduce mortality from this common tumour, which is characterised by a dismal overall survival, relatively well defined risk groups (mainly heavy cigarette smokers and workers exposed to asbestos) and a lack of early symptoms. In the past studies using sputum cytology and chest radiography have failed to demonstrate any reduction in lung cancer mortality through screening. One of the reasons is probably the relatively poor sensitivity of both these tests in early tumours. Low radiation dose computed tomography (CT) has been shown to have a much higher sensitivity for small pulmonary nodules, which are believed to be the most common presentation of early lung cancer. As, however, small pulmonary nodules are common and most are not malignant, non-invasive diagnostic algorithms are required to correctly classify the detected lesions and avoid invasive procedures in benign nodules. Nodule density, size and the demonstration of growth at follow-up have been shown to be useful in this respect and may in the future be supplemented by contrast-enhanced CT and positron emission tomography. Based on these diagnostic algorithms preliminary studies of low-dose CT in heavy smokers have demonstrated a high proportion of asymptomatic, early, resectable cancers with good survival. As, however, several biases could explain these findings in the absence of the ultimate goal of cancer screening, i.e. mortality reduction, most researchers believe that randomised controlled trials including several 10000 subjects are required to demonstrate a possible mortality reduction. Only then general recommendations to screen individuals at risk of lung cancer with low-dose CT should be made. It can be hoped that international cooperation will succeed in providing results as early as possible

  2. Pulmonary embolism: spiral CT evaluation; Embolie pulmonaire: apport de la tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Senac, J.P.; Vernhet, H.; Bousquet, C.; Giron, J.; Pieuchot, P.; Durand, G.; Benezet, O.; Aubas, P. [Centre Hospitalier Universitaire, 34 - Montpellier (France)

    1995-06-01

    Purpose: Spiral computed tomography was compared retrospectively with digital substraction pulmonary angiography (PA) in 45 patients suspected of having acute or chronic pulmonary embolism. Materials and method : 45 patients in whom the presence of acute or chronic pulmonary embolism was suspected underwent examination by spiral CT and PA. Diagnosis of pulmonary embolism was based on the direct visualization of intraluminal clots. The study of the agreement between the two methods was based on the Kappa test. In 35 cases, pulmonary emboli were proved. Acute pulmonary emboli were present in 28 cases and chronic in 7 cases. Results: Spiral computed tomography represents an excellent way to detect acute pulmonary embolism. In the chronic form, spiral CT is better than PA to detect intraluminal clots. However, Spiral CT can fail to detect small emboli in the peripheral arterial bed. In the 10 patients without pulmonary embolism, the spiral CT proved diagnosis pulmonary oedema (n=3), lymphangi-carcinoma (n=4), pleural effusion (n=3). Conclusion: This study suggest that the spiral CT examination is accurate for diagnosis of pulmonary embolism specifically in case of suspected important embolism. The advantages of spiral CT are multiple (non invasive, wide diagnosis spectrum). However, may be a limitation to is use is insufficient distal thrombi detection. This eventuality (5 to 10% in the Pioped study) justify the practice of pulmonary angiography. Spiral CT improvements should reduce this insufficiency in the next future. (Authors). 16 refs., 4 figs., 3 tabs.

  3. Spiral CT-angiography of the aorta

    NARCIS (Netherlands)

    Balm, R.; Eikelboom, B. C.; van Leeuwen, M. S.; Noordzij, J.

    1994-01-01

    AIMS: To determine whether the new technique of CT-angiography was accurate in displaying the complex anatomy of the aorta and its major branches. METHODS: Seventeen patients with a variety of aortic pathology were examined. Using a spiral CT-scanner a volumetric scan was made during injection of

  4. In-vitro studies to determine the degree of stenosis using spiral-CT angiography

    International Nuclear Information System (INIS)

    Wittenberg, G.; Lenk, G.; Jenett, M.; Elsner, H.; Kaiser, W.A.; Kellner, M.; Schultz, G.; Trusen, A.; Hahn, D.

    1998-01-01

    Purpose: Aim of the study was to evaluate the influence of different spiral-CT parameters for the visualisation of vascular stenoses, especially of the renal arteries. Material and methods: Models with a density equivalent to that of fat, filled with diluted contrast agent, and an inner lumen of 4, 6, 8 mm were scanned in x-, y- and z-direction. Data were acquired in up to 24 second long spiral-CT scans using different spiral-CT parameters (collimation, table speed, reconstruction algorithm, tube current). Detection of the degree of stenosis was achieved by assessment of the axial images and 3D reconstructions. Results: The best correlation between real and measured degree of stenosis was seen by using a small collimation, a low table increment and assessment of the axial images reconstructed in standard algorithm. The stenosis degrees of models directed in x- and y-direction were overestimated and those in z-direction were underestimated depending on the spiral-CT parameters. Conclusion: For optimal imaging of renal artery stenoses, collimation of 2 mm (pitch=1-2) and a reconstruction interval of 1 mm is recommended. (orig.) [de

  5. Feasibility study of automatic tube current modulation in low-dose thoracic imaging for young children with 64-slice spiral CT

    International Nuclear Information System (INIS)

    Peng Yun; Li Jianyin; Zhang Qifeng; Liu Yue; Wang Bei; Zheng Jinjin

    2008-01-01

    Objective: To assess the feasibility of using an automatic tube current modulation (ATCM) method to obtain consistent image quality with reduced radiation dose for young children undergoing chest scans with a set of 64-slice spiral CT. Methods: Fifty young children underwent chest scans on a GE 64-slice VCT with automatic tube current modulation. The noise index (NI) for this study group was set to 8 or 9 based on the proposed reference for pediatric chest imaging in our hospital. We compared image quality and radiation dose for the study group with the age-matched control group of 50 young children acquired with standard protocol of fixed-mAs (120 and 150 mAs for under 1 and above 1 year old, respectively). The volume CT dose index(CTDIvol) values were recorded for both groups. Two experienced pediatric radiologists assessed image quality on a 5-point scale with 5 being the best. Scores greater than or equal to 3 were considered clinically acceptable. The degree of interobserver concordance was determined by Kappa statistics. Results: The average objective image noise and CTDIvol for control group was (4.78±0.58) and (6.68±0.62) mGy, respectively. For the study group the mean value of objective mAs was (41.6±11.6) (20-79 mAs) with mean CTDIvol of (2.34±0.71) mGy, and the use of ATCM produced mean noise of (7.84±0.66). The average CTDIvol with the use of NI of 8-9 was about 65% lower than that with the fixed mAs setting. The mean image quality score for the study group and control group was (3.46±0.40) and (4.65±0.46) respectively. All studies had acceptable image quality, and there was good inter-observer agreement in diagnostic acceptability (Kappa=0.474 and 0.536). Conclusion: The automatic tube current modulation method could be used to obtain consistent image quality for young children undergoing 64-slice MSCT chest scans. With proper noise level setting (NI=8 or 9), one may obtain clinically acceptable images with much reduced radiation dose. (authors)

  6. Benefits of sinogram-affirmed iterative reconstruction in 0.4 mSv ultra-low-dose CT of the upper abdomen following transarterial chemoembolisation: comparison to low-dose and standard-dose CT and filtered back projection technique

    International Nuclear Information System (INIS)

    Bodelle, B.; Isler, S.; Scholtz, J.-E.; Frellesen, C.; Luboldt, W.; Vogl, T.J.; Beeres, M.

    2016-01-01

    Aim: To evaluate the advantage of sinogram-affirmed iterative reconstruction (SIR) compared to filtered back projection (FBP) in upper abdomen computed tomography (CT) after transarterial chemoembolisation (TACE) at different tube currents. Materials and methods: The study was approved by the institutional review board. Written informed consent was obtained from all patients. Post-TACE CT was performed with different tube currents successively varied in four steps (180, 90, 45 and 23 mAs) with 40 patients per group (mean age: 60±12 years, range: 23–85 years, sex: 70 female, 90 male). The data were reconstructed with standard FBP and five different SIR strengths. Image quality was independently rated by two readers on a five-point scale. High (Lipiodol-to-liver) as well as low (liver-to-fat) contrast-to-noise ratios (CNRs) were intra-individually compared within one dose to determine the optimal strength (S1–S5) and inter-individually between different doses to determine the possibility of dose reduction using the Kruskal–Wallis test. Results: Subjective image quality and objective CNR analysis were concordant: intra-individually, SIR was significantly (p<0.001) superior to FBP. Inter-individually, regarding different doses (180 versus 23 ref mAs), there was no significant (p=1.00) difference when using S5 SIR at 23 mAs instead of FBP. Conclusion: SIR allows for an 88% dose reduction from 3.43 to 0.4 mSv in unenhanced CT of the liver following TACE without subjective or objective loss in image quality. - Highlights: • Diagnostic image quality and radiation dose of ultra-low-dose CT of the upper abdomen using sinogram affirmed iterative reconstruction following transarterial chemoembolization in comparison to low-dose and standard dose CT and filtered back projection technique. • Ultra-low dose CT of the upper abdomen using sinogram affirmed iterative reconstruction allows for significant dose reduction by 88%. • Ultra-low dose CT of the upper abdomen

  7. Coronary artery stent imaging with 128-slice dual-source CT using high-pitch spiral acquisition in a cardiac phantom: comparison with the sequential and low-pitch spiral mode

    International Nuclear Information System (INIS)

    Wolf, Florian; Loewe, Christian; Plank, Christina; Schernthaner, Ruediger; Bercaczy, Dominik; Lammer, Johannes; Leschka, Sebastian; Goetti, Robert; Marincek, Borut; Alkadhi, Hatem; Homolka, Peter; Friedrich, Guy; Feuchtner, Gudrun

    2010-01-01

    To evaluate coronary stents in vitro using 128-slice-dual-source computed tomography (CT). Twelve different coronary stents placed in a non-moving cardiac/chest phantom were examined by 128-slice dual-source CT using three CT protocols [high-pitch spiral (HPS), sequential (SEQ) and conventional spiral (SPIR)]. Artificial in-stent lumen narrowing (ALN), visible inner stent area (VIA), artificial in-stent lumen attenuation (ALA) in percent, image noise inside/outside the stent and CTDIvol were measured. Mean ALN was 46% for HPS, 44% for SEQ and 47% for SPIR without significant difference. Mean VIA was similar with 31% for HPS, 30% for SEQ and 33% for SPIR. Mean ALA was, at 5% for HPS, significantly lower compared with -11% for SPIR (p = 0.024), but not different from SEQ with -1%. Mean image noise was significantly higher for HPS compared with SEQ and SPIR inside and outside the stent (p < 0.001). CTDIvol was lower for HPS (5.17 mGy), compared with SEQ (9.02 mGy) and SPIR (55.97 mGy), respectively. The HPS mode of 128-slice dual-source CT yields fewer artefacts inside the stent lumen compared with SPIR and SEQ, but image noise is higher. ALN is still too high for routine stent evaluation in clinical practice. Radiation dose of the HPS mode is markedly (less than about tenfold) reduced. (orig.)

  8. Three-dimensional spiral CT for neurosurgical planning.

    Science.gov (United States)

    Klein, H M; Bertalanffy, H; Mayfrank, L; Thron, A; Günther, R W; Gilsbach, J M

    1994-08-01

    We carried out 22 examinations to determine the value of three-dimensional (3D) volumetric CT (spiral CT) for planning neurosurgical procedures. All examinations were carried out on a of the first generation spiral CT. A tube model was used to investigate the influence of different parameter settings. Bolus injection of nonionic contrast medium was used when vessels or strongly enhancing tumours were to be delineated. 3D reconstructions were carried out using the integrated 3D software of the scanner. We found a table feed of 3 mm/s with a slice thickness of 2 mm and an increment of 1 mm to be suitable for most purposes. For larger regions of interest a table feed of 5 mm was the maximum which could be used without blurring of the 3D images. Particular advantages of 3D reconstructed spiral scanning were seen in the planning of approaches to the lower clivus, acquired or congenital bony abnormalities and when the relationship between vessels, tumour and bone was important.

  9. Three-dimensional spiral CT for neurosurgical planning

    International Nuclear Information System (INIS)

    Klein, H.M.; Bertalanffy, H.; Mayfrank, L.; Thron, A.; Guenther, R.W.; Gilsbach, J.M.

    1994-01-01

    We carried out 22 examinations to determine the value of three-dimensional (3D) volumetric CT (spiral CT) for planning neurosurgical procedures. All examinations were carried out on a of the first generation spiral CT. A tube model was used to investigate the influence of different parameter settings. Bolus injection of nonionic contrast medium was used when vessels or strongly enhancing tumours were to be delineated. 3D reconstructions were carried out using the integrated 3D software of the scanner. We found a table feed of 3 mm/s with a slice thickness of 2 mm and an increment of 1 mm to be suitable for most purposes. For larger regions of interest a table feed of 5 mm was the maximum which could be used without blurring of the 3D images. Particular advantages of 3D reconstructed spiral scanning were seen in the planning of approaches to the lower clivus, acquired or congenital bony abnormalities and when the relationship between vessels, tumour and bone was important. (orig.)

  10. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality.

    Science.gov (United States)

    Flohr, Thomas G; Leng, Shuai; Yu, Lifeng; Aiimendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H

    2009-12-01

    To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom

  11. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    International Nuclear Information System (INIS)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H.

    2009-01-01

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6≤pitch≤3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  12. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H. [Siemens Healthcare, Computed Tomography, 91301 Forchheim, Germany and Department of Diagnostic Radiology, Eberhard-Karls-Universitaet, 72076 Tuebingen (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Siemens Healthcare, Computed Tomography, 91301 Forchheim (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  13. Prospectively Electrocardiogram-Gated High-Pitch Spiral Acquisition Mode Dual-Source CT Coronary Angiography in Patients with High Heart Rates: Comparison with Retrospective Electrocardiogram-Gated Spiral Acquisition Mode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai; Ma, Rui; Wang, Li Jun [Dept. of Radiology, Baotou Central Hospital, Baotou (China); Li, Li Gang; Chen, Jiu Hong [CT BM Clinic Marketing, Siemens Healthcare, Beijing (China)

    2012-11-15

    To assess the image quality and effective radiation dose of prospectively electrocardiogram (ECG)-gated high-pitch spiral acquisition mode (flash mode) of dual-source CT (DSCT) coronary angiography (CTCA) in patients with high heart rates (HRs) as compared with retrospectively ECG-gated spiral acquisition mode. Two hundred and sixty-eight consecutive patients (132 female, mean age: 55 {+-} 11 years) with mean HR > 65 beats per minute (bpm) were prospectively included in this study. The patients were divided into two groups. Collection was performed in group A CTCA using flash mode setting at 20-30% of the R-R interval, and retrospectively ECG-gated spiral acquisition mode in group B. The image noise, contrast-to-noise ratio (CNR), image quality scores, effective radiation dose and influencing factors on image quality between the two groups were assessed. There were no significant differences in image quality scores and proportions of non-diagnostic coronary artery segments between two groups (image quality scores: 1.064 {+-} 0.306 [group A] vs. 1.084 {+-} 0.327 [group B], p = 0.063; proportion of non-diagnostic coronary artery segments: segment-based analysis 1.52% (group A) vs. 1.74% (group B), p = 0.345; patient-based analysis 7.5% (group A) vs. 6.7% (group B), p = 0.812). The estimated radiation dose was 1.0 {+-} 0.16 mSv in group A and 7.1 {+-} 1.05 mSv in group B (p = 0.001). In conclusion, in patients with HRs > 65 bpm without cardiac arrhythmia, the prospectively high-pitch spiral-acquisition mode with image-acquired timing set at 20-30% of the R-R interval provides a similar image quality and low rate of non-diagnostic coronary segments to the retrospectively ECG-gated low-pitch spiral acquisition mode, with significant reduction of radiation exposure.

  14. Prospectively Electrocardiogram-Gated High-Pitch Spiral Acquisition Mode Dual-Source CT Coronary Angiography in Patients with High Heart Rates: Comparison with Retrospective Electrocardiogram-Gated Spiral Acquisition Mode

    International Nuclear Information System (INIS)

    Sun, Kai; Ma, Rui; Wang, Li Jun; Li, Li Gang; Chen, Jiu Hong

    2012-01-01

    To assess the image quality and effective radiation dose of prospectively electrocardiogram (ECG)-gated high-pitch spiral acquisition mode (flash mode) of dual-source CT (DSCT) coronary angiography (CTCA) in patients with high heart rates (HRs) as compared with retrospectively ECG-gated spiral acquisition mode. Two hundred and sixty-eight consecutive patients (132 female, mean age: 55 ± 11 years) with mean HR > 65 beats per minute (bpm) were prospectively included in this study. The patients were divided into two groups. Collection was performed in group A CTCA using flash mode setting at 20-30% of the R-R interval, and retrospectively ECG-gated spiral acquisition mode in group B. The image noise, contrast-to-noise ratio (CNR), image quality scores, effective radiation dose and influencing factors on image quality between the two groups were assessed. There were no significant differences in image quality scores and proportions of non-diagnostic coronary artery segments between two groups (image quality scores: 1.064 ± 0.306 [group A] vs. 1.084 ± 0.327 [group B], p = 0.063; proportion of non-diagnostic coronary artery segments: segment-based analysis 1.52% (group A) vs. 1.74% (group B), p = 0.345; patient-based analysis 7.5% (group A) vs. 6.7% (group B), p = 0.812). The estimated radiation dose was 1.0 ± 0.16 mSv in group A and 7.1 ± 1.05 mSv in group B (p = 0.001). In conclusion, in patients with HRs > 65 bpm without cardiac arrhythmia, the prospectively high-pitch spiral-acquisition mode with image-acquired timing set at 20-30% of the R-R interval provides a similar image quality and low rate of non-diagnostic coronary segments to the retrospectively ECG-gated low-pitch spiral acquisition mode, with significant reduction of radiation exposure.

  15. Detection of pulmonary metastatic nodules: usefulness of low-dose multidetector CT in comparison with chest radiograph

    International Nuclear Information System (INIS)

    Kim, Ki Nam; Lee, Ki Nam; Yang, Doo Kyung; Lee, Soo Keol

    2006-01-01

    We wanted to evaluate the usefulness of low-dose multidetector CT for the detection and follow-up of pulmonary metastatic nodules in patients suffering with malignancy. We retrospectively reviewed the conventional chest radiographs and low-dose multidetector CT (low-dose CT) scans of 81 patients who had been under the diagnosis of malignancy. We reviewed the detection of pulmonary nodules and we counted the number of nodules detected by each method. The nodules were confirmed by surgical operation and by the radiologic criteria. The accuracy, sensitivity, specificity and positive and negative predictive values of each method for detecting metastatic nodules were compared with χ 2 tests. Low-dose CT depicted more nodules than did chest radiograph, and the indeterminate nodules seen on chest radiograph may be clearly benign on low-dose CT (eg. calcified granulomas or bony lesions). The accuracy of low-dose CT (75.3%) was significantly higher than that of chest radiograph (49.4%) for the detection for metastatic nodules (ρ < 0.05). Low-dose CT may provide better information than does chest radiograph for diagnosing pulmonary metastasis

  16. Application of low-dose radiation protocols in survey CT scans

    International Nuclear Information System (INIS)

    Fu Qiang; Liu Ting; Lu Tao; Xu Ke; Zhang Lin

    2009-01-01

    Objective: To characterize the protocols with low-dose radiation in survey CT scans for localization. Methods: Eighty standard adult patients, head and body phantoms were recruited. Default protocols provided by operator's manual setting were that all the tube voltage for head, chest, abdomen and lumbar was 120 kV; the tube currents were 20,10,20 and 40 mA, respectively. Values of kV and mA in the low-dose experiments were optimized according to the device options. For chest and abdomen, the tube position were compared between default (0 degree) and 180 degree. Phantoms were scanned with above protocols, and the radiation doses were measured respectively. Paired t-test were used for comparisons of standard deviation in CT value, noise and exposure surface dose (ESD) between group with default protocols and group with optimized protocols. Results: The optimized protocols in low-dose CT survey scans were 80 kV, 10 mA for head, 80 kV, 10 mA for chest, 80 kV, 10 mA for abdomen and 100 kV, 10 mA for lumbar. The values of ESD for phantom scan in default and optimized protocols were 0.38 mGy/0.16 mGy in head, 0.30 mGy/0.20 mGy in chest, 0.74 mGy/0.30 mGy in abdomen and 0.81 mGy/0.44 mGy in lumbar, respectively. Compared with default protocols, the optimized protocols reduced the radiation doses 59%, 33%, 59% and 46% in head, chest, abdomen and lumbar. When tube position changed from 0 degree to 180 degree, the ESD were 0.24 mGy/0.20 mGy for chest; 0.37 mGy/0.30 mGy for abdomen, and the radiation doses were reduced 20% and 17%. Conclusion: A certain amount of image noise is increased in low-dose protocols, but image quality is still acceptable without problem in CT localization. The reduction of radiation dose and the radiation harm to patients are the superiority. (authors)

  17. Automatic detection of pulmonary nodules at spiral CT: clinical application of a computer-aided diagnosis system

    International Nuclear Information System (INIS)

    Wormanns, Dag; Fiebich, Martin; Saidi, Mustafa; Diederich, Stefan; Heindel, Walter

    2002-01-01

    The aim of this study was to evaluate a computer-aided diagnosis (CAD) workstation with automatic detection of pulmonary nodules at low-dose spiral CT in a clinical setting for early detection of lung cancer. Eighty-eight consecutive spiral-CT examinations were reported by two radiologists in consensus. All examinations were reviewed using a CAD workstation with a self-developed algorithm for automatic detection of pulmonary nodules. The algorithm is designed to detect nodules with diameters of at least 5 mm. A total of 153 nodules were detected with at least one modality (radiologists in consensus, CAD, 85 nodules with diameter <5 mm, 68 with diameter ≥5 mm). The results of automatic nodule detection were compared to nodules detected with any modality as gold standard. Computer-aided diagnosis correctly identified 26 of 59 (38%) nodules with diameters ≥5 mm detected by visual assessment by the radiologists; of these, CAD detected 44% (24 of 54) nodules without pleural contact. In addition, 12 nodules ≥5 mm were detected which were not mentioned in the radiologist's report but represented real nodules. Sensitivity for detection of nodules ≥5 mm was 85% (58 of 68) for radiologists and 38% (26 of 68) for CAD. There were 5.8±3.6 false-positive results of CAD per CT study. Computer-aided diagnosis improves detection of pulmonary nodules at spiral CT and is a valuable second opinion in a clinical setting for lung cancer screening despite of its still limited sensitivity. (orig.)

  18. Vascular imaging with spiral CT. The way to CY angiography

    International Nuclear Information System (INIS)

    Prokop, M.; Schaefer, C.; Kalender, W.A.; Polacin, A.; Galanski, M.

    1993-01-01

    Spiral CT is a technique that allows for high-quality two-dimensional angiographic projections and 3D imaging of vascular structures. The authors present the technical and methodological principles of the technique, including scan parameters and parameters of contrast application for various clinical imaging tasks. They present their experience with over 150 clinical cases using spiral CT angiography. Suitable applications of this technique include cogenital anomalies, aneurysms, dissections, stenoses, thrombi and vascular tumor involvement. Given a problem-adapted examination technique, pathologic changes in vessels of as little as 2 mm can be visualized. In some cases with complex vascular anatomy, spiral CT angiography can be superior to arterial angiography. (orig.) [de

  19. Ultra-low-dose CT imaging of the thorax: decreasing the radiation dose by one order of magnitude

    International Nuclear Information System (INIS)

    Lambert, Lukas; Banerjee, Rohan; Votruba, Jiri; El-Lababidi, Nabil; Zeman, Jiri

    2016-01-01

    Computed tomography (CT) is an indispensable tool for imaging of the thorax and there is virtually no alternative without associated radiation burden. The authors demonstrate ultra-low-dose CT of the thorax in three interesting cases. In an 18-y-old girl with rheumatoid arthritis, CT of the thorax identified alveolitis in the posterior costophrenic angles (radiation dose = 0.2 mSv). Its resolution was demonstrated on a follow-up scan (4.2 mSv) performed elsewhere. In an 11-y-old girl, CT (0.1 mSv) showed changes of the right collar bone consistent with chronic recurrent multifocal osteomyelitis. CT (0.1 mSv) of a 9-y-old girl with mucopolysaccharidosis revealed altogether three hamartomas, peribronchial infiltrate, and spine deformity. In some indications, the radiation dose from CT of the thorax can approach that of several plain radiographs. This may help the pediatrician in deciding whether 'gentle' ultra-low-dose CT instead of observation or follow-up radiographs will alleviate the uncertainty of the diagnosis with little harm to the child. (author)

  20. Floating venous thrombi: diagnosis with spiral-CT-venography

    International Nuclear Information System (INIS)

    Gartenschlaeger, M.; Schmidt, J.A.

    1996-01-01

    Local application of contrast agent into an ipsilateral dorsal foot vein and spiral CT were used to examine 16 consecutive cases with deep venous thrombosis proven at conventional venography; in addition, colour Doppler flow imaging was performed. At conventional venography, 8/16 thrombi appeared to be floating and the remaining 8/16 were adherent to the vessel wall. Spiral-CT showed 15/16 thrombi to be adherent to the vessel wall; the floating thrombus correlated with findings in conventional venography. At colour Doppler flow imaging 3/16 thrombi were considered floating, one of them was discordant to conventional venography. The comparison of conventional venography to spiral-CT demonstrates complete agreement for adherence to vessel wall seen in conventional venography (p=1,0) and significant discordance in cases with free-floating appearance in conventional venography. Adherence of thrombi to the wall of the vessel at conventional venography is in agreement with computed tomography. Conventional venography probably overestimates the prevalence of free floating thrombi. (orig./MG) [de

  1. Prevalence of ligamentum arteriosum calcification on multi-section spiral CT and digital radiography.

    Science.gov (United States)

    Hong, Gil-Sun; Goo, Hyun Woo; Song, Jae-Woo

    2012-06-01

    To investigate the prevalence of ligamentum arteriosum calcification (LAC) on multi-section spiral CT and digital radiography. Five hundred and eight children and 232 adults who performed multi-section chest CT were included in this study and were divided into nine age groups: A (0-5 years), B (6-10 years), C (11-15 years), D (16-20 years), E (21-30 years), F (31-40 years), G (41-50 years), H (51-60 years), and I (61-70 years). Two radiologists assessed the presence of LAC on axial and coronal CT images, defined as focal calcific density on both or on one plane with attenuation >100 Hounsfield unit. The prevalence of LAC on CT was compared between children and adults, and between unenhanced and enhanced CT in children. The prevalence of LAC on digital radiography was evaluated in 476 children. The prevalence of definite LAC on unenhanced multi-section CT was significantly higher in children (37.8 %) than in adults (11.2 %) (P CT were 4.5, 12.8, 8.1, 19.0, 0.0, 0.0, 0.0, 2.0, and 1.9 %. In children, the prevalence of LAC was significantly higher on unenhanced than on enhanced CT (37.8 vs. 16.4 %, P children. LAC is frequently observed in children and adults on multi-section spiral CT, more frequently than previously reported. Compared with that on multi-section spiral CT, the prevalence of LAC on digital radiography is substantially low.

  2. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yinghua [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Hacker, Timothy A.; Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Van Lysel, Michael S.; Speidel, Michael A., E-mail: speidel@wisc.edu [Department of Medical Physics and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  3. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    International Nuclear Information System (INIS)

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.

    2014-01-01

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  4. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.

    Science.gov (United States)

    Kang, Eunhee; Min, Junhong; Ye, Jong Chul

    2017-10-01

    Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from

  5. Automated lung module detection at low-dose CT: preliminary experience

    International Nuclear Information System (INIS)

    Goo, Jin-Mo; Lee, Jeong-Won; Lee, Hyun-Ju; Kim, Seung-Wan; Kim, Jong-Hyo; Im, Jung-Gi

    2003-01-01

    To determine the usefulness of a computer-aided diagnosis (CAD) system for the automated detection of lung nodules at low-dose CT. A CAD system developed for detecting lung nodules was used to process the data provided by 50 consecutive low-dose CT scans. The results of an initial report, a second look review by two chest radiologists, and those obtained by the CAD system were compared, and by reviewing all of these, a gold standard was established. By applying the gold standard, a total of 52 nodules were identified (26 with a diameter ≤ 5 mm; 26 with a diameter > 5 mm). Compared to an initial report, four additional nodules were detected by the CAD system. Three of these, identified only at CAD, formed part of the data used to derive the gold standard. For the detection of nodules > 5 mm in diameter, sensitivity was 77% for the initial report, for the second look review, and 88% for the second look review,and 65% for the CAD system. There were 8.0 ± 5.2 false-positive CAD results per CT study. These preliminary results indicate that a CAD system may improve the detection of pulmonary nodules at low-dose CT

  6. Low dose coronary CT angiography with 256-slice helical CT

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Tang Binghang; Li Fangyun

    2011-01-01

    Objective: To compare the image quality and patient radiation dose of coronary computed tomography angiography (CCTA) received by prospectively-gated step-and-shoot (SAS) technique with those obtained by retrospectively-gated spiral ( RGS) technique on a 256-slice CT scanner. Methods: A total of 200 patients were enrolled in this study. One hundred patients underwent CCTA with SAS mode were subdivided into two groups: (1) 50 patients with an average heart rate (HR) ≤ 70 bpm were scanned with a data acquisition time window centered at the 75% of the R-R cycle (group A) and (2) 50 patients with HR > 70 bpm were scanned with the data acquisition time window centered at the 45% of the R-R cycle, including a phase tolerance of ± 5% (group B). Other 100 patients underwent CCTA with RGS mode and ECG-based tube current modulation were also subdivided into two groups: (3) 50 patients with HR ≤ 70 bpm were scanned with cardiac dose right set to phase of 75% ( group C) and (4) 50 patients with HR > 70 bpm were scanned with cardiac ose Rdight set to phases of 45% and 75% (group D). All patients were grouped in randomized order. The image quality of CCTA were evaluated using a rank scale from 1 to 4 (1: excellent; 4: non-assessable). Radiation dose of the four groups received was also estimated. The image quality between groups was compared by Mann-Whitney U test. The radiation dose between groups was compared by t test. For the 100 patients received by prospective ECG-gated CCTA, the receiver operating characteristic curve (ROC) was used to analyze the CCTA image quality and average heart rate to determine the uppercutoff of HR for obtaining diagnostic coronary images with SAS mode. A Spearman correlation analysis was also performed to analyze the correlation of HR and image quality in patients underwent CCTA with SAS mode. Results: Of 2338 coronary artery segments, excellent or good image quality (score of 1 or 2) was achieved in 96.5% (585 of 606) in group A, 77.7% (445

  7. Hypoxic-ischemic encephalopathy in neonates and infants: an evaluation with spiral CT

    International Nuclear Information System (INIS)

    Zhu Linghua

    2006-01-01

    Objective: To evaluate spiral CT imaging in the diagnosis of hypoxic-ischemic encephalopathy (HIE) in the neonates and infants. Methods: 112 children with history of asphyxia in peri-natal period and evident clinical symptoms were evaluated with Spiral CT. CT findings were studied. Results: 46 minor cases, 57 moderate cases and 9 severe cases were found out of 112 patients. Intracranial hemorrhage was revealed in 38 cases. Mortality occurred in 1 case. Conclusion: Spiral CT is helpful for evaluating brain damage and predicting prognosis in neonates with HIE. (authors)

  8. Seventy kilovolt ultra-low dose CT of the paranasal sinus: first clinical results

    International Nuclear Information System (INIS)

    Bodelle, B.; Wichmann, J.L.; Klotz, N.; Lehnert, T.; Vogl, T.J.; Luboldt, W.; Schulz, B.

    2015-01-01

    Aim: To evaluate the diagnostic image quality and radiation dose of low-dose 70 kV computed tomography (CT) of the paranasal sinus in comparison to 100 and 120 kV CT. Materials and methods: CT of the paranasal sinus was performed in 127 patients divided into three groups using different tube voltages and currents (70 kV/75 mAs, ultra-low dose protocol, n = 44; 100 kV/40 mAs, standard low-dose protocol, n = 42; 120 kV/40 mAs, standard protocol, n = 41). CT dose index (CTDIvol), dose–length product (DLP), attenuation, image noise and signal-to-noise ratio (SNR) were compared between the groups using Wilcoxon–Mann–Whitney U-test. Subjective diagnostic image quality was compared by using a five-point scale (1 = non-diagnostic, 5 = excellent, read by two readers in consensus) and Cohen's weighted kappa analysis for interobserver agreement. Results: Radiation dose was significantly lower with 70 kV acquisition than 100 and 120 kV (DLP: 31 versus 52 versus 82 mGy·cm; CTDI 2.33 versus 3.95 versus 6.31 mGy, all p < 0.05). Mean SNR (70 kV: 0.37; 100 kV: 0.21; 120 kV: 0.13; p < 0.05) and organ attenuation increased significantly with lower voltages. All examinations showed diagnostic image quality. Subjective diagnostic image quality was higher with standard protocols than the 70 kV protocol (120 kV: 5.0; 100 kV: 4.5; 70 kV: 3.5, p < 0.05) without significant differences with substantial interobserver agreement (κ > 0.59). Conclusion: The ultra-low dose (70 kV) CT imaging of the paranasal sinus allowed for significant dose reduction by 61% and an increased attenuation of organ structures in comparison to standard acquisition while maintaining diagnostic image quality with a slight reduction in subjective image quality. -- Highlights: •Image quality and radiation dose of 70 kV ultra-low dose CT of the paranasal sinus. •70 kV ultra-low dose CT of the paranasal sinus allows for dose reduction by 61%. •70 kV CT of the

  9. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    Science.gov (United States)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  10. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Bastarrika, Gorka [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Cardiac Imaging Unit, Clinica Univ. de Navarra, Pamplona (Spain)], e-mail: bastarrika@unav.es

    2012-06-15

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 {+-} 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 {+-} 58.3 mL) with respect to ECG-gated CT (142.7 {+-} 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 {+-} 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols.

  11. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    International Nuclear Information System (INIS)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria; Bastarrika, Gorka

    2012-01-01

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 ± 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 ± 58.3 mL) with respect to ECG-gated CT (142.7 ± 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 ± 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols

  12. Optimised low-dose multidetector CT protocol for children with cranial deformity

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, Jose Luis [Complejo Hospitalario Universitario de Vigo, Department of Radiology, Vigo, Pontevedra (Spain); Pombar, Miguel Angel [Complejo Hospitalario Universitario de Santiago, Department of Radiophysics, Santiago de Compostela, La Coruna (Spain); Pumar, Jose Manuel [Complejo Hospitalario Universitario de Santiago, Department of Radiology, Santiago de Compostela, La Coruna (Spain); Campo, Victor Miguel del [Complejo Hospitalario Universitario de Vigo, Department of Public Health, Vigo, Pontevedra (Spain)

    2013-08-15

    To present an optimised low-dose multidetector computed tomography (MDCT) protocol for the study of children with cranial deformity. Ninety-one consecutive MDCT studies were performed in 80 children. Studies were performed with either our standard head CT protocol (group 1, n = 20) or a low-dose cranial deformity protocol (groups 2 and 3). Group 2 (n = 38), initial, and group 3 (n = 33), final and more optimised. All studies were performed in the same 64-MDCT equipment. Cranial deformity protocol was gradationally optimised decreasing kVp, limiting mA range, using automatic exposure control (AEC) and increasing the noise index (NI). Image quality was assessed. Dose indicators such us CT dose index volume (CTDIvol), dose-length product (DLP) and effective dose (E) were used. The optimised low-dose protocol reached the following values: 80 kVp, mA range: 50-150 and NI = 23. We achieved a maximum dose reduction of 10-22 times in the 1- to 12-month-old cranium in regard to the 2004 European guidelines for MDCT. A low-dose MDCT protocol that may be used as the first diagnostic imaging option in clinically selected patients with skull abnormalities. (orig.)

  13. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    International Nuclear Information System (INIS)

    Chen Yang; Shi Luyao; Shu Huazhong; Luo Limin; Coatrieux, Jean-Louis; Yin Xindao; Toumoulin, Christine

    2013-01-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors. (paper)

  14. Absorbed and effective dose from spiral and computed tomography for the dental implant planning

    International Nuclear Information System (INIS)

    Hong, Beong Hee; Han, Won Jeong; Kim, Eun Kyung

    2001-01-01

    To evaluate the absorbed and effective doses of spiral and computed tomography for the dental implant planning. For radiographic projection. TLD chips were placed in 22 sites of humanoid phantom to record the exposure to skin and the mean absorbed dose to bone marrow, thyroid, pituitary, parotid and submandibular glands and nesophages. Effective dose was calculated, using the method suggested by Frederiksen at al.. Patient situations of a single tooth gap in upper and lower midline region, edentulous maxilla and mandible were simulated for spiral tomography. 35 axial slices (maxilla) and 40 axial slices (mandible) with low and standard dose setting were used for computed tomography. All the radiographic procedures were repeated three times. The mean effective dose in case of maxilla was 0.865 mSv, 0.452 mSv, 0.136 mSv and 0.025 mSv, in spiral tomography of complete edentulous maxilla, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). That in case of mandible was 0.614 mSv, 0.448 mSv, 0.137 mSv and 0.036 mSv, in spiral tomography of complete edentulous mandible, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). Based on these results, it can be concluded that low mAs computed tomography is recommended instead of spiral tomography for the complete edentulous maxilla and mandible dental implant treatment planning

  15. Low-dose CT: new tool for screening lung cancer?

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2001-01-01

    Lung cancer is the leading cause of death from malignant tumours as it is very common and has a poor prognosis at advanced tumour stages. Prognosis could be improved by treatment at early stages. As these stages are usually asymptomatic, a diagnostic test that would allow detection of early tumour stages in a population at risk could potentially reduce mortality from lung cancer. Previous approaches using chest radiography and sputum cytology in smokers have been disappointing. Fluorescent bronchoscopy and molecular markers are not yet applicable in clinical routine. Because of its high sensitivity for small pulmonary nodules, which are the most common manifestation of early lung cancer, CT appears suitable as a screening test. Low-dose examination parameters can and should be used for this purpose. From clinical practice it is well known that chest CT often demonstrates small pulmonary nodules, which do not represent lung cancer. Therefore, non-invasive diagnostic algorithms are required to avoid unnecessary biopsies in benign lesions. In preliminary studies of low-dose CT using algorithms based on size and density of detected nodules a large proportion of asymptomatic lung cancers and a large proportion of early, resectable tumour stages were found with a small proportion of invasive procedures for benign nodules. Before this technology can be recommended for broad application, however, further information is required regarding appropriate inclusion criteria (smoking habits, age groups) and screening intervals. Most importantly, further data are required to clarify whether lung cancer screening using low-dose CT can actually reduce mortality from lung cancer. (orig.)

  16. Value of noncontrast spiral CT for suspected acute appendicitis

    International Nuclear Information System (INIS)

    Choi, Pil Yeob; Lee, Sang Wook; Kwon, Jae Soo; Sung, Young Soon; Rho, Myoung Ho; Chang, Jeong A.

    1998-01-01

    To assess the diagnostic accuracy and clinical efficacy of noncontrast spiral CT in patients with suspected acute appendicitis. Over a six-month period, 100 patients with suspected acute appendicitis were prospectively evaluated with noncontrast spiral CT. All scans were obtained from the lower body of L3 to the symphysis pubis, with 5mm or 10mm collimation and pitch of 1 or 1.5, and without intravenous or oral contrast material. Diagnosis was established by means of surgical or clinical follow-up. Prospective diagnosis based on CT findings was compared with surgical results and clinical follow-up. Acute appendicitis was confirmed in 47 of 100 patients. On the basis of the Ct findings, SI patients were prospectively interpreted as positive for appendicitis, but in six the diagnosis was false-positive. Two of the 47 with acute appendicitis were prospectively interpreted as normal. The preoperative diagnosis of acute appendicitis was, thus, 45 true-positive, 47 true-negative, six false-positive and two false-negative yielding a sensitivity of 96%, a specificity of 89%, an accuracy of 92%, a positive predictive value of 88%, and a negative predictive value of 96%. Using CT, an alternative diagnosis was established in 14 patients. Noncontrast spiral CT is a useful technique for diagnosing acute appendicitis. =20

  17. Patient doses from CT examinations in the United Arab Emirates

    International Nuclear Information System (INIS)

    Janeczek, J.

    2006-01-01

    Full text of publication follows: The main goal of the study was to estimate effective patient doses from the 6 most common CT examinations for different types of CT scanners within the United Arab Emirates. The results were used to assess future trends in patient CT doses following rapid replacement of axial and single-slice spiral scanners by multi-slice scanners. At present all three types of scanner technology exist: axial, spiral and multi-slice with axial scanners being gradually replaced by multi-slice scanners as the medical infrastructure of the country is modernized. Altogether there are more than 30 CT scanners in the country with a population of 4 million. Out of these 11 scanners are 16-slice models with tube-current modulation system. The majority of larger United Arab Emirates hospitals have at least two CT scanners: a single slice and 4 or 16-slice scanner. The survey was carried out with data collection forms distributed to the majority of CT scanner users in the United Arab Emirates hospitals, both private and government. Effective doses for different examinations were calculated from T.L.D. measurements using an Alderson Rando phantom simulating an average size patient. Our results show that effective doses to patients initially increased with the introduction of 4-slice scanners. Multi-slice scanners with 16 and more slices have tube-current modulation system as a standard. It is routinely used by radiographers in almost all examinations resulting in patient dose reduction up to 40 % in certain examinations. Another factor affecting population dose is the increased number of patients examined using multi-slice scanners. In the United Arab Emirates there was an increase of more than 30 % in the annual number of patients examined using multi-slice scanners in comparison to single-slice scanners. This fact is attributed to the ease and speed of operation of multi-slice scanners. Rapid increase in number of CT examinations is of concern. Medical

  18. Motion estimation and compensation in dynamic spiral CT reconstruction

    International Nuclear Information System (INIS)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St.

    2004-01-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  19. Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Eike; Rogalla, Patrik; Klingebiel, Randolph; Hamm, Bernd [Department of Diagnostic and Interventional Radiology, Charite Hospital, Humboldt-Universitaet zu Berlin (Germany)

    2002-07-01

    The purpose of the study was to assess the effect of lens protection on image quality and radiation dose to the eye lenses in CT of the paranasal sinuses. In 127 patients referred to rule out sinusitis, an axial spiral CT with a lens protection placed on the patients eyes was obtained (1.5/2/1, 50 mAs, 120 kV). Coronal views were reconstructed at 5-mm interval. To quantify a subjective impression of image quality, three regions of interest within the eyeball were plotted along a line perpendicular to the protection at 2, 5, and 9 mm beneath skin level on the axial images. Additionally, dose reduction of a bismuth-containing latex shield was measured using a film-dosimetry technique. The average eyeball density was 17.97 HU (SD 3.7 HU). The relative increase in CT density was 180.6 (17.7), 103.3 (11.7), and 53.6 HU (9.2), respectively. There was no diagnostic information loss on axial and coronal views observed. Artifacts were practically invisible on images viewed in a bone window/level setting. The use of the shield reduced skin radiation from 7.5 to 4.5 mGy. The utilization of a radioprotection to the eye lenses in paranasal CT is a suitable and effective means of reducing skin radiation by 40%. (orig.)

  20. Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose

    International Nuclear Information System (INIS)

    Hein, Eike; Rogalla, Patrik; Klingebiel, Randolph; Hamm, Bernd

    2002-01-01

    The purpose of the study was to assess the effect of lens protection on image quality and radiation dose to the eye lenses in CT of the paranasal sinuses. In 127 patients referred to rule out sinusitis, an axial spiral CT with a lens protection placed on the patients eyes was obtained (1.5/2/1, 50 mAs, 120 kV). Coronal views were reconstructed at 5-mm interval. To quantify a subjective impression of image quality, three regions of interest within the eyeball were plotted along a line perpendicular to the protection at 2, 5, and 9 mm beneath skin level on the axial images. Additionally, dose reduction of a bismuth-containing latex shield was measured using a film-dosimetry technique. The average eyeball density was 17.97 HU (SD 3.7 HU). The relative increase in CT density was 180.6 (17.7), 103.3 (11.7), and 53.6 HU (9.2), respectively. There was no diagnostic information loss on axial and coronal views observed. Artifacts were practically invisible on images viewed in a bone window/level setting. The use of the shield reduced skin radiation from 7.5 to 4.5 mGy. The utilization of a radioprotection to the eye lenses in paranasal CT is a suitable and effective means of reducing skin radiation by 40%. (orig.)

  1. First results of spiral CT angiography in the evaluation of carotid artery stenosis

    International Nuclear Information System (INIS)

    Link, J.; Mueller-Huelsbeck, S.; Brossmann, J.; Grabener, M.; Voss, C.; Heller, M.

    1995-01-01

    To determine the value of spiral CT angiography in Maximum Intensity Projection (MIP)-technique for evaluation of carotid artery stenosis. A comparison of the MIP technique with intraarterial DSA was done in 24 patients with 40 stenoses. Quantification of stenosis was determined according to the NASCET study: mild (0-29%), moderate (30-69%), severe (70-99%) and occlusion (100%). Totally the correlation of spiral CT angiography with DSA was 80% (r=0.93; p=0.0001). In the moderate stenosis group (r=1; p=0.1573), severe stenosis group (r=0.89; p=0.002) and the occlusion group (r=1; p=0.0009) there was a good correlation with DSA. In the mild stenosis group (r=0.55; p=0.0704) correlation of spiral CT angiography with DSA was poor. Spiral CT angiography allows an excellent delineation of calcifications. Tandem lesions and collateral flow cannot be shown with spiral CT angiography. (orig./MG) [de

  2. Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease

    International Nuclear Information System (INIS)

    Saad, Moez Ben; Rohnean, Adela; Sigal-Cinqualbre, Anne; Adler, Ghazal; Paul, Jean-Francois

    2009-01-01

    There are only a few reports on the diagnostic accuracy, and the technical and clinical feasibility, of multidetector CT (MDCT) in infants with congenital heart disease (CHD). To evaluate the image quality and radiation dose of DSCT in babies with CHD. From November 2006 to November 2007, 110 consecutive infants with CHD referred for pre- or postoperative CT evaluation were included. All these infants had a spiral angiothoracic DSCT scan after injection of 300 mg/ml iopromide at 0.5-1 ml/s with a power injector using a low-dose protocol (80 kVp and 10 mAs/kg). Of these infants, 34 also underwent an ECG-gated coronary CT scan for evaluation of the course of the coronary arteries. No serious adverse events were recorded. The mean dose-length product was 8±6 mGy.cm (effective dose 0.5±0.2 mSv) and 21±9 mGy.cm (effective dose 1.3±0.6 mSv) during the non-ECG-gated spiral acquisition and ECG-gated acquisition, respectively. Diagnostic quality images were achieved with the spiral acquisition in 89% of cases. Compared to the spiral mode, ECG-gated acquisition significantly improved the visualization of the coronary arteries, with a diagnostic rate of 91% and 84% for the left and right coronary arteries, respectively. DSCT together with iopromide at 300 mg/ml is a valuable tool for the routine clinical evaluation of infants with CHD. ECG-gated acquisition provides reliable visualization of the course of the coronary arteries. (orig.)

  3. The bibliometric analysis of literatures on low-dose CT in CNKI

    International Nuclear Information System (INIS)

    Wang Qian; Qi Weiwei; Xia Guanghui; Zhao Xinming; Ma Xiaohong; Zhou Chunwu; Hong Nan

    2013-01-01

    Objective: The purposes of this study were to evaluate the characteristics and rule of the development in national low -dose CT examination, and to supply a useful reference for future studies. Materials and Methods: The journal articles in CNKI which were included by China Academic Journal Network Publishing Database (CAJD) from 2002 to 2011 were processed with Thomson Data Analyzer (TDA). Seven aspects were analyzed: time, authors, funds for scientific research, areal distribution, institutions, authors, and keywords. Results: A total 3148 journal articles on low-dose CT examination and 7352 authors were found. The cooperative rate and degree were 63, 48% and 2.34, respectively. The famous authors were those who published more than 3 articles. Authors were from 33 areas, 471 institutions of 8 systems. Beijing and Shanghai were the most productive areas, publishing 45.9% articles. There were 10 core journals in this research area, 868 articles were funded by certain grants, and number of articles was increased yearly, indicative of the importance of grant in promoting research. Conclusion: The national low-dose CT research was in the young stage compared to the international research, and the research were not evenly distributed national wide. Though the researches have involved multi-institute, multi-system, multi-discipline, the quantities and qualities of papers still have improvement space. Strengthening basic research, improving medical ethics, and optimizing clinical research methods would promote development of low-dose CT studies. (authors)

  4. Developing low-dose C-arm CT imaging for temporomandibular joint (TMJ) disorder in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Cahill, Anne Marie [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Felice, Marc [University of Pennsylvania, Environmental Health and Radiation Safety, Philadelphia, PA (United States); Johnson, Laura [Computed Tomography Division, Siemens Healthcare Sector, Shanghai (China); Sarmiento, Marily [Siemens Medical Solutions, Angiography and X-ray Division, Hoffman Estates, IL (United States)

    2011-04-15

    Manufacturers have provided C-arm CT imaging technologies for applications in interventional radiology in recent years. However, clinical imaging protocols and radiation doses have not been well studied or reported. The purpose of this study is to develop low-dose settings for clinically acceptable CT imaging of temporomandibular joint in interventional radiology suites, using a C-arm imaging angiography system. CT scans were performed with a flat-panel digital C-arm angiographic system on a 5-year-old anthropomorphic phantom. The CTDI was determined for various rotation times, dose settings and Cu filter selections. The CTDI values were compared with those of conventional low-dose CT for the same phantom. The effectiveness of using Cu filters to reduce dose was also investigated. Images were reviewed by a senior radiologist for clinical acceptance. The manufacturer's default setting gave an equivalent CTDI of 4.8 mGy. Optimizing the dose settings and adding copper filtration reduced the radiation dose by 94%. This represents a 50% reduction from conventional CT. Use of Cu filters and low-dose settings significantly reduced radiation dose from that of standard settings. This phantom study process successfully guided the clinical implementation of low-dose studies for all ages at our institution. (orig.)

  5. Demonstration of pulmonary embolism with gadolinium-enhanced spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Coche, E.E.; Hammer, F.D.; Goffette, P.P. [Dept. of Radiology, St. Luc University Hospital, Brussels (Belgium)

    2001-11-01

    The authors report a case of successful detection of pulmonary embolism using gadolinium-enhanced spiral CT (Gadodiamide, 0.4 mmol/kg, 2 ml/s, delay 18 s) in a 77-year-old woman, with previous allergy to iodinated contrast medium, and renal failure, who presented with pulmonary arterial hypertension. Doppler ultrasound of the lower limbs was first performed and revealed a deep venous thrombosis of the right lower limb. To establish if venous thrombosis was the cause of pulmonary hypertension and to confirm that pulmonary endarterectomy was not indicated in this situation, several imaging modalities were performed. Lung scintigraphy and MRI were non-diagnostic. Gadolinium-enhanced spiral CT demonstrated a large thrombus located proximally and in a segmental artery of the right lower lobe. This case illustrates the potential usefulness of gadolinium as alternative contrast agent with spiral CT to diagnose pulmonary embolism and elucidate the cause of pulmonary arterial hypertension in a patient with some contraindications for iodinated contrast medium injection. (orig.)

  6. Demonstration of pulmonary embolism with gadolinium-enhanced spiral CT

    International Nuclear Information System (INIS)

    Coche, E.E.; Hammer, F.D.; Goffette, P.P.

    2001-01-01

    The authors report a case of successful detection of pulmonary embolism using gadolinium-enhanced spiral CT (Gadodiamide, 0.4 mmol/kg, 2 ml/s, delay 18 s) in a 77-year-old woman, with previous allergy to iodinated contrast medium, and renal failure, who presented with pulmonary arterial hypertension. Doppler ultrasound of the lower limbs was first performed and revealed a deep venous thrombosis of the right lower limb. To establish if venous thrombosis was the cause of pulmonary hypertension and to confirm that pulmonary endarterectomy was not indicated in this situation, several imaging modalities were performed. Lung scintigraphy and MRI were non-diagnostic. Gadolinium-enhanced spiral CT demonstrated a large thrombus located proximally and in a segmental artery of the right lower lobe. This case illustrates the potential usefulness of gadolinium as alternative contrast agent with spiral CT to diagnose pulmonary embolism and elucidate the cause of pulmonary arterial hypertension in a patient with some contraindications for iodinated contrast medium injection. (orig.)

  7. Comparison of low dose with standard dose abdominal/pelvic multidetector CT in patients with stage 1 testicular cancer under surveillance

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Martin E. [Joint Department of Medical Imaging, Toronto, ON (Canada); Chung, Peter; Warde, Padraig [Princess Margaret Hospital, Department of Radiation Oncology, Toronto, ON (Canada); Haider, Masoom; Jhaveri, Kartik; Khalili, Korosh [Princess Margaret Hospital, Joint Department of Medical Imaging, Toronto, ON (Canada); Jang, Hyun-Jung [Toronto General Hospital, Joint Department of Medical Imaging, Toronto, ON (Canada); Panzarella, Tony [Princess Margaret Hospital, Department of Biostatistics, Toronto, ON (Canada)

    2010-07-15

    To compare the image quality and acceptability of a low dose with those of standard dose abdominal/pelvic multidetector CT in patients with stage 1 testicular cancer managed by surveillance. One hundred patients (median age 31 years; range 19-83 years), 79 with seminoma and 21 with non-seminoma, underwent abdominal/pelvic imaging with low and standard dose protocols on 64-slice multidetector CT. Three reviewers independently evaluated images for noise and diagnostic quality on a 5-point scale and for diagnostic acceptability. On average, each reader scored noise and diagnostic quality of standard dose images significantly better than corresponding low dose images (p < 0.0001). One reader found all CT examinations acceptable; two readers each found 1/100 (1%) low dose examinations unacceptable. Median and mean dose-length product for low and standard dose protocols were 416.0 and 452.2 (range 122.9-913.4) and 931.9 and 999.8 (range 283.8-1,987.7) mGy cm, respectively. The low dose protocol provided diagnostically acceptable images for at least 99% of patients and achieved mean dose reduction of 55% compared with the standard dose protocol. (orig.)

  8. Measurement of total lung capacity : a comparison of spiral CT and spirometry

    International Nuclear Information System (INIS)

    Chung, Kyung Il; Park, Kyung Ju; Lee, Eh Hyung; Yune, Heun Young; Suh, Jung Ho; Choe, Kyu Ok; Lim, Tae Hwan; Chung, In Hyuk

    1996-01-01

    To determine the potential of spiral CT as a functional imaging modality of the lung aside from its proven value in morphological depiction. Spiral CT scan was performed in ten normal female and nine normal male adults (mean age: 39, height: 163 cm, weight: 62 kg ) after single full breath-holding. Three dimensional lung images were reconstructed(minimal threshold value: -1,000HU, maximal threshold values: -150, 250, -350, -450 HU) to obtain total lung volume(TLV) on a histogram. Total lung volume measured by spiral CT was compared with TLV obtained by spirometry. Mean TLV measured by spirometry was 5.62L and TLV measured by CT at maximal threshold values of -150, -250, -350, and -450 HU was 5.53, 5.33, 5.15, and 4.98L, respectively. Mean absolute differences between the modalities of 0.17L(3%), 0.32L(5.6%), 0.48L(8.5%), 0.65L(11.5%) were statistically significant(p<0.001). Linear regression coefficients between the modalities were 0.99, 0.97, 095, and 0.94 and no statistically significant differences in accuracy of threshold levels in the estimation of lung volume(r=0.99, standard error=0.034L in all) were seen. TLV measured by spiral CT closely approximated that measured by spirometry. Spiral CT may be useful as a means of evaluating lung function

  9. Low dose CT simulation using experimental noise model

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Satori; Zamyatin, Alexander A. [Toshiba Medical Systems Corporation, Tochigi, Otawarashi (Japan); Silver, Michael D. [Toshiba Medical Research Institute, Vernon Hills, IL (United States)

    2011-07-01

    We suggest a method to obtain system noise model experimentally without relying on assumptions on statistical distribution of the noise; also, knowledge of DAS gain and electronic noise level are not required. Evaluation with ultra-low dose CT data (5 mAs) shows good match between simulated and real data noise. (orig.)

  10. Low-dose quantitative phase contrast medical CT

    Science.gov (United States)

    Mittone, A.; Bravin, A.; Coan, P.

    2018-02-01

    X-ray computed tomography (CT) is a powerful and routinely used clinical diagnostic technique, which is well tolerated by patients, and which provides high-resolution images and volumetric information about the body. However, two important limitations still affect this examination procedure: (1) its low sensitivity with respect to soft tissues, and (2) the hazards associated with x-ray exposure. Conventional radiology is based on the detection of the different photon absorption properties that characterize biological tissues, and thus the obtainable image contrast from soft and/or similar tissues is intrinsically limited. In this scenario, x-ray phase contrast imaging (XPCI) has been extensively tested and proven to overcome some of the main issues surrounding standard x-ray imaging. In addition to the absorption signal, XPCI relies on detecting the phase shifts induced by an object. Interestingly, as the order of magnitude of the phase contrast is higher than that of absorption, XPCI can, in principle, offer higher sensitivity at lower radiation doses. However, other technical aspects may counterbalance this gain, and an optimized setup and image processing solutions need to be implemented. The work presented here describes the strategies and developments we have realized, with the aim of controlling the radiation dose for the highly sensitive and quantitative XPCI-CT. Different algorithms for the phase retrieval and CT reconstruction of the XPCI data are presented. The CT algorithms we have implemented, namely the equally sloped tomography and the dictionary learning method, allow the image quality to be preserved while reducing the number of angular projections required by a factor of five. The results applied to breast imaging report accurate reconstructions at clinically compatible doses of the 3D distribution of the refractive properties of full human organs obtained by using three different phase retrieval methods. The described methodologies and the

  11. Low-dose computed tomography scans with automatic exposure control for patients of different ages undergoing cardiac PET/CT and SPECT/CT.

    Science.gov (United States)

    Yang, Ching-Ching; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin; Liu, Shu-Hsin

    2017-06-01

    This study aimed to evaluate the efficacy of automatic exposure control (AEC) in order to optimize low-dose computed tomography (CT) protocols for patients of different ages undergoing cardiac PET/CT and single-photon emission computed tomography/computed tomography (SPECT/CT). One PET/CT and one SPECT/CT were used to acquire CT images for four anthropomorphic phantoms representative of 1-year-old, 5-year-old and 10-year-old children and an adult. For the hybrid systems investigated in this study, the radiation dose and image quality of cardiac CT scans performed with AEC activated depend mainly on the selection of a predefined image quality index. Multiple linear regression methods were used to analyse image data from anthropomorphic phantom studies to investigate the effects of body size and predefined image quality index on CT radiation dose in cardiac PET/CT and SPECT/CT scans. The regression relationships have a coefficient of determination larger than 0.9, indicating a good fit to the data. According to the regression models, low-dose protocols using the AEC technique were optimized for patients of different ages. In comparison with the standard protocol with AEC activated for adult cardiac examinations used in our clinical routine practice, the optimized paediatric protocols in PET/CT allow 32.2, 63.7 and 79.2% CT dose reductions for anthropomorphic phantoms simulating 10-year-old, 5-year-old and 1-year-old children, respectively. The corresponding results for cardiac SPECT/CT are 8.4, 51.5 and 72.7%. AEC is a practical way to reduce CT radiation dose in cardiac PET/CT and SPECT/CT, but the AEC settings should be determined properly for optimal effect. Our results show that AEC does not eliminate the need for paediatric protocols and CT examinations using the AEC technique should be optimized for paediatric patients to reduce the radiation dose as low as reasonably achievable.

  12. Enhanced dual-phase spiral CT features of polypoid ampullary carcinoma

    International Nuclear Information System (INIS)

    Zeng Mengsu; Yan Fuhua; Zhou Kangrong; Chen Huiming; Chen Gang; Chen Jin

    2001-01-01

    Objective: To understand CT features of polypoid ampullary carcinoma by enhanced dual-phase spiral CT. Methods: 15 cases of polypoid ampullary carcinoma (PAC) confirmed by surgical and pathological results were studied with thin slice enhanced dual-phase spiral CT (including arterial and portal phase scanning)with retrospective analysis, the scanning parameters were 5 mm thickness and 1.0 pitch for arterial phase scanning, and 5 mm thickness and 5 mm space for portal phase scanning. Results: All cases could display an enhanced mass as local filling defect at the site of the duodenal Vater's ampulla during arterial and portal phase scanning, the tumors ranged in size from 1 cm to 5 cm with mean of 2.3 cm, all were accompanied with dilated intrahepatic and common bile duct, enlarged gallbladder and dilated pancreatic duct, except one case which had marked atrophy of the pancreatic body and tail. Conclusion: The thin slices enhanced dual-phase spiral CT could not only accurately define the level of obstruction, but also demonstrate an enhanced mass as direct CT sign of the PAC, which is crucial for diagnosis of the PAC

  13. Radiation dosimetry and its influencing factors for the multi-detector/slice spiral CT

    International Nuclear Information System (INIS)

    Bai Mei; Zheng Junzheng

    2008-01-01

    The Multi-Detector/Slice Spiral Computed Tomography (MDCT/MSCT)reflects the new progress in equipment and technology for radiology. Its popularized application demonstrates its advantages for clinical diagnosis. With the continuous development and growing uses of the MDCT/MSCT, the medical exposure of the patients and public has also been increasing. Therefore, assessment of the radiation dose and radiation risk from X-CT has become an increasingly important concern that should be addressed. Thus, this paper summarizes the main characteristics of the MDCT/MSCT emphasizing particularly on the radiation dosimetry, and reviews the expressions and measures of radiation dose in the MDCT/MSCT. In addition, main factors that influence radiation dose from the MDCT/MSCT are also discussed. A proper grasp of its radiation dosimetry and assessment method can significantly help radiologists, health physicists, medical physicists, X-CT engineers and manufacturers improve the management of radiation dose while optimizing the image quality in the MDCT/MSCT. (authors)

  14. The usefulness of the adaptive dose shield for the infant CT

    International Nuclear Information System (INIS)

    Kojima, Hideyuki; Tsujimura, Asuka; Yabe, Hitoshi

    2011-01-01

    The spiral scan with a wide detector row such as the 64-detector row computed tomography (CT) system may increase radiation exposure for infants because the irradiation range is wider than the planned range. The adaptive dose shield (ADS) prevents radiation exposure greater than the planned range. We examined the usefulness of the protection effect of the ADS for the infant inner ear CT. To confirm the protection effect of the ADS, we scanned X-ray films by using the 64-detector row CT system and measured the difference of the planned range and the irradiation range. The result of that is that when the planned range was small, the protection effect for the scan ending side was inferior to the scan starting side. And also, when the gantry rotation speed and pitch factor (PF) were high values, the protection effect was inferior to a low gantry rotation speed and low PF. There was a combination of gantry rotation speed and PF at which the protection effect decreases. Due to changes of the scanning direction and PF for the infant inner ear, the crystalline lens radiation exposure dose decreased from 11.89 mGy to 4.37 mGy. In conclusion, the ADS can reduce the radiation exposure dose of an adjacent organ. Therefore, it was thought that the ADS was a useful radiation exposure reduction function for infants in the 64-detector row CT system. (author)

  15. The role of spiral CT in pelvic trauma management

    International Nuclear Information System (INIS)

    Cheung, E.C.F.; Fung, K.K.L.

    1999-01-01

    Rapid and accurate assessment of pelvic injury is critical for good patient management. Plain X-ray is often used as a preliminary evaluation of the injury but this may not give adequate diagnosis of the acetabulum fracture, subtle fracture of the pelvic bone and the associated soft tissue injuries. Nowadays, spiral CT has taken an increasing role in the evaluation of pelvic trauma. It gives a rapid assessment of the bone and soft tissue injuries as compared to conventional CT. Besides, 2-D (multiplanar imaging) and 3-D image reconstruction with multiple angle views, provide the maximum information which facilitates detailed pelvic trauma evaluation. Three cases were used to illustrate the role of spiral CT in pelvic trauma management. Copyright (1999) Blackwell Science Pty Ltd

  16. Measurement of slice sensitivity profile for a 64-slice spiral CT system

    International Nuclear Information System (INIS)

    Liu Chuanya; Qin Weichang; Wang Wei; Lu Chuanyou

    2006-01-01

    Objective: To measure and evaluate slice sensitivity profile (SSP) and the full width at half-maximum(FWHM) for a 64-slice spiral CT system. Methods: Using the same CT technique and body mode as those used for clinical CT, delta phantom was scanned with Somatom Sensation 64-slice spiral CT. SSPs and FWHM were measured both with reconstruction slice width of 0.6 mm at pitch=0.50, 0.75, 1.00, 1.25, 1.50 and with reconstruction slice width of 0.6, 1.0, 1.5 mm at pitch=1 respectively. Results: For normal slice width of 0. 6 mm, the measured FWHM, i.e. effective slice width, is 0.67, 0.67, 0.66, 0.69, 0.69 mm at different pitch. All the measured FWHM deviate less than 0.1 mm from the nominal slice width. The measured SSPs are symmetrical, bell-shaped curves without far-reaching tails, and show only slight variations as a function of the spiral pitch. When reconstruction slice width increase, relative SSP become wider. Conclusions: The variation of pitch hardly has effect all on SSP, effective slice width, and z-direction spatial resolution for Sensation 64-slice spiral CT system, which is helpful to optimize CT scanning protocol. (authors)

  17. Comparative analysis of multi-slice spiral CT and positron emission tomography-CT in evaluation of axillary lymph nodes in breast cancer patients

    International Nuclear Information System (INIS)

    Sun Xianchang; Zhang Ruyi; Liu Qingwei; Zhao Suhong; Zu Degui; Li Xin

    2008-01-01

    Objective: To evaluate and compare spiral CT and positron emission tomography-CT (PET-CT) in characterization of of axillary lymph nodes in breast cancer patients. Methods: Forty patients with pathologically proven breast cancer underwent contrast-enhanced spiral CT of the breast and axilla, 13 of them also underwent PET-CT examination. One hundred and fifty-eight axillary lymph nodes were found in the 40 patients through contrast enhanced spiral CT, while 57 lymph nodes were found in the 13 patients through PET-CT. Three radiologists rated the lymph nodes found in CT images on a five-point scale. If the score was equal to or greater than 3, it was defined as positive (metastatic), otherwise negative. Visual observation and semiquantitative analysis were used to classify lymph nodes in PET-CT images. The results of spiral CT observation and PET-CT observation of lymph nodes were compared with pathological results. The relative value of CT and PET-CT was analyzed. Exact probability statistics were employed. Results: One hundred and fifty eight lymph nodes of 40 patients were detected by spiral CT, 91 of them were diagnosed as positive and 67 as negative Among the lymph nodes found in spiral CT, 99 were positive and 59 were negative pathologicall. A total of 57 lymph nodes were found by PET-CT. Thirty-nine of them were defined as positive and 18 as negative. Among the lymph nodes found in PET-CT, 39 were positive and 18 were negative pathologically. The sensitivity, specificity, accuracy, positive and negative predictive values in CT prediction in axillary lymph nodes metastases were 88.89%, 94.91%, 91.14%, 96.70%, and 83.58%, respectively. The sensitivity, specificity, accuracy, positive and negative predictive values in PET-CT prediction in axillary lymph nodes metastases were 97.44%, 94.44%, 96.49%, 97.44%, and 94.44%, respectively. PET-CT had no significant difference with spiral CT in sensitivity, accuracy, positive and negative predictive values for detection

  18. Optimized imaging quality and radiation dose for coronary artery angiography using 128-slice, dual-source Flash Spiral CT under the natural heart rate

    International Nuclear Information System (INIS)

    Xue Yuejun; Qian Nong; Shao Yanhui; Pan Changjie; Rong Weiliang; Xu Yiqun; Tao Zhiwei

    2011-01-01

    Objective: To compare the quality and radiation doses of coronary artery angiography under the natural heart rate condition between Flash spiral heart mode and prospective electrocardiogram- triggering sequence mode using dual-source, in order to choose personalized low doses of coronary artery scanning mode. Methods: Sixty patients who underwent coronary angiography (CTA) on a 128-slice, dual- source CT scanner were divided into 2 group i.e, group A (27 cases) and group B (33 cases). Flash spiral heart scan mode was employed for group A. Inclusion criteria included: heart rate 75 bpm), date acquisition was set at 30%-50% of the R-R interval. (3) At the arrhythmias, premature beat, fibrillation atrial, date acquisition was set at 20%-90% of the R-R interval. In both groups, patients with a BMI ≥ 25.0 kg/m 2 were examined with a tube voltage of 120 kV, while the other patients with a BMI 2 were examined with a tube voltage of 100 kV. The BMI was (24.6±1.0) kg/m 2 in group A, while that was (24.6±0.9) kg/m 2 in group B. In both groups, all images were transferred to the workstation for further processing and analysis. The imaging quality of coronary artery segments and the radiation dose were compared with t test. Results: A total of 336 coronary artery segments were evaluated in group A and 412 segments were evaluated in group B. The imaging quality of coronary artery segments were scored. Excellent or good was achieved in 98.2% (330 of 336) artery segments in group A, and that was 98.1% (404 of 412) in group B. There was no statistical difference in imaging quality between the two groups (t=0.513, P=0.608). The average effective dose was (0.74±0.29) mSv in group A, whereas that was (3.67± 1.37) mSv in group B. There was a significant difference between the two groups (t=-10.858, P= 0.000). Conclusions: The personalized low doses coronary artery scanning mode can substantially reduce radiation damage while preserving good imaging quality. (authors)

  19. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation

    International Nuclear Information System (INIS)

    Kim, Sangroh; Yoshizumi, Terry T; Yin Fangfang; Chetty, Indrin J

    2013-01-01

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the

  20. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J

    2013-04-21

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral

  1. Evaluation of 16 detector row spiral CT in diagnosing pulmonary embolism

    International Nuclear Information System (INIS)

    Yu Xiaokun; Li Lei

    2008-01-01

    Objective: To investigate the value of 16 detector row spiral CT in the diagnosis of pulmonary embolism(PE). Methods: Imaging data of 20 patients (plain 16 detector row spiral CT scanning plus enhanced scanning imaging) highly suspected of PE was retrospectively analyzed. Results: Among the 20 cases, embolism was showed in 13 patients on 16 detector row spiral CT pulmonary angiography (MSCTPA). 6 cases of the 13 PE's patients have masculine findings on plain MSCT scanning images. Localized tenuous lung markings, dilated pulmonary artery, 'mosaic' sign, pleural or pericardial effusion, local high attenuation centrally in the pulmonary arteries and lung infarction occurred respectively. Conclusion: MSCTPA may be an effective, simple and safe technique for the diagnosis of PE. It was a reliable means in defecting PE However, for the cases unfit for contrast media and cases only suitable for unenhanced CT because of nonspecific heart-pulmonary symptom, noticeable abnormal signs of plain MSCT scanning could suggest the occurrence of pulmonary embolism. (authors)

  2. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    Science.gov (United States)

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.

  3. Improvement in printing technique of spiral CT three-dimensional colour image

    International Nuclear Information System (INIS)

    Wang Yicheng; Liu Feng; Zhang Ling

    2005-01-01

    Objective: To investigate the printing technique of spiral CT three-dimensional (3D) colour image. Methods: The 3D colour images of 136 patients were printed, with the equipment of Marconi spiral CT, personnel computer, colour ink printer, and network switchboard. Results: All printed images were satisfied by this method. Conclusion: This technique is economic, simple, and useful, and can meet the need for clinical diagnosis and operation. (authors)

  4. TU-F-CAMPUS-I-01: Investigation of the Effective Dose From Bolus Tracking Acquisitions at Different Anatomical Locations in the Chest for CT

    Energy Technology Data Exchange (ETDEWEB)

    Nowik, P; Bujila, R; Merzan, D [Dept. of Medical Physics, Karolinska University Hospital, Stockholm (Sweden)

    2015-06-15

    Purpose: Stationary table acquisitions (Bolus tracking) in X-ray Computed Tomography (CT) can Result in dose length products (DLP) comparable to spiral scans. It is today unclear whether or not the effective dose (E) for Bolus Tracking can be approximated using target region specific conversion factors (E/DLP). The purpose of this study was to investigate how E depends on the anatomical location of the Bolus Tracking in relation to Chest CT scans with the same DLP. Methods: Effective doses were approximated for the ICRP 110 adult Reference Male (AM) and adult Reference Female (FM) computational voxel phantoms using software for CT dose approximations (pre-simulated MC data). The effective dose was first approximated for a Chest CT scan using spiral technique and a CTDIvol (32 cm) of 6 mGy. The effective dose from the spiral scan was then compared to E approximated for contiguous Bolus Tracking acquisitions (1 cm separation), with a total collimation of 1 cm, over different locations of the chest of the voxel phantoms. The number of rotations used for the Bolus Tracking acquisitions was adjusted to yield the same DLP (32 cm) as the spiral scan. Results: Depending on the anatomical location of the Bolus Tracking, E ranged by factors of 1.3 to 6.8 for the AM phantom and 1.4 to 3.3 for the AF phantom, compared to the effective dose of the spiral scans. The greatest E for the Bolus Tracking acquisitions was observed for anatomical locations coinciding with breast tissue. This can be expected as breast tissue has a high tissue weighting factor in the calculation of E. Conclusion: For Chest CT scans, the effective dose from Bolus Tracking is highly dependent on the anatomical location where the scan is administered and will not always accurately be represented using target region specific conversion factors.

  5. The anal verge: localization with multi-slice spiral CT

    International Nuclear Information System (INIS)

    Wang Wei; Tang Guangjian

    2010-01-01

    Objective: To determine and evaluate the method of localization of anal verge by multislice spiral CT. To provide an imaging reference for operative guidance of low-rectal cancer. Methods Forty eight consecutive adult patients suspected of abnormalities other than rectal disease were evaluated with abdominal and pelvic CT scans since August, 2009. They were divided into two groups based on sex and age. There were 23 men and 25 women. The ages of young group were 28 to 50 years and the average age was 41 years. The ages of elderly group were 52 to 81 years and the average age was 64 years. A small cotton ball dipped with contrast media was put at the anal verge as a marker and CT scans were performed with 64-slice spiral CT scanner. The distances between the cotton balls and the lower margin of the pubis combination (La), the lower margin of the Sth sacral vertebra (Lb), the inferior aperture of minor pelvis (Lc) and the lower margin of the basement of external anal sphincter (Ld) were measured on the mid- sagittal images obtained by MPR. The averages, the standard deviations (s), the 95% and 80% confidence intervals of La, Lb, Lc and Ld were calculated. We took the intervals of ±1.96 s or ±1.28 s 0.05) between two different sex groups [male group, (10.0±1.2) mm], female group, (9.6±1.2) mm and between two age groups [young group, (9.6±1.2) mm, elderly group, (9.9±1.3) mm]. Conclusions: The lower margin of the basement of external anal sphincter was a useful anatomic landmark for localizing the anal verge, and could be definitely identified on the middle sagittal pelvic CT image. The distance between the structure and anal verge is constant enough and can be used in measuring distance from low rectal lesion to the anal verge. (authors)

  6. Initial clinical experience with spiral CT angiography in the abdomen

    International Nuclear Information System (INIS)

    Gaa, J.; Stehling, M.K.; Costello, P.

    1993-01-01

    The latest developments in modern CT instruments, offering scanning times of a second, opened up new possibilities in CT imaging in combination with the spiral technique. The data set normally taken with single-breath-hold technique is free of respiratory artefacts and thus is a good basis for accurate 3D image reconstruction. Spiral CTA allows a non-invasive 3D imaging of various blood vessels. Patients with abdominal aortic aneurysms of aorto-iliac bypass can be examined as outpatients within 15 minutes. (orig.) [de

  7. Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT studies for the diagnosis of uterine cancer recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Suzuki, Kayo [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Nakamoto, Yuji [Kyoto University Hospital, Department of Diagnostic Radiology, Kyoto (Japan); Onishi, Yumiko; Sakamoto, Setsu; Sugimura, Kazuro [Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Senda, Michio [Institute of Biomedical Research and Innovation, Department of Molecular Imaging, Kobe (Japan); Kita, Masato [Kobe City Medical Center General Hospital, Department of Obstetrics and Gynecology, Kobe (Japan)

    2010-08-15

    To evaluate low-dose non-enhanced CT (ldCT) and full-dose contrast-enhanced CT (ceCT) in integrated {sup 18}F-fluorodeoxyglucose (FDG) PET/CT studies for restaging of uterine cancer. A group of 100 women who had undergone treatment for uterine cervical (n=55) or endometrial cancer (n=45) underwent a conventional PET/CT scans with ldCT, and then a ceCT scan. Two observers retrospectively reviewed and interpreted the PET/ldCT and PET/ceCT images in consensus using a three-point grading scale (negative, equivocal, or positive) per patient and per lesion. Final diagnoses were obtained by histopathological examination, or clinical follow-up for at least 6 months. Patient-based analysis showed that the sensitivity, specificity and accuracy of PET/ceCT were 90% (27/30), 97% (68/70) and 95% (95/100), respectively, whereas those of PET/ldCT were 83% (25/30), 94% (66/70) and 91% (91/100), respectively. Sensitivity, specificity and accuracy did not significantly differ between two methods (McNemar test, p=0.48, p=0.48, and p=0.13, respectively). There were 52 sites of lesion recurrence: 12 pelvic lymph node (LN), 11 local recurrence, 8 peritoneum, 7 abdominal LN, 5 lung, 3 supraclavicular LN, 3 liver, 2 mediastinal LN, and 1 muscle and bone. The grading results for the 52 sites of recurrence were: negative 5, equivocal 0 and positive 47 for PET/ceCT, and negative 5, equivocal 4 and positive 43 for PET/ldCT, respectively. Four equivocal regions by PET/ldCT (local recurrence, pelvic LN metastasis, liver metastasis and muscle metastasis) were correctly interpreted as positive by PET/ceCT. PET/ceCT is an accurate imaging modality for the assessment of uterine cancer recurrence. Its use reduces the frequency of equivocal interpretations. (orig.)

  8. Evaluation of an exposed-radiation dose on a dual-source cardiac computed tomography examination with a prospective electrocardiogram-gated fast dual spiral scan

    International Nuclear Information System (INIS)

    Matsubara, Kosuke; Koshida, Kichiro; Koshida, Haruka; Sakuta, Keita; Hayashi, Hiroyuki; Takata, Tadanori; Horii, Junsei; Kawai, Keiichi; Yamamoto, Tomoyuki

    2012-01-01

    We evaluated exposed-radiation doses on dual-source cardiac computed tomography (CT) examinations with prospective electrocardiogram (ECG)-gated fast dual spiral scans. After placing dosimeters at locations corresponding to each of the thoracic organs, prospective ECG-gated fast dual spirals and retrospective ECG-gated dual spiral scans were performed to measure the absorbed dose of each organ. In the prospective ECG-gated fast dual spiral scans, the average absorbed doses were 5.03 mGy for the breast, 9.96 mGy for the heart, 6.60 mGy for the lung, 6.48 mGy for the bone marrow, 9.73 mGy for the thymus, and 4.58 mGy for the skin. These values were about 5% of the absorbed doses for the retrospective ECG-gated dual spiral scan. However, the absorbed dose differed greatly at each scan, especially in the external organs such as the breast. For effective and safe use of the prospective ECG-gated fast dual spiral scan, it is necessary to understand these characteristics sufficiently. (author)

  9. Dual source multidetector CT-angiography before transcatheter aortic valve implantation (TAVI) using a high-pitch spiral acquisition mode

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, W.; Anders, K.; May, M.S.; Uder, M. [University of Erlangen, Department of Radiology, Erlangen (Germany); Schuhbaeck, A.; Gauss, S.; Marwan, M.; Arnold, M.; Muschiol, G.; Daniel, W.G.; Achenbach, S. [University of Erlangen, Department of Cardiology, Erlangen (Germany); Ensminger, S. [University of Erlangen, Department of Cardiac Surgery, Erlangen (Germany)

    2012-01-15

    Transcatheter Aortic Valve Implantation (TAVI) is an alternative to surgical valve replacement in high risk patients. Angiography of the aortic root, aorta and iliac arteries is required to select suitable candidates, but contrast agents can be harmful due to impaired renal function. We evaluated ECG-triggered high-pitch spiral dual source Computed Tomography (CT) with minimized volume of contrast agent to assess aortic root anatomy and vascular access. 42 patients (82 {+-} 6 years) scheduled for TAVI underwent dual source (DS) CT angiography (CTA) of the aorta using a prospectively ECG-triggered high-pitch spiral mode (pitch = 3.4) with 40 mL iodinated contrast agent. We analyzed aortic root/iliac dimensions, attenuation, contrast to noise ratio (CNR), image noise and radiation exposure. Aortic root/iliac dimensions and distance of coronary ostia from the annulus could be determined in all cases. Mean aortic and iliac artery attenuation was 320 {+-} 70 HU and 340 {+-} 77 HU. Aortic/iliac CNR was 21.7 {+-} 6.8 HU and 14.5 {+-} 5.4 HU using 100 kV (18.8 {+-} 4.1 HU and 8.7 {+-} 2.6 HU using 120 kV). Mean effective dose was 4.5 {+-} 1.2 mSv. High-pitch spiral DSCTA can be used to assess the entire aorta and iliac arteries in TAVI candidates with a low volume of contrast agent while preserving diagnostic image quality. (orig.)

  10. Spiral CT scanning plan to generate accurate Fe models of the human femur

    International Nuclear Information System (INIS)

    Zannoni, C.; Testi, D.; Capello, A.

    1999-01-01

    In spiral computed tomography (CT), source rotation, patient translation, and data acquisition are continuously conducted. Settings of the detector collimation and the table increment affect the image quality in terms of spatial and contrast resolution. This study assessed and measured the efficacy of spiral CT in those applications where the accurate reconstruction of bone morphology is critical: custom made prosthesis design or three dimensional modelling of the mechanical behaviour of long bones. Results show that conventional CT grants the highest accuracy. Spiral CT with D=5 mm and P=1,5 in the regions where the morphology is more regular, slightly degrades the image quality but allows to acquire at comparable cost an higher number of images increasing the longitudinal resolution of the acquired data set. (author)

  11. MR appearance of cartilage defects of the knee: preliminary results of a spiral CT arthrography-guided analysis

    International Nuclear Information System (INIS)

    Berg, B.C. vande; Lecouvet, F.E.; Maldague, B.; Malghem, J.

    2004-01-01

    The aim of this study was to determine signal intensity patterns of cartilage defects at MR imaging. The MR imaging (3-mm-thick fat-suppressed intermediate-weighted fast spin-echo images) was obtained in 31 knees (21 male and 10 female patients; mean age 45.5 years) blindly selected from a series of 252 consecutive knees investigated by dual-detector spiral CT arthrography. Two radiologists determined in consensus the MR signal intensity of the cartilage areas where cartilage defects had been demonstrated on the corresponding reformatted CT arthrographic images. There were 83 cartilage defects at spiral CT arthrography. In 52 (63%) lesion areas, the MR signal intensity was higher than that of adjacent normal cartilage with signal intensity equivalent to (n=31) or lower than (n=21) that of articular fluid. The MR signal intensity was equivalent to that of adjacent normal cartilage in 17 (20%) lesion areas and lower than that of adjacent cartilage in 8 (10%) lesion areas. In 6 (7%) lesion areas, mixed low and high signal intensity was observed. The MR signal intensity of cartilage defects demonstrated on spiral CT arthrographic images varies from low to high on fat-suppressed intermediate-weighted fast spin-echo MR images obtained with our equipment and MR parameters. (orig.)

  12. Comparative analysis between spiral CT and pathology of pulmonary nodules

    International Nuclear Information System (INIS)

    Wang Kaifu; Zhang Zhanqing

    2007-01-01

    Objective: To explore the value of spiral CT in the diagnosis of atypical pulmonary nodules. Methods: CT, clinic and histopathologic data of 72 patients with atypical pulmonary nodules confirmed by surgical resection in 41 cases and/or biopsy in 31 cases were retrospectively analyzed. Results: CT scans demonstrated slight lobulation in 34 cases, irregular margin in 50 cases, long speculate in 10 cases, air-bronchogram in 2 case, vacuole in 2 case. 38 pulmonary cancer, 22 pulmonary tuberculosis and 12 pulmonary inflammatory pseudotumors were diagnosed with spiral CT. However, 30 pulmonary cancer, 30 pulmonary tuberculosis and 12 pulmonary inflammatory pseudotumors were confirmed by histopathology. The overall accurate diagnostic rate of pulmonary cancer was 66.7% (20/30), pulmonary tuberculosis was 60%(18/30), pulmonary inflammatory pseudotumors was 16.7%(2/12). 40 cases were diagnosed correctly and 32 cases were misdiagnosed with CT in 72 cases of atypical pulmonary nodules. The misdiagnostic rate of CT was 44.4%. 10 cases of lung cancer were misdiagnosed, including 4 cases of tuberculosis (long speculate or irregular margin) and 6 cases of inflammatory pseudotumors (irregular margin or long speculate or air-bronchogram). 12 cases of tuberculosis were misdiagnosed, including 8 cases lung cancer (slight lobulation) and 4 cases of inflammatory pseudotumors (slight lobulation). 10 cases inflammatory pseudotumor were misdiagnosed as lung cancer (slight lobulation). Conclusion: Spiral CT was very useful in the localization and morphological describing, but difficult in qualitative diagnosing of atypical pulmonary nodules, exactly diagnosis was relied on surgery and biopsy. (authors)

  13. Convolutional auto-encoder for image denoising of ultra-low-dose CT

    Directory of Open Access Journals (Sweden)

    Mizuho Nishio

    2017-08-01

    Conclusion: Neural network with convolutional auto-encoder could be trained using pairs of standard-dose and ultra-low-dose CT image patches. According to the visual assessment by radiologists and technologists, the performance of our proposed method was superior to that of large-scale nonlocal mean and block-matching and 3D filtering.

  14. Ultra-low Dose CT for Attenuation Correction of 82Rb Cardiac PET

    DEFF Research Database (Denmark)

    Sørensen, Maria Balshøj; Bouchelouche, Kirsten; Tolbod, Lars Poulsen

    Aim: Myocardial perfusion imaging (MPI) using cardiac PET with tracers like 82Rb and 15O-water is substantially lower in radiation dose than classic MIBI-based SPECT. However, for cardiac PET, the dose contribution of CT for attenuation correction (CTAC) is typically 20-30% of the total dose....... To reduce the total radiation dose of cardiac PET further, we set out to examine if the use of ultra-low dose CTAC (UL-CTAC) would affect the accuracy of the quantitative parameters related to MPI. Furthermore, we examined whether the low quality of the UL-CTAC would affect the technologist’s ability...... to perform manual adjustment for misalignment between PET and CTAC. The CT reconstruction algorithm Q.AC was used to improve quality and consistency of the CTAC. Method: 23 consecutive clinical patients (BMI: 26.9 [range: 15.4-38.8]) referred for 82Rb PET rest and stress imaging were included in the study...

  15. Gamma regularization based reconstruction for low dose CT

    International Nuclear Information System (INIS)

    Zhang, Junfeng; Chen, Yang; Hu, Yining; Luo, Limin; Shu, Huazhong; Li, Bicao; Liu, Jin; Coatrieux, Jean-Louis

    2015-01-01

    Reducing the radiation in computerized tomography is today a major concern in radiology. Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. lowered tube current or voltage values). In this paper we propose a Gamma regularization based algorithm for LDCT image reconstruction. This solution is flexible and provides a good balance between the regularizations based on l 0 -norm and l 1 -norm. We evaluate the proposed approach using the projection data from simulated phantoms and scanned Catphan phantoms. Qualitative and quantitative results show that the Gamma regularization based reconstruction can perform better in both edge-preserving and noise suppression when compared with other norms. (paper)

  16. Three phase dynamic CT with double spiral CT: utility of determination of stomach cancer stage

    International Nuclear Information System (INIS)

    Jung, Min Ha; Kim, Hong In; Kim, Tae Hyung; Lee, Ki Yeol; Cho, June Il; Park, Cheol Min; Cha, In Ho

    1997-01-01

    To evaluate the utility of three phases of spiral CT in the diagnosis of stomach cancer. Between August 1994 and March 1995, thirty eight patients with stomach cancer, demonstrated on spiral CT, underwent surgery. Twenty-eight cases were advanced and ten were early. There were 27 men, and 11 women, and their average age was 52.8 years old (33-77). After ingestion of 600-700ml of water, 120-140ml of nonionic contrast material was injected intravenously. Spiral CT scanning was performed in 10mm slice thickness and of 10mm/sec table speed. Three phase image were obtained at 25sec (arterial phase), 60-65sec (venous phase) and 4min (equilibrium phase) after the start of bolus injection. On each phase, CT findings were compared with pathologic results, and tumor detectibility, depth of tumor invasion and lymph node metastasis was analysed. Thirty of the 38 carcinomas (79%) were detected on the arterial phase, 33 (81%) on the venous phase and 30 (79%) on the equilibrium phase. Depth of tumor invasion was measured accurately in 27 of 38 cases (71%) : T1-4/10 (40%), T2-8/11 (73%), T3-13/15 (87%), T4-2/2 (100%). We overstaged one case of T1 as T2 and two cases of T2 as T3, and understaged one case of T2 as T1 and two cases of T3 as T2. Among the 16 enlarged lymph nodes larger than 8mm, 13 cases were positive on pathologic examination and the sensitivity was 65%. With three-phase spiral CT scanning, we obtained 71% accuracy of depth of tumor invasion. The venous phase is most useful for tumor detection and for determining depth of tumor invasion and lymph node metastasis

  17. A study of parameters in spiral CT volumetry using balloon phantoms

    International Nuclear Information System (INIS)

    Lee, Hak Jong; Han, Joon Koo

    2001-01-01

    To evaluate the effects of threshold values, reconstruction interval, slice thickness and table speed on the spiral CT volumetry. Two phantoms made of a balloon and diluted contrast media underwent spiral CT scanning with section thicknesses of 5, 7 and 10 mm and table speeds of 5, 8 and 10 mm with scans of 5 mm section thickness, 7, 10, and 14 mm with scans of 7 mm section thickness, and 10, 15, and 20 mm with scans of 10 mm section thickness. The volumetric values of phantom A and B were obtained at varying threshold values and a reconstruction interval of 5 and 10 mm for all scans. Volumes were also determined with the threshold value fixed and a reconstruction interval of 1, 5, 7 and 10 mm, respectively. Three-dimensional display and volumetric measurements were obtained using reconstructed images. The effects of threshold value, reconstruction interval, slice thickness and table speed on volumetry were analyzed. Volumetric values varied according to threshold values. Where a threshold value was low, value increased as pitch increased, but where a the threshold value was high, value decreased as pitch increased. With varying threshold values, measurement errors in CT volumetry were 1.6 to 9.0%. Volume decreased as reconstruction interval increased. Where the table speed/ slice thickness ratio was constant, volume was constant though slice thickness differed. At fixed threshold values, variation in the reconstruction interval was statistically more significant than variation in slice thickness or table speed (p<0.05, Kruskal-Wallis one-way ANOVA). Among serveral spiral scanning and image reconstruction parameters including threshold value, reconstruction interval, slice thickness, and table speed, threshold value most affected the result obtained. At fixed threshold values, the reconstruction interval used had more effect on CT volumetry than other parameters

  18. Design of wireless data transmission system for spiral CT

    International Nuclear Information System (INIS)

    Wang Jue; Wang Fuquan; Liu Huaili

    2010-01-01

    A new wireless data transmission scheme based on UWB was proposed after studying the structure and character of spiral CT transmission system, the system was designed and validated. Using UWB device as wireless module to realize wireless data transmission. Using FPGA as main controller to meet the requirement of timing control for system module. Using two pieces of SDRAM in pingpang operation to realize large capacity storage mechanism. Using USB 2.0 interface to realize high-speed connection with UWB module. The results show that the transmission speed of the system arrival at 16.87 M bit ps within 3 meters, and the precision is 100%, it can be used for line-array spiral CT. (authors)

  19. Dose and image quality in low-dose CT for urinary stone disease: added value of automatic tube current modulation and iterative reconstruction techniques

    International Nuclear Information System (INIS)

    Soenen, Olivier; Balliauw, Christophe; Oyen, Raymond; Zanca, Federica

    2017-01-01

    The aim of this study was to compare dose and image quality (IQ) of a baseline low-dose computed tomography (CT) (fix mAs) vs. an ultra-low-dose CT (automatic tube current modulation, ATCM) in patients with suspected urinary stone disease and to assess the added value of iterative reconstruction. CT examination was performed on 193 patients (103 baseline low-dose, 90 ultra-low-dose). Filtered back projection (FBP) was used for both protocols, and Sinogram Affirmed Iterative Reconstruction (SAFIRE) was used for the ultra-low-dose protocol only. Dose and ureter stones information were collected for both protocols. Subjective IQ was assessed by two radiologists scoring noise, visibility of the ureter and overall IQ. Objective IQ (contrast-to-noise ratio, CNR) was assessed for the ultra-low-dose protocol only (FBP and SAFIRE). The ultra-low-dose protocol (ATCM) showed a 22% decrease in mean effective dose ( p < 0.001) and improved visibility of the pelvic ureter (p = 0.02). CNR was higher for SAFIRE (p < 0.0001). SAFIRE improves the objective IQ, but not the subjective IQ for the chosen clinical task. (authors)

  20. Effects of sparse sampling schemes on image quality in low-dose CT

    International Nuclear Information System (INIS)

    Abbas, Sajid; Lee, Taewon; Cho, Seungryong; Shin, Sukyoung; Lee, Rena

    2013-01-01

    Purpose: Various scanning methods and image reconstruction algorithms are actively investigated for low-dose computed tomography (CT) that can potentially reduce a health-risk related to radiation dose. Particularly, compressive-sensing (CS) based algorithms have been successfully developed for reconstructing images from sparsely sampled data. Although these algorithms have shown promises in low-dose CT, it has not been studied how sparse sampling schemes affect image quality in CS-based image reconstruction. In this work, the authors present several sparse-sampling schemes for low-dose CT, quantitatively analyze their data property, and compare effects of the sampling schemes on the image quality.Methods: Data properties of several sampling schemes are analyzed with respect to the CS-based image reconstruction using two measures: sampling density and data incoherence. The authors present five different sparse sampling schemes, and simulated those schemes to achieve a targeted dose reduction. Dose reduction factors of about 75% and 87.5%, compared to a conventional scan, were tested. A fully sampled circular cone-beam CT data set was used as a reference, and sparse sampling has been realized numerically based on the CBCT data.Results: It is found that both sampling density and data incoherence affect the image quality in the CS-based reconstruction. Among the sampling schemes the authors investigated, the sparse-view, many-view undersampling (MVUS)-fine, and MVUS-moving cases have shown promising results. These sampling schemes produced images with similar image quality compared to the reference image and their structure similarity index values were higher than 0.92 in the mouse head scan with 75% dose reduction.Conclusions: The authors found that in CS-based image reconstructions both sampling density and data incoherence affect the image quality, and suggest that a sampling scheme should be devised and optimized by use of these indicators. With this strategic

  1. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  2. Absorbed dose in CT. Comparison by CT dose index

    International Nuclear Information System (INIS)

    Yamamoto, Kenji; Akazawa, Hiroshi; Andou, Takashi

    2002-01-01

    Few reports have discussed the absorbed dose on CT units with increased scanning capacity even with the current widespread adoption of multi-slice CT units. To compare and investigate the dose indexes among CT units, we measured the absorbed dose on CT units operating in Nagano Prefecture Japan. The measurements showed proportionality between phantom absorbed dose and the exposured mAs values in conventional scanning operation. Further, the measurements showed that the absorbed dose in the center of the phantom differed by about 2.1-fold between the highest and lowest levels on individual CT units. Within a single company, multi-slice CT units of the same company gave absorbed doses of about 1.3 to 1.5 times those of conventional single-slice CT units under the same exposured conditions of conventional scanning. When the scanning pitch was reduced in helical scanning, the absorbed dose at the center of the phantom increased. (author)

  3. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: an anthropomorphic thoracic phantom study.

    Science.gov (United States)

    Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W

    2014-09-01

    The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.

  4. SU-F-I-31: Reproducibility of An Automatic Exposure Control Technique in the Low-Dose CT Scan of Cardiac PET/CT Exams

    Energy Technology Data Exchange (ETDEWEB)

    Park, M; Rosica, D; Agarwal, V; Di Carli, M; Dorbala, S [Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984 pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.

  5. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    International Nuclear Information System (INIS)

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-01-01

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED adj ). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED adj between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED adj that differed by up to 44% from effective dose estimates that were not

  6. Staging of gastric adenocarcinoma using two-phase spiral CT: correlation with pathologic staging

    International Nuclear Information System (INIS)

    Seo, Tae Seok; Lee, Dong Ho; Ko, Young Tae; Lim, Joo Won

    1998-01-01

    To correlate the preoperative staging of gastric adenocarcinoma using two-phase spiral CT with pathologic staging. One hundred and eighty patients with gastric cancers confirmed during surgery underwent two-phase spiral CT, and were evaluated retrospectively. CT scans were obtained in the prone position after ingestion of water. Scans were performed 35 and 80 seconds after the start of infusion of 120mL of non-ionic contrast material with the speed of 3mL/sec. Five mm collimation, 7mm/sec table feed and 5mm reconstruction interval were used. T-and N-stage were determined using spiral CT images, without knowledge of the pathologic results. Pathologic staging was later compared with CT staging. Pathologic T-stage was T1 in 70 cases(38.9%), T2 in 33(18.3%), T3 in 73(40.6%), and T4 in 4(2.2%). Type-I or IIa elevated lesions accouted for 10 of 70 T1 cases(14.3%) and flat or depressed lesions(type IIb, IIc, or III) for 60(85.7%). Pathologic N-stage was NO in 85 cases(47.2%), N1 in 42(23.3%), N2 in 31(17.2%), and N3 in 22(12,2%). The detection rate of early gastric cancer using two-phase spiral CT was 100.0%(10 of 10 cases) among elevated lesions and 78.3%(47 of 60 cases) among flat or depressed lesions. With regard to T-stage, there was good correlation between CT image and pathology in 86 of 180 cases(47.8%). Overstaging occurred in 23.3%(42 of 180 cases) and understaging in 28.9%(52 of 180 cases). With regard to N-stage, good correlation between CT image and pathology was noted in 94 of 180 cases(52.2%). The rate of understaging(31.7%, 57 of 180 cases) was higher than that of overstaging(16.1%, 29 of 180 cases)(p<0.001). The detection rate of early gastric cancer using two-phase spiral CT was 81.4%, and there was no significant difference in detectability between elevated and depressed lesions. Two-phase spiral CT for determing the T-and N-stage of gastric cancer was not effective;it was accurate in abont 50% of cases understaging tended to occur.=20

  7. Simple pulmonary eosinophilia detected at low-dose CT for lung cancer screening

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kyung Nyeo; Bae, Kyung Soo; Kim, Ho Cheol [Gyeongsang National University Hospital, Jinju (Korea, Republic of)] (and others)

    2006-05-15

    The aim of this study was to evaluate the frequency, radiologic findings and clinical significance of the simple pulmonary eosinophilia (SPE) that was diagnosed among the asymptomatic patients who underwent low-dose CT scans for the early detection of lung cancer. From June 2003 to May 2005, 1,239 asymptomatic patients (1,275 examinations) who visited the health promotion center in our hospital and who underwent low-dose CT were enrolled in this study. SPE was defined as the presence of > 500 eosinophils per microliter of peripheral blood and the presence of abnormal parenchymal lesions such as nodules, airspace consolidation or areas of ground-glass attenuation (GGA) on CT, and there was spontaneous resolution or migration of the lesions on the follow-up examination. We analyzed the CT findings of SPE and we investigated the relationship between the occurrence of SPE and the season, smoking and the presence of parasite infestation. 36 patients were finally diagnosed as having SPE; this was 24% of the 153 patients who were diagnosed with parasite infestation and 2.8% of the total low-dose CT scans. These 36 patients consisted of 31 men and 5 women with a mean age 45.7 years. There was no significant relationship between SPE and the presence of parasite infestation, smoking or gender. Among the patients with peripheral blood eosinophilia, the eosinophil count was significantly higher in the patients with SPE than that in the patients without pulmonary infiltration ({rho} < 0.05). SPE more frequently occurred in winter and spring than in summer and autumn ({rho} < 0.05). The CT findings were single or multiple nodules in 18 patients, nodules and focal GGA in 9 patients and GGA only in 9 patients. Most of the nodules were less than 10 mm (88%, 49/56) in diameter and they showed an ill-defined margin (82%, n = 46); 30% of the nodules (n = 17) showed a halo around them. Simple pulmonary eosinophilia can be suggested as the cause if single or multiple ill-defined nodules

  8. Simple pulmonary eosinophilia detected at low-dose CT for lung cancer screening

    International Nuclear Information System (INIS)

    Jeon, Kyung Nyeo; Bae, Kyung Soo; Kim, Ho Cheol

    2006-01-01

    The aim of this study was to evaluate the frequency, radiologic findings and clinical significance of the simple pulmonary eosinophilia (SPE) that was diagnosed among the asymptomatic patients who underwent low-dose CT scans for the early detection of lung cancer. From June 2003 to May 2005, 1,239 asymptomatic patients (1,275 examinations) who visited the health promotion center in our hospital and who underwent low-dose CT were enrolled in this study. SPE was defined as the presence of > 500 eosinophils per microliter of peripheral blood and the presence of abnormal parenchymal lesions such as nodules, airspace consolidation or areas of ground-glass attenuation (GGA) on CT, and there was spontaneous resolution or migration of the lesions on the follow-up examination. We analyzed the CT findings of SPE and we investigated the relationship between the occurrence of SPE and the season, smoking and the presence of parasite infestation. 36 patients were finally diagnosed as having SPE; this was 24% of the 153 patients who were diagnosed with parasite infestation and 2.8% of the total low-dose CT scans. These 36 patients consisted of 31 men and 5 women with a mean age 45.7 years. There was no significant relationship between SPE and the presence of parasite infestation, smoking or gender. Among the patients with peripheral blood eosinophilia, the eosinophil count was significantly higher in the patients with SPE than that in the patients without pulmonary infiltration (ρ < 0.05). SPE more frequently occurred in winter and spring than in summer and autumn (ρ < 0.05). The CT findings were single or multiple nodules in 18 patients, nodules and focal GGA in 9 patients and GGA only in 9 patients. Most of the nodules were less than 10 mm (88%, 49/56) in diameter and they showed an ill-defined margin (82%, n = 46); 30% of the nodules (n = 17) showed a halo around them. Simple pulmonary eosinophilia can be suggested as the cause if single or multiple ill-defined nodules or

  9. Use of spiral CT and the contrast medium iohexol to determine in one session aortorenal morphology and the relative glomerular filtration rate of each kidney

    International Nuclear Information System (INIS)

    Frennby, B.; Almen, T.

    2001-01-01

    The aim of this study was to determine the relative glomerular filtration rate (GFR), i.e. the GFR of each kidney in percent of total GFR, by spiral CT. In 41 patients, who were part of a follow-up program after endoluminal stent grafting of aortic aneurysm, spiral CT with the contrast medium iohexol was used to evaluate the morphology of the aorta and kidneys. The opportunity was taken to utilize the already injected iohexol to determine the relative GFR with an extra CT sequence. In each patient two determinations were made, 6 or 12 months apart. The amount of a GFR marker accumulating in Bowman's space, tubuli, and renal pelvis within 2-3 min after i.v. injection, before any marker had left the kidney via the ureter, was defined as proportional to the GFR of that kidney. The renal accumulation of iohexol was obtained by spiral CT using 10-mm collimation and a table speed of 10 mm/s (pitch ratio 1:1) from the upper to the lower poles. The correlation coefficient between the relative GFR of each kidney determined at the first and second examination was excellent (r=0.99) with a median (range) difference of 1% (0-6%) of total GFR. The radiation dose calculated as the mean absorbed dose to the kidneys was 50 mGy and the effective dose 5 mSv. The morphology of aorta and kidneys and the relative GFR of each kidney can be determined in one session with spiral CT using iohexol as both angiographic contrast medium and as a GFR marker. It is also possible to take some plasma samples in the same session to determine iohexol concentration to calculate the body clearance of iohexol (or take plasma and urine samples to calculate the renal clearance of iohexol). (orig.)

  10. Virtual gastroscopy using spiral CT in gastric lesions

    International Nuclear Information System (INIS)

    Shin, Sang Soo; Kang, Heoung Keun; Jeong, Yong Yeon; Yoon, Man Won; Song, Sang Gook; Jeong, Gwang Woo

    1998-01-01

    To compare virtual gastroscopy using spiral CT with conventional endoscopy for the detection and evaluation of gastric lesions. During a previous six-month period, 30 patients with pathologically-proven gastric lesions underwent conventional endoscopy and virtual gastroscopy using spiral CT. There were 18 cases of advanced gastric carcinoma, eight benign ulcers, and four submucosal tumors(two leiomyomas, two lymphomas). Source images of virtual gastroscopy were three-dim-ensionally reconstructed within an Advantage Windows Workstation and virtual gastroscopic images were obtained using Navigator Software. On analysis, images were graded according to their quality(excellent, good, poor). Virtual gastroscopic images were interpreted by two radiologists blinded to conventional endoscopic findings, and were subsequently compared with endoscopic findings in terms of detectability and findings. In the cases of advanced gastric carcinoma, lesions were classified according to Borrmann's system. For virtual gastroscopy, overall image quality was excellent in 21 cases(70%), good in five(17%), and poor in four(13%). Lesions were detected in 25 cases(83%). Among the 18 advanced gastric carcinomas, virtual gastroscopy image quality was excellent in 14 cases(78%), good in two(11%), and poor in two(11%). Lesions were detected in 16 cases(89%). Two Borrmann type IV cases were not detected. Among the eight benign ulcers, virtual gastroscopy image quality was excellent in three cases(38%), good in three(38%), and poor in two(25%). The detection of lesion was possible in five cases(63%). In all submucosal tumors, virtual gastroscopy image quality was excellent. Lesions were detected in all cases. Virtual gastroscopy using spiral CT is safe and noninvasive, and for the evaluation of gastric lesions may be complementary to axial CT. It successfully detects gastric lesions, and in depicting the pattern of gastric folds its image quality is excellent.=20

  11. A new approximate algorithm for image reconstruction in cone-beam spiral CT at small cone-angles

    International Nuclear Information System (INIS)

    Schaller, S.; Flohr, T.; Steffen, P.

    1996-01-01

    This paper presents a new approximate algorithm for image reconstruction with cone-beam spiral CT data at relatively small cone-angles. Based on the algorithm of Wang et al., our method combines a special complementary interpolation with filtered backprojection. The presented algorithm has three main advantages over Wang's algorithm: (1) It overcomes the pitch limitation of Wang's algorithm. (2) It significantly improves z-resolution when suitable sampling schemes are applied. (3) It avoids the waste of applied radiation dose inherent to Wang's algorithm. Usage of the total applied dose is an important requirement in medical imaging. Our method has been implemented on a standard workstation. Reconstructions of computer-simulated data of different phantoms, assuming sampling conditions and image quality requirements typical to medical CT, show encouraging results

  12. Can low-dose CT with iterative reconstruction reduce both the radiation dose and the amount of iodine contrast medium in a dynamic CT study of the liver?

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroto; Okada, Masahiro; Hyodo, Tomoko; Hidaka, Syojiro; Kagawa, Yuki; Matsuki, Mitsuru; Tsurusaki, Masakatsu; Murakami, Takamichi, E-mail: murakami@med.kindai.ac.jp

    2014-04-15

    Purpose: To investigate whether low-dose dynamic CT of the liver with iterative reconstruction can reduce both the radiation dose and the amount of contrast medium. Materials and methods: This study was approved by our institutional review board. 113 patients were randomly assigned to one of two groups. Group A/group B (fifty-eight/fifty-five patients) underwent liver dynamic CT at 120/100 kV, with 0/40% adaptive statistical iterative reconstruction (ASIR), with a contrast dose of 600/480 mg I/kg, respectively. Radiation exposure was estimated based on the manufacturer's phantom data. The enhancement value of the hepatic parenchyma, vessels and the tumor-to-liver contrast of hepatocellular carcinomas (HCCs) were compared between two groups. Two readers independently assessed the CT images of the hepatic parenchyma and HCCs. Results: The mean CT dose indices: 6.38/4.04 mGy, the dose-length products: 194.54/124.57 mGy cm, for group A/group B. The mean enhancement value of the hepatic parenchyma and the tumor-to-liver contrast of HCCs with diameters greater than 1 cm in the post-contrast all phases did not differ significantly between two groups (P > 0.05). The enhancement values of vessels in group B were significantly higher than that in group A in the delayed phases (P < 0.05). Two reader's confidence levels for the hepatic parenchyma in the delayed phases and HCCs did not differ significantly between the groups (P > 0.05). Conclusions: Low-dose dynamic CT with ASIR can reduce both the radiation dose and the amount of contrast medium without image quality degradation, compared to conventional dynamic CT without ASIR.

  13. The value of spiral CT thin imaging reconstruction in the diagnosis of obstructive jaundice

    International Nuclear Information System (INIS)

    Huang Zhi; Liu Zhang; Yang Chaoxiang; Lin Chengye; Zhang Li; Li Yuxiang; Ma Yunyan; Xiao Haisong; Lu Zhifeng; Wang Bo; Zhou Yunhong

    2009-01-01

    Objective: To approach the value of spiral CT thin imaging reconstruction in the diagnosis of obstructive jaundice in order to improve the correctness of the diagnosis. Methods: Analysis the cases' clinical manifestation and the CT images, who were diagnosed as obstructive jaundice by operation. All of cases had high-resolution computed tomograyhy scan. The thickness and the interval is 5mm, reconstructed the thickness and the interval to 1 mm and 1.5 mm, then send the images to the workstation and MRR were processed. Analysis the date with the pathology. Results: Spiral CT thin imaging reconstruction have 98% and 93% in the accuracy of location and characterization in the obstruction. Conclusion: The spiral CT thin imaging reconstruction is a good method to improve the accuracy of location and characterization in the obstructive jaundice. (authors)

  14. Evaluation of radiation doses delivered in different chest CT protocols

    International Nuclear Information System (INIS)

    Gorycki, Tomasz; Lasek, Iwona; Kamiński, Kamil; Studniarek, Michał

    2014-01-01

    There are differences in the reference diagnostic levels for the computed tomography (CT) of the chest as cited in different literature sources. The doses are expressed either in weighted CT dose index (CTDI VOL ) used to express the dose per slice, dose-length product (DLP), and effective dose (E). The purpose of this study was to assess the radiation dose used in Low Dose Computer Tomography (LDCT) of the chest in comparison with routine chest CT examinations as well as to compare doses delivered in low dose chest CT with chest X-ray doses. CTDI VOL and DLP doses were taken to analysis from routine CT chest examinations (64 MDCT TK LIGHT SPEED GE Medical System) performed in 202 adult patients with FBP reconstruction: 51 low dose, 106 helical, 20 angio CT, and 25 high resolution CT protocols, as well as 19 helical protocols with iterative ASIR reconstruction. The analysis of chest X-ray doses was made on the basis of reports from 44 examinations. Mean values of CTDI VOL and DLP were, respectively: 2.1 mGy and 85.1 mGy·cm, for low dose, 9.7 mGy and 392.3 mGy·cm for helical, 18.2 mGy and 813.9 mGy·cm for angio CT, 2.3 mGy and 64.4 mGy·cm for high resolution CT, 8.9 mGy. and 317.6 mGy·cm for helical ASIR protocols. Significantly lower CTDI VOL and DLP values were observed for low dose and high resolution CT versus the remaining CT protocols; doses delivered in CT ASIR protocols were also lower (80–81%). The ratio between medial doses in low dose CT and chest X-ray was 11.56. Radiation dose in extended chest LDCT with parameters allowing for identification of mediastinal structures and adrenal glands is still much lower than that in standard CT protocols. Effective doses predicted for LDCT may exceed those used in chest X-ray examinations by a factor of 4 to 12, depending on LDCT scan parameters. Our results, as well as results from other authors, suggest a possibility of reducing the dose by means of iterative reconstruction. Efforts towards further dose

  15. Assessment of pancreatic adenocarcinoma: use of low-dose whole pancreatic CT perfusion and individualized dual-energy CT scanning

    International Nuclear Information System (INIS)

    Li, Hai-ou; Guo, Jun; Li, Xiao; Qi, Yao-dong; Wang, Xi-ming; Xu, Zhuo-dong; Liu, Cheng; Chen, Jiu-hong

    2015-01-01

    The objective of this study was to investigate the value of low-dose whole pancreatic computed tomography (CT) perfusion integrated with individualized dual-energy CT (DECT) scanning in the diagnosis of pancreatic adenocarcinoma. Twenty patients with pancreatic adenocarcinoma underwent pancreatic CT perfusion as well as individualized dual-phase DECT pancreatic scans. Perfusion characteristics of non-tumourous pancreatic parenchyma and pancreatic adenocarcinoma were analysed. Weighted-average 120 kVp images and the optimal monoenergetic images in dual phase were reconstructed and the contrast noise ratio (CNR) of pancreas-to-tumour were compared. There were significant difference on blood flow as well as blood volume between pancreatic adenocarcinoma and the non-tumourous pancreatic parenchyma (P < 0.05), whereas no difference on permeability (P > 0.05). CNRs of pancreas-to-tumour in individualized pancreatic phase were significantly higher than those in venous phase (P < 0.05), and CNRs of optimal monoenergetic images were higher than those on weighted-average 120 kVp images (P < 0.05) in both phase. Total effective radiation dose of CT examination was around 9.32–13.75 mSv. Low-dose whole pancreatic CT perfusion can provide functional information, and the individualized pancreatic phase DECT scan is the optimal method for detecting pancreatic adenocarcinomas. The integration of the two techniques has great value in clinical application.

  16. Diagnostic accuracy of low-dose versus ultra-low-dose CT for lumbar disc disease and facet joint osteoarthritis in patients with low back pain with MRI correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Hwa [Inje University College of Medicine, Department of Emergency Medicine, Sanggye Paik Hospital, Nowon-gu (Korea, Republic of); Yun, Seong Jong; Jo, Hyeon Hwan; Kim, Dong Hyeon [Republic of Korea Air Force, Department of Radiology, Aerospace Medical Center, Cheongwon-gun, Chungcheongbuk-do (Korea, Republic of); Song, Jae Gwang [Republic of Korea Air Force, Department of Orthopedic Surgery, Aerospace Medical Center, Cheongwon-gun, Chungcheongbuk-do (Korea, Republic of); Park, Yong Sung [Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Department of Radiology, Seoul (Korea, Republic of)

    2018-04-15

    To compare the image quality, radiation dose, and diagnostic performance between low-dose (LD) and ultra-low-dose (ULD) lumbar-spine (L-spine) CT with iterative reconstruction (IR) for patients with chronic low back pain (LBP). In total, 260 patients with chronic LBP who underwent L-spine CT between November 2015 and September 2016 were prospectively enrolled. Of these, 143 underwent LD-CT with IR and 117 underwent ULD-CT with IR. The patients were divided according to their body mass index (BMI) into BMI1 (<22.9 kg/m{sup 2}), BMI2 (23.0-24.9 kg/m{sup 2}), and BMI3 (≥25 kg/m{sup 2}) groups. Two blinded radiologists independently evaluated the signal-to-noise ratio (SNR), qualitative image quality, and final diagnoses (lumbar disc disease and facet joint osteoarthritis). L-spine MRIs interpreted by consensus were used as the reference standard. All data were statistically analyzed. ULD protocol showed significantly lower SNR for all patients (p < 0.001) except the vertebral bodies and lower qualitative image quality for BMI3 patients (p ≤ 0.033). There was no statistically significant difference between ULD (sensitivity, 95.1-98.1%; specificity, 92.5-98.7%; accuracy, 94.6-98.0%) and LD protocols (sensitivity, 95.6-100%; specificity, 95.5-98.9%; accuracy, 97.4-98.1%), (all p≥0.1) in the BMI1 and BMI2; while dose was 60-68% lower with the ULD protocol. Interobserver agreements were excellent or good with regard to image quality and final diagnoses. For the BM1 and BMI2 groups, ULD-CT provided an acceptable image quality and exhibited a diagnostic accuracy similar to that of LD-CT. These findings suggest that it is a useful diagnostic tool for patients with chronic LBP who exhibit a BMI of <25 kg/m{sup 2}. (orig.)

  17. Diagnostic accuracy of low-dose versus ultra-low-dose CT for lumbar disc disease and facet joint osteoarthritis in patients with low back pain with MRI correlation

    International Nuclear Information System (INIS)

    Lee, Sun Hwa; Yun, Seong Jong; Jo, Hyeon Hwan; Kim, Dong Hyeon; Song, Jae Gwang; Park, Yong Sung

    2018-01-01

    To compare the image quality, radiation dose, and diagnostic performance between low-dose (LD) and ultra-low-dose (ULD) lumbar-spine (L-spine) CT with iterative reconstruction (IR) for patients with chronic low back pain (LBP). In total, 260 patients with chronic LBP who underwent L-spine CT between November 2015 and September 2016 were prospectively enrolled. Of these, 143 underwent LD-CT with IR and 117 underwent ULD-CT with IR. The patients were divided according to their body mass index (BMI) into BMI1 (<22.9 kg/m 2 ), BMI2 (23.0-24.9 kg/m 2 ), and BMI3 (≥25 kg/m 2 ) groups. Two blinded radiologists independently evaluated the signal-to-noise ratio (SNR), qualitative image quality, and final diagnoses (lumbar disc disease and facet joint osteoarthritis). L-spine MRIs interpreted by consensus were used as the reference standard. All data were statistically analyzed. ULD protocol showed significantly lower SNR for all patients (p < 0.001) except the vertebral bodies and lower qualitative image quality for BMI3 patients (p ≤ 0.033). There was no statistically significant difference between ULD (sensitivity, 95.1-98.1%; specificity, 92.5-98.7%; accuracy, 94.6-98.0%) and LD protocols (sensitivity, 95.6-100%; specificity, 95.5-98.9%; accuracy, 97.4-98.1%), (all p≥0.1) in the BMI1 and BMI2; while dose was 60-68% lower with the ULD protocol. Interobserver agreements were excellent or good with regard to image quality and final diagnoses. For the BM1 and BMI2 groups, ULD-CT provided an acceptable image quality and exhibited a diagnostic accuracy similar to that of LD-CT. These findings suggest that it is a useful diagnostic tool for patients with chronic LBP who exhibit a BMI of <25 kg/m 2 . (orig.)

  18. Cystic Fibrosis: Are Volumetric Ultra-Low-Dose Expiratory CT Scans Sufficient for Monitoring Related Lung Disease?

    DEFF Research Database (Denmark)

    Loeve, Martine; Lequin, Maarten H; Bruijne, Marleen de

    2009-01-01

    Purpose: To assess whether chest computed tomography (CT) scores from ultra-low-dose end-expiratory scans alone could suffice for assessment of all cystic fibrosis (CF)-related structural lung abnormalities. Materials and Methods: In this institutional review board–approved study, 20 patients...... with CF aged 6–20 years (eight males, 12 females) underwent low-dose end-inspiratory CT and ultra-low-dose end-expiratory CT. Informed consent was obtained. Scans were randomized and scored by using the Brody-II CT scoring system to assess bronchiectasis, airway wall thickening, mucus plugging......-Altman plots. Results: Median age was 12.6 years (range, 6.3–20.3 years), median forced expiratory volume in 1 second was 100% (range, 46%–127%) of the predicted value, and median forced vital capacity was 99% (range, 61%–123%) of the predicted value. Very good agreement was observed between end...

  19. On the use of Monte Carlo-derived dosimetric data in the estimation of patient dose from CT examinations

    International Nuclear Information System (INIS)

    Perisinakis, Kostas; Tzedakis, Antonis; Damilakis, John

    2008-01-01

    The purpose of this work was to investigate the applicability and appropriateness of Monte Carlo-derived normalized data to provide accurate estimations of patient dose from computed tomography (CT) exposures. Monte Carlo methodology and mathematical anthropomorphic phantoms were used to simulate standard patient CT examinations of the head, thorax, abdomen, and trunk performed on a multislice CT scanner. Phantoms were generated to simulate the average adult individual and two individuals with different body sizes. Normalized dose values for all radiosensitive organs and normalized effective dose values were calculated for standard axial and spiral CT examinations. Discrepancies in CT dosimetry using Monte Carlo-derived coefficients originating from the use of: (a) Conversion coefficients derived for axial CT exposures, (b) a mathematical anthropomorphic phantom of standard body size to derive conversion coefficients, and (c) data derived for a specific CT scanner to estimate patient dose from CT examinations performed on a different scanner, were separately evaluated. The percentage differences between the normalized organ dose values derived for contiguous axial scans and the corresponding values derived for spiral scans with pitch=1 and the same total scanning length were up to 10%, while the corresponding percentage differences in normalized effective dose values were less than 0.7% for all standard CT examinations. The normalized organ dose values for standard spiral CT examinations with pitch 0.5-1.5 were found to differ from the corresponding values derived for contiguous axial scans divided by the pitch, by less than 14% while the corresponding percentage differences in normalized effective dose values were less than 1% for all standard CT examinations. Normalized effective dose values for the standard contiguous axial CT examinations derived by Monte Carlo simulation were found to considerably decrease with increasing body size of the mathematical phantom

  20. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan [Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States) and Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose

  1. Emphysema quantification on low-dose CT using percentage of low-attenuation volume and size distribution of low-attenuation lung regions: Effects of adaptive iterative dose reduction using 3D processing

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Mizuho, E-mail: nmizuho@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Matsumoto, Sumiaki, E-mail: sumatsu@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Seki, Shinichiro, E-mail: sshin@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Koyama, Hisanobu, E-mail: hkoyama@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Fujisawa, Yasuko, E-mail: yasuko1.fujisawa@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); Sugihara, Naoki, E-mail: naoki.sugihara@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); and others

    2014-12-15

    Highlights: • Emphysema quantification (LAV% and D) was affected by image noise on low-dose CT. • For LAV% and D, AIDR 3D improved agreement of quantification on low-dose CT. • AIDR 3D has the potential to quantify emphysema accurately on low-dose CT. - Abstract: Purpose: To evaluate the effects of adaptive iterative dose reduction using 3D processing (AIDR 3D) for quantification of two measures of emphysema: percentage of low-attenuation volume (LAV%) and size distribution of low-attenuation lung regions. Method and materials: : Fifty-two patients who underwent standard-dose (SDCT) and low-dose CT (LDCT) were included. SDCT without AIDR 3D, LDCT without AIDR 3D, and LDCT with AIDR 3D were used for emphysema quantification. First, LAV% was computed at 10 thresholds from −990 to −900 HU. Next, at the same thresholds, linear regression on a log–log plot was used to compute the power law exponent (D) for the cumulative frequency-size distribution of low-attenuation lung regions. Bland–Altman analysis was used to assess whether AIDR 3D improved agreement between LDCT and SDCT for emphysema quantification of LAV% and D. Results: The mean relative differences in LAV% between LDCT without AIDR 3D and SDCT were 3.73%–88.18% and between LDCT with AIDR 3D and SDCT were −6.61% to 0.406%. The mean relative differences in D between LDCT without AIDR 3D and SDCT were 8.22%–19.11% and between LDCT with AIDR 3D and SDCT were 1.82%–4.79%. AIDR 3D improved agreement between LDCT and SDCT at thresholds from −930 to −990 HU for LAV% and at all thresholds for D. Conclusion: AIDR 3D improved the consistency between LDCT and SDCT for emphysema quantification of LAV% and D.

  2. Radiation dose-reduction strategies in thoracic CT.

    Science.gov (United States)

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. Clinical application of the three-dimensional reconstruction of spiral CT pneumocolon

    International Nuclear Information System (INIS)

    Yu Shenping; Li Ziping; Xu Dasheng; Lin Erjian; Lin Peizhang; Xu Qiaolan

    2000-01-01

    Objective: To evaluate the clinical role of the 3 types of reconstruction of the spiral CT pneumocolon in the diagnosis of colon lesions. Methods: Three types of reconstruction with spiral CT pneumocolon including air cast imaging (ACI), CT virtual endoscopy (CTVE), and multiple planner reconstruction (MPR) in 34 patients with colorectal cancer or polyps were correlated with surgical pathology respectively. Results: Among the 34 patients, 30 was colorectal cancer and 6 was polyps (2 of which in the proximal lumen of 2 colon cancer). (1) Comparison between the 3 types of the spiral CT pneumocolon reconstruction and pathology in colorectal cancer. 1) ACI: tumor patterns: coincide (n =22), anti-coincide (n = 8); tumor extension: coincide (n = 24), anti-coincide (n = 6); tumor size: coincide (n = 28), anti-coincide (n = 2). 2) CTVE: tumor patterns: coincide (n = 26), anti-coincide (n = 4); tumor extension: coincide (n = 25), anti-coincide ( n 5); tumor size: coincide (n = 23), anti-coincide (n = 7). 3) MPR: tumor patterns: coincide (n = 24), anti-coincide (n = 6); tumor extension: coincide (n = 30), anti-coincide (n = 0); tumor size: coincide (n = 26), anti-coincide (n = 4). (2) Comparison between the 3 types of the spiral CT pneumocolon reconstruction and pathology in colorectal polyps: the lesions were displayed in 4 (ACI) and in 6 (CTVE and MPR). Conclusion: (1) For the diagnosis of colorectal cancers: CTVE was the best means to display the tumor patterns, MPR most correct to judge the tumor extension, and ACI most suitable to measure the tumor size. (2) For the diagnosis of colorectal polyps, ACI can be used for oriented diagnosis, CTVE can well display the intra-luminal three-dimensional structure and can be used for characteristic diagnosis, MPR can be used for differential diagnosis

  4. Synchronized control of spiral CT scan for security inspection device

    International Nuclear Information System (INIS)

    Wang Jue; Jiang Zenghui; Wang Fuquan

    2008-01-01

    In security inspection system of spiral CT, the synchronization between removing and rotating, and the scan synchronization between rotating and sampling influence quality of image reconstruction, so it is difficulty and important that how to realize synchronized scan. According to the controlling demand of multi-slice Spiral CT, the method to realize synchronized scan is given. a synchronized control system is designed, in which we use a industrial PC as the control computer, use magnetic grids as position detectors, use alternating current servo motor and roller motor as drivers respectively drive moving axis and rotating axis. This method can solve the problem of synchronized scan, and has a feasibility and value of use. (authors)

  5. Functioning islet cell tumor of the pancreas. Localization with dynamic spiral CT

    International Nuclear Information System (INIS)

    Chung, M.J.; Choi, B.I.; Han, J.K.; Chung, J.W.; Han, M.C.; Bae, S.H.

    1997-01-01

    Purpose: The purpose of this study was to evaluate the usefulness of dynamic spiral CT, including multidimensional reformation, in the detection and localization of islet cell tumors of the pancreas. Material and Methods: Seven patients with histopathologically proven functioning islet cell tumors of the pancreas were studied with 2-phase contrast-enhanced spiral CT. Scanning of the arterial phase and late phase was started 30 s and 180 s, respectively, after injection of 100 ml of contrast medium at a rate of 3 ml/s. Results: Axial images in the arterial phase depicted the lesions in 5 patients, but in the late phase in only one patient. Multiplanar reformatted images of the arterial phase depicted the lesions in all 7 patients. Maximal intensity projection images demonstrated all lesions with information of their relationship to the vascular structure. Conclusion: Dynamic spiral CT with scanning during the arterial phase and retrospective multidimensional reformation is useful for preoperative detection and localization of small islet cell tumors of the pancreas. (orig.)

  6. Clinical utility of coronary CT angiography with low-dose chest CT in the evaluation of patients with atypical chest pain: a preliminary report

    International Nuclear Information System (INIS)

    Lim, Soo Jin; Choo, Ki Seok; Kim, Chang Won

    2008-01-01

    To determine the clinical utility of coronary CT angiography (CCTA) with low-dose chest CT in the evaluation of patients with atypical chest pain. Ninety-six patients (mean age 60.2 years; age range, 41-68 years; 70 males) were referred for CCTA with low-dose chest CT (16-slice MDCT, Siemens) for an evaluation of atypical chest pain. When significant stenoses (lumen diameter reduction > 50%) were detected on CCTA, invasive coronary angiography (CA) was performed as the standard of reference. In all patients, medical chart review or telephone contact with patients was used to evaluate the contribution of CCTA with low-dose chest CT to the final clinical diagnosis, at least 6 months after performing CCTA. Among 96 patients, seven patients (7%) had significant stenoses as detected on CCTA, whereas two patients (2%) had significant stenoses and five patients had insignificant stenoses or no stenosis, as detected on conventional catheter angiography. In 18 (19%) of the 89 patients without significant stenosis detected on CCTA, this protocol provided additional information that suggested or confirmed an alternate clinical diagnosis. In patients with atypical chest pain, CCTA with low-dose chest CT could help to exclude ischemic heart disease and could provide important ancillary information for the final diagnosis

  7. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    International Nuclear Information System (INIS)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J.; Xu, J.

    2010-01-01

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 ± 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  8. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J. [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Xu, J., E-mail: xujianr@hotmail.co [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2010-10-15

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 {+-} 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  9. Value of multi-slice spiral CT MPVR reconstruction in the diagnosis of acute appendicitis

    International Nuclear Information System (INIS)

    Wang Kang; Zhao Zehua; Wang Zhi; Wang Weizhong; Xu Songsen; Zhang Miao; Liu Wenjin; Zhang Guozhen; Feng Dianxu

    2005-01-01

    Objective: To investigate the value of multi-slice spiral CT MPVR reconstruction in the diagnosis of acute appendicitis. Methods: A total of 39 patients with clinically suspected acute appendicitis underwent surgery from February, 2002 to September, 2003. They were prospectively examined before surgery with routine CT scanning and MPVR reconstruction spiral CT. 31 cases of appendicitis were confirmed after appendectomy. CT scans and surgery-pathology reports were evaluated on a five-grade scale from hyperemic-edematous appendix to abscess (normal appendix: 0 grade). Results: The results of spiral CT MPVR reconstruction were compared with the surgical and pathologic findings at appendectomy, yielding an accuracy of 87.2%, sensitivity of 90.3%, specificity of 75%, positive predictive value of 93.3%, and negative predictive value of 66.7%, respectively. Results of routine CT yielded an accuracy of 38.5%, sensitivity of 38.7%, specificity of 37.5%, positive predictive value of 70.6%, and negative predictive value of 13.6%, respectively. MPVR reconstruction signs of 28 patients with acute appendicitis included enlarged appendix ( > 6 mm) (96.4%), appendicoliths (26.7%), caecal apical thickening (36.7%), periappendiceal inflammation (71.4%), and abscess (10.7%). Conclusion: The use of spiral CT MPVR reconstruction in patients with equivocal clinical presentation suspected of having acute appendicitis can lead to a significant improvement in the preoperative diagnosis and maybe a decrease in surgical-pathologic severity of appendiceal disease. (authors)

  10. Smoking habits in the randomised Danish Lung Cancer Screening Trial with low-dose CT

    DEFF Research Database (Denmark)

    Ashraf, Haseem; Saghir, Zaigham; Dirksen, Asger

    2014-01-01

    BACKGROUND: We present the final results of the effect of lung cancer screening with low-dose CT on the smoking habits of participants in a 5-year screening trial. METHODS: The Danish Lung Cancer Screening Trial (DLCST) was a 5-year screening trial that enrolled 4104 subjects; 2052 were randomised...... to annual low-dose CT (CT group) and 2052 received no intervention (control group). Participants were current and ex-smokers (≥4 weeks abstinence from smoking) with a tobacco consumption of ≥20 pack years. Smoking habits were determined annually. Missing values for smoking status at the final screening...... round were handled using two different models. RESULTS: There were no statistically significant differences in annual smoking status between the CT group and control group. Overall the ex-smoker rates (CT + control group) significantly increased from 24% (baseline) to 37% at year 5 of screening (p

  11. CT patterns of fungal pulmonary infections of the lung: Comparison of standard-dose and simulated low-dose CT

    International Nuclear Information System (INIS)

    Christe, Andreas; Lin, Margaret C.; Yen, Andrew C.; Hallett, Rich L.; Roychoudhury, Kingshuk; Schmitzberger, Florian; Fleischmann, Dominik; Leung, Ann N.; Rubin, Geoffry D.; Vock, Peter; Roos, Justus E.

    2012-01-01

    Purpose: To assess the effect of radiation dose reduction on the appearance and visual quantification of specific CT patterns of fungal infection in immuno-compromised patients. Materials and methods: Raw data of thoracic CT scans (64 × 0.75 mm, 120 kVp, 300 reference mAs) from 41 consecutive patients with clinical suspicion of pulmonary fungal infection were collected. In 32 patients fungal infection could be proven (median age of 55.5 years, range 35–83). A total of 267 cuboids showing CT patterns of fungal infection and 27 cubes having no disease were reconstructed at the original and 6 simulated tube currents of 100, 40, 30, 20, 10, and 5 reference mAs. Eight specific fungal CT patterns were analyzed by three radiologists: 76 ground glass opacities, 42 ground glass nodules, 51 mixed, part solid, part ground glass nodules, 36 solid nodules, 5 lobulated nodules, 6 spiculated nodules, 14 cavitary nodules, and 37 foci of air-space disease. The standard of reference was a consensus subjective interpretation by experts whom were not readers in the study. Results: The mean sensitivity and standard deviation for detecting pathological cuboids/disease using standard dose CT was 0.91 ± 0.07. Decreasing dose did not affect sensitivity significantly until the lowest dose level of 5 mAs (0.87 ± 0.10, p = 0.012). Nodular pattern discrimination was impaired below the dose level of 30 reference mAs: specificity for fungal ‘mixed nodules’ decreased significantly at 20, 10 and 5 reference mAs (p < 0.05). At lower dose levels, classification drifted from ‘solid’ to ‘mixed nodule’, although no lesion was missed. Conclusion: Our simulation data suggest that tube current levels can be reduced from 300 to 30 reference mAs without impairing the diagnostic information of specific CT patterns of pulmonary fungal infections

  12. A simple method for estimating the effective dose in dental CT. Conversion factors and calculation for a clinical low-dose protocol

    International Nuclear Information System (INIS)

    Homolka, P.; Kudler, H.; Nowotny, R.; Gahleitner, A.; Wien Univ.

    2001-01-01

    An easily appliable method to estimate effective dose including in its definition the high radio-sensitivity of the salivary glands from dental computed tomography is presented. Effective doses were calculated for a markedly dose reduced dental CT protocol as well as for standard settings. Data are compared with effective doses from the literature obtained with other modalities frequently used in dental care. Methods: Conversion factors based on the weighted Computed Tomography Dose Index were derived from published data to calculate effective dose values for various CT exposure settings. Results: Conversion factors determined can be used for clinically used kVp settings and prefiltrations. With reduced tube current an effective dose for a CT examination of the maxilla of 22 μSv can be achieved, which compares to values typically obtained with panoramic radiography (26 μSv). A CT scan of the mandible, respectively, gives 123 μSv comparable to a full mouth survey with intraoral films (150 μSv). Conclusion: For standard CT scan protocols of the mandible, effective doses exceed 600 μSv. Hence, low dose protocols for dental CT should be considered whenever feasable, especially for paediatric patients. If hard tissue diagnoses is performed, the potential of dose reduction is significant despite the higher image noise levels as readability is still adequate. (orig.) [de

  13. Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure

    International Nuclear Information System (INIS)

    Ang, W C; Hashim, S; Karim, M K A; Bahruddin, N A; Salehhon, N; Musa, Y

    2017-01-01

    The widespread use of computed tomography (CT) has increased the medical radiation exposure and cancer risk. We aimed to evaluate the impact of AIDR 3D in CT abdomen-pelvic examinations based on image quality and radiation dose in low dose (LD) setting compared to standard dose (STD) with filtered back projection (FBP) reconstruction. We retrospectively reviewed the images of 40 patients who underwent CT abdomen-pelvic using a 80 slice CT scanner. Group 1 patients ( n =20, mean age 41 ± 17 years) were performed at LD with AIDR 3D reconstruction and Group 2 patients ( n =20, mean age 52 ± 21 years) were scanned with STD using FBP reconstruction. Objective image noise was assessed by region of interest (ROI) measurements in the liver and aorta as standard deviation (SD) of the attenuation value (Hounsfield Unit, HU) while subjective image quality was evaluated by two radiologists. Statistical analysis was used to compare the scan length, CT dose index volume (CTDI vol ) and image quality of both patient groups. Although both groups have similar mean scan length, the CTDI vol significantly decreased by 38% in LD CT compared to STD CT ( p <0.05). Objective and subjective image quality were statistically improved with AIDR 3D ( p <0.05). In conclusion, AIDR 3D enables significant dose reduction of 38% with superior image quality in LD CT abdomen-pelvis. (paper)

  14. Low dose CT perfusion in acute ischemic stroke

    International Nuclear Information System (INIS)

    Murphy, Amanda; Symons, Sean; Jakubovic, Raphael; Zhang, Liying; Aviv, Richard I.; So, Aaron; Lee, Ting-Yim

    2014-01-01

    The purpose of this investigation is to determine if CT perfusion (CTP) measurements at low doses (LD = 20 or 50 mAs) are similar to those obtained at regular doses (RD = 100 mAs), with and without the addition of adaptive statistical iterative reconstruction (ASIR). A single-center, prospective study was performed in patients with acute ischemic stroke (n = 37; 54 % male; age = 74 ± 15 years). Two CTP scans were performed on each subject: one at 100 mAs (RD) and one at either 50 or 20 mAs (LD). CTP parameters were compared between the RD and LD scans in regions of ischemia, infarction, and normal tissue. Differences were determined using a within-subjects ANOVA (p 0.05). CTP-derived CBF and CBV are not different at 50 mAs compared to 100 mAs, even without the addition of ASIR. Current CTP protocols can be modified to reduce the effective dose by 50 % without altering CTP measurements. (orig.)

  15. Hyaline cartilage thickness in radiographically normal cadaveric hips: comparison of spiral CT arthrographic and macroscopic measurements.

    Science.gov (United States)

    Wyler, Annabelle; Bousson, Valérie; Bergot, Catherine; Polivka, Marc; Leveque, Eric; Vicaut, Eric; Laredo, Jean-Denis

    2007-02-01

    To assess spiral multidetector computed tomographic (CT) arthrography for the depiction of cartilage thickness in hips without cartilage loss, with evaluation of anatomic slices as the reference standard. Permission to perform imaging studies in cadaveric specimens of individuals who had willed their bodies to science was obtained from the institutional review board. Two independent observers measured the femoral and acetabular hyaline cartilage thickness of 12 radiographically normal cadaveric hips (from six women and five men; age range at death, 52-98 years; mean, 76.5 years) on spiral multidetector CT arthrographic reformations and on coronal anatomic slices. Regions of cartilage loss at gross or histologic examination were excluded. CT arthrographic and anatomic measurements in the coronal plane were compared by using Bland-Altman representation and a paired t test. Differences between mean cartilage thicknesses at the points of measurement were tested by means of analysis of variance. Interobserver and intraobserver reproducibilities were determined. At CT arthrography, mean cartilage thickness ranged from 0.32 to 2.53 mm on the femoral head and from 0.95 to 3.13 mm on the acetabulum. Observers underestimated cartilage thickness in the coronal plane by 0.30 mm +/- 0.52 (mean +/- standard error) at CT arthrography (P cartilage thicknesses at the different measurement points was significant for coronal spiral multidetector CT arthrography and anatomic measurement of the femoral head and acetabulum and for sagittal and transverse CT arthrography of the femoral head (P cartilage thickness from the periphery to the center of the joint ("gradients") were found by means of spiral multidetector CT arthrography and anatomic measurement. Spiral multidetector CT arthrography depicts cartilage thickness gradients in radiographically normal cadaveric hips. (c) RSNA, 2007.

  16. Dose-reduced CT with model-based iterative reconstruction in evaluations of hepatic steatosis: How low can we go?

    Energy Technology Data Exchange (ETDEWEB)

    Yasaka, Koichiro, E-mail: koyasaka@gmail.com [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Katsura, Masaki [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Akahane, Masaaki [NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625 (Japan); Sato, Jiro [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Matsuda, Izuru [Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8510 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2014-07-15

    Purpose: To determine whether dose-reduced CT with model-based iterative image reconstruction (MBIR) is a useful tool with which to diagnose hepatic steatosis. Materials and methods: This prospective clinical study approved by our Institutional Review Board included 103 (67 men and 36 women; mean age, 64.3 years) patients who provided written informed consent to undergo unenhanced CT. Images of reference-dose CT (RDCT) with filtered back projection (R-FBP) and low- and ultralow-dose CT (dose-length product; 24 and 9% of that of RDCT) with MBIR (L-MBIR and UL-MBIR) were reconstructed. Mean CT numbers of liver (CT[L]) and spleen (CT[S]), and quotient (CT[L/S]) of CT[L] and CT[S] were calculated from selected regions of interest. Bias and limits of agreement (LOA) of CT[L] and CT[L/S] in L-MBIR and UL-MBIR (vs. R-FBP) were assessed using Bland–Altman analyses. Diagnostic methods for hepatic steatosis of CT[L] < 48 Hounsfield units (HU) and CT[L/S] < 1.1 were applied to L-MBIR and UL-MBIR using R-FBP as the reference standard. Results: Bias was larger for CT[L] in UL-MBIR than in L-MBIR (−3.18 HU vs. −1.73 HU). The LOA of CT[L/S] was larger for UL-MBIR than for L-MBIR (±0.425 vs. ±0.245) and outliers were identified in CT[L/S] of UL-MBIR. Accuracy (0.92–0.95) and the area under the receiver operating characteristics curve (0.976–0.992) were high for each method, but some were slightly lower in UL-MBIR than L-MBIR. Conclusion: Dose-reduced CT reconstructed with MBIR is applicable to diagnose hepatic steatosis, however, a low dose of radiation might be preferable.

  17. Detecting airway remodeling in COPD and emphysema using low-dose CT imaging

    Science.gov (United States)

    Rudyanto, R.; Ceresa, M.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.

    2012-03-01

    In this study, we quantitatively characterize lung airway remodeling caused by smoking-related emphysema and Chronic Obstructive Pulmonary Disease (COPD), in low-dose CT scans. To that end, we established three groups of individuals: subjects with COPD (n=35), subjects with emphysema (n=38) and healthy smokers (n=28). All individuals underwent a low-dose CT scan, and the images were analyzed as described next. First the lung airways were segmented using a fast marching method and labeled according to its generation. Along each airway segment, cross-section images were resampled orthogonal to the airway axis. Next 128 rays were cast from the center of the airway lumen in each crosssection slice. Finally, we used an integral-based method, to measure lumen radius, wall thickness, mean wall percentage and mean peak wall attenuation on every cast ray. Our analysis shows that both the mean global wall thickness and the lumen radius of the airways of both COPD and emphysema groups were significantly different from those of the healthy group. In addition, the wall thickness change starts at the 3rd airway generation in the COPD patients compared with emphysema patients, who display the first significant changes starting in the 2nd generation. In conclusion, it is shown that airway remodeling happens in individuals suffering from either COPD or emphysema, with some local difference between both groups, and that we are able to detect and accurately quantify this process using images of low-dose CT scans.

  18. Intracranial aneurysms: evaluation in 200 patients with spiral CT angiography

    International Nuclear Information System (INIS)

    Young, N.; Kingston, R.J.; Markson, G.; Dorsch, N.W.C.; McMahon, J.

    2001-01-01

    The goal of this study was to assess the usefulness of spiral CT angiography (CTA) with three- dimensional reconstructions in defining intracranial aneurysms, particularly around the Circle of Willis. Two hundred consecutive patients with angiographic and/or surgical correlation were studied between 1993 and 1998, with CTA performed on a GE HiSpeed unit and Windows workstation. The following clinical situations were evaluated: conventional CT suspicion of an aneurysm; follow-up of treated aneurysm remnants or of untreated aneurysms; subarachnoid haemorrhage (SAH) and negative angiography; family or past aneurysm history; and for improved definition of aneurysm anatomy. Spiral CTA detected 140 of 144 aneurysms, and an overall sensitivity of 97%, including 30 of 32 aneurysms 3 mm or less in size. In 38 patients with SAH and negative angiography, CTA found six of the seven aneurysms finally diagnosed. There was no significant artefact in 17 of 23 patients (74%) with clips. The specificity of CTA was 86% with 8 false-positive cases. Spiral CTA is very useful in demonstrating intracranial aneurysms. (orig.)

  19. CT dose reduction in children

    International Nuclear Information System (INIS)

    Vock, Peter

    2005-01-01

    World wide, the number of CT studies in children and the radiation exposure by CT increases. The same energy dose has a greater biological impact in children than in adults, and scan parameters have to be adapted to the smaller diameter of the juvenile body. Based on seven rules, a practical approach to paediatric CT is shown: Justification and patient preparation are important steps before scanning, and they differ from the preparation of adult patients. The subsequent choice of scan parameters aims at obtaining the minimal signal-to-noise ratio and volume coverage needed in a specific medical situation; exposure can be divided in two aspects: the CT dose index determining energy deposition per rotation and the dose-length product (DLP) determining the volume dose. DLP closely parallels the effective dose, the best parameter of the biological impact. Modern scanners offer dose modulation to locally minimise exposure while maintaining image quality. Beyond the selection of the physical parameters, the dose can be kept low by scanning the minimal length of the body and by avoiding any non-qualified repeated scanning of parts of the body. Following these rules, paediatric CT examinations of good quality can be obtained at a reasonable cost of radiation exposure. (orig.)

  20. Quantitative assessment of pulmonary function using low dose multi-slice spiral CT in smoker

    International Nuclear Information System (INIS)

    Chen Huai; Zeng Qingsi; Zheng Jinping; Guan Yubao; Zhang Chaoliang; Cen Renli

    2012-01-01

    Objective: To evaluate the clinical feasibility of low dose MSCT for quantitative assessment of pulmonary function in smokers. Methods: One hundred and forty-six patients with chronic objective pulmonary disease (COPD) including 109 smokers (74.6%) and 37 non-smokers (25.3%) underwent pulmonary function test and low-dose MSCT scan. All data were analyzed using computer-aided lung analysis software. Pulmonary function parameters from low-dose MSCT were compared between smokers and non-smokers and also compared with pulmonary function test in non-smokers (Pearson test). Results: In smokers, the average volume at full inspiratory phase (Vin) was (5125 ± 862 ) ml, mean lung attenuation was (-902 ± 26) HU, mean lung density was (0.0984 ± 0.0260 ) g/cm 3 , emphysema volume was (2890 ±1370) ml. The average volume at full expiratory phase (Vex) was (2756 ±1027) ml, mean lung attenuation was (-811 ±62) HU, mean lung density was (0.1878 ±0.0631) g/cm 3 , emphysema volume was (685 ±104) ml. In non-smokers, the average Vin was (3734 ± 759) ml, mean lung attenuation was (-876 ±40) HU,mean lung density was (0.1244 ±0.0401)g/cm 3 , emphysema volume was ( 1503 ± 1217) ml. The average Vex was (1770 ± 679) ml, mean lung attenuation was (-765 ± 56) HU, mean lung density was (0.2360 ± 0.0563) g/cm 3 , emphysema volume was (156 ± 45) ml. There were significant differences between smokers and non-smokers (P<0.01). The Vex/Vin was correlated with residual volume/total lung capacity (RV/TLC, r=0.60, P<0.01), and Vin was correlated with TLC (r=0.58, P<0.01), Vex with RV (r=0.59, P<0.01). Pixel index (PI) -950 in was correlated with FEV 1% pre and FEV1/FVC% (r=-0.53, -0.62, respective, P<0.01), Pl-950ex was correlated with FEV1 % pre and FEV1/FVC% (r=-0.71, -0.77, respective, P<0.01). Conclusion: Low-dose MSCT can be a potential imaging tool for quantitative pulmonary function assessment in smokes. (authors)

  1. The evaluation of radioprotection with low dose CT scanning in normal rabbits brain

    International Nuclear Information System (INIS)

    Zhang Shuqing; Gong Shenchu; Wang Tianle; Shen Yunxia; Cui Lei

    2008-01-01

    Objective: To determine wheather a lower radiation dose technique and various pitch could be used in CT of the rabbits' brain without jeopardizing the diagnostic accuracy of the images, and determine the evaluation of radioprotection with low dose CT scanning. Methods: Fifteen rabbits underwent CT using 200 mAs, 110 mAs or 70 mAs,and pitch 1.0 or 1.5. Anatomy details and the confidence level in reaching a diagnosis were evaluated by two radiologists in a double-blinded manner using a 4-point scoring system. The CTDI w of every group were compared. Results: For both reader there was no statistically significant difference between 6 group total score of 1-6 anatomical detail and each of 6 anatomical detail although score for each of 6 anatomical detail. The CTDI w of 70 mAs, in pitch 1.5 group decreased about 76.7%. Conclusion: Radiation dose reduction in brain CT is feasible in clinical use, and quality of images can be re- served. It plays an important role in radiation protection. (authors)

  2. Low-dose CT pulmonary angiography on a 15-year-old CT scanner: a feasibility study

    Directory of Open Access Journals (Sweden)

    Moritz Kaup

    2016-12-01

    Full Text Available Background Computed tomography (CT low-dose (LD imaging is used to lower radiation exposure, especially in vascular imaging; in current literature, this is mostly on latest generation high-end CT systems. Purpose To evaluate the effects of reduced tube current on objective and subjective image quality of a 15-year-old 16-slice CT system for pulmonary angiography (CTPA. Material and Methods CTPA scans from 60 prospectively randomized patients (28 men, 32 women were examined in this study on a 15-year-old 16-slice CT scanner system. Standard CT (SD settings were 100 kV and 150 mAs, LD settings were 100 kV and 50 mAs. Attenuation of the pulmonary trunk, various anatomic landmarks, and image noise were quantitatively measured; contrast-to-noise ratios (CNR and signal-to-noise ratios (SNR were calculated. Three independent blinded radiologists subjectively rated each image series using a 5-point grading scale. Results CT dose index (CTDI in the LD series was 66.46% lower compared to the SD settings (2.49 ± 0.55 mGy versus 7.42 ± 1.17 mGy. Attenuation of the pulmonary trunk showed similar results for both series (SD 409.55 ± 91.04 HU; LD 380.43 HU ± 93.11 HU; P = 0.768. Subjective image analysis showed no significant differences between SD and LD settings regarding the suitability for detection of central and peripheral PE (central SD/LD, 4.88; intra-class correlation coefficients [ICC], 0.894/4.83; ICC, 0.745; peripheral SD/LD, 4.70; ICC, 0.943/4.57; ICC, 0.919; all P > 0.4. Conclusion The LD protocol, on a 15-year-old CT scanner system without current high-end hardware or post-processing tools, led to a dose reduction of approximately 67% with similar subjective image quality and delineation of central and peripheral pulmonary arteries.

  3. Usefulness of low dose oral contrast media in FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    An, Y. S.; Yun, J. G.; Lee, M. H.; Cho, C. W.; Yun, S. N [Ajou University Medical Center, Suwon (Korea, Republic of)

    2004-07-01

    Oral contrast media might help in interpreting PET/CT images, allowing better discrimination between physiologic and pathologic abdominal uptake. The aim of this study was to evaluate the usefulness of low dose oral contrast on FDG PET/CT. A total of 435 cancer patients received 200mL of oral Barium with water(200mL) immediately before FDG injection. PET images were reconstructed using attenuation correction and iterative reconstruction. The FDG uptake in gastrointestinal(GI) tract were analyzed by visual and semiquantitative method in transaxial, coronal and sagittal planes. Seventy patients(16%, 113 sites) of 435 images showed high FDG uptake(pSUV>4.0) : 50(74%, 84 sites) with diffuse uptake and 20(26%, 29sites) with focal uptake. The most common distribution site of oral contrast media was small bowel (n=27, 39%) and others were small bowel with transverse colon(n=6, 8%), small bowel with ascending and sigmoid colon(n=6, 8%) and etc. In PET/CT images, FDG uptake coexisted with oral contrast was showed in 26 patients(54%) with diffuse pattern and 9(45%) with focal pattern, and by sites, those were 38(45%) and 9(31%), respectively. In small bowel regions, the most common distribution site, the proportion of coexistence reached as high as 61% (29 in the total 47 sites). Application of low dose contrast agent can be helpful in the evaluation of intestinal uptake in FDG PET/CT image.

  4. Usefulness of low dose oral contrast media in FDG PET/CT

    International Nuclear Information System (INIS)

    An, Y. S.; Yun, J. G.; Lee, M. H.; Cho, C. W.; Yun, S. N

    2004-01-01

    Oral contrast media might help in interpreting PET/CT images, allowing better discrimination between physiologic and pathologic abdominal uptake. The aim of this study was to evaluate the usefulness of low dose oral contrast on FDG PET/CT. A total of 435 cancer patients received 200mL of oral Barium with water(200mL) immediately before FDG injection. PET images were reconstructed using attenuation correction and iterative reconstruction. The FDG uptake in gastrointestinal(GI) tract were analyzed by visual and semiquantitative method in transaxial, coronal and sagittal planes. Seventy patients(16%, 113 sites) of 435 images showed high FDG uptake(pSUV>4.0) : 50(74%, 84 sites) with diffuse uptake and 20(26%, 29sites) with focal uptake. The most common distribution site of oral contrast media was small bowel (n=27, 39%) and others were small bowel with transverse colon(n=6, 8%), small bowel with ascending and sigmoid colon(n=6, 8%) and etc. In PET/CT images, FDG uptake coexisted with oral contrast was showed in 26 patients(54%) with diffuse pattern and 9(45%) with focal pattern, and by sites, those were 38(45%) and 9(31%), respectively. In small bowel regions, the most common distribution site, the proportion of coexistence reached as high as 61% (29 in the total 47 sites). Application of low dose contrast agent can be helpful in the evaluation of intestinal uptake in FDG PET/CT image

  5. Algorithm of pulmonary emphysema extraction using low dose thoracic 3D CT images

    Science.gov (United States)

    Saita, S.; Kubo, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Omatsu, H.; Tominaga, K.; Eguchi, K.; Moriyama, N.

    2006-03-01

    Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to 100 thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.

  6. Efficacy of spiral CT in the evaluation of peritoneal seeding of gastric cancer

    International Nuclear Information System (INIS)

    Choi, Hyuck Jae; Han, Joon Koo; Kim, Tae Kyoung; Kim, Ah Young; Lee, Joon Woo; Moon, Min Hoan; Yang, Han Kwang; Choi, Byung Ihn

    2001-01-01

    To determine usefulness of spiral CT in the preoperative evaluation of peritoneal seeding from a gastric carcinoma. From a database of 411 consecutive patients with surgically proven advanced gastric cancinoma obtained over a six-month period, 17 with peritoneal seeding and a control group of 24 without peritoneal seeding underwent spiral CT scanning with 7-8 mm scan thickness and interval during the portal phase. Preoperative CT images were analyzed by two readers who reached a consensus with regard to the presence and location of the ascites, thickening of the parietal peritoneum, and changes in the omentum and mesentery. Ascites was present in 47% (8/17) of patients with peritoneal seeding the right subhepatic space (n=6, 35%) and right paracolic gutter (n=5, 29%)-but not the cul-de-sac (n=2, 12%)-were common sites of fluid collection. Permeative changes in the omentum and mesentery were seen in 18% (3/17) and 12% (2/17) of patients, respectively. Among five controls with false positive results, ascites in the cul-de-sac was present in three (two males and one female, 12%) while omental nodules and a thickened peritoneum were found in two (8%) and one (4%), respectively. In nine controls with false negative results, small disseminated nodules were seen in the mesentery and omentum at surgical field. The sensitivity and specificity of spiral CT were 47% (8/17) and 79% (19/24), respectively. In terms of sensitivity and specificity, spiral CT is not especially accurate in distinguishing peritoneal seeding from gastric carcinoma

  7. Helical CT for lung-cancer screening. 3. Fundamental study for ultra-low-dose CT by application of small tube current and filter

    International Nuclear Information System (INIS)

    Itoh, Shigeki; Koyama, Shuji; Tusaka, Masatoshi; Maekoshi, Hisashi; Satake, Hiroko; Ishigaki, Takeo.

    1996-01-01

    In order to develop ultra-low-dose helical CT for lung cancer screening, the effect of reduction of the tube current to 20 mA and application of a 10 mm thick aluminium filter upon radiation dose and image quality was evaluated with a phantom. Exposure dose at the center of a gantry and absorbed dose at the center of an acrylic phantom at 20 mA with the filter were 15% and 29% of the dose at 50 mA without the filter, respectively. For reduction of absorbed dose, reduction of the tube current was more useful than application of the filter. Image noise at 20 mA with the filter was double that at 50 mA without the filter. Neither reduction of the tube current nor application of the filter changed full width at half maximum on section sensitivity of the Z-axis. Although reduction of the tube current did not affect the difference in CT values between an acrylic sphere and styroform, application of the filter caused a reduction of 4.5% in the difference in CT values. Neither reduction of the tube current nor application of the filter affected the contrast resolution of the high-contrast phantom; however, that of the low-contrast phantom deteriorated. Although improvement of the filter and evaluation of clinical images are necessary, reduction of the tube current to 20 mA and application of the aluminium filter appear to be a promising method for ultra-low-dose helical CT of the lung. (author)

  8. Thin-section CT vs spiral CT in candidates for lung volume reduction surgery: a comparison based on radiologists' subjective preferences

    International Nuclear Information System (INIS)

    Cederlund, K.; Hoegberg, S.; Rasmussen, E.; Svane, B.; Bergstrand, L.

    2001-01-01

    The aim of this study was to investigate whether high-resolution (HRCT) or spiral CT was preferred in evaluating severe emphysema in patients undergoing lung volume reduction surgery (LVRS), whether there is any difference in this regard between the cranial and caudal part of the lung, and whether the degree of emphysema has an impact on the radiologists' preference. The study was performed by letting four radiologists compare images obtained with the two techniques (film pairs) and decide which technique they preferred or if the techniques were considered as equal in evaluating emphysema. In evaluation of 188 film pairs, the HRCT images were preferred in 56 %, spiral CT in 19 % and the techniques considered as equal in 25 %. Spiral CT images were preferred more often in the caudal part of the lung and in more advanced emphysema compared with the HRCT images. The study confirms our clinical assumption that use of both CT techniques are valuable in evaluating advanced emphysema and there may be technical as well as histopathological reasons for this. (orig.)

  9. Malignant focal hepatic lesions complicating underlying liver disease: dual-phase contrast-enhanced spiral CT sensitivity and specificity in orthotopic liver transplant patients

    International Nuclear Information System (INIS)

    Mortele, K.J.; De Keukeleire, K.; Praet, M.; Van Vlierberghe, H.; Hemptinne, B. de; Ros, P.R.

    2001-01-01

    The aim of this study was to determine the accuracy of contrast-enhanced biphasic spiral CT as a screening tool in the preoperative evaluation of orthotopic liver transplant (OLT) patients. Spiral-CT examinations were performed before liver transplantation in 53 patients. Scans were retrospectively reviewed and compared with pathologic findings in fresh-sectioned livers. When findings between spiral CT and pathology were discordant, formalized livers were reexamined with lesion-by lesion evaluation. Fresh pathologic evaluation revealed 23 liver lesions (16 HCC, 7 macro-regenerative nodules). Malignancy was identified in 13 of 53 patients (24.5%). Pre-transplantation spiral CT depicted 27 liver lesions (23 HCC, 4 macro-regenerative nodules). Malignancy was suspected in 14 patients (26.4%). In 10 of 53 (18.9%), spiral CT and pathologic evaluation were discordant. Subsequent retrospective pathologic evaluation showed malignancy in 4 additional patients. Spiral CT compared with the retrospective pathologic findings revealed 36 real-negative, 14 real-positive, 0 false-positive, and 3 false-negative patients with malignancy. Sensitivity and specificity of spiral CT in detection of malignancy was 82 and 100%, respectively. Contrast-enhanced biphasic spiral CT is an accurate technique in the evaluation of patients preceding OLT. Routine fresh-sectioned liver pathologic findings are not as sensitive as previously estimated. (orig.)

  10. The potentials of spiral CT for detection of focal liver lesions

    International Nuclear Information System (INIS)

    Helmberger, H.; Kersting-Sommerhoff, B.; Lenz, M.; Kirsten, R.; Bautz, W.

    1996-01-01

    Spiral CT currently is the modality of choice for all aspects of diagnostic evaluation of the liver. Optimal selection of treatment should be based inter alia on the findings obtained by spiral CT with arterial application of contrast medium, as for example S-CTA (primary liver tumors), or S-CTAP (secondary liver tumors). Ultrasonography is the major supplementing modality. In the near future, MR imaging applying liver-specific contrast-enhancing agents is expected to become an important competing technique, and further developments of interest in diagnostic imaging of the liver are in the offing: it is not yet known which technique will be the modality of choice at the onset of the 21st century. (orig.) [de

  11. Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Ming; Chu, Sung-Yu; Hsu, Ming-Yi [Chang Gung University, Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital Linkou, College of Medicine, Taoyuan (China); Liao, Ying-Lan [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Tsai, Hui-Yu [Chang Gung University, Department of Medical Imaging and Radiological Sciences, College of Medicine, Taoyuan (China); Chang Gung University, Healthy Aging Research Center, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan (China)

    2014-02-15

    To evaluate CT aortography at reduced tube voltage and contrast medium dose while maintaining image quality through iterative reconstruction (IR). The Institutional Review Board approved a prospective study of 48 patients who underwent follow-up CT aortography. We performed intra-individual comparisons of arterial phase images using 120 kVp (standard tube voltage) and 80 kVp (low tube voltage). Low-tube-voltage imaging was performed on a 320-detector CT with IR following injection of 40 ml of contrast medium. We assessed aortic attenuation, aortic attenuation gradient, image noise, contrast-to-noise ratio (CNR), volume CT dose index (CTDI{sub vol}), and figure of merit (FOM) of image noise and CNR. Two readers assessed images for diagnostic quality, image noise, and artefacts. The low-tube-voltage protocol showed 23-31 % higher mean aortic attenuation and image noise (both P < 0.01) than the standard-tube-voltage protocol, but no significant difference in the CNR and aortic attenuation gradients. The low-tube-voltage protocol showed a 48 % reduction in CTDI{sub vol} and an 80 % increase in FOM of CNR. Subjective diagnostic quality was similar for both protocols, but low-tube-voltage images showed greater image noise (P = 0.01). Application of IR to an 80-kVp CT aortography protocol allows radiation dose and contrast medium reduction without affecting image quality. (orig.)

  12. Parotid-Absorbed Doses: A Comparison Between Spiral Tomography and Panoramic

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2016-07-01

    Full Text Available Background Jaws spiral tomography and panoramic radiography have wide applications in dentistry, and the parotid gland is one of the most sensitive organs of the head and neck. Objectives The aim of this study was to evaluate and compare the parotid-absorbed dose in spiral tomography and panoramic radiographs using a thermoluminescent dosimeter. Materials and Methods A radiation analog dosimetry phantom was placed in a Cranex Tome radiograph device, and a parotid absorbed dose was measured in both techniques. Thermoluminescent dosimeters were placed bilaterally in the parotid region (on the tube side and the opposite side. Spiral tomography dosimetry was done for the upper and lower jaws in the anterior and posterior regions. Each region contained four slices of 2 mm and four slices of 4 mm in thickness. The results were analyzed by a Wilcoxon test. Results For the tube side parotid, the average absorbed doses in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.70/1.40 and 1.65/1.60 mGy, respectively. The average absorbed doses with the 4mm slices were 1.65/1.70 and 1.75/1.57 mGy, respectively. For the opposite parotid, the average absorbed dose in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.40/1.30 and 1.40/1.67 mGy, respectively. The average absorbed doses with the 4mm slices were 1.50/1.66 and 1.40/1.50 mGy, respectively. The average absorbed dose of the panoramic radiograph was 1.40 mGy. Conclusions There was no statistically significant difference in the parotid absorbed dose between spiral tomography and a panoramic radiograph (P value = 0.18. The overall results of this study were similar to other studies.

  13. Pulmonary sequestration: diagnosis with three dimensional reconstruction using spiral CT

    International Nuclear Information System (INIS)

    Nie Yongkang; Zhao Shaohong; Cai Zulong; Yang Li; Zhao Hong; Zhang Ailian; Huang Hui

    2003-01-01

    Objective: To evaluate the role of three dimensional (3D) reconstruction using spiral CT in the diagnosis of pulmonary sequestration. Methods: Ten patients with pulmonary sequestration were analyzed. The diagnoses were confirmed by angiography in 2 patients, by operation in 2 patients, and by CT angiography in 6 patients. All patients were examined with Philips SR 7000 or GE Lightspeed Plus scanner. CT images were transferred to a workstation and 3D reconstruction was performed. All images were reviewed and analyzed by two radiologists. Results: Among 10 patients, the pulmonary sequestration was in the right lower lobe in 1 patient and in the left lower lobe in 9 patients. Anomalous systemic arteries originated from thoracic aorta in 8 patients and from celiac artery in 2 patients. On plain CT scan, there were 4 patients with patchy opacities, 3 patients with hilar mass accompanying vascular engorgement and profusion in adjacent parenchyma, 2 patients with finger-like appendage surrounded by hyper-inflated lung, and 1 patient with lung mass-like lesion. Enhanced CT revealed anomalous systemic arteries in 9 patients and drainage vein in 7 patients. Maximum intensity projection (MIP) and curvilinear reconstruction could depict the abnormal systemic artery and drainage vein in sequestration. Surface shadow display (SSD) and volume rendering (VR) could delineate the anomalous systemic artery. Conclusion: 3D reconstruction with enhanced spiral CT can depict anomalous systemic artery and drainage vein and it is the first method of choice in diagnosing pulmonary sequestration

  14. Fuzzy-neural network in the automatic detection and volumetry of the spleen on spiral CT scans

    International Nuclear Information System (INIS)

    Heitmann, K.R.; Mainz Univ.; Rueckert, S.; Heussel, C.P.; Thelen, M.; Kauczor, H.U.; Uthmann, T.

    2000-01-01

    Purpose: To assess spleen segmentation and volumetry in spiral CT scans with and without pathological changes of splenic tissue. Methods: The image analysis software HYBRIKON is based on region growing, self-organized neural nets, and fuzzy-anatomic rules. The neural nets were trained with spiral CT data from 10 patients, not used in the following evaluation on spiral CT scans from 19 patients. An experienced radiologist verified the results. The true positive and false positive areas were compared in terms to the areas marked by the radiologist. The results were compared with a standard thresholding method. Results: The neural nets achieved a higher accuracy than the thresholding method. Correlation coefficient of the fuzzy-neural nets: 0.99 (thresholding: 0.63). Mean true positive rate: 90% (thresholding: 75%), mean false positive rate: 5% (thresholding>100%). Pitfalls were caused by accessory spleens, extreme changes in the morphology (tumors, metastases, cysts), and parasplenic masses. Conclusions: Self-organizing neural nets combined with fuzzy rules are ready for use in the automatic detection and volumetry of the spleen in spiral CT scans. (orig.) [de

  15. Comparison of spiral CT angiography with conventional digital subtraction angiography in the evaluation of renal transplant donors: a pilot study

    International Nuclear Information System (INIS)

    Chu, C.; Young, N.; Lau, H.

    2001-01-01

    Conventional digital subtraction renal arteriography (IA-DSA) has been traditionally used as the preoperative imaging modality for assessment of renal vascular anatomy for renal transplant donors. This study evaluates the potential use of spiral CT angiography in replacing IA-DSA in the preoperative assessment of this group of patients. Seven patients underwent both spiral CT angiography and IA-DSA between October 1997 and April 1998. It is concluded that spiral CT angiography can demonstrate the number, length and location of renal arteries and it is suggested that spiral CT angiography can potentially replace IA-DSA in the preoperative assessment of renal donors. Copyright (2001) Blackwell Science Pty Ltd

  16. Pitfalls in the use of spiral CT for identification of intracranial aneurysms

    International Nuclear Information System (INIS)

    Young, N.; Kingston, R.J.; Dorsch, N.W.C.

    1999-01-01

    We describe problems encountered in our first 136 patients, with 95 aneurysms, who underwent spiral CT for investigation of possible aneurysms involving the circle of Willis and adjacent major vessels, and who had surgical and/or angiographic confirmation. There were seven false-positive cases, of which the first three could be explained by operator inexperience. There were four false negatives, all small aneurysms; two were not seen because of operator error and two were hidden by an adjacent larger aneurysm. Clip artefacts prevented diagnostic studies in six of 21 postoperative studies. One aneurysm was outside the CT field of view, being on a pericallosal artery. One basilar artery tip aneurysm was excluded from the field of the CT study because of a planning error. Inspection of the axial source images is critical if the diagnosis of small or thrombosed aneurysms is to be made. Close attention to image acquisition and computer modelling is required to reduce errors in spiral CT angiography of intracranial aneurysms. (orig.)

  17. The findings and the role of axial CT imaging and 3D imaging of gastric lesion by spiral CT

    International Nuclear Information System (INIS)

    Lee, Dong Ho; Ko, Young Tae

    1996-01-01

    The purpose of this study is to assess the efficacy of axial CT imaging and 3D imaging by spiral CT in the detection and evaluation of gastric lesion. Seventy-seven patients with pathologically-proven gastric lesions underwent axial CT and 3D imaging by spiral CT. There were 49 cases of advanced gastric carcinoma(AGC), 21 of early gastric carcinoma (EGC), three of benign ulcers, three of leiomyomas, and one case of lymphoma. Spiral CT was performed with 3-mm collimation, 4.5mm/sec table feed, and 1-1.5-mm reconstruction interval after the ingestion of gas. 3D imaging was obtained using the SSD technique, and on analysis a grade was given(excellent, good, poor). Axial CT scan was performed with 5-mm collimation, 7mm/sec table feed, and 5-mm reconstruction interval after the ingestion of water. Among 49 cases of AGC, excellent 3D images were obtained in seven patients (14.3%), good 3D images in 30(61.2%), and poor 3D images in 12(24.5%). Among the 12 patients with poor images, the cancers were located at the pyloric antrum in eight cases, were AGC Borrmann type 4 in three cases, and EGC-mimicking lesion in one case. Using axial CT scan alone, Borrmann's classification based tumor morphology were accurately identified in 67.3% of cases, but using 3D imaging, the corresponding figure was 85.7%. In 33 cases receiving surgery, good correlation between axial CT scan and pathology occurred in 72.7% of T class, and 69.7% of N class. Among 21 cases of EGC, excellent 3D images were obtained in three patients (14.3%), good 3D images in 14 (66.7%), and poor 3D images in two (9.5%). The other two cases of EGC were not detected. By axial CT scan, no tumor was detected in four cases, and there were two doubtful cases. 3D images of three benign ulcers were excellent in one case and good in two. 3D images of three leiomyomas and one lymphoma were excellent. Combined axial CT imaging and 3D imaging by spiral CT has the potential to accurately diagnose gastric lesions other than AGC

  18. Wedge-shaped parenchymal enhancement peripheral to the hepatic hemangioma : two-phase spiral CT findings

    International Nuclear Information System (INIS)

    Kim, Kyoung Won; Kim, Tae Kyoung; Han, Joon Koo; Kim, Ah Young; Lee, Hyun Ju; Song, Chi Sung; Choi, Byung Ihn

    2000-01-01

    To determine the incidence of hepatic hemangiomas associated with wedge-shaped parenchymal enhancements adjacent to the tumors as seen on two-phase spiral CT images obtained during the hepatic arterial phase and to characterize the two-phase spiral CT findings of those hemangiomas. One hundred and eight consecutive hepatic hemangiomas in 63 patients who underwent two-phase spiral CT scanning during an 11-month period were included in this study. Two-phase spiral CT scans were obtained during the hepatic arterial phase (30-second delay) and portal venous phase (65-second delay) after injection of 120 mL of contrast material at a rate of 3 mL/sec. We evaluated the frequency with which wedge-shaped parenchymal enhancement was adjacent to the hemangiomas during the hepatic arterial phase and divided hemangiomas into two groups according to whether or not wedge-shaped parenchymal enhancement was noted (Group A and Group B). The presence of such enhancement in hemangiomas was correlated with tumor size and the grade of intratumoral enhancement. In 24 of 108 hemangiomas, wedge-shaped parenchymal enhancement adjacent to hepatic tumors was seen on two-phase CT images obtained during the hepatic arterial phase. Mean hemangioma size was 22mm in group A and 24mm in group B. There was no statistically significant relationship between lesion size and the presence of wedge-shaped parenchymal enhancement adjacent to a hemangioma. In 91.7% and 100% of tumors in Group A, and in 9.6% and 17.8% in Group B, hemangiomas showed more than 50% intratumoral enhancement during the arterial and portal venous phase, respectively. Wedge-shaped parenchymal enhancements peripheral to hepatic hemangiomas was more frequently found in tumors showing more than 50% intratumoral enhancement during these two phases (p less than 0.01). Wedge-shaped parenchymal enhancements is not uncommonly seen adjacent to hepatic hemangiomas on two-phase spiral CT images obtained during the hepatic arterial phase. A

  19. Thin-section CT vs spiral CT in candidates for lung volume reduction surgery: a comparison based on radiologists' subjective preferences

    Energy Technology Data Exchange (ETDEWEB)

    Cederlund, K.; Hoegberg, S.; Rasmussen, E.; Svane, B. [Dept. of Thoracic Radiology, Karolinska Hospital, Stockholm (Sweden); Bergstrand, L. [Dept. of Radiology, Danderyds Hospital (Sweden)

    2001-03-01

    The aim of this study was to investigate whether high-resolution (HRCT) or spiral CT was preferred in evaluating severe emphysema in patients undergoing lung volume reduction surgery (LVRS), whether there is any difference in this regard between the cranial and caudal part of the lung, and whether the degree of emphysema has an impact on the radiologists' preference. The study was performed by letting four radiologists compare images obtained with the two techniques (film pairs) and decide which technique they preferred or if the techniques were considered as equal in evaluating emphysema. In evaluation of 188 film pairs, the HRCT images were preferred in 56 %, spiral CT in 19 % and the techniques considered as equal in 25 %. Spiral CT images were preferred more often in the caudal part of the lung and in more advanced emphysema compared with the HRCT images. The study confirms our clinical assumption that use of both CT techniques are valuable in evaluating advanced emphysema and there may be technical as well as histopathological reasons for this. (orig.)

  20. The optimal parameter for radiation dose in pediatric low dose abdominal CT: cross-sectional dimensions versus body weight

    International Nuclear Information System (INIS)

    Jung, Yoon Young; Goo, Hyun Woo

    2008-01-01

    To investigate the best parameter between cross-sectional dimensions and body weight in pediatric low dose abdominal CT. One hundred and thirty six children consecutively underwent weight-based abdominal CT. The subjects consisted of group 1 (79 children, weight range 10.0-19.9 kg) and group 2 (57 children, weight range 20.0-39.9 kg). Abdominal cross-sectional dimensions including circumference, area, anteroposterior diameters and transverse diameters were calculated. Image noise (standard deviation of CT density) was measured by placing a region of interest in the posterior segment of the right hepatic lobe on a CT image at the celiac axis. The measured image noise was correlated with the cross-sectional abdominal dimensions and body weight for subjects in each group. In group 1 subjects,area, circumference, transverse diameter, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order(γ = 0.63, 0.62, 0.61, 0.51, and 0.49; ρ < 0.0001). In group 2 subjects, transverse diameter, circumference, area, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order (γ = 0.83, 0.82, 0.78, 0.71, and 0.71; ρ < 0.0001). Cross-sectional dimensions such as area, circumference, and transverse diameter showed a higher positive correlation with image noise than body weight for pediatric low dose abdominal CT

  1. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  2. Low-dose megavoltage cone-beam CT for radiation therapy

    International Nuclear Information System (INIS)

    Pouliot, Jean; Bani-Hashemi, Ali; Chen, Josephine; Svatos, Michelle; Ghelmansarai, Farhad; Mitschke, Matthias; Aubin, Michele; Xia Ping; Morin, Olivier; Bucci, Kara; Roach, Mack; Hernandez, Paco; Zheng Zirao; Hristov, Dimitre; Verhey, Lynn

    2005-01-01

    Purpose: The objective of this work was to demonstrate the feasibility of acquiring low-exposure megavoltage cone-beam CT (MV CBCT) three-dimensional (3D) image data of sufficient quality to register the CBCT images to kilovoltage planning CT images for patient alignment and dose verification purposes. Methods and materials: A standard clinical 6-MV Primus linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) flat-panel electronic portal-imaging device (EPID) were employed. The dose-pulse rate of a 6-MV Primus accelerator beam was windowed to expose an a-Si flat panel by using only 0.02 to 0.08 monitor units (MUs) per image. A triggered image-acquisition mode was designed to produce a high signal-to-noise ratio without pulsing artifacts. Several data sets were acquired for an anthropomorphic head phantom and frozen sheep and pig cadaver heads, as well as for a head-and-neck cancer patient on intensity-modulated radiotherapy (IMRT). For each CBCT image, a set of 90 to 180 projection images incremented by 1 deg to 2 deg was acquired. The two-dimensional (2D) projection images were then synthesized into a 3D image by use of cone-beam CT reconstruction. The resulting MV CBCT image set was used to visualize the 3D bony anatomy and some soft-tissue details. The 3D image registration with the kV planning CT was performed either automatically by application of a maximization of mutual information (MMI) algorithm or manually by aligning multiple 2D slices. Results: Low-noise 3D MV CBCT images without pulsing artifacts were acquired with a total delivered dose that ranged from 5 to 15 cGy. Acquisition times, including image readout, were on the order of 90 seconds for 180 projection images taken through a continuous gantry rotation of 180 deg . The processing time of the data required an additional 90 seconds for the reconstruction of a 256 3 cube with 1.0-mm voxel size. Implanted gold markers (1 mm x 3 mm) were easily visible for all exposure

  3. Peripheral pulmonary arteries: identification at multi-slice spiral CT with 3D reconstruction

    International Nuclear Information System (INIS)

    Coche, Emmanuel; Pawlak, Sebastien; Dechambre, Stephane; Maldague, Baudouin

    2003-01-01

    Our objective was to analyze the peripheral pulmonary arteries using thin-collimation multi-slice spiral CT. Twenty consecutive patients underwent enhanced-spiral multi-slice CT using 1-mm collimation. Two observers analyzed the pulmonary arteries by consensus on a workstation. Each artery was identified on axial and 3D shaded-surface display reconstruction images. Each subsegmental artery was measured at a mediastinal window setting and compared with anatomical classifications. The location and branching of every subsegmental artery was recorded. The number of well-visualized sub-subsegmental arteries at a mediastinal window setting was compared with those visualized at a lung window setting. Of 800 subsegmental arteries, 769 (96%) were correctly visualized and 123 accessory subsegmental arteries were identified using the mediastinal window setting. One thousand ninety-two of 2019 sub-subsegmental arteries (54%) identified using the lung window setting were correctly visualized using the mediastinal window setting. Enhanced multi-slice spiral CT with thin collimation can be used to analyze precisely the subsegmental pulmonary arteries and may identify even more distal pulmonary arteries. (orig.)

  4. Recurrent pyogenic cholangitis: clinico-pathologic correlation of focal attenuation differences on multi-phasic spiral CT

    International Nuclear Information System (INIS)

    Jeong, Jun Yong; Han, Joon Koo; Kim, Tae Kyoung; Kim, Seog Joon; Kim, Hyun Bum; Choi, Byung Ihn

    2002-01-01

    To determine the clinical and the pathologic significance of the focal attenuation differences (FAD) and bile duct wall enhancement occurring in recurrent pyogenic cholangitis (RPC) and seen at multiphasic spiral CT. Among the multiphasic (non-contrast, arterial and portal or delayed phase) spiral CT findings of 60 consecutive patients, two types of FAD were noted during the non-contrast phase. These were Type A (iso) and Type B (low attenuation), and their distribution pattern (lobar versus patchy, multifocal) and the and the presence or absence of bile duct wall enhancement were recorded. The radiologic findings were correlated with the clinical and pathologic findings. Two types of FAD were noted in 40 of the 60 patients. Active in flammation was present in 19 of the 27 with Type-A and in ten of the 15 in whom the presence of RPC was pathologically proven. Ten of the 13 with Type-B FAD were in a subclinical state, and nine of the ten in whom RPC was pathologically proven had chronic inflammation. Among 20 patients who did not have FAD, RPC was subclinical in 18 and dormant in nine of the eleven in whom its presence was pathologically proven (p<0.001). Clinico-pathologic correlation with bile duct wall enhancement and the distribution pattern of FAD showed no statistical significance. The inflammatory activity of RPC can be predicted by analysis of the FAD seen at multiphasic spiral CT

  5. Virtual Colonoscopy Screening With Ultra Low-Dose CT and Less-Stressful Bowel Preparation: A Computer Simulation Study

    Science.gov (United States)

    Wang, Jing; Wang, Su; Li, Lihong; Fan, Yi; Lu, Hongbing; Liang, Zhengrong

    2008-10-01

    Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an emerging tool for detection of colonic polyps. Compared to the conventional fiber-optic colonoscopy, VC has demonstrated the potential to become a mass screening modality in terms of safety, cost, and patient compliance. However, current CTC delivers excessive X-ray radiation to the patient during data acquisition. The radiation is a major concern for screening application of CTC. In this work, we performed a simulation study to demonstrate a possible ultra low-dose CT technique for VC. The ultra low-dose abdominal CT images were simulated by adding noise to the sinograms of the patient CTC images acquired with normal dose scans at 100 mA s levels. The simulated noisy sinogram or projection data were first processed by a Karhunen-Loeve domain penalized weighted least-squares (KL-PWLS) restoration method and then reconstructed by a filtered backprojection algorithm for the ultra low-dose CT images. The patient-specific virtual colon lumen was constructed and navigated by a VC system after electronic colon cleansing of the orally-tagged residue stool and fluid. By the KL-PWLS noise reduction, the colon lumen can successfully be constructed and the colonic polyp can be detected in an ultra low-dose level below 50 mA s. Polyp detection can be found more easily by the KL-PWLS noise reduction compared to the results using the conventional noise filters, such as Hanning filter. These promising results indicate the feasibility of an ultra low-dose CTC pipeline for colon screening with less-stressful bowel preparation by fecal tagging with oral contrast.

  6. Evaluation of spiral CT in staging of colon and rectum carcinoma

    International Nuclear Information System (INIS)

    Hundt, W.; Braunschweig, R.; Reiser, M.

    1999-01-01

    The purpose of our study was to evaluate the capability of a subsecond spiral-CT scanner using two contrast medium phases in staging of colorectal cancer. In our study we included 37 patients with proven rectum or colon carcinoma. Spiral CT was performed following tap-water enema of the colon in the arterial and venous phases of contrast medium enhancement. Our results were compared with the findings of pathological examination after surgery. The tumor's size and extension were evaluated in the arterial and venous phases, the lymph nodes in the venous phase of the CT scan. The tumor was in the rectum (n = 14), sigma (n = 11), descending colon (n = 6), and cecum (n = 6). Two-phase spiral CT had a sensitivity of 97.2 % in the arterial phase and 89.1 % in the venous phase in detecting the carcinoma. The staging results were in the arterial phase in 30 of 37 cases (81.0 %) and in the venous phase in 24 of 37 cases (64.8 %) according to pathology. In 27 of 32 patients (84.3 %) lymph nodes were detected. The correct classification of the N-stage was possible in 23 of 34 cases (67.6 %). The combined use of arterial and venous phases in staging of colorectal cancer can improve the T- and N-stage classification in comparison with using only one contrast medium phase. The arterial phase is superior compared with the venous phase for local tumor staging and the venous phase is used for lymph node assessment. (orig.) (orig.)

  7. Influence of Ultra-Low-Dose and Iterative Reconstructions on the Visualization of Orbital Soft Tissues on Maxillofacial CT.

    Science.gov (United States)

    Widmann, G; Juranek, D; Waldenberger, F; Schullian, P; Dennhardt, A; Hoermann, R; Steurer, M; Gassner, E-M; Puelacher, W

    2017-08-01

    Dose reduction on CT scans for surgical planning and postoperative evaluation of midface and orbital fractures is an important concern. The purpose of this study was to evaluate the variability of various low-dose and iterative reconstruction techniques on the visualization of orbital soft tissues. Contrast-to-noise ratios of the optic nerve and inferior rectus muscle and subjective scores of a human cadaver were calculated from CT with a reference dose protocol (CT dose index volume = 36.69 mGy) and a subsequent series of low-dose protocols (LDPs I-4: CT dose index volume = 4.18, 2.64, 0.99, and 0.53 mGy) with filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR)-50, ASIR-100, and model-based iterative reconstruction. The Dunn Multiple Comparison Test was used to compare each combination of protocols (α = .05). Compared with the reference dose protocol with FBP, the following statistically significant differences in contrast-to-noise ratios were shown (all, P ≤ .012) for the following: 1) optic nerve: LDP-I with FBP; LDP-II with FBP and ASIR-50; LDP-III with FBP, ASIR-50, and ASIR-100; and LDP-IV with FBP, ASIR-50, and ASIR-100; and 2) inferior rectus muscle: LDP-II with FBP, LDP-III with FBP and ASIR-50, and LDP-IV with FBP, ASIR-50, and ASIR-100. Model-based iterative reconstruction showed the best contrast-to-noise ratio in all images and provided similar subjective scores for LDP-II. ASIR-50 had no remarkable effect, and ASIR-100, a small effect on subjective scores. Compared with a reference dose protocol with FBP, model-based iterative reconstruction may show similar diagnostic visibility of orbital soft tissues at a CT dose index volume of 2.64 mGy. Low-dose technology and iterative reconstruction technology may redefine current reference dose levels in maxillofacial CT. © 2017 by American Journal of Neuroradiology.

  8. CTA-enhanced perfusion CT: an original method to perform ultra-low-dose CTA-enhanced perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Elizabeth; Wintermark, Max [University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA (United States)

    2014-11-15

    Utilizing CT angiography enhances image quality in PCT, thereby permitting acquisition at ultra-low dose. Dynamic CT acquisitions were obtained at 80 kVp with decreasing tube current-time product [milliamperes x seconds (mAs)] in patients suspected of ischemic stroke, with concurrent CTA of the cervical and intracranial arteries. By utilizing fast Fourier transformation, high spatial frequencies of CTA were combined with low spatial frequencies of PCT to create a virtual PCT dataset. The real and virtual PCT datasets with decreasing mAs were compared by assessing contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and noise and PCT values and by visual inspection of PCT parametric maps. Virtual PCT attained CNR and SNR three- to sevenfold superior to real PCT and noise reduction by a factor of 4-6 (p < 0.05). At 20 mAs, virtual PCT achieved diagnostic parametric maps, while the quality of real PCT maps was inadequate. At 10 mAs, both real and virtual PCT maps were nondiagnostic. Virtual PCT (but not real PCT) maps regained diagnostic quality at 10 mAs by applying 40 % adaptive statistical iterative reconstruction (ASIR) and improved further with 80 % ASIR. Our new method of creating virtual PCT by combining ultra-low-dose PCT with CTA information yields diagnostic perfusion parametric maps from PCT acquired at 20 or 10 mAs with 80 % ASIR. Effective dose is approximately 0.20 mSv, equivalent to two chest radiographs. (orig.)

  9. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Yukihiro, E-mail: yatsushi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Otsu 520-2192, Shiga (Japan); Takahashi, Masashi; Murata, Kiyoshi [Department of Radiology, Shiga University of Medical Science, Otsu 520-2192, Shiga (Japan); Ikeda, Mitsuru [Department of Radiological and Medical Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Aichi (Japan); Yamashiro, Tsuneo [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan); Miyara, Tetsuhiro [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan); Department of Radiology, Okinawa Prefectural Yaeyama Hospital, Ishigaki 907-0022, Okinawa (Japan); Koyama, Hisanobu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo (Japan); Koyama, Mitsuhiro [Department of Radiology, Osaka Medical College, Takatsuki 569-8686, Osaka (Japan); Sato, Yukihisa [Department of Radiology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka (Japan); Department of Radiology, Osaka Medical Center of Cancer and Cardiovascular Diseases, Osaka 537-8511, Osaka (Japan); Moriya, Hiroshi [Department of Radiology, Ohara General Hospital, Fukushima 960-8611 (Japan); Noma, Satoshi [Department of Radiology, Tenri Hospital, Tenri 632-8552, Nara (Japan); Tomiyama, Noriyuki [Department of Radiology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka (Japan); Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo (Japan); Murayama, Sadayuki [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan)

    2015-07-15

    Highlights: • Using AIDR 3D, ULDCT showed comparable LND of solid nodules to LDCT. • Using AIDR 3D, LND of smaller GGN in ULDCT was inferior to that in LDCT. • Effective dose in ULDCT was about only twice of that in chest X-ray. • BMI values in study population were mostly in the normal range body habitus. - Abstract: Purpose: To compare lung nodule detection performance (LNDP) in computed tomography (CT) with adaptive iterative dose reduction using three dimensional processing (AIDR3D) between ultra-low dose CT (ULDCT) and low dose CT (LDCT). Materials and methods: This was part of the Area-detector Computed Tomography for the Investigation of Thoracic Diseases (ACTIve) Study, a multicenter research project being conducted in Japan. Institutional Review Board approved this study and informed consent was obtained. Eighty-three subjects (body mass index, 23.3 ± 3.2) underwent chest CT at 6 institutions using identical scanners and protocols. In a single visit, each subject was scanned using different tube currents: 240, 120 and 20 mA (3.52, 1.74 and 0.29 mSv, respectively). Axial CT images with 2-mm thickness/increment were reconstructed using AIDR3D. Standard of reference (SOR) was determined based on CT images at 240 mA by consensus reading of 2 board-certificated radiologists as to the presence of lung nodules with the longest diameter (LD) of more than 3 mm. Another 5 radiologists independently assessed and recorded presence/absence of lung nodules and their locations by continuously-distributed rating in CT images at 20 mA (ULDCT) and 120 mA (LDCT). Receiver-operating characteristic (ROC) analysis was used to evaluate LNDP of both methods in total and also in subgroups classified by LD (>4, 6 and 8 mm) and nodular characteristics (solid and ground glass nodules). Results: For SOR, 161 solid and 60 ground glass nodules were identified. No significant difference in LNDP for entire solid nodules was demonstrated between both methods, as area under ROC

  10. SU-E-I-86: Ultra-Low Dose Computed Tomography Attenuation Correction for Pediatric PET CT Using Adaptive Statistical Iterative Reconstruction (ASiR™)

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S; Shulkin, B [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2015-06-15

    Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co

  11. Application of low dose multi-slice helical CT in orbital trauma patients

    International Nuclear Information System (INIS)

    Yang Rui; Dai Limei; Li Jianying; Wang Fengyan; Du Guoquan

    2010-01-01

    Objective: To investigate the most appropriate low radiation dose in multi-slice CT (MSCT) scans for orbital trauma patients. Methods: Thirty trauma patients with suspected orbital fractures who underwent helical CT scans with a 64-MSCT using regular dose were selected. Noise was artificially introduced to the axial images using an image space noise addition tool to simulate 6 sets of lower dose scans with tube current of 30, 70, 100, 140, 170 and 200 mA, respectively. The lowest tube current with adequate image quality for confident diagnosis was determined based on the evaluation of the overall image quality and fracture detection on images at different dose levels. The determined lowest tube current was then validated using clinical scans. Radiation dose related parameters CTDIvol, DLP, ED were also recorded. Image quality was evaluated according to its low-density resolution, noise and structure clarity and characterized into 5-grades of excellent, good, fair, worse and worst. Rank sum test and χ 2 test were used for statistics. Results: In 30 trauma patients with regular dose of 300 mA, there were 30 cases of orbital fracture, 19 cases of intraorbital emphysema, 12 cases of ocular muscle injury and 1 case of intraorbital foreign body. These changes could still be clearly observed and correctly diagnosed when the tube current was reduced to as low as 70 mA. However, the overall image quality was mostly fair. At the simulated dose of 100 mA, the majority of images were characterized as excellent or good, and there was no statistical difference compared with that of regular dose scans (P>0.05). In the clinical evaluation for 20 orbital trauma patients with the reduced tube current of 100 m A , the majority of images were judged to be excellent (9 cases) or good (17 cases) and fair (4 cases). The radiation dose (0.29 mSv) was reduced by 70% compared with that of regular tube current of 300 mA (0.86 mSv). Conclusion: The tube current of MSCT may be used as low as

  12. Investigation of ultra low-dose scans in the context of quantum-counting clinical CT

    Science.gov (United States)

    Weidinger, T.; Buzug, T. M.; Flohr, T.; Fung, G. S. K.; Kappler, S.; Stierstorfer, K.; Tsui, B. M. W.

    2012-03-01

    In clinical computed tomography (CT), images from patient examinations taken with conventional scanners exhibit noise characteristics governed by electronics noise, when scanning strongly attenuating obese patients or with an ultra-low X-ray dose. Unlike CT systems based on energy integrating detectors, a system with a quantum counting detector does not suffer from this drawback. Instead, the noise from the electronics mainly affects the spectral resolution of these detectors. Therefore, it does not contribute to the image noise in spectrally non-resolved CT images. This promises improved image quality due to image noise reduction in scans obtained from clinical CT examinations with lowest X-ray tube currents or obese patients. To quantify the benefits of quantum counting detectors in clinical CT we have carried out an extensive simulation study of the complete scanning and reconstruction process for both kinds of detectors. The simulation chain encompasses modeling of the X-ray source, beam attenuation in the patient, and calculation of the detector response. Moreover, in each case the subsequent image preprocessing and reconstruction is modeled as well. The simulation-based, theoretical evaluation is validated by experiments with a novel prototype quantum counting system and a Siemens Definition Flash scanner with a conventional energy integrating CT detector. We demonstrate and quantify the improvement from image noise reduction achievable with quantum counting techniques in CT examinations with ultra-low X-ray dose and strong attenuation.

  13. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis.

    Science.gov (United States)

    Nagatani, Yukihiro; Takahashi, Masashi; Murata, Kiyoshi; Ikeda, Mitsuru; Yamashiro, Tsuneo; Miyara, Tetsuhiro; Koyama, Hisanobu; Koyama, Mitsuhiro; Sato, Yukihisa; Moriya, Hiroshi; Noma, Satoshi; Tomiyama, Noriyuki; Ohno, Yoshiharu; Murayama, Sadayuki

    2015-07-01

    To compare lung nodule detection performance (LNDP) in computed tomography (CT) with adaptive iterative dose reduction using three dimensional processing (AIDR3D) between ultra-low dose CT (ULDCT) and low dose CT (LDCT). This was part of the Area-detector Computed Tomography for the Investigation of Thoracic Diseases (ACTIve) Study, a multicenter research project being conducted in Japan. Institutional Review Board approved this study and informed consent was obtained. Eighty-three subjects (body mass index, 23.3 ± 3.2) underwent chest CT at 6 institutions using identical scanners and protocols. In a single visit, each subject was scanned using different tube currents: 240, 120 and 20 mA (3.52, 1.74 and 0.29 mSv, respectively). Axial CT images with 2-mm thickness/increment were reconstructed using AIDR3D. Standard of reference (SOR) was determined based on CT images at 240 mA by consensus reading of 2 board-certificated radiologists as to the presence of lung nodules with the longest diameter (LD) of more than 3mm. Another 5 radiologists independently assessed and recorded presence/absence of lung nodules and their locations by continuously-distributed rating in CT images at 20 mA (ULDCT) and 120 mA (LDCT). Receiver-operating characteristic (ROC) analysis was used to evaluate LNDP of both methods in total and also in subgroups classified by LD (>4, 6 and 8 mm) and nodular characteristics (solid and ground glass nodules). For SOR, 161 solid and 60 ground glass nodules were identified. No significant difference in LNDP for entire solid nodules was demonstrated between both methods, as area under ROC curve (AUC) was 0.844 ± 0.017 in ULDCT and 0.876 ± 0.026 in LDCT (p=0.057). For ground glass nodules with LD 8mm or more, LNDP was similar between both methods, as AUC 0.899 ± 0.038 in ULDCT and 0.941 ± 0.030 in LDCT. (p=0.144). ULDCT using AIDR3D with an equivalent radiation dose to chest x-ray could have comparable LNDP to LDCT with AIDR3D except for smaller ground

  14. Advanced single-slice rebinning for tilted spiral cone-beam CT

    International Nuclear Information System (INIS)

    Kachelriess, Marc; Fuchs, Theo; Schaller, Stefan; Kalender, Willi A.

    2001-01-01

    Future medical CT scanners and today's micro CT scanners demand cone-beam reconstruction algorithms that are capable of reconstructing data acquired from a tilted spiral trajectory where the vector of rotation is not necessarily parallel to the vector of table increment. For the medical CT scanner this case of nonparallel object motion is met for nonzero gantry tilt: the table moves into a direction that is not perpendicular to the plane of rotation. Since this is not a special application of medical CT but rather a daily routine in head exams, there is a strong need for corresponding reconstruction algorithms. In contrast to medical CT, where the special case of nonperpendicular motion is used on purpose, micro CT scanners cannot avoid aberrations of the rotational axis and the table increment vector due to alignment problems. Especially for those micro CT scanners that have the lifting stage mounted on the rotation table (in contrast to setups where the lifting stage holds the rotation table), this kind of misalignment is equivalent to a gantry tilt. We therefore generalize the advanced single-slice rebinning algorithm (ASSR), which is considered a very promising approach for medical cone-beam reconstruction due to its high image quality and its high reconstruction speed [Med. Phys. 27, 754-772 (2000)], to the case of tilted gantries. We evaluate this extended ASSR approach (which we will denote as ASSR + , for convenience) in comparison to the original ASSR algorithm using simulated phantom data for reconstruction. For the case of nonparallel object motion ASSR + shows significant improvements over ASSR, however, its computational complexity is slightly increased due to the broken symmetry of the spiral trajectory

  15. Early clinical phase of patient's management after polytrauma using 1- and 4-slice helical CT; Fruehes klinisches Management nach Polytrauma mit 1- und 4-Schicht-Spiral-CT

    Energy Technology Data Exchange (ETDEWEB)

    Kloeppel, R.; Kahn, T. [Klinik und Poliklinik fuer Diagnostische Radiologie, Universitaetsklinikum Leipzig (Germany); Schreiter, D. [Chirurgische Intensivtherapieabteilung, Zentrum fuer Chirurgie, Universitaetsklinikum Leipzig (Germany); Dietrich, J. [Abt. Neuroradiologie der Klinik und Poliklinik fuer Diagnostische Radiologie, Universitaetsklinikum Leipzig (Germany); Josten, C. [Klinik und Poliklinik fuer Unfall- und Wiederherstellungschirurgie, Zentrum fuer Chirurgie, Universitaetsklinikum Leipzig (Germany)

    2002-07-01

    In the early clinical phase the comprehensive imaging of patients with multiple trauma using helical CT is already established. Aim of this study was to assess whether MSCT may improve the patient management and the diagnostic results.The procedure is designed as follows: after life-thretening treatment x-ray of chest and ultrasound are carried out in the emergency room. Then the patient is moved to CT. From 1998 to december 2000 241 patients were examined using a single slice helical CT (Somatom plus 4), in 2001 79 patients using a 4-slice helical CT (Somatom VZ, Siemens Med.Sol.). After CT selected radiograms of the extremities were taken.359 of 360 procedures were carried out successfully. Excluding 1 case (death during 1-sl. h CT) all relevant lesions of head, neck, and body were diagnosed. Although the patients had an injury severity score of {approx}30. The change from 1slice-helical CT to 4 slice-helical CT allowed us to reduce the stay in the CT room from 28 to 16 min. The total lethality decreased by {approx}4%.Advantages for the patient arose from the standardized examination protocol using multislice CT. If integrated in an interdisciplinary management concept, it is a good compromise between examination time, comprehensive diagnostic imaging, life-saving therapeutic procedures, and therapy planning. (orig.) [German] Die klinische Erstversorgung Polytraumatisierter schliesst inzwischen in vielen Unfallkliniken den fruehzeitigen Einsatz der Spiral-CT ein. Kann die neuerlich eingefuehrte Mehrschicht-Spiral-CT Ergebnisse und Patientenmanagement weiter verbessern?Nach lebensrettenden Sofortmassnahmen, Thoraxroentgen und Notsonographie im Schockraum erfolgte die CT: Von 1998-2000 wurden 241 Patienten mit einem 1-Schicht-Spiral-CT (Somatom plus 4) und in 2001 79 Patienten mit einem 4-Schicht-Spiral-CT (Somatom VZ, beide Siemens Med. Sol.) untersucht. Klinisch ausgewaehlte Extremitaetenaufnahmen wurden ergaenzt.359 von 360 Untersuchungen verliefen erfolgreich

  16. TU-EF-204-07: Add Tube Current Modulation to a Low Dose Simulation Tool for CT Systems

    International Nuclear Information System (INIS)

    Ding, Y.; Wen, G.; Brown, K.; Klahr, P.; Dhanantwari, A.

    2015-01-01

    Purpose: We extended the capabilities of a low dose simulation tool to model Tube-Current Modulation (TCM). TCM is widely used in clinical practice to reduce radiation dose in CT scans. We expect the tool to be valuable for various clinical applications (e.g., optimize protocols, compare reconstruction techniques and evaluate TCM methods). Methods: The tube current is input as a function of z location, instead of a fixed value. Starting from the line integrals of a scan, a new Poisson noise realization at a lower dose is generated for each view. To validate the new functionality, we compared simulated scans with real scans in image space. Results: First we assessed noise in the difference between the low-dose simulations and the original high-dose scan. When the simulated tube current is a step function of z location, the noise at each segment matches the noise of 3 separate constant-tube-current-simulations. Secondly, with a phantom that forces TCM, we compared a low-dose simulation with an equivalent real low-dose scan. The mean CT number of the simulated scan and the real low-dose scan were 137.7±0.6 and 137.8±0.5 respectively. Furthermore, with 240 ROIs, the noise of the simulated scan and the real low-dose scan were 24.03±0.45 and 23.99±0.43 respectively, and they were not statistically different (2-sample t-test, p-value=0.28). The facts that the noise reflected the trend of the TCM curve, and that the absolute noise measurements were not statistically different validated the TCM function. Conclusion: We successfully added tube-current modulation functionality in an existing low dose simulation tool. We demonstrated that the noise reflected an input tube-current modulation curve. In addition, we verified that the noise and mean CT number of our simulation agreed with a real low dose scan. The authors are all employees of Philips. Yijun Ding is also supported by NIBIB P41EB002035 and NIBIB R01EB000803

  17. Usefulness of low dose oral contrast media in 18F-FDG PET/CT

    International Nuclear Information System (INIS)

    An, Young Sil; Yoon, Joon Kee; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam

    2006-01-01

    The standard protocol using large volume of oral contrast media may cause gastrointestinal discomfort and contrast-related artifacts in PET/CT. The aim of this study was to evaluate the usefulness of low dose oral contrast in 18 F-FDG PET/CT. We retrospectively reviewed the whole-body PET/CT images in a total of 435 patients. About 200 ml of oral contrast agent (barium sulfate) was administered immediately before injection of 18 F-FDG. The FDG uptake of intestines was analyzed by visual and semi-quantitative method on transaxial, coronal and saggital planes. Seventy (16%, 113 sites) of 435 images showed high FDG uptake (peak SUV > 4); 50 (74%, 84 sites) with diffuse and 20 (26%, 29 sites) with focal uptake. The most commonly delivered site of oral contrast media was small bowel (n = 27, 39%). On PET/CT images, FDG uptake coexisted with oral contrast media in 26 patients (54%, 38 sites) with diffuse pattern and 9 (45%, 9 sites) with focal pattern, and by sites, those were 38 (45%) and 9 (31%), respectively. In small bowel regions, the proportion of coexistence reached as high as 61% (29/47 sites). A visual analysis of available non-attenuation corrected PET images of 27 matched regions revealed no contrast-related artifact. We concluded that the application of low dose contrast media could be helpful in the evaluation of abdominal uptake in the FDG PET/CT image

  18. Low-dose CT of the paranasal sinuses. Minimizing X-ray exposure with spectral shaping

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Wolfgang [Friedrich-Alexander-University Erlangen-Nuremberg, Radiological Institute, Erlangen (Germany); Radiological Institute, Erlangen (Germany); May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael [Friedrich-Alexander-University Erlangen-Nuremberg, Radiological Institute, Erlangen (Germany)

    2016-11-15

    Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192 x 0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 x 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI{sub vol} 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. (orig.)

  19. Spectrotemporal CT data acquisition and reconstruction at low dose

    International Nuclear Information System (INIS)

    Clark, Darin P.; Badea, Cristian T.; Lee, Chang-Lung; Kirsch, David G.

    2015-01-01

    Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D + dual energy + time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction

  20. Spiral CT features and anatomic basis of posterior pararenal space involvement in acute pancreatitis

    International Nuclear Information System (INIS)

    Min Pengqiu; Yan Zhihan; Yang Hengxuan; Liu Zaiyi; Song Bin; Wu Bing; Zhang Jin; Liu Rongbo

    2005-01-01

    Objective: To evaluate spiral CT features and anatomic basis of the posterior pararenal space (PPS) involvement in acute pancreatitis (AP). Methods: CT images of 87 cases with AP were retrospectively studied with focus on spiral CT features, incidence of the PPS involvement, and its correlations with the posterior renal fascia or lateroconal fascia. Results: Our study showed that the incidence of the PPS involvement was 47% (41/87), with Grade A 53% (46/87), Grade B 24%(21/87), and Grade C 23% (20/87), and Grade 0 53% (46/87), Grade I 22% (19/87), and Grade II 25% (22/87), respectively. The pancreatitis fluid collection in the PPS was continuous with that in the anterior pararenal space or with the fluid between the two laminae of the posterior renal fascia. In 3 follow-up cases, pseudocysts in the PPS were continuous with that in anterior pararenal space below the cone of renal fascia. Conclusion: Spiral CT features of the PPS involvement varies from mild inflammatory changes to fluid collection or phlegmonous mass. Fluid within anterior pararenal space in AP flows into the PPS by three routes. (authors)

  1. CT dose management

    International Nuclear Information System (INIS)

    Zasheva, Ts.; Georgiev, E.; Kirova, G.

    2013-01-01

    Full text: Introduction: In recent decades Computed Tomography established itself as one of the most common study with a very wide range of applications and techniques of scanning. Best diagnostic value of the method resist to the risks of ionizing radiation, as statistics show that CT is one of the main sources of continuously increasing dose to the population. What you will learn: The physical parameters of the X-ray tube and the principles of image reconstruction; The relationship between variables parameters and the received dose; The ratio between the force and voltage of the current to the image quality, Influence of the used contrast medium to the physical properties of the image, The ratio of patient BMI to image processing, Effective use of knowledge for the optimal CT protocol. Discussions: The goal to reduce the dose received by the patient during a CT scan while keeping the diagnostic quality of the image puts to the test as handset X-ray producers and technicians who need to master the technique of study protocol forming as well as to balance the harm - benefit ratio. Among the most popular techniques are these of dose modulation, low-dose computed tomography at the expense of a reduction of the current or voltage intensity, and control of the number of post-processing algorithms for the image reconstruction. Conclusion: The training of radiologists and X-ray technicians plays a major role in optimizing of technical parameters in view of the reduction of the dose for the patient, while maintaining the diagnostic quality of the image

  2. Comparison of prospective electrocardiography-gating high-pitch mode and without electrocardiography-synchronization high-pitch mode acquisition for the image quality and radiation doses of the aortic using dual-source CT

    International Nuclear Information System (INIS)

    Li Jian; Huan Yi; Zhao Hongliang; Wang Ying; Liu Ying; Wei Mengqi; Shi Mingguo; Zheng Minwen

    2013-01-01

    Objective: To evaluate the application of prospective ECG-gating Flash spiral scan mode dual-source CT in aortography, and compare it's image quality and radiation dose with without ECG-synchronization high-pitch spiral scanning mode. Methods: Fifty consecutive patients (Group A) with suspected aortic dissection or after operations for the aortic dissection were scanned with prospective ECG-gated high-pitch scan and another 50 consecutive patients (Group B) were analyzed by non-ECG-gated high-pitch scan. Image quality of the aortic was assessed by two independent readers. Image noise was measured, radiation dose estimates were calculated. The imaging quality of the aortic and the radiation dose were compared with Mann-whitney U and t test. Results: The average image quality score [(1.18 ± 0.40) in group A and (1.23 ± 0.31) in group B] showed no significant difference between group A and group B (U = 1.20, P = 0.23). The mean radiation dose of group A was lower than that of group B [(1.49 ± 0.38) mSv in group A, (2.79 ± 0.54) mSv in group B, t = 13.677, P < 0.05]. Conclusion: Prospective ECG-gated dual source CT Flash spiral scanning with low radiation dose and good image quality in the aortic dissection with high value of clinical application. (authors)

  3. Low-dose computed tomography image restoration using previous normal-dose scan

    International Nuclear Information System (INIS)

    Ma, Jianhua; Huang, Jing; Feng, Qianjin; Zhang, Hua; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2011-01-01

    Purpose: In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. Methods: Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. Results: Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use

  4. Radiation exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey

    International Nuclear Information System (INIS)

    Brix, G.; Nagel, H.D.; Stamm, G.; Veit, R.; Lechel, U.; Griebel, J.; Galanski, M.

    2003-01-01

    Multi-slice (MS) technology increases the efficacy of CT procedures and offers new promising applications. The expanding use of MSCT, however, may result in an increase in both frequency of procedures and levels of patient exposure. It was, therefore, the aim of this study to gain an overview of MSCT examinations conducted in Germany in 2001. All MSCT facilities were requested to provide information about 14 standard examinations with respect to scan parameters and frequency. Based on this data, dosimetric quantities were estimated using an experimentally validated formalism. Results are compared with those of a previous survey for single-slice (SS) spiral CT scanners. According to the data provided for 39 dual- and 73 quad-slice systems, the average annual number of patients examined at MSCT is markedly higher than that examined at SSCT scanners (5500 vs 3500). The average effective dose to patients was changed from 7.4 mSv at single-slice to 5.5 mSv and 8.1 mSv at dual- and quad-slice scanners, respectively. There is a considerable potential for dose reduction at quad-slice systems by an optimisation of scan protocols and better education of the personnel. To avoid an increase in the collective effective dose from CT procedures, a clear medical justification is required in each case. (orig.)

  5. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    International Nuclear Information System (INIS)

    Won Kim, Chang; Kim, Jong Hyo

    2014-01-01

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/−3.2% in

  6. The experimental study on bowel ischemia in closed loop obstruction by using multi-phase spiral CT

    International Nuclear Information System (INIS)

    Zhang Xiaoming; Yang Hanfeng; Huang Xiaohua; Tang Xianying; Jian Pu; Yang Zhengwei; Zhou Jiyong; Zhao Zongwen

    2005-01-01

    Objective: To evaluate the bowel ischemia in experimental closed loop obstruction by using multi-phase spiral CT. Methods: Twenty-four New Zealand rabbits of both sexes (mean age, 4 months, and mean body weight, 2.5-3.0 kg) were divided randomly into three groups with each group containing 8 rabbits. After clamping 10-15 cm segments of small bowel and their veins for 0.5 hours (Group A), 1-2 hours (Group B), and 3-5 hours (Group C), respectively, multi-phase spiral CT was performed at baseline, and at arterial, venous, and delayed phases after intravenous contrast administration. Then the rabbits were sacrificed to observe their surgical and histological changes. Two radiologists, blinded to the animal model classification and their histological results, individually reviewed the CT images to observe the CT appearances of the closed loop. Statistical significance criteria was determined by P 0.05) at baseline, however, they were significantly different (P<0.05) at all phases after enhancement. Among rabbits without necrotic closed loop, 11 of 13 had continuous enhancement at all phases, while only 1 of 11 rabbits with necrotic closed loop showed continuous enhancement (P<0.05). Conclusion: The ischemia of bowel wall in different phases after clamping small bowel and their veins can be evaluated by using enhanced multi-phase spiral CT. Continuous enhancement of bowel wall in multi-phase spiral CT can be seen prominently in the early bowel ischemia, but necrotic bowel shows no enhancement. (authors)

  7. Low-dose CT imaging of a total hip arthroplasty phantom using model-based iterative reconstruction and orthopedic metal artifact reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wellenberg, R.H.H.; Streekstra, G.J.; Maas, M. [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Boomsma, M.F.; Osch, J.A.C. van [Department of Radiology, Zwolle (Netherlands); Vlassenbroek, A. [Philips Medical Systems, Brussels (Belgium); Milles, J. [Philips Medical Systems, Eindhoven (Netherlands); Edens, M.A. [Department of Innovation and Science, Zwolle (Netherlands); Slump, C.H. [University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Enschede (Netherlands)

    2017-05-15

    To compare quantitative measures of image quality, in terms of CT number accuracy, noise, signal-to-noise-ratios (SNRs), and contrast-to-noise ratios (CNRs), at different dose levels with filtered-back-projection (FBP), iterative reconstruction (IR), and model-based iterative reconstruction (MBIR) alone and in combination with orthopedic metal artifact reduction (O-MAR) in a total hip arthroplasty (THA) phantom. Scans were acquired from high- to low-dose (CTDI{sub vol}: 40.0, 32.0, 24.0, 16.0, 8.0, and 4.0 mGy) at 120- and 140- kVp. Images were reconstructed using FBP, IR (iDose{sup 4} level 2, 4, and 6) and MBIR (IMR, level 1, 2, and 3) with and without O-MAR. CT number accuracy in Hounsfield Units (HU), noise or standard deviation, SNRs, and CNRs were analyzed. The IMR technique showed lower noise levels (p < 0.01), higher SNRs (p < 0.001) and CNRs (p < 0.001) compared with FBP and iDose{sup 4} in all acquisitions from high- to low-dose with constant CT numbers. O-MAR reduced noise (p < 0.01) and improved SNRs (p < 0.01) and CNRs (p < 0.001) while improving CT number accuracy only at a low dose. At the low dose of 4.0 mGy, IMR level 1, 2, and 3 showed 83%, 89%, and 95% lower noise values, a factor 6.0, 9.2, and 17.9 higher SNRs, and 5.7, 8.8, and 18.2 higher CNRs compared with FBP respectively. Based on quantitative analysis of CT number accuracy, noise values, SNRs, and CNRs, we conclude that the combined use of IMR and O-MAR enables a reduction in radiation dose of 83% compared with FBP and iDose{sup 4} in the CT imaging of a THA phantom. (orig.)

  8. The optimal dose of the contrast media for spiral CT portography

    International Nuclear Information System (INIS)

    Zhang Jiansheng; Xiao Peiyu; Meng Xiaochun; Xu Chuan

    2007-01-01

    Objective: To investigate the optimal dose of the contrast media in SCTP. Methods: 40 healthy patients were divided into 2 groups according to their body weight (20 cases in group A with weight below 60kg, 20 cases in group B with weight over 70kg). They all received 90ml contrast media at a rate of 4.0 ml/sec in the contrast-enhanced CT ex- amination. And non-cirrhosis cases, liver cirrhosis without ascites cases and liver cirrhosis with ascites cases were selected respectively, 60 patients in each group. Then, the patients of each group were randomly divided into 3 sub-groups, 20 cases in each of them, which respectively received 1.5ml/kg, 2.0ml/kg, 2.5ml/kg contrast media at a rate of 4.0 ml/sec in the contrast-enhanced CT examination. The effect of the dose of the contrast material on the imaging quality of portal vein system in patients with different weight and different state of illness was analyzed. Results: In 40 healthy patients, the density difference between portal vein and hepatic parenchyma was significantly higher in Group A than in Group B (P 0.05), and both of them showed significant difference while using 1.5ml/kg contrast media (P 0.05), and they both had significant difference when using 1.5ml/kg contrast media (P< 0.05). Besides these, the imaging quality of portal vein branches and collateral vessels were better in 2.0ml/kg group than others. Conclusion: The patient's body weight and the state of liver disease influenced the extent of portal vein enhancement. To calculate the dose of contrast media according to patient's weight is crucial for ensuring the imaging quality of portal vein system. 2.0ml/kg contrast media can provide a better effect. (authors)

  9. Spiral-CT-angiography of acute pulmonary embolism: factors that influence the implementation into standard diagnostic algorithms

    International Nuclear Information System (INIS)

    Bankier, A.; Herold, C.J.; Fleischmann, D.; Janata-Schwatczek, K.

    1998-01-01

    Purpose: Debate about the potential implementation of Spiral-CT in diagnostic algorithms of pulmonary embolism are often focussed on sensitivity and specificity in the context of comparative methodologic studies. We intend to investigate whether additional factors might influence this debate. Results: The factors availability, acceptance, patient-outcome, and cost-effectiveness-studies do have substantial influence on the implementation of Spiral-CT in the diagnostic algorithms of pulmonary embolism. Incorporation of these factors into the discussion might lead to more flexible and more patient-oriented algorithms for the diagnosis of pulmonary embolism. Conclusion: Availability of equipment, acceptance among clinicians, patient-out-come, and cost-effectiveness evaluations should be implemented into the debate about potential implementation of Spiral-CT in routine diagnostic imaging algorithms of pulmonary embolism. (orig./AJ) [de

  10. Virtual endoscopy using spiral CT in patients with carcinomas of the hypopharynx and larynx

    International Nuclear Information System (INIS)

    Song, Sang Gook; Seo, Jeong Jin; Chung, Tae Woong; Kim, Hyeong Kil; Jeong, Gwang Woo; Jeong, Yong Yeon; Kang, Heoung Keun; Cho, Jae Sik

    2000-01-01

    To compare the usefulness of virtual endoscopy using spiral CT with that of laryngoscopy in the detection and evaluation of laryngeal and pharyngeal carcinomas. Twenty-four patients with pathologically proven laryngeal and pharyngeal carcinomas underwent laryngoscopy and virtual endoscopy using spiral CT. Eleven of the carcinomas were supraglottic, five were glottic, and eight were hypopharyngeal. Source images obtained by spiral CT were transmitted to an independent workstation and virtual endoscopic images were obtained using Navigator software. These were graded according to their quality (good, fair, bad), and were interpreted by two radiologists who were blinded to the conventional endoscopic findings. These latter were subsequently compared with the virtual endoscopic findings in terms of similarity to laryngoscopic examination and detectability of lesions. The overall image quality of virtual endoscopy was good in 16 cases (67%), fair in eight (33%), and bad in no case. Among the 11 supraglottic carcinomas, image quality was good in seven cases (64%), and fair in four (36%). In four of the five glottic carcinomas (80%) quality was good, and in one case (20%) it was fair, while among the eight hypopharyngeal carcinomas, quality was good in five cases (63%), and fair in three (37%). Overall, detection of the lesion was possible in 23 cases (96%). Due to the small size of the lesion, the one case of glottic carcinoma was not detected. Virtual endoscopy using spiral CT is a safe and noninvasive method, and also successfully detects laryngeal and pharyngeal lesions, with good image quality. For the evaluation of laryngeal and hypopharyngeal carcinoma, its use ma complement that of axial CT. (author)

  11. Early detection of lung cancer using ultra-low-dose computed tomography in coronary CT angiography scans among patients with suspected coronary heart disease.

    Science.gov (United States)

    Zanon, Matheus; Pacini, Gabriel Sartori; de Souza, Vinicius Valério Silveiro; Marchiori, Edson; Meirelles, Gustavo Souza Portes; Szarf, Gilberto; Torres, Felipe Soares; Hochhegger, Bruno

    2017-12-01

    To assess whether an additional chest ultra-low-dose CT scan to the coronary CT angiography protocol can be used for lung cancer screening among patients with suspected coronary artery disease. 175 patients underwent coronary CT angiography for assessment of coronary artery disease, additionally undergoing ultra-low-dose CT screening to early diagnosis of lung cancer in the same scanner (80kVp and 15mAs). Patients presenting pulmonary nodules were followed-up for two years, repeating low-dose CTs in intervals of 3, 6, or 12 months based on nodule size and growth rate in accordance with National Comprehensive Cancer Network guidelines. Ultra-low-dose CT identified 71 patients with solitary pulmonary nodules (41%), with a mean diameter of 5.50±4.00mm. Twenty-eight were >6mm, and in 79% (n=22) of these cases they were false positive findings, further confirmed by follow-up (n=20), resection (n=1), or biopsy (n=1). Lung cancer was detected in six patients due to CT screening (diagnostic yield: 3%). Among these, four cases could not be detected in the cardiac field of view. Most patients were in early stages of the disease. Two patients diagnosed at advanced stages died due to cancer complications. The addition of the ultra-low-dose CT scan represented a radiation dose increment of 1.22±0.53% (effective dose, 0.11±0.03mSv). Lung cancer might be detected using additional ultra-low-dose protocols in coronary CT angiography scans among patients with suspected coronary artery disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Shallow and deep breath lung tumor volume as estimated by spiral volumetric CT in comparison to standard axial CT using virtual simulation

    International Nuclear Information System (INIS)

    Quader, M.A.; Kalend, A.M.; Deutsch, M.; Greenberger, J.S.

    1995-01-01

    Purpose/Objective: In order to assess an individual patient tumor volume (TV) margins that are sufficient to design a beam-eye-view (BEW) conformal portal, the radiographic extent of gross tumor volume (GTV) dimensions and its fluctuation with breathing are measured by fast spiral CT scanning of patients treated for Stage II, III lung cancers using 5-6 field multi-collimated conformal beams. Materials and Methods: Over the course of conformal radiotherapy for lung cancer, a full thorax CT scans of the patient were taken by conventional axial CT scanning with patients immobilized in the treatment position and breathing normally. Patient(s) with good pulmonary function test (PFT) status were selected to perform deep breathing and re-scanned by fast spiral techniques in order to re-acquire the tomographic variation in the (GTV) with breathing. A Picker spiral ZAP-100 software running on the AQSim-PQ-2000 was used with a variable helical pitch of 1.0, 1.5 and 2.0. The variable pitch spirals were limited to tumor bed, diaphragm and lung apex area for measurements. Effect of breathing motion along x,y,z direction were then assessed for each beam-eye-view portal as seen in digitally reconstructed radiography (DRR) at the treated gantry angle. Results: Comparison of axial and spiral scans shows the progression of lung and diaphram motion with breathing can be gauged better in spiral scans. The movement of the diaphragm during shallow breathing has been found to be 2-3cm by measuring the distance between the most inferior and superior slices where diaphragm is present. The variation of the tumor dimensions along AP/PA and lateral direction seems to be less sensitive to breathing than those along inferior-superior direction. Conclusion: The fast spiral CT scanning is sensitive to patient lung motion and can be used to determine the fluctuations of the gross tumor volume with breathing. The extent of the fluctuation is location dependent and increases as one moves from the

  13. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    International Nuclear Information System (INIS)

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua; Liu, Songtao; Sibley, Christopher T.; Bluemke, David A.; Nacif, Marcelo S.

    2013-01-01

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use

  14. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua, E-mail: JYao@cc.nih.gov [Clinical Image Processing Service, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Liu, Songtao; Sibley, Christopher T.; Bluemke, David A. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 and Molecular Biomedical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Nacif, Marcelo S. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 (United States)

    2013-10-15

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use.

  15. Pulmonary spheral tuberculosis: features and clinical significance of spiral dynamic CT

    International Nuclear Information System (INIS)

    Xie Ruming; Ma Daqing; Li Tieyi; Chen Yi; Lu Fudong; Zhou Xinhua

    2001-01-01

    Objective: To assess the features and clinical significance of spiral dynamic CT in patients with pulmonary spheral tuberculosis. Methods: The 54 foci in 42 patients with pulmonary spheral tuberculosis were studied. Thin-sections at 2 mm thickness and 2 mm interval through the nodular center were obtained before and after administration of contrast material. Results: In 54 pulmonary spheral tuberculosis, maximum enhanced CT value in 51 (94.4%, 51/54) foci was less than 20 HU, and more than 20 HU in the other 3(5.6%, 3/54) foci. 27(50.0%, 27/54) foci showed no any enhancement, 24, (44%, 24/54) foci showed capsular enhancement, 1(1.9%, 1/54) focus showed peripheral enhancement and 2(3.7%, 2/54) foci showed extensive enhancement. The accuracy of the correct diagnosis was 25.9% in terms of plain CT and 94.4% in terms of enhanced CT scanning. The difference was significant (x 2 = 50.1, P < 0.05). The curative effect of extensive enhanced foci and peripheral enhanced foci was optimal, capsular enhanced foci was second, and non-enhanced foci was barely satisfactory. Conclusion: Spiral dynamic CT technique may improve the accuracy of diagnosing pulmonary spheral tuberculosis. No enhancement and/or capsular enhancement were suggestive of tuberculosis. The enhancing character of foci might contribute to assess the curative effect of anti-tuberculosis

  16. Novel iterative reconstruction method with optimal dose usage for partially redundant CT-acquisition

    International Nuclear Information System (INIS)

    Bruder, H; Raupach, R; Sunnegardh, J; Allmendinger, T; Klotz, E; Stierstorfer, K; Flohr, T

    2015-01-01

    In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta.Examples: in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high.In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR ‘source’ image data, while maintaining their resolution.It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J).We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR).Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover spatial

  17. Novel iterative reconstruction method with optimal dose usage for partially redundant CT-acquisition

    Science.gov (United States)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Allmendinger, T.; Klotz, E.; Stierstorfer, K.; Flohr, T.

    2015-11-01

    In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta. Examples: in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high. In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR ‘source’ image data, while maintaining their resolution. It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J). We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR). Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover

  18. Detection of hepatocellular carcinoma with multi-slice spiral CT by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... The purpose of the study is to evaluate the effect of iodine concentration of contrast material on detection of hepatocellular carcinoma with multi-slice spiral computed tomography (CT) by using double-arterial phase and portal venous phase enhanced scanning. Ninety-four (94) patients with hepatocellular ...

  19. Submillisievert standard-pitch CT pulmonary angiography with ultra-low dose contrast media administration: A comparison to standard CT imaging.

    Science.gov (United States)

    Suntharalingam, Saravanabavaan; Mikat, Christian; Stenzel, Elena; Erfanian, Youssef; Wetter, Axel; Schlosser, Thomas; Forsting, Michael; Nassenstein, Kai

    2017-01-01

    To evaluate the image quality and radiation dose of submillisievert standard-pitch CT pulmonary angiography (CTPA) with ultra-low dose contrast media administration in comparison to standard CTPA. Hundred patients (56 females, 44 males, mean age 69.6±15.4 years; median BMI: 26.6, IQR: 5.9) with suspected pulmonary embolism were examined with two different protocols (n = 50 each, group A: 80 kVp, ref. mAs 115, 25 ml of contrast medium; group B: 100 kVp, ref. mAs 150, 60 ml of contrast medium) using a dual-source CT equipped with automated exposure control. Objective and subjective image qualities, radiation exposure as well as the frequency of pulmonary embolism were evaluated. There was no significant difference in subjective image quality scores between two groups regarding pulmonary arteries (p = 0.776), whereby the interobserver agreement was excellent (group A: k = 0.9; group B k = 1.0). Objective image analysis revealed that signal intensities (SI), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the pulmonary arteries were equal or significantly higher in group B. There was no significant difference in the frequency of pulmonary embolism (p = 0.65). Using the low dose and low contrast media protocol resulted in a radiation dose reduction by 71.8% (2.4 vs. 0.7 mSv; pcontrast agent volume can obtain sufficient image quality to exclude or diagnose pulmonary emboli while reducing radiation dose by approximately 71%.

  20. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  1. Evaluation of chronic infectious interstitial pulmonary disease in children by low-dose CT-guided transthoracic lung biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, Christoph M.; Lemburg, Stefan P.; Kagel, Thomas; Nicolas, Volkmar [Ruhr-University of Bochum, Institute of Diagnostic Radiology, Interventional Radiology and Nuclear Medicine, BG Clinics Bergmannsheil, Bochum (Germany); Mueller, Klaus-Michael [Ruhr-University of Bochum, Institute of Pathology, BG Clinics Bergmannsheil, Bochum (Germany); Nuesslein, Thomas G.; Rieger, Christian H.L. [Ruhr-University of Bochum, Pediatric Hospital, Bochum (Germany)

    2005-07-01

    Children with chronic infectious interstitial lung disease often have to undergo open lung biopsy to establish a final diagnosis. Open lung biopsy is an invasive procedure with major potential complications. Transthoracic lung biopsy (TLB) guided by computed tomography (CT) is a less-invasive well-established procedure in adults. Detailing the role of low-dose CT-guided TLB in the enhanced diagnosis of chronic lung diseases related to infection in children. A group of 11 children (age 8 months to 16 years) underwent CT-guided TLB with a 20-gauge biopsy device. All investigations were done under general anaesthesia on a multidetector CT scanner (SOMATOM Volume Zoom, Siemens, Erlangen, Germany) using a low-dose protocol (single slices, 120 kV, 20 mAs). Specimens were processed by histopathological, bacteriological, and virological techniques. All biopsies were performed without major complications; one child developed a small pneumothorax that resolved spontaneously. A diagnosis could be obtained in 10 of the 11 patients. Biopsy specimens revealed chronic interstitial alveolitis in ten patients. In five patients Chlamydia pneumoniae PCR was positive, in three Mycoplasma pneumoniae PCR was positive, and in two Cytomegalovirus PCR was positive. The average effective dose was 0.83 mSv. Low-dose CT-guided TLB can be a helpful tool in investigating chronic infectious inflammatory processes in children with minimal radiation exposure. It should be considered prior to any open surgical procedure performed for biopsy alone. In our patient group no significant complication occurred. A disadvantage of the method is that it does not allow smaller airways and vessels to be assessed. (orig.)

  2. Effect of Localizer Radiography Projection on Organ Dose at Chest CT with Automatic Tube Current Modulation.

    Science.gov (United States)

    Saltybaeva, Natalia; Krauss, Andreas; Alkadhi, Hatem

    2017-03-01

    Purpose To calculate the effect of localizer radiography projections to the total radiation dose, including both the dose from localizer radiography and that from subsequent chest computed tomography (CT) with tube current modulation (TCM). Materials and Methods An anthropomorphic phantom was scanned with 192-section CT without and with differently sized breast attachments. Chest CT with TCM was performed after one localizer radiographic examination with anteroposterior (AP) or posteroanterior (PA) projections. Dose distributions were obtained by means of Monte Carlo simulations based on acquired CT data. For Monte Carlo simulations of localizer radiography, the tube position was fixed at 0° and 180°; for chest CT, a spiral trajectory with TCM was used. The effect of tube start angles on dose distribution was investigated with Monte Carlo simulations by using TCM curves with fixed start angles (0°, 90°, and 180°). Total doses for lungs, heart, and breast were calculated as the sum of the dose from localizer radiography and CT. Image noise was defined as the standard deviation of attenuation measured in 14 circular regions of interest. The Wilcoxon signed rank test, paired t test, and Friedman analysis of variance were conducted to evaluate differences in noise, TCM curves, and organ doses, respectively. Results Organ doses from localizer radiography were lower when using a PA instead of an AP projection (P = .005). The use of a PA projection resulted in higher TCM values for chest CT (P chest CT. © RSNA, 2016 Online supplemental material is available for this article.

  3. A PC program for estimating organ dose and effective dose values in computed tomography

    International Nuclear Information System (INIS)

    Kalender, W.A.; Schmidt, B.; Schmidt, M.; Zankl, M.

    1999-01-01

    Dose values in CT are specified by the manufacturers for all CT systems and operating conditions in phantoms. It is not trivial, however, to derive dose values in patients from this information. Therefore, we have developed a PC-based program which calculates organ dose and effective dose values for arbitrary scan parameters and anatomical ranges. Values for primary radiation are derived from measurements or manufacturer specifications; values for scattered radiation are derived from Monte Carlo calculations tabulated for standard anthropomorphic phantoms. Based on these values, organ doses can be computed by the program for arbitrary scan protocols in conventional and in spiral CT. Effective dose values are also provided, both with ICRP 26 and ICRP 60 tissue-weighting coefficients. Results for several standard CT protocols are presented in tabular form in this paper. In addition, potential for dose reduction is demonstrated, for example, in spiral CT and in quantitative CT. Providing realistic patient dose estimates for arbitrary CT protocols is relevant both for the physician and the patient, and it is particularly useful for educational and training purposes. The program, called WinDose, is now in use at the Erlangen University hospitals (Germany) as an information tool for radiologists and patients. Further extensions are planned. (orig.)

  4. Visual classification of emphysema heterogeneity compared with objective measurements: HRCT vs spiral CT in candidates for lung volume reduction surgery

    International Nuclear Information System (INIS)

    Cederlund, K.; Hoegberg, S.; Rasmussen, E.; Svane, B.; Bergstrand, L.; Tylen, U.; Aspelin, P.

    2002-01-01

    The aim of this study was to investigate whether spiral CT is superior to high-resolution computed tomography (HRCT) in evaluating the radiological morphology of emphysema, and whether the combination of both CT techniques improves the evaluation in patients undergoing lung volume reduction surgery (LVRS). The material consisted of HRCT (with 2-mm slice thickness) and spiral CT (with 10-mm slice thickness) of 94 candidates for LVRS. Selected image pairs from these examinations were evaluated. Each image pair consisted of one image from the cranial part of the lung and one image from the caudal part. The degree of emphysema in the two images was calculated by computer. The difference between the images determined the degree of heterogeneity. Five classes of heterogeneity were defined. The study was performed by visual classification of 95 image pairs (spiral CT) and 95 image pairs (HRCT) into one of five different classes of emphysema heterogeneity. This visual classification was compared with the computer-based classification. Spiral CT was superior to HRCT with 47% correct classifications of emphysema heterogeneity compared with 40% for HRCT-based classification (p<0.05). The combination of the techniques did not improve the evaluation (42%). Spiral CT is superior to HRCT in determining heterogeneity of emphysema visually, and should be included in the pre-operative CT evaluation of LVRS candidates. (orig.)

  5. Visual classification of emphysema heterogeneity compared with objective measurements: HRCT vs spiral CT in candidates for lung volume reduction surgery

    Energy Technology Data Exchange (ETDEWEB)

    Cederlund, K.; Hoegberg, S.; Rasmussen, E.; Svane, B. [Department of Thoracic Radiology, Karolinska Hospital, Stockholm (Sweden); Bergstrand, L. [Department of Radiology, Danderyds Hospital, Danderyd (Sweden); Tylen, U. [Deparment of Radiology, Sahlgrenska University Hospital, Gothenberg (Sweden); Aspelin, P. [Department of Radiology, Huddinge University Hospital, Huddinge (Sweden)

    2002-05-01

    The aim of this study was to investigate whether spiral CT is superior to high-resolution computed tomography (HRCT) in evaluating the radiological morphology of emphysema, and whether the combination of both CT techniques improves the evaluation in patients undergoing lung volume reduction surgery (LVRS). The material consisted of HRCT (with 2-mm slice thickness) and spiral CT (with 10-mm slice thickness) of 94 candidates for LVRS. Selected image pairs from these examinations were evaluated. Each image pair consisted of one image from the cranial part of the lung and one image from the caudal part. The degree of emphysema in the two images was calculated by computer. The difference between the images determined the degree of heterogeneity. Five classes of heterogeneity were defined. The study was performed by visual classification of 95 image pairs (spiral CT) and 95 image pairs (HRCT) into one of five different classes of emphysema heterogeneity. This visual classification was compared with the computer-based classification. Spiral CT was superior to HRCT with 47% correct classifications of emphysema heterogeneity compared with 40% for HRCT-based classification (p<0.05). The combination of the techniques did not improve the evaluation (42%). Spiral CT is superior to HRCT in determining heterogeneity of emphysema visually, and should be included in the pre-operative CT evaluation of LVRS candidates. (orig.)

  6. Lesion detection performance: comparative analysis of low-dose CT data of the chest on two hybrid imaging systems.

    Science.gov (United States)

    Jessop, Maryam; Thompson, John D; Coward, Joanne; Sanderud, Audun; Jorge, José; de Groot, Martijn; Lança, Luís; Hogg, Peter

    2015-03-01

    Incidental findings on low-dose CT images obtained during hybrid imaging are an increasing phenomenon as CT technology advances. Understanding the diagnostic value of incidental findings along with the technical limitations is important when reporting image results and recommending follow-up, which may result in an additional radiation dose from further diagnostic imaging and an increase in patient anxiety. This study assessed lesions incidentally detected on CT images acquired for attenuation correction on two SPECT/CT systems. An anthropomorphic chest phantom containing simulated lesions of varying size and density was imaged on an Infinia Hawkeye 4 and a Symbia T6 using the low-dose CT settings applied for attenuation correction acquisitions in myocardial perfusion imaging. Twenty-two interpreters assessed 46 images from each SPECT/CT system (15 normal images and 31 abnormal images; 41 lesions). Data were evaluated using a jackknife alternative free-response receiver-operating-characteristic analysis (JAFROC). JAFROC analysis showed a significant difference (P detection, with the figures of merit being 0.599 (95% confidence interval, 0.568, 0.631) and 0.810 (95% confidence interval, 0.781, 0.839) for the Infinia Hawkeye 4 and Symbia T6, respectively. Lesion detection on the Infinia Hawkeye 4 was generally limited to larger, higher-density lesions. The Symbia T6 allowed improved detection rates for midsized lesions and some lower-density lesions. However, interpreters struggled to detect small (5 mm) lesions on both image sets, irrespective of density. Lesion detection is more reliable on low-dose CT images from the Symbia T6 than from the Infinia Hawkeye 4. This phantom-based study gives an indication of potential lesion detection in the clinical context as shown by two commonly used SPECT/CT systems, which may assist the clinician in determining whether further diagnostic imaging is justified. © 2015 by the Society of Nuclear Medicine and Molecular Imaging

  7. Ultra-low-dose lung screening CT with model-based iterative reconstruction: an assessment of image quality and lesion conspicuity.

    Science.gov (United States)

    Ju, Yun Hye; Lee, Geewon; Lee, Ji Won; Hong, Seung Baek; Suh, Young Ju; Jeong, Yeon Joo

    2018-05-01

    Background Reducing radiation dose inevitably increases image noise, and thus, it is important in low-dose computed tomography (CT) to maintain image quality and lesion detection performance. Purpose To assess image quality and lesion conspicuity of ultra-low-dose CT with model-based iterative reconstruction (MBIR) and to determine a suitable protocol for lung screening CT. Material and Methods A total of 120 heavy smokers underwent lung screening CT and were randomly and equally assigned to one of five groups: group 1 = 120 kVp, 25 mAs, with FBP reconstruction; group 2 = 120 kVp, 10 mAs, with MBIR; group 3 = 100 kVp, 15 mAs, with MBIR; group 4 = 100 kVp, 10 mAs, with MBIR; and group 5 = 100 kVp, 5 mAs, with MBIR. Two radiologists evaluated intergroup differences with respect to radiation dose, image noise, image quality, and lesion conspicuity using the Kruskal-Wallis test and the Chi-square test. Results Effective doses were 61-87% lower in groups 2-5 than in group 1. Image noises in groups 1 and 5 were significantly higher than in the other groups ( P image quality was best in group 1, but diagnostic acceptability of overall image qualities in groups 1-3 was not significantly different (all P values > 0.05). Lesion conspicuities were similar in groups 1-4, but were significantly poorer in group 5. Conclusion Lung screening CT with MBIR obtained at 100 kVp and 15 mAs enables a ∼60% reduction in radiation dose versus low-dose CT, while maintaining image quality and lesion conspicuity.

  8. SU-F-I-12: Region-Specific Dictionary Learning for Low-Dose X-Ray CT Reconstruction

    International Nuclear Information System (INIS)

    Xu, Q; Han, H; Xing, L

    2016-01-01

    Purpose: Dictionary learning based method has attracted more and more attentions in low-dose CT due to the superior performance on suppressing noise and preserving structural details. Considering the structures and noise vary from region to region in one imaging object, we propose a region-specific dictionary learning method to improve the low-dose CT reconstruction. Methods: A set of normal-dose images was used for dictionary learning. Segmentations were performed on these images, so that the training patch sets corresponding to different regions can be extracted out. After that, region-specific dictionaries were learned from these training sets. For the low-dose CT reconstruction, a conventional reconstruction, such as filtered back-projection (FBP), was performed firstly, and then segmentation was followed to segment the image into different regions. Sparsity constraints of each region based on its dictionary were used as regularization terms. The regularization parameters were selected adaptively according to different regions. A low-dose human thorax dataset was used to evaluate the proposed method. The single dictionary based method was performed for comparison. Results: Since the lung region is very different from the other part of thorax, two dictionaries corresponding to lung region and the rest part of thorax respectively were learned to better express the structural details and avoid artifacts. With only one dictionary some artifact appeared in the body region caused by the spot atoms corresponding to the structures in the lung region. And also some structure in the lung regions cannot be recovered well by only one dictionary. The quantitative indices of the result by the proposed method were also improved a little compared to the single dictionary based method. Conclusion: Region-specific dictionary can make the dictionary more adaptive to different region characteristics, which is much desirable for enhancing the performance of dictionary learning

  9. SU-F-I-12: Region-Specific Dictionary Learning for Low-Dose X-Ray CT Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q; Han, H; Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: Dictionary learning based method has attracted more and more attentions in low-dose CT due to the superior performance on suppressing noise and preserving structural details. Considering the structures and noise vary from region to region in one imaging object, we propose a region-specific dictionary learning method to improve the low-dose CT reconstruction. Methods: A set of normal-dose images was used for dictionary learning. Segmentations were performed on these images, so that the training patch sets corresponding to different regions can be extracted out. After that, region-specific dictionaries were learned from these training sets. For the low-dose CT reconstruction, a conventional reconstruction, such as filtered back-projection (FBP), was performed firstly, and then segmentation was followed to segment the image into different regions. Sparsity constraints of each region based on its dictionary were used as regularization terms. The regularization parameters were selected adaptively according to different regions. A low-dose human thorax dataset was used to evaluate the proposed method. The single dictionary based method was performed for comparison. Results: Since the lung region is very different from the other part of thorax, two dictionaries corresponding to lung region and the rest part of thorax respectively were learned to better express the structural details and avoid artifacts. With only one dictionary some artifact appeared in the body region caused by the spot atoms corresponding to the structures in the lung region. And also some structure in the lung regions cannot be recovered well by only one dictionary. The quantitative indices of the result by the proposed method were also improved a little compared to the single dictionary based method. Conclusion: Region-specific dictionary can make the dictionary more adaptive to different region characteristics, which is much desirable for enhancing the performance of dictionary learning

  10. Emphysema Quantification Using Low Dose Chest CT: Changes in Follow-Up Examinations of Asymptomatic Smokers

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Ho; Sun, Joo Sung; Kang, Doo Kyung [Dept. of Radiology, Ajou University School of Medicine, Suwon (Korea, Republic of); Park, Kwang Joo; Park, Kyung Joo [Dept. of Pulmolary Medicine, Ajou University School of Medicine, Suwon (Korea, Republic of)

    2012-01-15

    To evaluate the changes of emphysema quantification in a follow-up low dose CT compared with pulmonary function test (PFT) results in asymptomatic smokers. We selected 66 asymptomatic smokers (> 40 years old) who underwent a follow-up low dose CT at least one year after the first CT as well as PFT within the same time period. Emphysema quantification was performed using an automated measurement software and an emphysema index (EI) was calculated using multiple threshold values (-970--900 HU). The interval change of EI ({Delta} EI) was compared with the change in the PFT values. Mean follow-up %forced expiratory volume in 1 second (88.1), %forced vital capacity (FVC) (89.5) and forced expiratory flow between 25 and 75% of vital capacity (3.21) were significantly lower compared with the values of initial tests (93.3, 93.1, 3.48). The mean EIs (2.4-25.6%) increased on follow-up CTs compared with initial EIs (2.1-24.5%), though the increase was not statistically significant. In a group with a follow-up period of 2 years or more (n = 32), EI significantly increased when using -900 HU as the threshold. The ({Delta} EIs were poorly correlated with the ({Delta} PFT values, but significantly correlated with ({Delta} FVC (r = -0.32--0.27). Emphysema quantification using low dose CT was not effective for the evaluation of short-term changes in less than a 2-year period, but may be used for long term follow-up series in asymptomatic smokers.

  11. Computer-aided detection of early interstitial lung diseases using low-dose CT images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Cheol; Kim, Soo Hyung [School of Electronics and Computer Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Tan, Jun; Wang Xingwei; Lederman, Dror; Leader, Joseph K; Zheng Bin, E-mail: zhengb@upmc.edu [Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2011-02-21

    This study aims to develop a new computer-aided detection (CAD) scheme to detect early interstitial lung disease (ILD) using low-dose computed tomography (CT) examinations. The CAD scheme classifies each pixel depicted on the segmented lung areas into positive or negative groups for ILD using a mesh-grid-based region growth method and a multi-feature-based artificial neural network (ANN). A genetic algorithm was applied to select optimal image features and the ANN structure. In testing each CT examination, only pixels selected by the mesh-grid region growth method were analyzed and classified by the ANN to improve computational efficiency. All unselected pixels were classified as negative for ILD. After classifying all pixels into the positive and negative groups, CAD computed a detection score based on the ratio of the number of positive pixels to all pixels in the segmented lung areas, which indicates the likelihood of the test case being positive for ILD. When applying to an independent testing dataset of 15 positive and 15 negative cases, the CAD scheme yielded the area under receiver operating characteristic curve (AUC = 0.884 {+-} 0.064) and 80.0% sensitivity at 85.7% specificity. The results demonstrated the feasibility of applying the CAD scheme to automatically detect early ILD using low-dose CT examinations.

  12. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    Energy Technology Data Exchange (ETDEWEB)

    Han, H; Xing, L [Stanford University, Palo Alto, CA (United States); Liang, Z [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  13. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    International Nuclear Information System (INIS)

    Han, H; Xing, L; Liang, Z

    2016-01-01

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  14. Studies on image quality, high contrast resolution and dose for the axial skeleton and limbs with a new, dedicated CT system (ISO-C-3D)

    International Nuclear Information System (INIS)

    Rock, C.; Kotsianos, D.; Linsenmaier, U.; Fischer, T.

    2002-01-01

    Purpose: Evaluation of 3D-CT imaging of the axial skeleton and different joints of the lower and upper extremities with a new dedicated CT system (ISO-C-3D) based on a mobile isocentric C-arm image amplifier. Material and Methods: 27 cadaveric specimes of different joints of the lower and upper extremities and of the spinal column were examined with 3D-CT imaging (ISO-C-3d). All images were evaluated by 3 radiologists for image quality using a semiquantitative score (score value 1: poor quality; score value 4: excellent quality). In addition, dose measurements and measurements of high contrast resolution were performed in comparison to conventional and low-dose spiral CT using a high contrast phantom (Catphan, Phantom Laboratories). Results: Adequate image quality (mean score values 3-4) could be achieved with an applied dose comparable to low-dose CT in smaller joints such as wrist, elbow, ankle and knee. A remarkably inferior image quality resulted in imaging of the hip, lumbar and thoracic spine (mean score values 2-3) in spite of almost doubling the dose (dose increased by 85 percent). The image quality of shoulder examinations was insufficient (mean score value 1). Phantom studies showed a high-contrast resolution comparable to helical CT in the xy-axis (9 lp/cm). Conclusion: Preliminary results show, that image quality of C-arm-based CT-imaging (ISO-C-3D) seems to be adequate in smaller joints. ISO-C-3D images of the hip and axial skeleton show a decreased image quality, which does not seem to be sufficient for diagnosing subtle fractures. (orig.) [de

  15. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    International Nuclear Information System (INIS)

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-01-01

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  16. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Hamid, E-mail: Hamid_rbp@yahoo.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shiri, Isaac [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Salimi, Yazdan [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarebani, Maghsoud; Mehdinia, Reza [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Deevband, Mohammad Reza [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Radiation Biology Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sohrabi, Ahmad [Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad, E-mail: bitarafan@hotmail.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  17. Radiation exposure during paediatric CT in Sudan: CT dose, organ and effective doses

    International Nuclear Information System (INIS)

    Suliman, I.I.; Khamis, H.M.; Ombada, T.H.; Alzimami, K.; Alkhorayef, M.; Sulieman, A.

    2015-01-01

    The purpose of this study was to assess the magnitude of radiation exposure during paediatric CT in Sudanese hospitals. Doses were determined from CT acquisition parameters using CT-Expo 2.1 dosimetry software. Doses were evaluated for three patient ages (0-1, 1-5 and 5-10 y) and two common procedures (head and abdomen). For children aged 0-1 y, volume CT air kerma index (C vol ), air Kerma-length product and effective dose (E) values were 19.1 mGy, 265 mGy.cm and 3.1 mSv, respectively, at head CT and those at abdominal CT were 8.8 mGy, 242 mGy.cm and 7.7 mSv, respectively. Those for children aged 1-5 y were 22.5 mGy, 305 mGy.cm and 1.1 mSv, respectively, at head CT and 12.6 mGy, 317 mGy.cm, and 5.1 mSv, respectively, at abdominal CT. Dose values and variations were comparable with those reported in the literature. Organ equivalent doses vary from 7.5 to 11.6 mSv for testes, from 9.0 to 10.0 mSv for ovaries and from 11.1 to 14.3 mSv for uterus in abdominal CT. The results are useful for dose optimisation and derivation of national diagnostic reference levels. (authors)

  18. PET/CT in malignant melanoma: contrast-enhanced CT versus plain low-dose CT

    International Nuclear Information System (INIS)

    Pfluger, Thomas; Schneider, Vera; Fougere, Christian la; Bartenstein, Peter; Weiss, Mayo; Melzer, Henriette Ingrid; Coppenrath, Eva; Berking, Carola

    2011-01-01

    The aim of this study was to evaluate the diagnostic value of contrast-enhanced CT (CECT) versus non-enhanced low-dose CT (NECT) in the staging of advanced malignant melanoma with 18 F-fluordeoxyglucose (FDG) positron emission tomography (PET)/CT. In total, 50 18 F-FDG PET/CT examinations were performed in 50 patients with metastasized melanoma. For attenuation correction, whole-body NECT was performed followed by diagnostic CECT with contrast agent. For the whole-body PET, 18 F-FDG was applied. Criteria for evaluation were signs of vital tumour tissue (extent of lesions, contrast enhancement, maximum standardized uptake value >2.5). Findings suspicious for melanoma were considered lesions. NECT, CECT and 18 F-FDG PET were evaluated separately, followed by combined analysis of PET/NECT and PET/CECT. Findings were verified histologically and/or by follow-up (>6 months). Overall, 232 lesions were analysed, and 151 proved to be metastases. The sensitivity of NECT, CECT, PET, PET/NECT and PET/CECT was 62, 85, 90, 97 and 100%, and specificity was 52, 63, 88, 93 and 93%, respectively. Compared to CECT, NECT obtained additional false-negative results: lymph node (n = 19) and liver/spleen metastases (n = 9). Misinterpreted physiological structures mainly caused additional false-positive findings (n = 17). In combined analysis of PET/NECT, six false-positive [other tumours (n = 2), inflammatory lymph nodes (n = 2), inflammatory lung lesion (n = 1), blood vessel (n = 1)] and five false-negative findings [liver (n = 3), spleen (n = 1), lymph node metastases (n = 1)] remained. On PET/CECT, six false-positive [inflammatory lymph nodes (n = 3), other tumours (n = 2), inflammatory lung lesion (n = 1)] and no false-negative findings occurred. However, additional false findings on PET/NECT (6 of 232) did not change staging compared to PET/CECT. Our results indicate that it is justified to perform PET/NECT instead of PET/CECT for melanoma staging. (orig.)

  19. Low-Dose Contrast-Enhanced Breast CT Using Spectral Shaping Filters: An Experimental Study.

    Science.gov (United States)

    Makeev, Andrey; Glick, Stephen J

    2017-12-01

    Iodinated contrast-enhanced X-ray imaging of the breast has been studied with various modalities, including full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast CT. Contrast imaging with breast CT has a number of advantages over FFDM and DBT, including the lack of breast compression, and generation of fully isotropic 3-D reconstructions. Nonetheless, for breast CT to be considered as a viable tool for routine clinical use, it would be desirable to reduce radiation dose. One approach for dose reduction in breast CT is spectral shaping using X-ray filters. In this paper, two high atomic number filter materials are studied, namely, gadolinium (Gd) and erbium (Er), and compared with Al and Cu filters currently used in breast CT systems. Task-based performance is assessed by imaging a cylindrical poly(methyl methacrylate) phantom with iodine inserts on a benchtop breast CT system that emulates clinical breast CT. To evaluate detectability, a channelized hoteling observer (CHO) is used with sums of Laguerre-Gauss channels. It was observed that spectral shaping using Er and Gd filters substantially increased the dose efficiency (defined as signal-to-noise ratio of the CHO divided by mean glandular dose) as compared with kilovolt peak and filter settings used in commercial and prototype breast CT systems. These experimental phantom study results are encouraging for reducing dose of breast CT, however, further evaluation involving patients is needed.

  20. Low-Dose and Standard-Dose Unenhanced Helical Computed Tomography for the Assessment of Acute Renal Colic: Prospective Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Hwang, Im Kyung; Choi, Yo Won; Namkung, Sook; Kim, Heung Cheol; Hwang, Woo Cheol; Choi, Kuk Myung; Park, Ji Kang; Han, Tae Il; Kang, Weechang [Cheju National Univ. College of Medicine, Jeju (Korea, Republic of). Dept. of Diagnostic Radiology

    2005-11-01

    Purpose: To compare the efficacy of low-dose and standard-dose computed tomography (CT) for the diagnosis of ureteral stones. Material and Methods: Unenhanced helical CT was performed with both a standard dose (260 mAs, pitch 1.5) and a low dose (50 mAs, pitch 1.5) in 121 patients suspected of having acute renal colic. The two studies were prospectively and independently interpreted for the presence and location of ureteral stones, abnormalities unrelated to stone disease, identification of secondary signs, i.e. hydronephrosis and perinephric stranding, and tissue rim sign. The standard-dose CT images were interpreted by one reviewer and the low-dose CT images independently by two reviewers unaware of the standard-dose CT findings. The findings of the standard and low-dose CT scans were compared with the exact McNemar test. Interobserver agreements were assessed with kappa analysis. The effective radiation doses resulting from two different protocols were calculated by means of commercially available software to which the Monte-Carlo phantom model was given. Results: The sensitivity, specificity, and accuracy of standard-dose CT for detecting ureteral stones were 99%, 93%, and 98%, respectively, whereas for the two reviewers the sensitivity of low-dose CT was 93% and 95%, specificity 86%, and accuracy 92% and 94%. We found no significant differences between standard-dose and low-dose CT in the sensitivity and specificity for diagnosing ureter stones ( P >0.05 for both). However, the sensitivity of low-dose CT for detection of 19 stones less than or equal to 2 mm in diameter was 79% and 68%, respectively, for the two reviewers. Low-dose CT was comparable to standard-dose CT in visualizing hydronephrosis and the tissue rim sign. Perinephric stranding was far less clear on low-dose CT. Low-dose CT had the same diagnostic performance as standard-dose CT in diagnosing alternative diseases. Interobserver agreement between the two low-dose CT reviewers in the diagnosis of

  1. Low-dose celiac CT angiography with fixed current-time product

    International Nuclear Information System (INIS)

    Yu Hong; Li Huimin; Li Xiaolin; Zhu Shiqiang; Zhang Jiaming; Wang Xiangming; Zou Xiaofeng

    2009-01-01

    Objective: To characterize the feasibility of low-dose CT angiography on 16-slice multi-slice computed tomography (16-MSCT), and its relationship to the noise in the pre-contrast image and enhancement value. Methods: Forty-three consecutive patients (male 21, female 22, mean age 59 years, median age 56 years) underwent abdominal 16-MSCT (Toshiba Aquilion 16) with constant scanning parameters including 120 kVp, a 0.5-second gantry rotation time, a pitch of 0.938: 1, and 16 x 1-mm detector collimation. The mA was set at 200 in the pre-contrast scan and 160 in the contrast-enhanced scan. The arterial phase images were retrospectively reconstructed with 1-mm slice thickness, 0.8 mm interval. The pre-contrast noise was defined as the standard deviation (SD) of the aorta at the level of right posterior crura of diaphragm. The enhancement of aorta was also measured at level of celiac artery. The volume rendering of CT angiography was made and classified into three grades (excellent, good, bad). Receiver operating characteristic curve (ROC) was used to evaluate the relationship between the image quality of CT angiography and noise in the pre-contrast image and enhancement value. Results: Twenty-five cases had the aorta enhancement between 300.0-400.0 HU. The sensitivity and specificity of excellent CTA image was 75% and 62%, respectively when the SD was 12.00. Eighteen cases had the aorta enhancement more than 400.0 HU. The sensitivity and specificity of excellent CTA image was all 100% when the SD was 12.25, and 100% and 75%, respectively when the SD was 13.35. The area under curve of CTA image quality and enhancement in receiver-operated characteristic analysis was 0.907. The enhancement was more than 356.7 HU when the sensitivity and specificity of excellent CTA image was 100% and 60%, respectively, and 389.8 HU when 78% and 80%. When the enhancement was more than 442.4 HU, the specificity of excellent CTA image was 100%. Conclusions: MSCT angiography with low radiation

  2. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT.

    Science.gov (United States)

    Messerli, Michael; Ottilinger, Thorsten; Warschkow, René; Leschka, Sebastian; Alkadhi, Hatem; Wildermuth, Simon; Bauer, Ralf W

    2017-06-01

    To determine whether ultralow dose chest CT with tin filtration can be used for emphysema quantification and lung volumetry and to assess differences in emphysema measurements and lung volume between standard dose and ultralow dose CT scans using advanced modeled iterative reconstruction (ADMIRE). 84 consecutive patients from a prospective, IRB-approved single-center study were included and underwent clinically indicated standard dose chest CT (1.7±0.6mSv) and additional single-energy ultralow dose CT (0.14±0.01mSv) at 100kV and fixed tube current at 70mAs with tin filtration in the same session. Forty of the 84 patients (48%) had no emphysema, 44 (52%) had emphysema. One radiologist performed fully automated software-based pulmonary emphysema quantification and lung volumetry of standard and ultralow dose CT with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparison of emphysema and lung volume. Lung volumes were compared using the concordance correlation coefficient. The median low-attenuation areas (LAA) using filtered back projection (FBP) in standard dose was 4.4% and decreased to 2.6%, 2.1% and 1.8% using ADMIRE 3, 4, and 5, respectively. The median values of LAA in ultralow dose CT were 5.7%, 4.1% and 2.4% for ADMIRE 3, 4, and 5, respectively. There was no statistically significant difference between LAA in standard dose CT using FBP and ultralow dose using ADMIRE 4 (p=0.358) as well as in standard dose CT using ADMIRE 3 and ultralow dose using ADMIRE 5 (p=0.966). In comparison with standard dose FBP the concordance correlation coefficients of lung volumetry were 1.000, 0.999, and 0.999 for ADMIRE 3, 4, and 5 in standard dose, and 0.972 for ADMIRE 3, 4 and 5 in ultralow dose CT. Ultralow dose CT at chest X-ray equivalent dose levels allows for lung volumetry as well as detection and quantification of emphysema. However, longitudinal emphysema analyses should be performed with the same scan protocol and

  3. Usefulness evaluation of low-dose for emphysema: Compared with high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jeong [Dept. of Radiological Technology, Daejeon Health Institute of Technology, Daejeon (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluate the usefulness of low-dose CT (LDCT) for emphysema compared with high-resolution CT (HRCT). Measurements of radiation dose and noise were repeated 3 times in same exposure condition which was similar with obtaining HRCT and LDCT images. We analysed reading results of 146 subjects. Six images per participants selected for emphysema grading. Emphysema was graded for all 6 zones on the left and right sides of the lungs by the consensus reading of two chest radiologists using a 4-point scale. Between the HRCT and LDCT images, diagnostic differences and agreements for emphysema were analyzed by McNemar's and unweighted kappa tests, and radiation doses and noise by a Mann-Whitney U-test, using the SPSS 19.0 program. Radiation dose from HRCT was significantly higher than that of LDCT, but the noise was significantly lower in HRCT than in LDCT. Diagnostic agreement for emphysema between HRCT and LDCT images was excellent (k-value=0.88). Emphysema grading scores were not significantly different between HRCT and LDCT images for all six lung zones. Emphysema grading scores from LDCT images were significantly correlated with increased scores on HRCT images (r=0.599, p < 0.001). Considering the tradeoff between radiation dose and image noise, LDCT could be used as the gold standard method instead of HRCT for emphysema detection and grading.

  4. Evaluation of the low dose cardiac CT imaging using ASIR technique

    Science.gov (United States)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  5. Three-dimensional spiral CT of craniofacial malformations in children

    International Nuclear Information System (INIS)

    Binaghi, S.; Gudinchet, F.

    2000-01-01

    Objective. To assess the value of three-dimensional CT (3D CT) in the diagnosis and management of suspected paediatric craniofacial malformations. Materials and methods. Twenty-eight children (12 girls, 16 boys) with a mean age of 4 years, suffering from craniofacial or cervical malformations, underwent craniofacial spiral CT. 3D reformatting was performed using an independent workstation. Results. 3D CT allowed the preoperative evaluation of 16 patients with craniosynostosis and the post-surgical management of 2 patients. 3D CT clearly depicted malformations of the skull base involving the petrous bone in seven patients (four cases of Goldenhar-Gorlin syndrome, one case of Treacher-Collins syndrome and two cases of Crouzon's disease). Four patients with craniofacial clefts were also evaluated. Radiological findings were confirmed by the clinical and intraoperative findings in all patients that underwent surgical treatment. Movement artefacts and ''Lego effect'' related to abrupt change of cranial vault border were encountered and are discussed. Conclusions. 3D CT of the skull can safely and reliably identify paediatric craniofacial malformations involving bone, and it should be used as morphological mapping to help the surgeon in planning surgical treatment. (orig.)

  6. Development of low-dose protocols for thin-section CT assessment of cystic fibrosis in pediatric patients.

    LENUS (Irish Health Repository)

    O'Connor, Owen J

    2010-12-01

    To develop low-dose thin-section computed tomographic (CT) protocols for assessment of cystic fibrosis (CF) in pediatric patients and determine the clinical usefulness thereof compared with chest radiography.

  7. Routine chest and abdominal high-pitch CT: An alternative low dose protocol with preserved image quality

    International Nuclear Information System (INIS)

    Amacker, Nadja A.; Mader, Caecilia; Alkadhi, Hatem; Leschka, Sebastian; Frauenfelder, Thomas

    2012-01-01

    Objective: To investigate the radiation dose and image quality of the high-pitch dual source computer tomography (DSCT) for routine chest and abdominal scans. Methods: 130 consecutive patients (62 female, 68 male, median age 55 years) were included. All patients underwent 128-slice high-pitch DSCT (chest n = 99; abdomen n = 84) at a pitch of 3.2. Two observers independently rated image quality using a 4-point score (1: excellent to 4: non-diagnostic). Image noise was measured and operational radiation dose quantities were recorded. An additional group of 132 patients (chest, n = 80; abdomen n = 52) scanned with standard-pitch CT matched for age, gender, and body mass index (BMI) served as control group. Results: Interobserver agreement for image quality rating was good (k = 0.74). Subjective image quality of high-pitch CT was diagnostic in all patients (median score chest; 2, median score abdomen: 2). Image noise of high-pitch CT was comparable to standard-pitch for the chest (p = 0.32) but increased in the abdomen (p < 0.0001). For high-pitch CT radiation dose was 4.4 ± 0.9 mSv (chest) and 6.5 ± 1.2 mSv (abdomen). These values were significantly lower compared to standard-pitch CT (chest: 5.5 ± 1.2 mSv; abdomen: 11.3 ± 3.8 mSv). Conclusion: Based on the technical background high-pitch dual source CT may serve as an alternative scan mode for low radiation dose routine chest and abdominal CT.

  8. Body packers on your examination table: How helpful are plain x-ray images? A definitive low-dose CT protocol as a diagnosis tool for body packers.

    Science.gov (United States)

    Schulz, B; Grossbach, A; Gruber-Rouh, T; Zangos, S; Vogl, Th J; Eichler, K

    2014-12-01

    To analyze the clinical value and radiation dose of plain x-rays and CT in examining patients suspected of ingesting drug-filled packets. Thirty-eight patients with suspected internal concealment of drug-filled packets who were examined with plain x-rays or CT or both were included in the study. CT studies were performed using low-dose and standard-dose techniques. All radiographic images were analysed by two radiologists regarding identification of the packets and estimating the effective radiation dose from standard- and low-dose CT versus conventional x-ray examinations. Descriptive calculations were made regarding the number and density of packs and radiation dosage. The diagnostic performance of both radiologists with standard- and low-dose CT was calculated by analysing differences in the mean number of packs found. Thirty-one patients were positively identified as body packers with an average of 13 packs (min: n = 1, max: n = 58, total: n = 390); seven patients were not concealing drug packets. X-ray images were taken of 24 patients prior to CT, thus allowing a direct comparison between the two methods. The correct diagnosis was made in 42%, in 33% the radiologists were uncertain, and in 25% of drug packets were either not or wrongly identified. X-ray imaging had a positive predictive value of 20% with a negative predictive value of 81%. A total of 55 CT examinations were performed on all patients with a mean effective dose of 2 mSv (low dose) versus 9.3 mSv (standard dose). The visibility of packets on low-dose CT images compared to high-dose CT was not reduced: the radiologists identified 385 and 381 of the packets, respectively, with no difference regarding the examination technique (p = 0.24 and p = 0.253, respectively). The radiodensity of all drug-filled packets at CT ranged from 26-292 HU (mean 181.2 HU). X-ray imaging of supposed body packers leads to a significant risk of diagnostic errors and additional need for CT. Instead, a single abdominal low-dose

  9. Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle.

    Science.gov (United States)

    Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin

    2018-04-18

    Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.

  10. Aquilion ONE / ViSION Edition CT scanner realizing 3D dynamic observation with low-dose scanning

    International Nuclear Information System (INIS)

    Kazama, Masahiro; Saito, Yasuo

    2015-01-01

    Computed tomography (CT) scanners have been continuously advancing as essential diagnostic imaging equipment for the diagnosis and treatment of a variety of diseases, including the three major disease classes of cerebrovascular disease, cardiovascular disease, and cancer. Through the development of helical CT scanners and multislice CT scanners, Toshiba Medical Systems Corporation has developed the Aquilion ONE, a CT scanner with a scanning range of up to 160 mm per rotation that can obtain three-dimensional (3D) images of the brain, heart, and other organs in a single rotation. We have now developed the Aquilion ONE / ViSION Edition, a next-generation 320-row multislice CT scanner incorporating the latest technologies that achieves a shorter scanning time and significant reduction in dose compared with conventional products. This product with its low-dose scanning technology will contribute to the practical realization of new diagnosis and treatment modalities employing four-dimensional (4D) data based on 3D dynamic observations through continuous rotations. (author)

  11. Low dose CT perfusion in acute ischemic stroke.

    Science.gov (United States)

    Murphy, Amanda; So, Aaron; Lee, Ting-Yim; Symons, Sean; Jakubovic, Raphael; Zhang, Liying; Aviv, Richard I

    2014-12-01

    The purpose of this investigation is to determine if CT perfusion (CTP) measurements at low doses (LD = 20 or 50 mAs) are similar to those obtained at regular doses (RD = 100 mAs), with and without the addition of adaptive statistical iterative reconstruction (ASIR). A single-center, prospective study was performed in patients with acute ischemic stroke (n = 37; 54% male; age = 74 ± 15 years). Two CTP scans were performed on each subject: one at 100 mAs (RD) and one at either 50 or 20 mAs (LD). CTP parameters were compared between the RD and LD scans in regions of ischemia, infarction, and normal tissue. Differences were determined using a within-subjects ANOVA (p test post hoc analysis (p 50 mAs, there was no significant difference between cerebral blood flow (CBF), cerebral blood volume (CBV), or time to maximum enhancement (Tmax) values for the RD and LD scans in the ischemic, infarcted, or normal contralateral regions (p LD scans for all parameters in the ischemic and normal tissue regions (p > 0.05). CTP-derived CBF and CBV are not different at 50 mAs compared to 100 mAs, even without the addition of ASIR. Current CTP protocols can be modified to reduce the effective dose by 50 % without altering CTP measurements.

  12. Spiral CT in kidney: assumption of renal function by objective evaluation of renal cortical enhancement

    International Nuclear Information System (INIS)

    Choi, Bo Yoon; Lee, Jong Seok; Lee, Joon Woo; Myung, Jae Sung; Sim, Jung Suk; Seong, Chang Kyu; Kim, Seung Hyup; Choi, Guk Myeong; Chi, Seong Whi

    2000-01-01

    To correlate the degree of renal cortical enhancement, objectively evaluated by means of spiral CT with the serum level of creatinine, and to determine the extent to which this degree of enhancement may be used to detect renal parenchymal disease. Eighty patients (M:F = 50:30; age + 25-19, (mean 53) years) with available serum level of creatinine who underwent spiral CT between September and October 1999 were included in this study. In fifty patients the findings suggested hepatic or biliary diseases such as hepatoma, biliary cancer, or stone, while in thirty, renal diseases such as cyst, hematoma, or stone appeared to be present. Spiral CT imaging of the cortical phase was obtained at 30-40 seconds after the injection of 120 ml of non-ionic media at a rate of 3 ml/sec. The degree of renal cortical enhancement was calculated by dividing the CT attenuation number of renal cortex at the level of the renal hilum by the CT attenuation number of aorta at the same level. The degree of renal cortical enhancement was compared with the serum level of creatinine, and the degree of renal cortical enhancement in renal parenchymal disease with that of the normal group. Among eighty patients there were five with renal parenchymal disease and 75 with normal renal function. The ratio of the CT attenuation number of renal cortex to that of aorta at the level of the renal hilum ranged between 0.49 and 0.99 (mean, 0.79; standard deviation, 0.15). while the serum level of creatinine ranged between 0.6 and 3.2 mg/dl. There was significant correlation (coefficient of -0.346) and a statistically significant probability of 0.002 between the ratio of the CT attenuation numbers and the serum level of creatinine. There was a significant difference (statistically significant probability of less than 0.01) between those with renal parenchymal disease and the normal group. The use of spiral CT to measure the degree of renal cortical enhancement provides not only an effective index for

  13. Spiral CT and optimization of the modalities of the iodinated intravenous contrast material: Experimental studies in human pathology

    International Nuclear Information System (INIS)

    Bonaldi, V.

    1998-01-01

    Spiral (or helical) CT represents the most recent improvement in the field of computed assisted tomography (CAT scan). The capabilities of this new imaging modality are much superior to these of conventional CT scanning; then result from the rapid acquisition and from the volumetric nature of the derived data set. The short time of data acquisition had made mandatory the revision of protocols for intravenous administration of iodinated contrast material. By the means of several studies, carried out on pathologic and healthy patients, we have attempted to improve knowledge in factors influencing CT attenuation values after injection of contrast material, in the aim of improving contrast administration performed during spiral CT scanning. Anatomical landmarks that we have studied till now have been liver, the pancreas, the kidney and the cervical spine. In addition, a paired based methodology has been used. The volumetric set of data derived from spiral CT scanning leads to optimal post-processing tasks, the most interesting being related to cine-display and multiplanar reformatting; both modalities have been evaluated, about the pancreas and the musculo-skeletal system respectively. Conversely, this new modality, as for other imaging modalities, is responsible for additional costs derived from restless increase in the number of images to be dealt with and from the occurrence of new tasks (in post-processing particularly). The place of spiral CT in diagnostic strategies among other modern imaging modalities should be assessed, especially with respect to Magnetic Resonance Imaging (MRI). (author)

  14. Intra-arterial Ultra-low-Dose CT Angiography of Lower Extremity in Diabetic Patients

    Energy Technology Data Exchange (ETDEWEB)

    Özgen, Ali, E-mail: draliozgen@hotmail.com [Yeditepe University Hospital, Department of Radiology (Turkey); Sanioğlu, Soner [Yeditepe University Hospital, Department of Cardiovascular Surgery (Turkey); Bingöl, Uğur Anıl [Yeditepe University Hospital, Department of Plastic Surgery (Turkey)

    2016-08-15

    PurposeTo image lower extremity arteries by CT angiography using a very low-dose intra-arterial contrast medium in patients with high risk of developing contrast-induced nephropathy (CIN).Materials and MethodsThree cases with long-standing diabetes mellitus and signs of lower extremity atherosclerotic disease were evaluated by CT angiography using 0.1 ml/kg of the body weight of contrast medium given via 10-cm-long 4F introducer by puncturing the CFA. Images were evaluated by an interventional radiologist and a cardiovascular surgeon. Density values of the lower extremity arteries were also calculated. Findings in two cases were compared with digital subtraction angiography images performed for percutaneous revascularization. Blood creatinine levels were followed for possible CIN.ResultsIntra-arterial CT angiography images were considered diagnostic in all patients and optimal in one patient. No patient developed CIN after intra-arterial CT angiography, while one patient developed CIN after percutaneous intervention.ConclusionIntra-arterial CT angiography of lower extremity might be performed in selected patients with high risk of developing CIN. Our limited experience suggests that as low as of 0.1 ml/kg of the body weight of contrast medium may result in adequate diagnostic imaging.

  15. Establishment of an orthotopic lung cancer model in nude mice and its evaluation by spiral CT.

    Science.gov (United States)

    Liu, Xiang; Liu, Jun; Guan, Yubao; Li, Huiling; Huang, Liyan; Tang, Hailing; He, Jianxing

    2012-04-01

    To establish a simple and highly efficient orthotopic animal model of lung cancer cell line A549 and evaluate the growth pattern of intrathoracic tumors by spiral CT. A549 cells (5×10(6) mL(-1)) were suspended and inoculated into the right lung of BALB/c nude mice via intrathoracic injection. Nude mice were scanned three times each week by spiral CT after inoculation of lung cancer cell line A549. The survival time and body weight of nude mice as well as tumor invasion and metastasis were examined. Tissue was collected for subsequent histological assay after autopsia of mice. The tumor-forming rate of the orthotopic lung cancer model was 90%. The median survival time was 30.7 (range, 20-41) days. The incidence of tumor metastasis was 100%. The mean tumor diameter and the average CT value gradually increased in a time-dependent manner. The method of establishing the orthotopic lung cancer model through transplanting A549 cells into the lung of nude mice is simple and highly successful. Spiral CT can be used to evaluate intrathoracic tumor growth in nude mice vividly and dynamically.

  16. Borrmann type IV adenocarcinoma versus gastric lymphoma : spiral CT evaluation

    International Nuclear Information System (INIS)

    Seo, Bo Kyoung; Kim, Yun Hwan; Shin, Kue Hee; Hong, Suk Joo; Kim, Hong Weon; Park, Cheol Min; Chung, Kyoo Byung; Cho, Hyun Deuk

    1999-01-01

    To distinguish the spiral CT findings of Borrmann type IV adenocarcinoma from those of gastric lymphoma with diffuse gastric wall thickening. We retrospectively reviewed the spiral CT scans of 30 patients with Borrmann type IV adenocarcinoma and nine with gastric lymphoma with diffuse gastric wall thickening. In all patients the respective condition was pathologically confirmed by gastrectomy. CT scanning was performed after peroral administration of 500-700ml of water. A total of 120-140 ml bolus of nonionic contrast material was administered intravenously at a flow rate of 3 ml/sec and two-phase images were obtained at 35-45 sec(early phase) and 180 sec(delayed phase) after the start of bolus injection. Spiral CT was performed with 10mm collimation, 10mm/sec table feed and 10mm reconstruction. We evaluated the degree and homogeneity of enhancement of thickened entire gastric wall, and the enhancement pattern of gastric inner layer, as seen on early-phase CT scans. On early and delayed views, the thickness of gastric wall and the presence of perigastric fat infiltration were determined. The enhancement patterns of gastric inner layer were classified as either continuous or discontinuous thick enhancement, thin enhancement, or nonenhancement. The thickness of gastric wall was 1.2-3.5cm(mean 2.2cm) in cases of adenocarcinoma and 1.2-7.6cm(mean 4cm) in lymphoma. Perigastric fat infiltration was seen in 24 patients with adenocarcinoma(80%) and four with lymphoma(44%). In those with adenocarcinoma, the degree of enhancement of entire gastric wall was hyperdense in fifteen patients(50%) and isointense in eleven (37%). Seven patients with lymphoma(78%)showed hypodensity. In those with adenocarcinoma, continuous thick enhancement of gastric inner layer was seen in 18 patients(60%) and discontinuous thick enhancement in nine(30%). In lymphoma cases, no thick enhancement was observed. Thin enhancement of gastric inner layer was demonstrated in three patients with

  17. Clinical application of 16-slice spiral CT in reconstruction imaging of coronary artery for diagnosing coronary disense

    International Nuclear Information System (INIS)

    Mao Xinbo; Zhu Xinjin; Zeng Huiliang; Chen Xueguang

    2005-01-01

    Objective: An evaluation of the reconstructed imaging of coronary arteries with 16-slice spiral CT in diagnosis of coronary disease. Methods: The reconstructed images of coronary arteries obtained on a 16-slice spiral CT scanner were reviewed in 60 cases, on which the following techniques were applied: retrospective ECG-gating, Segment method with 75% R-R interval, volume rendering technique (VRT), maximum intensity projection (MIP), mulfiplanar reconstruction (MPR), curved planar reconstruction (CPR) and CT virtual endoscopy (CTVE). Results: In all 60 cases, different stages of CHD were revealed in 21 cases; none abnormality was found in 33; and images were in poor quality in 2 cases, which was available for diagnosis. There were 4 stents planted in 4 cases: soft plaque suspected in lcase, patent in 2 and occlude in 1. Conclusion: The reconstructed imaging of coronary arteries with 16-slice spiral CT is superior modality in evaluation of severe coronary stenosis, plaques, and the pantency of the intra-luminal stents, which is an efficient and non-invasive imaging in diagnosis of early-stage CHD and screening in high risk population. (authors)

  18. Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate

    International Nuclear Information System (INIS)

    Riegel, Adam C.; Ahmad, Moiz; Sun Xiaojun; Pan Tinsu

    2008-01-01

    . The average maximum and mean γ indices were very low (well below 1), indicating good agreement between dose distributions. Increasing the cine duration generally increased the dose agreement. In the follow-up study, 49 of 50 patients had 100% of points within the PTV pass the γ criteria. The average maximum and mean γ indices were again well below 1, indicating good agreement. Dose calculation on RACT from cine CT is negligibly different from dose calculation on RACT from 4D-CT. Differences can be decreased further by increasing the cine duration of the cine CT scan.

  19. The diagnostic value of multi-slice spiral CT virtual bronchoscopy in tracheal and bronchial disease

    International Nuclear Information System (INIS)

    Han Ying; Ma Daqing

    2006-01-01

    Objective: To assess the diagnostic value of multi-slice spiral CT virtual bronchoscopy (CTVB) in tracheal and bronchial disease. Methods: Forty-two patients including central lung cancer (n=35), endobronchial tuberculosis (n=3), intrabronchial benign tumor (n=3), and intrabronchial foreign body (n=1) were examined by using multi-slice spiral CT examinations. All the final diagnosis were proved by pathology except 1 patient with endoluminal foreign body was proved by clinic. All patients were scanned on GE Lightspeed 99 scanner, using 10 mm collimation, pitch of 1.35, and reconstructed at 1 mm intervals and 1.25 mm thickness. The chest images of transverse CT and virtual bronchoscopy were viewed by two separate radiologists who were familiar with the tracheal and bronchial anatomy. Results: Among the 42 patients, the tumor of trachea and bronchial lumen appeared as masses in 22 of 35 patients with central lung cancer and bronchial stenosis was found in 13 of 35 patients with central lung cancer, and bronchial wall thickening was revealed on transverse CT in all 35 cases. 3 patients of endobronchial tuberculosis showed bronchial lumen narrowing on CTVB, the bronchial wall thickening was revealed on transverse CT, and the length of the wall thickening was long. 3 patients with intrabronchial benign tumor showed nodules in trachea and bronchial lumen on CTVB, and without wall thickening on transverse CT. CTVB could detect the occlusion of bronchial lumen in 1 patient with intrabronchial foreign body and CTVB was able to visualize the areas beyond stenosis, and the bronchial wall was without thickening on transverse CT. Conclusion: Multi- slice spiral CTVB could reflect the morphology of tracheal and bronchial disease. Combined with transverse CT, it could provide diagnostic reference value for bronchial disease. (authors)

  20. Volume-artifact reduction modality by helical CT of the anterior, middle and posterior carnial fossae. Comparison with conventional CT; Volumen-Artefakt-Reduktionstechnik mittels Spiral-CT in der vorderen, mittleren und hinteren Schaedelgrube. Vergleich mit der konventionellen kranialen CT

    Energy Technology Data Exchange (ETDEWEB)

    Dorenbeck, U.; Finkenzeller, T.; Hill, K.; Feuerbach, S.; Link, J. [Regensburg Univ. (Germany). Inst. fuer Roentgendiagnostik

    2000-04-01

    Purpose: The object of this study was to determine the extent to which a new volume-artifact reduction (VAR) modality using helical CT was able to reduce artifacts in the anterior, middle and posterior fossae in comparison with conventional CT (sequential mode). Methods: In a prospective, randomized trial, 50 patients underwent helical CT (VAR) and 50 underwent sequential CT. The results were evaluated by three radiologists; influences on image quality where scaled between 1 (no artifact) and 4 (not assessable). Eight regions of the anterior, middle and posterior fossae were evaluated. Results: On average, artifacts were scaled at 2.5 in helical CT (VAR) and 3.1 in conventional CT. Significant differences were seen at the eyeball, anterior to the petrosol bone, at the internal occipital crest, and at the level of the transverse sinus (p<0.005). Conclusions: Helical CT with the VAR modality is superior to conventional, sequential CT in the area of the anterior, middle and posterior fossae. (orig.) [German] Ziel: Das Ziel dieser Studie war herauszufinden, inwieweit ein neuer Volumen-Artefakt-Reduktionsmodus (VAR) im Spiral-CT in der vorderen, mittleren und hinteren Schaedelgrube gegenueber der Einzelschicht-CT zu einer Artefaktverringerung beitragen kann. Methoden: In einer prospektiven randomisierten Studie wurden 50 Untersuchungen mit Spiral-CT und 50 mit Einzelschicht-CT bezueglich Artefakten verglichen. Die Auswertung erfolgte durch drei Radiologen, die Bildqualitaet wurde in einer Skala zwischen 1 (kein Artefakt) und 4 (Beurteilung der Region wegen Artefakten nicht moeglich) angegeben. Acht anatomische Regionen in der vorderen, mittleren und hinteren Schaedelgrube wurden auf Beeintraechtigung durch Artefakte untersucht. Ergebnisse: Im Durchschnitt betrug die Bewertung fuer die Artefaktbeeintraechtigung beim Spiral-CT (VAR) 2,5 gegenueber 3,1 bei der Einzelschicht-CT. Der VAR-Modus ermoeglichte in der mittleren und hinteren Schaedelgrube sowie im Balbus oculi

  1. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    International Nuclear Information System (INIS)

    Hardy, A; Bostani, M; McMillan, K; Zankl, M; Cagnon, C; McNitt-Gray, M

    2016-01-01

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generated using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical

  2. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, A; Bostani, M [University of California, Los Angeles, Los Angeles, CA (United States); McMillan, K [Mayo Clinic, Rochester, MN (United States); Zankl, M [Helmholtz Zentrum Munchen, Neuherberg (Germany); Cagnon, C [UCLA Medical Center, Los Angeles, CA (United States); McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generated using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical

  3. MO-DE-207A-05: Dictionary Learning Based Reconstruction with Low-Rank Constraint for Low-Dose Spectral CT

    International Nuclear Information System (INIS)

    Xu, Q; Liu, H; Xing, L; Yu, H; Wang, G

    2016-01-01

    Purpose: Spectral CT enabled by an energy-resolved photon-counting detector outperforms conventional CT in terms of material discrimination, contrast resolution, etc. One reconstruction method for spectral CT is to generate a color image from a reconstructed component in each energy channel. However, given the radiation dose, the number of photons in each channel is limited, which will result in strong noise in each channel and affect the final color reconstruction. Here we propose a novel dictionary learning method for spectral CT that combines dictionary-based sparse representation method and the patch based low-rank constraint to simultaneously improve the reconstruction in each channel and to address the inter-channel correlations to further improve the reconstruction. Methods: The proposed method has two important features: (1) guarantee of the patch based sparsity in each energy channel, which is the result of the dictionary based sparse representation constraint; (2) the explicit consideration of the correlations among different energy channels, which is realized by patch-by-patch nuclear norm-based low-rank constraint. For each channel, the dictionary consists of two sub-dictionaries. One is learned from the average of the images in all energy channels, and the other is learned from the average of the images in all energy channels except the current channel. With average operation to reduce noise, these two dictionaries can effectively preserve the structural details and get rid of artifacts caused by noise. Combining them together can express all structural information in current channel. Results: Dictionary learning based methods can obtain better results than FBP and the TV-based method. With low-rank constraint, the image quality can be further improved in the channel with more noise. The final color result by the proposed method has the best visual quality. Conclusion: The proposed method can effectively improve the image quality of low-dose spectral

  4. MO-DE-207A-05: Dictionary Learning Based Reconstruction with Low-Rank Constraint for Low-Dose Spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q [Xi’an Jiaotong University, Xi’an (China); Stanford University School of Medicine, Stanford, CA (United States); Liu, H; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Yu, H [University of Massachusetts Lowell, Lowell, MA (United States); Wang, G [Rensselaer Polytechnic Instute., Troy, NY (United States)

    2016-06-15

    Purpose: Spectral CT enabled by an energy-resolved photon-counting detector outperforms conventional CT in terms of material discrimination, contrast resolution, etc. One reconstruction method for spectral CT is to generate a color image from a reconstructed component in each energy channel. However, given the radiation dose, the number of photons in each channel is limited, which will result in strong noise in each channel and affect the final color reconstruction. Here we propose a novel dictionary learning method for spectral CT that combines dictionary-based sparse representation method and the patch based low-rank constraint to simultaneously improve the reconstruction in each channel and to address the inter-channel correlations to further improve the reconstruction. Methods: The proposed method has two important features: (1) guarantee of the patch based sparsity in each energy channel, which is the result of the dictionary based sparse representation constraint; (2) the explicit consideration of the correlations among different energy channels, which is realized by patch-by-patch nuclear norm-based low-rank constraint. For each channel, the dictionary consists of two sub-dictionaries. One is learned from the average of the images in all energy channels, and the other is learned from the average of the images in all energy channels except the current channel. With average operation to reduce noise, these two dictionaries can effectively preserve the structural details and get rid of artifacts caused by noise. Combining them together can express all structural information in current channel. Results: Dictionary learning based methods can obtain better results than FBP and the TV-based method. With low-rank constraint, the image quality can be further improved in the channel with more noise. The final color result by the proposed method has the best visual quality. Conclusion: The proposed method can effectively improve the image quality of low-dose spectral

  5. Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE Dose)

    International Nuclear Information System (INIS)

    Greess, Holger; Noemayr, Anton; Baum, Ulrich; Lell, Michael; Boewing, Bernhard; Bautz, Werner A.; Wolf, Heiko; Kalender, Willi

    2002-01-01

    In a controlled patient study we investigated the potential of attenuation-based on-line modulation of the tube current to reduce milliampere values (mAs) in CT examinations of children without loss of image quality. mAs can be reduced for non-circular patient cross sections without an increase in noise if tube current is reduced at those angular positions where the patient diameter and, consequently, attenuation are small. We investigated a technical approach with an attenuation-based on-line control for the tube current realised as a work-in-progress implementation. The CT projection data are analysed in real time to determine optimal mAs values for each projection angle. We evaluated mAs reduction for 100 spiral CT examinations with attenuation-based on-line modulation of the tube current in a group of children. Two radiologists evaluated image quality by visual interpretation in consensus. We compared the mAs values read from the CT scanner with preset mAs of a standard protocol. Four different scan regions were examined in spiral technique (neck, thorax, abdomen, thorax and abdomen). We found the mAs product to be reduced typically by 10-60% depending on patient geometry and anatomical regions. The mean reduction was 22.3% (neck 20%, thorax 23%, abdomen 23%, thorax and abdomen 22%). In general, no deterioration of image quality was observed. There was no correlation between the age and the mean mAs reduction in the different anatomical regions. By classifying the children respectively to their weight, there is a positive trend between increasing weight and mAs reduction. We conclude that mAs in spiral CT examinations of children can be reduced substantially by attenuation-based on-line modulation of the tube current without deterioration of image quality. Attenuation-based on-line modulation of tube current is efficient and practical for reducing dose exposure to children. (orig.)

  6. Inter- and intrascanner variability of pulmonary nodule volumetry on low-dose 64-row CT : an anthropomorphic phantom study

    NARCIS (Netherlands)

    Xie, X.; Willemink, M. J.; Zhao, Y.; de Jong, P. A.; van Ooijen, P. M. A.; Oudkerk, M.; Greuter, M. J. W.; Vliegenthart, R.

    Objective: To assess inter- and intrascanner variability in volumetry of solid pulmonary nodules in an anthropomorphic thoracic phantom using low-dose CT. Methods: Five spherical solid artificial nodules [diameters 3, 5, 8, 10 and 12mm; CT density 1100 Hounsfield units (HU)] were randomly placed

  7. Radiation dose in CT are meeting the challenge

    International Nuclear Information System (INIS)

    Wang Jun

    2003-01-01

    Despite comprising only 2% of all examinations, CT contributed around 20% of the collective dose to the population from diagnostic imaging. An abdominal examination in an adult with an effective dose of 10 mSv has been estimated to increase the lifetime risk of fatal cancer by 1 in 2000. Children are 10 times more sensitive to the effects of radiation than middle aged adults. Girls are more sensitive than boys. Variations in CT practice, ease of using, urgency in multislice CT, unawaring of the 'uncoupling effect' in CT may be contributing to increasing in radiation dose. We must train and have an awareness of emerging materials and the implied changes in practice, with revision of protocols to take account of advances. The 'as low as reasonably achievable (ALARA) ' principle applies just as much to CT as it does to conventional radiography

  8. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol

    International Nuclear Information System (INIS)

    Thomas, C.; Patschan, O.; Nagele, U.; Stenzl, A.; Ketelsen, D.; Tsiflikas, I.; Reimann, A.; Brodoefel, H.; Claussen, C.; Kopp, A.; Heuschmid, M.; Schlemmer, H.P.; Buchgeister, M.

    2009-01-01

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo. (orig.)

  9. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol.

    Science.gov (United States)

    Thomas, C; Patschan, O; Ketelsen, D; Tsiflikas, I; Reimann, A; Brodoefel, H; Buchgeister, M; Nagele, U; Stenzl, A; Claussen, C; Kopp, A; Heuschmid, M; Schlemmer, H-P

    2009-06-01

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo.

  10. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C. [University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Patschan, O.; Nagele, U.; Stenzl, A. [University of Tuebingen, Department of Urology, Tuebingen (Germany); Ketelsen, D.; Tsiflikas, I.; Reimann, A.; Brodoefel, H.; Claussen, C.; Kopp, A.; Heuschmid, M.; Schlemmer, H.P. [University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Buchgeister, M. [University of Tuebingen, Medical Physics, Department of Radiation Oncology, Tuebingen (Germany)

    2009-06-15

    The efficiency and radiation dose of a low-dose dual-energy (DE) CT protocol for the evaluation of urinary calculus disease were evaluated. A low-dose dual-source DE-CT renal calculi protocol (140 kV, 46 mAs; 80 kV, 210 mAs) was derived from the single-energy (SE) CT protocol used in our institution for the detection of renal calculi (120 kV, 75 mAs). An Alderson-Rando phantom was equipped with thermoluminescence dosimeters and examined by CT with both protocols. The effective doses were calculated. Fifty-one patients with suspected or known urinary calculus disease underwent DE-CT. DE analysis was performed if calculi were detected using a dedicated software tool. Results were compared to chemical analysis after invasive calculus extraction. An effective dose of 3.43 mSv (male) and 5.30 mSv (female) was measured in the phantom for the DE protocol (vs. 3.17/4.57 mSv for the SE protocol). Urinary calculi were found in 34 patients; in 28 patients, calculi were removed and analyzed (23 patients with calcified calculi, three with uric acid calculi, one with 2,8-dihyxdroxyadenine-calculi, one patient with a mixed struvite calculus). DE analysis was able to distinguish between calcified and non-calcified calculi in all cases. In conclusion, dual-energy urinary calculus analysis is effective also with a low-dose protocol. The protocol tested in this study reliably identified calcified urinary calculi in vivo. (orig.)

  11. Image quality and radiation dose of low dose coronary CT angiography in obese patients: Sinogram affirmed iterative reconstruction versus filtered back projection

    International Nuclear Information System (INIS)

    Wang, Rui; Schoepf, U. Joseph; Wu, Runze; Reddy, Ryan P.; Zhang, Chuanchen; Yu, Wei; Liu, Yi; Zhang, Zhaoqi

    2012-01-01

    Purpose: To investigate the image quality and radiation dose of low radiation dose CT coronary angiography (CTCA) using sinogram affirmed iterative reconstruction (SAFIRE) compared with standard dose CTCA using filtered back-projection (FBP) in obese patients. Materials and methods: Seventy-eight consecutive obese patients were randomized into two groups and scanned using a prospectively ECG-triggered step-and-shot (SAS) CTCA protocol on a dual-source CT scanner. Thirty-nine patients (protocol A) were examined using a routine radiation dose protocol at 120 kV and images were reconstructed with FBP (protocol A). Thirty-nine patients (protocol B) were examined using a low dose protocol at 100 kV and images were reconstructed with SAFIRE. Two blinded observers independently assessed the image quality of each coronary segment using a 4-point scale (1 = non-diagnostic, 4 = excellent) and measured the objective parameters image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Radiation dose was calculated. Results: The coronary artery image quality scores, image noise, SNR and CNR were not significantly different between protocols A and B (all p > 0.05), with image quality scores of 3.51 ± 0.70 versus 3.55 ± 0.47, respectively. The effective radiation dose was significantly lower in protocol B (4.41 ± 0.83 mSv) than that in protocol A (8.83 ± 1.74 mSv, p < 0.01). Conclusion: Compared with standard dose CTCA using FBP, low dose CTCA using SAFIRE can maintain diagnostic image quality with 50% reduction of radiation dose.

  12. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT

    International Nuclear Information System (INIS)

    Kachelriess, Marc; Watzke, Oliver; Kalender, Willi A.

    2001-01-01

    In modern computed tomography (CT) there is a strong desire to reduce patient dose and/or to improve image quality by increasing spatial resolution and decreasing image noise. These are conflicting demands since increasing resolution at a constant noise level or decreasing noise at a constant resolution level implies a higher demand on x-ray power and an increase of patient dose. X-ray tube power is limited due to technical reasons. We therefore developed a generalized multi-dimensional adaptive filtering approach that applies nonlinear filters in up to three dimensions in the raw data domain. This new method differs from approaches in the literature since our nonlinear filters are applied not only in the detector row direction but also in the view and in the z-direction. This true three-dimensional filtering improves the quantum statistics of a measured projection value proportional to the third power of the filter size. Resolution tradeoffs are shared among these three dimensions and thus are considerably smaller as compared to one-dimensional smoothing approaches. Patient data of spiral and sequential single- and multi-slice CT scans as well as simulated spiral cone-beam data were processed to evaluate these new approaches. Image quality was assessed by evaluation of difference images, by measuring the image noise and the noise reduction, and by calculating the image resolution using point spread functions. The use of generalized adaptive filters helps to reduce image noise or, alternatively, patient dose. Image noise structures, typically along the direction of the highest attenuation, are effectively reduced. Noise reduction values of typically 30%-60% can be achieved in noncylindrical body regions like the shoulder. The loss in image resolution remains below 5% for all cases. In addition, the new method has a great potential to reduce metal artifacts, e.g., in the hip region

  13. Pulmonary emphysema quantitation with Computed Tomography. Comparison between the visual score with high resolution CT, expiratory density mask with spiral CT and lung function studies

    International Nuclear Information System (INIS)

    Zompatori, Maurizio; Battaglia, Milva; Rimondi, Maria Rita; Vivacqua, Donatella; Biscarini, Manuela; Fasano, Luca; Pacilli, Angela Maria Grazia; Guerrieri, Aldo; Fabbri, Mario; Cavina, Mauro

    1997-01-01

    CT is the most accurate method to detect pulmonary emphysema in vivo. They compared prospectively two different methods for emphysema quantitation in 5 normal volunteers and 20 consecutive patients with chronic obstructive pulmonary disease (COPD). All subjects were submitted to function tests and HRCT; three scans were acquired at preselected levels during inspiration. The type and extent of pulmonary emphysema were defined by two independent observers under blind conditions. Disagreements were subsequently settled by consent. All subjects were also examined with expiratory spiral CT using a density mask program, at two different cut-off levels (-850,-900 HU). Visual score and expiratory spiral density mask values (-850 HU) were significantly correlated (r = 0.86), but the visual extent of emphysema was always higher than shown by expiratory spiral CT. The emphysema extent assessed with both CT methods correlated with the function result of expiratory airflow obstruction and gas diffusion impairment (visual score versus forced expiratory volume in one second: r = -0.81, versus single breath carbon monoxide diffusion: r = -0.78. Spiral expiratory density mask -850 HU versus forced expiratory volume in one second: r = -0.85 versus single breath carbon monoxide diffusion: r = -0.77). When -900 HU was used as the cut-off value for the expiratory density mask, the correlation with single breath carbon monoxide diffusion worsened (r = -0.56). Visual score and expiratory density mask -850 HU gave similar results and permitted COPD patients to be clearly distinguished from normal controls (p < 0.01). They believe the true residual volume should lie somewhere in between the CT value and the function results with the helium dilution technique and conclude that the extent of pulmonary emphysema can be confidently assessed with CT methods. Finally, the simple visual score may be as reliable as such highly sophisticated new methods as the spiral expiratory density mask

  14. Evaluation of a low-dose CT protocol with oral contrast for assessment of acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Platon, Alexandra; Jlassi, Helmi; Becker, Christoph D.; Poletti, Pierre-Alexandre [University Hospital of Geneva, Department of Radiology, Geneva 14 (Switzerland); Rutschmann, Olivier T. [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Verdun, Francis R. [University Institute for Radiation Physics, Lausanne (Switzerland); Gervaz, Pascal [University Hospital of Geneva, Clinic of Digestive Surgery, Geneva (Switzerland)

    2009-02-15

    The aim of this study was to evaluate a low-dose CT with oral contrast medium (LDCT) for the diagnosis of acute appendicitis and compare its performance with standard-dose i.v. contrast-enhanced CT (standard CT) according to patients' BMIs. Eighty-six consecutive patients admitted with suspicion of acute appendicitis underwent LDCT (30 mAs), followed by standard CT (180 mAs). Both examinations were reviewed by two experienced radiologists for direct and indirect signs of appendicitis. Clinical and surgical follow-up was considered as the reference standard. Appendicitis was confirmed by surgery in 37 (43%) of the 86 patients. Twenty-nine (34%) patients eventually had an alternative discharge diagnosis to explain their abdominal pain. Clinical and biological follow-up was uneventful in 20 (23%) patients. LDCT and standard CT had the same sensitivity (100%, 33/33) and specificity (98%, 45/46) to diagnose appendicitis in patients with a body mass index (BMI) {>=} 18.5. In slim patients (BMI < 18.5), sensitivity to diagnose appendicitis was 50% (2/4) for LDCT and 100% (4/4) for standard CT, while specificity was identical for both techniques (67%, 2/3). LDCT may play a role in the diagnostic workup of patients with a BMI {>=} 18.5. (orig.)

  15. Evaluation of a low-dose CT protocol with oral contrast for assessment of acute appendicitis

    International Nuclear Information System (INIS)

    Platon, Alexandra; Jlassi, Helmi; Becker, Christoph D.; Poletti, Pierre-Alexandre; Rutschmann, Olivier T.; Verdun, Francis R.; Gervaz, Pascal

    2009-01-01

    The aim of this study was to evaluate a low-dose CT with oral contrast medium (LDCT) for the diagnosis of acute appendicitis and compare its performance with standard-dose i.v. contrast-enhanced CT (standard CT) according to patients' BMIs. Eighty-six consecutive patients admitted with suspicion of acute appendicitis underwent LDCT (30 mAs), followed by standard CT (180 mAs). Both examinations were reviewed by two experienced radiologists for direct and indirect signs of appendicitis. Clinical and surgical follow-up was considered as the reference standard. Appendicitis was confirmed by surgery in 37 (43%) of the 86 patients. Twenty-nine (34%) patients eventually had an alternative discharge diagnosis to explain their abdominal pain. Clinical and biological follow-up was uneventful in 20 (23%) patients. LDCT and standard CT had the same sensitivity (100%, 33/33) and specificity (98%, 45/46) to diagnose appendicitis in patients with a body mass index (BMI) ≥ 18.5. In slim patients (BMI < 18.5), sensitivity to diagnose appendicitis was 50% (2/4) for LDCT and 100% (4/4) for standard CT, while specificity was identical for both techniques (67%, 2/3). LDCT may play a role in the diagnostic workup of patients with a BMI ≥ 18.5. (orig.)

  16. Low-tube-voltage selection for non-contrast-enhanced CT: Comparison of the radiation dose in pediatric and adult phantoms.

    Science.gov (United States)

    Shimonobo, Toshiaki; Funama, Yoshinori; Utsunomiya, Daisuke; Nakaura, Takeshi; Oda, Seitaro; Kiguchi, Masao; Masuda, Takanori; Sakabe, Daisuke; Yamashita, Yasuyuki; Awai, Kazuo

    2016-01-01

    We used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT. Using a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors. The mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Central image archiving and managements system for multicenter clinical studies: Lessons from low-dose CT for appendicitis trial

    Energy Technology Data Exchange (ETDEWEB)

    Ko, You Sun; Lee, Kyong Joon; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); and others

    2017-03-15

    This special report aimed to document our experiences in implementing the Central Imaging Archiving and Management System (CIAMS) for a multicenter clinical trial, Low-dose CT for Appendicitis Trial (LOCAT), supported by the Korean Society of Radiology and Radiology Imaging Network of Korea for Clinical Research. LOCAT was a randomized controlled trial to determine whether low-dose CT is non-inferior to standard-dose CT with respect to the negative appendectomy rate in patients aged from 15 to 44 years. Site investigators downloaded the CT images from the site picture archiving and communication system servers, and uploaded the anonymized images to the primary server. CIAMS administrators inspected the images routed to the secondary server by a cross-check against image submission worksheets provided by the site investigators. The secondary server was automatically synchronized to the tertiary backup server. Up to June 2016, 2715 patients from 20 sites participated in LOCAT for 30 months. A total of 2539 patients' images (93.5%, 2539/2715) were uploaded to the primary server, 2193 patients' worksheets (80.8%, 2193/2715) were submitted, and 2163 patients' data (79.7%, 2163/2715) were finally monitored. No data error occurred.

  18. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  19. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children

    International Nuclear Information System (INIS)

    Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong

    2015-01-01

    It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children. (orig.)

  20. Three phase spiral liver Scanning

    International Nuclear Information System (INIS)

    Kanyanja, T.A.

    2006-01-01

    The ability to perform rapid back-to-back spiral acquisitions is an important recent technical advantage of spiral CT. this allows imaging of the upper abdomen (liver) during peak arterial enhancement (arterial phase) and during peak hepatic parenchymal enhancement (portal venous phase). Breatheld spiral CT has completely replaced dynamic incremental CT for evaluation of the liver. in selected patients with hyper vascular metastasis (hepatoma, neuroendocrine tumors, renal cell carcinoma, etc.) a biphasic examination is performed with one spiral acquisition obtained during the hepatic arterial phase and a second acquisition during the portal venous phase

  1. Application of low dose radiation and low concentration contrast media in enhanced CT scans in children with congenital heart disease.

    Science.gov (United States)

    Liu, Zhimin; Song, Lei; Yu, Tong; Gao, Jun; Zhang, Qifeng; Jiang, Ling; Liu, Yong; Peng, Yun

    2016-09-01

    The aim of this study was to explore the feasibility of using low dose radiation and low concentration contrast media in enhanced CT examinations in children with congenital heart disease. Ninety patients with congenital heart disease were randomly divided into three groups of 30 patients each who underwent contrast-enhanced cardiac scans on a Discovery CT750 HD scanner. Group A received 270 mg I/mL iodixanol, and group B received 320 mg I/mL iodixanol contrast media and was scanned with prospective ECG triggering mode. Group C received 320 mg I/mL iodixanol and was scanned with conventional retrospective ECG gating mode. The same weight-based contrast injection protocol was used for all three groups. Images were reconstructed using a 30% adaptive statistical iterative reconstruction (ASIR) algorithm and a 50% ASIR in groups A and B and a 30% ASIR in group C. The subjective and objective image quality evaluations, diagnostic accuracies, radiation doses and amounts of contrast media in the three groups were measured and compared. All images in the three groups met the diagnostic requirements, with the same diagnostic accuracy and image quality scores greater than 3 in a 4-point scoring system. However, ventricular enhancement and the objective noise, signal-to-noise ratio, contrast-to-noise ratio and subjective image quality scores in group C were better than those in groups A and B (all Pcontrast dose (14% lower than that of groups B and C). Enhanced CT scan images with low dose radiation and low concentration contrast media can meet the diagnostic requirements for examining children with congenital heart disease while reducing the potential risk of radiation damage and contrast-induced nephropathy. © 2016 John Wiley & Sons Ltd.

  2. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  3. Body packers on your examination table: How helpful are plain x-ray images? A definitive low-dose CT protocol as a diagnosis tool for body packers

    International Nuclear Information System (INIS)

    Schulz, B.; Grossbach, A.; Gruber-Rouh, T.; Zangos, S.; Vogl, Th. J.; Eichler, K.

    2014-01-01

    Aim: To analyze the clinical value and radiation dose of plain x-rays and CT in examining patients suspected of ingesting drug-filled packets. Materials and methods: Thirty-eight patients with suspected internal concealment of drug-filled packets who were examined with plain x-rays or CT or both were included in the study. CT studies were performed using low-dose and standard-dose techniques. All radiographic images were analysed by two radiologists regarding identification of the packets and estimating the effective radiation dose from standard- and low-dose CT versus conventional x-ray examinations. Descriptive calculations were made regarding the number and density of packs and radiation dosage. The diagnostic performance of both radiologists with standard- and low-dose CT was calculated by analysing differences in the mean number of packs found. Results: Thirty-one patients were positively identified as body packers with an average of 13 packs (min: n = 1, max: n = 58, total: n = 390); seven patients were not concealing drug packets. X-ray images were taken of 24 patients prior to CT, thus allowing a direct comparison between the two methods. The correct diagnosis was made in 42%, in 33% the radiologists were uncertain, and in 25% of drug packets were either not or wrongly identified. X-ray imaging had a positive predictive value of 20% with a negative predictive value of 81%. A total of 55 CT examinations were performed on all patients with a mean effective dose of 2 mSv (low dose) versus 9.3 mSv (standard dose). The visibility of packets on low-dose CT images compared to high-dose CT was not reduced: the radiologists identified 385 and 381 of the packets, respectively, with no difference regarding the examination technique (p = 0.24 and p = 0.253, respectively). The radiodensity of all drug-filled packets at CT ranged from 26–292 HU (mean 181.2 HU). Conclusion: X-ray imaging of supposed body packers leads to a significant risk of diagnostic

  4. Strategies to reduce radiation dose in cardiac PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung Hsin; Wu, Nien-Yun [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Wang, Shyh-Jen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Wu, Jay [Institute of Radiological science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Mok, Greta S.P. [Department of Electrical and Electronics Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Yang, Ching-Ching, E-mail: g39220003@yahoo.com.tw [Department of Radiological Technology, Tzu Chi College of Technology, 880, Sec.2, Chien-kuo Rd. Hualien 970, Taiwan (China); Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2011-08-21

    Background: Our aim was to investigate CT dose reduction strategies on a hybrid PET/CT scanner for cardiac applications. Materials: Image quality and dose estimation of different CT scanning protocols for CT coronary angiography (CTCA), and CT-based attenuation correction for PET imaging were investigated. Fifteen patients underwent CTCA, perfusion PET imaging at rest and under stress, and FDG PET for myocardial viability. These patients were divided into three groups based on the CTCA technique performed: retrospectively gated helical (RGH), ECG tube current modulation (ETCM), and prospective gated axial (PGA) acquisitions. All emission images were corrected for photon attenuation using CT images obtained by default setting and an ultra-low dose CT (ULDCT) scan. Results: Radiation dose in RGH technique was 22.2{+-}4.0 mSv. It was reduced to 10.95{+-}0.82 and 4.13{+-}0.31 mSv using ETCM and PGA techniques, respectively. Radiation dose in CT transmission scan was reduced by 96.5% (from 4.53{+-}0.5 to 0.16{+-}0.01 mSv) when applying ULDCT as compared to the default CT. No significant difference in terms of image quality was found among various protocols. Conclusion: The proposed CT scanning strategies, i.e. ETCM or PGA for CTCA and ULDCT for PET attenuation correction, could reduce radiation dose up to 47% without degrading imaging quality in an integrated cardiac PET/CT coronary artery examination.

  5. Inter- and intrascanner variability of pulmonary nodule volumetry on low-dose 64-row CT: an anthropomorphic phantom study

    Science.gov (United States)

    Xie, X; Willemink, M J; Zhao, Y; de Jong, P A; van Ooijen, P M A; Oudkerk, M; Greuter, M J W

    2013-01-01

    Objective: To assess inter- and intrascanner variability in volumetry of solid pulmonary nodules in an anthropomorphic thoracic phantom using low-dose CT. Methods: Five spherical solid artificial nodules [diameters 3, 5, 8, 10 and 12 mm; CT density +100 Hounsfield units (HU)] were randomly placed inside an anthropomorphic thoracic phantom in different combinations. The phantom was examined on two 64-row multidetector CT (64-MDCT) systems (CT-A and CT-B) from different vendors with a low-dose protocol. Each CT examination was performed three times. The CT examinations were evaluated twice by independent blinded observers. Nodule volume was semi-automatically measured by dedicated software. Interscanner variability was evaluated by Bland–Altman analysis and expressed as 95% confidence interval (CI) of relative differences. Intrascanner variability was expressed as 95% CI of relative variation from the mean. Results: No significant difference in CT-derived volume was found between CT-A and CT-B, except for the 3-mm nodules (pvolumetry of artificial pulmonary nodules between 5 mm and 12 mm in diameter. Inter- and intrascanner variability decreases at a larger nodule size to a maximum of 4.9% for ≥8 mm nodules. Advances in knowledge: The commonly accepted cut-off of 25% to determine nodule growth has the potential to be reduced for ≥8 mm nodules. This offers the possibility of reducing the interval for repeated CT scans in lung cancer screenings. PMID:23884758

  6. Low dose CT perfusion in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Amanda; Symons, Sean; Jakubovic, Raphael; Zhang, Liying; Aviv, Richard I. [Sunnybrook Health Sciences Centre, Toronto, ON (Canada); So, Aaron; Lee, Ting-Yim [Robarts Research Institute, London, Ontario (Canada)

    2014-12-15

    The purpose of this investigation is to determine if CT perfusion (CTP) measurements at low doses (LD = 20 or 50 mAs) are similar to those obtained at regular doses (RD = 100 mAs), with and without the addition of adaptive statistical iterative reconstruction (ASIR). A single-center, prospective study was performed in patients with acute ischemic stroke (n = 37; 54 % male; age = 74 ± 15 years). Two CTP scans were performed on each subject: one at 100 mAs (RD) and one at either 50 or 20 mAs (LD). CTP parameters were compared between the RD and LD scans in regions of ischemia, infarction, and normal tissue. Differences were determined using a within-subjects ANOVA (p < 0.05) followed by a paired t test post hoc analysis (p < 0.01). At 50 mAs, there was no significant difference between cerebral blood flow (CBF), cerebral blood volume (CBV), or time to maximum enhancement (Tmax) values for the RD and LD scans in the ischemic, infarcted, or normal contralateral regions (p < 0.05). At 20 mAs, there were significant differences between the RD and LD scans for all parameters in the ischemic and normal tissue regions (p > 0.05). CTP-derived CBF and CBV are not different at 50 mAs compared to 100 mAs, even without the addition of ASIR. Current CTP protocols can be modified to reduce the effective dose by 50 % without altering CTP measurements. (orig.)

  7. Different contrast injection protocols for 64-slice spiral CT coronary angiography

    International Nuclear Information System (INIS)

    Lu Jinguo; Lv Bing; Bai Hua; Tang Xiang; Yang Xinling; Jiang Shiliang; Dai Ruiping; Qiu Jinhai; Chen Tao

    2008-01-01

    Objective: To determine the optimal contrast protocols for 64-slice spiral CT coronary angiography in order to reduce the volume of contrast injection. Methods: One hundred fifty patients scheduled to undergo 64-slice spiral CT coronary angiography were prospectively randomized into the following five groups with different injection protocols: group 1: uniphasic injection without a flush; group 2: biphasic injection with a flush; group 3, group 4 and group 5 : triphasic injection with a diluted contrast material with 3:7, 5:5, 7:3 contrast/saline ratio respectively. Attenuation was measured in the right atrium, right ventricle, left atrium, left ventricle, ascending aorta, right coronary artery and left coronary artery and analyzed with single factor variance test (ANOVA). The quality of the coronary artery images was evaluated and compared using person Chi-Square. Results: The total contrast material volume were (67.0±5.3) ml, (59.9±4.9) ml, (62.9±3.2) ml, (69.2±5.7) ml and (70.9±4.6) ml in five groups respectively (F=27.43, P 2 =18.81, P 2 =31.44, P<0.01). The artifacts in the superior vena cava in group 1 was the most, and in group 2 was the least. The mean enhancement values of right and left coronary arteries in group 2 were significantly greater than those in other groups (F=2.47 and 4.10, P<0.05). The visualization of both left ventricle and right ventricle cavities was the best in group 3. Conclusion: Biphasic injection and triphasic injection are better than uniphasic injection for 64-slice spiral CT coronary angiography and triphasic injection is better than biphasic injection for the visualization of both left ventricle and right ventricle cavities. (authors)

  8. The reduction of image noise and streak artifact in the thoracic inlet during low dose and ultra-low dose thoracic CT

    International Nuclear Information System (INIS)

    Paul, N S; Prezelj, E; Burey, P; Menezes, R J; Blobel, J; Ursani, A; Kashani, H; Siewerdsen, J H

    2010-01-01

    Increased pixel noise and streak artifact reduce CT image quality and limit the potential for radiation dose reduction during CT of the thoracic inlet. We propose to quantify the pixel noise of mediastinal structures in the thoracic inlet, during low-dose (LDCT) and ultralow-dose (uLDCT) thoracic CT, and assess the utility of new software (quantum denoising system and BOOST3D) in addressing these limitations. Twelve patients had LDCT (120 kV, 25 mAs) and uLDCT (120 kV, 10 mAs) images reconstructed initially using standard mediastinal and lung filters followed by the quantum denoising system (QDS) to reduce pixel noise and BOOST3D (B3D) software to correct photon starvation noise as follows: group 1 no QDS, no B3D; group 2 B3D alone; group 3 QDS alone and group 4 both QDS and B3D. Nine regions of interest (ROIs) were replicated on mediastinal anatomy in the thoracic inlet, for each patient resulting in 3456 data points to calculate pixel noise and attenuation. QDS reduced pixel noise by 18.4% (lung images) and 15.8% (mediastinal images) at 25 mAs. B3D reduced pixel noise by ∼8% in the posterior thorax and in combination there was a 35.5% reduction in effective radiation dose (E) for LDCT (1.63-1.05 mSv) in lung images and 32.2% (1.55-1.05 mSv) in mediastinal images. The same combination produced 20.7% reduction (0.53-0.42 mSv) in E for uLDCT, for lung images and 17.3% (0.51-0.42) for mediastinal images. This quantitative analysis of image quality confirms the utility of dedicated processing software in targeting image noise and streak artifact in thoracic LDCT and uLDCT images taken in the thoracic inlet. This processing software potentiates substantial reductions in radiation dose during thoracic LDCT and uLDCT.

  9. The usefulness of levin tube inserted drip infusion spiral CT: comparison with conventional method in subtotal gastrectomy patients

    International Nuclear Information System (INIS)

    Park, Young Jin; Kim, Young Hwan; Yoon, Jung Hee; Cha, Soon Joo; Kim, Jeong Sook; Kim, Sung Rok; Hur, Gham; Rhim, Hyun Chul

    1998-01-01

    The purpose of this study is to access the usefulness of newly designed Levin tube inserted drip infusion spiral CT for the evaluation of remnant stomach and anastomosis site in patients who have undergone subtotal gastrectomy for stomach cancer. A new technique named Levin tube inserted drip infusion spiral CT was used to prospectively study 23 patients. A 16Fr Levin tube was inserted into the remnant stomach; 500 ml of tap water was drip infused just before CT scanning and an additional 500 ml of water was infused during IV contrast injection. Water was infused by gravity, using a water bottle suspended at a height of 90 cm (Group A). The 31 patients who underwent conventional spiral CT scanning immediately after the divided ingestion of 900 ml diluted gastrografin were selected as a control group (Group B). The anatomic delineation of the anastomosis site was graded by two radiologists as excellent (3), good(2), fair (1) or poor (0). To evaluate the degree of distension, the maximal diameters of remnant stomach and the anastomosis site, and the thickness of the stomach wall, were also measured. In patients who had undergone subtobal gastrectomy, Levin tube inserted drip infusion spiral CT showed excellent anatomic delineation of the site of anastomosis and remnant stomach. We found that because it increases the distension of remnant stomach and the anastomosis site, this technique is effective for the evaluation of postoperative stomach. (author). 10 refs., 2 tabs., 3 figs

  10. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

    Science.gov (United States)

    Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo

    2015-05-01

    It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images

    Science.gov (United States)

    Tsuji, Daisuke; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Harada, Masafumi; Kusumoto, Masahiko; Tsuchida, Takaaki; Eguchi, Kenji; Kaneko, Masahiro

    2018-02-01

    The patient of osteoporosis is about 13 million people in Japan and it is one of healthy life problems in the aging society. It is necessary to do early stage detection and treatment in order to prevent the osteoporosis. Multi-slice CT technology has been improving the three dimensional (3D) image analysis with higher resolution and shorter scan time. The 3D image analysis of thoracic vertebra can be used for supporting to diagnosis of osteoporosis. This analysis can be used for lung cancer detection at the same time. We develop method of shape analysis and CT values of spongy bone for the detection osteoporosis. Osteoporosis and lung cancer screening show high extraction rate by the thoracic vertebral evaluation CT images. In addition, we created standard pattern of CT value per thoracic vertebra for male age group using 298 low dose data.

  12. The usefulness of three-dimensional imaging with spiral CT in the evaluation of upper airway stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Ho; Yoon, Dae Young; Bae, Sang Hoon; Rho, Young Soo; Jung, Yin Gyo [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-01-01

    To assess the usefulness of three-dimensional (3D) spiral CT imaging in patients with upper airway stenosis. We performed 3D spiral CT imagings in ten patients in whom upper airway stenosis was clinically suspected. Eight of these patients had upper airway stenosis caused by intubation or tracheostomy (n-6), tuberculosis (n=1), or extrinsic compression by a thyroid mass (n=1). Spiral CT scanning (30-second continuous exposure and 90-mm length) was performed with a table speed of 3mm/sec and a section thickness of 3mm. The selected starting point was the epiglottis. The resulting data were reformatted by multiplanar reformation (MPR) and shaded surface display (SSD) with peeling after reconstruction of 2mm interval. In the evaluation of location and extent of stenosis, we compared fidings of 3D imaging with those of baseline axial images (n=10), endoscopy (n=9) and operation (n=4). The locations of stenosis in eight patients were as follows;tracheostoma (n=4), subglottic region (n=3), and larynx (n=1). In all eight, 3D imaging demonstrated the location and extent of stenosis, which exactly correlated with endoscopic and operative findings. In one patient, however, another stenotic area in the tracheal bifurcation was not discovered because this lesion was not included in the field of CT scan. In two patients, the diagnosis on 3D images of no 'stenosis' was comfirmed by clinical findings or operation. No differences in diagnostic accuracy were noted between axial images, MPR, and SSD when evalvating the location and extent of stenosis; vertical extent was shown more easily by 3D imaging than by axial images, however. 3D imaging with spiral CT may be an useful adjunctive method in the evaluation of upper airway stenosis with variable causes.

  13. The usefulness of three-dimensional imaging with spiral CT in the evaluation of upper airway stenosis

    International Nuclear Information System (INIS)

    Jang, Won Ho; Yoon, Dae Young; Bae, Sang Hoon; Rho, Young Soo; Jung, Yin Gyo

    1996-01-01

    To assess the usefulness of three-dimensional (3D) spiral CT imaging in patients with upper airway stenosis. We performed 3D spiral CT imagings in ten patients in whom upper airway stenosis was clinically suspected. Eight of these patients had upper airway stenosis caused by intubation or tracheostomy (n-6), tuberculosis (n=1), or extrinsic compression by a thyroid mass (n=1). Spiral CT scanning (30-second continuous exposure and 90-mm length) was performed with a table speed of 3mm/sec and a section thickness of 3mm. The selected starting point was the epiglottis. The resulting data were reformatted by multiplanar reformation (MPR) and shaded surface display (SSD) with peeling after reconstruction of 2mm interval. In the evaluation of location and extent of stenosis, we compared fidings of 3D imaging with those of baseline axial images (n=10), endoscopy (n=9) and operation (n=4). The locations of stenosis in eight patients were as follows;tracheostoma (n=4), subglottic region (n=3), and larynx (n=1). In all eight, 3D imaging demonstrated the location and extent of stenosis, which exactly correlated with endoscopic and operative findings. In one patient, however, another stenotic area in the tracheal bifurcation was not discovered because this lesion was not included in the field of CT scan. In two patients, the diagnosis on 3D images of no 'stenosis' was comfirmed by clinical findings or operation. No differences in diagnostic accuracy were noted between axial images, MPR, and SSD when evalvating the location and extent of stenosis; vertical extent was shown more easily by 3D imaging than by axial images, however. 3D imaging with spiral CT may be an useful adjunctive method in the evaluation of upper airway stenosis with variable causes

  14. Cerebral av angiomas: 3-dimensional demonstration by spiral CT

    International Nuclear Information System (INIS)

    Rieger, J.; Hosten, N.; Neumann, K.; Lemke, A.J.; Langer, R.; Lanksch, W.R.; Pfeifer, K.J.; Felix, R.

    1994-01-01

    In 20 patients with known or suspected supratentorial arteriovenous malformations, an attempt was made to see how far CT angiography with 3-dimensional reconstructions is able to make a diagnosis and to differentiate the various components of the angioma. Spiral CT was performed following an intravenous bolus injection of 60-80 ml of iodine containing contrast medium. In all patients the diagnosis was confirmed by intra-arterial DSA of the vertebral vessels. In 13 patients, av malformations could be diagnosed following multiplanar 3-D reconstructions which agreed with the findings on DSA. The large supplying vessels, the nidus and the large draining veins could be defined with certainty. In 6 patients follow-up examination after embolisation was performed. The results could be demonstrated in three dimensions and the success of treatment could be documented unequivocally. CT angiography with 3-D reconstruction is able to supply important information in the majority of intracranial av malformations, both during initial investigation and following treatment. (orig.) [de

  15. Low-Dose CT for Evaluation of Suspected Urolithiasis: Diagnostic Yield for Assessment of Alternative Diagnoses.

    Science.gov (United States)

    Weinrich, Julius Matthias; Bannas, Peter; Regier, Marc; Keller, Sarah; Kluth, Luis; Adam, Gerhard; Henes, Frank Oliver

    2018-03-01

    The purpose of this study is to assess the diagnostic yield of low-dose (LD) CT for alternative diagnoses in patients with suspected urolithiasis. In this retrospective study, we included 776 consecutive patients who underwent unenhanced abdominal CT for evaluation of suspected urolithiasis. All examinations were performed with an LD CT protocol; images were reconstructed using iterative reconstruction. The leading LD CT diagnosis was recorded for each patient and compared with the final clinical diagnosis, which served as the reference standard. The mean (± SD) effective dose of CT was 1.9 ± 0.6 mSv. The frequency of urolithiasis was 82.5% (640/776). LD CT reached a sensitivity of 94.1% (602/640), a specificity of 100.0% (136/136), and an accuracy of 95.1% (738/776) for the detection of urolithiasis. In 93 of 136 patients (68.4%) without urolithiasis, alternative diagnoses were established as the final clinical diagnoses. Alternative diagnoses were most commonly located in the genitourinary (n = 53) and gastrointestinal (n = 18) tracts. LD CT correctly provided alternative diagnoses for 57 patients (61.3%) and was false-negative for five patients (5.4%). The most common clinical alternative diagnoses were urinary tract infections (n = 22). Seven diagnoses missed at LD CT were located outside the FOV. For 43 of all 776 patients (5.5%), neither LD CT nor clinical workup could establish a final diagnosis. The sensitivity, specificity, and accuracy of LD CT for the detection of alternative diagnoses were 91.9% (57/62), 95.6% (43/45), and 93.5% (100/107), respectively. LD CT enables the diagnosis of most alternative diagnoses in the setting of suspected urolithiasis. The most frequent alternative diagnoses missed by LD CT are urinary tract infections or diagnoses located outside the FOV of the abdominopelvic CT scan.

  16. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: prospective study and systematic review.

    Science.gov (United States)

    Alshamari, Muhammed; Norrman, Eva; Geijer, Mats; Jansson, Kjell; Geijer, Håkan

    2016-06-01

    Abdominal radiography is frequently used in acute abdominal non-traumatic pain despite the availability of more advanced diagnostic modalities. This study evaluates the diagnostic accuracy of low-dose CT compared with abdominal radiography, at similar radiation dose levels. Fifty-eight patients were imaged with both methods and were reviewed independently by three radiologists. The reference standard was obtained from the diagnosis in medical records. Sensitivity and specificity were calculated. A systematic review was performed after a literature search, finding a total of six relevant studies including the present. Overall sensitivity with 95 % CI for CT was 75 % (66-83 %) and 46 % (37-56 %) for radiography. Specificity was 87 % (77-94 %) for both methods. In the systematic review the overall sensitivity for CT varied between 75 and 96 % with specificity from 83 to 95 % while the overall sensitivity for abdominal radiography varied between 30 and 77 % with specificity 75 to 88 %. Based on the current study and available evidence, low-dose CT has higher diagnostic accuracy than abdominal radiography and it should, where logistically possible, replace abdominal radiography in the workup of adult patients with acute non-traumatic abdominal pain. • Low-dose CT has a higher diagnostic accuracy than radiography. • A systematic review shows that CT has better diagnostic accuracy than radiography. • Radiography has no place in the workup of acute non-traumatic abdominal pain.

  17. Spiral CT portography: correlation with different injection rate

    International Nuclear Information System (INIS)

    Wu Dong; Zhou Kangrong; Chen Zuwang; Chen Gang; Chen Jin; Chen Huiming

    2000-01-01

    Objective: To choose optimal injection rate in spiral CT portography(CTP) by comparing 3D CTP images using different injection rates. Methods: Thirty-seven patients were randomly divided into 2 groups (11 and 26 cases in each group). Single-level dynamic scan was completed at the first liver hilus, starting at 15s or 30s after initial contrast injection(2 ml/kg) with injection rate 1.5 ml/s (slow group) or 3.0 ml/s (rapid group). The continuous scan were repeated every 5s for 120s or 135s. ROI was used to measure the CT value of the portal vein and the liver parenchyma, respectively, and then the time-density curves were drawn. Spiral CT portography were performed at injection rate of 1.5 ml/s or 3.0 ml/s as the delay time designed described above, including 98 cases in rapid group and 12 cases in slow group. Both MPVR (multi-projection volume reconstruction) and MIP (maximum intensity projection) were employed for reconstruction. All images were ranked according to the grade of portal vein, the different CT value between the portal vein and the liver parenchyma, the edge's definition of blood vessel, the grade of hepatic vein and the display of IVC by 2 radiologists. Results: The maximum density difference in average between the portal vein and the liver parenchyma was 53.4 HU and 83.9 HU, respectively (t = 16.418, P < 0.001) in slow group and rapid one, and the mean reaching time was 80s and 60s, respectively (t = 13.394, P < 0.001). In slow injection group, the average score of MPVR image was 9.3, while it was 12.5 (t = 3.514, P < 0.01) in rapid injection group. Rapid group was better than slow one at the PV-L, the grade of the portal vein, and the edge's definition of blood vessel. Conclusion: Using rapid injection rate (3.0 ml/s), the maximum density difference between the portal vein and the liver parenchyma increases, and the mean reaching time shortens. The quality of 3D CTP image of rapid injection rate (3.0 ml/s) is superior to that of slow injection rate

  18. Double prospectively ECG-triggered high-pitch spiral acquisition for CT coronary angiography: Initial experience

    International Nuclear Information System (INIS)

    Wang, Q.; Qin, J.; He, B.; Zhou, Y.; Yang, J.-J.; Hou, X.-L.; Yang, X.-B.; Chen, J.-H.; Chen, Y.-D.

    2013-01-01

    Aim: To evaluate the feasibility of double prospectively electrocardiogram (ECG)-triggered high-pitch spiral acquisition mode (double high-pitch mode) for coronary computed tomography angiography (CTCA). Materials and methods: One hundred and forty-nine consecutive patients [40 women, 109 men; mean age 58.2 ± 9.2 years; sinus rhythm ≤70 beats/min (bpm) after pre-medication, body weight ≤100 kg] were enrolled for CTCA examinations using a dual-source CT system with 2 × 128 × 0.6 mm collimation, 0.28 s rotation time, and a pitch of 3.4. Double high-pitch mode was prospectively triggered first at 60% and later at 30% of the R–R interval within two cardiac cycles. Image quality was evaluated using a four-point scale (1 = excellent, 4 = non-assessable). Results: From 2085 coronary artery segments, 86.4% (1802/2085) were rated as having a score of 1, 12.3% (257/2085) as score of 2, 1.2% (26/2085) as score of 3, and none were rated as “non-assessable”. The average image quality score was 1.15 ± 0.26 on a per-segment basis. The effective dose was calculated by multiplying the coefficient factor of 0.028 by the dose–length product (DLP); the mean effective dose was 3.5 ± 0.8 mSv (range 1.7–7.6 mSv). The total dosage of contrast medium was 78.7 ± 2.9 ml. Conclusion: Double prospectively ECG-triggered high-pitch spiral acquisition mode provides good image quality with an average effective dose of less than 5 mSv in patients with a heart rate ≤70 bpm

  19. Task-based image quality evaluation of iterative reconstruction methods for low dose CT using computer simulations

    Science.gov (United States)

    Xu, Jingyan; Fuld, Matthew K.; Fung, George S. K.; Tsui, Benjamin M. W.

    2015-04-01

    Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.

  20. Spiral CT arthrography of the knee: technique and value in the assessment of internal derangement of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Vande B.C.; Lecouvet, F.E.; Maldague, B.; Malghem, J. [Department of Radiology, Cliniques Universitaires St. Luc, Universite Catholique de Louvain, Brussels (Belgium); Poilvache, P. [Department of Orthopedic Surgery, Cliniques Universitaires St. Luc, Universite Catholique de Louvain, Brussels (Belgium)

    2002-07-01

    Computed tomography imaging has achieved excellent multiplanar capability and submillimeter spatial resolution due to the development of the spiral acquisition mode and multidetector row technology. Multidetector spiral CT arthrography (CTA) yields valuable information for the assessment of internal derangement of the joints. This article focuses on the value of spiral CTA of the knee in the assessment of the meniscus, anterior cruciate ligament, and hyaline cartilage lesions. Advantages and disadvantages of spiral CTA with respect to MR imaging are presented. (orig.)

  1. Prospectively ECG-triggered high-pitch coronary angiography with third-generation dual-source CT at 70 kVp tube voltage: feasibility, image quality, radiation dose, and effect of iterative reconstruction.

    Science.gov (United States)

    Hell, Michaela M; Bittner, Daniel; Schuhbaeck, Annika; Muschiol, Gerd; Brand, Michael; Lell, Michael; Uder, Michael; Achenbach, Stephan; Marwan, Mohamed

    2014-01-01

    Low tube voltage reduces radiation exposure in coronary CT angiography (CTA). Using 70 kVp tube potential has so far not been possible because CT systems were unable to provide sufficiently high tube current with low voltage. We evaluated feasibility, image quality (IQ), and radiation dose of coronary CTA using a third-generation dual-source CT system capable of producing 450 mAs tube current at 70 kVp tube voltage. Coronary CTA was performed in 26 consecutive patients with suspected coronary artery disease, selected for body weight Image noise was lower in IR vs FBP (60 ± 10 HU vs 74 ± 8 HU; P < .001). In patients <100 kg and with a regular heart rate <60 beats/min, third-generation dual-source CT using high-pitch spiral acquisition and 70 kVp tube voltage is feasible and provides both robust IQ and very low radiation exposure. Copyright © 2014 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  2. Low-dose x-ray phase-contrast and absorption CT using equally sloped tomography

    International Nuclear Information System (INIS)

    Fahimian, Benjamin P; Miao Jianwei; Mao Yu; Cloetens, Peter

    2010-01-01

    Tomographic reconstruction from undersampled and noisy projections is often desirable in transmission CT modalities for purposes of low-dose tomography and fast acquisition imaging. However under such conditions, due to the violation of the Nyquist sampling criteria and the presence of noise, reconstructions with acceptable accuracy may not be possible. Recent experiments in transmission electron tomography and coherent diffraction microscopy have shown that the technique of equally sloped tomography (EST), an exact tomographic method utilizing an oversampling iterative Fourier-based reconstruction, provides more accurate image reconstructions when the number of projections is significantly undersampled relative to filtered back projection and algebraic iterative methods. Here we extend this technique by developing new reconstruction algorithms which allow for the incorporation of advanced mathematical regularization constraints, such as the nonlocal means total variational model, in a manner that is consistent with experimental projections. We then evaluate the resulting image quality of the developed algorithm through simulations and experiments at the European Synchrotron Radiation Facility on image quality phantoms using the x-ray absorption and phase contrast CT modalities. Both our simulation and experimental results have indicated that the method can reduce the number of projections by 60-75% in parallel beam modalities, while achieving comparable or better image quality than the conventional reconstructions. As large-scale and compact synchrotron radiation facilities are currently under rapid development worldwide, the implementation of low-dose x-ray absorption and phase-contrast CT can find broad applications in biology and medicine using these advanced x-ray sources.

  3. Multi-slice spiral CT diagnosis of carotid body tumor

    International Nuclear Information System (INIS)

    Li Peiling; Leng Renli; Li Shu; Xie Xiuli; Xu Ke

    2006-01-01

    Objective: to explore the Multi-slice spiral CT (MSCT) findings of carotid body tumor (CBT). Methods: Twelve cases of CBT proved by surgery were collected in this study and all patients accepted contrast-enhanced MSCT examination. Two-dimensional and three-dimensional post-processing were performed at diagnostic workstation using Aquilion 1.42. The CT features of CBT were analyzed. Results Each of 12 patients had one lesion. All lesions demonstrated well-marginated masses of homogeneous soft- tissue density with CT value within 29-48 HU on pre-enhanced images. All lesions were markedly enhanced with CT value over 200 HU on arterial-phase images, and the density of lesions decreased rapidly on delay- phase images. Twelve lesions were all located at the level of carotid artery bifurcation, 3 of them enveloping common carotid artery and internal/external carotid artery, and other 9 of them riding right on the carotid bifurcation. Internal carotid artery usually were shifted toward posterior-lateral, and external carotid artery toward anterior or anterior-medial. Conclusion: Contrast-enhanced MSCT examination not only can make a qualitative diagnosis of CBT, but determine its accurate location. It plays an importantly instructional role in clinical diagnosis and treatment. (authors)

  4. Quantitative evaluation in enhancement of pancreas and adjacent vessels during spiral CT

    International Nuclear Information System (INIS)

    Kim, Hyoung Seuk; Shin, Kue Hee; Park, Cheol Min; Cha, Sang Hoon; Chung, Kyoo Byung

    1997-01-01

    To determine by quantitative evaluation of pancreatic and adjacent vascular enhancement during spiral CT, the ideal scan delay for examination of the pancreas. Dual(n=3D90) and triple(n=3D90) phase spiral CT scans of patients whose pancreas showed no pathologic condition were retrospectively evaluated. Dual-phase scans were performed at 43 seconds(early), and 5-6 minutes(delayed) after the injection of 120ml of contrast material at an injection rate of 3ml/sec;triple-phase scans were performed at 25 seconds(arterial),60-65 seconds (portal) and 5-6 minutes (delayed) after the injection of 120-140ml of contrast material at an injection rate of 2-4ml/sec, and ten patients also underwent precontrast scanning. CT attenuation values(HU) were measured in the head, body and tail of the pancreas, aorta, and main portal vein during each phase of all scans. Triple-phase protocol was used to measure the effect of different total volumes and injection rates on enhancement of the pancreas and adjacent vessels. There was no significant difference in the degree of enhancement of the pancreas head, body and tail during each phase(p>0.05). The pancreas was maximally enhanced on 43 second delayed scan(132±20HU)(p 0.05). The main portal vein showed maximum enhancement on 43-second delayed scan(207±44HU)(p<0.05). Different total volume of contrast material did not change the enhancement of the pancreas and adjacent vessels. At an injection rate of 2ml/sec, peak enhancement of the pancreas, aorta and portal vein was obtained on 60-65 second delayed scan, and at 4ml/sec, peak enhancement was obtained on 25 second delayed scan(p<0.05). Observing the usual protocols for abdominal spiral CT scanning, the pancreas was most effectively evaluated using a 43-second delayed scan. An increased injection rate resulted in earlier enhancement of the pancreas, aorta and portal vein

  5. Performances of low-dose dual-energy CT in reducing artifacts from implanted metallic orthopedic devices

    Energy Technology Data Exchange (ETDEWEB)

    Filograna, Laura [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Department of Radiological Sciences, Institute of Radiology, Rome (Italy); University of Zurich, Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, Zurich (Switzerland); Magarelli, Nicola; Leone, Antonio; Bonomo, Lorenzo [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Department of Radiological Sciences, Institute of Radiology, Rome (Italy); De Waure, Chiara; Calabro, Giovanna Elisa [Catholic University of Rome, School of Medicine, University Hospital ' ' A. Gemelli' ' , Research Centre for Health Technology Assessment, Department of Public Health, Section of Hygiene, Rome (Italy); Finkenstaedt, Tim [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Thali, Michael John [University of Zurich, Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, Zurich (Switzerland)

    2016-07-15

    The objective was to evaluate the performances of dose-reduced dual-energy computed tomography (DECT) in decreasing metallic artifacts from orthopedic devices compared with dose-neutral DECT, dose-neutral single-energy computed tomography (SECT), and dose-reduced SECT. Thirty implants in 20 consecutive cadavers underwent both SECT and DECT at three fixed CT dose indexes (CTDI): 20.0, 10.0, and 5.0 mGy. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV, and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. In each group, the image quality of the seven monoenergetic images and of the SECT image was assessed qualitatively and quantitatively by visually rating and by measuring the maximum streak artifact respectively. The comparison between SECT and OPTkeV evaluated overall within all groups showed a significant difference (p <0.001), with OPTkeV images providing better images. Comparing OPTkeV with the other DECT images, a significant difference was shown (p <0.001), with OPTkeV and 130-keV images providing the qualitatively best results. The OPTkeV images of 5.0-mGy acquisitions provided percentages of images with scores 1 and 2 of 36 % and 30 % respectively, compared with 0 % and 33.3 % of the corresponding SECT images of 10- and 20-mGy acquisitions. Moreover, DECT reconstructions at the OPTkeV of the low-dose group showed higher CT numbers than the SECT images of dose groups 1 and 2. This study demonstrates that low-dose DECT permits a reduction of artifacts due to metallic implants to be obtained in a similar manner to neutral-dose DECT and better than reduced or neutral-dose SECT. (orig.)

  6. A Shearlet-based algorithm for quantum noise removal in low-dose CT images

    Science.gov (United States)

    Zhang, Aguan; Jiang, Huiqin; Ma, Ling; Liu, Yumin; Yang, Xiaopeng

    2016-03-01

    Low-dose CT (LDCT) scanning is a potential way to reduce the radiation exposure of X-ray in the population. It is necessary to improve the quality of low-dose CT images. In this paper, we propose an effective algorithm for quantum noise removal in LDCT images using shearlet transform. Because the quantum noise can be simulated by Poisson process, we first transform the quantum noise by using anscombe variance stabilizing transform (VST), producing an approximately Gaussian noise with unitary variance. Second, the non-noise shearlet coefficients are obtained by adaptive hard-threshold processing in shearlet domain. Third, we reconstruct the de-noised image using the inverse shearlet transform. Finally, an anscombe inverse transform is applied to the de-noised image, which can produce the improved image. The main contribution is to combine the anscombe VST with the shearlet transform. By this way, edge coefficients and noise coefficients can be separated from high frequency sub-bands effectively. A number of experiments are performed over some LDCT images by using the proposed method. Both quantitative and visual results show that the proposed method can effectively reduce the quantum noise while enhancing the subtle details. It has certain value in clinical application.

  7. Clinical value of CARE dose 4D technique in decreasing CT scanning dose of adult chest

    International Nuclear Information System (INIS)

    Wu Aiqin; Zheng Wenlong; Xu Chongyong; Fang Bidong; Ge Wen

    2011-01-01

    Objective: To investigate the value of CARE Dose 4D technique in decreasing radiation dose and improving image quality of multi-slice spiral CT in adult chest scanning. Methods: 100 patients of chest CT scanning were equally divided into study group and control group randomly. CARE Dose 4D Technique was used in study group. Effective mAs value, volume CT dose index (CTDI vol ) and dose length product (DLP) were displayed automatically in machine while chest scanning; those values and actual mAs value of every image were recorded respectively. The image quality at apex of lung, lower edge of aorta arch, middle area of left atrium and base of lung on every image of 400 images was judged and classified as three level (excellent, good, poor) by two deputy chief physicians with double blind method, the image noise at corresponding parts was measured. Results: While setting 80 mAs for quality reference mAs, the effective mAs value in study group most decreased 44 mAs than control group with an average decrease of 9.60 (12.0%), CTDI vol with 4.75 mGy with an average decrease of 0.95 mCy (11.0%), DLP 99.50% in study group, with 98.0% in control group. But it was higher at apex of lung and base of lung, lower at middle area of left atrium, and similar at lower edge of aorta arch in study group than contrast group. The image noise were lower at apex of lung and base of lung in study group than control group (t =6.299 and 2.332, all P<0.05), higher at middle area of left atrium in study group than control group (t=3.078, P<0.05) and similar at lower edge of aorta arch in study group than control group (t=1.191, P>0.05). Conclusions: CARE Dose 4D technique provides a function regulated mAs real-time on line, it not only raises utilization rate of radiation and decreases radiation dose, but also promises and increases image quality in chest CT scanning, and has some clinical significance. (authors)

  8. Analysis of hepatic vein variations in healthy people with 64-slice spiral CT

    International Nuclear Information System (INIS)

    Zhang Rong; Li Yong; Shen Jun; Zeng Weike; Li Jieting; Huang Suiqiao; Liang Biling; Liu Chao

    2007-01-01

    Objective: To analyze variations of hepatic vein in healthy people with 64-slice spiral CT. Methods: Seventy-five healthy subjects underwent multi-slice spiral computed (MSCT) hepatic venography. The anatomy of the junction of the hepatic veins with the inferior vena cava and the intrahepatic drainage territory of the hepatic veins and tributaries were evaluated. The hepatic veins were classified according to three anatomic classification (Nakamura's, Marcos's and Kawasaki's classification) methods respectively. Results: There was a common trunk of the middle and left hepatic veins before joining the IVC in 86.7% (65/75)of the cases. In 13.3% (10/75)of the cases, the three main hepatic veins joined the IVC separately. The ratios of Nakamma's classification type A, B, C of hepatic veins were 49.4% (37/75), 37.3% (28/75), and 13.3% (10/75) respectively. The ratios of Marcos's classification type A, B, C of hepatic veins were 56.0% (42/75), 24.0% (18/75), and 20.0% (15/75) respectively. The ratios of Kawasaki's classification type I, II of hepatic vein were 40.0% (30/75) and 60.0% (45/75). Conclusion: Multi-slice spiral CT hepatic venography can provide visualization of peripheral hepatic venous branches in details. (authors)

  9. Low-dose CT colonography in children: initial experience, technical feasibility and utility

    International Nuclear Information System (INIS)

    Anupindi, Sudha; Perumpillichira, James; Zalis, Michael E.; Jaramillo, Diego; Israel, Esther J.

    2005-01-01

    CT colonography (CTC) is utilized as a diagnostic tool in the detection of colon polyps and early colorectal cancer in adults. Large studies in the literature, although focused on adult populations, have shown CTC to be a safe, accurate, non-invasive technique. We evaluated the technical feasibility of CTC in children using a low-dose technique. From November 2001 to April 2004 we evaluated eight patients (3-17 years) with non-contrast CTC. Seven of the patients had CTC, followed by standard colonoscopy (SC) the same day; in one patient, CTC followed a failed SC. CTC results were compared to results of SC. The estimated effective dose from each CTC was calculated and compared to that of standard barium enema. CTC results were consistent with those of SC. Sensitivity for polyps 5-10 mm was 100%, and sensitivity for polyps 10 mm and larger was 66.7%. The estimated mean effective dose was 2.17 mSv for CTC, compared to the 5-6 mSv for a standard air-contrast barium enema in a small child. Our initial experience shows CTC in children is well-tolerated, safe, and useful. The procedure can be performed successfully with a low radiation dose, and preliminary results compare well with SC. (orig.)

  10. Noninvasive diagnosis of suspected severe pulmonary embolism. Trans-esophageal echocardiography vs spiral CT

    International Nuclear Information System (INIS)

    Pruszczyk, P.; Torbicki, A.; Pacho, R.

    1998-01-01

    Patients with pulmonary embolism (PE) and echocardiographic signs of right ventricular over-lead have worse prognosis and may be require aggressive therapy. Unequivocal confirmation of PE is required before thrombolysis or embolectomy. This study compares the value of trans-esophageal echocardiography (TEE) and spiral CT (sCT) in direct visualization of pulmonary artery thrombo-emboli in patients with suspected PE and echocardiographic signs of right ventricular over-lead. Because of high prevalence of bilateral central pulmonary thrombo-emboli in patients with hemo-dynamically significant PE, both sCT and TEE allow its definitive confirmation in most cases. Thrombi reported by sCT distally to lobar arteries should be interpreted with caution. (author)

  11. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  12. Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses.

    Science.gov (United States)

    Guberina, Nika; Forsting, Michael; Ringelstein, Adrian; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Theysohn, Jens; Wetter, Axel

    2018-03-28

    To examine radiation dose levels of CT-guided interventional procedures of chest, abdomen, spine and extremities on different CT-scanner generations at a large multicentre institute. 1,219 CT-guided interventional biopsies of different organ regions ((A) abdomen (n=516), (B) chest (n=528), (C) spine (n=134) and (D) extremities (n=41)) on different CT-scanners ((I) SOMATOM-Definition-AS+, (II) Volume-Zoom, (III) Emotion6) were included from 2013-2016. Important CT-parameters and standard dose-descriptors were retrospectively examined. Additionally, effective dose and organ doses were calculated using Monte-Carlo simulation, following ICRP103. Overall, radiation doses for CT interventions are highly dependent on CT-scanner generation: the newer the CT scanner, the lower the radiation dose imparted to patients. Mean effective doses for each of four procedures on available scanners are: (A) (I) 9.3mSv versus (II) 13.9mSv (B) (I) 7.3mSv versus (III) 11.4mSv (C) (I) 6.3mSv versus (II) 7.4mSv (D) (I) 4.3mSv versus (II) 10.8mSv. Standard dose descriptors [standard deviation (SD); CT dose index vol (CTDI vol ); dose-length product (DLP body ); size-specific dose estimate (SSDE)] were also compared. Effective dose, organ doses and SSDE for various CT-guided interventional biopsies on different CT-scanner generations following recommendations of the ICRP103 are provided. New CT-scanner generations involve markedly lower radiation doses versus older devices. • Effective dose, organ dose and SSDE are provided for CT-guided interventional examinations. • These data allow identifying organs at risk of higher radiation dose. • Detailed knowledge of radiation dose may contribute to a better individual risk-stratification. • New CT-scanner generations involve markedly lower radiation doses compared to older devices.

  13. Radiation doses in examination of lower third molars with computed tomography and conventional radiography.

    Science.gov (United States)

    Ohman, A; Kull, L; Andersson, J; Flygare, L

    2008-12-01

    To measure organ doses and calculate effective doses for pre-operative radiographic examination of lower third molars with CT and conventional radiography (CR). Measurements of organ doses were made on an anthropomorphic head phantom with lithium fluoride thermoluminescent dosemeters. The dosemeters were placed in regions corresponding to parotid and submandibular glands, mandibular bone, thyroid gland, skin, eye lenses and brain. The organ doses were used for the calculation of effective doses according to proposed International Commission on Radiological Protection 2005 guidelines. For the CT examination, a Siemens Somatom Plus 4 Volume Zoom was used and exposure factors were set to 120 kV and 100 mAs. For conventional radiographs, a Scanora unit was used and panoramic, posteroanterior, stereographic (scanogram) and conventional spiral tomographic views were exposed. The effective doses were 0.25 mSv, 0.060 mSv and 0.093 mSv for CT, CR without conventional tomography and CR with conventional spiral tomography, respectively. The effective dose is low when CT examination with exposure factors optimized for the examination of bone structures is performed. However, the dose is still about four times as high as for CR without tomography. CT should therefore not be a standard method for the examination of lower third molars. In cases where there is a close relationship between the tooth and the inferior alveolar nerve the advantages of true sectional imaging, such as CT, outweighs the higher effective dose and is recommended. Further reduction in the dose is feasible with further optimization of examination protocols and the development of newer techniques.

  14. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun [Philips Healthcare, Cleveland, Ohio 44143 (United States); Wilson, David L., E-mail: dlw@case.edu [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106 (United States)

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit

  15. SPECT/spiral-CT hybrid imaging in unclear foci of increased bone metabolism: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, W.; Kuwert, T. [Nuklearmedizinische Klinik, Friedrich-Alexander-Univ. Erlangen/Nuernberg (Germany); Beckmann, M.W. [Frauenklinik, Friedrich-Alexander-Univ. Erlangen/Nuernberg (Germany); Forst, R. [Lehrstuhl fuer Orthopaedie mit Orthopaedischer Chirurgie, Friedrich-Alexander Univ. Erlangen/Nuernberg (Germany); Bautz, W. [Radiologisches Inst., Friedrich-Alexander-Univ. Erlangen/Nuernberg (Germany)

    2005-07-01

    In bone scintigraphy, the differentiation between degenerative processes and bone metastases is still difficult. Therefore, additional radiological studies are regularly needed after bone scintigraphy. The now introduced hybrid-cameras combining single-photon emission computed tomography (SPECT) and spiral-CT are unique in the sense that they offer the opportunity to correlate the functional information with morphology in one session. We herein present two patients in whom this technological setup allowed a definite diagnosis in scintigraphically unclear vertebral lesions. In a patient with breast cancer, hypermetabolic lesions were clearly correlated with osteolyses. In another patient with synovial carcinoma, spondylosis and spondylarthrosis caused focal tracer uptake in the lumbar spine. In addition to an improved diagnostic accuracy, SPECT/Spiral-CT will considerably abbreviate the diagnostic process. (orig.)

  16. SPECT/spiral-CT hybrid imaging in unclear foci of increased bone metabolism: a case report

    International Nuclear Information System (INIS)

    Roemer, W.; Kuwert, T.; Beckmann, M.W.; Forst, R.; Bautz, W.

    2005-01-01

    In bone scintigraphy, the differentiation between degenerative processes and bone metastases is still difficult. Therefore, additional radiological studies are regularly needed after bone scintigraphy. The now introduced hybrid-cameras combining single-photon emission computed tomography (SPECT) and spiral-CT are unique in the sense that they offer the opportunity to correlate the functional information with morphology in one session. We herein present two patients in whom this technological setup allowed a definite diagnosis in scintigraphically unclear vertebral lesions. In a patient with breast cancer, hypermetabolic lesions were clearly correlated with osteolyses. In another patient with synovial carcinoma, spondylosis and spondylarthrosis caused focal tracer uptake in the lumbar spine. In addition to an improved diagnostic accuracy, SPECT/Spiral-CT will considerably abbreviate the diagnostic process. (orig.)

  17. Motion-compensated PET image reconstruction with respiratory-matched attenuation correction using two low-dose inhale and exhale CT images

    International Nuclear Information System (INIS)

    Nam, Woo Hyun; Ahn, Il Jun; Ra, Jong Beom; Kim, Kyeong Min; Kim, Byung Il

    2013-01-01

    Positron emission tomography (PET) is widely used for diagnosis and follow up assessment of radiotherapy. However, thoracic and abdominal PET suffers from false staging and incorrect quantification of the radioactive uptake of lesion(s) due to respiratory motion. Furthermore, respiratory motion-induced mismatch between a computed tomography (CT) attenuation map and PET data often leads to significant artifacts in the reconstructed PET image. To solve these problems, we propose a unified framework for respiratory-matched attenuation correction and motion compensation of respiratory-gated PET. For the attenuation correction, the proposed algorithm manipulates a 4D CT image virtually generated from two low-dose inhale and exhale CT images, rather than a real 4D CT image which significantly increases the radiation burden on a patient. It also utilizes CT-driven motion fields for motion compensation. To realize the proposed algorithm, we propose an improved region-based approach for non-rigid registration between body CT images, and we suggest a selection scheme of 3D CT images that are respiratory-matched to each respiratory-gated sinogram. In this work, the proposed algorithm was evaluated qualitatively and quantitatively by using patient datasets including lung and/or liver lesion(s). Experimental results show that the method can provide much clearer organ boundaries and more accurate lesion information than existing algorithms by utilizing two low-dose CT images. (paper)

  18. Effect of the degree of sternal depression on the cardiac rotation in pectus excavatum: evaluation with spiral CT

    International Nuclear Information System (INIS)

    Yu Jianqun; Yang Zhigang; Li Zhenlin; Guo Yingkun; Lu Chunyan; Zhang Mei

    2004-01-01

    Objective: To evaluate the effects of the degree of sternal depression on the cardiac rotation in pectus excavatum by using spiral CT. Methods: Spiral CT features of 32 patients with surgically corrected pectus excavatum were retrospectively reviewed. They included 27 males and 5 females ranging in age from 6 months to 17 years (mean, 6.3 years). Analysis was based on relationship among the degree of sternal depression, CT depression index, cardiac rotation angle, and PV angle. Results: 32 cases of pectus excavatum presented the sternal depression (21 ± 7) mm, CT depression index 2.9 ± 1.8, cardiac rotation angle (55.9 ± 9.8) degree, and PV angle (49.8 ± 14.0) degree, respectively. The sternal depression (17 mm) in cases with CT depression index less than 2.4 was smaller than those with CT depression index 2.4-2.9 (21 mm) and CT depression index larger than 2.9 (27 mm) (F 5.39, P<0.01). Cardiac rotation angle (49.7 degree) in cases with CT depression index less than 2.4 was smaller than those with CT depression index 2.4-2.9 (55.5 degree) and CT depression index larger than 2.9 (66.9 degree) (F=7.44, P<0.01). PV angle (58.7 degree) in cases with CT depression index less than 2.4 was larger than those with CT depression index 2.4-2.9 (46.5 degree) and CT depression index more than 2.9 (42.4 degree) ( F=3.33, P<0.05). Cardiac rotation angle of pectus excavatum had positive correlation with the CT depression index (γ=0.73, P<0.01). Conclusion: Spiral CT is a better tool for revealing chest deformity and corresponding cardiac rotation. The degree of sternal depression in pectus excavatum directly influences the cardiac rotation, and they had positive correlation. (authors)

  19. Radiation dose reduction in parasinus CT by spectral shaping

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Brand, Michael; Lell, Michael M.; Uder, Michael; Wuest, Wolfgang [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Sedlmair, Martin; Allmendinger, Thomas [Siemens Healthcare GmbH, Forchheim (Germany)

    2017-02-15

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR{sub eye} {sub globe/air} did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality. (orig.)

  20. Radiation dose reduction in parasinus CT by spectral shaping

    International Nuclear Information System (INIS)

    May, Matthias S.; Brand, Michael; Lell, Michael M.; Uder, Michael; Wuest, Wolfgang; Sedlmair, Martin; Allmendinger, Thomas

    2017-01-01

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR_e_y_e _g_l_o_b_e_/_a_i_r did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality. (orig.)

  1. Automated assessment of aortic and main pulmonary arterial diameters using model-based blood vessel segmentation for predicting chronic thromboembolic pulmonary hypertension in low-dose CT lung screening

    Science.gov (United States)

    Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Sugiura, Toshihiko; Tanabe, Nobuhiro; Kusumoto, Masahiko; Eguchi, Kenji; Kaneko, Masahiro

    2018-02-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by obstruction of the pulmonary vasculature by residual organized thrombi. A morphological abnormality inside mediastinum of CTEPH patient is enlargement of pulmonary artery. This paper presents an automated assessment of aortic and main pulmonary arterial diameters for predicting CTEPH in low-dose CT lung screening. The distinctive feature of our method is to segment aorta and main pulmonary artery using both of prior probability and vascular direction which were estimated from mediastinal vascular region using principal curvatures of four-dimensional hyper surface. The method was applied to two datasets, 64 lowdose CT scans of lung cancer screening and 19 normal-dose CT scans of CTEPH patients through the training phase with 121 low-dose CT scans. This paper demonstrates effectiveness of our method for predicting CTEPH in low-dose CT screening.

  2. Restaging of patients with lymphoma. Comparison of low dose CT (20 mAs) with contrast enhanced diagnostic CT in combined [18F]-FDG PET/CT

    International Nuclear Information System (INIS)

    Fougere, C. la; Pfluger, T.; Schneider, V.; Hacker, M.; Broeckel, N.; Bartenstein, P.; Tiling, R.; Morhard, D.; Hundt, W.; Becker, C.

    2008-01-01

    Aim: assessment of the clinical benefit of i.v. contrast enhanced diagnostic CT (CE-CT) compared to low dose CT with 20 mAs (LD-CT) without contrast medium in combined [ 18 F]-FDG PET/CT examinations in restaging of patients with lymphoma. Patients, methods: 45 patients with non-Hodgkin lymphoma (n = 35) and Hodgkin's disease (n = 10) were included into this study. PET, LD-CT and CE-CT were analyzed separately as well as side-by-side. Lymphoma involvement was evaluated separately for seven regions. Indeterminate diagnoses were accepted whenever there was a discrepancy between PET and CT findings. Results for combined reading were calculated by rating indeterminate diagnoses according the suggestions of either CT or PET. Each patient had a clinical follow-up evaluation for > 6 months. Results: region-based evaluation suggested a sensitivity/specificity of 66/93% for LD-CT, 87%/91% for CE-CT, 95%/96% for PET, 94%/99% for PET/LD-CT and 96%/99% for PET/CE-CT. The data for PET/CT were obtained by rating indeterminate results according to the suggestions of PET, which turned out to be superior to CT. Lymphoma staging was changed in two patients using PET/CE-CT as compared to PET/LD-CT. Conclusion: overall, there was no significant difference between PET/LD-CT and PET/CE-CT. However, PET/CE-CT yielded a more precise lesion delineation than PET/LD-CT. This was due to the improved image quality of CE-CT and might lead to a more accurate investigation of lymphoma. (orig.)

  3. WE-FG-207A-03: Low-Dose Cone-Beam Breast CT: Physics and Technology Development

    International Nuclear Information System (INIS)

    Boone, J.

    2016-01-01

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively

  4. WE-FG-207A-03: Low-Dose Cone-Beam Breast CT: Physics and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Boone, J. [UC Davis Medical Center (United States)

    2016-06-15

    Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detection more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively

  5. Clinical value of 64-slice spiral CT for classification of femoral neck fracture

    International Nuclear Information System (INIS)

    Zhu Jiangtao; Gong Jianping; Cai Wu; Zhu Jianbing; Chen Guangqiang; Qian Minghui

    2011-01-01

    Objective: To evaluate the clinical application of 64-slice spiral CT for classification of femoral neck fracture. Methods: The survey was comprised of 46 patients with femoral neck fractures detected with plain radiographs and CT images. Cases were randomly presented in 2 formats: plain radiographs and CT. Garden classification was queried. Modification of garden classification (nondisplaced vs displaced) was taken to compare with plain radiographs and CT in the study. Results: The results of classification for plain radiographs were 2 cases of Garden Ⅰ, 10 cases of Ⅱ, 22 cases of Ⅲ, and 12 cases of Ⅳ. Those for CT were 1 cases of Garden Ⅰ, 4 cases of Ⅱ, 26 cases of Ⅲ, and 15 cases of Ⅳ. CT improved the accuracy of Garden Classification (P<0.05). Conclusion: Garden classification using CT images shows good conformation with results of surgery. 64-Slic CT is better plain radiographs for Garden classification of femoral neck fracture. (authors)

  6. [Evaluation of Organ Dose Estimation from Indices of CT Dose Using Dose Index Registry].

    Science.gov (United States)

    Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio

    Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, dedicated software is too expensive for small scale hospitals. Not every hospital can estimate organ dose with dedicated software. The purpose of this study was to evaluate the simple method of organ dose estimation using some common indices of CT dose. The Monte Carlo simulation software Radimetrics (Bayer) was used for calculating organ dose and analysis relationship between indices of CT dose and organ dose. Multidetector CT scanners were compared with those from two manufactures (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). Using stored patient data from Radimetrics, the relationships between indices of CT dose and organ dose were indicated as each formula for estimating organ dose. The accuracy of estimation method of organ dose was compared with the results of Monte Carlo simulation using the Bland-Altman plots. In the results, SSDE was the feasible index for estimation organ dose in almost organs because it reflected each patient size. The differences of organ dose between estimation and simulation were within 23%. In conclusion, our estimation method of organ dose using indices of CT dose is convenient for clinical with accuracy.

  7. Application of triple rule-out with 64-slice spiral CT in the diagnosis of acute chest pain

    International Nuclear Information System (INIS)

    Li Pengyu; Li Kuncheng; Du Xiangyin; Cao Lizhen; Liu Jiabin; Yang Yanhuui; Liang Zhigang; Zhu Xiaolian; Liu Jian

    2007-01-01

    Objective: To investigate the performance of triple rule-out with 64-slice spiral CT in the combined examination of pulmonary artery, thoracic aorta and coronary artery for patients with acute chest pain. Methods: Seventy patients who presented with acute chest pain were included in the study. All of the patients underwent retrospective ECG-gated 64-slice computed tomography triple rule-out examination to evaluate the pulmonary arteries, thoracic aorta and coronary arteries. Multi-planar reconstruction (MPR), maximum intensity projection (MIP), curved-planar reconstruction (CPR) and volume rendering (VR) were used to display pulmonary arteries, thoracic aorta and coronary arteries. We evaluated the image quality of coronary artery and the enhancement of the pulmonary artery and thoracic aorta to estimate if the examination can fulfill the clinical demand for the differential diagnosis of acute chest pain. Results: The mean scan time was (8.5±1.0) s, and the dose of contrast medium injected was 100 ml. There were 95.7% (67/70) of patients whose CT values detected in the pulmonary artery and thoracic aorta after enhancement Were ≥200 HU. The image quality of 85.8% (720/839) coronary segments was classified as excellent, 8.6% (72/839) as good, and 5.6% (47/839) as poor. There were 20 eases with coronary stenoses ≥50%, 2 cases with pulmonary embolism, and 2 cases with aortic dissection. Conclusion: The triple rule-out examination with 64-slice spiral CT could depict pulmonary artery, thoracic aorta, and coronary artery in 8 s with good image quality. It has great potential in the etiological diagnosis for the patients with acute chest pain. (authors)

  8. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  9. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Bunkyo-ku, Tokyo (Japan)

    2012-08-15

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 {+-} 3.00) than low-dose ASIR (49.24 {+-} 9.11, P < 0.01) and reference-dose ASIR images (24.93 {+-} 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  10. Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT

    International Nuclear Information System (INIS)

    Poletti, Pierre-Alexandre; Platon, Alexandra; Perrot, Thomas de; Becker, Christoph D.; Sarasin, Francois; Rutschmann, Olivier; Andereggen, Elisabeth; Dupuis-Lozeron, Elise; Perneger, Thomas; Gervaz, Pascal

    2011-01-01

    To evaluate an algorithm integrating ultrasound and low-dose unenhanced CT with oral contrast medium (LDCT) in the assessment of acute appendicitis, to reduce the need of conventional CT. Ultrasound was performed upon admission in 183 consecutive adult patients (111 women, 72 men, mean age 32) with suspicion of acute appendicitis and a BMI between 18.5 and 30 (step 1). No further examination was recommended when ultrasound was positive for appendicitis, negative with low clinical suspicion, or demonstrated an alternative diagnosis. All other patients underwent LDCT (30 mAs) (step 2). Standard intravenously enhanced CT (180 mAs) was performed after indeterminate LDCT (step 3). No further imaging was recommended after ultrasound in 84 (46%) patients; LDCT was obtained in 99 (54%). LDCT was positive or negative for appendicitis in 81 (82%) of these 99 patients, indeterminate in 18 (18%) who underwent standard CT. Eighty-six (47%) of the 183 patients had a surgically proven appendicitis. The sensitivity and specificity of the algorithm were 98.8% and 96.9%. The proposed algorithm achieved high sensitivity and specificity for detection of acute appendicitis, while reducing the need for standard CT and thus limiting exposition to radiation and to intravenous contrast media. (orig.)

  11. Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Pierre-Alexandre; Platon, Alexandra [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Perrot, Thomas de; Becker, Christoph D. [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); Sarasin, Francois; Rutschmann, Olivier [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Andereggen, Elisabeth [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); University Hospital of Geneva, Department of Surgery, Geneva (Switzerland); Dupuis-Lozeron, Elise; Perneger, Thomas [University Hospital of Geneva, Division of Clinical Epidemiology, Geneva (Switzerland); Gervaz, Pascal [University Hospital of Geneva, Department of Surgery, Geneva (Switzerland)

    2011-12-15

    To evaluate an algorithm integrating ultrasound and low-dose unenhanced CT with oral contrast medium (LDCT) in the assessment of acute appendicitis, to reduce the need of conventional CT. Ultrasound was performed upon admission in 183 consecutive adult patients (111 women, 72 men, mean age 32) with suspicion of acute appendicitis and a BMI between 18.5 and 30 (step 1). No further examination was recommended when ultrasound was positive for appendicitis, negative with low clinical suspicion, or demonstrated an alternative diagnosis. All other patients underwent LDCT (30 mAs) (step 2). Standard intravenously enhanced CT (180 mAs) was performed after indeterminate LDCT (step 3). No further imaging was recommended after ultrasound in 84 (46%) patients; LDCT was obtained in 99 (54%). LDCT was positive or negative for appendicitis in 81 (82%) of these 99 patients, indeterminate in 18 (18%) who underwent standard CT. Eighty-six (47%) of the 183 patients had a surgically proven appendicitis. The sensitivity and specificity of the algorithm were 98.8% and 96.9%. The proposed algorithm achieved high sensitivity and specificity for detection of acute appendicitis, while reducing the need for standard CT and thus limiting exposition to radiation and to intravenous contrast media. (orig.)

  12. Feasibility of low-dose CT with model-based iterative image reconstruction in follow-up of patients with testicular cancer

    International Nuclear Information System (INIS)

    Murphy, Kevin P.; Crush, Lee; O’Neill, Siobhan B.; Foody, James; Breen, Micheál; Brady, Adrian; Kelly, Paul J.; Power, Derek G.; Sweeney, Paul; Bye, Jackie; O’Connor, Owen J.; Maher, Michael M.; O’Regan, Kevin N.

    2016-01-01

    •Radiologists should endeavour to minimise radiation exposure to patients with testicular cancer.•Iterative reconstruction algorithms permit CT imaging at lower radiation doses.•Image quality for reduced-dose CT–MBIR is at least comparable to conventional dose.•No loss of diagnostic accuracy apparent with reduced-dose CT–MBIR. Radiologists should endeavour to minimise radiation exposure to patients with testicular cancer. Iterative reconstruction algorithms permit CT imaging at lower radiation doses. Image quality for reduced-dose CT–MBIR is at least comparable to conventional dose. No loss of diagnostic accuracy apparent with reduced-dose CT–MBIR. We examine the performance of pure model-based iterative reconstruction with reduced-dose CT in follow-up of patients with early-stage testicular cancer. Sixteen patients (mean age 35.6 ± 7.4 years) with stage I or II testicular cancer underwent conventional dose (CD) and low-dose (LD) CT acquisition during CT surveillance. LD data was reconstructed with model-based iterative reconstruction (LD–MBIR). Datasets were objectively and subjectively analysed at 8 anatomical levels. Two blinded clinical reads were compared to gold-standard assessment for diagnostic accuracy. Mean radiation dose reduction of 67.1% was recorded. Mean dose measurements for LD–MBIR were: thorax – 66 ± 11 mGy cm (DLP), 1.0 ± 0.2 mSv (ED), 2.0 ± 0.4 mGy (SSDE); abdominopelvic – 128 ± 38 mGy cm (DLP), 1.9 ± 0.6 mSv (ED), 3.0 ± 0.6 mGy (SSDE). Objective noise and signal-to-noise ratio values were comparable between the CD and LD–MBIR images. LD–MBIR images were superior (p < 0.001) with regard to subjective noise, streak artefact, 2-plane contrast resolution, 2-plane spatial resolution and diagnostic acceptability. All patients were correctly categorised as positive, indeterminate or negative for metastatic disease by 2 readers on LD–MBIR and CD datasets. MBIR facilitated a 67% reduction in radiation dose whilst

  13. Detection of relevant colonic neoplasms with PET/CT: promising accuracy with minimal CT dose and a standardised PET cut-off

    Energy Technology Data Exchange (ETDEWEB)

    Luboldt, Wolfgang [Multiorgan Screening Foundation, Frankfurt (Germany); University Hospital Frankfurt, Department of Radiology, Frankfurt am Main (Germany); University Hospital Dresden, Clinic and Policlinic of Nuclear Medicine, Dresden (Germany); Volker, Teresa; Zoephel, Klaus; Kotzerke, Joerg [University Hospital Dresden, Clinic and Policlinic of Nuclear Medicine, Dresden (Germany); Wiedemann, Baerbel [University Hospital Dresden, Institute of Medical Informatics and Biometrics, Dresden (Germany); Wehrmann, Ursula [University Hospital Dresden, Clinic and Policlinic of Surgery, Dresden (Germany); Koch, Arne; Abolmaali, Nasreddin [University Hospital Dresden, Oncoray, Dresden (Germany); Toussaint, Todd; Luboldt, Hans-Joachim [Multiorgan Screening Foundation, Frankfurt (Germany); Middendorp, Markus; Gruenwald, Frank [University Hospital Frankfurt, Department of Nuclear Medicine, Frankfurt (Germany); Aust, Daniela [University Hospital Dresden, Department of Pathology, Dresden (Germany); Vogl, Thomas J. [University Hospital Frankfurt, Department of Radiology, Frankfurt am Main (Germany)

    2010-09-15

    To determine the performance of FDG-PET/CT in the detection of relevant colorectal neoplasms (adenomas {>=}10 mm, with high-grade dysplasia, cancer) in relation to CT dose and contrast administration and to find a PET cut-off. 84 patients, who underwent PET/CT and colonoscopy (n=79)/sigmoidoscopy (n=5) for (79 x 6+5 x 2)=484 colonic segments, were included in a retrospective study. The accuracy of low-dose PET/CT in detecting mass-positive segments was evaluated by ROC analysis by two blinded independent reviewers relative to contrast-enhanced PET/CT. On a per-lesion basis characteristic PET values were tested as cut-offs. Low-dose PET/CT and contrast-enhanced PET/CT provide similar accuracies (area under the curve for the average ROC ratings 0.925 vs. 0.929, respectively). PET demonstrated all carcinomas (n=23) and 83% (30/36) of relevant adenomas. In all carcinomas and adenomas with high-grade dysplasia (n=10) the SUV{sub max} was {>=}5. This cut-off resulted in a better per-segment sensitivity and negative predictive value (NPV) than the average PET/CT reviews (sensitivity: 89% vs. 82%; NPV: 99% vs. 98%). All other tested cut-offs were inferior to the SUV{sub max}. FDG-PET/CT provides promising accuracy for colorectal mass detection. Low dose and lack of iodine contrast in the CT component do not impact the accuracy. The PET cut-off SUV{sub max}{>=} 5 improves the accuracy. (orig.)

  14. Detection of relevant colonic neoplasms with PET/CT: promising accuracy with minimal CT dose and a standardised PET cut-off

    International Nuclear Information System (INIS)

    Luboldt, Wolfgang; Volker, Teresa; Zoephel, Klaus; Kotzerke, Joerg; Wiedemann, Baerbel; Wehrmann, Ursula; Koch, Arne; Abolmaali, Nasreddin; Toussaint, Todd; Luboldt, Hans-Joachim; Middendorp, Markus; Gruenwald, Frank; Aust, Daniela; Vogl, Thomas J.

    2010-01-01

    To determine the performance of FDG-PET/CT in the detection of relevant colorectal neoplasms (adenomas ≥10 mm, with high-grade dysplasia, cancer) in relation to CT dose and contrast administration and to find a PET cut-off. 84 patients, who underwent PET/CT and colonoscopy (n=79)/sigmoidoscopy (n=5) for (79 x 6+5 x 2)=484 colonic segments, were included in a retrospective study. The accuracy of low-dose PET/CT in detecting mass-positive segments was evaluated by ROC analysis by two blinded independent reviewers relative to contrast-enhanced PET/CT. On a per-lesion basis characteristic PET values were tested as cut-offs. Low-dose PET/CT and contrast-enhanced PET/CT provide similar accuracies (area under the curve for the average ROC ratings 0.925 vs. 0.929, respectively). PET demonstrated all carcinomas (n=23) and 83% (30/36) of relevant adenomas. In all carcinomas and adenomas with high-grade dysplasia (n=10) the SUV max was ≥5. This cut-off resulted in a better per-segment sensitivity and negative predictive value (NPV) than the average PET/CT reviews (sensitivity: 89% vs. 82%; NPV: 99% vs. 98%). All other tested cut-offs were inferior to the SUV max . FDG-PET/CT provides promising accuracy for colorectal mass detection. Low dose and lack of iodine contrast in the CT component do not impact the accuracy. The PET cut-off SUV max ≥ 5 improves the accuracy. (orig.)

  15. A backprojection-filtration algorithm for nonstandard spiral cone-beam CT with an n-PI-window

    International Nuclear Information System (INIS)

    Yu Hengyong; Ye Yangbo; Zhao Shiying; Wang Ge

    2005-01-01

    For applications in bolus-chasing computed tomography (CT) angiography and electron-beam micro-CT, the backprojection-filtration (BPF) formula developed by Zou and Pan was recently generalized by Ye et al to reconstruct images from cone-beam data collected along a rather flexible scanning locus, including a nonstandard spiral. A major implication of the generalized BPF formula is that it can be applied for n-PI-window-based reconstruction in the nonstandard spiral scanning case. In this paper, we design an n-PI-window-based BPF algorithm, and report the numerical simulation results with the 3D Shepp-Logan phantom and Defrise disk phantom. The proposed BPF algorithm consists of three steps: cone-beam data differentiation, weighted backprojection and inverse Hilbert filtration. Our simulated results demonstrate the feasibility and merits of the proposed algorithm

  16. Motion estimation and compensation in dynamic spiral CT reconstruction; Estimation et compensation de mouvement en reconstruction dynamique de tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St

    2004-07-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  17. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique

    International Nuclear Information System (INIS)

    Katsura, Masaki; Matsuda, Izuru; Akahane, Masaaki; Sato, Jiro; Akai, Hiroyuki; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni

    2012-01-01

    To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 ± 3.00) than low-dose ASIR (49.24 ± 9.11, P < 0.01) and reference-dose ASIR images (24.93 ± 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. (orig.)

  18. The efficacy of low-dose helical CT screening as an option for health examination

    International Nuclear Information System (INIS)

    Kishi, Kazuma; Hara, Shigeko; Kurosaki, Atsuko; Fujii, Takeshi; Yoshimura, Kunihiko

    2007-01-01

    We retrospectively evaluated the results of low-dose helical CT screening as an option for health examinations. From November 2002 to October 2005, CT screening was performed in 2,306 individuals (men 1,766, women 540, mean age 56.1 years). Among them, 71 individuals (3.1%) were diagnosed as having active thoracic diseases consisting of 14 neoplasms and 57 non-neoplastic diseases. Of 14 patients with neoplastic lesions, 13 had lung cancer, 1 of whom had double primary lung cancer, and 1 had atypical adenomatous hyperplasia. The mean diameter of the 14 lung cancers was 14.4 mm. The histology of these lesions was adenocarcinoma in 13 and squamous cell carcinoma in 1. The pathological stage was IA in 12 patients and IIA in 1. All patients underwent surgical resection. On the other hand, emphysema was diagnosed in 40 asymptomatic individuals based on CT and spirometry, and smoking cessation was strongly implemented for those who were current smokers. CT screening is useful for detecting not only early lung cancer but also non-neoplastic lung diseases. (author)

  19. Spiral CT features of abdomen after whipple's operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Lee, K. Y.; Shin, K. H.; Jung, M. H.; Park, C. M.; Cha, I. H. [Korea Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-04-01

    To assess the CT features of postoperative anatomical changes, surgical complications, and patterns of tumor recurrence after Whipple's operation. 42 spiral CT scans of 31 patients who had undergone Whipple's operation were retrospectively reviewed. Postoperative diagnoses were distal CBD cancer in 13 patients, cancer of the ampulla of Vater in ten, cancer of the head of the pancreas in seven, and microcystic cystadenocarcinoma of the pancreas in one. Time intervals between surgery and CT ranged from 1 week to 5 years. CT features of postoperative anastomotic changes, surgical complications, and patterns of tumor recurrence were analyzed. Gastro- or duodeno-jejunal anastomosis was seen in 32 CT scans(74%), pancreaticojejunostomy in 27(64%), and choledochojejunostomy in 24(57%). Pneumobilia was seen in ten patients(34%). Abnormal fluid collections in the peripancreatic and perihepatic space were demonstrated in two patients who underwent CT scans within 3 weeks after operation. Other complications included wound abscess(n=2), and portal vein occlusion(n=1). The most common site of metastasis was the lymph node(n=8)(retroperitoneal:n=5; mesentery root:n=4; and celiac:n=2), followed by the liver(n=6), peritoneum(n=3), adrenal gland(n=2), and afferent loop(n=1). In three cases, there was local recurrence in the pancreatic bed. To reduce possible diagnostic errors during CT interpretation, a Knowledge of normal postoperative anatomy, common complications, and patterns of disease recurrence following Whipple's operation is important.

  20. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  1. Automated extraction of radiation dose information from CT dose report images.

    Science.gov (United States)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2011-06-01

    The purpose of this article is to describe the development of an automated tool for retrieving texts from CT dose report images. Optical character recognition was adopted to perform text recognitions of CT dose report images. The developed tool is able to automate the process of analyzing multiple CT examinations, including text recognition, parsing, error correction, and exporting data to spreadsheets. The results were precise for total dose-length product (DLP) and were about 95% accurate for CT dose index and DLP of scanned series.

  2. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    International Nuclear Information System (INIS)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul

    2012-01-01

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 μSv), followed by AZ3000CT (332.4 μSv), Somatom Emotion 6 (199.38 μSv), and 3D eXaM (111.6 μSv); it was the lowest for Implagraphy (83.09 μSv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  3. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-06-15

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 {mu}Sv), followed by AZ3000CT (332.4 {mu}Sv), Somatom Emotion 6 (199.38 {mu}Sv), and 3D eXaM (111.6 {mu}Sv); it was the lowest for Implagraphy (83.09 {mu}Sv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  4. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: prospective study and systematic review

    International Nuclear Information System (INIS)

    Alshamari, Muhammed; Geijer, Haakan; Norrman, Eva; Geijer, Mats; Jansson, Kjell

    2016-01-01

    Abdominal radiography is frequently used in acute abdominal non-traumatic pain despite the availability of more advanced diagnostic modalities. This study evaluates the diagnostic accuracy of low-dose CT compared with abdominal radiography, at similar radiation dose levels. Fifty-eight patients were imaged with both methods and were reviewed independently by three radiologists. The reference standard was obtained from the diagnosis in medical records. Sensitivity and specificity were calculated. A systematic review was performed after a literature search, finding a total of six relevant studies including the present. Overall sensitivity with 95 % CI for CT was 75 % (66-83 %) and 46 % (37-56 %) for radiography. Specificity was 87 % (77-94 %) for both methods. In the systematic review the overall sensitivity for CT varied between 75 and 96 % with specificity from 83 to 95 % while the overall sensitivity for abdominal radiography varied between 30 and 77 % with specificity 75 to 88 %. Based on the current study and available evidence, low-dose CT has higher diagnostic accuracy than abdominal radiography and it should, where logistically possible, replace abdominal radiography in the workup of adult patients with acute non-traumatic abdominal pain. (orig.)

  5. Diagnostic accuracy of low-dose CT compared with abdominal radiography in non-traumatic acute abdominal pain: prospective study and systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Alshamari, Muhammed; Geijer, Haakan [Oerebro University, Department of Radiology, Faculty of Medicine and Health, Oerebro (Sweden); Norrman, Eva [Oerebro University, Department of Medical Physics, Faculty of Medicine and Health, Oerebro (Sweden); Geijer, Mats [Lund University and Skaane University Hospital, Department of Medical Imaging and Physiology, Lund (Sweden); Jansson, Kjell [Oerebro University, Department of Surgery, Faculty of Medicine and Health, Oerebro (Sweden)

    2016-06-15

    Abdominal radiography is frequently used in acute abdominal non-traumatic pain despite the availability of more advanced diagnostic modalities. This study evaluates the diagnostic accuracy of low-dose CT compared with abdominal radiography, at similar radiation dose levels. Fifty-eight patients were imaged with both methods and were reviewed independently by three radiologists. The reference standard was obtained from the diagnosis in medical records. Sensitivity and specificity were calculated. A systematic review was performed after a literature search, finding a total of six relevant studies including the present. Overall sensitivity with 95 % CI for CT was 75 % (66-83 %) and 46 % (37-56 %) for radiography. Specificity was 87 % (77-94 %) for both methods. In the systematic review the overall sensitivity for CT varied between 75 and 96 % with specificity from 83 to 95 % while the overall sensitivity for abdominal radiography varied between 30 and 77 % with specificity 75 to 88 %. Based on the current study and available evidence, low-dose CT has higher diagnostic accuracy than abdominal radiography and it should, where logistically possible, replace abdominal radiography in the workup of adult patients with acute non-traumatic abdominal pain. (orig.)

  6. Radiation dose reduction in pediatric CT

    International Nuclear Information System (INIS)

    Robinson, A.E.; Hill, E.P.; Harpen, M.D.

    1986-01-01

    The relationship between image noise and radiation dose was investigated in computed tomography (CT) images of a pediatric abdomen phantom. A protocol which provided a minimum absorbed dose consistent with acceptable image noise criteria was determined for a fourth generation CT scanner. It was found that pediatric abdominal CT scans could maintain diagnostic quality with at least a 50% reduction in dose from the manufacturers' suggested protocol. (orig.)

  7. Skeletal and total body volumes of human fetuses: assessment of reference data by spiral CT

    International Nuclear Information System (INIS)

    Braillon, Pierre M.; Buenerd, Annie; Bouvier, Raymonde; Lapillonne, Alexandre

    2002-01-01

    Objective: To define reference data for skeletal and total body volumes of normal human fetuses. Materials and methods: Spiral CT was used to assess the skeletal and total body volumes of 31 normal human stillborn infants with gestational age (GA) and body weight (BW) ranging from 14 to 41.5 weeks and 22 to 3,760 g, respectively. CT scans (slice thickness 2.7 mm, pitch 0.7) were performed within the first 24 h after delivery. Precise bone and soft-tissue windows were defined from analysis of the density along the diaphysis of the fetal long bones and from the measurement of a phantom that mimics soft tissues. Lengths and volumes were obtained from 3D reconstructions. The femur lengths measured from CT images (FLct) were compared with those provided by US studies (FLus). Results: Significant correlations (r>0.9) were found between BW, measured volumes of the entire skeleton or head, long-bone lengths, biparietal diameter and GA. Strong linear correlations (r>0.98) were observed between FLct and FLus. Conclusions: Skeletal and total body volume values obtained using spiral CT were significantly correlated with fetal biometric measurements. These data could complement those obtained in obstetric investigations with US. (orig.)

  8. Preliminary application of 320-detector spiral CT with ECG editing for assessing coronary artery in-stent restenosis

    International Nuclear Information System (INIS)

    Li Zhiming; Tan Lilian; Li Shuxin; Fu Xi; He Weihong; Liu Ke; Huang Yong; Yu Lin

    2011-01-01

    Objective: To determine the value of 320-detector spiral CT with retrospective ECG gating and editing software for detecting coronary artery in-stent restenosis. Methods: CT scans of 14 patients with coronary artery stnets were retrospectively analyzed. The examinations were performed using a 320-detector spiral CT scanner and retrospective ECG gating combined with ECG editing software. The image quality of reconstructed coronary artery in-stents was compared before and after the editing of synchronously recorded ECG. The paired-sample t test was used for statistical analysis. Results: Before ECG editing, arrhythmia and in-stent artifact resulted in image blurring, missing arterial segments, significant stepladder artifacts or non-visualization of the interior of stents. Of 14 cases before ECG editing, in-stent restenosis was detected in 10 and patency in 3. The coronary artery stent and distal bifurcation were delineated in one patient. After ECG editing, the image quality of coronary artery stents was improved with detection of in-stent restenosis (4 cases) including the one case that not evaluable before ECG editing. The average image quality score before ECG editing (2.14±0.86) was significantly (P<0.001) lower than that after ECG editing (3.07±0.73). Conclusion: Retrospective ECG gating combined with ECG editing of 320-detector spiral CT can reduce the artifacts produced by arrhythmia or in-stent swings and improve the imaging quality of coronary artery stents. (authors)

  9. Emphysema progression is visually detectable in low-dose CT in continuous but not in former smokers

    DEFF Research Database (Denmark)

    Wille, Mathilde Marie Winkler; Thomsen, Laura H.; Dirksen, Asger

    2014-01-01

    prevalence and grade of emphysema in late CT examinations). Significant progression in emphysema was seen in continuous smokers, but not in former smokers. Agreement on centrilobular emphysema subtype was substantial; agreement on paraseptal subtype, moderate. Agreement on panlobular and mixed subtypes......: Visual scoring of chest CT is able to characterise the presence, pattern, and progression of early emphysema. Continuous smokers progress; former smokers do not. KEY POINTS: • Substantial interobserver consistency in determining early-stage emphysema in low-dose CT. • Longitudinal analyses show clear...... time-trends for emphysema presence and grading. • For continuous smokers, progression of emphysema was seen in all lung zones. • For former smokers, progression of emphysema was undetectable by visual assessment. • Onset and progression of interstitial abnormalities are visually detectable....

  10. Helical CT defecography; La defecografia con Tomografia Computerizzata spirale

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, R.; Fiorini, G.; Beghello, A.; Cicio, G.R.; Derchi, L.E.; Consigliere, M.; Resasco, M. [Genua Univ., Genua (Italy). Ist. di Radiologia, Cattedra R; Tornago, S. [Genua Univ. Genua (Italy). 2 Clinica Ortopedica

    1999-11-01

    The purpose of this work is to investigate the possible role of Helical CT defecography in pelvic floor disorders by comparing the results of the investigations with those of conventional defecography. The series analyzed consisted of 90 patients, namely 62 women and 28 men, ranging in age 24-82 years. They were all submitted to conventional defecography, and 18 questionable cases were also studied with Helical CT defecography. The conventional examination was performed during the 4 standard phases of resting, squeezing, Valsalva and straining; it is used a remote-control unit. The parameters for Helical CT defecography were: 5 mm beam collimation, pitch 2, 120 KV, 250 m As and 18-20 degrees gantry inclination to acquire coronal images of the pelvic floor. The rectal ampulla was distended with a bolus of 300 mL nonionic iodinated contrast agent (dilution: 3g/cc). The patient wore a napkin and was seated on the table, except for those who could not hold the position and were thus examined supine. Twenty-second helical scans were performed at rest and during evacuation; multiplanar reconstructions were obtained especially on the sagittal plane for comparison with conventional defecographic images. Coronal Helical CT defecography images permitted to map the perineal floor muscles, while sagittal reconstructions provided information on the ampulla and the levator ani. To conclude, Helical CT defecography performed well in study of pelvic floor disorders and can follow conventional defecography especially in questionable cases. [Italian] Scopo di questo lavoro e' ricercare un ruolo per la defeco-TC con apparecchiatura elicoidale nello studio delle malattie del pavimento pelvico confrontandola con i risultati consolidati della defecografia tradizionale. Si sono visionati 90 pazienti, 62 femmine e 28 maschi, con eta' compresa tra 24 e 82 anni, con defecografia tradizionale; di questi, 18 casi con diagnosi dubbia sono stati studiati anche con defeco-TC spirale

  11. Ambient dose measurement in some CT departments in Khartoum State

    International Nuclear Information System (INIS)

    Mohammed, S. A. H.

    2012-09-01

    Computerized Tomography (CT) is now one of the most important radiological examinations world wide.The frequency of CT examinations is increasing rapidly from 2% of all radiological examinations in some countries a decade age to 10-15% now. During the imaging procedure, staff may expose to a significant dose. Therefore, ambient dose measurement is important in the shortage of regular personal monitoring in sudan. This study intended to evaluate the ambient dose at some CT departments (Medical Military hospital, Alamal National Hospital, Elnelin Diagnostic Center and Modern Medical Centre). These departments were equipped with daul, 16 and 64 multi detector CT machines. A survey meter (Radios) was used to measure ambient doses in three locations: Doors, Control Rooms and Adjacent Rooms. The ambient dose equivalent (scatter dose) was measured at various distances from the isocenter of the CT unit at various angles to establish isodose cartography. The mean and range of radiation at control room is 10.00-0.20 and mean (7.05μSv/hr,) reception 1.0-0 (0.40) and doors 4.00-100.00 (73.5) for height 1 meter above the ground. For height 2 meters at control room 0-10.00 (6,75), reception 0-90.00 (30) at door 9.00-90.00 (49.50). This study confirms that low levels of radiation dose are received by staff during CT imaging and these levels are within safe limits as prescribed by the national and international regulations. (Author)

  12. Detection of Airway Anomalies in?Pediatric?Patients with Cardiovascular Anomalies with Low Dose Prospective ECG-Gated Dual-Source CT

    OpenAIRE

    Jiao, Hui; Xu, Zhuodong; Wu, Lebin; Cheng, Zhaoping; Ji, Xiaopeng; Zhong, Hai; Meng, Chen

    2013-01-01

    OBJECTIVES: To assess the feasibility of low-dose prospective ECG-gated dual-source CT (DSCT) in detecting airway anomalies in pediatric patients with cardiovascular anomalies compared with flexible tracheobronchoscopy (FTB). METHODS: 33 pediatrics with respiratory symptoms who had been revealed cardiovascular anomalies by transthoracic echocardiography underwent FTB and contrast material-enhanced prospective ECG-triggering CT were enrolled. The study was approved by our institution review bo...

  13. Dose reduction using prospective electrocardiograph-triggered axial coronary scan on the 64-slice spiral CT

    International Nuclear Information System (INIS)

    Wang Yanyan; Wu Guogeng; Zhou Cheng; Gao Jianhua; Jiao Sheng; Cao Huizhi

    2008-01-01

    Objective: To compare radiation dose and image quality between prospective electrocardiograph (ECG)-triggered axial scan and retrospective ECG-gated helical scan in coronary 64-slice CT angiography (CTA). Methods: Seventy-seven consecutive patients [group A. Average body mass index (BMI): 24.6, heart rate 0.05). Conclusion: Prospective ECG-triggered axial scan in 64-slice coronary CTA can significantly reduce radiation exposure and the image quality can fulfill clinical diagnostic needs. (authors)

  14. Adaptive Statistical Iterative Reconstruction-Applied Ultra-Low-Dose CT with Radiography-Comparable Radiation Dose: Usefulness for Lung Nodule Detection.

    Science.gov (United States)

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Moon, Jung Won; Lee, Kyung Soo

    2015-01-01

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, ASIR-driven ULDCT in three out of the five observers (p ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT.

  15. High-resolution CT of the lung in asbestos-exposed subjects. Comparison of low-dose and high-dose HRCT

    International Nuclear Information System (INIS)

    Majurin, M.L.; Varpula, M.; Kurki, T.; Pakkala, L.

    1994-01-01

    The lowest possible mAs settings for high-resolution CT (HRCT) were studied on 45 individuals with suspected asbestos-related lung disease. All patients were investigated with 5 to 6 high-dose HRCT images (120 kVp/160 mA/2 s) at 3-cm intervals. At a selected level 4 additional low-dose images were obtained on each patient with lower mAs settings (100 mA/2 s, 80 mA/2 s, 60 mA/2 s, 30 mA/2 s). Thirty-seven subjects out of 45 had HRCT lesions compatible with asbestosis. HRCT images obtained with as low as 60 mA/2 s settings clearly showed pleural tractions and thickenings, parenchymal bands, honeycombing and subpleural curvilinear shadows, whereas in the evaluation of subpleural short lines and ground glass findings 80 mA/2 s were required. The lowest setting, 30 mA/2 s, was sufficient only in detecting and evaluating pleural tractions and thickenings. We conclude that 160 mAs yield good quality HRCT images, with substantial decrease of radiation dose, for the evaluation of asbestos-related lesions. (orig.)

  16. The optimization of low-dose scanning protocols of 64-slice spiral CT in the adult chest: a multicenter study

    International Nuclear Information System (INIS)

    Tang Wei; Huang Yao; Wu Ning

    2011-01-01

    Objective: To compare the image quality of chest low dose CT (LDCT) using automatic exposure control (AEC) and constant current. control (CCC) and explore a more reasonable scanning protocol. Methods: Two hundred and eighty participants were examined with 64 CT scanner at 7 centers in China. All were divided into 4 groups. Two groups underwent LDCT using AEC with standard deviation set at 25 (Al) and 30 (A2) respectively and the tube current ranged from 10 mA to 80 mA. The other two groups underwent LDCT using CCC with tube current set at 40 mA (Cl) and 50 mA (C2) respectively. The axial and MPR images were evaluated by two radiologists who were blinded to the scanning protocols. The radiation dose, noise and the image quality of the 4 groups were compared and analyzed statistically. Differences of radiation dose and noise among groups were determined with variance analysis and t test, image quality with Mann- Whitney test and the consistency of diagnosis with Kappa test. Results: There was a significant lower DLP in AEC group than in CCC group [(82.62±40.31) vs (110.81±18.21) mGy · cm (F=56.88, P 0.05]. The noisy of AEC group was higher than that of CCC group both on lung window (41.50±9.58 vs 40.86±7.03) and mediastinum window (41.19±7.83 vs 40.92±9.89), but there was no significant difference (F lung =0.835, P=0.476, F wediastinum =1.910, P=0.128). The quality score of axial image in AEC group was higher than that in CCC group (superior margin of the brachiocephalic vein level: 4.49± 0.56 vs 4.38±0.64, superior margin of the aortic arch: 4.86±0.23 vs 4.81±0.32, the right superior lobar bronchus Level: 4.87±0.27 vs 4.84±0.22, the right middle lobar bronchus Level: 4.90±0.25 vs 4.88±0.21) except on the right inferior pulmonary vein level (4.92±0.25 vs 4.93±0.17) and superior margin of the left diaphragmatic dome level (4.91±0.27 vs 4.93±0.22) on lung window, but no significant differences (F=0.076-1.748, P>0.05) were observed. A significant

  17. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2013-12-01

    To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all pASIR and UL-ASIR (all pASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.

  18. Comparative study of multi-slice spiral CT angiography and color doppler ultrasound in diagnosis of arteriosclerotic occlusive disease of lower extremity

    International Nuclear Information System (INIS)

    Li Wanjun; Lai Zhenhui; Cui Dong; Lin Xiupeng; Du Muxuan

    2010-01-01

    Objective: To compare the difference between multi-slice spiral CT angiography (MSCTA) and color doppler ultrasound in diagnosis of arteriosclerotic occlusive disease of lower extremity. Methods: Patients with arteriosclerosis occlusion were assessed by color doppler ultrasound, multi-slice spiral CT angiography and digital subtraction angiography (DSA). The image information of color doppler ultrasound and MSCTA were compared with that of DSA. Results: Color doppler ultrasound showed the anatomical shape and hemodynamics of the arteries of lower extremity. The sensitivity, specificity, and accuracy for diagnosis arteriosclerotic occlusive disease of lower extremity were 88.04%, 90.69% and 88.77% respectively. MSCTA showed the three dimensional structure of the arteries of lower extremity as well as the collateral arteries and the distal arterials. The sensitivity, specificity and accuracy of MSCTA were 97.69%, 96.90% and 97.66%, respectively. Conclusion: Multi-slice spiral CT angiography is an ideal imaging method for the diagnosis of arteriosclerotic occlusive disease of lower extremity. (authors)

  19. The application of spiral-CT and 3D-imaging of airway for observation of efficacy and complication after tracheobronchial stent placement

    International Nuclear Information System (INIS)

    Wei Ning; Xu Hao; Zu Maoheng; Gu Yuming; Li Gang; Zhang Qingqiao; Xu Wei; Cui Yanfeng; Liu Hongtao; Wang Wenliang

    2012-01-01

    Objective: To evaluate the application of spiral-CT and 3D-imaging of airway for observation of efficacy and complication after tracheobronchial stent placement. Methods: Thirty-one patients treated with tracheal stents were retrospectively analyzed, of which there were 27 malignant tracheal stenosis, 2 benign tracheal stenosis, 1 bronchial remnant fistula and 1 gastroesophageal anastomosis tracheal fistula. The spiral-CT and 3D-imagings were analyzed and the location, shape and complication of the stents were assessed. Results: Thirty-one patients were treated with 8 Z-type stainless steel stents and 28 Ni-Ti memory alloy stents. The stents of 22 cases remained patent in the original position and restenosis was occurred in 5 cases, migration in 3 cases and fracture in 1 case. All the CT features were performed and reconstructed on the workstation, using multiplanar reconstruction, volume rendering, and CT virtual endoscopy. The location of tracheal stenosis and fistula were showed in different angle, and the location, shape of the stents, and the complications (such as restenosis, fracture) as well. Conclusion: Spiral-CT and 3D-imaging is a rapid, simple and effective method in assessing tracheal stent implantation and complication, therefore, it is of great value in clinical practice. (authors)

  20. The Impact of Combining a Low-Tube Voltage Acquisition with Iterative Reconstruction on Total Iodine Dose in Coronary CT Angiography

    Directory of Open Access Journals (Sweden)

    Toon Van Cauteren

    2017-01-01

    Full Text Available Objectives. To assess the impact of combining low-tube voltage acquisition with iterative reconstruction (IR techniques on the iodine dose in coronary CTA. Methods. Three minipigs underwent CCTA to compare a standard of care protocol with two alternative study protocols combining low-tube voltage and low iodine dose with IR. Image quality was evaluated objectively by the CT value, signal-to-noise ratio (SNR, and contrast-to-noise ratio (CNR in the main coronary arteries and aorta and subjectively by expert reading. Statistics were performed by Mann–Whitney U test and Chi-square analysis. Results. Despite reduced iodine dose, both study protocols maintained CT values, SNR, and CNR compared to the standard of care protocol. Expert readings confirmed these findings; all scans were perceived to be of at least diagnostically acceptable quality on all evaluated parameters allowing image interpretation. No statistical differences were observed (all p values > 0.11, except for streak artifacts (p=0.02 which were considered to be more severe, although acceptable, with the 80 kVp protocol. Conclusions. Reduced tube voltage in combination with IR allows a total iodine dose reduction between 37 and 50%, by using contrast media with low iodine concentrations of 200 and 160 mg I/mL, while maintaining image quality.

  1. Lung cancer screening with low-dose helical CT in Korea: experiences at the Samsung Medical Center.

    Science.gov (United States)

    Chong, Semin; Lee, Kyung Soo; Chung, Myung Jin; Kim, Tae Sung; Kim, Hojoong; Kwon, O Jung; Choi, Yoon-Ho; Rhee, Chong H

    2005-06-01

    To determine overall detection rates of lung cancer by low-dose CT (LDCT) screening and to compare histopathologic and imaging differences of detected cancers between high- and low-risk groups, this study included 6,406 asymptomatic Korean adults with >or=45 yr of age who underwent LDCT for lung cancer screening. All were classified into high- (>or=20 pack-year smoking; 3,353) and low-risk (3,053; <20 pack-yr smoking and non-smokers) groups. We compared CT findings of detected cancers and detection rates between high- and low-risk. At initial CT, 35% (2,255 of 6,406) had at least one or more non-calcified nodule. Lung cancer detection rates were 0.36% (23 of 6,406). Twenty-one non-small cell lung cancers appeared as solid (n=14) or ground-glass opacity (GGO) (n=7) nodules. Cancer likelihood was higher in GGO nodules than in solid nodules (p<0.01). Fifteen of 23 cancers occurred in high-risk group and 8 in low-risk group (p=0.215). Therefore, LDCT screening help detect early stage of lung cancer in asymptomatic Korean population with detection rate of 0.36% on a population basis and may be useful for discovering early lung cancer in low-risk group as well as in high-risk group.

  2. The comparative study between multi-slice spiral CT angiography and color flow ultrasonography in hepatic and splenic trauma

    International Nuclear Information System (INIS)

    Yan Youxia; Zhang Jin'e; Chen Xiaocong; Cai Shufang

    2007-01-01

    Objective: To investigate the clinical value of multi-slice spiral CT angiography and color flow ultra- sonography in hepatic and splenic trauma. Methods Thirty-six cases of hepatic and splenic trauma were collected, the MSCT were analyzed and compared with that of color flow ultrasonography. Results: Seventeen cases were Hepatic trauma including nine cases of hepatic contusion, six cases of sub-envelope hematoma, two cases of both sub-envelope hematoma and hepatic contusion. Nineteen cases were splenic trauma including nine cases of splenic contusion, ten cases of sub-envelope hematoma. Conclusion: Multi-slice spiral CT angiography show hepatic and splenic trauma clearer than that of color flow ultrasonography, and can provide reliable basis for clinic diagnosis and therapy. (authors)

  3. Sensitivity and accuracy of volumetry of pulmonary nodules on low-dose 16- and 64-row multi-detector CT : an anthropomorphic phantom study

    NARCIS (Netherlands)

    Xie, X.; Zhao, Yingru; Snijder, R.A.; van Ooijen, P.M.; de Jong, P.A.; Oudkerk, M.; de Bock, G.H.; Vliegenthart, R.; Greuter, M.J.

    To assess the sensitivity of detection and accuracy of volumetry by manual and semi-automated quantification of artificial pulmonary nodules in an anthropomorphic thoracic phantom on low-dose CT. Fifteen artificial spherical nodules (diameter 3, 5, 8, 10 and 12 mm; CT densities -800, -630 and +100

  4. Validation of a low dose simulation technique for computed tomography images.

    Directory of Open Access Journals (Sweden)

    Daniela Muenzel

    Full Text Available PURPOSE: Evaluation of a new software tool for generation of simulated low-dose computed tomography (CT images from an original higher dose scan. MATERIALS AND METHODS: Original CT scan data (100 mAs, 80 mAs, 60 mAs, 40 mAs, 20 mAs, 10 mAs; 100 kV of a swine were acquired (approved by the regional governmental commission for animal protection. Simulations of CT acquisition with a lower dose (simulated 10-80 mAs were calculated using a low-dose simulation algorithm. The simulations were compared to the originals of the same dose level with regard to density values and image noise. Four radiologists assessed the realistic visual appearance of the simulated images. RESULTS: Image characteristics of simulated low dose scans were similar to the originals. Mean overall discrepancy of image noise and CT values was -1.2% (range -9% to 3.2% and -0.2% (range -8.2% to 3.2%, respectively, p>0.05. Confidence intervals of discrepancies ranged between 0.9-10.2 HU (noise and 1.9-13.4 HU (CT values, without significant differences (p>0.05. Subjective observer evaluation of image appearance showed no visually detectable difference. CONCLUSION: Simulated low dose images showed excellent agreement with the originals concerning image noise, CT density values, and subjective assessment of the visual appearance of the simulated images. An authentic low-dose simulation opens up opportunity with regard to staff education, protocol optimization and introduction of new techniques.

  5. CORK Study in Cystic Fibrosis: Sustained Improvements in Ultra-Low-Dose Chest CT Scores After CFTR Modulation With Ivacaftor.

    Science.gov (United States)

    Ronan, Nicola J; Einarsson, Gisli G; Twomey, Maria; Mooney, Denver; Mullane, David; NiChroinin, Muireann; O'Callaghan, Grace; Shanahan, Fergus; Murphy, Desmond M; O'Connor, Owen J; Shortt, Cathy A; Tunney, Michael M; Eustace, Joseph A; Maher, Michael M; Elborn, J Stuart; Plant, Barry J

    2018-02-01

    Ivacaftor produces significant clinical benefit in patients with cystic fibrosis (CF) with the G551D mutation. Prevalence of this mutation at the Cork CF Centre is 23%. This study assessed the impact of cystic fibrosis transmembrane conductance regulator modulation on multiple modalities of patient assessment. Thirty-three patients with the G551D mutation were assessed at baseline and prospectively every 3 months for 1 year after initiation of ivacaftor. Change in ultra-low-dose chest CT scans, blood inflammatory mediators, and the sputum microbiome were assessed. Significant improvements in FEV 1 , BMI, and sweat chloride levels were observed post-ivacaftor treatment. Improvement in ultra-low-dose CT imaging scores were observed after treatment, with significant mean reductions in total Bhalla score (P < .01), peribronchial thickening (P = .035), and extent of mucous plugging (P < .001). Reductions in circulating inflammatory markers, including interleukin (IL)-1β, IL-6, and IL-8 were demonstrated. There was a 30% reduction in the relative abundance of Pseudomonas species and an increase in the relative abundance of bacteria associated with more stable community structures. Posttreatment community richness increased significantly (P = .03). Early and sustained improvements on ultra-low-dose CT scores suggest it may be a useful method of evaluating treatment response. It paralleled improvement in symptoms, circulating inflammatory markers, and changes in the lung microbiota. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  6. Spiral CT biliary virtual endoscopy: preliminary clinical applications in the detection of biliary calculus

    International Nuclear Information System (INIS)

    Xiong Minghui; Wang Dong; Song Yunlong; Zhang Wanshi; Xu Jiaxing

    2000-01-01

    Objective: To evaluate imaging features and clinical value of CT biliary virtual endoscopy in the detection of biliary calculus. Methods: Eighteen patients with biliary calculi underwent volume scanning using spiral CT (Hispeed Advantage CT/i GE ). All data were transferred to computer workstation, and CT biliary virtual endoscopy images with pseudocolor encoding were generated from the volumetric data using the Navigator Smooth soft-ware. All cases were proved by ultrasound, axial CT or operation. Results: Among 18 cases, gallstones were found 8 in cases, common bile duct stones in 2 cases, gallstones and bile duct stones in 6 cases. The stones were 0.3-3.2 cm in size. CT biliary virtual endoscopy correctly demonstrated the surface details of stones which were viewed from extra- or intraluminal orientation in a 3D fashion. The findings were consistent with those of US, CT or operation. Conclusion: The CT virtual biliary endoscopy is a further development of virtual endoscopy for observing biliary calculus from intra- and extra-luminal views and providing three dimensional information of stone

  7. Assessment of hemodynamics in a rat model of liver cirrhosis with precancerous lesions using multislice spiral CT perfusion imaging.

    Science.gov (United States)

    Ma, Guolin; Bai, Rongjie; Jiang, Huijie; Hao, Xuejia; Ling, Zaisheng; Li, Kefeng

    2013-01-01

    To develop an optimal scanning protocol for multislice spiral CT perfusion (CTP) imaging to evaluate hemodynamic changes in liver cirrhosis with diethylnitrosamine- (DEN-) induced precancerous lesions. Male Wistar rats were randomly divided into the control group (n = 80) and the precancerous liver cirrhosis group (n = 40). The control group received saline injection and the liver cirrhosis group received 50 mg/kg DEN i.p. twice a week for 12 weeks. All animals underwent plain CT scanning, CTP, and contrast-enhanced CT scanning. Scanning parameters were optimized by adjusting the diatrizoate concentration, the flow rate, and the delivery time. The hemodynamics of both groups was further compared using optimized multislice spiral CTP imaging. High-quality CTP images were obtained with following parameters: 150 kV; 150 mAs; 5 mm thickness, 5 mm interval; pitch, 1; matrix, 512 × 512; and FOV, 9.6 cm. Compared to the control group, the liver cirrhosis group had a significantly increased value of the hepatic arterial fraction and the hepatic artery perfusion (P spiral CTP imaging can be used to evaluate the hemodynamic changes in the rat model of liver cirrhosis with precancerous lesions.

  8. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Touko; Lampinen, Anniina [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Palmu, Kirsi [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); School of Science, Aalto University, Department of Biomedical Engineering and Computational Science, Helsinki (Finland); Reijonen, Vappu; Kortesniemi, Mika [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); Leikola, Junnu [University of Helsinki and Helsinki University Hospital, Department of Plastic Surgery, Helsinki (Finland); Kivisaari, Riku [University of Helsinki and Helsinki University Hospital, Department of Neurosurgery, Helsinki (Finland)

    2015-09-15

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality. (orig.)

  9. Spiral CT of the pancreas. The value of small field-of-view targeted reconstruction

    International Nuclear Information System (INIS)

    Nishiharu, T.; Yamashita, Y.; Ogata, I.; Sumi, S.; Mitsuzaki, K.; Takahashi, M.

    1998-01-01

    Purpose: To compare the value of a retrospective targeted high-resolution spiral CT to the standard reconstruction technique in the assessment of pancreatic diseases. Material and methods: Spiral CT pancreatic images of a standard-size reconstruction protocol were compared prospectively with those of a retrospective targeted high-spatial-resolution reconstruction protocol in 30 patients. Prior to clinical evaluation, a phantom study was performed to evaluate the spatial resolution and signal-to-noise ratio of both protocols. Results: The high-resolution protocol achieved a good signal-to-noise ratio with acceptable spatial resolution. Phantom studies revealed increased image noise (+17%) with an increase in spatial resolution (+100%). In patients studied with the high-resolution protocol, the increase in noise was not significant but there was a marked improvement in the definition of small details. Conclusion: Images obtained with a targeted high-spatial-resolution reconstruction protocol showed superior lesion definition and vascular opacification compared with those obtained with a standard-size reconstruction protocol. This technique may have potential in the evaluation of small pancreatic abnormalities. (orig.)

  10. Prevalance rate of low-dose CT lung cancer screening. Results of a questionnaire survey of member facilities of Japan society of ningen dock with special concerns regarding the actual status and disincentives for implementing such screening

    International Nuclear Information System (INIS)

    Takizawa, Hirotaka

    2012-01-01

    We conducted a survey of member facilities of the Japan Society of Ningen Dock to elucidate the actual status of chest computed tomography (CT) screening and the reasons for not being able to change to low-dose CT. We sent a questionnaire consisting of 9 items to 531 member facilities in July 2010, response by facsimile to obtain an analysis. The prevalence rate of low-dose CT lung cancer screening slightly increased to 35% in comparison with the former survey done in November 2008. Some facilities indicated some shift in tube current to a lower range even though this was insufficient to meet the definition of low-dose CT. This reflects their thinking of ''Even with knowledge, there is strong hesitation to change to low-dose CT''. Among the reasons why they did not change to low-dose CT, a priority for high quality images was the top reason among problems of devices and performance. Informed consent was not yet adequate. It is necessary for manufactures to develop better technology to improve the image quality of low-dose CT and to report enough information to clinicians. On the medical side, perception of the necessity for appropriate reduction of radiation dose and the decision to move to low-dose CT would be of crucial significance for facility heads as well as radiologists and technicians. (author)

  11. Use of spiral CT in demonstrating early carcinoma of the stomach - I stage

    International Nuclear Information System (INIS)

    Pomakov, P.

    2009-01-01

    Full text: The aim of this lecture is to provide practical information about the methodology and technique of spiral computed tomography, which provide maximum diagnostic efficiency in early gastric cancer - I stage, and to present the semiotics of CT images seen in early gastric cancer stage I - a own and literature data. Methodology of the study covers optimal drug muscle relaxation of the abdominal wall by injection of 2 sg buskolizin intravenous; maximum distension of the stomach lumen by ingestion of 3 effervescent disintegrated tablets Vit. C with 1-2 sips of water, necessarily using of non-ionic contrast media - 100 ml / 300 mg iodine / 1 ml liquid bolus introduced for 30 seconds. Start scanning - 30 seconds of the start of injection - to visualize the arterial phase, use of slices with a thickness of 3 mm and 2 mm interval; exponential data 120 kV, 160 mAc. Earlier form of gastric cancer have to be presented by 5 CT image: unequal unsmooth, scallop or polycyclic contours of the lining, thinning the complete disappearance of the lining; undulating thickening of the lining; nodal formation like a polyp on a broad basis with a 2-5 mm, double contour of the lining - like a wave. These amendments are localized only in a limited segment of the gastric mucosa. Spiral CT is an effective diagnostic performance in gastric cancer, including the early stage I of cancer development. This is realized only by using the specific methodology of the study as well as good knowledge of the CT images semiology for carcinoma, localized only within a certain perimeter of the stomach lining

  12. Diagnostic value of multi-slice spiral CT for atlantoaxial spine injuries in children

    International Nuclear Information System (INIS)

    Xia Chengde; Qin Hongwei; Li Junhong

    2009-01-01

    Objective: To evaluate the diagnostic value of multi-slice spiral CT (MSCT) for the atlantoaxial spine injuries in children. Methods: The CT findings of 21 cases with the atlantoaxial spine injuries in children were reviewed retrospectively. Results: Fractures of dens occurred in 4 cases, isolated atlantoaxial dislocation in 15 cases, subluxation of the C2/3 right vertebra facet in 1 and atlanto-occipital subluxation in 1. CT diagnosis was correct in all cases. And plain film diagnosis was correct ia 13. Conclusion: MSCT could clearly demonstrate the fractures and dislocations of the atlantoaxial spine injuries in children and correctly determine the type of the atlantoaxial spine injuries in children, MSCT is the modality of choice in diagnosis of the atlantoaxial spine injuries in children and should be performed routinely. (authors)

  13. Multi-slice spiral CT perfusion imaging of chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Shao Yanhui; Qian Nong; Xue Yuejun; Dao Yinhong

    2008-01-01

    Objective: To evaluate the diagnostic value of multi-slice spiral CT (MSCT) perfusion imaging in chronic obstructive pulmonary disease (COPD). Methods: Twenty COPD patients and 20 volunteers underwent 8-row detector spiral CT (MSCT) perfusion imaging using cine scan mode with 5 mm slice thickness, 0.5 s rotation time and a total scan time of 45 s with 5 s intervals. 60 ml contrast agent (300 nag I/ml) were administered at a rate of 4 ml/s from the forearm superficial vein. The imaging data were transferred to a workstation. A time-density curve and pseudo-color map were generated automatically with GE CT perfusion 3 software, the blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface (PS) were measured. Results: Time-density curve was flatter and the peak of the curve was obviously lower in COPD patients than the volunteers. The BF, BV, PS in COPD patients was (24.77±11.49) ml·min -1 ·100 g -1 , (2.48±1.02) ml/100 g and (2.75±1.13) ml· min -1 ·100 g -1 respectively. In volunteers was (290.14±107.59) ml·min -1 ·100 g -1 , (16.51 ± 5.98) ml/100 g, (8.80±3.03) ml·min -1 ·100 g -1 respectively. The MTT in COPD patients and volunteers was (10.58±4.85) s and (4.50±1.71)s respectively. The BF, BV and PS in COPD patients was lower than the volunteers, the MTY was higher (P<0.01). Conclusion: MSCT perfusion imaging is helpful for the diagnosis of COPD. (authors)

  14. Accuracy of spiral CT and 3D reconstruction in the detection of acute pulmonary embolism - development of an animal model using porcine lungs and technical specimens. Development of an animal model using porcine lungs and technical specimens; Diagnostik der akuten Lungenembolie mittels Spiral-CT und 3D-Rekonstruktion. Entwicklung eines Tiermodells und technischer Probekoerper im Ex-vivo-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ries, B.G. [Klinik und Poliklinik fuer Radiologie, Univ. Mainz (Germany); Klinik fuer Radiologische Diagnostik, RWTH Aachen (Germany); Kauczor, H.U.; Thelen, M. [Klinik und Poliklinik fuer Radiologie, Univ. Mainz (Germany); Konerding, M.A. [Anatomisches Inst., Mainz Univ (Germany)

    2001-02-01

    Purpose: To develop a model for simulation the CT morphologic situation of acute pulmonary embolism, to evaluate the accuracy of spiral CT and 3D reconstruction in the detection of artificial emboli and to investigate the influence of the orientation of emboli depending on z-axis orientation. Materials and Methods: Standardized artificial emboli made of wax and of defined size and shape were positioned into the pulmonary arteries of porcine lungs. Castings of the embolized pulmonary arterial trees were made by injection of a special opaque resin. After performance of spiral CT the data sets of the emboli and the pulmonary arteries were post-processed. The 3D segmentations were compared with the anatomic preparation to evaluate the accuracy of spiral CT/3D reconstruction-technique. Technical specimens simulating CT-morphology of acute embolized vessels underwent spiral CT in six different positions with respect to the z-axis. The CT data were reconstructed using a standardized and a contrastadapted method with interactive correction. The 3D emboli were analysed under qualitative aspects, and measurements of their extent were done. Results: In nearly 91%, there was complete agreement between CT and the corresponding findings at the anatomical preparation. Measurements of the 3D reconstructed technical specimens showed discrepancies of shape and size in dependence of the size of the original preparation, orientation and reconstruction technique. Overestimation up to 4 mm and underestimation to 2,2 mm were observed. Measurements of preparations with heights from 14 to 26 mm showed variances of {+-}1,5 mm ({proportional_to}6-11%). Conclusion: The presented models are suitable to simulate CT morphology of acute pulmonary embolism under ex-vivo conditions. Accuracy in the detection of artificial emboli using spiral CT/3D reconstruction is affected by localization, size and orientation of the emboli and the reconstruction technique. (orig.) [German] Ziel: Die Entwicklung

  15. Low-dose cardio-respiratory phase-correlated cone-beam micro-CT of small animals.

    Science.gov (United States)

    Sawall, Stefan; Bergner, Frank; Lapp, Robert; Mronz, Markus; Karolczak, Marek; Hess, Andreas; Kachelriess, Marc

    2011-03-01

    Micro-CT imaging of animal hearts typically requires a double gating procedure because scans during a breath-hold are not possible due to the long scan times and the high respiratory rates, Simultaneous respiratory and cardiac gating can either be done prospectively or retrospectively. True five-dimensional information can be either retrieved with retrospective gating or with prospective gating if several prospective gates are acquired. In any case, the amount of information available to reconstruct one volume for a given respiratory and cardiac phase is orders of magnitud lower than the total amount of information acquired. For example, the reconstruction of a volume from a 10% wide respiratory and a 20% wide cardiac window uses only 2% of the data acquired. Achieving a similar image quality as a nongated scan would therefore require to increase the amount of data and thereby the dose to the animal by up to a factor of 50. To achieve the goal of low-dose phase-correlated (LDPC) imaging, the authors propose to use a highly efficient combination of slightly modified existing algorithms. In particular, the authors developed a variant of the McKinnon-Bates image reconstruction algorithm and combined it with bilateral filtering in up to five dimensions to significantly reduce image noise without impairing spatial or temporal resolution. The preliminary results indicate that the proposed LDPC reconstruction method typically reduces image noise by a factor of up to 6 (e.g., from 170 to 30 HU), while the dose values lie in a range from 60 to 500 mGy. Compared to other publications that apply 250-1800 mGy for the same task [C. T. Badea et al., "4D micro-CT of the mouse heart," Mol. Imaging 4(2), 110-116 (2005); M. Drangova et al., "Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice," Invest. Radiol. 42(2), 85-94 (2007); S. H. Bartling et al., "Retrospective motion gating in small animal CT of mice

  16. Impact of the adaptive statistical iterative reconstruction technique on image quality in ultra-low-dose CT

    International Nuclear Information System (INIS)

    Xu, Yan; He, Wen; Chen, Hui; Hu, Zhihai; Li, Juan; Zhang, Tingting

    2013-01-01

    Aim: To evaluate the relationship between different noise indices (NIs) and radiation dose and to compare the effect of different reconstruction algorithm applications for ultra-low-dose chest computed tomography (CT) on image quality improvement and the accuracy of volumetric measurement of ground-glass opacity (GGO) nodules using a phantom study. Materials and methods: A 11 cm thick transverse phantom section with a chest wall, mediastinum, and 14 artificial GGO nodules with known volumes (919.93 ± 64.05 mm 3 ) was constructed. The phantom was scanned on a Discovery CT 750HD scanner with five different NIs (NIs = 20, 30, 40, 50, and 60). All data were reconstructed with a 0.625 mm section thickness using the filtered back-projection (FBP), 50% adaptive statistical iterative reconstruction (ASiR), and Veo model-base iterative reconstruction algorithms. Image noise was measured in six regions of interest (ROIs). Nodule volumes were measured using a commercial volumetric software package. The image quality and the volume measurement errors were analysed. Results: Image noise increased dramatically from 30.7 HU at NI 20 to 122.4 HU at NI 60, with FBP reconstruction. Conversely, Veo reconstruction effectively controlled the noise increase, with an increase from 9.97 HU at NI 20 to only 15.1 HU at NI 60. Image noise at NI 60 with Veo was even lower (50.8%) than that at NI 20 with FBP. The contrast-to-noise ratio (CNR) of Veo at NI 40 was similar to that of FBP at NI 20. All artificial GGO nodules were successfully identified and measured with an average relative volume measurement error with Veo at NI 60 of 4.24%, comparable to a value of 10.41% with FBP at NI 20. At NI 60, the radiation dose was only one-tenth that at NI 20. Conclusion: The Veo reconstruction algorithms very effectively reduced image noise compared with the conventional FBP reconstructions. Using ultra-low-dose CT scanning and Veo reconstruction, GGOs can be detected and quantified with an acceptable

  17. Evaluation of radiation dose in pediatric head CT examination: a phantom study

    Science.gov (United States)

    Norhasrina Nik Din, Nik; Zainon, Rafidah; Rahman, Ahmad Taufek Abdul

    2018-01-01

    The aim of this study was to evaluate the radiation dose in pediatric head Computed Tomography examination. It was reported that decreasing tube voltage in CT examination can reduce the dose to patients significantly. A head phantom was scanned with dual-energy CT at 80 kV and 120 kV. The tube current was set using automatic exposure control mode and manual setting. The pitch was adjusted to 1.4, 1.45 and 1.5 while the slice thickness was set at 5 mm. The dose was measured based on CT Dose Index (CTDI). Results from this study have shown that the image noise increases substantially with low tube voltage. The average dose was 2.60 mGy at CT imaging parameters of 80 kV and 10 - 30 mAs. The dose increases up to 17.19 mGy when the CT tube voltage increases to 120 kV. With the reduction of tube voltage from 120 kV to 80 kV, the radiation dose can be reduced by 12.1% to 15.1% without degradation of contrast-to-noise ratio.

  18. Effective dose and cancer risk in PET/CT exams; Dose efetiva e risco de cancer em exames de PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de, E-mail: montezano@ird.gov.br, E-mail: Iidia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10{sup -4}. Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10{sup -3}.

  19. Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT

    Science.gov (United States)

    Lessmann, Nikolas; Išgum, Ivana; Setio, Arnaud A. A.; de Vos, Bob D.; Ciompi, Francesco; de Jong, Pim A.; Oudkerk, Matthjis; Mali, Willem P. Th. M.; Viergever, Max A.; van Ginneken, Bram

    2016-03-01

    The amount of calcifications in the coronary arteries is a powerful and independent predictor of cardiovascular events and is used to identify subjects at high risk who might benefit from preventive treatment. Routine quantification of coronary calcium scores can complement screening programs using low-dose chest CT, such as lung cancer screening. We present a system for automatic coronary calcium scoring based on deep convolutional neural networks (CNNs). The system uses three independently trained CNNs to estimate a bounding box around the heart. In this region of interest, connected components above 130 HU are considered candidates for coronary artery calcifications. To separate them from other high intensity lesions, classification of all extracted voxels is performed by feeding two-dimensional 50 mm × 50 mm patches from three orthogonal planes into three concurrent CNNs. The networks consist of three convolutional layers and one fully-connected layer with 256 neurons. In the experiments, 1028 non-contrast-enhanced and non-ECG-triggered low-dose chest CT scans were used. The network was trained on 797 scans. In the remaining 231 test scans, the method detected on average 194.3 mm3 of 199.8 mm3 coronary calcifications per scan (sensitivity 97.2 %) with an average false-positive volume of 10.3 mm3 . Subjects were assigned to one of five standard cardiovascular risk categories based on the Agatston score. Accuracy of risk category assignment was 84.4 % with a linearly weighted κ of 0.89. The proposed system can perform automatic coronary artery calcium scoring to identify subjects undergoing low-dose chest CT screening who are at risk of cardiovascular events with high accuracy.

  20. Combining automatic tube current modulation with adaptive statistical iterative reconstruction for low-dose chest CT screening.

    Science.gov (United States)

    Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin

    2014-01-01

    To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Increased NI was associated with increased subjective and objective image noise results (PASIR levels (PASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79 ± 1.17, 1.69 ± 0.59, 0.74 ± 0.29, and 0.37 ± 0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED.

  1. Analysis of patient CT dose data using virtualdose

    Science.gov (United States)

    Bennett, Richard

    X-ray computer tomography has many benefits to medical and research applications. Recently, over the last decade CT has had a large increase in usage in hospitals and medical diagnosis. In pediatric care, from 2000 to 2006, abdominal CT scans increased by 49 % and chest CT by 425 % in the emergency room (Broder 2007). Enormous amounts of effort have been performed across multiple academic and government groups to determine an accurate measure of organ dose to patients who undergo a CT scan due to the inherent risks with ionizing radiation. Considering these intrinsic risks, CT dose estimating software becomes a necessary tool that health care providers and radiologist must use to determine many metrics to base the risks versus rewards of having an x-ray CT scan. This thesis models the resultant organ dose as body mass increases for patients with all other related scan parameters fixed. In addition to this,this thesis compares a modern dose estimating software, VirtualDose CT to two other programs, CT-Expo and ImPACT CT. The comparison shows how the software's theoretical basis and the phantom they use to represent the human body affect the range of results in organ dose. CT-Expo and ImPACT CT dose estimating software uses a different model for anatomical representation of the organs in the human body and the results show how that approach dramatically changes the outcome. The results categorizes four datasets as compared to the three software types where the appropriate phantom was available. Modeling was done to simulate chest abdominal pelvis scans and whole body scans. Organ dose difference versus body mass index shows as body mass index (BMI) ranges from 23.5 kg/m 2 to 45 kg/m2 the amount of organ dose also trends a percent change from -4.58 to -176.19 %. Comparing organ dose difference with increasing x-ray tube potential from 120 kVp to 140 kVp the percent change in organ dose increases from 55 % to 65 % across all phantoms. In comparing VirtualDose to CT

  2. Power doppler ultrasound findings of renal infarct after experimental renal artery occlusion: comparison with spiral CT

    International Nuclear Information System (INIS)

    Jung, Seung Eun; Shinn, Kyung Sub; Kim, Hak Hee; Mun, Seok Hwan; Lee, Young Joon; Lee, Bae Young; Choi, Byung Gil; Lee, Jae Mun; Lee, Hee Jeong

    1999-01-01

    To evaluate the efficacy of power Doppler ultrasonography (PDUS) in depicting renal infarction in rabbits during experimental renal segmental arterial occlusion, and to compare the results with those of CT scanning. In 28 rabbits weighing 2.5 4kg, the segmental renal artery was occluded through the left main renal artery by embolization with Ivalon (Nycomed, Paris, France). Power Doppler ultrasonography and spiral CT scanning were performed before and at 2, 5, 8, 15, and 24 hours, and 3 and 7 days after occlusion of the segmental renal artery. The location of infarcted areas and collaterals, as seen on PDUS and CT scans, was evaluated by two radiologists. In all cases, as seen on power Doppler ultrasonography, infarcted areas-when compared with normal parenchyma, clearly demonstrated wedge-shaped perfusion defects in the kidney. The location of the lesion closely corresponded to the location seen during CT scanning. After renal arterial occlusion, transiently congested capsular arteries, which were named 'capsular sign', were seen in 63% of rabbits in the two and five-hour groups. No significant cortical rim sign was demonstrated on power Doppler ultrasonography, though it was noted on spiral CT at 15 and 24 hours, and 3 and 7 days after renal arterial occlusion. Power Doppler ultrasonography was useful for the diagnosis of renal infarction. Congested capsular artery seen in the early stage of renal infarction might be a characteristic finding of this condition, as seen on power Doppler ultrasonography

  3. Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis

    Energy Technology Data Exchange (ETDEWEB)

    Manners, David [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); Wong, Patrick; Murray, Conor; Teh, Joelin [Royal Perth Hospital, Department of Diagnostic Imaging, Perth (Australia); Kwok, Yi Jin [Sir Charles Gairdner Hospital, Department of Diagnostic Imaging, Nedlands, WA (Australia); De Klerk, Nick; Franklin, Peter [University of Western Australia, School of Population Health, Perth, WA (Australia); Alfonso, Helman; Reid, Alison [Curtin University, School of Public Health, Perth, WA (Australia); Musk, A.W.B. [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); University of Western Australia, School of Population Health, Perth, WA (Australia); University of Western Australia, School of Medicine and Pharmacology, Perth, WA (Australia); Brims, Fraser J.H. [Sir Charles Gairdner Hospital, Department of Respiratory Medicine, Nedlands, WA (Australia); University of Western Australia, School of Population Health, Perth, WA (Australia); Curtin University, Curtin Medical School, Perth (Australia)

    2017-08-15

    The correlation between ultra low dose computed tomography (ULDCT)-detected parenchymal lung changes and pulmonary function abnormalities is not well described. This study aimed to determine the relationship between ULDCT-detected interstitial lung disease (ILD) and measures of pulmonary function in an asbestos-exposed population. Two thoracic radiologists independently categorised prone ULDCT scans from 143 participants for ILD appearances as absent (score 0), probable (1) or definite (2) without knowledge of asbestos exposure or lung function. Pulmonary function measures included spirometry and diffusing capacity to carbon monoxide (DLCO). Participants were 92% male with a median age of 73.0 years. CT dose index volume was between 0.6 and 1.8 mGy. Probable or definite ILD was reported in 63 (44.1%) participants. Inter-observer agreement was good (k = 0.613, p < 0.001). There was a statistically significant correlation between the ILD score and both forced expiratory volume in 1 second (FEV{sub 1}) and forced vital capacity (FVC) (r = -0.17, p = 0.04 and r = -0.20, p = 0.02). There was a strong correlation between ILD score and DLCO (r = -0.34, p < 0.0001). Changes consistent with ILD on ULDCT correlate well with corresponding reductions in gas transfer, similar to standard CT. In asbestos-exposed populations, ULDCT may be adequate to detect radiological changes consistent with asbestosis. (orig.)

  4. Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis

    International Nuclear Information System (INIS)

    Manners, David; Wong, Patrick; Murray, Conor; Teh, Joelin; Kwok, Yi Jin; De Klerk, Nick; Franklin, Peter; Alfonso, Helman; Reid, Alison; Musk, A.W.B.; Brims, Fraser J.H.

    2017-01-01

    The correlation between ultra low dose computed tomography (ULDCT)-detected parenchymal lung changes and pulmonary function abnormalities is not well described. This study aimed to determine the relationship between ULDCT-detected interstitial lung disease (ILD) and measures of pulmonary function in an asbestos-exposed population. Two thoracic radiologists independently categorised prone ULDCT scans from 143 participants for ILD appearances as absent (score 0), probable (1) or definite (2) without knowledge of asbestos exposure or lung function. Pulmonary function measures included spirometry and diffusing capacity to carbon monoxide (DLCO). Participants were 92% male with a median age of 73.0 years. CT dose index volume was between 0.6 and 1.8 mGy. Probable or definite ILD was reported in 63 (44.1%) participants. Inter-observer agreement was good (k = 0.613, p < 0.001). There was a statistically significant correlation between the ILD score and both forced expiratory volume in 1 second (FEV 1 ) and forced vital capacity (FVC) (r = -0.17, p = 0.04 and r = -0.20, p = 0.02). There was a strong correlation between ILD score and DLCO (r = -0.34, p < 0.0001). Changes consistent with ILD on ULDCT correlate well with corresponding reductions in gas transfer, similar to standard CT. In asbestos-exposed populations, ULDCT may be adequate to detect radiological changes consistent with asbestosis. (orig.)

  5. Very low-dose (0.15 mGy) chest CT protocols using the COPDGene 2 test object and a third-generation dual-source CT scanner with corresponding third-generation iterative reconstruction software.

    Science.gov (United States)

    Newell, John D; Fuld, Matthew K; Allmendinger, Thomas; Sieren, Jered P; Chan, Kung-Sik; Guo, Junfeng; Hoffman, Eric A

    2015-01-01

    size (P 0.05). The SD was lower with ADMIRE compared with WFBP at all dose levels and ring sizes (P < 0.05). The third-generation dual-source CT scanners using third-generation iterative reconstruction methods can acquire accurate quantitative CT images with acceptable image noise at very low-dose levels (0.15 mGy). This opens up new diagnostic and research opportunities in CT phenotyping of the lung for developing new treatments and increased understanding of pulmonary disease.

  6. Classification of fractures of the distal r[ius - Comparative evaluation of spiral CT images and X-rays

    International Nuclear Information System (INIS)

    Roehnert, W.; Nitzsche, H.; Franck, W.M.; Amlang, M.

    1998-01-01

    Within the framework of a prospective study 35 patients with fractures of the distal r[ius safely diagnosed to require surgery have been [ditionally scanned by spiral CT. For more exact diagnostic evaluation of the joint surfaces and the fractures, multiplane reconstructions have been m[e to enhance the information obtained from the primary, axial tomographic images. Two experts independently performed classification on the basis of the X-rays and the CT scans, applying the AO scheme and the method of Frykman. Classifications according to the AO scheme were found to agree for only 28.6 % of the patients, which means that 57.1 % of the fractures shown by the X-rays were more or less underassessed. Classification according to Frykman's method revealed fewer deviations and agreement in 51.4 % of the cases. Biplanar r[iography continues to be considered as the standard method for examination of distal r[ius fractures, but it is recommended to perform spiral CT scans for evaluation of more complex distal r[ius fractures because these may require different therapies according to fracture types. (orig./CB) [de

  7. Monte Carlo dose calibration in CT scanner

    International Nuclear Information System (INIS)

    Yadav, Poonam; Ramasubramanian, V.; Subbaiah, K.V.; Thayalan, K.

    2008-01-01

    Computed Tomography (CT) scanner is a high radiation imaging modality compared to radiography. The dose from a CT examination can vary greatly depending on the particular CT scanner used, the area of the body examined, and the operating parameters of the scan. CT is a major contributor to collective effective dose in diagnostic radiology. Apart from the clinical benefits, the widespread use of multislice scanner is increasing radiation level to patient in comparison with conventional CT scanner. So, it becomes necessary to increase awareness about the CT scanner. (author)

  8. Prevalence of incidental or unexpected findings on low-dose CT performed during routine SPECT/CT nuclear medicine studies

    International Nuclear Information System (INIS)

    Yap, Kelvin Kwok-Ho; Sutherland, Tom; Shafik-Eid, Raymond; Taubman, Kim; Schlicht, Stephen; Ramaseshan, Ganeshan

    2015-01-01

    In nuclear medicine, single-photon-emission computed tomography (SPECT) is often combined with ‘simultaneous’ low-dose CT (LDCT) to provide complementary anatomical and functional correlation. As a consequence, numerous incidental and unexpected findings may be detected on LDCT. Recognition of these findings and appropriate determination of their relevance can add to the utility of SPECT/CT. We aimed to evaluate the prevalence and categorise the relevance of incidental and unexpected findings on LDCT scans performed as part of routine SPECT/CT studies. All available LDCT scans performed as part of SPECT/CT studies at St. Vincent's Hospital Melbourne in the year 2013 were retrospectively reviewed. Two qualified radiologists independently reviewed the studies and any previous available imaging and categorised any detected incidental findings. A total of 2447 LDCT studies were reviewed. The relevance of the findings was classified according to a modified version of a scale used in the Colonography Reporting and Data System: E1 = normal or normal variant (28.0%); E2 = clinically unimportant (63.5%); E3 = likely unimportant or incompletely characterised (6.2%); E4 = potentially important (2.5%). Imaging specialists need to be cognisant of incidental and unexpected findings present on LDCT studies performed as part of SPECT/CT. Appropriate categorisation of findings and communication of potentially important findings to referring clinicians should form part of routine practice. The overall prevalence of potentially significant incidental and unexpected findings in our series was 8.7% (E3, 6.2%; E4, 2.5%) and was comparable to rates in other published imaging series.

  9. Clinical application of 3D spiral CT of the auditory ossicular chain and labyrinth: Preliminary report

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yisheng

    1998-01-01

    Purpose: To assess the clinical application and limitation of 3D spiral CT of the auditory ossicular chain and labyrinth. Methods: 3D reconstruction of the auditory ossicular chain and labyrinth, including multiplanar reformation (MPR), minimum or maximum intensity projection (MinIP or MaxIP) and shaded surface display (SSD), were performed with 1 mm slice thickness, 5 cm field of view and 0.1 mm reconstruction interval spiral CT in 14 normal subjects, 15 patients with middle ear diseases. Results: With use of 3D reconstruction images in 14 normal subjects, 13 cases of ossicular chain showed that the long process of the incus was parallel to the manubrium and projected inferomedian toward the cochlear promontory, the incus-stapedial joint was like a 'L-shape' structure, and in 8 cases of labyrinth reconstruction, the cochlea and the three semicircular canals were demonstrated. 9 cholesteatomas of 13 chronic otitis media demonstrated destruction of ossicular chain of varying degrees. In 2 cases with congenital abnormality, ossicle dysplasia was seen. Conclusion: 3D CT is a useful technique for evaluating anatomic malformations and diseases of middle and inner ear, but there are still few pitfalls

  10. Diagnostic accuracy of 128-slice dual-source CT coronary angiography: a randomized comparison of different acquisition protocols

    International Nuclear Information System (INIS)

    Neefjes, Lisan A.; Kate, Gert-Jan R. ten; Rossi, Alexia; Nieman, Koen; Papadopoulou, Stella L.; Dharampal, Anoeshka S.; Dedic, Admir; Feyter, Pim J. de; Mollet, Nico R.; Genders, Tessa S.S.; Hunink, M.G.M.; Schultz, Carl J.; Weustink, Annick C.; Dijkshoorn, Marcel L.; Straten, Marcel van; Cademartiri, Filippo; Krestin, Gabriel P.

    2013-01-01

    To compare the diagnostic performance and radiation exposure of 128-slice dual-source CT coronary angiography (CTCA) protocols to detect coronary stenosis with more than 50 % lumen obstruction. We prospectively included 459 symptomatic patients referred for CTCA. Patients were randomized between high-pitch spiral vs. narrow-window sequential CTCA protocols (heart rate below 65 bpm, group A), or between wide-window sequential vs. retrospective spiral protocols (heart rate above 65 bpm, group B). Diagnostic performance of CTCA was compared with quantitative coronary angiography in 267 patients. In group A (231 patients, 146 men, mean heart rate 58 ± 7 bpm), high-pitch spiral CTCA yielded a lower per-segment sensitivity compared to sequential CTCA (89 % vs. 97 %, P = 0.01). Specificity, PPV and NPV were comparable (95 %, 62 %, 99 % vs. 96 %, 73 %, 100 %, P > 0.05) but radiation dose was lower (1.16 ± 0.60 vs. 3.82 ± 1.65 mSv, P 0.05). Radiation dose of sequential CTCA was lower compared to retrospective CTCA (6.12 ± 2.58 vs. 8.13 ± 4.52 mSv, P < 0.001). Diagnostic performance was comparable in both groups. Sequential CTCA should be used in patients with regular heart rates using 128-slice dual-source CT, providing optimal diagnostic accuracy with as low as reasonably achievable (ALARA) radiation dose. circle 128-slice dual-source CT coronary angiography offers several different acquisition protocols. (orig.)

  11. Low dose diagnostic radiation does not increase cancer risk in cancer prone mice

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D., E-mail: dboreham@nosm.ca [Northern Ontario School of Medicine, ON (Canada); Phan, N., E-mail: nghiphan13@yahoo.com [Univ. of Ottawa, Ottawa, ON (Canada); Lemon, J., E-mail: lemonja@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    The increased exposure of patients to low dose diagnostic ionizing radiation has created concern that these procedures will result in greater risk of carcinogenesis. However, there is substantial evidence that shows in many cases that low dose exposure has the opposite effect. We have investigated whether CT scans can modify mechanisms associated with carcinogenesis in cancer-prone mice. Cancer was induced in Trp53+/- mice with an acute high dose whole-body 4 Gy γ-radiation exposure. Four weeks following the cancer-inducing dose, weekly whole-body CT scans (10 mGy/scan, 75 kVp X-rays) were given for ten consecutive weeks adding an additional radiation burden of 0.1 Gy. Short-term biological responses and subsequent lifetime cancer risk were investigated. Five days following the last CT scan, there were no detectable differences in the spontaneous levels of DNA damage in blood cells (reticulocytes). In fact, CT scanned mice had significantly lower constitutive levels of oxidative DNA damage and cell death (apoptosis), compared to non-CT scanned mice. This shows that multiple low dose radiation exposures modified the radio response and indicates protective processes were induced in mice. In mice treated with the multiple CT scans following the high cancer-inducing 4 Gy dose, tumour latency was increased, significantly prolonging lifespan. We conclude that repeated CT scans can reduce the cancer risk of a prior high-dose radiation exposure, and delay the progression of specific types of radiation-induced cancers in Trp53+/-mice. This research shows for the first time that low dose exposure long after cancer initiation events alter risk and reduce cancer morbidity. Cancer induction following low doses does not follow a linear non-threshold model of risk and this model should not be used to extrapolate risk to humans following low dose exposure to ionizing radiation. (author)

  12. Preoperative assessment of gastric artery in patients with gastric cancer by CT angiography on 64-slice spiral CT

    International Nuclear Information System (INIS)

    Tang Lei; Zhang Xiaopeng; Sun Yingshi; Cao Kun; Qi Liping; Cui Yong; Wang Ning

    2010-01-01

    Objective: To evaluate the efficacy of different three-dimensional CTA methods on 64-slice sprial CT in the preoperative assessment of gastric arteries and their variations. Methods: Sixty-six consecutive patients with gastric cancer who underwent 64-slice spiral CT examinations preoperatively were retrospectively studied. To get the STS-MIP images, the thickness of slab was adjusted according to the inner diameter of targeted blood vessels and their cross-layer distribution. After four weeks, the AVVR images of all cases was got by the auto-vessel technique. The demonstration rates and origins of the direct and indirect feeding arteries were analyzed on AVVR and STS-MIP. McNemar tests were used to compare the detection rates of gastric feeding arteries by STS-MIP and AVVR. The relationship between CT value and display rate of vessels was analyzed using independent-samples t test. The variations of blood vessels were analyzed. Results: The display rate of indirect feeding arteries were all 100% (66/66) by STS-MIP and AVVR. The display rates of left gastric artery (LGA) and right gastroepiploic artery (RGEA) were 98.5% (65/66), 100.0% (66/66) and 97.0% (64/66), 100.0% (66/66) by STS-MIP and AVVR respectively. The display rates of right artery (RGA), left gastroepiploic artery (LGEA), short gastric artery (SGA) and posterior gastric artery (RGA), left gastroepiploic artery (LGEA), short gastric artery (SGA) and posterior gastric artery (PGA) by AVVR were lower than those of STS-MIP with statistical significances [RGA: 68.2% (45/66) vs. 98.5% (65/66), P<0.01; LGEA: 53.0% (35/66) vs. 97.0% (64/66), P<0.01; SGA: 7.6%(5/66) vs. 59.1% (39/66), P<0.01; PGA: 18.2% (12/66) vs. 63.6% (42/66), P<0.01]. The demonstration rates of LGEA, RGEA and SGA increased accompanied with the increasing of CT value in celiac axis (LGEA: 35 cases displayed with mean CT value of (272 ± 44) HU, 31 cases did not display with mean CT value of (229 ± 42) HU, t=4.043, P<0.01; RGEA: 64 cases

  13. Low-dose ECG-gated 64-slices helical CT angiography of the chest: evaluation of image quality in 105 patients

    International Nuclear Information System (INIS)

    D'Agostino, A.G.; Remy-Jardin, M.; Khalil, C.; Remy, J.; Delannoy-Deken, V.; Duhamel, A.; Flohr, T.

    2006-01-01

    The purpose of this study was to evaluate image quality of low-dose electrocardiogram (ECG)-gated multislice helical computed tomography (CT) angiograms of the chest. One hundred and five consecutive patients with a regular sinus rhythm (72 men; 33 women) underwent ECG-gated CT angiographic examination of the chest without administration of beta blockers using the following parameters: (a) collimation 32 x 0.6 mm with z-flying focal spot for the acquisition of 64 overlapping 0.6-mm slices, rotation time 0.33 s, pitch 0.3; (b) 120 kV, 200 mAs; (c) use of two dose modulation systems, including adjustment of the mAs setting to the patient's size and anatomical shape and an ECG-controlled tube current. Subjective and objective image quality was evaluated by two radiologists in consensus on 3-mm-thick scans reconstructed at 55% of the response rate (RR) interval. The population and protocol characteristics included: (a) a mean [±standard deviation (SD)] body mass index (BMI) of 24.47 (±4.64); (b) a mean (±SD) heart rate of 72.04 (±15.76) bpm; (c) a mean (±SD) scanning time of 18.3 (±2.73) s; (d) a mean (±SD) dose-length product (DLP) value of 260.57 (±83.67) mGy/cm; (e) an estimated average effective dose of 4.95 (±1.59) mSv. Subjective noise was depicted in a total of nine examinations (8.5%), always rated as mild. Objective noise was assessed by measuring the standard deviation of pixel values in a homogeneous region of interest within the trachea and descending aorta; SD was 15.91 HU in the trachea and 22.16 HU in the descending aorta, with no significant difference in the mean value of the standard deviations between the four categories of BMI except for obese patients, who had a higher mean SD within the aorta. Interpolation artefacts were depicted in 22 patients, with a mean heart rate significantly lower than that of patients without interpolation artifacts, rated as mild in 11 patients and severe in 11 patients. The severity of interpolation artefacts

  14. A low frequency piezoelectric power harvester using a spiral-shaped bimorph

    Institute of Scientific and Technical Information of China (English)

    HU; Yuantai; HU; Hongping; YANG; Jiashi

    2006-01-01

    We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources.A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size.It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.

  15. Radiation dose reduction in CT-guided sacroiliac joint injections to levels of pulsed fluoroscopy: a comparative study with technical considerations

    Directory of Open Access Journals (Sweden)

    Artner J

    2012-08-01

    Full Text Available Juraj Artner, Balkan Cakir, Heiko Reichel, Friederike LattigDepartment of Orthopaedic Surgery, University of Ulm, RKU, GermanyBackground: The sacroiliac (SI joint is frequently the primary source of low back pain. Over the past decades, a number of different SI injection techniques have been used in its diagnosis and therapy. Despite the concerns regarding exposure to radiation, image-guided injection techniques are the preferred method to achieve safe and precise intra-articular needle placement. The following study presents a comparison of radiation doses, calculated for fluoroscopy and CT-guided SI joint injections in standard and low-dose protocol and presents the technical possibility of CT-guidance with maximum radiation dose reduction to levels of fluoroscopic-guidance for a precise intra-articular injection technique.Objective: To evaluate the possibility of dose reduction in CT-guided sacroiliac joint injections to pulsed-fluoroscopy-guidance levels and to compare the doses of pulsed-fluoroscopy-, CT-guidance, and low-dose CT-guidance for intra-articular SI joint injections.Study design: Comparative study with technical considerations.Methods: A total of 30 CT-guided intra-articular SI joint injections were performed in January 2012 in a developed low-dose mode and the radiation doses were calculated. They were compared to 30 pulsed-fluoroscopy-guided SI joint injections, which were performed in the month before, and to five injections, performed in standard CT-guided biopsy mode for spinal interventions. The statistical significance was calculated with the SPSS software using the Mann–Whitney U-Test. Technical details and anatomical considerations were provided.Results: A significant dose reduction of average 94.01% was achieved using the low-dose protocol for CT-guided SI joint injections. The radiation dose could be approximated to pulsed-fluoroscopy-guidance levels.Conclusion: Radiation dose of CT-guided SI joint injections can be

  16. Estimates of effective dose in adult CT examinations

    International Nuclear Information System (INIS)

    Mohamed, Mustafa Awad Elhaj.

    2015-12-01

    The goal of study was to estimate effective dose (E) in adult CT examinations for Toshiba X64 slice using CT. Exp version 2.5 software in Sudan. Using of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. lack of optimized protocols could be an additional source of increased dose in developing countries. In order to achieve these objectives, data of CT-scanner has been collected from three hospitals ( ANH, ZSH and MMH). Data collected included equipment information and scan parameters for individual patients, who were used to asses. 300 adult patients underwent head, chest, abdomen-pelvis and peivis CT examinations. The CT1_w , CTD1_vol, DLP, patient effective dos and organ doses were estimated, using CT exposure parameters and CT Exp version 2.5 software. A large variation of mean effective dose and organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scan length. The mean effective dose in this study in the Brain, PNS, Chest, pulmonary, Abdomen-pelvis, Pelvis, KUB and CTU were 3.2 mSv, 2.6 mSv, 18.9 mSv 17.6 mSv 27.1 mSv, 11.2 mSv, 9.6 mSv and 23.7 mSv respectively, and organ equivalent, doses presented in this study in this study for the eye lens (for head), lungs and thymus ( for chest) , liver, kidney and small intest ( for abdomen t-pelvis), bladder, uterus and gonads ( for pelvis), were 62.9 mSv, 39.5 mSv, 34.1 mSv, 53.9 mSv, 52.6 mSv, 58.1 mSv, 37 mSv, and 34.6 mSv, respectively. These values were mostly comparable to and slightly higher than the values of effective doses reported from similar studies the United Kingdom, Tanzania, Australia, Canada and Sudan. It was concluded that patient effective dose and organ doses could be substantially minimized through careful selection of scanning parameters based on clinical indications of study, patient size, and body

  17. Low dose multi-detector CT of the chest (iLEAD Study): Visual ranking of different simulated mAs levels

    International Nuclear Information System (INIS)

    Ley-Zaporozhan, Julia; Ley, Sebastian; Krummenauer, Frank; Ohno, Yoshiharu; Hatabu, Hiroto; Kauczor, Hans-Ulrich

    2010-01-01

    Purpose: Detailed evaluation of the lung parenchyma might be impaired by use of low dose CT as image noise increases and subsequently image quality decreases. The aim of our study was to determine the accuracy of visual perception of differences in image quality and noise at low dose chest CT. Materials and methods: Forty-four patients suffering from emphysema underwent CT (Aquilion-16, 120 kV, 150 mAs, 1 mm-collimation). Original raw data were used for simulation of 10 different mAs settings from 10 mAs to 100 mAs in 10 mAs increments. Three representative hard copy images (carina, 4 cm above, 5 cm below) were printed for evaluation of lung parenchyma (high-resolution kernel, lung window) and mediastinum (soft-kernel, soft tissue window). Ranking of expected low mAs level was performed for lung and soft tissue separately based on visual perception by three-blinded chest radiologist independently. Results were compared to the real simulated mAs. Results: The accuracy for correct ranking of the original 150 mAs scan was 89% for lung and 86% for soft tissue while it was 99% for the simulated 10 mAs for both windows. In comparison to the lowest mAs a significant error increase was found for the lung at 60-100 mAs (with error increase of 30-47%) for reader-I; 60-100 mAs for (33-64%) for reader-II and 70-100 mAs (38-57%) for reader-III. For the soft tissue: 60-150 mAs (with error increase of 28-63%) for reader-I; 50-100 mAs (35-56%) for reader-II and 50-90 mAs (35-40%) for reader-III. Conclusion: Simulated dose levels below 60 mAs (=42 mAs eff ) were clearly differentiated from higher dose levels by all readers. Therefore, imaging doses could be lowered down to 60 mAs without a diagnostically relevant increase in noise impairing image quality.

  18. Computer-aided pulmonary nodule detection. Performance of two CAD systems at different CT dose levels

    International Nuclear Information System (INIS)

    Hein, Patrick Alexander; Rogalla, P.; Klessen, C.; Lembcke, A.; Romano, V.C.

    2009-01-01

    Purpose: To evaluate the impact of dose reduction on the performance of computer-aided lung nodule detection systems (CAD) of two manufacturers by comparing respective CAD results on ultra-low-dose computed tomography (ULD-CT) and standard dose CT (SD-CT). Materials and Methods: Multi-slice computed tomography (MSCT) data sets of 26 patients (13 male and 13 female, patients 31 - 74 years old) were retrospectively selected for CAD analysis. Indication for CT examination was staging of a known primary malignancy or suspected pulmonary malignancy. CT images were consecutively acquired at 5 mAs (ULD-CT) and 75 mAs (SD-CT) with 120kV tube voltage (1 mm slice thickness). The standard of reference was determined by three experienced readers in consensus. CAD reading algorithms (pre-commercial CAD system, Philips, Netherlands: CAD-1; LungCARE, Siemens, Germany: CAD-2) were applied to the CT data sets. Results: Consensus reading identified 253 nodules on SD-CT and ULD-CT. Nodules ranged in diameter between 2 and 41 mm (mean diameter 4.8 mm). Detection rates were recorded with 72% and 62% (CAD-1 vs. CAD-2) for SD-CT and with 73% and 56% for ULD-CT. Median also positive rates per patient were calculated with 6 and 5 (CAD-1 vs. CAD-2) for SD-CT and with 8 and 3 for ULD-CT. After separate statistical analysis of nodules with diameters of 5 mm and greater, the detection rates increased to 83% and 61% for SD-CT and to 89% and 67% for ULD-CT (CAD-1 vs. CAD-2). For both CAD systems there were no significant differences between the detection rates for standard and ultra-low-dose data sets (p>0.05). Conclusion: Dose reduction of the underlying CT scan did not significantly influence nodule detection performance of the tested CAD systems. (orig.)

  19. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  20. Angiogenesis in hepatocellular carcinoma: correlation of single-level dynamic spiral CT scans in arterial phase and expression of α-smooth muscle actin

    International Nuclear Information System (INIS)

    Liu Yan; Min Pengqiu; Chen Weixia; Zhang Lin

    2005-01-01

    Objective: To investigate the correlation between the single-level dynamic spiral CT scans (SDCT) of hepatocellular carcinoma (HCC) in arterial phase (AP) and the immunohistochemistry expression of α-smooth muscle actin (ASMA). Methods: 33 cases of suspected HCC undergoing spiral CT plain scan of the whole liver, the single-level dynamic scan of the target level of lesion in AP and finally the whole liver scan in portal-venous phase before operations and proved after were included into the study. After the SDCT, a time-density curve (T-DC) was drawn according to the density change of the region of interest (ROI) of the tumor parenchyma with some parameters calculated, and signs of enhancement evaluated. Slices of post-operation specimen underwent hemotoxylin-eosin (HE) and ASMA immunohistochemistry staining. Then the slices were evaluated with emphases on the ASMA-positive neovasculatures in the parenchyma and mesenchyma of carcinomas, and the average count in a low microscopic field (x 100) was recorded (5 low microscopic field were observed and then an average was calculated.). Finally the immunohistochemistry and histologic results were correlated with image findings. Results: According to the PV of the tumor parenchyma, T-DC was divided into type I, II and III in which the criteria were PV>80, 40 HU< PV< 80 HU and PV<40 HU respectively. In the 33 cases, type I, II and III of T-DC were 3, 17 and 13 cases with PV of 103.30, 57.65 and 33.55 HU respectively. In ASMA immunohistochemistry study, ASMA-positive neovasculatures were devided into type A with a thick wall and B with a thin wall. The mean count of neovasculatures of tumor parenchyma in type I, II and III of T-DC were 10, 4.59 and 1 respectively. Statistically, different types of T-DC were significantly correlated with the count of neovasculatures in the parenchyma of carcinomas (r=-0.567, P<0.01). Homogeneous and inhomogeneous enhancement of carcinomas during SDCT in AP were correlated with the

  1. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  2. Radiation dose reduction with dictionary learning based processing for head CT

    International Nuclear Information System (INIS)

    Chen, Yang; Shi, Luyao; Hu, Yining; Luo, Limin; Yang, Jiang; Yin, Xindao; Coatrieux, Jean-Louis

    2014-01-01

    In CT, ionizing radiation exposure from the scan has attracted much concern from patients and doctors. This work is aimed at improving head CT images from low-dose scans by using a fast Dictionary learning (DL) based post-processing. Both Low-dose CT (LDCT) and Standard-dose CT (SDCT) nonenhanced head images were acquired in head examination from a multi-detector row Siemens Somatom Sensation 16 CT scanner. One hundred patients were involved in the experiments. Two groups of LDCT images were acquired with 50 % (LDCT50 %) and 25 % (LDCT25 %) tube current setting in SDCT. To give quantitative evaluation, Signal to noise ratio (SNR) and Contrast to noise ratio (CNR) were computed from the Hounsfield unit (HU) measurements of GM, WM and CSF tissues. A blinded qualitative analysis was also performed to assess the processed LDCT datasets. Fifty and seventy five percent dose reductions are obtained for the two LDCT groups (LDCT50 %, 1.15 ± 0.1 mSv; LDCT25 %, 0.58 ± 0.1 mSv; SDCT, 2.32 ± 0.1 mSv; P < 0.001). Significant SNR increase over the original LDCT images is observed in the processed LDCT images for all the GM, WM and CSF tissues. Significant GM–WM CNR enhancement is noted in the DL processed LDCT images. Higher SNR and CNR than the reference SDCT images can even be achieved in the processed LDCT50 % and LDCT25 % images. Blinded qualitative review validates the perceptual improvements brought by the proposed approach. Compared to the original LDCT images, the application of DL processing in head CT is associated with a significant improvement of image quality.

  3. Objective factors affecting the image quality of low-dose cranial CT of infant

    International Nuclear Information System (INIS)

    Xie Na; Gan Yungen; Wang Hongwei; Zeng Hongwu; Cao Weiguo; Sun Longwei

    2010-01-01

    Objective: To investigate the objective factors that affect the image quality of infant cranial CT using different mAs. Materials and Methods: Ninety infants were divided into three groups randomly. The maximum anteroposterior diameter (MAPD) of skull of each infant was measured. Three reference levels, cerebellar, basal ganglia and centrum semiovale levels were selected respectively. Only one level was studied in each group and scanned with 150, 100 and 80 mAs. The subjective quality grade and the objective noise of all images were recorded and analysed statistically. Results: The average MAPD of ninety patients was (148.0±17.4) mm. On the cerebellar level, the subjective quality grade was lower than the other two levels, which were 6.3%, 9.4% and 22.9% respectively when mAs were 150, 100 and 80 mAs. Both quality grade of image and objective noise were significantly correlated with MAPD. Conclusions: The inherent high noise of cerebellar level and MAPD were the objective factors that affect the image quality of low-dose cranial CT of infant. (authors)

  4. Emergency assessment of patients with acute abdominal pain using low-dose CT with iterative reconstruction: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Pierre-Alexandre; Becker, Minerva; Becker, Christoph D.; Zaidi, Habib; Platon, Alexandra [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); Halfon Poletti, Alice; Rutschmann, Olivier T. [University Hospital of Geneva, Department of Community, Primary Care and Emergency Medicine, Geneva (Switzerland); Perneger, Thomas [University Hospital of Geneva, Division of Clinical Epidemiology, Geneva (Switzerland)

    2017-08-15

    To determine if radiation dose delivered by contrast-enhanced CT (CECT) for acute abdominal pain can be reduced to the dose administered in abdominal radiography (<2.5 mSv) using low-dose CT (LDCT) with iterative reconstruction algorithms. One hundred and fifty-one consecutive patients requiring CECT for acute abdominal pain were included, and their body mass index (BMI) was calculated. CECT was immediately followed by LDCT. LDCT series was processed using 1) 40% iterative reconstruction algorithm blended with filtered back projection (LDCT-IR-FBP) and 2) model-based iterative reconstruction algorithm (LDCT-MBIR). LDCT-IR-FBP and LDCT-MBIR images were reviewed independently by two board-certified radiologists (Raters 1 and 2). Abdominal pathology was revealed on CECT in 120 (79%) patients. In those with BMI <30, accuracies for correct diagnosis by Rater 1 with LDCT-IR-FBP and LDCT-MBIR, when compared to CECT, were 95.4% (104/109) and 99% (108/109), respectively, and 92.7% (101/109) and 100% (109/109) for Rater 2. In patients with BMI ≥30, accuracies with LDCT-IR-FBP and LDCT-MBIR were 88.1% (37/42) and 90.5% (38/42) for Rater 1 and 78.6% (33/42) and 92.9% (39/42) for Rater 2. The radiation dose delivered by CT to non-obese patients with acute abdominal pain can be safely reduced to levels close to standard radiography using LDCT-MBIR. (orig.)

  5. Half-dose non-contrast CT in the investigation of urolithiasis: image quality improvement with third-generation integrated circuit CT detectors.

    Science.gov (United States)

    Wang, Jun; Kang, Tony; Arepalli, Chesnal; Barrett, Sarah; O'Connell, Tim; Louis, Luck; Nicolaou, Savvakis; McLaughlin, Patrick

    2015-06-01

    The objective of this study is to establish the effect of third-generation integrated circuit (IC) CT detector on objective image quality in full- and half-dose non-contrast CT of the urinary tract. 51 consecutive patients with acute renal colic underwent non-contrast CT of the urinary tract using a 128-slice dual-source CT before (n = 24) and after (n = 27) the installation of third-generation IC detectors. Half-dose images were generated using projections from detector A using the dual-source RAW data. Objective image noise in the liver, spleen, right renal cortex, and right psoas muscle was compared between DC and IC cohorts for full-dose and half-dose images reconstructed with FBP and IR algorithms using 1 cm(2) regions of interest. Presence and size of obstructing ureteric calculi were also compared for full-dose and half-dose reconstructions using DC and IC detectors. No statistical difference in age and lateral body size was found between patients in the IC and DC cohorts. Radiation dose, as measured by size-specific dose estimates, did not differ significantly either between the two cohorts (10.02 ± 4.54 mGy IC vs. 12.28 ± 7.03 mGy DC). At full dose, objective image noise was not significantly lower in the IC cohort as compared to the DC cohort for the liver, spleen, and right psoas muscle. At half dose, objective image noise was lower in the IC cohort as compared to DC cohort at the liver (21.32 IC vs. 24.99 DC, 14.7% decrease, p 0.05 for all comparisons). Third-generation IC detectors result in lower objective image noise at full- and half-radiation dose levels as compared with traditional DC detectors. The magnitude of noise reduction was greater at half-radiation dose indicating that the benefits of using novel IC detectors are greater in low and ultra-low-dose CT imaging.

  6. Accuracy and Precision of Three-Dimensional Low Dose CT Compared to Standard RSA in Acetabular Cups: An Experimental Study.

    Science.gov (United States)

    Brodén, Cyrus; Olivecrona, Henrik; Maguire, Gerald Q; Noz, Marilyn E; Zeleznik, Michael P; Sköldenberg, Olof

    2016-01-01

    Background and Purpose. The gold standard for detection of implant wear and migration is currently radiostereometry (RSA). The purpose of this study is to compare a three-dimensional computed tomography technique (3D CT) to standard RSA as an alternative technique for measuring migration of acetabular cups in total hip arthroplasty. Materials and Methods. With tantalum beads, we marked one cemented and one uncemented cup and mounted these on a similarly marked pelvic model. A comparison was made between 3D CT and standard RSA for measuring migration. Twelve repeated stereoradiographs and CT scans with double examinations in each position and gradual migration of the implants were made. Precision and accuracy of the 3D CT were calculated. Results. The accuracy of the 3D CT ranged between 0.07 and 0.32 mm for translations and 0.21 and 0.82° for rotation. The precision ranged between 0.01 and 0.09 mm for translations and 0.06 and 0.29° for rotations, respectively. For standard RSA, the precision ranged between 0.04 and 0.09 mm for translations and 0.08 and 0.32° for rotations, respectively. There was no significant difference in precision between 3D CT and standard RSA. The effective radiation dose of the 3D CT method, comparable to RSA, was estimated to be 0.33 mSv. Interpretation. Low dose 3D CT is a comparable method to standard RSA in an experimental setting.

  7. Dose reduction strategies for cardiac CT

    International Nuclear Information System (INIS)

    Midgley, S.M.; Einsiedel, P.; Langenberg, F.; Lui, E.

    2010-01-01

    Full text: Recent advances in CT technology have produced brighter X-ray sources. gantries capable of increased rotation speeds, faster scintil lation materials arranged into multiple rows of detectors, and associated advances in 3D reconstruction methods. These innovations have allowed multi-detector CT to be turned to the diagnosis of cardiac abnormalities and compliment traditional imaging techniques such as coronary angiography. This study examines the cardiac imaging solution offered by the Siemens Somatom Definition Dual Source 64 slice CT scanner. Our dose reduction strategies involve optimising the data acquisition protocols according to diagnostic task, patient size and heart rate. The relationship between scan parameters, image quality and patient dose is examined and verified against measurements with phantoms representing the standard size patient. The dose reduction strategies are reviewed with reference to survey results of patient dose. Some cases allow the insertion of shielding to protect radiosensitive organs, and results are presented to quantify the dose saving.

  8. TRIPLE PHASE SPIRAL C.T. IN THE EVALUATION OF HEPATIC MASSES

    Directory of Open Access Journals (Sweden)

    Prasad

    2015-10-01

    Full Text Available BACKGROUND AND OBJECTIVE : The goal of the study is to determine the value of various phases of Triple, Helical CT, Hepatic arterial Phase (HAP, Portal venous phase (PVP and Equilibrium Phase (EP, is the detection and characterization of Hepatic Lesions and to evaluate whether u nenhanced and hepatic arterial phases when used in conjunction with porto venous phase would lead to detection of greater number of lesions or better characterization of lesion. METHODOLOGY : The study population consists of 50 Patients aged between 30 Years and 80 Years were examined with multiphase (plain, hepatic arterial, portal venous and equilibrium phases. Spiral CT of liver. Patients were referred for CT scan when liver diseases were suspected clinically, if ultrasound and other previous investi gations revealed lesions which had to be further evaluated by spiral CT and to detect liver metastases in known cases of primary extra hepatic malignancy. CT TECHNIQUE: Helical scanning of liver with Toshiba astein s4, continuous spiral run and the images were reconstructed at 5mm intervals. Contrast material 100ml was injected through 18 or 20G catheter at the rate of 3ml per second using automatic medrad power injector. Non - ionic contrast [IOHEXOl – 300mg perml was used in all the patients]. After obtaine d unenhanced CT scan HAP scanning was initiated 25 seconds after initiation of contrast injection. Portal venous phase scanning was initiated 60 - 65 seconds after start of contrast injection. Equilibrium phase scanning was initiated after 180 seconds after the start of contrast injection. IMAGE EVALUATION: All the images of 4 phases were reviewed. First Step : The presence, appearance and enhancement of each Lesion were noted in all phases and lesion were described Isodense, Hypodense Hyperdense based on thei r attenuation relative to liver parenchyma during that phase of scanning. Based on enhancement pattern of the lesion during various phases they were

  9. Adaptive statistical iterative reconstruction-applied ultra-low-dose CT with radiography- comparable radiation dose: Usefulness for lung nodule detection

    International Nuclear Information System (INIS)

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Lee, Kyung Soo; Moon, Jung Won

    2015-01-01

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, < 0.01, 0.038, and < 0.868 for observers 1, 2, 3, 4, and 5, respectively). The sensitivity of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT in three out of the five observers (p < 0.01 for three observers, and p = 0.064 and 0.146 for two observers). In jackknife alternative free-response receiver operating characteristic analysis, the mean values of figure-of-merit (FOM) for FBP, ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT

  10. Adaptive statistical iterative reconstruction-applied ultra-low-dose CT with radiography- comparable radiation dose: Usefulness for lung nodule detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Lee, Kyung Soo [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Moon, Jung Won [Dept. of Radiology, Kangbuk Samsung Hospital, Seoul (Korea, Republic of)

    2015-10-15

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, < 0.01, 0.038, and < 0.868 for observers 1, 2, 3, 4, and 5, respectively). The sensitivity of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT in three out of the five observers (p < 0.01 for three observers, and p = 0.064 and 0.146 for two observers). In jackknife alternative free-response receiver operating characteristic analysis, the mean values of figure-of-merit (FOM) for FBP, ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT.

  11. Comparison of hybrid {sup 68}Ga-PSMA-PET/CT and {sup 99m}Tc-DPD-SPECT/CT for the detection of bone metastases in prostate cancer patients. Additional value of morphologic information from low dose CT

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Jan-Carlo; Meissner, Sebastian; Diederichs, Gerd; Hamm, Bernd; Makowski, Marcus R. [Charite, Department of Radiology, Berlin (Germany); Woythal, Nadine; Prasad, Vikas; Brenner, Winfried [Charite, Department of Nuclear Medicine, Berlin (Germany)

    2018-02-15

    This study compared {sup 68}Gallium-prostate-specific-membrane-antigen based Positron-emission-tomography ({sup 68}Ga-PSMA-PET) and {sup 99metastable}technetium-3,3-diphospho-1,2-propanedicarbonacid ({sup 99m}Tc-DPD-SPECT) in performing skeletal staging in prostate cancer (PC) patients and evaluated the additional value of the information from low-dose-computed tomography (CT). In this retrospective study, 54 patients who received {sup 68}Ga-PSMA-PET/CT and {sup 99m}Tc-DPD-SPECT/CT within 80 days were extracted from our database. Osseous lesions were classified as benign, malignant or equivocal. Lesion, region and patient based analysis was performed with and without CT fusion. The reference standard was generated by defining a best valuable comparator (BVC) containing information from all available data. In the patient based analysis, accuracies measured as ''area-under-the-curve'' (AUC) for {sup 68}Ga-PSMA-PET, {sup 99m}Tc-SPECT, {sup 68}Ga-PSMA-PET/CT and {sup 99m}Tc-SPECT/CT were 0.97-0.96, 0.86-0.83, 1.00 and 0.83, respectively (p<0.05) (ranges = optimistic vs. pessimistic view). Region based analysis resulted in the following sensitivities and specificities: 91.8-97.7%, 100-99.5% (PET); 61.2-70.6%, 99.8-98.3% (SPECT); 97.7%, 100% (PET/CT), 69.4% and 98.3% (SPECT/CT) (p<0.05). The amount of correct classifications of equivocal lesions by CT was significantly higher in PET (100%) compared to SPECT (52.4%) (p<0.05). {sup 68}Ga-PSMA-PET outperforms {sup 99m}Tc-DPD-SPECT in detecting bone metastases in PC patients. Additional information from low-dose-CT resulted in a significant reduction in equivocal lesions in both modalities, however {sup 68}Ga-PSMA-PET benefited most. (orig.)

  12. 3D ultrasonography is as accurate as low-dose CT in thyroid volumetry.

    Science.gov (United States)

    Licht, K; Darr, A; Opfermann, T; Winkens, T; Freesmeyer, M

    2014-01-01

    The purpose of this study was to compare thyroid volumetry by three-dimensional mechanically swept ultrasonography (3DmsUS) and low-dose computed tomography (ldCT). 30 subjects referred for radioiodine therapy of benign thyroid diseases were subjected to 3DmsUS and ldCT. A prerequisite of 3DmsUS analyses was that the scans had to capture the entire thyroid, excluding therefore cases with a very large volume or retrosternal portions. The 3DmsUS data were transformed into a DICOM format, and volumetry calculations were performed via a multimodal workstation equipped with standard software for cross-sectional imaging. Volume was calculated applying both the ellipsoid model and a manually tracing method. Statistical analyses included 95% confidence intervals (CI) of the means and limits of agreement according to Bland and Altman, the latter including 95% of all expected values. Volumetric measurements by 3DmsUS and ldCT resulted in very high, significant correlation coefficients, r = 0.997 using the ellipsoid model and r = 0.993 with the manually tracing method. The mean relative differences of the two imaging modalities proved very small (-1.2±4.0% [95% CI -2.62; 0.28] using the ellipsoid model; -1.1±5.2% [95% CI -2.93; 0.80] using the manually tracing method) and the limits of agreement sufficiently narrow (-9.1% to 6.8%; -11.3% to 9.2%, respectively). For moderately enlarged thyroids, volumetry with 3DmsUS proved comparable to that of ldCT, irrespective of whether the ellipsoid model or the manually tracing method was applied. Thus, 3DmsUS qualifies as a potential alternative to ldCT, provided that the organ is completely accessible. The use of a standard workstation for cross-sectional imaging with routine software did not prove problematic.

  13. SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H; Barbee, D; Wang, W; Pennell, R; Hu, K; Osterman, K [Department of Radiation Oncology, NYU Langone Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CT for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.

  14. SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation

    International Nuclear Information System (INIS)

    Wang, H; Barbee, D; Wang, W; Pennell, R; Hu, K; Osterman, K

    2016-01-01

    Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CT for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.

  15. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    International Nuclear Information System (INIS)

    Brady, Samuel L.; Shulkin, Barry L.

    2015-01-01

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV bw ) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV bw , background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake

  16. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Samuel L., E-mail: samuel.brady@stjude.org [Division of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States); Shulkin, Barry L. [Nuclear Medicine and Department of Radiological Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States)

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  17. Securing safe and informative thoracic CT examinations—Progress of radiation dose reduction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takeshi, E-mail: tkubo@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Seo, Joon Beom [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505 (Korea, Republic of); Yamashiro, Tsuneo [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, 207 Uehara, Nishinara, Okinawa 903-0215 (Japan); Kalender, Willi A. [Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, 91052 Erlangen (Germany); Lee, Chang Hyun [Department of Radiology, Seoul National University Hospital, 28 Yeongeon-dong, Jongno-gu, Seoul (Korea, Republic of); Lynch, David A. [Department of Radiology, National Jewish Health, 1400 Jackson St, A330 Denver, Colorado 80206 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)

    2017-01-15

    Highlights: • Various techniques have led to substantial radiation dose reduction of chest CT. • Automatic modulation of tube current has been shown to reduce radiation dose. • Iterative reconstruction makes significant radiation dose reduction possible. • Processing time is a limitation for full iterative reconstruction, currently. • Validation of diagnostic accuracy is desirable for routine use of low dose protocols. - Abstract: The increase in the radiation exposure from CT examinations prompted the investigation on the various dose-reduction techniques. Significant dose reduction has been achieved and the level of radiation exposure of thoracic CT is expected to reach the level equivalent to several chest X-ray examinations. With more scanners with advanced dose reduction capability deployed, knowledge on the radiation dose reduction methods has become essential to clinical practice as well as academic research. This article reviews the history of dose reduction techniques, ongoing changes brought by newer technologies and areas of further investigation.

  18. Impact of new technologies on dose reduction in CT

    International Nuclear Information System (INIS)

    Lee, Ting-Yim; Chhem, Rethy K.

    2010-01-01

    The introduction of slip ring technology enables helical CT scanning in the late 1980's and has rejuvenated CT's role in diagnostic imaging. Helical CT scanning has made possible whole body scanning in a single breath hold and computed tomography angiography (CTA) which has replaced invasive catheter based angiography in many cases because of its easy of operation and lesser risk to patients. However, a series of recent articles and accidents have heightened the concern of radiation risk from CT scanning. Undoubtedly, the radiation dose from CT studies, in particular, CCTA studies, are among the highest dose studies in diagnostic imaging. Nevertheless, CT has remained the workhorse of diagnostic imaging in emergent and non-emergent situations because of their ubiquitous presence in medical facilities from large academic to small regional hospitals and their round the clock accessibility due to their ease of use for both staff and patients as compared to MR scanners. The legitimate concern of radiation dose has sparked discussions on the risk vs benefit of CT scanning. It is recognized that newer CT applications, like CCTA and perfusion, will be severely curtailed unless radiation dose is reduced. This paper discusses the various hardware and software techniques developed to reduce radiation dose to patients in CT scanning. The current average effective dose of a CT study is ∼10 mSv, with the implementation of dose reduction techniques discussed herein; it is realistic to expect that the average effective dose may be decreased by 2-3 fold.

  19. Spiral CT: An innovative method of volumetric recording. Pt. 1

    International Nuclear Information System (INIS)

    Kalender, W.A.; Vock, P.; Polacin, A.; Soucek, M.

    1990-01-01

    A major advance in the field of CT diagnosis has been made with the development of spiral computed tomography. It permits a complete photographic recording of volumes in such a way that even 'minor' pathological changes can be detected and reconstructed providing the absence of respiration-induced organ displacement. During one session, in which up to 24 360deg scans may be obtained within 24 seconds, the patient is continuously shifted at a speed of 10 mm/s, which permits the volumes recorded to be increased up to a height of 24 cm. The underlying methodology is described, as is the procedure to be used in the reconstruction of planar pictures from the volumes recorded. (orig./GDG) [de

  20. Measurement of adult and paediatric patient doses during head CT scan

    International Nuclear Information System (INIS)

    Suliman, S. A.

    2011-03-01

    CT represents only 5% of all x-ray imaging and yet the radiation from CT examination is 40% to 67% of all medical radiation. The dose from single CT examinations can range from 1.0 mSv to 27.0 mSv. The radiation given by diagnostic CT is comparable to the low dose received by Japanese survivors of the atomic bombs. As per united nations scientific committee UNSCEAR 2000(2), CT contributes over 34% collective dose from diagnostic x-ray examinations in the world. This figure is much larger than this for developed countries, approaching as much as 50% to 70% even thought the frequency of CT examinations in these countries is of the order of 5 to 12%. It thus implies a small but statistically significant increased risk for developing cancer as a result of the radiation. The objective of the study were to investigate doses from CT examinations of adult and paediatric patients in brain CT examination and compare the doses with international standard as provided in DRLs. A total of 59 patients (paediatric and adults) were examined at the department of radiology, Al Ribat University Hospital-Khartoum. The mean age was 40.80 years for adults while the mean weight was 70.04 kg and the mean age for paediatric was 5.10 years while the mean weight was 20kg. DLP for adults were 1000.25 mGy.cm, 733.33 for paediatrics. The mean effective dose for adults patient was 0.48 mSv in rang (0.49-0.44)mSv, while for paediatric patients was 0.31 mSv in rang between (0.49-0.11) mSv. The DRL was 1120 mGy.cm, a value which is higher than the European Guidelines on quality criteria for computed tomography. The study has shown a great need for referring criteria, continuous training of staff in radiation dose optimization concepts. Further studies are required in order to establish a reference level in Sudan.(Author)

  1. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    International Nuclear Information System (INIS)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-01-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens

  2. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    Science.gov (United States)

    Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús

    2014-11-01

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  3. Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alva-Sánchez, Héctor, E-mail: halva@ciencias.unam.mx [Unidad de Imagen Molecular PET/CT, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F. (Mexico); Reynoso-Mejía, Alberto [Unidad de Imagen Molecular PET/CT, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F., Mexico and Departamento de Neuroimagen, Instituto Nacional de (Mexico); Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús [Departamento de Neuroimagen, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877 Col. La Fama, 14269, México D.F. (Mexico)

    2014-11-07

    In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.

  4. Patient doses in chest CT examinations: Comparison of various CT scanners

    Directory of Open Access Journals (Sweden)

    Božović Predrag

    2013-01-01

    Full Text Available This paper presents results from study on patient exposure level in chest CT examinations. CT scanners used in this study were various Siemens and General Electric (GE models. Data on patient doses were collected for adult and pediatric patients. Doses measured for adult patients were lower then those determined as Diagnostic Reference Levels (DRL for Europe, while doses for pediatric patients were similar to those found in published data. As for the manufactures, slightly higher doses were measured on GE devices, both for adult and pediatric patients.

  5. Accuracy and reliability of thyroid volumetry using spiral CT and thyroid volume in a healthy, non-iodine-deficient Chinese adult population

    Energy Technology Data Exchange (ETDEWEB)

    Shu Jian, E-mail: shujiannc@163.com [Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing 400010 (China); Zhao Jiannong, E-mail: zhaojiannong@tom.com [Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing 400010 (China); Guo Dajing, E-mail: guodaj@163.com [Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing 400010 (China); Luo Yindeng, E-mail: yindengluo_1019@163.com [Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing 400010 (China); Zhong Weijia, E-mail: zhongweijia2003@eyou.com [Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing 400010 (China); Xie Weibo, E-mail: radiologycq@163.com [Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing 400010 (China)

    2011-02-15

    Objective: The purpose of this study was to assess the accuracy and reliability of thyroid volumetry using spiral CT and to investigate thyroid volumes for a healthy, non-iodine-deficient adult population in southwestern region of China. Materials and methods: Spiral CT was performed in phantoms and adult subjects with normal thyroid, and the volumes were measured by observers with 5 years or more of CT experience. The phantom volumes and the thyroid volumes of all subjects were noted. Results: For the thyroid phantoms, there was no significant difference between the true and CT calculated volumes (t = 0.862, P = 0.399), and the correlation was excellent (ICC = 0.9995, P = 0.000). In the subjects for reliability analysis, the intraobserver or interobserver differences for CT volumetric measurement of thyroid were not significant (P > 0.05). The intraobserver or interobserver correlations were very high (ICC > 0.99, P < 0.001). In the subjects for population analysis, the median of the thyroid volumes was 11.45 cm{sup 3}. The nonparametric Mann-Whitney U-test showed no significant difference for the thyroid volume between sexes (U = 4388.00, Z = -1.118, P = 0.264). The nonparametric Kruskall-Wallis test showed no significant difference in all age groups ({chi}{sup 2} = 13.466, P = 0.062). There was a slight negative correlation between the thyroid volume and age (r{sub s} = -0.166, P = 0.019). Conclusion: The accuracy and reliability of multi-slice spiral CT in measuring thyroid volume are very high. The thyroid volumes are not significantly difference between genders or among decades for the healthy, non-iodine-deficient adult population in southwestern region of China.

  6. Dose reduction in multidetector CT of the urinary tract. Studies in a phantom model

    International Nuclear Information System (INIS)

    Coppenrath, E.; Meindl, T.; Herzog, P.; Khalil, R.; Mueller-Lisse, U.; Krenn, L.; Reiser, M.; Mueller-Lisse, U.G.

    2006-01-01

    A novel ureter phantom was developed for investigations of image quality and dose in CT urography. The ureter phantom consisted of a water box (14 cm x 32 cm x 42 cm) with five parallel plastic tubes (diameter 2.7 mm) filled with different concentrations of contrast media (1.88-30 mg iodine/ml). CT density of the tubes and noise of the surrounding water were determined using two multidetector scanners (Philips MX8000 with four rows, Siemens Sensation 16 with 16 rows) with varying tube current-time product (15-100 mAs per slice), voltage (90 kV, 100 kV, 120 kV), pitch (0.875-1.75), and slice thickness (1 mm, 2 mm, 3.2 mm). Contrast-to-noise ratio as a parameter of image quality was correlated with dose (CTDI) and was compared with image evaluation by two radiologists. The CT densities of different concentrations of contrast media and contrast-to-noise ratio were significantly higher when low voltages (90 kV versus 120 kV, 100 kV versus 120 kV) were applied. Smaller slice thickness (1 mm versus 2 mm) did not change CT density but decreased contrast-to-noise ratio due to increased noise. Contrast phantom studies showed favourable effects of low tube voltage on image quality in the low dose range. This may facilitate substantial dose reduction in CT urography. (orig.)

  7. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    International Nuclear Information System (INIS)

    Hui, Peter K.T.; Goo, Hyun Woo; Du, Jing; Ip, Janice J.K.; Kanzaki, Suzu; Kim, Young Jin; Kritsaneepaiboon, Supika; Lilyasari, Oktavia; Siripornpitak, Suvipaporn

    2017-01-01

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  8. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Peter K.T. [Hong Kong Baptist Hospital, Department of Radiology, Hong Kong, SAR (China); Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Du, Jing [Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Beijing (China); Ip, Janice J.K. [Queen Mary Hospital, Department of Radiology, Hong Kong, SAR (China); Kanzaki, Suzu [National Cerebral and Cardiovascular Center, Department of Radiology, Osaka (Japan); Kim, Young Jin [Yonsei University, Shinchon Severance Hospital, Department of Radiology, Seoul (Korea, Republic of); Kritsaneepaiboon, Supika [Songklanagarind Hospital, Prince of Songkla University, Department of Radiology, Hat Yai (Thailand); Lilyasari, Oktavia [University of Indonesia, National Cardiovascular Center Harapan Kita, Department of Cardiology, Jakarta (Indonesia); Siripornpitak, Suvipaporn [Ramathibodi Hospital, Mahidol University, Department of Radiology, Salaya (Thailand)

    2017-07-15

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  9. An assessment of the dose received by children from CT examinations along with the quality control parameters from a conventional CT system

    International Nuclear Information System (INIS)

    Sadeghyani, T.; Hashemi Malayeri, B.; Hashemi, H.; Sharafi, A. A.

    2005-01-01

    In 2000, the UNSCEAR reported that CT constitutes 5% of all the medical x-ray examinations and it contributes 34% of the resultant collective dose worldwide. Children are more sensitive to the ionizing radiations than adults. So, routine quality control tests are expected to be carried out periodically on the CT scanners. The aim of this research was to estimate the effective doses received by the children below two years of age from routine CT examinations carried out at an educational imaging center in Tehran. It was also aimed to evaluate the quality control parameters of the mentioned CT scanner at the same time. Materials and Methods: In this study, the Computed Tomography Dose Index were measured at the central axis of the CT gantry in air and in the standard quality control phantoms of the head and body (as recommended by the FDA) using a pencil ionization chamber and LiF TLD pellets for a single scan. By using the measured Computed Tomography Dose Index values and the IrnPACT software, the effective doses were calculated for every routine CT examination protocol. In this study, the quality control parameters such as noise, CT number calibration, high and low contrast resolution and the flatness of the CT image were also evaluated. These parameters were also measured using standard procedures and test objects. Results: The effective dose estimated in this research ranged from 2.05 to 21.45 and 2.05 to 15.7 mSv for the female and male children, respectively. The measured values of the Computed Tomography Dose Index in the standard head and body phantoms were 20.6) 2.01 and 11.13 f 1.04 mGy1100 mAs, respectively. The high and low contrast resolution was estimated to be 0.8 mm and 1.0 rnm, respectively. Conclusion: The estimated values of the effective doses in this research were less than the values reported for the Netherlands, the USA, Germany and were comparable with the values reported in the UK. The measured Computed Tomography Dose Index values were 11

  10. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingru; Vliegenthart, Rozemarijn; Wang, Ying; Ooijen, Peter M.A. van; Oudkerk, Matthijs [University of Groningen/University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, Department of Radiology, P.O. Box 30.001, Groningen (Netherlands); Bock, Geertruida H. de [University of Groningen/University Medical Center Groningen, Department of Epidemiology, P.O. Box 30.001, Groningen (Netherlands); Klaveren, Rob J. van [Lievensberg Hospital, Department of Pulmonology, P.O. Box 135, Bergen op Zoom (Netherlands); Bogoni, Luca [CAD Group, Siemens Medical Solutions USA, Inc., Malvern, PA (United States); Jong, Pim A. de; Mali, Willem P. [University of Utrecht, Department of Radiology, University Medical Center Utrecht, P.O. Box 85500, Utrecht (Netherlands)

    2012-10-15

    To evaluate performance of computer-aided detection (CAD) beyond double reading for pulmonary nodules on low-dose computed tomography (CT) by nodule volume. A total of 400 low-dose chest CT examinations were randomly selected from the NELSON lung cancer screening trial. CTs were evaluated by two independent readers and processed by CAD. A total of 1,667 findings marked by readers and/or CAD were evaluated by a consensus panel of expert chest radiologists. Performance was evaluated by calculating sensitivity of pulmonary nodule detection and number of false positives, by nodule characteristics and volume. According to the screening protocol, 90.9 % of the findings could be excluded from further evaluation, 49.2 % being small nodules (less than 50 mm{sup 3}). Excluding small nodules reduced false-positive detections by CAD from 3.7 to 1.9 per examination. Of 151 findings that needed further evaluation, 33 (21.9 %) were detected by CAD only, one of them being diagnosed as lung cancer the following year. The sensitivity of nodule detection was 78.1 % for double reading and 96.7 % for CAD. A total of 69.7 % of nodules undetected by readers were attached nodules of which 78.3 % were vessel-attached. CAD is valuable in lung cancer screening to improve sensitivity of pulmonary nodule detection beyond double reading, at a low false-positive rate when excluding small nodules. circle Computer-aided detection (CAD) has known advantages for computed tomography (CT). (orig.)

  11. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume

    International Nuclear Information System (INIS)

    Zhao, Yingru; Vliegenthart, Rozemarijn; Wang, Ying; Ooijen, Peter M.A. van; Oudkerk, Matthijs; Bock, Geertruida H. de; Klaveren, Rob J. van; Bogoni, Luca; Jong, Pim A. de; Mali, Willem P.

    2012-01-01

    To evaluate performance of computer-aided detection (CAD) beyond double reading for pulmonary nodules on low-dose computed tomography (CT) by nodule volume. A total of 400 low-dose chest CT examinations were randomly selected from the NELSON lung cancer screening trial. CTs were evaluated by two independent readers and processed by CAD. A total of 1,667 findings marked by readers and/or CAD were evaluated by a consensus panel of expert chest radiologists. Performance was evaluated by calculating sensitivity of pulmonary nodule detection and number of false positives, by nodule characteristics and volume. According to the screening protocol, 90.9 % of the findings could be excluded from further evaluation, 49.2 % being small nodules (less than 50 mm 3 ). Excluding small nodules reduced false-positive detections by CAD from 3.7 to 1.9 per examination. Of 151 findings that needed further evaluation, 33 (21.9 %) were detected by CAD only, one of them being diagnosed as lung cancer the following year. The sensitivity of nodule detection was 78.1 % for double reading and 96.7 % for CAD. A total of 69.7 % of nodules undetected by readers were attached nodules of which 78.3 % were vessel-attached. CAD is valuable in lung cancer screening to improve sensitivity of pulmonary nodule detection beyond double reading, at a low false-positive rate when excluding small nodules. circle Computer-aided detection (CAD) has known advantages for computed tomography (CT). (orig.)

  12. Evaluation of image quality and lesion perception by human readers on 3D CT colonography: comparison of standard and low radiation dose

    International Nuclear Information System (INIS)

    Fisichella, Valeria A.; Allansdotter Johnsson, Aase; Hellstroem, Mikael; Baath, Magnus; Jaederling, Fredrik; Bergsten, Tommy; Persson, Ulf; Mellingen, Kristin

    2010-01-01

    We compared the prevalence of noise-related artefacts and lesion perception on three-dimensional (3D) CT colonography (CTC) at standard and low radiation doses. Forty-eight patients underwent CTC (64 x 0.625 mm collimation; tube rotation time 0.5 s; automatic tube current modulation: standard dose 40-160 mA, low dose 10-50 mA). Low- and standard-dose acquisitions were performed in the supine position, one after the other. The presence of artefacts (cobblestone and snow artefacts, irregularly delineated folds) and the presence of polyps were evaluated by five radiologists on 3D images at standard dose, the original low dose and a modified low dose, i.e. after manipulation of opacity on 3D. The mean effective dose was 3.9 ± 1.3 mSv at standard dose and 1.03 ± 0.4 mSv at low dose. The number of images showing cobblestone artefacts and irregularly delineated folds at original and modified low doses was significantly higher than at standard dose (P < 0.0001). Most of the artefacts on modified low-dose images were mild. No significant difference in sensitivity between the dose levels was found for polyps ≥6 mm. Reduction of the effective dose to 1 mSv significantly affects image quality on 3D CTC, but the perception of ≥6 mm lesions is not significantly impaired. (orig.)

  13. Spiral CT during pharmacoangiography with angiotensin II in patients with pancreatic disease. Technique and diagnostic efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, C.; Mihara, N.; Hosomi, N.; Inoue, E.; Fujita, M. [Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan). Dept. of Diagnostic Radiology; Ohigashi, H.; Ishikawa, O. [Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan). Dept. of Surgery; Nakaizumi, A. [Osaka Medical Center for Cancer and Cardiovascular Deseases (Japan). Dept. of Internal Medicine; Ishiguro, S. [Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan). Dept. of Pathology

    1998-03-01

    Purpose: To compare the diagnostic efficacy of pancreatic pharmacoangiographic CT using angiotensin II with conventional angiographic CT. Material and Methods: Eighteen patients with space-occupying pancreatic disease were examined in this study. Pharmacoangiographic CT was performed with a 1-3-{mu}/6-ml solution of angiotensin II injected through a catheter into the celiac artery during spiral CT. Results: In 17 of the 18 (94%) patients, the area of pancreatic parenchymal enhancement was the same or larger at pharmacoangiographic CT than at conventional angiographic CT. The attenuation value of the pancreatic parenchyma was significantly increased at pharmacoangiographic CT (p=0.0010). Although the attenuation value of tumors was also increased on images obtained after the injection of angiotensin II, the tumor-to-pancreas contrast was significantly greater at pharmacoangiographic CT (p=0.0479). The mean differences in attenuation between tumor and pancreas at angiographic CT with and without angiotensin II were respectively 182 HU and 115 HU. Conclusion: Pharmacoangiographic CT with angiotensin II proved superior to conventional angiographic CT in the diagnosis of pancreatic disease. We therefore recommend it as a supplementary technique at the angiographic examination of patients with suspected pancreatic tumor. (orig.).

  14. A review of patient dose and optimisation methods in adult and paediatric CT scanning

    International Nuclear Information System (INIS)

    Dougeni, E.; Faulkner, K.; Panayiotakis, G.

    2012-01-01

    Highlights: ► CT scanning frequency has grown with the development of new clinical applications. ► Up to 32-fold dose variation was observed for similar type of procedures. ► Scanning parameters should be optimised for patient size and clinical indication. ► Cancer risks knowledge amongst physicians of certain specialties was poor. ► A significant number of non-indicated CT scans could be eliminated. - Abstract: An increasing number of publications and international reports on computed tomography (CT) have addressed important issues on optimised imaging practice and patient dose. This is partially due to recent technological developments as well as to the striking rise in the number of CT scans being requested. CT imaging has extended its role to newer applications, such as cardiac CT, CT colonography, angiography and urology. The proportion of paediatric patients undergoing CT scans has also increased. The published scientific literature was reviewed to collect information regarding effective dose levels during the most common CT examinations in adults and paediatrics. Large dose variations were observed (up to 32-fold) with some individual sites exceeding the recommended dose reference levels, indicating a large potential to reduce dose. Current estimates on radiation-related cancer risks are alarming. CT doses account for about 70% of collective dose in the UK and are amongst the highest in diagnostic radiology, however the majority of physicians underestimate the risk, demonstrating a decreased level of awareness. Exposure parameters are not always adjusted appropriately to the clinical question or to patient size, especially for children. Dose reduction techniques, such as tube-current modulation, low-tube voltage protocols, prospective echocardiography-triggered coronary angiography and iterative reconstruction algorithms can substantially decrease doses. An overview of optimisation studies is provided. The justification principle is discussed along

  15. Effective dose and cancer risk in PET/CT exams

    International Nuclear Information System (INIS)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de

    2013-01-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10 -4 . Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10 -3

  16. Evaluation of hepatic alveolar echinococcosis with multi-slices spiral CT

    International Nuclear Information System (INIS)

    Liu Wenya; Lou Jianru; Xing Yan; Wang Jing; Wang Haitao

    2005-01-01

    Objective: To analyze the multi-slices spiral CT (MSCT) findings of hepatic alveolar echinococcosis (HAE), and to evaluate the value of MSCT for diagnosis of HAE. Methods: Twenty-six cases with HAE were scanning by MSCT. The raw data were transmitted to advanced workstation for reconstruction imaging. Correlated studies were made between the CT features and pathology or other imaging results. Results: Altogether 28 lesions were detected. They all revealed as heterogeneous hypodense mass with ill-defined boundary in plain CT but were easily being distinguished from surrounding parenchyma after contrast medium injection. Characteristics of the lesions include different amount of calcification (26/26), liquefied necrosis in center area (20/26), peripheral lacunae or alveolar signs (15/26 ), compensatory hypertrophy of healthy hepatic part (18/26) and the retraction in the involved hepatic lobe or segment (12/26). The lesions that located at or extended to hepatic hilum caused dilatation of intra-hepatic biliary ducts (9/26), splenomegaly (12/26 ), and ascites (1/26). MSCT angiography (CTA) depicted signs of abnormalities of hepatic vessels such as compression, displacement, encasement and occlusion. Compared with findings of operation, the sensitivity, specificity and positive prediction value of CTA for evaluating the hepatic artery system disorders were 88%, 96% and 93%, respectively; and for portal venous system were 95%, 100% and 95%, respectively; while for hepatic venous system were 96%, 86% and 96%, respectively. Conclusion: MSCT is able to comprehensive display the CT features and vessels complication of HAE. It provides reliable imaging for both accuracy diagnosis and proper treatment of the disease. (authors)

  17. Low tube voltage and low contrast material volume cerebral CT angiography

    International Nuclear Information System (INIS)

    Luo, Song; Zhang, Long Jiang; Lu, Guang Ming; Meinel, Felix G.; McQuiston, Andrew D.; Zhou, Chang Sheng; Qi, Li; Schoepf, U.J.

    2014-01-01

    To evaluate the image quality, radiation dose and diagnostic accuracy of low kVp and low contrast material volume cerebral CT angiography (CTA) in intracranial aneurysm detection. One hundred twenty patients were randomly divided into three groups (n = 40 for each): Group A, 70 ml iodinated contrast agent/120 kVp; group B, 30 ml/100 kVp; group C, 30 ml/80 kVp. The CT numbers, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured in the internal carotid artery (ICA) and middle cerebral artery (MCA). Subjective image quality was evaluated. For patients undergoing DSA, diagnostic accuracy of CTA was calculated with DSA as reference standard and compared. CT numbers of ICA and MCA were higher in groups B and C than in group A (P < 0.01). SNR and CNR in groups A and B were higher than in group C (both P < 0.05). There was no difference in subjective image quality among the three groups (P = 0.939). Diagnostic accuracy for aneurysm detection among these groups had no statistical difference (P = 1.00). Compared with group A, the radiation dose of groups B and C was decreased by 45 % and 74 %. Cerebral CTA at 100 or 80 kVp using 30 ml contrast agent can obtain diagnostic image quality with a low radiation dose while maintaining the same diagnostic accuracy for aneurysm detection. (orig.)

  18. PET/CT-guided Interventions: Personnel Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  19. CT findings of pancreatic carcinoma. Evaluation with the combined method of early enhancement CT and high dose enhancement CT

    International Nuclear Information System (INIS)

    Itoh, Shigeki; Endo, Tokiko; Isomura, Takayuki; Ishigaki, Takeo; Ikeda, Mitsuru; Senda, Kouhei.

    1995-01-01

    Computed tomographic (CT) findings of pancreatic ductal adenocarcinoma were studied with the combined method of early enhancement CT and high dose enhancement CT in 72 carcinomas. Common Findings were change in pancreatic contour, abnormal attenuation in a tumor and dilatation of the main pancreatic duct. The incidence of abnormal attenuation and dilatation of the main pancreatic duct and bile duct was constant regardless of tumor size. The finding of hypoattenuation at early enhancement CT was most useful for demonstrating a carcinoma. However, this finding was negative in ten cases, five of which showed inhomogenous hyperattenuation at high dose enhancement CT. The detection of change in pancreatic contour and dilatation of the main pancreatic duct was most frequent at high dose enhancement CT. The finding of change in pancreatic contour and/or abnormal attenuation in a tumor could be detected in 47 cases at plain CT, 66 at early enhancement CT and 65 at high dose enhancement CT. Since the four cases in which neither finding was detected by any CT method showed dilatated main pancreatic duct, there was no case without abnormal CT findings. This combined CT method will be a reliable diagnostic technique in the imaging of pancreatic carcinoma. (author)

  20. Longitudinal follow-up study of smoking-induced emphysema progression in low-dose CT screening of lung cancer

    Science.gov (United States)

    Suzuki, H.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, Masahiro; Moriyama, N.

    2014-03-01

    Chronic obstructive pulmonary disease is a major public health problem that is predicted to be third leading cause of death in 2030. Although spirometry is traditionally used to quantify emphysema progression, it is difficult to detect the loss of pulmonary function by emphysema in early stage, and to assess the susceptibility to smoking. This study presents quantification method of smoking-induced emphysema progression based on annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in lung cancer screening. The method consists of three steps. First, lung lobes are segmented using extracted interlobar fissures by enhancement filter based on fourdimensional curvature. Second, LAV of each lung lobe is segmented. Finally, smoking-induced emphysema progression is assessed by statistical analysis of the annual changes represented by linear regression of LAV percentage in each lung lobe. This method was applied to 140 participants in lung cancer CT screening for six years. The results showed that LAV progressions of nonsmokers, past smokers, and current smokers are different in terms of pack-year and smoking cessation duration. This study demonstrates effectiveness in diagnosis and prognosis of early emphysema in lung cancer CT screening.

  1. Coronary CT angiography: Comparison of a novel iterative reconstruction with filtered back projection for reconstruction of low-dose CT—Initial experience

    International Nuclear Information System (INIS)

    Takx, Richard A.P.; Schoepf, U. Joseph; Moscariello, Antonio; Das, Marco; Rowe, Garrett; Schoenberg, Stefan O.; Fink, Christian; Henzler, Thomas

    2013-01-01

    Objective: To prospectively compare subjective and objective image quality in 20% tube current coronary CT angiography (cCTA) datasets between an iterative reconstruction algorithm (SAFIRE) and traditional filtered back projection (FBP). Materials and methods: Twenty patients underwent a prospectively ECG-triggered dual-step cCTA protocol using 2nd generation dual-source CT (DSCT). CT raw data was reconstructed using standard FBP at full-dose (Group 1 a) and 80% tube current reduced low-dose (Group 1 b). The low-dose raw data was additionally reconstructed using iterative raw data reconstruction (Group 2 ). Attenuation and image noise were measured in three regions of interest and signal-to-noise-ratio (SNR) as well as contrast-to-noise-ratio (CNR) was calculated. Subjective diagnostic image quality was evaluated using a 4-point Likert scale. Results: Mean image noise of group 2 was lowered by 22% on average when compared to group 1 b (p 2 compared to group 1 b (p 2 (1.88 ± 0.63) was also rated significantly higher when compared to group 1 b (1.58 ± 0.63, p = 0.004). Conclusions: Image quality of 80% tube current reduced iteratively reconstructed cCTA raw data is significantly improved when compared to standard FBP and consequently may improve the diagnostic accuracy of cCTA

  2. Efficacy of Low-Dose Protocol in Follow-Up of Lymphoproliferative Disorders - Preliminary Results

    International Nuclear Information System (INIS)

    Popic-Ramac, J.; Brnic, Z.; Klasic, B.; Hebrang, A.; Knezevic, Z.

    2011-01-01

    Most medically-related radiation is caused by diagnostic examinations, in particular by computed tomography (CT). The purpose of this research is to reduce radiation doses faced by the population frequently exposed to such procedures-those with lymphoproliferative disorders. The research was conducted comparing radiation-exposition doses received by the radiosensitive organs (thyroid, lens, breast and gonad) using the standard thoracic CT protocol with the radiation received using the low-dose protocol, while maintaining display quality. The standard-dose thoracic protocol implies 120 kV and 150 mAs. The low-dose protocol was conducted on the same device using 120 kV and 30 mAs. We confirmed the hypothesis that the use of the low-dose thoracic CT protocol leads to a reduction in radiation dose without compromising display quality. It is further expected that a reduction in doses will reduce the risk of radiation-related mutations. (author)

  3. Low dose CT image restoration using a database of image patches

    Science.gov (United States)

    Ha, Sungsoo; Mueller, Klaus

    2015-01-01

    Reducing the radiation dose in CT imaging has become an active research topic and many solutions have been proposed to remove the significant noise and streak artifacts in the reconstructed images. Most of these methods operate within the domain of the image that is subject to restoration. This, however, poses limitations on the extent of filtering possible. We advocate to take into consideration the vast body of external knowledge that exists in the domain of already acquired medical CT images, since after all, this is what radiologists do when they examine these low quality images. We can incorporate this knowledge by creating a database of prior scans, either of the same patient or a diverse corpus of different patients, to assist in the restoration process. Our paper follows up on our previous work that used a database of images. Using images, however, is challenging since it requires tedious and error prone registration and alignment. Our new method eliminates these problems by storing a diverse set of small image patches in conjunction with a localized similarity matching scheme. We also empirically show that it is sufficient to store these patches without anatomical tags since their statistics are sufficiently strong to yield good similarity matches from the database and as a direct effect, produce image restorations of high quality. A final experiment demonstrates that our global database approach can recover image features that are difficult to preserve with conventional denoising approaches.

  4. The role of whole body spiral CT in the primary work-up of polytrauma patients - comparison with conventional radiography and abdominal sonography; Die Rolle der Ganzkoerper-Spiral-CT bei der Primaerdiagnostik polytraumatisierter Patienten - Vergleich mit konventioneller Radiographie und Abdomensonographie

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, T.; Schlippenbach, J. von; Wolf, K.J. [Klinik und Poliklinik fuer Radiologie und Nuklearmedizin, Charite - Campus Benjamin Franklin (Germany); Stahel, P.F.; Ertel, W. [Klinik fuer Unfall- und Wiederherstellungschirurgie, Charite - Campus Benjamin Franklin (Germany)

    2004-08-01

    Purpose: To evaluate the role of routine 'whole body spiral CT' in the primary work-up of polytrauma patients for injuries of the thorax, abdomen and spine, and to compare the results with those of conventional radiography of the chest and spine and abdominal ultrasound. Materials and Methods: Fifty consecutive polytrauma patients underwent contrast-enhanced single slice spiral CT (5 mm collimation) from the vertex to the floor of the pelvis as part of the primary work-up after emergency room admission. Overlapping high resolution sections and sagittal reformations of the spine were obtained. Reports of additional chest radiographs (n=43), abdominal ultrasound examinations (n=47) and spine radiographs (n=36) performed in the emergency room were available for retrospective comparison. The 'final diagnoses', which served as the standard of reference, were taken from the patients' records using all information that became available until discharge or death, such as findings from further imaging, surgery and autopsy. Results: CT showed 109 (97%) of 112 thoracic and abdominal soft-tissue injuries. Relevant injuries missed were an early splenic laceration and an early pelvic hematoma, both of which became clinically apparent several hours later. There were 4 false positive CT findings. Conventional chest radiography demonstrated only 20% of thoracic and sonography 22% of abdominal injuries. Chest radiography and sonography produced 2 false-positive findings each. CT showed 66 (87%) of 76 vertebral fractures including all 19 unstable ones. CT missed 5 anterior vertebral body and 5 spinous/transverse process fractures. Conventional radiography found 71% of vertebral fractures including only 50% of the unstable one. (orig.)

  5. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  6. Effective radiation dose from semicoronal CT of the sacroiliac joints in comparison with axial CT and conventional radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jurik, Anne Grethe; Boecker Puhakka, Katriina [Department of Radiology R, Aarhus University Hospital, Aarhus Kommunehospital, Noerrebrogade 44, 8000 Aarhus C (Denmark); Hansen, Jolanta [Department of Medical Physics, Aarhus University Hospital, Aarhus Kommunehospital, Noerrebrogade 44, 8000 Aarhus C (Denmark)

    2002-11-01

    The aim of this study was to evaluate the radiation dose given by semicoronal CT of the sacroiliac joints (SIJs) in comparison with axial CT and conventional radiography. The total effective radiation doses given by serial contiguous semicoronal and axial CT, using 5-mm slices, 120 kV and 330 mAs, were determined by measurement of organ doses using an anthropomorphic Rando Alderson phantom paced with thermoluminescence dosimeters. The doses given by conventional antero-posterior (AP) and oblique projections of the SIJs were determined similarly. In a female the total effective dose by semicoronal CT was found to be more than six times lower than by axial CT and 2.5 times lower than the dose use to obtain a conventional AP radiograph, the values being 102, 678, and 255 {mu}Sv, respectively. The effective dose by semicoronal CT was only a little higher than the dose given to obtain two oblique radiographs. In a male with lead protection of the gonads the dose by semicoronal CT was four times lower than by axial CT, but higher than by conventional radiography. In conclusion, the effective dose by semicoronal CT of the SIJs is lower than by axial CT, and in females a semicoronal CT implies a lower effective radiation dose that used to obtain an AP radiograph. (orig.)

  7. Induced pneumoperitoneum in spiral CT evaluation of gastric cancer

    International Nuclear Information System (INIS)

    Guo Hua; Gao Jianbo; Li Yintai; Yang Xuehua; Chen Xuejun; Guan Sheng

    2001-01-01

    Objective: To evaluate the diagnostic value and clinical significance of preoperative staging in gastric cancer with induced pneumoperitoneum in spiral CT (SCTPP). Methods: Both routine SCT and SCTPP were performed in 52 lean patients suffered from gastric cancers, and comparison was made between SCT findings and surgical and histopathologic findings. Results: The accuracy of routine SCT and SCTPP in determining the T-staging was 72% and 96%, respectively (x 2 = 8.0, P 2 = 0.006, P > 0.05). The sensitivity in determining M-staging was 61% and 100%, respectively (x 2 = 0.04, P 2 6.03, P < 0.05). Conclusion: The accuracy of SCTPP in determining preoperative staging of gastric cancer was significantly higher than that of routine SCT. SCTPP has important guiding significance for the selection of the treatment strategy in gastric cancer

  8. Feasibility of spectral shaping for detection and quantification of coronary calcifications in ultra-low dose CT

    Energy Technology Data Exchange (ETDEWEB)

    Vonder, Marleen; Pelgrim, Gert Jan; Vliegenthart, Rozemarijn [University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Center for Medical Imaging North-East Netherlands (CMI-NEN), Groningen (Netherlands); Huijsse, Sevrin E.M.; Greuter, Marcel J.W. [University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen (Netherlands); Meyer, Mathias; Henzler, Thomas [Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg (Germany); Flohr, Thomas G. [Siemens Healthcare GmbH, Computed Tomography, Forchheim (Germany); Oudkerk, Matthijs [University of Groningen, University Medical Center Groningen, Center for Medical Imaging North-East Netherlands (CMI-NEN), Groningen (Netherlands)

    2017-05-15

    To evaluate detectability and quantification of coronary calcifications for CT with a tin filter for spectral shaping. Phantom inserts with 100 small and 9 large calcifications, and a moving artificial artery with 3 calcifications (speed 0-30 mm/s) were placed in a thorax phantom simulating different patient sizes. The phantom was scanned in high-pitch spiral mode at 100 kVp with tin filter (Sn100 kVp), and at a reference of 120 kVp, with electrocardiographic (ECG) gating. Detectability and quantification of calcifications were analyzed for standard (130 HU) and adapted thresholds. Sn100 kVp yielded lower detectability of calcifications (9 % versus 12 %, p = 0.027) and lower Agatston scores (p < 0.008), irrespective of calcification, patient size and speed. Volume scores of the moving calcifications for Sn100 kVp at speed 10-30 mm/s were lower (p < 0.001), while mass scores were similar (p = 0.131). For Sn100 kVp with adapted threshold of 117 HU, detectability (p = 1.000) and Agatston score (p > 0.206) were similar to 120 kVp. Spectral shaping resulted in median dose reduction of 62.3 % (range 59.0-73.4 %). Coronary calcium scanning with spectral shaping yields lower detectability of calcifications and lower Agatston scores compared to 120 kVp scanning, for which a HU threshold correction should be developed. (orig.)

  9. Characterization of liver lesions with mangafodipir trisodium-enhanced MR imaging: multicenter study comparing MR and dual-phase spiral CT

    NARCIS (Netherlands)

    M. Oudkerk (Matthijs); C.G. Torres; B. Song; M. Konig; J. Grimm; J. Fernandez-Cuadrado; B. op de Beeck; M. Marquardt; P. van Dijk (Pieter); J.C. de Groot (Jan Cees)

    2002-01-01

    textabstractPURPOSE: To evaluate whether mangafodipir trisodium (Mn-DPDP)-enhanced magnetic resonance (MR) imaging surpasses dual-phase spiral computed tomography (CT) in differentiating focal liver lesions. MATERIALS AND METHODS: One hundred forty-five patients who had or were

  10. Image quality of mean temporal arterial and mean temporal portal venous phase images calculated from low dose dynamic volume perfusion CT datasets in patients with hepatocellular carcinoma and pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. [Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China); Henzler, T., E-mail: thomas.henzler@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Gawlitza, J.; Diehl, S. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Wilhelm, T. [Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Schoenberg, S.O. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Jin, Z.Y.; Xue, H.D. [Radiology Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing (China); Smakic, A. [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany)

    2016-11-15

    Purpose: Dynamic volume perfusion CT (dVPCT) provides valuable information on tissue perfusion in patients with hepatocellular carcinoma (HCC) and pancreatic cancer. However, currently dVPCT is often performed in addition to conventional CT acquisitions due to the limited morphologic image quality of dose optimized dVPCT protocols. The aim of this study was to prospectively compare objective and subjective image quality, lesion detectability and radiation dose between mean temporal arterial (mTA) and mean temporal portal venous (mTPV) images calculated from low dose dynamic volume perfusion CT (dVPCT) datasets with linearly blended 120-kVp arterial and portal venous datasets in patients with HCC and pancreatic cancer. Materials and methods: All patients gave written informed consent for this institutional review board–approved HIPAA compliant study. 27 consecutive patients (18 men, 9 women, mean age, 69.1 years ± 9.4) with histologically proven HCC or suspected pancreatic cancer were prospectively enrolled. The study CT protocol included a dVPCT protocol performed with 70 or 80 kVp tube voltage (18 spiral acquisitions, 71.2 s total acquisition times) and standard dual-energy (90/150 kVpSn) arterial and portal venous acquisition performed 25 min after the dVPCT. The mTA and mTPV images were manually reconstructed from the 3 to 5 best visually selected single arterial and 3 to 5 best single portal venous phases dVPCT dataset. The linearly blended 120-kVp images were calculated from dual-energy CT (DECT) raw data. Image noise, SNR, and CNR of the liver, abdominal aorta (AA) and main portal vein (PV) were compared between the mTA/mTPV and the linearly blended 120-kVp dual-energy arterial and portal venous datasets, respectively. Subjective image quality was evaluated by two radiologists regarding subjective image noise, sharpness and overall diagnostic image quality using a 5-point Likert Scale. In addition, liver lesion detectability was performed for each liver

  11. Image quality of mean temporal arterial and mean temporal portal venous phase images calculated from low dose dynamic volume perfusion CT datasets in patients with hepatocellular carcinoma and pancreatic cancer

    International Nuclear Information System (INIS)

    Wang, X.; Henzler, T.; Gawlitza, J.; Diehl, S.; Wilhelm, T.; Schoenberg, S.O.; Jin, Z.Y.; Xue, H.D.; Smakic, A.

    2016-01-01

    Purpose: Dynamic volume perfusion CT (dVPCT) provides valuable information on tissue perfusion in patients with hepatocellular carcinoma (HCC) and pancreatic cancer. However, currently dVPCT is often performed in addition to conventional CT acquisitions due to the limited morphologic image quality of dose optimized dVPCT protocols. The aim of this study was to prospectively compare objective and subjective image quality, lesion detectability and radiation dose between mean temporal arterial (mTA) and mean temporal portal venous (mTPV) images calculated from low dose dynamic volume perfusion CT (dVPCT) datasets with linearly blended 120-kVp arterial and portal venous datasets in patients with HCC and pancreatic cancer. Materials and methods: All patients gave written informed consent for this institutional review board–approved HIPAA compliant study. 27 consecutive patients (18 men, 9 women, mean age, 69.1 years ± 9.4) with histologically proven HCC or suspected pancreatic cancer were prospectively enrolled. The study CT protocol included a dVPCT protocol performed with 70 or 80 kVp tube voltage (18 spiral acquisitions, 71.2 s total acquisition times) and standard dual-energy (90/150 kVpSn) arterial and portal venous acquisition performed 25 min after the dVPCT. The mTA and mTPV images were manually reconstructed from the 3 to 5 best visually selected single arterial and 3 to 5 best single portal venous phases dVPCT dataset. The linearly blended 120-kVp images were calculated from dual-energy CT (DECT) raw data. Image noise, SNR, and CNR of the liver, abdominal aorta (AA) and main portal vein (PV) were compared between the mTA/mTPV and the linearly blended 120-kVp dual-energy arterial and portal venous datasets, respectively. Subjective image quality was evaluated by two radiologists regarding subjective image noise, sharpness and overall diagnostic image quality using a 5-point Likert Scale. In addition, liver lesion detectability was performed for each liver

  12. Adult head CT scans: the uncertainties of effective dose estimates

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Full Text: CT scanning is a high dose imaging modality. Effective dose estimates from CT scans can provide important information to patients and medical professionals. For example, medical practitioners can use the dose to estimate the risk to the patient, and judge whether this risk is outweighed by the benefits of the CT examination, while radiographers can gauge the effect of different scanning protocols on the patient effective dose, and take this into consideration when establishing routine scan settings. Dose estimates also form an important part of epidemiological studies examining the health effects of medical radiation exposures on the wider population. Medical physicists have been devoting significant effort towards estimating patient radiation doses from diagnostic CT scans for some years. The question arises: How accurate are these effective dose estimates? The need for a greater understanding and improvement of the uncertainties in CT dose estimates is now gaining recognition as an important issue (BEIR VII 2006). This study is an attempt to analyse and quantify the uncertainty components relating to effective dose estimates from adult head CT examinations that are calculated with four commonly used methods. The dose estimation methods analysed are the Nagel method, the ImpaCT method, the Wellhoefer method and the Dose-Length Product (DLP) method. The analysis of the uncertainties was performed in accordance with the International Standards Organisation's Guide to the Expression of Uncertainty in Measurement as discussed in Gregory et al (Australas. Phys. Eng. Sci. Med., 28: 131-139, 2005). The uncertainty components vary, depending on the method used to derive the effective dose estimate. Uncertainty components in this study include the statistical and other errors from Monte Carlo simulations, uncertainties in the CT settings and positions of patients in the CT gantry, calibration errors from pencil ionization chambers, the variations in the organ

  13. An algorithm for intelligent sorting of CT-related dose parameters

    Science.gov (United States)

    Cook, Tessa S.; Zimmerman, Stefan L.; Steingal, Scott; Boonn, William W.; Kim, Woojin

    2011-03-01

    Imaging centers nationwide are seeking innovative means to record and monitor CT-related radiation dose in light of multiple instances of patient over-exposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose-length product (DLP)-an indirect estimate of radiation dose-requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, Arterial could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired, and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  14. An algorithm for intelligent sorting of CT-related dose parameters.

    Science.gov (United States)

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Boonn, William W; Kim, Woojin

    2012-02-01

    Imaging centers nationwide are seeking innovative means to record and monitor computed tomography (CT)-related radiation dose in light of multiple instances of patient overexposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival, and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose length product (DLP)--an indirect estimate of radiation dose--requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, "arterial" could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  15. Optimisation of CT procedures by dose reduction in abdominal-pelvic studies of chronic patients

    International Nuclear Information System (INIS)

    Calvo, D.; Rodriguez, A.M.; Peinado, M.A.; Fernandez, B.; Fernandez, B.M.; Jimenez, J.R.

    2006-01-01

    Full text of publication follows: Objectives: CT explorations are responsible of a significant increase of collective dose during last twenty years. However, by adapting the procedures to the specific diagnostic requirements of each kind of exploration, dose values can be decreased. This can be specially interesting for chronic patients who undergo several CT controls. The aim of this research is to contrast CT image diagnostic quality by comparing those techniques commonly used in our hospital with lower dose ones. Materials and methods: In a first phase, a study on phantom has been developed to evaluate image quality variations obtained with standard a several low dose techniques. Dose reduction was quantified as well by means of C.T.D.I. w measurements on an abdominal phantom. Both aspects were taken into account to determine a dose threshold below image quality degradation was considered unacceptable from a diagnostic point of view. Subsequently, a group of 50 chronic patients under follow -up was selected to undergo a control CT but with a low dose-technique. Image diagnostic quality was compared with that of previous controls obtained using the standard technique. Three experimented radiologist carried out this evaluation over a sample of six particular slices located at the abdomen and pelvis using an ordinal scale. Such a scale gradate the confidence level of the image for each radiologist. This evaluation was repeated one and two months later without knowledge of previous results to calculate inter and intra -observer variability. Conclusions: CT studies can be carried out with a significant dose reduction preserving their diagnostic capabilities. A quantitative evaluation will be offered at the end of the study, still running. (authors)

  16. Use of model-based iterative reconstruction (MBIR) in reduced-dose CT for routine follow-up of patients with malignant lymphoma: dose savings, image quality and phantom study

    International Nuclear Information System (INIS)

    Herin, Edouard; Chiaradia, Melanie; Cavet, Madeleine; Deux, Jean-Francois; Rahmouni, Alain; Gardavaud, Francois; Beaussart, Pauline; Richard, Philippe; Haioun, Corinne; Itti, Emmanuel; Luciani, Alain

    2015-01-01

    To evaluate both in vivo and in phantom studies, dose reduction, and image quality of body CT reconstructed with model-based iterative reconstruction (MBIR), performed during patient follow-ups for lymphoma. This study included 40 patients (mean age 49 years) with lymphoma. All underwent reduced-dose CT during follow-up, reconstructed using MBIR or 50 % advanced statistical iterative reconstruction (ASIR). All had previously undergone a standard dose CT with filtered back projection (FBP) reconstruction. The volume CT dose index (CTDIvol), the density measures in liver, spleen, fat, air, and muscle, and the image quality (noise and signal to noise ratio, SNR) (ANOVA) observed using standard or reduced-dose CT were compared both in patients and a phantom study (Catphan 600) (Kruskal Wallis). The CTDIvol was decreased on reduced-dose body CT (4.06 mGy vs. 15.64 mGy p < 0.0001). SNR was higher in reduced-dose CT reconstructed with MBIR than in 50 % ASIR or than standard dose CT with FBP (patients, p ≤ 0.01; phantoms, p = 0.003). Low contrast detectability and spatial resolution in phantoms were not altered on MBIR-reconstructed CT (p ≥ 0.11). Reduced-dose CT with MBIR reconstruction can decrease radiation dose delivered to patients with lymphoma, while keeping an image quality similar to that obtained on standard-dose CT. (orig.)

  17. Use of model-based iterative reconstruction (MBIR) in reduced-dose CT for routine follow-up of patients with malignant lymphoma: dose savings, image quality and phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Herin, Edouard; Chiaradia, Melanie; Cavet, Madeleine; Deux, Jean-Francois; Rahmouni, Alain [AP-HP, Hopitaux Universitaires Henri Mondor, Imagerie Medicale, Creteil (France); Universite Paris Est Creteil, Faculte de Medecine, Creteil (France); Gardavaud, Francois; Beaussart, Pauline [AP-HP, Hopitaux Universitaires Henri Mondor, Imagerie Medicale, Creteil (France); Richard, Philippe [GE Healthcare France, Buc (France); Haioun, Corinne [Universite Paris Est Creteil, Faculte de Medecine, Creteil (France); AP-HP, Hopitaux Universitaires Henri Mondor, Hemopathies Lymphoides, Creteil (France); Itti, Emmanuel [Universite Paris Est Creteil, Faculte de Medecine, Creteil (France); AP-HP, Hopitaux Universitaires Henri Mondor, Medecine Nucleaire, Creteil (France); Luciani, Alain [AP-HP, Hopitaux Universitaires Henri Mondor, Imagerie Medicale, Creteil (France); Universite Paris Est Creteil, Faculte de Medecine, Creteil (France); INSERM Unite U 955, Creteil (France); AP-HP, Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, CHU Henri Mondor, Creteil Cedex (France)

    2015-08-15

    To evaluate both in vivo and in phantom studies, dose reduction, and image quality of body CT reconstructed with model-based iterative reconstruction (MBIR), performed during patient follow-ups for lymphoma. This study included 40 patients (mean age 49 years) with lymphoma. All underwent reduced-dose CT during follow-up, reconstructed using MBIR or 50 % advanced statistical iterative reconstruction (ASIR). All had previously undergone a standard dose CT with filtered back projection (FBP) reconstruction. The volume CT dose index (CTDIvol), the density measures in liver, spleen, fat, air, and muscle, and the image quality (noise and signal to noise ratio, SNR) (ANOVA) observed using standard or reduced-dose CT were compared both in patients and a phantom study (Catphan 600) (Kruskal Wallis). The CTDIvol was decreased on reduced-dose body CT (4.06 mGy vs. 15.64 mGy p < 0.0001). SNR was higher in reduced-dose CT reconstructed with MBIR than in 50 % ASIR or than standard dose CT with FBP (patients, p ≤ 0.01; phantoms, p = 0.003). Low contrast detectability and spatial resolution in phantoms were not altered on MBIR-reconstructed CT (p ≥ 0.11). Reduced-dose CT with MBIR reconstruction can decrease radiation dose delivered to patients with lymphoma, while keeping an image quality similar to that obtained on standard-dose CT. (orig.)

  18. Coronary CT angiography using prospective ECG triggering. High diagnostic accuracy with low radiation dose

    International Nuclear Information System (INIS)

    Arnoldi, E.; Ramos-Duran, L.; Abro, J.A.; Costello, P.; Zwerner, P.L.; Schoepf, U.J.; Nikolaou, K.; Reiser, M.F.

    2010-01-01

    The purpose of this study was to evaluate the diagnostic performance of coronary CT angiography (coronary CTA) using prospective ECG triggering (PT) for the detection of significant coronary artery stenosis compared to invasive coronary angiography (ICA). A total of 20 patients underwent coronary CTA with PT using a 128-slice CT scanner (Definition trademark AS+, Siemens) and ICA. All coronary CTA studies were evaluated for significant coronary artery stenoses (≥50% luminal narrowing) by 2 observers in consensus using the AHA-15-segment model. Findings in CTA were compared to those in ICA. Coronary CTA using PT had 88% sensitivity in comparison to 100% with ICA, 95% to 88% specificity, 80% to 92% positive predictive value and 97% to 100% negative predictive value for diagnosing significant coronary artery stenosis on per segment per patient analysis, respectively. Mean effective radiation dose-equivalent of CTA was 2.6±1 mSv. Coronary CTA using PT enables non-invasive diagnosis of significant coronary artery stenosis with high diagnostic accuracy in comparison to ICA and is associated with comparably low radiation exposure. (orig.) [de

  19. PET/CT-guided Interventions: Personnel Radiation Dose

    International Nuclear Information System (INIS)

    Ryan, E. Ronan; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-01-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0–0.13) mSv for the primary operator, 0.01 (range 0–0.05) mSv for the nurse anesthetist, and 0.02 (range 0–0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0–0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient

  20. Ultra low-dose chest CT using filtered back projection: Comparison of 80-, 100- and 120 kVp protocols in a prospective randomized study

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, Ranish Deedar Ali, E-mail: rkhawaja@mgh.harvard.edu [Division of Thoracic Radiology, MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States); Singh, Sarabjeet [Division of Thoracic Radiology, MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States); Madan, Rachna [Division of Thoracic Radiology, Brigham and Women' s Hospital and Harvard Medical School, Boston (United States); Sharma, Amita; Padole, Atul; Pourjabbar, Sarvenaz; Digumarthy, Subba; Shepard, Jo-Anne; Kalra, Mannudeep K. [Division of Thoracic Radiology, MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States)

    2014-10-15

    Highlights: • Filtered back projection technique enables acceptable image quality for chest CT examinations at 0.9 mGy (estimated effective dose of 0.5 mSv) for selected sizes of patients. • Lesion detection (such as solid non-calcified lung nodules) in lung parenchyma is optimal at 0.9 mGy, with limited visualization of thyroid nodules in FBP images. • Further dose reduction down to 0.4 mGy is possible for most patients undergoing follow-up chest CT for evaluation of larger lung nodules and GGOs. • Our results may help set the reference ALARA dose for chest CT examinations reconstructed with filtered back projection technique using the minimum possible radiation dose with acceptable image quality and lesion detection. - Abstract: Purpose: To assess lesion detection and diagnostic image quality of filtered back projection (FBP) reconstruction technique in ultra low-dose chest CT examinations. Methods and materials: In this IRB-approved ongoing prospective clinical study, 116 CT-image-series at four different radiation-doses were performed for 29 patients (age, 57–87 years; F:M – 15:12; BMI 16–32 kg/m{sup 2}). All patients provided written-informed-consent for the acquisitions of additional ultra low-dose (ULD) series on a 256-slice MDCT (iCT, Philips Healthcare). In-addition to their clinical standard-dose chest CT (SD, 120 kV mean CTDI{sub vol}, 6 ± 1 mGy), ULD-CT was subsequently performed at three-dose-levels (0.9 mGy [120 kV]; 0.5 mGy [100 kV] and 0.2 mGy [80 kV]). Images were reconstructed with FBP (2.5 mm * 1.25 mm) resulting into four-stacks: SD-FBP (reference-standard), FBP{sub 0.9}, FBP{sub 0.5}, and FBP{sub 0.2}. Four thoracic-radiologists from two-teaching-hospitals independently-evaluated data for lesion-detection and visibility-of-small-structures. Friedman's-non-parametric-test with post hoc Dunn's-test was used for data-analysis. Results: Interobserver-agreement was substantial between radiologists (k = 0.6–0.8). With