WorldWideScience

Sample records for low-dimensional organic conductors

  1. Magneto-optical studies of low-dimensional organic conductors

    Directory of Open Access Journals (Sweden)

    Hitoshi Ohta, Motoi Kimata and Yugo Oshima

    2009-01-01

    Full Text Available Our periodic orbit resonance (POR results on quasi-two-dimensional (q2D, highly anisotropic q2D and quasi-one-dimensional (q1D organic conductors are reviewed together with our rotational cavity magneto-optical measurement system. Higher order POR up to seventh order has been observed in the q2D system (BEDT-TTF2Br(DIA, and the experimental conditions to observe POR and the cyclotron resonance (CR are discussed. Highly anisotropic q2D Fermi surface (FS in β''-(BEDT-TTF(TCNQ, which was considered to have q1D FS previously, is proposed by our POR measurements, and the possible interpretations of other experimental results of β''-(BEDT-TTF(TCNQ are discussed assuming the highly anisotropic q2D FS. Finally, detailed q1D FS of (DMET2I3, obtained from our POR results, is discussed in connection with the typical q1D system (TMTSF2ClO4.

  2. Photochemical modification of magnetic properties in organic low-dimensional conductors

    International Nuclear Information System (INIS)

    Naito, Toshio; Kakizaki, Akihiro; Wakeshima, Makoto; Hinatsu, Yukio; Inabe, Tamotsu

    2009-01-01

    Magnetic properties of organic charge transfer salts Ag(DX) 2 (DX=2,5-dihalogeno-N,N'-dicyanoquinonediimine; X=Cl, Br, I) were modified by UV irradiation from paramagnetism to diamagnetism in an irreversible way. The temperature dependence of susceptibility revealed that such change in magnetic behavior could be continuously controlled by the duration of irradiation. The observation with scanning electron microprobe revealed that the original appearance of samples, e.g. black well-defined needle-shaped shiny single crystals, remained after irradiation irrespective of the irradiation conditions and the duration. Thermochemical analysis and X-ray diffraction study demonstrated that the change in the physical properties were due to (partial) decomposition of Ag(DX) 2 to AgX, which was incorporated in the original Ag(DX) 2 lattices. Because the physical properties of low-dimensional organic conductors are very sensitive to lattice defects, even a small amount of AgX could effectively modify the electronic properties of Ag(DX) 2 without making the original crystalline appearance collapse. - Graphical abstract: By UV irradiation with appropriate masks, a part of single crystal of organic conductors irreversibly turned diamagnetic retaining their original crystalline shapes.

  3. Focus on Organic Conductors

    Directory of Open Access Journals (Sweden)

    Shinya Uji, Takehiko Mori and Toshihiro Takahashi

    2009-01-01

    Full Text Available Organic materials are usually thought of as electrical insulators. Progress in chemical synthesis, however, has brought us a rich variety of conducting organic materials, which can be classified into conducting polymers and molecular crystals. Researchers can realize highly conducting molecular crystals in charge-transfer complexes, where suitable combinations of organic electron donor or acceptor molecules with counter ions or other organic molecules provide charge carriers. By means of a kind of chemical doping, the charge-transfer complexes exhibit high electrical conductivity and, thanks to their highly crystalline nature, even superconductivity has been observed. This focus issue of Science and Technology of Advanced Materials is devoted to the research into such 'organic conductors'The first organic metal was (TTF(TCNQ, which was found in 1973 to have high conductivity at room temperature and a metal–insulator transition at low temperatures. The first organic superconductor was (TMTSF2PF6, whose superconductivity under high pressures was reported by J´erome in 1980. After these findings, the research on organic conductors exploded. Hundreds of organic conductors have been reported, among which more than one hundred exhibit superconductivity. Recently, a single-component organic conductor has been found with metallic conductivity down to low temperatures.In these organic conductors, in spite of their simple electronic structures, much new physics has arisen from the low dimensionality. Examples are charge and spin density waves, characteristic metal–insulator transitions, charge order, unconventional superconductivity, superconductor–insulator transitions, and zero-gap conductors with Dirac cones. The discovery of this new physics is undoubtedly derived from the development of many intriguing novel organic conductors. High quality single crystals are indispensable to the precise measurement of electronic states.This focus issue

  4. Organic Conductors

    DEFF Research Database (Denmark)

    Andersen, Jan Rud; Jacobsen, Claus S.; Rindorf, Grethe

    1975-01-01

    2,3,6,7-Tetramethyl-1,4,5,8-tetraselenafulvalene reacts with 2,5-dimethyl-7,7′,8,8′-tetracyano-p-quinodi-methane to give a highly conducting organic solid.......2,3,6,7-Tetramethyl-1,4,5,8-tetraselenafulvalene reacts with 2,5-dimethyl-7,7′,8,8′-tetracyano-p-quinodi-methane to give a highly conducting organic solid....

  5. Topological organization of (low-dimensional) chaos

    International Nuclear Information System (INIS)

    Tufillaro, N.B.

    1992-01-01

    Recent progress toward classifying low-dimensional chaos measured from time series data is described. This classification theory assigns a template to the time series once the time series is embedded in three dimensions. The template describes the primary folding and stretching mechanisms of phase space responsible for the chaotic motion. Topological invariants of the unstable periodic orbits in the closure of the strange set are calculated from the (reconstructed) template. These topological invariants must be consistent with ampersand ny model put forth to describe the time series data, and are useful in invalidating (or gaining confidence in) any model intended to describe the dynamical system generating the time series

  6. Tetrathiapentalene-based organic conductors

    International Nuclear Information System (INIS)

    Misaki, Yohji

    2009-01-01

    The synthesis, structure and properties of tetrathiapentalene-based (TTP) organic conductors are reviewed. Among various TTP-type donors, bis-fused tetrathiafulvalene, 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and its derivatives afford many metallic radical cation salts stable down to low temperatures, regardless of the size and shape of the counter anions. Most BDT-TTP conductors have a β-type donor arrangement with almost uniform stacks. Introduction of appropriate substituents results in molecular packing that differs from the β-type. A vinylogous TTP, 2-(1,3-dithiol-2-ylidene)-5-(2-ethanediylidene-1,3-dithiole) -1,3,4,6-tetrathiapentalene (DTEDT) has yielded an organic superconductor (DTEDT) 3 Au(CN) 2 as well as metallic radical cation salts, regardless of the counter anions. (Thio)pyran analogs of TTP, namely (T)PDT-TTP and its derivatives produce molecular conductors with novel molecular arrangements. A TTP analog with reduced π-electron system 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) has afforded several organic superconductors. Highly conducting molecular metals with unusual oxidation states (+1, +5/3 and neutral) have been developed on the basis of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) derivatives and analogous metal derivatives M(dt) 2 (M = Ni, Au). (topical review)

  7. Tetrathiapentalene-based organic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Misaki, Yohji, E-mail: misaki@eng.ehime-u.ac.j [Department of Applied Chemistry, Graduate School of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2009-04-15

    The synthesis, structure and properties of tetrathiapentalene-based (TTP) organic conductors are reviewed. Among various TTP-type donors, bis-fused tetrathiafulvalene, 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and its derivatives afford many metallic radical cation salts stable down to low temperatures, regardless of the size and shape of the counter anions. Most BDT-TTP conductors have a {beta}-type donor arrangement with almost uniform stacks. Introduction of appropriate substituents results in molecular packing that differs from the {beta}-type. A vinylogous TTP, 2-(1,3-dithiol-2-ylidene)-5-(2-ethanediylidene-1,3-dithiole) -1,3,4,6-tetrathiapentalene (DTEDT) has yielded an organic superconductor (DTEDT){sub 3}Au(CN){sub 2} as well as metallic radical cation salts, regardless of the counter anions. (Thio)pyran analogs of TTP, namely (T)PDT-TTP and its derivatives produce molecular conductors with novel molecular arrangements. A TTP analog with reduced {pi}-electron system 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) has afforded several organic superconductors. Highly conducting molecular metals with unusual oxidation states (+1, +5/3 and neutral) have been developed on the basis of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) derivatives and analogous metal derivatives M(dt){sub 2} (M = Ni, Au). (topical review)

  8. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    Science.gov (United States)

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Benchmarking organic mixed conductors for transistors

    KAUST Repository

    Inal, Sahika; Malliaras, George G.; Rivnay, Jonathan

    2017-01-01

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  10. Benchmarking organic mixed conductors for transistors

    KAUST Repository

    Inal, Sahika

    2017-11-20

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  11. Hall effect in organic layered conductors

    Directory of Open Access Journals (Sweden)

    R.A.Hasan

    2006-01-01

    Full Text Available The Hall effect in organic layered conductors with a multisheeted Fermi surfaces was considered. It is shown that the experimental study of Hall effect and magnetoresistance anisotropy at different orientations of current and a quantizing magnetic field relative to the layers makes it possible to determine the contribution of various charge carriers groups to the conductivity, and to find out the character of Fermi surface anisotropy in the plane of layers.

  12. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  13. Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation.

    Science.gov (United States)

    Zhou, Chenkun; Tian, Yu; Wang, Mingchao; Rose, Alyssa; Besara, Tiglet; Doyle, Nicholas K; Yuan, Zhao; Wang, Jamie C; Clark, Ronald; Hu, Yanyan; Siegrist, Theo; Lin, Shangchao; Ma, Biwu

    2017-07-24

    Hybrid organic-inorganic metal halide perovskites possess exceptional structural tunability, with three- (3D), two- (2D), one- (1D), and zero-dimensional (0D) structures on the molecular level all possible. While remarkable progress has been realized in perovskite research in recent years, the focus has been mainly on 3D and 2D structures, with 1D and 0D structures significantly underexplored. The synthesis and characterization of a series of low-dimensional organic tin bromide perovskites with 1D and 0D structures is reported. Using the same organic and inorganic components, but at different ratios and reaction conditions, both 1D (C 4 N 2 H 14 )SnBr 4 and 0D (C 4 N 2 H 14 Br) 4 SnBr 6 can be prepared in high yields. Moreover, photoinduced structural transformation from 1D to 0D was investigated experimentally and theoretically in which photodissociation of 1D metal halide chains followed by structural reorganization leads to the formation of a more thermodynamically stable 0D structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fermi surface studies of low-dimensional organic conductors based on BEDT-TTF

    International Nuclear Information System (INIS)

    Singleton, John; Caulfield, Jason; Hill, Stephen; Blundell, Stephen; Lubczynski, Wieslaw; House, Andrew; Hayes, William; Perenboom, Jos; Kurmoo, Mohammedally; Day, Peter

    1995-01-01

    This paper provides an introduction to charge-transfer salts of the ion bis(ethylenedithio)tetrathiafulvalene (ET) and their band-structure, and reviews some recent experiments on the salts involving high magnetic fields carried out by the Oxford group and coworkers. (orig.)

  15. Low-dimensional organization of angular momentum during walking on a narrow beam.

    Science.gov (United States)

    Chiovetto, Enrico; Huber, Meghan E; Sternad, Dagmar; Giese, Martin A

    2018-01-08

    Walking on a beam is a challenging motor skill that requires the regulation of upright balance and stability. The difficulty in beam walking results from the reduced base of support compared to that afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is to rotate the limb segments to control the body's angular momentum. The aim of this study was to examine the coordination of the angular momentum variations during beam walking. We recorded movement kinematics of participants walking on a narrow beam and computed the angular momentum contributions of the body segments with respect to three different axes. Results showed that, despite considerable variability in the movement kinematics, the angular momentum was characterized by a low-dimensional organization based on a small number of segmental coordination patterns. When the angular momentum was computed with respect to the beam axis, the largest fraction of its variation was accounted for by the trunk segment. This simple organization was robust and invariant across all participants. These findings support the hypothesis that control strategies for complex balancing tasks might be easier to understand by investigating angular momentum instead of the segmental kinematics.

  16. Organic Conductors: Evidence for Correlation Effects in Infrared Properties

    DEFF Research Database (Denmark)

    Jacobsen, Claus Schelde; Johannsen, Ib; Bechgaard, Klaus

    1984-01-01

    The infrared conductivities of four organic conductors with partially filled one-electron bands are compared. The behavior ranges from near Drude type in the best metal to semiconductorlike in the moderate conductor. Electron-molecular-vibration coupling effects of varying degree are seen in all...... materials. It is suggested that the combined effect of electron-electron interaction and electron-phonon interaction in producing 4kF charge-density waves is essential for interpreting the results....

  17. Non-equilibrium and band tailing in organic conductors

    Indian Academy of Sciences (India)

    . Non-equilibrium ... Introduction. Study of organic conductors and semiconductors continues to generate interest with the ... Band tailing reduces band gap or the acti- ..... (9), we can identify Eg(0) with the focal point and is proportional to P2. 1 .

  18. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    Directory of Open Access Journals (Sweden)

    Ezequiel M Arneodo

    Full Text Available Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  19. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Jun-ichi [Department of Material Science, Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan)], E-mail: nonoyama@slab.phys.nagoya-u.ac.jp

    2008-10-15

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for {beta}-(BDA-TTP){sub 2}I{sub 3} based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between {beta}-(BDA-TTP){sub 2}I{sub 3} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} are briefly discussed.

  20. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    International Nuclear Information System (INIS)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi

    2008-01-01

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP) 2 I 3 based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP) 2 I 3 and β-(BDA-TTP) 2 SbF 6 are briefly discussed.

  1. Transport and magnetism in the organic conductors in relation to one dimension localization theory

    International Nuclear Information System (INIS)

    Zuppiroli, L.

    1985-09-01

    On the one side all states are exponentially localized in one dimension, on the other side most of the transport properties of quasi-one-dimensional organic conductors are Drude-like. This apparent contradiction is solved by revisiting the main experimental results concerning disordered organic conductors and by comparing them to the most relevant theories, especially those which take into account electron-phonon an electron-electron interactions [fr

  2. An Organic Mixed Ion-Electron Conductor for Power Electronics

    DEFF Research Database (Denmark)

    Malti, Abdellah; Edberg, Jesper; Granberg, Hjalmar

    2016-01-01

    A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting...

  3. An Organic Mixed Ion–Electron Conductor for Power Electronics

    DEFF Research Database (Denmark)

    Malti, Abdellah; Edberg, Jesper; Granberg, Hjalmar

    2016-01-01

    A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting...

  4. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  5. Low dimensional temporal organization of spontaneous eye blinks in adults with developmental disabilities and stereotyped movement disorder.

    Science.gov (United States)

    Lee, Mei-Hua; Bodfish, James W; Lewis, Mark H; Newell, Karl M

    2010-01-01

    This study investigated the mean rate and time-dependent sequential organization of spontaneous eye blinks in adults with intellectual and developmental disability (IDD) and individuals from this group who were additionally categorized with stereotypic movement disorder (IDD+SMD). The mean blink rate was lower in the IDD+SMD group than the IDD group and both of these groups had a lower blink rate than a contrast group of healthy adults. In the IDD group the n to n+1 sequential organization over time of the eye-blink durations showed a stronger compensatory organization than the contrast group suggesting decreased complexity/dimensionality of eye-blink behavior. Very low blink rate (and thus insufficient time series data) precluded analysis of time-dependent sequential properties in the IDD+SMD group. These findings support the hypothesis that both IDD and SMD are associated with a reduction in the dimension and adaptability of movement behavior and that this may serve as a risk factor for the expression of abnormal movements.

  6. Spectroscopy of charge transfer complexes of four amino acids as organic two-dimensional conductors

    International Nuclear Information System (INIS)

    Padhiyar, Ashvin; Patel, A J; Oza, A T

    2007-01-01

    It is found in this study that four amino acids, namely asparagine, arginine, histidine and glutamine form two-dimensional conducting systems which are charge transfer complexes (CTCs) with organic acceptors like TCNQ, TCNE, chloranil, DDQ, TNF and iodine. It is verified using optical absorption edges that these are 2d conductors like transition metal dichalcogenides obeying absorption functions different from 1d and 3d conductors. This 2d nature is related to the network of intermolecular H-bonding in these complexes, which leads to a global H-bonded network resulting in the absence of local deformation due to the relaxation of strain

  7. The role of electron correlations in organic conductors

    International Nuclear Information System (INIS)

    Friedel, J.

    2000-01-01

    This is a parochial talk, based on my memory of events over a number of years. Thus I still remember the rather excited tone of Denis Jerome, telling me on the telephone twenty years ago that he had at last observed superconductivity in his organic compound. This was only at 1 K and under pressure; but the field soon developed into a new country which Orsay helped to conquer. This is what we are celebrating today. (orig.)

  8. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We study the electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ by means of density-functional band theory, Hubbard model calculations, and angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant quantitative and qualitative......-dimensional Hubbard model for the low-energy spectral behavior is attributed to interchain coupling and the additional effect of electron-phonon interaction....

  9. Estimation of πd-Interactions in Organic Conductors Including Magnetic Anions

    Science.gov (United States)

    Mori, Takehiko; Katsuhara, Mao

    2002-03-01

    Magnetic interactions in organic conductors including magnetic anions, such as λ-(BETS)2FeCl4 and κ-(BETS)2FeX4 [X = Cl and Br], are estimated from intermolecular overlap integrals; the overlaps between anions afford Jdd, and those between anions and donors give Jπ d. From this, the most stable spin alignments are decided, and such quantities as the Néel and Weiss temperatures, as well as the magnitude of spin polarization on the π-molecules are evaluated on the basis of the mean-field theory of πd-systems. The calculation is extended to several other πd-conductors, which are classified depending on the relative magnitudes of the direct dd- and indirect πd-interactions.

  10. Correlation versus surface effects in photoemission of quasi-1D organic conductors

    DEFF Research Database (Denmark)

    Claessen, R.; Schwingenschlogl, U.; Sing, M.

    2002-01-01

    The absence of spectral weight at the Fermi level in photoemission spectra of quasi-1D organic conductors has been interpreted as possible evidence for an unusual many-body state. We demonstrate that great care must be exercised to draw this conclusion exclusively on the basis of a pseudogap....... A detailed surface characterization of the charge transfer salts (TMTSF)(2)PFt(6) and TTF-TCNQ shows that signatures of electronic correlations in the valence band spectra are strongly affected by surface effects and may even be completely obscured....

  11. Low-dimensional molecular metals

    CERN Document Server

    Toyota, Naoki; Muller, Jens

    2007-01-01

    Assimilating research in the field of low-dimensional metals, this monograph provides an overview of the status of research on quasi-one- and two-dimensional molecular metals, describing normal-state properties, magnetic field effects, superconductivity, and the phenomena of interacting p and d electrons.

  12. Transport Properties of the Organic Conductor (TMTSF)2BrO4: Evidence of Variable Range Hopping

    DEFF Research Database (Denmark)

    Mortensen, Kell; Jacobsen, Claus Schelde; Bechgaard, Klaus

    1984-01-01

    A study of d.c. and microwave conductivity and thermoelectric power of the organic conductor (TMTSF)2BrO4 is presented. The transport properties are in qualitative agreement with charge transport via variable-range hopping among localized states. The localization is attributed to the anions, which...

  13. Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ

    DEFF Research Database (Denmark)

    Claessen, R.; Sing, M.; Schwingenschlogl, U.

    2002-01-01

    The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measured dispersions can be consistently mapped onto...

  14. Physics of low-dimensional systems

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas

  15. Learning Low-Dimensional Metrics

    OpenAIRE

    Jain, Lalit; Mason, Blake; Nowak, Robert

    2017-01-01

    This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax)bounds on the generalization error; 3) we quantify the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric;4) we also bound the accuracy ...

  16. Common phase diagram for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Michalak, Rudi

    2003-01-01

    A phenomenological phase diagram which has been derived for high-temperature superconductors from NMR Knight-shift measurements of the pseudogap is compared to the phase diagram that is obtained for organic superconductors and spin-ladder superconductors, both low-dimensional systems. This is contrasted to the phase diagram of some Heavy Fermion superconductors, i.e. superconductors not constrained to a low dimensionality

  17. Mechanism of Superconductivity in Quasi-Two-Dimensional Organic Conductor β-(BDA-TTP) Salts

    Science.gov (United States)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Ito, Hiroshi

    2008-09-01

    We investigate theoretically the superconductivity of two-dimensional organic conductors, β-(BDA-TTP)2SbF6 and β-(BDA-TTP)2AsF6, to understand the role of the spin and charge fluctuations. The transition temperature is estimated by applying random phase approximation to an extended Hubbard model wherein realistic transfer energies are estimated by extended Hückel calculation. We find a gapless superconducting state with a dxy-like symmetry, which is consistent with the experimental results obtained by specific heat and scanning tunneling microscope. In the present model with an effectively half-filled triangular lattice, spin fluctuation competes with charge fluctuation as a mechanism of pairing interaction since both fluctuations have the same characteristic momentum q=(π,0) for V being smaller than U. This is in contrast to a model with a quarter-filled square lattice, wherein both fluctuations contribute cooperatively to pairing interaction due to fluctuations having different characteristic momenta. The resultant difference in the superconductivity of these two materials is also discussed.

  18. Fermi surface study of organic conductors using a magneto-optical measurement under high magnetic fields

    International Nuclear Information System (INIS)

    Kimata, M; Ohta, H; Koyama, K; Motokawa, M; Kondo, R; Kagoshima, S; Tanaka, H; Tokumoto, M; Kobayashi, H; Kobayashi, A

    2006-01-01

    Magneto-optical measurements have been performed in organic conductors β''-(BEDT-TTF) 2 CsCd(SCN) 4 and λ-(BETS) 2 FeCl 4 . Although the zero magnetic field ground state of β''-(BEDT-TTF) 2 CsCd(SCN) 4 is considered as the density wave state, periodic orbit resonances (POR's) attributed to quasi-one-dimensional (Q1D) and quasi-two-dimensional (Q2D) Fermi surfaces (FS's) have been observed above 6 T. The existence of these FS's are predicted by the band calculation based on room temperature lattice parameters. This result may suggest the destruction of the density wave state at 6 T, and the primal metallic state revives in the high field phase above 6 T. In the case of λ-(BETS) 2 FeCl 4 , large changes of the transmission intensity of electromagnetic waves around 10 T, which correspond to the insulator-metal transition, have been observed. However, no POR-like resonance has been observed. This may be due to the restriction of the observed frequency-field region

  19. Electronic and magnetic properties of organic conductors (DMET)2MBr4 (M=Fe, Ga)

    International Nuclear Information System (INIS)

    Enomoto, Kengo; Miyazaki, Akira; Enoki, Toshiaki; Yamaura, Jun-ichi

    2003-01-01

    (DMET) 2 MBr 4 (M=Fe, Ga) are isostructural organic conductors whose crystal structure consists of an alternate stacking of quasi one-dimensional chain-based donor layers and anion square lattices. The resistivity, ESR, magnetic susceptibility, magnetization, and magnetoresistance of these salts were investigated in order to clarify the correlation between the electronic structure and the magnetism. The electronic structures of both salts are metallic down to T MI - 40 K, below which a Mott insulating state is stabilized, accompanied by an SDW transition at T SDW - 25 K. The FeBr 4 salt with Fe 3+ (S=5/2) localized spins undergoes an antiferromagnetic transition at T N = 3.7 K. In the FeBr 4 salt, the magnetization curves, which show field-direction-dependent anomalies in addition to a spin-flop transition, are demonstrated to have a participation of donor π-electron spins in the magnetization processes. The field dependence of the magnetoresistances below T N tracks faithfully that of the magnetization, where the donor π-electrons and Fe 3+ d-electrons are responsible for the former and the latter, respectively. This clearly demonstrates the presence of the π-d interaction that plays an important role in the interplay between electron transport and magnetism. (author)

  20. Attractive mechanical properties of a lightweight highly sensitive bi layer thermistor: polycarbonate/organic molecular conductor

    International Nuclear Information System (INIS)

    Laukhina, E; Lebedev, V; Rovira, C; Laukhin, V; Veciana, J

    2016-01-01

    The paper covers some of the basic mechanical characteristics of a recently developed bi layer thermistor: polycarbonate/(001) oriented layer of organic molecular conductor α’-(BEDT-TTF) 2 I x Br 3-x , were BEDT-TTF=bis(ethylenedithio)tetrathiafulvalen. The nano and macro mechanical properties have been studied in order to use this flexible, low cost thermistor in sensing applications by proper way. The nano-mechanical properties of the temperature sensitive semiconducting layer of α’-(BEDT-TTF) 2 I x Br 3-x were tested using nanoindentation method. The value of Young's modulus in direction being perpendicular to the layer plan was found as 9.0 ±1.4 GPa. The macro mechanical properties of the thermistor were studied using a 5848 MicroTester. The tensile tests showed that basic mechanical characteristics of the thermistor are close to those of polycarbonate films. This indicates a good mechanical strength of the developed sensor. Therefore, the thermistor can be used in technologies that need to be instrumented with highly robustness lightweight low cost temperature sensors. The paper also reports synthetic details on fabricating temperature sensing e-textile. As the temperature control is becoming more and more important in biomedical technologies like healthcare monitoring, this work strongly contributes on the ongoing research on engineering sensitive conducting materials for biomedical applications. (paper)

  1. Soft X-ray photoemission study of organic conductors BEDT-TTF and BEDO-TTF salts

    International Nuclear Information System (INIS)

    Tsunekawa, M.; Sekiyama, A.; Imada, S.; Saita, T.; Maesato, M.; Yamochi, H.; Saito, G.; Suga, S.

    2005-01-01

    We have performed a soft X-ray photoemission (PES) study of quasi-two-dimensional organic conductors BEDT-TTF (ET) and BEDO-TTF (BO) salts. We have clarified the difference in the electronic states between the bulk and surface insulating layers. The difference of the electronic states between ET and BO molecules is also found. On the other hand, the spectral weight in the vicinity of Fermi level is suppressed as reported by the low-energy PES

  2. Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids

    NARCIS (Netherlands)

    Kamminga, Machteld E.; Fang, Honghua; Filip, Marina R.; Giustino, Feliciano; Baas, Jacobus; Blake, Graeme R.; Loi, Maria Antonietta; Palstra, Thomas T. M.

    2016-01-01

    We use a layered solution crystal growth technique to synthesize high-quality single crystals of phenylalkylammonium lead iodide organic/inorganic hybrid compounds. Single-crystal X-ray diffraction reveals low-dimensional structures consisting of inorganic sheets separated by bilayers of the organic

  3. Magnetic field influence on the spin-density wave of the organic conductor (TMTSF)2NO3

    International Nuclear Information System (INIS)

    Tomic, S.; Biskup, N.; Korin-Hamzic, B.; Basletic, M.; Hamzic, A.; Maki, K.; Fabre, J.M.; Bechgaard, K.

    1993-01-01

    We present the influence of a transverse magnetic field on the spin-density wave (SDW) ground state of the organic conductor (TMTSF) 2 NO 3 . Magnetic field increases the single-particle activation energy. A finite magnetic field (H C ) induces discontinuities in the magnetoresistance behaviour and its value is temperature dependent. The threshold electric field (E T ) for the SDW sliding increases in a magnetic field. All observed effects are strongly angle-dependent indicating that they are determined by the magnetic field component along the least-conduction (c * ) direction. We discuss these results in the framework of a theoretical model for the SDW with large imperfect nesting. (orig.)

  4. Quantum Phenomena in Low-Dimensional Systems

    OpenAIRE

    Geller, Michael R.

    2001-01-01

    A brief summary of the physics of low-dimensional quantum systems is given. The material should be accessible to advanced physics undergraduate students. References to recent review articles and books are provided when possible.

  5. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT

    Science.gov (United States)

    Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li

    2016-09-01

    Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.

  6. The Hall effect in the organic conductor TTF–TCNQ: choice of geometry for accurate measurements of a highly anisotropic system

    DEFF Research Database (Denmark)

    Tafra, E; Čulo, M; Basletić, M

    2012-01-01

    We have measured the Hall effect on recently synthesized single crystals of the quasi-one-dimensional organic conductor TTF–TCNQ (tetrathiafulvalene–tetracyanoquinodimethane), a well known charge transfer complex that has two kinds of conductive stacks: the donor (TTF) and the acceptor (TCNQ) cha...

  7. Magnetic resonance of low dimensional magnetic solids

    Energy Technology Data Exchange (ETDEWEB)

    Gatteschi, D.; Ferraro, F.; Sessoli, R. (Florence Univ. (Italy))

    1994-06-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs.

  8. Magnetic resonance of low dimensional magnetic solids

    International Nuclear Information System (INIS)

    Gatteschi, D.; Ferraro, F.; Sessoli, R.

    1994-01-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs

  9. Theoretical study of the zero-gap organic conductor α-(BEDT-TTF2I3

    Directory of Open Access Journals (Sweden)

    Akito Kobayashi, Shinya Katayama and Yoshikazu Suzumura

    2009-01-01

    Full Text Available The quasi-two-dimensional molecular conductor α-(BEDT-TTF2I3 exhibits anomalous transport phenomena where the temperature dependence of resistivity is weak but the ratio of the Hall coefficient at 10 K to that at room temperature is of the order of 104. These puzzling phenomena were solved by predicting massless Dirac fermions, whose motions are described using the tilted Weyl equation with anisotropic velocity. α-(BEDT-TTF2I3 is a unique material among several materials with Dirac fermions, i.e. graphene, bismuth, and quantum wells such as HgTe, from the view-points of both the structure and electronic states described as follows. α-(BEDT-TTF2I3 has the layered structure with highly two-dimensional massless Dirac fermions. The anisotropic velocity and incommensurate momenta of the contact points, ±k0, originate from the inequivalency of the BEDT-TTF sites in the unit cell, where ±k0 moves in the first Brillouin zone with increasing pressure. The massless Dirac fermions exist in the presence of the charge disproportionation and are robust against the increase in pressure. The electron densities on those inequivalent BEDT-TTF sites exhibit anomalous momentum distributions, reflecting the angular dependences of the wave functions around the contact points. Those unique electronic properties affect the spatial oscillations of the electron densities in the vicinity of an impurity. A marked behavior of the Hall coefficient, where the sign of the Hall coefficient reverses sharply but continuously at low temperatures around 5 K, is investigated by treating the interband effects of the magnetic field exactly. It is shown that such behavior is possible by assuming the existence of the extremely small amount of electron doping. The enhancement of the orbital diamagnetism is also expected. The results of the present research shed light on a new aspect of Dirac fermion physics, i.e. the emergence of unique electronic properties owing to the structure

  10. Electronic and magnetic properties of organic conductors (DMET) sub 2 MBr sub 4 (M=Fe, Ga)

    CERN Document Server

    Enomoto, K; Enoki, T; Yamaura, J I

    2003-01-01

    (DMET) sub 2 MBr sub 4 (M=Fe, Ga) are isostructural organic conductors whose crystal structure consists of an alternate stacking of quasi one-dimensional chain-based donor layers and anion square lattices. The resistivity, ESR, magnetic susceptibility, magnetization, and magnetoresistance of these salts were investigated in order to clarify the correlation between the electronic structure and the magnetism. The electronic structures of both salts are metallic down to T sub M sub I - 40 K, below which a Mott insulating state is stabilized, accompanied by an SDW transition at T sub S sub D sub W - 25 K. The FeBr sub 4 salt with Fe sup 3 sup + (S=5/2) localized spins undergoes an antiferromagnetic transition at T sub N = 3.7 K. In the FeBr sub 4 salt, the magnetization curves, which show field-direction-dependent anomalies in addition to a spin-flop transition, are demonstrated to have a participation of donor pi-electron spins in the magnetization processes. The field dependence of the magnetoresistances below ...

  11. Low dimensional modeling of wall turbulence

    Science.gov (United States)

    Aubry, Nadine

    2015-11-01

    In this talk we will review the original low dimensional dynamical model of the wall region of a turbulent boundary layer [Aubry, Holmes, Lumley and Stone, Journal of Fluid Dynamics 192, 1988] and discuss its impact on the field of fluid dynamics. We will also invite a few researchers who would like to make brief comments on the influence Lumley had on their research paths. In collaboration with Philip Holmes, Program in Applied and Computational Mathematics and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.

  12. Insulator-to-Proton-Conductor Transition in a Dense Metal-Organic Framework.

    Science.gov (United States)

    Tominaka, Satoshi; Coudert, François-Xavier; Dao, Thang D; Nagao, Tadaaki; Cheetham, Anthony K

    2015-05-27

    Metal-organic frameworks (MOFs) are prone to exhibit phase transitions under stimuli such as changes in pressure, temperature, or gas sorption because of their flexible and responsive structures. Here we report that a dense MOF, ((CH3)2NH2)2[Li2Zr(C2O4)4], exhibits an abrupt increase in proton conductivity from topotactic hydration (H2O/Zr = 0.5), wherein one-fourth of the Li ions are irreversibly rearranged and coordinated by water molecules. This structure further transforms into a third crystalline structure by water uptake (H2O/Zr = 4.0). The abrupt increase in conductivity is reversible and is associated with the latter reversible structure transformation. The H2O molecules coordinated to Li ions, which are formed in the first step of the transformation, are considered to be the proton source, and the absorbed water molecules, which are formed in the second step, are considered to be proton carriers.

  13. Two level undercut-profile substrate-based filamentary coated conductors produced using metal organic chemical vapor deposition

    DEFF Research Database (Denmark)

    Insinga, Andrea R.; Sundaram, Aarthi; Hazelton, Drew W.

    2018-01-01

    The two level undercut-profile substrate (2LUPS) has been introduced as a concept for subdividing rare-earth-Ba$_{2}$Cu$_{3}$O$_{7}$ (REBCO) coated conductors (CC) into narrow filaments which reduces the AC losses and improves field stability for DC magnets. The 2LUPS consists of two levels...

  14. Conductores recubiertos

    Directory of Open Access Journals (Sweden)

    P. Garcés

    2008-07-01

    Full Text Available Since the 1960s, Nb–Ti, exhibiting a superconducting transition temperature Tc of 9K, and Nb3Sn, with a Tc of 18K have been the materials of choice for superconducting applications. The prospects for the future changed dramatically with the discovery of ceramic high temperature superconductors exhibiting Tc values well above the boiling temperature of liquid nitrogen (77K. These materials are now widely considered for large power applications, electronics and magnets as in microelectronics. The first case corresponding power transmission wires, motors, generators, fault current limiters, transformers, etc. and technology related small scale manufacturing SQUID superconductors. Nevertheless, the fabrication of useful conductors out of these layered cuprates encountered some problems such as chemical and structural purity, stability, oxygen stoichiometric and weak links limiting current carrying capacity. However, despite these difficulties a first generation of silver sheathed composites based on (Bi,PbSrCaCuO (solving the problem of inherent fragility of these materials has already been commercialized. It is now a widespread view that superconducting wires with high performance under strong magnetic fields and at elevated temperatures above liquid nitrogen, will need to be realized using the (REBaCuO (RE = rare earth materials. Chemical deposition techniques (CVD of thick films, appear as the most suitable for this purpose, so the study of various chemical deposition techniques that allow to grow superconducting films and buffer layers with the right texture to produce a coated conductor Proper alignment and high current carrying capacity (∼ 1 MA/cm2 are now booming.

  15. Semi-conducting plastics for disposable electronic devices - What are the organic semi-conductors arriving on the market?; Des plastiques semi-conducteurs pour l'electronique jetable. Qui sont les semi-conducteurs organiques qui arrivent sur le marche?

    Energy Technology Data Exchange (ETDEWEB)

    Nueesch, F. A. [EMPA, Duebendorf (Switzerland)

    2010-07-01

    This is a popularization article that describes basic properties of semi-conductors and reports on the status of research and development of organic semi-conductors. In a first part, fundamentals of semi-conductors are recalled. Comparisons are made between inorganic and organic (i.e. based on carbon polymers) compounds. Indications are given on how semi-conducting polymers are obtained. Potential applications are listed: flexible organic solar cells, light emitting diodes, flexible organic displays, intelligent cards for ticketing, etc. Research on organic semi-conductors is of great interest for industry, worldwide, and several companies are widely investing in this area.

  16. Anticipatory synchronization via low-dimensional filters

    International Nuclear Information System (INIS)

    Pyragiene, T.; Pyragas, K.

    2017-01-01

    An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of a drive system coupled to a low-dimensional filter. • Long-term anticipation is achieved without using time-delay terms. • An analytical treatment estimates the maximum anticipation time. • The method is verified for the Rössler system.

  17. Anticipatory synchronization via low-dimensional filters

    Energy Technology Data Exchange (ETDEWEB)

    Pyragiene, T., E-mail: tatjana.pyragiene@ftmc.lt; Pyragas, K.

    2017-06-15

    An anticipatory chaotic synchronization scheme based on a low-order all-pass filter is proposed. The filter is designed as a Padé approximation to the transfer function of an ideal delay line, which is used in a standard Voss scheme. We show that despite its simplicity, the filter works in an anticipatory scheme as well as an ideal delay line. It provides extremely small synchronization error in the whole interval of anticipation time where the anticipatory manifold is stable. The efficacy of our scheme is explained by an analytically solvable model of unidirectionally coupled unstable spirals and confirmed numerically by an example of unidirectionally coupled chaotic Rössler systems. - Highlights: • A new coupling scheme for anticipating chaotic synchronization is proposed. • The scheme consists of a drive system coupled to a low-dimensional filter. • Long-term anticipation is achieved without using time-delay terms. • An analytical treatment estimates the maximum anticipation time. • The method is verified for the Rössler system.

  18. Irradiation effects and the role of disorder in low dimensional conductors

    International Nuclear Information System (INIS)

    Zuppiroli, L.; Mutka, H.; Bouffard, S.

    1981-08-01

    The concentration of defects produced by irradiation can be measured by several independent methods such as longitudinal and transverse conductivity measurements at room temperature, spin susceptibility at low temperature, volume or lattice parameters change. The physical consequences of this kind of disorder are as follows. The superconductivy in (TMTSF) 2 PF 6 is destroyed by a molecular concentration of 10-4. The concentration of 2.10 -3 corresponds to the full pinning of charge density waves in monoclinic TaS 3 , 1T-TaS 2 , TTF-TCNQ, TMTSF-DMTCNQ ... Microdiffraction experiments demonstrate some structural aspects of this pinning and conductivity, Hall effect and thermoelectric power measurements demonstrate the consequence of the pinning on the electronic properties of several low temperature charge density wave insulators. In most of the cases the metallic state is stabilized by a weak disorder. The problem of the charge density wave motion in presence of defects is discussed in connection with the electric field depinning experiments. Concentrations of the order of 10 -2 or more correspond to a concentration range of localization by disorder

  19. Low Dimensionality Effects in Complex Magnetic Oxides

    Science.gov (United States)

    Kelley, Paula J. Lampen

    Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr

  20. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    A system of low dimensional condensed ultracold atomic gases inside a field of a laser-driven optical cavity exhibits dispersive optical bistability. During such a process the system also shows quantum fluctuations. Condensate fluctuations are highly manifested particularly in low dimensional systems. In this paper we have ...

  1. Low-dimensionality and predictability of solar wind and global magnetosphere during magnetic storms

    OpenAIRE

    Zivkovic, Tatjana; Rypdal, Kristoffer

    2011-01-01

    This article is part of Tatjana Živkovics' doctoral thesis. Available in Munin at http://hdl.handle.net/10037/3231 The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods, but tests for determinism in the time series indicate that SYM-H exhibits a significant low-dimensional component during storm time, suggesting that self-organization takes place during magnetic storms. Even though our analysis...

  2. Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Lee, H.G.; Li, Y.; Xiong, X.; Qiao, Y.; Reeves, J.; Xie, Y.; Knoll, A.; Lenseth, K

    2003-10-15

    SuperPower has been scaling up YBa{sub 2}Cu{sub 3}O{sub x}-based second-generation superconducting tapes by techniques such as pulsed laser deposition (PLD) using industrial laser and metal organic chemical vapor deposition (MOCVD). Both techniques offer advantage of high deposition rates, which is important for high throughput. Using highly-polished substrates produced in a reel-to-reel polishing facility and buffer layers deposited in a pilot ion beam assisted deposition facility, meter-long second-generation high temperature superconductor tapes have been produced. 100 A class, meter-long coated conductor tapes have been reproducibly demonstrated in this work by both MOCVD and PLD. The best results to date are 148 A over 1.06 m by MOCVD and 135 A over 1.1 m by PLD using industrial laser.

  3. Magnetic ground state of quasi-two-dimensional organic conductor, τ-(EDO-S,S-DMEDT-TTF)2(AuCl2)1+y

    International Nuclear Information System (INIS)

    Nakanishi, T; Yasuzuka, S; Yoshino, H; Fujiwara, H; Sugimoto, T; Nishio, Y; Kajita, K; Anyfantis, G A; Papavassiliou, G C; Murata, K

    2006-01-01

    To understand the interplay between transport and magnetic properties, quasi-two-dimensional (Q2D) organic conductor τ-(EDO-S,S-DMEDTTTF) 2 (AuCl 2 ) 1+y was studied by measurements of electric resistivity ( ρ a , ρ c ), magnetoresistance (MR), susceptibility (χ) and specific heat (C) in the temperature region between 1 K and 300 K. In spite of the fact that the drastic changes were observed in ρ a , ρ c , MR and χ at T C = 20 K, no anomaly was seen in C. The concentration of spins estimated from M-H curve is about 360 ppm, which is difficult to detect anomaly in C. These data suggest that the number of spins is very small in the ground state like spin-glass system

  4. Mechanical properties of low dimensional materials

    Science.gov (United States)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  5. Method of installing well conductors

    International Nuclear Information System (INIS)

    Houser, D.M.

    1991-01-01

    This patent describes a method of installing a well conductor in a marine environment. It comprises sealing a well conductor with a watertight plug; submerging the conductor from an elevated platform; adding additional conductor lengths to the conductor as needed thereby forming a conductor string; adjusting the buoyancy of the string to control the lowering of the string to the sea floor; and drilling through the plug after the conductor string has achieved the desired penetration depth

  6. Quantum Fluctuations of Low Dimensional Bose-Einstein ...

    African Journals Online (AJOL)

    Tadesse

    that low dimensional quantum gases exhibit not only highly fascinating .... 2009; Marquardt and Girvin, 2009; Law, 1995; Vitali et al., 2007). ... ideal playground to test correlations between light and mesoscopic objects, to understand the.

  7. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  8. PREFACE: Dynamics of low-dimensional systems Dynamics of low-dimensional systems

    Science.gov (United States)

    Bernasconi, M.; Miret-Artés, S.; Toennies, J. P.

    2012-03-01

    With the development of techniques for high-resolution inelastic helium atom scattering (HAS), electron scattering (EELS) and neutron spin echo spectroscopy, it has become possible, within approximately the last thirty years, to measure the dispersion curves of surface phonons in insulators, semiconductors and metals. In recent years, the advent of new experimental techniques such as 3He spin-echo spectroscopy, scanning inelastic electron tunnel spectroscopy, inelastic x-ray scattering spectroscopy and inelastic photoemission have extended surface phonon spectroscopy to a variety of systems. These include ultra-thin metal films, adsorbates at surface and elementary processes where surface phonons play an important role. Other important directions have been actively pursued in the past decade: the dynamics of stepped surfaces and clusters grown on metal surfaces, due to their relevance in many dynamical and chemical processes at surfaces, including heterogeneous catalysis; clusters; diffusion etc. The role of surface effects in these processes has been conjectured since the early days of surface dynamics, although only now is the availability of ab initio approaches providing those conjectures with a microscopic basis. Last but not least, the investigation of non-adiabatic effects, originating for instance from the hybridization (avoided crossing) of the surface phonons branches with the quasi 1D electron-hole excitation branch, is also a challenging new direction. Furthermore, other elementary oscillations such as surface plasmons are being actively investigated. The aforementioned experimental breakthroughs have been accompanied by advances in the theoretical study of atom-surface interaction. In particular, in the past decade first principles calculations based on density functional perturbation theory have boosted the theoretical study of the dynamics of low-dimensional systems. Phonon dispersion relations of clean surfaces, the dynamics of adsorbates, and the

  9. High Critical Current Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  10. INTRODUCTION: Physics of Low-dimensional Systems: Nobel Symposium 73

    Science.gov (United States)

    Lundqvist, Stig

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic systems have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas. A Nobel Symposium provides an excellent opportunity to bring together a group of prominent scientists for a stimulating exchange of new ideas and results. The Nobel Symposia are very small meetings by invitation only and the number of key international participants is typically in the range 25-40. These Symposia are arranged through a special Nobel Symposium Committee after proposal from individuals. This Symposium was sponsored by the Nobel Foundation through its Nobel Symposium Fund with grants from The

  11. Dynamic colloidal assembly pathways via low dimensional models

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuguang; Bevan, Michael A., E-mail: mabevan@jhu.edu [Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Thyagarajan, Raghuram; Ford, David M. [Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

    2016-05-28

    Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterized by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.

  12. Scientific data interpolation with low dimensional manifold model

    Science.gov (United States)

    Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley

    2018-01-01

    We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  13. Scientific data interpolation with low dimensional manifold model

    International Nuclear Information System (INIS)

    Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.

    2017-01-01

    Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  14. Low-dimensional model of resistive interchange convection in magnetized plasma

    International Nuclear Information System (INIS)

    Bazdenkov, S.; Sato, Tetsuya

    1997-09-01

    Self-organization and generation of large shear flow component in turbulent resistive interchange convection in magnetized plasma is considered. The effect of plasma density-electrostatic potential coupling via the inertialess electron dynamics along the magnetic field is shown to play significant role in the onset of shear component. The results of large-scale numerical simulation and low-dimensional (reduced) model are presented and compared. (author)

  15. Uniaxial strain effects on transport properties of a supramolecular organic conductor theta-(DIETS) sub 2 [Au(CN) sub 4

    CERN Document Server

    Tajima, N; Kato, R; Nishio, Y; Kajita, K

    2003-01-01

    Pressure-controlled switching between an insulating state and a superconducting state has been successfully realized on a supramolecular organic conductor theta-(DIETS) sub 2 [Au(CN) sub 4] [DIETS = diiodo(ethylenedithio)diselenadithiafulvalene]. Strong contact between iodine on the donor (DIETS) molecule and nitrogen on the anion [Au(CN) sub 4] genetates characteristic uniaxial strain effects on transport properties. Under the ambient pressure, the present system undergoes a semiconductor-insulator transition at 226 K. The effect of strains parallel to the conduction plane (ab-plane) is very small. Even under uniaxial strains up to 20 kbar along the a- and b-axis directions, the transition is not suppressed. Surprisingly, however, the c-axis strain induces a superconducting state with T sub c of 8.6 K at 10 kbar. Band parameter calculation and the conductivity anisotropy ratio suggest that an increase in the bandwidth W associated with a c-axis strain transforms the system to the metallic and superconducting...

  16. Quantum confinement effects in low-dimensional systems

    Indian Academy of Sciences (India)

    2015-06-03

    Jun 3, 2015 ... Quantum confinement effects in low-dimensional systems. Figure 5. (a) Various cuts of the three-dimensional data showing energy vs. momen- tum dispersion relations for Ag film of 17 ML thickness on Ge(111). (b) Photo- emission intensity maps along ¯M– ¯ – ¯K direction. (c) Substrate bands replotted ...

  17. Low-dimensional chaotic attractors in drift wave turbulence

    International Nuclear Information System (INIS)

    Persson, M.; Nordman, H.

    1991-01-01

    Simulation results of toroidal η i -mode turbulence are analyzed using mathematical tools of nonlinear dynamics. Low-dimensional chaotic attractors are found in the strongly nonlinear regime while in the weakly interacting regime the dynamics is high dimensional. In both regimes, the solutions are found to display sensitive dependence on initial conditions, characterized by a positive largest Liapunov exponent. (au)

  18. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Shape control synthesis of low-dimensional calcium sulfate .... C in mixed solvents of 50 mL ethanol and 30 mL water for different reaction times was characterized by .... Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66.

  19. Neutron scattering studies of low dimensional magnetic systems

    DEFF Research Database (Denmark)

    Hansen, Ursula Bengård

    investigated at low temperaturesand in a longitudinal magnetic eld using neutron spectroscopy. Here we observe thehybridisation of the magnon bound states, inherent to the low dimensional nature ofCoCl2 · 2D2O.At higher temperature, signatures which can be attributed to Magnetic Bloch Oscillationsis observed...

  20. Storm on lightning conductors

    International Nuclear Information System (INIS)

    Broomhead, Laurent.

    1980-01-01

    Radioactive lightning conductors using radium or americium 241 sources are compared to Faraday cage and lightning rod. Americium source preparation is shortly described. Efficiency of the different systems is still controversed [fr

  1. Melting of Domain Wall in Charge Ordered Dirac Electron of Organic Conductor α-(BEDT-TTF)2I3

    Science.gov (United States)

    Ohki, Daigo; Matsuno, Genki; Omori, Yukiko; Kobayashi, Akito

    2018-05-01

    The origin of charge order melting is identified by using the real space dependent mean-field theory in the extended Hubbard model describing an organic Dirac electron system α-(BEDT-TTF)2I3. In this model, the width of a domain wall which arises between different types of the charge ordered phase exhibits a divergent increase with decreasing the strength of electron-electron correlations. By analyzing the finite-size effect carefully, it is shown that the divergence coincides with a topological transition where a pair of Dirac cones merges in keeping with a finite gap. It is also clarified that the gap opening point and the topological transition point are different, which leads to the existence of an exotic massive Dirac electron phase with melted-type domain wall and gapless edge states. The present result also indicated that multiple metastable states are emerged in massive Dirac Electron phase. In the trivial charge ordered phase, the gapless domain-wall bound state takes place instead of the gapless edge states, accompanying with a form change of the domain wall from melted-type into hyperbolic-tangent-type.

  2. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    Science.gov (United States)

    Aizawa, H.; Kuroki, K.; Yasuzuka, S.; Yamada, J.

    2012-11-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ-B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of Tc is qualitatively consistent with the experimental observation.

  3. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    International Nuclear Information System (INIS)

    Aizawa, H; Kuroki, K; Yasuzuka, S; Yamada, J

    2012-01-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP) 2 MF 6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ–B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of T c is qualitatively consistent with the experimental observation. (paper)

  4. Low-dimensional chaos in a hydrodynamic system

    International Nuclear Information System (INIS)

    Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P.

    1983-01-01

    Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension less than 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number

  5. Plasma Generator Using Spiral Conductors

    Science.gov (United States)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  6. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures

    Science.gov (United States)

    Savin, Alexander V.; Kosevich, Yuriy A.; Cantarero, Andres

    2012-08-01

    We present a detailed description of semiquantum molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the effects of phonon quantum statistics are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of thermal properties and heat transport in different low-dimensional nanostructures. We describe the determination of temperature in quantum lattice systems, to which the equipartition limit is not applied. We show that one can determine the temperature of such a system from the measured power spectrum and temperature- and relaxation-rate-independent density of vibrational (phonon) states. We simulate the specific heat and heat transport in carbon nanotubes, as well as the heat transport in molecular nanoribbons with perfect (atomically smooth) and rough (porous) edges, and in nanoribbons with strongly anharmonic periodic interatomic potentials. We show that the effects of quantum statistics of phonons are essential for the carbon nanotube in the whole temperature range T<500K, in which the values of the specific heat and thermal conductivity of the nanotube are considerably less than that obtained within the description based on classical statistics of phonons. This conclusion is also applicable to other carbon-based materials and systems with high Debye temperature like graphene, graphene nanoribbons, fullerene, diamond, diamond nanowires, etc. We show that the existence of rough edges and quantum statistics of phonons change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the nanoribbon with perfect edges and classical phonon dynamics and statistics. The semiquantum molecular

  7. Plasmonic transparent conductors

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  8. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa2Cu3O7-δ coated conductor wires

    International Nuclear Information System (INIS)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L; Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V

    2009-01-01

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J c ) (Y,Sm) 1 Ba 2 Cu 3 O y (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 μm of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I c s) of up to 600 A/cm width (t = 2.8 μm, J c = 2.6 MA cm -2 , 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm) 2 O 3 nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J c in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO 2 nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm) 2 O 3 or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I c . There is an inconsistency between the measured J c and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with reproducibility and manufacturing yield.

  9. Are low-dimensional dynamics typical in magnetically confined plasmas?

    International Nuclear Information System (INIS)

    Ball, R.; Dewar, R.L.

    2000-01-01

    Full text: Since 1988 there have been many serious attempts to construct low-dimensional dynamical systems that model L-H transitions and associated oscillatory phenomena in magnetically confined plasmas. Such models usually consist of coupled ordinary differential equations in a few dynamical state variables and several parameters that represent physical properties or external controls. The advantages of a unified, low-dimensional approach to modelling plasma behaviour are multifold. Most importantly, the qualitative analysis of nonlinear ODE and algebraic systems is supported by a substantial body of theory. The toolkits of singularity and stability theory are well-developed and accessible, and contain the right tools for the job of charting the state and parameter space. One of the driving forces behind the development of low-dimensional dynamical models is the predictive potential of a parameter map. For example, a model that talks of the shape and extent of hysteresis in the L-H transition would help engineers who are interested in controlling access to H-mode. We can express this problem another way: given the enormous number of variables and parameters that could be varied around a hysteretic regime, it would be cheaper to know in advance which ones actually do influence the quality and quantity of the hysteresis. The quest for a low-dimensional state space that contains the qualitative dynamics of L-H transitions also introduces other problems. We need to identify the essential (few) dynamical variables and the essential (few) independent parameter groups, clarify the mechanisms for the feedback that is modelled by nonlinear terms, and identify symmetries in the physics. Before jumping the gun on these questions the fundamental issue should be addressed of whether a confined plasma, having many important length and time scales, steep gradients, strong anisotropy, and an uncountable multiplicity of states, can indeed exhibit low-dimensional dynamics. In this

  10. Low-dimensional filiform Lie algebras over finite fields

    OpenAIRE

    Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)

    2011-01-01

    In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...

  11. Magnetometry of low-dimensional electron and hole systems

    Energy Technology Data Exchange (ETDEWEB)

    Usher, A [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Elliott, M [School of Physics and Astronomy, Cardiff University, Queens Buildings, Cardiff CF24 3AA (United Kingdom)], E-mail: a.usher@exeter.ac.uk, E-mail: elliottm@cf.ac.uk

    2009-03-11

    The high-magnetic-field, low-temperature magnetic properties of low-dimensional electron and hole systems reveal a wealth of fundamental information. Quantum oscillations of the thermodynamic equilibrium magnetization yield the total density of states, a central quantity in understanding the quantum Hall effect in 2D systems. The magnetization arising from non-equilibrium circulating currents reveals details, not accessible with traditional measurements, of the vanishingly small longitudinal resistance in the quantum Hall regime. We review how the technique of magnetometry has been applied to these systems, the most important discoveries that have been made, and their theoretical significance. (topical review)

  12. A low dimensional dynamical system for the wall layer

    Science.gov (United States)

    Aubry, N.; Keefe, L. R.

    1987-01-01

    Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.

  13. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  14. Future device applications of low-dimensional carbon superlattice structures

    Science.gov (United States)

    Bhattacharyya, Somnath

    2005-03-01

    We observe superior transport properties in low-dimensional amorphous carbon (a-C) and superlattice structures fabricated by a number of different techniques. Low temperature conductivity of these materials is explained using argument based on the crossover of dimensionality of weak localization and electron-electron interactions along with a change of sign of the magneto-resistance. These trends are significantly different from many other well characterized ordered or oriented carbon structures, and, show direct evidence of high correlation length, mobility and an effect of the dimensionality in low-dimensional a-C films. We show routes to prepare bespoke features by tuning the phase relaxation time in order to make high-speed devices over large areas. The artificially grown multi-layer superlattice structures of diamond-like amorphous carbon films show high-frequency resonance and quantum conductance suggesting sufficiently high values of phase coherence length in the present disordered a-C system that could lead to fast switching multi-valued logic.

  15. Physics of superionic conductors

    CERN Document Server

    1979-01-01

    Superionic conductors are solids whose ionic conductivities approach, and in some cases exceed, those of molten salts and electrolyte solutions. This implies an un­ usual state of matter in which some atoms have nearly liquidlike mobility while others retain their regular crystalline arrangement. This liquid-solid duality has much appeal to condensed matter physicists, and the coincident development of powerful new methods for studying disordered solids and interest in superionic conductors for technical applications has resulted in a new surge of activity in this venerable field. It is the purpose of this book to summarize the current re­ search in the physics of superionic conduction. with special emphasis on those aspects which set these materials apart from other solids. The volume is aimed to­ wards the materials community and will, we expect, stimulate further research on these potentially useful substances. The usual characterization of the superionic phase lists high ionic conductivity; low activat...

  16. The CMS conductor

    CERN Document Server

    Horváth, I L; Marti, H P; Neuenschwander, J; Smith, R P; Fabbricatore, P; Musenich, R; Calvo, A; Campi, D; Curé, B; Desirelli, Alberto; Favre, G; Riboni, P L; Sgobba, Stefano; Tardy, T; Sequeira-Lopes-Tavares, S

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments, which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN, the design field of the CMS magnet is 4 T, the magnetic length is 13 m and the aperture is 6 m. This high magnetic field is achieved by means of a 4 layer, 5 modules superconducting coil. The coil is wound from an Al-stabilized Rutherford type conductor. The nominal current of the magnet is 20 kA at 4.5 K. In the CMS coil the structural function is ensured, unlike in other existing Al-stabilized thin solenoids, both by the Al-alloy reinforced conductor and the external former. In this paper the retained manufacturing process of the 50-km long reinforced conductor is described. In general the Rutherford type cable is surrounded by high purity aluminium in a continuous co-extrusion process to produce the Insert. Thereafter the reinforcement is joined by Electron Beam Welding to the pure Al of the insert, before being machined to the final dimensions. During the...

  17. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  18. Low-dimensional geometry from euclidean surfaces to hyperbolic knots

    CERN Document Server

    Bonahon, Francis

    2009-01-01

    The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory o...

  19. Low Dimensional Semiconductor Structures Characterization, Modeling and Applications

    CERN Document Server

    Horing, Norman

    2013-01-01

    Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included h...

  20. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    Science.gov (United States)

    Shastry, Tejas Attreya

    to result in record breaking performance in a carbon nanotube solar cell, and subsequent chapters study the mechanisms behind charge transfer in the polychiral carbon nanotube / fullerene solar cell. Further processing advances, chiral distribution tailoring, and solvent additives are shown to enable more uniform and larger area carbon nanotube solar cells while maintaining record-breaking performance. In order to increase overall photovoltaic performance of a carbon nanotube active layer solar cell, this dissertation also demonstrates a ternary polymer-carbon nanotube-small molecule photovoltaic with high efficiency and stability enabled by the nanomaterial. Finally, the use of the two-dimensional metal dichalcogenide molybdenum disulfide as a photovoltaic material is explored in an ultrathin solar cell with higher efficiency per thickness than leading organic and inorganic thin-film photovoltaics. Overall, this work demonstrates breakthroughs in utilizing low-dimensional nanomaterials as active layer components in photovoltaics and will inform ongoing research in making ultrathin, stable, efficient solar cells.

  1. Low Dimensional Representation of Fisher Vectors for Microscopy Image Classification.

    Science.gov (United States)

    Song, Yang; Li, Qing; Huang, Heng; Feng, Dagan; Chen, Mei; Cai, Weidong

    2017-08-01

    Microscopy image classification is important in various biomedical applications, such as cancer subtype identification, and protein localization for high content screening. To achieve automated and effective microscopy image classification, the representative and discriminative capability of image feature descriptors is essential. To this end, in this paper, we propose a new feature representation algorithm to facilitate automated microscopy image classification. In particular, we incorporate Fisher vector (FV) encoding with multiple types of local features that are handcrafted or learned, and we design a separation-guided dimension reduction method to reduce the descriptor dimension while increasing its discriminative capability. Our method is evaluated on four publicly available microscopy image data sets of different imaging types and applications, including the UCSB breast cancer data set, MICCAI 2015 CBTC challenge data set, and IICBU malignant lymphoma, and RNAi data sets. Our experimental results demonstrate the advantage of the proposed low-dimensional FV representation, showing consistent performance improvement over the existing state of the art and the commonly used dimension reduction techniques.

  2. Electronic properties and phase transitions in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Panich, A M

    2008-01-01

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX 2 (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX 2 compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)

  3. Low-Dimensional Feature Representation for Instrument Identification

    Science.gov (United States)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  4. Thermoelectric properties of low-dimensional clathrates from first principles

    Science.gov (United States)

    Kasinathan, Deepa; Rosner, Helge

    2011-03-01

    Type-I inorganic clathrates are host-guest structures with the guest atoms trapped in the framework of the host structure. From a thermoelectric point of view, they are interesting because they are semiconductors with adjustable bandgaps. Investigations in the past decade have shown that type-I clathrates X8 Ga 16 Ge 30 (X = Ba, Sr, Eu) may have the unusual property of ``phonon glass-electron crystal'' for good thermoelectric materials. Among the known clathrates, Ba 8 Ga 16 Ge 30 has the highest figure of merit (ZT~1). To enable a more widespread usage of thermoelectric technology power generation and heating/cooling applications, ZT of at least 2-3 is required. Two different research approaches have been proposed for developing next generation thermoelectric materials: one investigating new families of advanced bulk materials, and the other studying low-dimensional materials. In our work, we concentrate on understanding the thermoelectric properties of the nanostructured Ba-based clathrates. We use semi-classical Boltzmann transport equations to calculate the various thermoelectric properties as a function of reduced dimensions. We observe that there exists a delicate balance between the electrical conductivity and the electronic part of the thermal conductivity in reduced dimensions. Insights from these results can directly be used to control particle size in nanostructuring experiments.

  5. Unraveling surface enabled magnetic phenomena in low dimensional systems

    Science.gov (United States)

    Baljozovic, Milos; Girovsky, Jan; Nowakowski, Jan; Ali, Md Ehesan; Rossmann, Harald; Nijs, Thomas; Aeby, Elise; Nowakowska, Sylwia; Siewert, Dorota; Srivastava, Gitika; WäCkerlin, Christian; Dreiser, Jan; Decurtins, Silvio; Liu, Shi-Xia; Oppeneer, Peter M.; Jung, Thomas A.; Ballav, Nirmalya

    Molecular spin systems with controllable interactions are of both fundamental and applied importance. These systems help us to better understand the fundamental origins of the interactions involved in low dimensional magnetic systems and to put them in the framework of existing models towards their further development. Following our first observation of exchange induced magnetic ordering in paramagnetic porphyrins adsorbed on ferromagnetic Co surface we showed that magnetic properties of such molecules can be controllably altered upon exposure to chemical and physical stimuli. In our most recent work it was shown that a synthetically programmed co-assembly of Fe and Mn phthalocyanines can also be realized on diamagnetic Au(111) surfaces where it induces long-range 2D ferrimagnetic order, at first glance in conflict with the Mermin-Wagner theory. Here we provide evidence for the first direct observation of such ordering from STM/STS and XMCD data and from DFT +U calculations demonstrating key role of the Au(111) surface states in mediating AFM RKKY coupling of the Kondo underscreened magnetic moments.

  6. Unexpected magnetism in low dimensional systems: the role of symmetry

    International Nuclear Information System (INIS)

    Munoz, MC; Chico, L; Lopez-Sancho, MP; Beltran, JI; Gallego, S; Cerda, J

    2006-01-01

    The symmetry underlying the geometric structure of materials determines most of their physical properties. In low dimensional systems the role of symmetry is enhanced and can give rise to new phenomena. Here, we report on unexpected magnetism in carbon nanotubes and O-rich surfaces of ionic oxides, to show how its existence is closely related to the symmetry conditions. First, based on tight-binding models, we demonstrate that chiral carbon nanotubes present spin splitting at the Fermi level in the absence of a magneticfield, whereas achiral tubes preserve spin degeneracy. These remarkably different behaviors of chiral and non-chiral nanotubes are due to the intrinsic symmetry dependence of the spin-orbit interaction. Second, the occurrence of spin-polarization at ZrO 2 , Al 2 O 3 and MgO surfaces is proved by means of abinitio calculations within the density functional theory. Large spin moments develop at O-ended polar terminations, transforming the non-magnetic insulator into a half-metal. The magnetic moments mainly reside in the surface oxygen atoms, and their origin is related to the existence of 2p holes of well-defined spin polarization at the valence band of the ionic oxide. The direct relation between magnetization and local loss of donor charge shows that at the origin of these phenomena is the reduced surface symmetry

  7. Proton tunneling in low dimensional cesium silicate LDS-1

    Science.gov (United States)

    Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-01

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm-1 are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm-1, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm-1 are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm-1) and asymmetric mode (155 and 1220 cm-1). The broad absorption at 100-600 cm-1 reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs+ but also with the proton oscillation relevant to the second excited state (n = 2).

  8. Low-Dimensional Network Formation in Molten Sodium Carbonate.

    Science.gov (United States)

    Wilding, Martin C; Wilson, Mark; Alderman, Oliver L G; Benmore, Chris; Weber, J K R; Parise, John B; Tamalonis, Anthony; Skinner, Lawrie

    2016-04-15

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (F(x)(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to F(x)(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na(+) ions.

  9. Guanidinium nonaflate as a solid-state proton conductor

    DEFF Research Database (Denmark)

    Chen, Xiaoli; Tang, Haolin; Putzeys, Tristan

    2016-01-01

    Protic organic ionic plastic crystals (POIPCs) are a type of novel solid-state proton conductors. In this work, guanidinium nonaflate ([Gdm-H][NfO]) is reported to be a model POIPC. Its structure-property relationship has been investigated comprehensively. Infrared analysis of [Gdm-H][NfO] and its....... In addition, POIPC-based solid-state proton conductors are also expected to find applications in sensors and other electrochemical devices....

  10. Interacting with a Virtual Conductor

    NARCIS (Netherlands)

    Bos, Pieter; Reidsma, Dennis; Ruttkay, Zsófia; Nijholt, Anton; Harper, Richard; Rauterberg, Matthias; Combetto, Marco

    This paper presents a virtual embodied agent that can conduct musicians in a live performance. The virtual conductor conducts music specified by a MIDI file and uses input from a microphone to react to the tempo of the musicians. The current implementation of the virtual conductor can interact with

  11. Charge-density-wave conductors

    International Nuclear Information System (INIS)

    Thorne, R.E.

    1996-01-01

    Low-dimensional metal with moving lattice modulations display a host of unusual properties, including gigantic dielectric constants and the ability to close-quote remember close-quote electrical pulse lengths. copyright 1996 American Institute of Physics

  12. Cyclotron resonance and De Haas-Van Alphen effect in (BEDT-TTF) sub 8 Hg sub 4 Cl sub 1 sub 2 (C sub 6 H sub 5 Cl) sub 2 organic conductor

    CERN Document Server

    Voskobojnikov, I B; Samarin, N A; Cluchanko, N E; Lyubovskaya, R N; Moshchalkov, V V

    2002-01-01

    Within 0.33-1.44 K temperature range at B <= 50 T magnetic field values one measured the De Haas-Van Alphen effect for (BEDT-TTF) sub 8 Hg sub 4 Cl sub 1 sub 2 (C sub 6 H sub 5 Cl) sub 2 organic quasi-two-dimensional conductor. Analysis of quantum oscillations with regard to data on cyclotron resonance derived for 40-120 GHz frequency interval enabled to determine that a complex spectrum of quantum oscillations was formed by alpha approx 256 T and beta approx 670-610 T fundamental frequencies as well as, by combination and multiple frequencies. It is shown that nature of temperature rearrangement of oscillation spectrum may be interpreted in terms of model taking account of occurrence of magnetic phase transition at T sub c approx 0.9 K and proximity of a fundamental frequency with m* = 1.48m sub 0 efficient mass to the spin dumping condition

  13. Flux-induced Nernst effect in low-dimensional superconductors

    International Nuclear Information System (INIS)

    Berger, Jorge

    2017-01-01

    Highlights: • The Nernst effect tells us that the presence of a magnetic field and a temperature gradient in a conductor yields a transverse voltage. • The Nernst effect in superconductors, especially above their critical temperature, has been a hot topic of research during the last decades. • I predict a new effect in which a transverse voltage arises, not because of the magnetic field, but rather because of the magnetic flux enclosed by a loop with non-uniform temperature. - Abstract: A method is available that enables consistent study of the stochastic behavior of a system that obeys purely diffusive evolution equations. This method has been applied to a superconducting loop with nonuniform temperature, with average temperature close to T_c. It is found that a flux-dependent average potential difference arises along the loop, proportional to the temperature gradient and most pronounced in the direction perpendicular to this gradient. The largest voltages were obtained for fluxes close to 0.3Φ_0, average temperatures slightly below the critical temperature, thermal coherence length of the order of the perimeter of the ring, BCS coherence length that is not negligible in comparison to the thermal coherence length, and short inelastic scattering time. This effect is entirely due to thermal fluctuations. It differs essentially from the usual Nernst effect in bulk superconductors, that is induced by magnetic field rather than by magnetic flux. We also study the effect of confinement in a 2D mesoscopic film.

  14. Nonlinear transport behavior of low dimensional electron systems

    Science.gov (United States)

    Zhang, Jingqiao

    The nonlinear behavior of low-dimensional electron systems attracts a great deal of attention for its fundamental interest as well as for potentially important applications in nanoelectronics. In response to microwave radiation and dc bias, strongly nonlinear electron transport that gives rise to unusual electron states has been reported in two-dimensional systems of electrons in high magnetic fields. There has also been great interest in the nonlinear response of quantum ballistic constrictions, where the effects of quantum interference, spatial dispersion and electron-electron interactions play crucial roles. In this thesis, experimental results of the research of low dimensional electron gas systems are presented. The first nonlinear phenomena were observed in samples of highly mobile two dimensional electrons in GaAs heavily doped quantum wells at different magnitudes of DC and AC (10 KHz to 20 GHz) excitations. We found that in the DC excitation regime the differential resistance oscillates with the DC current and external magnetic field, similar behavior was observed earlier in AlGaAs/GaAs heterostructures [C.L. Yang et al. ]. At external AC excitations the resistance is found to be also oscillating as a function of the magnetic field. However the form of the oscillations is considerably different from the DC case. We show that at frequencies below 100 KHz the difference is a result of a specific average of the DC differential resistance during the period of the external AC excitations. Secondly, in similar samples, strong suppression of the resistance by the electric field is observed in magnetic fields at which the Landau quantization of electron motion occurs. The phenomenon survives at high temperatures at which the Shubnikov de Haas oscillations are absent. The scale of the electric fields essential for the effect, is found to be proportional to temperature in the low temperature limit. We suggest that the strong reduction of the longitudinal resistance

  15. Understanding core conductor fabrics

    International Nuclear Information System (INIS)

    Swenson, D E

    2011-01-01

    ESD Association standard test method ANSI/ESD STM2.1 - Garments (STM2.1), provides electrical resistance test procedures that are applicable for materials and garments that have surface conductive or surface dissipative properties. As has been reported in other papers over the past several years 1 fabrics are now used in many industries for electrostatic control purposes that do not have surface conductive properties and therefore cannot be evaluated using the procedures in STM2.1 2 . A study was conducted to compare surface conductive fabrics with samples of core conductor fibre based fabrics in order to determine differences and similarities with regards to various electrostatic properties. This work will be used to establish a new work item proposal within WG-2, Garments, in the ESD Association Standards Committee in the USA.

  16. Modular assembly of low-dimensional coordination architectures on metal surfaces

    International Nuclear Information System (INIS)

    Stepanow, Sebastian; Lin, Nian; Barth, Johannes V

    2008-01-01

    The engineering of highly organized molecular architectures has attracted strong interest because of its potential for novel materials and functional nanoscopic devices. An important factor in the development, integration, and exploitation of such systems is the capability to prepare them on surfaces or in nanostructured environments. Recent advances in supramolecular design on metal substrates provide atomistic insight into the underlying self-assembly processes, mainly by scanning tunneling microscopy observations. This review summarizes progress in noncovalent synthesis strategies under ultra-high vacuum conditions employing metal ions as coordination centers directing the molecular organization. The realized metallosupramolecular compounds and arrays combine the properties of their constituent metal ions and organic ligands, and present several attractive features: their redox, magnetic and spin-state transitions. The presented exemplary molecular level studies elucidate the arrangement of organic adsorbates on metal surfaces, demonstrating the interplay between intermolecular and molecule-substrate interactions that needs to be controlled for the fabrication of low-dimensional structures. The understanding of metallosupramolecular organization and metal-ligand interactions on solid surfaces is important for the control of structure and concomitant function

  17. Flux-induced Nernst effect in low-dimensional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Jorge, E-mail: jorge.berger@braude.ac.il

    2017-02-15

    Highlights: • The Nernst effect tells us that the presence of a magnetic field and a temperature gradient in a conductor yields a transverse voltage. • The Nernst effect in superconductors, especially above their critical temperature, has been a hot topic of research during the last decades. • I predict a new effect in which a transverse voltage arises, not because of the magnetic field, but rather because of the magnetic flux enclosed by a loop with non-uniform temperature. - Abstract: A method is available that enables consistent study of the stochastic behavior of a system that obeys purely diffusive evolution equations. This method has been applied to a superconducting loop with nonuniform temperature, with average temperature close to T{sub c}. It is found that a flux-dependent average potential difference arises along the loop, proportional to the temperature gradient and most pronounced in the direction perpendicular to this gradient. The largest voltages were obtained for fluxes close to 0.3Φ{sub 0}, average temperatures slightly below the critical temperature, thermal coherence length of the order of the perimeter of the ring, BCS coherence length that is not negligible in comparison to the thermal coherence length, and short inelastic scattering time. This effect is entirely due to thermal fluctuations. It differs essentially from the usual Nernst effect in bulk superconductors, that is induced by magnetic field rather than by magnetic flux. We also study the effect of confinement in a 2D mesoscopic film.

  18. Energy–pressure relation for low-dimensional gases

    Directory of Open Access Journals (Sweden)

    Francesco Mancarella

    2014-10-01

    Full Text Available A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates, including classical and quantum – Bose and Fermi – ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy–pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb–Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks–Girardeau gas and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern–Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce

  19. Energy–pressure relation for low-dimensional gases

    International Nuclear Information System (INIS)

    Mancarella, Francesco; Mussardo, Giuseppe; Trombettoni, Andrea

    2014-01-01

    A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates), including classical and quantum – Bose and Fermi – ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal) gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum) gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy–pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb–Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks–Girardeau gas) and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern–Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce a length scale

  20. PREFACE: International Symposium on Molecular Conductors: Novel Functions of Molecular Conductors under Extreme Conditions (ISMC 2008)

    Science.gov (United States)

    Takahashi, Toshihiro; Suzumura, Yoshikazu

    2008-02-01

    The International Symposium on Molecular Conductors 2008 (ISMC2008) was held as the second international symposium of the project entitled `Novel Functions of Molecular Conductors under Extreme Conditions', which was supported by the Grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology in Japan. The project lasted from September 2003 to March 2008, and was completed by this symposium held at Okazaki Conference Center, Institute for Molecular Science, Okazaki, Japan (23-25 July 2008), which about 100 scientists attended. During the symposium, five project teams gave summary talks and exciting talks were given on the topics developed recently not only by the members of the project but also by other scientists including invited speakers from abroad, who are doing active research on molecular conductors. It is expected that papers presented in the symposium will give valuable hints for the next step in the research of this field. Therefore the organizers of this symposium decided to publish this proceedings in order to demonstrate these activities, not only for the local community of the project, but also for the broad society of international scientists who are interested in molecular conductors. The editors, who are also the organizers of this symposium, believe that this proceedings provides a significant and relevant contribution to the field of molecular conductors since it is the first time we have published such a proceedings as an electronic journal. We note that all papers published in this volume of Journal of Physics: Conference Series have been peer reviewed by expert referees. Editors made every effort to satisfy the criterion of a proceedings journal published by IOP Publishing. Toshihiro Takahashi and Yoshikazu Suzumura Editors: Toshihiro Takahashi (Gakushuin University) (Chairman) Kazushi Kanoda (University of Tokyo) Seiichi Kagoshima (University of Tokyo) Takehiko Mori (Tokyo

  1. Conductor for a fluid-cooled winding

    Science.gov (United States)

    Kenney, Walter J.

    1983-01-01

    A conductor and method of making the conductor are provided for use in winding electrical coils which are cooled by a fluid communicating with the conductor. The conductor is cold worked through twisting and reshaping steps to form a generally rectangular cross section conductor having a plurality of helical cooling grooves extending axially of the conductor. The conductor configuration makes it suitable for a wide variety of winding applications and permits the use of simple strip insulation between turns and perforated sheet insulation between layers of the winding.

  2. Jordan-Wigner fermionization and the theory of low-dimensional quantum spin models

    International Nuclear Information System (INIS)

    Derzhko, O.

    2007-01-01

    The idea of mapping quantum spin lattice model onto fermionic lattice model goes back to Jordan and Wigner (1928) who transformed s = 1/2 operators which commute at different lattice sites into fermionic operators. Later on the Jordan-Wigner transformation was used for mapping one-dimensional s = 1/2 isotropic XY (XX) model onto an exactly solvable tight-binding model of spinless fermions (Lieb, Schultz and Mattis, 1961). Since that times the Jordan-Wigner transformation is known as a powerful tool in the condensed matter theory especially in the theory of low-dimensional quantum spin systems. The aim of these lectures is to review the applications of the Jordan-Wigner fermionization technique for calculating dynamic properties of low-dimensional quantum spin models. The dynamic quantities (such as dynamic structure factors or dynamic susceptibilities) are observable directly or indirectly in various experiments. The frequency and wave-vector dependence of the dynamic quantities yields valuable information about the magnetic structure of materials. Owing to a tremendous recent progress in synthesizing low-dimensional magnetic materials detailed comparisons of theoretical results with direct experimental observation are becoming possible. The lectures are organized as follows. After a brief introduction of the Jordan-Wigner transformation for one-dimensional spin one half systems and some of its extensions for higher dimensions and higher spin values we focus on the dynamic properties of several low-dimensional quantum spin models. We start from a famous s = 1/2 XX chain. As a first step we recall well-known results for dynamics of the z-spin-component fluctuation operator and then turn to dynamics of the dimer and trimer fluctuation operators. The dynamics of the trimer fluctuations involves both the two fermion (one particle and one hole) and the four-fermion (two particles and two holes) excitations. We discuss some properties of the two-fermion and four

  3. Stability and electronic properties of low-dimensional nanostructures

    Science.gov (United States)

    Guan, Jie

    As the devices used in daily life become smaller and more concentrated, traditional three-dimensional (3D) bulk materials have reached their limit in size. Low-dimensional nanomaterials have been attracting more attention in research and getting widely applied in many industrial fields because of their atomic-level size, unique advanced properties, and varied nanostructures. In this thesis, I have studied the stability and mechanical and electronic properties of zero-dimensional (0D) structures including carbon fullerenes, nanotori, metallofullerenes and phosphorus fullerenes, one-dimensional (1D) structures including carbon nanotubes and phosphorus nanotubes, as well as two-dimensional (2D) structures including layered transition metal dichalcogenides (TMDs), phosphorene and phosphorus carbide (PC). I first briefly introduce the scientific background and the motivation of all the work in this thesis. Then the computational techniques, mainly density functional theory (DFT), are reviewed in Chapter 2. In Chapter 3, I investigate the stability and electronic structure of endohedral rare-earth metallofullerene La C60 and the trifluoromethylized La C60(CF3)n with n ≤ 5. Odd n is preferred due to the closed-shell electronic configuration or large HOMO-LUMO gap, which is also meaningful for the separation of C 60-based metallofullerenes. Mechanical and electronic properties of layered materials including TMDs and black phosphorus are studied in Chapter 4 and 5. In Chapter 4, a metallic NbSe2/semiconducting WSe2 bilayer is investigated and besides a rigid band shift associated with charge transfer, the presence of NbSe2 does not modify the electronic structure of WSe2. Structural similarity and small lattice mismatch results in the heterojunction being capable of efficiently transferring charge acrossthe interface. In Chapter 5, I investigate the dependence of stability and electronic band structure on the in-layer strain in bulk black phosphorus. In Chapters 6, 7 and

  4. Synthesis and Characterization of Ethylenedithio-MPTTF-PTM Radical Dyad as a Potential Neutral Radical Conductor

    DEFF Research Database (Denmark)

    Souto, Manuel; Bendixen, Dan; Jensen, Morten

    2016-01-01

    During the last years there has been a high interest in the development of new purely-organic single-component conductors. Very recently, we have reported a new neutral radical conductor based on the perchlorotriphenylmethyl (PTM) radical moiety linked to a monopyrrolo-tetrathiafulvalene (MPTTF...

  5. Workshop on low-dimensional quantum field theory and its applications

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi

    1990-02-01

    The workshop on 'Low-Dimensional Quantum Field Theory and its Applications' was held at INS on December 18 - 20, 1989 with about seventy participants. Some pedagogical reviews and the latest results were delivered on the recent topics related to both solid-state and particle physics. Among them are quantum Hall effect, high T c superconductivity and related topics in low-dimensional quantum field theory. Many active discussions were made on these issues. (J.P.N.)

  6. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  7. Investigation of advanced materials based on low-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Babenkov, Sergey

    2016-11-15

    .3 eV. More remarkably, the transport gap of ∝0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC. The evolution of the morphology and the electronic structure of the hybrid organic-inorganic systems were studied. Such systems are composed of metal nanoparticles (Al and Au) distributed in an organic semiconductor matrix of copper phthalocyanine (F{sub x}CuPc, x=0,4). The metal atoms deposited onto the F{sub x}CuPc surface diffuse into an organic matrix and self-assemble to nanoparticles in a well-defined manner. The narrow size distribution depends on the amount of deposited metal. We find clear evidence of a charge transfer from Al to CuPc and we have been able to determine the lattice sites where Al ions sit. In case of gold nanoparticles, we were able to observe the atomic planes of single nanoparticle and nanoparticles coalescence processes using high-resolution TEM. Photoelectron spectroscopy did not reveal any detectable chemical reaction between atoms of gold and organic film. However, strong upward band bending induced by gold nanoparticles in the organic film takes place. Finally, at high coverage we observed an formation of the metallic overlayer on the organic film.

  8. Investigation of advanced materials based on low-dimensional systems

    International Nuclear Information System (INIS)

    Babenkov, Sergey

    2016-11-01

    0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC. The evolution of the morphology and the electronic structure of the hybrid organic-inorganic systems were studied. Such systems are composed of metal nanoparticles (Al and Au) distributed in an organic semiconductor matrix of copper phthalocyanine (F_xCuPc, x=0,4). The metal atoms deposited onto the F_xCuPc surface diffuse into an organic matrix and self-assemble to nanoparticles in a well-defined manner. The narrow size distribution depends on the amount of deposited metal. We find clear evidence of a charge transfer from Al to CuPc and we have been able to determine the lattice sites where Al ions sit. In case of gold nanoparticles, we were able to observe the atomic planes of single nanoparticle and nanoparticles coalescence processes using high-resolution TEM. Photoelectron spectroscopy did not reveal any detectable chemical reaction between atoms of gold and organic film. However, strong upward band bending induced by gold nanoparticles in the organic film takes place. Finally, at high coverage we observed an formation of the metallic overlayer on the organic film.

  9. Benefits of current percolation in superconducting coated conductors

    International Nuclear Information System (INIS)

    Rutter, N.A.; Durrell, J.H.; Blamire, M.G.; MacManus-Driscoll, J.L.; Wang, H.; Foltyn, S.R.

    2005-01-01

    The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca

  10. Electronic ferroelectricity in carbon-based systems: from reality of organic conductors to promises of polymers and graphene nano-ribbons

    International Nuclear Information System (INIS)

    Kirova, Natasha; Brazovskii, Serguei

    2014-01-01

    Ferroelectricity is a rising demand in fundamental and applied solid state physics. Ferroelectrics are used in microelectronics as active gate materials, in capacitors, electro-optical-acoustic modulators, etc. There is a particular demand for plastic ferroelectrics, e.g. as a sensor for acoustic imaging in medicine and beyond, in shapeable capacitors, etc. Microscopic mechanisms of ferroelectric polarization in traditional materials are typically ionic. In this talk we discuss the electronic ferroelectrics – carbon-based materials: organic crystals, conducting polymers and graphene nano-ribbons. The motion of walls, separating domains with opposite electric polarisation, can be influenced and manipulated by terahertz and infra-red range optics

  11. Multicomponent DFT study of geometrical H/D isotope effect on hydrogen-bonded organic conductor, κ-H3(Cat EDT-ST)2

    Science.gov (United States)

    Yamamoto, Kaichi; Kanematsu, Yusuke; Nagashima, Umpei; Ueda, Akira; Mori, Hatsumi; Tachikawa, Masanori

    2017-04-01

    We theoretically investigated a significant contraction of the hydrogen-bonding O⋯O distance upon H/D substitution in our recently developed purely organic crystals, κ-H3(Cat-EDT-ST)2 (H-ST) and its isotopologue κ-D3(Cat-EDT-ST)2 (D-ST), having π-electron systems coupled with hydrogen-bonding fluctuation. The origin of this geometrical H/D isotope effect was elucidated by using the multicomponent DFT method, which takes the H/D nuclear quantum effect into account. The optimized O⋯O distance in H-ST was found to be longer than that in D-ST due to the anharmonicity of the potential energy curve along the Osbnd H bond direction, which was in reasonable agreement with the experimental trend.

  12. Power distribution: conductors in aluminium

    International Nuclear Information System (INIS)

    Schmid, R.

    2007-01-01

    This article takes a look at the use of aluminium conductors in medium and low-voltage cables. The author discusses how the increasing price of copper has led to the increasing use of aluminium as a material for the production of the conductors used in medium and low-voltage power cables. Aid is provided that is to help purchasers make the correct decisions when buying medium and low-voltage cables. The current market situation is examined and the appropriate norms are looked at. Technical data and economic aspects are discussed, both for medium and low-voltage applications. The electrical characteristics of the type of cable to be used are examined and discussed

  13. Pulse Propagation on close conductors

    CERN Document Server

    Dieckmann, A

    2001-01-01

    The propagation and reflection of arbitrarily shaped pulses on non-dispersive parallel conductors of finite length with user defined cross section is simulated employing the discretized telegraph equation. The geometry of the system of conductors and the presence of dielectric material determine the capacities and inductances that enter the calculation. The values of these parameters are found using an iterative Laplace equation solving procedure and confirmed for certain calculable geometries including the line charge inside a box. The evolving pulses and the resulting crosstalk can be plotted at any instant and - in the Mathematica notebook version of this report - be looked at in an animation. As an example a differential pair of microstrips as used in the ATLAS vertex detector is analysed.

  14. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  15. Coated Conductors under Tensile Stress

    International Nuclear Information System (INIS)

    Antonevici, Anca; Villaume, Alain; Villard, Catherine; Sulpice, Andre; Maron, Pierre Brosse; Bourgault, Daniel; Porcar, Laureline

    2006-01-01

    Critical current dependence versus strain is obtained for in-situ axial stress experiments on ISD YBCO and DyBCO coated conductors. The drop of critical current due to the apparition of first cracks in the superconducting ceramics is related to the passage in the plastic region of the substrate for a strain of about 0.3% and a stress higher then 500MPa. The superconductivity is preserved between the cracks

  16. Polymeric conductors and superconductors

    International Nuclear Information System (INIS)

    Goodings, E.P.

    1975-01-01

    The production of electrically conductive polymers which are flexible ans capable of being shaped by normal processes, is discussed. The relation between the structure of the polymer and its ability to transport electric charge is considered. The main problem is to combine high conductivity with good processability and it is shown that stacked-planar systems are superior to conjugated polymers. Good mechanical properties have yet to be achieved. In some way the rigid pi-bonded systems must be combined with a conventional sigma-bonded polymer without destroying its flexibility and tensile properties. The structure will contain a radical ion system to provide charge carriers but it is not yet known how to design the polymer structure to give high carrier mobility. Further work is required on organic superconductors in unravelling the relationship between charge carrier mobility and the supermolecular structure of polymers. (UK)

  17. Low-dimensional modeling of a driven cavity flow with two free parameters

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann; Sørensen, Jens Nørkær; Brøns, Morten

    2003-01-01

    . By carrying out such a procedure one obtains a low-dimensional model consisting of a reduced set of Ordinary Differential Equations (ODEs) which models the original equations. A technique called Sequential Proper Orthogonal Decomposition (SPOD) is developed to perform decompositions suitable for low...... parameters to appear in the inhomogeneous boundary conditions without the addition of any constraints. This is necessary because both the driving lid and the rotating rod are controlled simultaneously. Apparently, the results reported for this model are the first to be obtained for a low-dimensional model...

  18. A New Generation of Luminescent Materials Based on Low-Dimensional Perovskites

    KAUST Repository

    Pan, Jun

    2017-06-02

    Low-dimensional perovskites with high luminescence properties are promising materials for optoelectronic applications. In this article, properties of two emerging types of low-dimensional perovskites are discussed, including perovskite quantum dots CsPbX3 (X = Cl, Br or I) and zero-dimensional perovskite Cs4PbBr6. Moreover, their application for light down conversion in LCD backlighting systems and in visible light communication are also presented. With their superior optical properties, we believe that further development of these materials will potentially open more prospective applications, especially for optoelectronics devices.

  19. Lack of evidence for low-dimensional chaos in heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Holstein-Rathlou, N H; Agner, E

    1994-01-01

    INTRODUCTION: The term chaos is used to describe erratic or apparently random time-dependent behavior in deterministic systems. It has been suggested that the variability observed in the normal heart rate may be due to chaos, but this question has not been settled. METHODS AND RESULTS: Heart rate...... in the experimental data, but the prediction error as a function of the prediction length increased at a slower rate than characteristic of a low-dimensional chaotic system. CONCLUSION: There is no evidence for low-dimensional chaos in the time series of RR intervals from healthy human subjects. However, nonlinear...

  20. Effective method for construction of low-dimensional models for heat transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, D.G.; Prokopov, V.G.; Sherenkovskii, Y.V.; Fialko, N.M.; Yurchuk, V.L. [National Academy of Sciences of Ukraine, Kiev (Ukraine). Inst. of Engineering Thermophysics

    2004-12-01

    A low-dimensional model based on the method of proper orthogonal decomposition (POD) and the method of polyargumental systems (MPS) for thermal conductivity problems with strongly localized source of heat has been presented. The key aspect of these methods is that they enable to avoid weak points of other projection methods, which consists in a priori choice of basis functions. It enables us to use the MPS method and the POD method as convenient means to construct low-dimensional models of heat and mass transfer problems. (Author)

  1. Low-dimensional analysis, using POD, for two mixing layer-wake interactions

    International Nuclear Information System (INIS)

    Braud, Caroline; Heitz, Dominique; Arroyo, Georges; Perret, Laurent; Delville, Joeel; Bonnet, Jean-Paul

    2004-01-01

    The mixing layer-wake interaction is studied experimentally in the framework of two flow configurations. For the first one, the initial conditions of the mixing layer are modified by using a thick trailing edge, a wake effect is therefore superimposed to the mixing layer from its beginning (blunt trailing edge). In the second flow configuration, a canonical mixing layer is perturbed in its asymptotic region by the wake of a cylinder arranged perpendicular to the plane of the mixing layer. These interactions are analyzed mainly by using two-point velocity correlations and the proper orthogonal decomposition (POD). These two flow configurations differ by the degree of complexity they involve: the former is mainly 2D while the latter is highly 3D. The blunt trailing edge configuration is analyzed by using rakes of hot wire probes. This flow configuration is found to be considerably different when compared to a conventional mixing layer. It appears in particular that the scale of the large structures depends only on the trailing edge thickness and does not grow in its downstream evolution. A criterion, based on POD, is proposed in order to separate wake-mixing layer dominant areas of the downstream evolution of the flow. The complex 3D dynamical behaviour resulting from the interaction between the canonical plane mixing layer and the wake of a cylinder is investigated using data arising from particle image velocimetry measurements. An analysis of the velocity correlations shows different length scales in the regions dominated by wake like structures and shear layer type structures. In order to characterize the particular organization in the plane of symmetry, a POD-Galerkin projection of the Navier-Stokes equations is performed in this plane. This leads to a low-dimensional dynamical system that allows the analysis of the relationship between the dominant frequencies to be performed. A reconstruction of the dominant periodic motion suspected from previous studies is

  2. Temperature limited heater utilizing non-ferromagnetic conductor

    Science.gov (United States)

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  3. Interplane transport effects in layered organic conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Symington, J. A.; Singleton, J.; Harrison, N.; Clayton, N.; Schlueter, J. A.; Kurmoo, M.; Day, P.

    2000-08-22

    Detailed studies of the magnetic field orientation on magnetic quantum oscillations in two charge transfer salts of the molecule ET have been carried out. .After all conventional mechanisms affecting quantum oscillations have been accounted for, we find that the amplitude of the oscillations has an underlying dependence exp({minus}{alpha} tan 0), where {theta} is the angle between the normal to the highly-conducting layers and the magnetic field, and a is a constant.

  4. ICTP Summer Course on Low-Dimensional Quantum Field Theories for Condensed Matter Physicists

    CERN Document Server

    Morandi, G; Lu, Y

    1995-01-01

    This volume contains a set of pedagogical reviews covering the most recent applications of low-dimensional quantum field theory in condensed matter physics, written by experts who have made major contributions to this rapidly developing field of research. The main purpose is to introduce active young researchers to new ideas and new techniques which are not covered by the standard textbooks.

  5. Near-Integrability of Low-Dimensional Periodic Klein-Gordon Lattices

    Directory of Open Access Journals (Sweden)

    Ognyan Christov

    2018-01-01

    Full Text Available The low-dimensional periodic Klein-Gordon lattices are studied for integrability. We prove that the periodic lattice with two particles and certain nonlinear potential is nonintegrable. However, in the cases of up to six particles, we prove that their Birkhoff-Gustavson normal forms are integrable, which allows us to apply KAM theory in most cases.

  6. Ultrafast dynamics of confined and localised excitons and biexcitons in low-dimensional semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Langbein, Wolfgang; Borri, Paola

    1999-01-01

    Coherent optical spectroscopy in the form of nonlinear transient four-wave mixing (TFWM) and linear resonant Rayleigh scattering (RRS) has been applied to investigate the exciton dynamics of low-dimensional semiconductor heterostructures. The dephasing times of excitons are determined from...

  7. Statistical mechanics of low-dimensional Ginzburg-Landau fields. Some new results

    International Nuclear Information System (INIS)

    Barsan, V.

    1987-08-01

    The Ginzburg-Landau theory for low-dimensional systems is approached using the transfer matrix method. Analitical formulae for the thermodynamical quantities of interest are obtained in the one-dimensional case. An exact expression for the free energy of of a planar array of linear chains is deduced. A good agrement with numerical and experimental data is found.(authors)

  8. Transparent conductor based on aluminum nanomesh

    International Nuclear Information System (INIS)

    Kazarkin, B; Mohammed, A S; Stsiapanau, A; Zhuk, S; Satskevich, Y; Smirnov, A

    2014-01-01

    We report a transparent conductor based on Al nanomesh, which was fabricated through Al anodization and etching processes. The Al anodization was performed at low temperature condition to slow down the anodization rate to achieve the well-controlled thickness of an Al nanomesh. By careful controlling of the anodization process, we can fabricate Al nanomesh transparent conductors with different sheet resistance and optical transparency in the visible spectrum range. We shall show that Al nanomesh transparent conductor is a strong contender for a transparent conductor dominated by ITO

  9. 2012 Aspen Winter Conference New Paradigms for Low-Dimensional Electronic Materials, February 5-10, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Joel; Rabe, Karin; Nayak, Chetan; Troyer, Matthias

    2012-05-01

    Aspen Center for Physics Project Summary DOE Budget Period: 10/1/2011 to 9/30/2012 Contract # DE-SC0007479 New Paradigms for Low-Dimensional Electronic Materials The 2012 Aspen Winter Conference on Condensed Matter Physics was held at the Aspen Center for Physics from February 5 to 10, 2012. Seventy-four participants from seven countries, and several universities and national labs attended the workshop titled, New Paradigms for Low-Dimensional Electronic Materials. There were 34 formal talks, and a number of informal discussions held during the week. Talks covered a variety of topics related to DOE BES priorities, including, for example, advanced photon techniques (Hasan, Abbamonte, Orenstein, Shen, Ghosh) and predictive theoretical modeling of materials properties (Rappe, Pickett, Balents, Zhang, Vanderbilt); the full conference schedule is provided with this report. The week's events included a public lecture (Quantum Matters given by Chetan Nayak from Microsoft Research) and attended by 234 members of the public, and a physics caf© geared for high schoolers that is a discussion with physicists conducted by Kathryn Moler (Stanford University) and Andrew M. Rappe (University of Pennsylvania) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by Joel Moore (University of California Berkeley), Chetan Nayak (Microsoft Research), Karin Rabe (Rutgers University), and Matthias Troyer (ETH Zurich). Two organizers who did not attend the conference were Gabriel Aeppli (University College London & London Centre for Nanotechnology) and Andrea Cavalleri (Oxford University & Max Planck Hamburg).

  10. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor wires

    Energy Technology Data Exchange (ETDEWEB)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V [SuperPower, Inc., Schenectady, NY 12304 (United States)

    2009-04-15

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J{sub c}) (Y,Sm){sub 1}Ba{sub 2}Cu{sub 3}O{sub y} (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 {mu}m of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I{sub c}s) of up to 600 A/cm width (t = 2.8 {mu}m, J{sub c} = 2.6 MA cm{sup -2}, 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm){sub 2}O{sub 3} nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J{sub c} in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO{sub 2} nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm){sub 2}O{sub 3} or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I{sub c}. There is an inconsistency between the measured J{sub c} and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with

  11. Fabrication process of a superconducting multifilament conductor of a cable and resulting electric conductor

    International Nuclear Information System (INIS)

    Fevrier, A.; Verhaege, T.; Bonnet, P.

    1990-01-01

    Elementary conductors constituted of a plurality of superconducting filaments in a metallic matrix are prepared and then twisted. Elementary conductors with a diameter between 0.05 and 0.25 mm without electric insulation are twisted after heating with a pitch of four time the diameter, finally the conductor is insulated [fr

  12. Low-dimensional organization of angular momentum during walking on a narrow beam

    OpenAIRE

    Chiovetto, Enrico; Huber, Meghan E.; Sternad, Dagmar; Giese, Martin A.

    2018-01-01

    Walking on a beam is a challenging motor skill that requires the regulation of upright balance and stability. The difficulty in beam walking results from the reduced base of support compared to that afforded by flat ground. One strategy to maintain stability and hence avoid falling off the beam is to rotate the limb segments to control the body’s angular momentum. The aim of this study was to examine the coordination of the angular momentum variations during beam walking. We recorded movement...

  13. Assessment of sodium conductor distribution cable

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The study assesses the barriers and incentives for using sodium conductor distribution cable. The assessment considers environmental, safety, energy conservation, electrical performance and economic factors. Along with all of these factors considered in the assessment, the sodium distribution cable system is compared to the present day alternative - an aluminum conductor system. (TFD)

  14. Doped LZO buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  15. Detecting low-dimensional chaos by the “noise titration” technique: Possible problems and remedies

    International Nuclear Information System (INIS)

    Gao Jianbo; Hu Jing; Mao Xiang; Tung Wenwen

    2012-01-01

    Highlights: ► Distinguishing low-dimensional chaos from noise is an important issue. ► Noise titration technique is one of the main approaches on the issue. ► Problems of noise titration technique are systematically discussed. ► Solutions to the problems of noise titration technique are provided. - Abstract: Distinguishing low-dimensional chaos from noise is an important issue in time series analysis. Among the many methods proposed for this purpose is the noise titration technique, which quantifies the amount of noise that needs to be added to the signal to fully destroy its nonlinearity. Two groups of researchers recently have questioned the validity of the technique. In this paper, we report a broad range of situations where the noise titration technique fails, and offer solutions to fix the problems identified.

  16. Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors.

    Science.gov (United States)

    Hung, Nguyen T; Hasdeo, Eddwi H; Nugraha, Ahmad R T; Dresselhaus, Mildred S; Saito, Riichiro

    2016-07-15

    We theoretically investigate the interplay between the confinement length L and the thermal de Broglie wavelength Λ to optimize the thermoelectric power factor of semiconducting materials. An analytical formula for the power factor is derived based on the one-band model assuming nondegenerate semiconductors to describe quantum effects on the power factor of the low-dimensional semiconductors. The power factor is enhanced for one- and two-dimensional semiconductors when L is smaller than Λ of the semiconductors. In this case, the low-dimensional semiconductors having L smaller than their Λ will give a better thermoelectric performance compared to their bulk counterpart. On the other hand, when L is larger than Λ, bulk semiconductors may give a higher power factor compared to the lower dimensional ones.

  17. Dynamic screening and electron dynamics in low-dimensional metal systems

    International Nuclear Information System (INIS)

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  18. Dielectric spectroscopy studies of low-disorder and low-dimensional materials

    OpenAIRE

    Tripathi, Pragya

    2016-01-01

    In this thesis we employ dielectric spectroscopy (in different implementations) to study the dielectric properties of different materials ranging from completely disordered supercooled liquids to low-disorder solids with only ratcheting reorientational motions, to low-dimensional systems such as thin films or needle-like crystals. The probed material properties include the electrical conductivity, the space-charge processes due to sample heterogeneities, molecular dynamics, hydrogen-bond dyna...

  19. NATO Advanced Research Workshop on Physicochemical Properties of Zeolitic Systems and Their Low Dimensionality

    CERN Document Server

    Derouane, Eric; Hölderich, Wolfgang

    1990-01-01

    Low dimensionality is a multifarious concept which applies to very diversified materials. Thus, examples of low-dimensional systems are structures with one or several layers, single lines or patterns of lines, and small clusters isolated or dispersed in solid systems. Such low­ dimensional features can be produced in a wide variety of materials systems with a broad spectrum of scientific and practical interests. These features, in turn, induce specific properties and, particularly, specific transport properties. In the case of zeolites, low dimensionality appears in the network of small-diameter pores of molecular size, extending in one, two or three di­ mensions, that these solids exhibit as a characteristic feature and which explains the term of "molecular sieves" currently used to name these ma­ terials. Indeed, a large number of industrial processes for separation of gases and liquids, and for catalysis are based upon the use of this low­ dimensional feature in zeolites. For instance, zeolites constit...

  20. Detection of Defect-Induced Magnetism in Low-Dimensional ZnO Structures by Magnetophotocurrent.

    Science.gov (United States)

    Lorite, Israel; Kumar, Yogesh; Esquinazi, Pablo; Zandalazini, Carlos; de Heluani, Silvia Perez

    2015-09-09

    The detection of defect-induced magnetic order in single low-dimensional oxide structures is in general difficult because of the relatively small yield of magnetically ordered regions. In this work, the effect of an external magnetic field on the transient photocurrent measured after light irradiation on different ZnO samples at room temperature is studied. It has been found that a magnetic field produces a change in the relaxation rate of the transient photocurrent only in magnetically ordered ZnO samples. This rate can decrease or increase with field, depending on whether the magnetically ordered region is in the bulk or only at the surface of the ZnO sample. The phenomenon reported here is of importance for the development of magneto-optical low-dimensional oxides devices and provides a new guideline for the detection of magnetic order in low-dimensional magnetic semiconductors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Assessment of the noise annoyance among subway train conductors in Tehran, Iran.

    Science.gov (United States)

    Hamidi, Mansoureh; Kavousi, Amir; Zaheri, Somayeh; Hamadani, Abolfazl; Mirkazemi, Roksana

    2014-01-01

    Subway transportation system is a new phenomenon in Iran. Noise annoyance interferes with the individual's task performance, and the required alertness in the driving of subway trains. This is the first study conducted to measure the level of noise and noise annoyance among conductors of subway organization in Tehran, Iran. This cross sectional study was conducted among 167 randomly selected train conductors. Information related to noise annoyance was collected by using a self-administered questionnaire. The dosimetry and sound metering was done for the conductors and inside the cabins. There were 41 sound metering measuring samples inside the conductors' cabin, and there were 12 samples of conductors' noise exposure. The results of sound level meter showed that the mean Leq was 73.0 dBA ± 8.7 dBA and the dosimetry mean measured Leq was 82.1 dBA ± 6.8 dBA. 80% of conductors were very annoyed/annoyed by noise in their work place. 53.9% of conductors reported that noise affected their work performance and 63.5% reported that noise causes that they lose their concentration. The noise related to movement of train wheels on rail was reported as the worst by 83.2% followed by the noise of brakes (74.3%) and the ventilation noise (71.9%). 56.9% of conductors reported that they are suffering from sleeplessness, 40.1% from tinnitus and 80.2% feeling fatigue and sleepy. The study results showed the high level of noise and noise annoyance among train conductors and the poor health outcome of their exposure to this level of noise.

  2. Radiation damages on superionic conductors

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    Irradiation coloration on superionic conductors of MA 4 X 5 (M=K, Rb, NH 4 ; A=Ag, Cu; X=Cl, I) was observed. Five absorption bands were observed at 1.4, 1.8, 2.1, 2.3 and 2.9 eV in RbAg 4 I 5 . In these crystals, stable coloration was observed at lower temperature than in alkali halides. The absorption bands due to electronic centers and hole one were classified from the results of optical breaching and electron or hole doping. Growth rate and induced spectra by irradiation changed drastically at the temperatures just above the superionic phase transition. The growth rate increased drastically also at 40 K. ESR signal of γ-irradiated RbCu 4 Cl 3 I 2 showed that one of the induced defects is a hole trapped by a monovalent copper ion (Cu 2+ ). (author)

  3. Chemical solution deposition: a path towards low cost coated conductors

    International Nuclear Information System (INIS)

    Obradors, X; Puig, T; Pomar, A; Sandiumenge, F; Pinol, S; Mestres, N; Castano, O; Coll, M; Cavallaro, A; Palau, A; Gazquez, J; Gonzalez, J C; Gutierrez, J; Roma, N; Ricart, S; Moreto, J M; Rossell, M D; Tendeloo, G van

    2004-01-01

    The achievement of low cost deposition techniques for high critical current YBa 2 Cu 3 O 7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa 2 Cu 3 O 7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

  4. Laser direct fabrication of silver conductors on glass boards

    International Nuclear Information System (INIS)

    Li Xiangyou; Zeng Xiaoyan; Li Huiling; Qi Xiaojing

    2005-01-01

    Laser micro-cladding has been used to fabricate metal conductors, according to a designed electronic circuit, directly onto glass boards which had been coated with a silver-containing electronic paste. The electronic pastes, composed of silver powders, inorganic binders and organic medium, thus formed the conductive metal pattern (i.e. electric circuit) along the path of the laser allowing the rest of the layer to be removed subsequently by an organic solvent. Firing in a furnace at 600 deg. C resulted in conductive lines with resistivity of about 10 -5 Ω cm and with adhesive strength of the order of magnitude of megapascals

  5. Frequency Dependent Losses in Transmission Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella

    2011-01-01

    , such as thermal conditions in and around the cable, as well as the heat generated in conductors, screens, armours etc., taking into account proximity and skin effects. The work performed and presented in this paper is concerned with an improved determination of the losses generated in the conductor, by means...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...... based on the current density distribution in different conductor designs by means of the Finite Element Method (FEM). The obtained results and methods are compared to available standards (IEC publication 60287-1-1)....

  6. Rail industry job analysis : passenger conductor.

    Science.gov (United States)

    2013-02-01

    This document describes the results of a job analysis that was conducted for the position of railroad Passenger Conductor. Key aspects of the position were identified, including main tasks and knowledge, skills, abilities, and other characteristics (...

  7. Rail industry job analysis : freight conductor.

    Science.gov (United States)

    2013-03-01

    This document describes the results from a job analysis that was conducted for the position of Freight Conductor. Key aspects of the position were identified, including main tasks and knowledge, skills, abilities, and other characteristics (KSAOs) ne...

  8. Activation of zero-error classical capacity in low-dimensional quantum systems

    Science.gov (United States)

    Park, Jeonghoon; Heo, Jun

    2018-06-01

    Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.

  9. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

    Science.gov (United States)

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering

  10. Heat transport in low-dimensional materials: A review and perspective

    Directory of Open Access Journals (Sweden)

    Zhiping Xu

    2016-05-01

    Full Text Available Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum-mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.

  11. Spectroscopy of collective excitations in interacting low-dimensional many-body systems using quench dynamics.

    Science.gov (United States)

    Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail; Polkovnikov, Anatoli

    2007-11-16

    We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.

  12. How to measure the cooper pair mass using plasmons in low-dimensional superconductor structures

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    The creation of the Cooper pair mass-spectroscopy is suggested. The plasmons in low-dimensional superconductor structures (layers or wires in dielectric background) are theoretically considered to that purpose. The Cooper pair mass m * can be determined by measurements of the Doppler shift of the plasmon frequency when a direct current is applied through the superconductor. The plasmons with frequency ω lower than the superconducting gap 2 Δ can be detected by the same fare-infrared (FIR) absorption technique and grating couplings used previously for investigation of two-dimension (2D) plasmons in semiconductor microstructures. (author). 17 refs, 2 figs

  13. Characteristics of exciton photoluminescence kinetics in low-dimensional silicon structures

    CERN Document Server

    Sachenko, A V; Manojlov, E G; Svechnikov, S V

    2001-01-01

    The time-resolved visible photoluminescence of porous nanocrystalline silicon films obtained by laser ablation have been measured within the temperature range 90-300 K. A study has been made of the interrelationship between photoluminescence characteristics (intensity, emission spectra, relaxation times, their temperature dependencies and structural and dielectric properties (size and shapes of Si nanocrystals, oxide phase of nanocrystal coating, porosity). A photoluminescence model is proposed that describes photon absorption and emission occurring in quantum-size Si nanocrystals while coupled subsystems of electron-hole pairs and excitons take part in the recombination. Possible excitonic Auger recombination mechanism in low-dimensional silicon structures is considered

  14. Measurement of local critical currents in TFA-MOD processed coated conductors by use of scanning Hall-probe microscopy

    International Nuclear Information System (INIS)

    Shiohara, K.; Higashikawa, K.; Kawaguchi, T.; Inoue, M.; Kiss, T.; Yoshizumi, M.; Izumi, T.

    2011-01-01

    We have investigated 2-dimensional distribution of critical current density. We have measured TFA-MOD processed YBCO coated conductor. We used scanning Hall-probe microscopy. These provided information is useful for fabrication process of coated conductor. We have carried out 2-dimensional (2D) measurement of local critical current in a Trifluoroacetates-Metal Organic Deposition (TFA-MOD) processed YBCO coated conductor using scanning Hall-probe microscopy. Recently, remarkable R and D accomplishments on the fabrication processes of coated conductors have been conducted extensively and reported. The TFA-MOD process has been expected as an attractive process to produce coated conductors with high performance at a low production cost due to a simple process using non-vacuum equipments. On the other hand, enhancement of critical currents and homogenization of the critical current distribution in the coated conductors are definitely very important for practical applications. According to our measurements, we can detect positions and spatial distribution of defects in the conductor. This kind of information will be very helpful for the improvement of the TFA-MOD process and for the design of the conductor intended for practical electric power device applications.

  15. Design principles for solid-state lithium superionic conductors.

    Science.gov (United States)

    Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand

    2015-10-01

    Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.

  16. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-29

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  17. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    International Nuclear Information System (INIS)

    Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.; Mostofizadeh, A.

    2011-01-01

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  18. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials

    Directory of Open Access Journals (Sweden)

    Chenchen Jiang

    2017-01-01

    Full Text Available In the past decades, in situ scanning electron microscopy (SEM has become a powerful technique for the experimental study of low-dimensional (1D/2D nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  19. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ali Mostofizadeh

    2011-01-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. Carbon nanomaterials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional carbon nanomaterials (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nanomaterials.

  20. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Yoon, Yeoheung; Lee, Hyoyoung; Lee, Keunsik

    2016-01-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp 2 -bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications. (topical review)

  1. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials.

    Science.gov (United States)

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti; Shen, Yajing; Lu, Yang

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  2. Low-Dimensional Material: Structure-Property Relationship and Applications in Energy and Environmental Engineering

    Science.gov (United States)

    Xiao, Hang

    In the past several decades, low-dimensional materials (0D materials, 1D materials and 2D materials) have attracted much interest from both the experimental and theoretical points of view. Because of the quantum confinement effect, low-dimensional materials have exhibited a kaleidoscope of fascinating phenomena and unusual physical and chemical properties, shedding light on many novel applications. Despite the enormous success has been achieved in the research of low-dimensional materials, there are three fundamental challenges of research in low-dimensional materials: 1) Develop new computational tools to accurately describe the properties of low-dimensional materials with low computational cost. 2) Predict and synthesize new low-dimensional materials with novel properties. 3) Reveal new phenomenon induced by the interaction between low-dimensional materials and the surrounding environment. In this thesis, atomistic modelling tools have been applied to address these challenges. We first developed ReaxFF parameters for phosphorus and hydrogen to give an accurate description of the chemical and mechanical properties of pristine and defected black phosphorene. ReaxFF for P/H is transferable to a wide range of phosphorus and hydrogen containing systems including bulk black phosphorus, blue phosphorene, edge-hydrogenated phosphorene, phosphorus clusters and phosphorus hydride molecules. The potential parameters were obtained by conducting global optimization with respect to a set of reference data generated by extensive ab initio calculations. We extended ReaxFF by adding a 60° correction term which significantly improved the description of phosphorus clusters. Emphasis was placed on the mechanical response of black phosphorene with different types of defects. Compared to the nonreactive SW potential of phosphorene, ReaxFF for P/H systems provides a significant improvement in describing the mechanical properties of the pristine and defected black phosphorene, as well

  3. Universal Curve of Optimum Thermoelectric Figures of Merit for Bulk and Low-Dimensional Semiconductors

    Science.gov (United States)

    Hung, Nguyen T.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Analytical formulas for thermoelectric figures of merit and power factors are derived based on the one-band model. We find that there is a direct relationship between the optimum figures of merit and the optimum power factors of semiconductors despite of the fact that the two quantities are generally given by different values of chemical potentials. By introducing a dimensionless parameter consisting of the optimum power factor and lattice thermal conductivity (without electronic thermal conductivity), it is possible to unify optimum figures of merit of both bulk and low-dimensional semiconductors into a single universal curve that covers many materials with different dimensionalities.

  4. Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)

    2006-11-15

    The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD

    International Nuclear Information System (INIS)

    Elliot-Ripley, Matthew

    2017-01-01

    Recently, a homogeneous ansatz has been used to study cold dense nuclear matter in the Sakai–Sugimoto model of holographic QCD. To justify this homogeneous approximation we here investigate a homogeneous ansatz within a low-dimensional toy version of Sakai–Sugimoto to study finite baryon density configurations and compare it to full numerical solutions. We find the ansatz corresponds to enforcing a dyon salt arrangement in which the soliton solutions are split into half-soliton layers. Within this ansatz we find analogues of the proposed baryonic popcorn transitions, in which solutions split into multiple layers in the holographic direction. The homogeneous results are found to qualitatively match the full numerical solutions, lending confidence to the homogeneous approximations of the full Sakai–Sugimoto model. In addition, we find exact compact solutions in the high density, flat space limit which demonstrate the existence of further popcorn transitions to three layers and beyond. (paper)

  6. ABC-model analysis of gain-switched pulse characteristics in low-dimensional semiconductor lasers

    Science.gov (United States)

    Bao, Xumin; Liu, Yuejun; Weng, Guoen; Hu, Xiaobo; Chen, Shaoqiang

    2018-01-01

    The gain-switching dynamics of low-dimensional semiconductor lasers is simulated numerically by using a two-dimensional rate-equation model. Use is also made of the ABC model, where the carrier recombination rate is described by a function of carrier densities including Shockley - Read - Hall (SRH) recombination coefficient A, spontaneous emission coefficient B and Auger recombination coefficient C. Effects of the ABC parameters on the ultrafast gain-switched pulse characteristics with high-density pulse excitation are analysed. It is found that while the parameter A has almost no obvious effects, the parameters B and C have distinctly different effects: B influences significantly the delay time of the gain-switched pulse, while C affects mainly the pulse intensity.

  7. A Review on the Low-Dimensional and Hybridized Nanostructured Diamond Films

    Directory of Open Access Journals (Sweden)

    Hongdong Li

    2015-01-01

    Full Text Available In the last decade, besides the breakthrough of high-rate growth of chemical vapor deposited single-crystal diamonds, numerous nanostructured diamond films have been rapidly developed in the research fields of the diamond-based sciences and industrial applications. The low-dimensional diamonds of two-dimensional atomic-thick nanofilms and nanostructural diamond on the surface of bulk diamond films have been theoretically and experimentally investigated. In addition, the diamond-related hybrid nanostructures of n-type oxide/p-type diamond and n-type nitride/p-type diamond, having high performance physical and chemical properties, are proposed for further applications. In this review, we first briefly introduce the three categories of diamond nanostructures and then outline the current advances in these topics, including their design, fabrication, characterization, and properties. Finally, we address the remaining challenges in the research field and the future activities.

  8. NATO Advanced Research Workshop on Optical Switching in Low-Dimensional Systems

    CERN Document Server

    Bányai, L

    1989-01-01

    This book contains all the papers presented at the NATO workshop on "Optical Switching in Low Dimensional Systems" held in Marbella, Spain from October 6th to 8th, 1988. Optical switching is a basic function for optical data processing, which is of technological interest because of its potential parallelism and its potential speed. Semiconductors which exhibit resonance enhanced optical nonlinearities in the frequency range close to the band edge are the most intensively studied materials for optical bistability and fast gate operation. Modern crystal growth techniques, particularly molecular beam epitaxy, allow the manufacture of semiconductor microstructures such as quantum wells, quantum wires and quantum dots in which the electrons are only free to move in two, one or zero dimensions, of the optically excited electron-hole pairs in these low respectively. The spatial confinement dimensional structures gives rise to an enhancement of the excitonic nonlinearities. Furthermore, the variations of the microstr...

  9. Evolution of structure with Fe layer thickness in low dimensional Fe/Tb multilayered structures

    International Nuclear Information System (INIS)

    Harris, V.G.; Aylesworth, K.D.; Elam, W.T.; Koon, N.C.; Coehoorn, R.; Hoving, W.

    1992-01-01

    This paper reports on the atomic structure of a series of low-dimensional Fe/Tb multilayered structures which has been explored using a conversion-electron, extended x-ray absorption fine structure (EXAFS) technique. A structural transition from a close-packed amorphous structure to a body-centered crystalline structure is detected to occur over an Fe layer thickness range of 12.5 Angstrom to 15.0 Angstrom (Tb thickness is held constant at 4.5 Angstrom). Magnetic properties, specifically, magnetization, anisotropy field, and Kerr rotation angle, are measured and found to change significantly in response to this transition. Exploitation of the polarization properties of synchrotron radiation allowed for the description of the atomic structure both perpendicular and parallel to the sample plane

  10. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi; Akhtar, Imran; Hajj, M. R.

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson's equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  11. Low-dimensional morphospace of topological motifs in human fMRI brain networks

    Directory of Open Access Journals (Sweden)

    Sarah E. Morgan

    2018-06-01

    Full Text Available We present a low-dimensional morphospace of fMRI brain networks, where axes are defined in a data-driven manner based on the network motifs. The morphospace allows us to identify the key variations in healthy fMRI networks in terms of their underlying motifs, and we observe that two principal components (PCs can account for 97% of the motif variability. The first PC of the motif distribution is correlated with efficiency and inversely correlated with transitivity. Hence this axis approximately conforms to the well-known economical small-world trade-off between integration and segregation in brain networks. Finally, we show that the economical clustering generative model proposed by Vértes et al. (2012 can approximately reproduce the motif morphospace of the real fMRI brain networks, in contrast to other generative models. Overall, the motif morphospace provides a powerful way to visualize the relationships between network properties and to investigate generative or constraining factors in the formation of complex human brain functional networks. Motifs have been described as the building blocks of complex networks. Meanwhile, a morphospace allows networks to be placed in a common space and can reveal the relationships between different network properties and elucidate the driving forces behind network topology. We combine the concepts of motifs and morphospaces to create the first motif morphospace of fMRI brain networks. Crucially, the morphospace axes are defined by the motifs, in a data-driven manner. We observe strong correlations between the networks’ positions in morphospace and their global topological properties, suggesting that motif morphospaces are a powerful way to capture the topology of networks in a low-dimensional space and to compare generative models of brain networks. Motif morphospaces could also be used to study other complex networks’ topologies.

  12. Electron-hole liquid in semiconductors and low-dimensional structures

    Science.gov (United States)

    Sibeldin, N. N.

    2017-11-01

    The condensation of excitons into an electron-hole liquid (EHL) and the main EHL properties in bulk semiconductors and low-dimensional structures are considered. The EHL properties in bulk materials are discussed primarily in qualitative terms based on the experimental results obtained for germanium and silicon. Some of the experiments in which the main EHL thermodynamic parameters (density and binding energy) have been obtained are described and the basic factors that determine these parameters are considered. Topics covered include the effect of external perturbations (uniaxial strain and magnetic field) on EHL stability; phase diagrams for a nonequilibrium exciton-gas-EHL system; information on the size and concentration of electron-hole drops (EHDs) under various experimental conditions; the kinetics of exciton condensation and of recombination in the exciton-gas-EHD system; dynamic EHD properties and the motion of EHDs under the action of external forces; the properties of giant EHDs that form in potential wells produced by applying an inhomogeneous strain to the crystal; and effects associated with the drag of EHDs by nonequilibrium phonons (phonon wind), including the dynamics and formation of an anisotropic spatial structure of the EHD cloud. In discussing EHLs in low-dimensional structures, a number of studies are reviewed on the observation and experimental investigation of phenomena such as spatially indirect (dipolar) electron-hole and exciton (dielectric) liquids in GaAs/AlGaAs structures with double quantum wells (QWs), EHDs containing only a few electron-hole pairs (dropletons), EHLs in type-I silicon QWs, and spatially direct and dipolar EHLs in type-II silicon-germanium heterostructures.

  13. Properties and applications of perovskite proton conductors

    Directory of Open Access Journals (Sweden)

    Eduardo Caetano Camilo de Souza

    2010-09-01

    Full Text Available A brief overview is given of the main types and principles of solid-state proton conductors with perovskite structure. Their properties are summarized in terms of the defect chemistry, proton transport and chemical stability. A good understanding of these subjects allows the manufacturing of compounds with the desired electrical properties, for application in renewable and sustainable energy devices. A few trends and highlights of the scientific advances are given for some classes of protonic conductors. Recent results and future prospect about these compounds are also evaluated. The high proton conductivity of barium cerate and zirconate based electrolytes lately reported in the literature has taken these compounds to a highlight position among the most studied conductor ceramic materials.

  14. Molecular dynamics studies of superionic conductors

    International Nuclear Information System (INIS)

    Rahman, A.; Vashishta, P.

    1983-01-01

    Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. The model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input: in addition one uses notions of ionic size based on the known crystal structure. Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features that can be incorporated to expedite the MD calculations are also discussed. A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in superionic conductors. 68 references, 17 figures, 2 tables

  15. Challenges and status of ITER conductor production

    Science.gov (United States)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and

  16. Velocity measurement of conductor using electromagnetic induction

    International Nuclear Information System (INIS)

    Kim, Gu Hwa; Kim, Ho Young; Park, Joon Po; Jeong, Hee Tae; Lee, Eui Wan

    2002-01-01

    A basic technology was investigated to measure the speed of conductor by non-contact electromagnetic method. The principle of the velocity sensor was electromagnetic induction. To design electromagnet for velocity sensor, 2D electromagnetic analysis was performed using FEM software. The sensor output was analyzed according to the parameters of velocity sensor, such as the type of magnetizing currents and the lift-off. Output of magnetic sensor was linearly depended on the conductor speed and magnetizing current. To compensate the lift-off changes during measurement of velocity, the other magnetic sensor was put at the pole of electromagnet.

  17. Challenges and status of ITER conductor production

    International Nuclear Information System (INIS)

    Devred, A; Backbier, I; Bessette, D; Bevillard, G; Gardner, M; Jong, C; Lillaz, F; Mitchell, N; Romano, G; Vostner, A

    2014-01-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb 3 Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb–Ti strands. The required amount of Nb 3 Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb 3 Sn coil has ever experienced. Following a comprehensive R and D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been

  18. Resistive coating for current conductors in cryogenic applications

    International Nuclear Information System (INIS)

    Hirayama, C.; Wagner, G.R.

    1982-01-01

    This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu2S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors

  19. Experimental investigation of new low-dimensional spin systems in vanadium oxides

    International Nuclear Information System (INIS)

    Kaul, E.E.

    2005-01-01

    In this dissertation we reported our experimental investigation of the magnetic properties of nine low-dimensional vanadium compounds. Two of these materials are completely new (Pb 2 V 5 O 12 and Pb 2 VO(PO 4 ) 2 ) and were found during our search for new low-dimensional vanadium oxides. Among the other seven vanadium compounds studied, three were physically investigated for the first time (Sr 2 VO(PO 4 ) 2 , BaZnVO(PO 4 ) 2 and SrZnVO(PO 4 ) 2 ). Two had hitherto only preliminary, and wrongly interpreted, susceptibility measurements reported in the literature (Sr 2 V 3 O 9 and Ba 2 V 3 O 9 ) while the remaining two (Li 2 VOSiO 4 and Li 2 VOGeO 4 ) were previously investigated in some detail but the interpretation of the data was controversial. We investigated the magnetic properties of these materials by means of magnetic susceptibility and specific heat (C p (T)) measurements (as well as single crystal ESR measurements in the case of Sr 2 V 3 O 9 ). We synthesized the samples necessary for our physical studies. That required a search of the optimal synthesis conditions for obtaining pure, high quality, polycrystalline samples. Single crystals of Sr 2 V 3 O 9 and Pb 2 VO(PO 4 ) 2 were also successfully grown. Pb 2 VO(PO 4 ) 2 , BaZnVO(PO 4 ) 2 , SrZnVO(PO 4 ) 2 , Li 2 VOSiO 4 and Li 2 VOGeO 4 were found to be experimental examples of frustrated square-lattice systems which are described by theJ 1 -J 2 model. We found that Li 2 VOSiO 4 and Li 2 VOGeO 4 posses a weakly frustrated antiferromagnetic square lattice while Pb 2 VO(PO 4 ) 2 , BaZnVO(PO 4 ) 2 and SrZnVO(PO 4 ) 2 form a more strongly frustrated ferromagnetic square lattice. Pb 2 V 5 O 12 is structurally and compositionally related to the two dimensional A 2+ V 4+ n O 2n+1 vanadates. Its structure consists of layers formed by edge- and corner-shared square VO 5 pyramids. The basic structural units are plaquettes consisting of six corner-shared pyramids pointing in the same direction, which form a spin

  20. Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning

    International Nuclear Information System (INIS)

    Ruan, Dan; Keall, Paul

    2010-01-01

    Accurate real-time prediction of respiratory motion is desirable for effective motion management in radiotherapy for lung tumor targets. Recently, nonparametric methods have been developed and their efficacy in predicting one-dimensional respiratory-type motion has been demonstrated. To exploit the correlation among various coordinates of the moving target, it is natural to extend the 1D method to multidimensional processing. However, the amount of learning data required for such extension grows exponentially with the dimensionality of the problem, a phenomenon known as the 'curse of dimensionality'. In this study, we investigate a multidimensional prediction scheme based on kernel density estimation (KDE) in an augmented covariate-response space. To alleviate the 'curse of dimensionality', we explore the intrinsic lower dimensional manifold structure and utilize principal component analysis (PCA) to construct a proper low-dimensional feature space, where kernel density estimation is feasible with the limited training data. Interestingly, the construction of this lower dimensional representation reveals a useful decomposition of the variations in respiratory motion into the contribution from semiperiodic dynamics and that from the random noise, as it is only sensible to perform prediction with respect to the former. The dimension reduction idea proposed in this work is closely related to feature extraction used in machine learning, particularly support vector machines. This work points out a pathway in processing high-dimensional data with limited training instances, and this principle applies well beyond the problem of target-coordinate-based respiratory-based prediction. A natural extension is prediction based on image intensity directly, which we will investigate in the continuation of this work. We used 159 lung target motion traces obtained with a Synchrony respiratory tracking system. Prediction performance of the low-dimensional feature learning

  1. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  2. 33 CFR 183.425 - Conductors: General.

    Science.gov (United States)

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer Requirements § 183.425... than 30 inches. (g) This section does not apply to communications systems; electronic navigation... conductors and terminations that are in ignition systems; pigtails of less than seven inches of exposed...

  3. High Temperature Protonic Conductors by Melt Growth

    Science.gov (United States)

    2006-11-21

    A.R. de Arellano-López, A. Sayir. “Microestructura y Comportamiento Plástico de Perovsquitas Conductoras Protónicas de Alta Temperatura ”. Bol. Soc...Conductores Protónicos de Alta Temperatura Crecidos por Fusión de Zona Flotante”. VII Reunión Nacional y VI Conferencia Iberoamericana (Electrocerámica

  4. Reshaping the perfect electrical conductor cylinder arbitrarily

    International Nuclear Information System (INIS)

    Chen Huanyang; Zhang Xiaohe; Luo Xudong; Ma Hongru; Chan Cheting

    2008-01-01

    A general method is proposed to design a cylindrical cloak, concentrator and superscatterer with an arbitrary cross section. The method is demonstrated by the design of a perfect electrical conductor (PEC) reshaper which is able to reshape a PEC cylinder arbitrarily by combining the concept of cloak, concentrator and superscatterer together. Numerical simulations are performed to demonstrate its properties.

  5. Control of Radioactive Lightning-Conductor

    International Nuclear Information System (INIS)

    Esposito, E.

    2004-01-01

    The radioactive lightning-conductor production in Brazil was started in 1970 and after a period of 19 years of commercialization of these devices, the National Nuclear Energy Commission (CNEN), based in studies done in Brazil and abroad, proved that the radioactive lightning-conductor performance wasn't superior to the conventional one, so the use of radioactive source is not justified. Thence, the authorization for its production was suspended and the installation of this type of lightning-conductor was forbidden. The radioactive material that results from the dismount of these devices must be immediately sent to CNEN, for treatment and temporary storage. After this prohibition and its publication in several specialized magazines, CNEN was searched for several institutions, factories, churches, etc, interested in obtaining information about the handling and shipment procedures of radioactive lightning-conductors that are inoperative and that must be sent to CNEN's Institutes, in a correct and secure form. From this moment CNEN technicians realize that the owners of radioactive lightning-conductors didn't have any knowledge and training in radiation protection, neither in equipment to monitoring the radiation. The radioactive material from these sources is, in almost all cases, the radioisotope 241Am which has a maximum activity of an order of 5 mCi (1,85 x 10-2 TBq); as the radiation emitted by 241Am is of alpha type, whose range in the air, is just few centimeters and the gamma rays are of low energy, an irradiation offer small risk. However, there is a contamination risk on someone hands, by the contact with the source. Aiming to attend, in an objective way, the users' interests in obtaining some pertinent technical information about the shipping of radioactive lightning-conductor that is inoperative or is being replaced and also to optimize its receipt in CNEN's Institutes, because there still has a great number of these lightning-conductors installed and still

  6. Specifications for conductors and proposed conductor configurations: Milestone M5.3

    CERN Document Server

    Bordini, Bernardo; Dhallé, Marc

    2018-01-01

    This document summarises the specifications of a superconductor suitable to be used in a particle accelerator dipole magnet that can reach a field of 16 Tesla during regular operation. The document reports also on the conductor configuration. These specifications set the performance targets for industrial production requirements at large scale. The document motivates the specifications on one hand by taking a particular magnet baseline design as starting point and by considering the results of various conductor test campaigns carried out at partner institutes.

  7. Low ac loss geometries in YBCO coated conductors and impact on conductor stability

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; List III, Frederick Alyious [ORNL; Paranthaman, Mariappan Parans [ORNL; Rupich, M. W. [American Superconductor Corporation, Westborough, MA; Zhang, W. [American Superconductor Corporation, Westborough, MA; Xie, Y. Y. [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2007-01-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. While ac loss reduction was achieved with YBCO filaments created through laser scribing and inkjet deposition, the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders. To better determine the practicality of these methods from a stability point of view, a numerical analysis was carried out to determine the influence of bridging and splicing on stability of a YBCO coated conductor for both liquid nitrogen-cooled and conduction cooled geometries.

  8. Evidence of low dimensional chaos in renal blood flow control in genetic and experimental hypertension

    Science.gov (United States)

    Yip, K.-P.; Marsh, D. J.; Holstein-Rathlou, N.-H.

    1995-01-01

    We applied a surrogate data technique to test for nonlinear structure in spontaneous fluctuations of hydrostatic pressure in renal tubules of hypertensive rats. Tubular pressure oscillates at 0.03-0.05 Hz in animals with normal blood pressure, but the fluctuations become irregular with chronic hypertension. Using time series from rats with hypertension we produced surrogate data sets to test whether they represent linearly correlated noise or ‘static’ nonlinear transforms of a linear stochastic process. The correlation dimension and the forecasting error were used as discriminating statistics to compare surrogate with experimental data. The results show that the original experimental time series can be distinguished from both linearly and static nonlinearly correlated noise, indicating that the nonlinear behavior is due to the intrinsic dynamics of the system. Together with other evidence this strongly suggests that a low dimensional chaotic attractor governs renal hemodynamics in hypertension. This appears to be the first demonstration of a transition to chaotic dynamics in an integrated physiological control system occurring in association with a pathological condition.

  9. Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing

    KAUST Repository

    Saidaminov, Makhsud I.

    2017-03-03

    Low-dimensional-networked (low-DN) perovskite derivatives are bulk quantum materials in which charge carriers are localized within ordered metal halide sheets, rods, or clusters that are separated by cationic lattices. After two decades of hibernation, this class of semiconductors reemerged in the past two years, largely catalyzed by the interest in alternative, more stable absorbers to CH3NH3PbI3-type perovskites in photovoltaics. Whether low-DN perovskites will surpass other photovoltaic technologies remains to be seen, but their impressively high photo- and electroluminescence yields have already set new benchmarks in light emission applications. Here we offer our perspective on the most exciting advances in materials design of low-DN perovskites for energy- and optoelectronic-related applications. The next few years will usher in an explosive growth in this tribe of quantum materials, as only a few members have been synthesized, while the potential library of compositions and structures is believed to be much larger and is yet to be discovered.

  10. Low dimensional chaotic models for the plague epidemic in Bombay (1896–1911)

    International Nuclear Information System (INIS)

    Mangiarotti, Sylvain

    2015-01-01

    A plague epidemic broke out in Bombay in 1896 and became endemic. From 1905 to 1911, the epidemic was closely monitored by an Advisory Committee appointed to investigate the causes of the disease in any way. An impressive quantity of information was gathered, analyzed and published. Published data include records of the number of people who died from plague, and of the two main populations of rodents which were infected by plague in Bombay city. In the present paper, these data are revisited using a global modeling technique. This technique is applied to both single and multivariate observational time series. Several models are obtained for which a chaotic behavior can be observed. Obtaining such models proves that the dynamics of plague can be approximated by low-dimensional deterministic systems that can produce chaos. The multivariate models give a strong argument for interactive couplings between the epidemic and the epizootics of the two main species of rat. An interpretation of this coupling is given.

  11. Using postural synergies to animate a low-dimensional hand avatar in haptic simulation.

    Science.gov (United States)

    Mulatto, Sara; Formaglio, Alessandro; Malvezzi, Monica; Prattichizzo, Domenico

    2013-01-01

    A technique to animate a realistic hand avatar with 20 DoFs based on the biomechanics of the human hand is presented. The animation does not use any sensor glove or advanced tracker with markers. The proposed approach is based on the knowledge of a set of kinematic constraints on the model of the hand, referred to as postural synergies, which allows to represent the hand posture using a number of variables lower than the number of joints of the hand model. This low-dimensional set of parameters is estimated from direct measurement of the motion of thumb and index finger tracked using two haptic devices. A kinematic inversion algorithm has been developed, which takes synergies into account and estimates the kinematic configuration of the whole hand, i.e., also of the fingers whose end tips are not directly tracked by the two haptic devices. The hand skin is deformable and its deformation is computed using a linear vertex blending technique. The proposed synergy-based animation of the hand avatar involves only algebraic computations and is suitable for real-time implementation as required in haptics.

  12. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Weixun Zhou

    2017-05-01

    Full Text Available Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNNs for high-resolution remote sensing image retrieval (HRRSIR. To this end, several effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, a CNN pre-trained on a different problem is treated as a feature extractor since there are no sufficiently-sized remote sensing datasets to train a CNN from scratch. In the second scheme, we investigate learning features that are specific to our problem by first fine-tuning the pre-trained CNN on a remote sensing dataset and then proposing a novel CNN architecture based on convolutional layers and a three-layer perceptron. The novel CNN has fewer parameters than the pre-trained and fine-tuned CNNs and can learn low dimensional features from limited labelled images. The schemes are evaluated on several challenging, publicly available datasets. The results indicate that the proposed schemes, particularly the novel CNN, achieve state-of-the-art performance.

  13. NATO Advanced Research Workshop on Thin Film Growth Techniques for Low-Dimensional Structures

    CERN Document Server

    Parkin, S; Dobson, P; Neave, J; Arrott, A

    1987-01-01

    This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growi...

  14. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    Science.gov (United States)

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-04-01

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Low-dimensional and Data Fusion Techniques Applied to a Rectangular Supersonic Multi-stream Jet

    Science.gov (United States)

    Berry, Matthew; Stack, Cory; Magstadt, Andrew; Ali, Mohd; Gaitonde, Datta; Glauser, Mark

    2017-11-01

    Low-dimensional models of experimental and simulation data for a complex supersonic jet were fused to reconstruct time-dependent proper orthogonal decomposition (POD) coefficients. The jet consists of a multi-stream rectangular single expansion ramp nozzle, containing a core stream operating at Mj , 1 = 1.6 , and bypass stream at Mj , 3 = 1.0 with an underlying deck. POD was applied to schlieren and PIV data to acquire the spatial basis functions. These eigenfunctions were projected onto their corresponding time-dependent large eddy simulation (LES) fields to reconstruct the temporal POD coefficients. This reconstruction was able to resolve spectral peaks that were previously aliased due to the slower sampling rates of the experiments. Additionally, dynamic mode decomposition (DMD) was applied to the experimental and LES datasets, and the spatio-temporal characteristics were compared to POD. The authors would like to acknowledge AFOSR, program manager Dr. Doug Smith, for funding this research, Grant No. FA9550-15-1-0435.

  17. Towards room-temperature superconductivity in low-dimensional C60 nanoarrays: An ab initio study

    Science.gov (United States)

    Erbahar, Dogan; Liu, Dan; Berber, Savas; Tománek, David

    2018-04-01

    We propose to raise the critical temperature Tc for superconductivity in doped C60 molecular crystals by increasing the electronic density of states at the Fermi level N (EF) and thus the electron-phonon coupling constant in low-dimensional C60 nanoarrays. We consider both electron and hole dopings and present numerical results for N (EF) , which increases with the decreasing bandwidth of the partly filled hu- and t1 u-derived frontier bands with the decreasing coordination number of C60. Whereas a significant increase in N (EF) occurs in two-dimensional (2D) arrays of doped C60 intercalated in-between graphene layers, we propose that the highest-Tc values approaching room temperature may occur in bundles of nanotubes filled by one-dimensional (1D) arrays of externally doped C60 or La @C60 or in diluted three-dimensional (3D) crystals where quasi-1D arrangements of C60 form percolation paths.

  18. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson\\'s equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  19. Expressive body movement responses to music are coherent, consistent, and low dimensional.

    Science.gov (United States)

    Amelynck, Denis; Maes, Pieter-Jan; Martens, Jean Pierre; Leman, Marc

    2014-12-01

    Embodied music cognition stresses the role of the human body as mediator for the encoding and decoding of musical expression. In this paper, we set up a low dimensional functional model that accounts for 70% of the variability in the expressive body movement responses to music. With the functional principal component analysis, we modeled individual body movements as a linear combination of a group average and a number of eigenfunctions. The group average and the eigenfunctions are common to all subjects and make up what we call the commonalities. An individual performance is then characterized by a set of scores (the individualities), one score per eigenfunction. The model is based on experimental data which finds high levels of coherence/consistency between participants when grouped according to musical education. This shows an ontogenetic effect. Participants without formal musical education focus on the torso for the expression of basic musical structure (tempo). Musically trained participants decode additional structural elements in the music and focus on body parts having more degrees of freedom (such as the hands). Our results confirm earlier studies that different body parts move differently along with the music.

  20. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    Science.gov (United States)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  1. On low-dimensional models at NMR line shape analysis in nanomaterial systems

    Science.gov (United States)

    Kucherov, M. M.; Falaleev, O. V.

    2018-03-01

    We present a model of localized spin dynamics at room temperature for the low-dimensional solid-state spin system, which contains small ensembles of magnetic nuclei (N ~ 40). The standard spin Hamiltonian (XXZ model) is the sum of the Zeeman term in a strong external magnetic field and the magnetic dipole interaction secular term. The 19F spins in a single crystal of fluorapatite [Ca5(PO4)3F] have often been used to approximate a one-dimensional spin system. If the constant external field is parallel to the c axis, the 3D 19F system may be treated as a collection of many identical spin chains. When considering the longitudinal part of the secular term, we suggest that transverse component of a spin in a certain site rotates in a constant local magnetic field. This field changes if the spin jumps to another site. On return, this spin continues to rotate in the former field. Then we expand the density matrix in a set of eigenoperators of the Zeeman Hamiltonian. A system of coupled differential equations for the expansion coefficients then solved by straightforward numerical methods, and the fluorine NMR line shapes of fluorapatite for different chain lengths are calculated.

  2. High current density aluminum stabilized conductor concepts for space applications

    International Nuclear Information System (INIS)

    Huang, X.; Eyssa, Y.M.; Hilal, M.A.

    1989-01-01

    Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail

  3. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990 --- December 31, 2002

    International Nuclear Information System (INIS)

    Allen, J. W.

    2003-01-01

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties

  4. Intercalation compounds of NbSe2 und SnSe2. Model systems for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Herzinger, Michael

    2013-01-01

    experienced a renascence of research activities. Especially, since it represents a well-suited candidate for probing the multi-band model in a quasi-two-dimensional superconductor, due to the negligible vortex pinning in NbSe 2 single crystals. In order to enhance the anisotropic character we intercalated high quality 2H-NbSe 2 single crystals with the organometallic donor molecule cobaltocene, leading to an expansion of the lattice parameter in c direction from 12.53 Aa to 23.81 Aa. While the intercalation of organic compounds (which usually act as electron donors) reduces the superconducting transition temperature Tc from 7.1 K in 2H-NbSe 2 to temperatures below Tc 2 {CoCp 2 } 0.26 with Tc = 7.35 K. Furthermore, the strong increase of the upper critical magnetic field B c2 = 18.5 T in comparison to the native parent compound (B c2 (NbSe 2 ) = 14,5 T) indicates a more pronounced anisotropic behavior. Resistivity, susceptibility and specific heat studies parallel and perpendicular to the NbSe 2 -layers of 2H-NbSe 2 {CoCp 2 } 0.26 reveal both, a field-dependent reentrant superconductivity and a reversibility of the magnetization M(B) over a wide range above 3.5 T, also observed in the native parent NbSe2. Both intercalated materials NbSe 2 {CoCp 2 } x and SnSe2{CoCp 2 } x are good candidates for further theoretical investigation of the low dimensional superconductivity. The experimental results of the layered materials presented in this thesis will contribute to a better understanding of the low dimensional superconducting behavior.

  5. New developments in the theoretical treatment of low dimensional strongly correlated systems.

    Science.gov (United States)

    James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil; Tsvelik, Alexei M

    2017-10-09

    We review two important non-perturbative approaches for extracting the physics of low- dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of confor- mal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme- tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro- modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics. © 2017 IOP Publishing Ltd.

  6. Low Dimensional Embedding of Climate Data for Radio Astronomical Site Testing in the Colombian Andes

    Science.gov (United States)

    Chaparro Molano, Germán; Ramírez Suárez, Oscar Leonardo; Restrepo Gaitán, Oscar Alberto; Marcial Martínez Mercado, Alexander

    2017-10-01

    We set out to evaluate the potential of the Colombian Andes for millimeter-wave astronomical observations. Previous studies for astronomical site testing in this region have suggested that nighttime humidity and cloud cover conditions make most sites unsuitable for professional visible-light observations. Millimeter observations can be done during the day, but require that the precipitable water vapor column above a site stays below ˜10 mm. Due to a lack of direct radiometric or radiosonde measurements, we present a method for correlating climate data from weather stations to sites with a low precipitable water vapor column. We use unsupervised learning techniques to low dimensionally embed climate data (precipitation, rain days, relative humidity, and sunshine duration) in order to group together stations with similar long-term climate behavior. The data were taken over a period of 30 years by 2046 weather stations across the Colombian territory. We find six regions with unusually dry, clear-sky conditions, ranging in elevations from 2200 to 3800 masl. We evaluate the suitability of each region using a quality index derived from a Bayesian probabilistic analysis of the station type and elevation distributions. Two of these regions show a high probability of having an exceptionally low precipitable water vapor column. We compared our results with global precipitable water vapor maps and find a plausible geographical correlation with regions with low water vapor columns (˜10 mm) at an accuracy of ˜20 km. Our methods can be applied to similar data sets taken in other countries as a first step toward astronomical site evaluation.

  7. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives.

    Science.gov (United States)

    Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G; Farina, Dario

    2013-01-01

    Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R (2) = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R (2) = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive

  8. Experimental study on the spin-orbit coupling property in low-dimensional semiconductor structures

    International Nuclear Information System (INIS)

    Zhao, Hongming

    2010-01-01

    The spin-orbit coupling and optical properties have been studied in several low-dimensional semiconductor structures. First, the spin dynamics in (001) GaAs/AlGaAs two-dimensional electron gas was investigated by time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic. The results show that the electron density in two-dimensional electron gas channel strongly affects the Rashba spin-orbit coupling. Then, a large anisotropy of the magnitude of in-plane conduction electron g factor in asymmetric (001) GaAs/AlGaAs QWs was observed and its tendency of temperature dependence was studied. Second, the experimental study of the in-plane-orientation dependent spin splitting in the C(0001) GaN/AlGaN two-dimensional electron gas at room temperature was reported. The measurement of circular photo-galvanic effect current clearly shows the isotropic in-plane spin splitting in this system for the first time. Third, the first measurement of conduction electron g factor in GaAsN at room temperature was done by using time resolved Kerr rotation technique. It demonstrates that the g factor can be modified drastically by introducing a small amount of nitrogen in GaAs bulk. Finally, the optical characteristic of indirect type II transition in a series of size and shape-controlled linear CdTe/CdSe/CdTe heterostructure nano-rods was studied by steady-state and time resolved photoluminescence. Results show the steady transfer from the direct optical transition (type I) within CdSe to the indirect transition (type II) between CdSe/CdTe as the length of the nano-rods increases. (author)

  9. Superconducting homopolar motor and conductor development

    Science.gov (United States)

    Gubser, Donald U.

    1996-10-01

    The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.

  10. Films of Carbon Nanomaterials for Transparent Conductors

    Directory of Open Access Journals (Sweden)

    Jun Wei

    2013-05-01

    Full Text Available The demand for transparent conductors is expected to grow rapidly as electronic devices, such as touch screens, displays, solid state lighting and photovoltaics become ubiquitous in our lives. Doped metal oxides, especially indium tin oxide, are the commonly used materials for transparent conductors. As there are some drawbacks to this class of materials, exploration of alternative materials has been conducted. There is an interest in films of carbon nanomaterials such as, carbon nanotubes and graphene as they exhibit outstanding properties. This article reviews the synthesis and assembly of these films and their post-treatment. These processes determine the film performance and understanding of this platform will be useful for future work to improve the film performance.

  11. Local noise in a diffusive conductor

    Science.gov (United States)

    Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.

    2016-07-01

    The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.

  12. AA, inner conductor of a magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    At the start-up of the AA and during its initial operation, magnetic horns focused the antiprotons emanating from the production target. These "current-sheet lenses" had a thin inner conductor (for minimum absorption of antiprotons), machined from aluminium to wall thicknesses of 0.7 or 1 mm. The half-sine pulses rose to 150 kA in 8 microsec. The angular acceptance was 50 mrad.

  13. Electronic and Ionic Conductors from Ordered Microporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dincă, Mircea [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-30

    The proposed work aimed to establish metal-organic frameworks (MOFs) as new classes of high-surface area microporous electronic and ionic conductors. MOFs are crystalline materials with pore sizes ranging from 0.2 to ~ 2 nm (or larger for the latter) defined by inorganic or organic building blocks connected by rigid organic linkers. Myriad applications have been found or proposed for these materials, yet those that require electron transport or conductivity in combination with permanent porosity still lag behind because the vast majority of known frameworks are electrical insulators. Prior to our proposal and subsequent work, there were virtually no studies exploring the possibility of electronic delocalization in these materials. Therefore, our primary goal was to understand and control, at a fundamental level, the electron and ion transport properties of this class of materials, with no specific application proposed, although myriad applications could be envisioned for high surface area conductors. Our goals directly addressed one of the DOE-identified Grand Challenges for Basic Energy Sciences: designing perfect atom- and energy-efficient syntheses of revolutionary new forms of matter with tailored properties. Indeed, the proposed work is entirely synthetic in nature; owing to the molecular nature of the building blocks in MOFs, there is the possibility of unprecedented control over the structure and properties of solid crystalline matter. The goals also tangentially addressed the Grand Challenge of controlling materials processes at the level of electrons: the scope of our program is to create new materials where charges (electrons and/or ions) move according to predefined pathways.

  14. Testing of the 3M Company Composite Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, John P [ORNL; Rizy, D Tom [ORNL; Kisner, Roger A [ORNL

    2010-10-01

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum-Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors. The objective of this work is to accelerate the commercial acceptance by electric utilities of this new conductor design by testing four representative conductor classes in controlled conditions. A unique facility called the Powerline Conductor Accelerated Testing (PCAT) Facility was built at ORNL for testing overhead conductors. The PCAT has been uniquely designed for testing overhead bare transmission line conductors at high currents and temperatures after they have been installed and tensioned to the manufacturer's specifications. The ability to operate a transmission line conductor in this manner does not exist elsewhere in the United States. Four classes of ACCR cable designed by the 3M Company have been successfully test at ORNL small, medium, large and small/compact. Based on these and other manufacturer tests, the 3M Company has successfully introduced the ACCR into the commercial market and has completed over twenty installations for utility companies.

  15. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    Science.gov (United States)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton

  16. Development of plenoptic infrared camera using low dimensional material based photodetectors

    Science.gov (United States)

    Chen, Liangliang

    Infrared (IR) sensor has extended imaging from submicron visible spectrum to tens of microns wavelength, which has been widely used for military and civilian application. The conventional bulk semiconductor materials based IR cameras suffer from low frame rate, low resolution, temperature dependent and highly cost, while the unusual Carbon Nanotube (CNT), low dimensional material based nanotechnology has been made much progress in research and industry. The unique properties of CNT lead to investigate CNT based IR photodetectors and imaging system, resolving the sensitivity, speed and cooling difficulties in state of the art IR imagings. The reliability and stability is critical to the transition from nano science to nano engineering especially for infrared sensing. It is not only for the fundamental understanding of CNT photoresponse induced processes, but also for the development of a novel infrared sensitive material with unique optical and electrical features. In the proposed research, the sandwich-structured sensor was fabricated within two polymer layers. The substrate polyimide provided sensor with isolation to background noise, and top parylene packing blocked humid environmental factors. At the same time, the fabrication process was optimized by real time electrical detection dielectrophoresis and multiple annealing to improve fabrication yield and sensor performance. The nanoscale infrared photodetector was characterized by digital microscopy and precise linear stage in order for fully understanding it. Besides, the low noise, high gain readout system was designed together with CNT photodetector to make the nano sensor IR camera available. To explore more of infrared light, we employ compressive sensing algorithm into light field sampling, 3-D camera and compressive video sensing. The redundant of whole light field, including angular images for light field, binocular images for 3-D camera and temporal information of video streams, are extracted and

  17. Control of Flux Pinning in MOD YBCO Coated Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [American Superconductor Corporation, Westborough, MA; Huang, Y. [American Superconductor Corporation, Westborough, MA; Li, X. [American Superconductor Corporation, Westborough, MA; Kodenkandath, Thomas [American Superconductor Corporation, Westborough, MA; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Schoop, U. [American Superconductor Corporation, Westborough, MA; Verebelyi, D. T. [American Superconductor Corporation, Westborough, MA; Thieme, C. L. H. [American Superconductor Corporation, Westborough, MA; Siegal, E. E. [American Superconductor Corporation, Westborough, MA; Holesinger, T. G. [Los Alamos National Laboratory (LANL); Maiorov, B. [Los Alamos National Laboratory (LANL); Miller, D. J. [Argonne National Laboratory (ANL); Maroni, V. A. [Argonne National Laboratory (ANL); Goyal, Amit [ORNL; Specht, Eliot D [ORNL; Paranthaman, Mariappan Parans [ORNL

    2007-01-01

    Two different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  18. Control of flux pinning in MOD YBCO coated conductor.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Huang, Y.; Li, X.; Kodenkandath, T.; Rupich, M. W.; Schoop, U.; Verebelyi, D. T.; Thieme, C. L. H.; Siegal, E.; Holesinger, T. G.; Maiorov, B.; Civale, L.; Miller, D. J.; Maroni, V. A.; Li, J.; Martin, P. M.; Specht, E. D.; Goyal, A.; Paranthaman, M. P.; American Superconductor Corp.; LANL; ORNL

    2007-06-01

    NTwo different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  19. Mechanical test of the model coil wound with large conductor

    International Nuclear Information System (INIS)

    Hiue, Hisaaki; Sugimoto, Makoto; Nakajima, Hideo; Yasukawa, Yukio; Yoshida, Kiyoshi; Hasegawa, Mitsuru; Ito, Ikuo; Konno, Masayuki.

    1992-09-01

    The high rigidity and strength of the winding pack are required to realize the large superconducting magnet for the fusion reactor. This paper describes mechanical tests concerning the rigidity of the winding pack. Samples were prepared to evaluate the adhesive strength between conductors and insulators. Epoxy and Bismaleimide-Triazine resin (BT resin) were used as the conductor insulator. The stainless steel (SS) 304 bars, whose surface was treated mechanically and chemically, was applied to the modeled conductor. The model coil was would with the model conductors covered with the insulator by grand insulator. A winding model combining 3 x 3 conductors was produced for measuring shearing rigidity. The sample was loaded with pure shearing force at the LN 2 temperature. The bar winding sample, by 8 x 6 conductors, was measured the bending rigidity. These three point bending tests were carried out at room temperature. The pancake winding sample was loaded with compressive forces to measure compressive rigidity of winding. (author)

  20. Apparatus to examine pulsed parallel field losses in large conductors

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.S.

    1977-01-01

    Conductors in tokamak toroidal field coils will be exposed to pulsed fields both parallel and perpendicular to the current direction. These conductors will likely be quite high capacity (10 to 20 kA) and therefore probably will be built up out of smaller units. We have previously published measurements of losses in conductors exposed to a pulsed parallel field, but those experiments necessarily used monolithic conductors of relatively small cross section because the pulse coil, a torus that surrounded the test conductor, was itself small. Here we describe an apparatus that is conceptually similar but has been scaled up to accept conductors of much larger cross section and current capacity. The apparatus consists basically of a superconducting torus that contains a movable spool to allow test samples to be wound inside without unwinding the torus. Details of apparatus design and capabilities are described and preliminary results from tests of the apparatus and from loss measurements using it are reported

  1. Test of ITER conductors in SULTAN: An update

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Stepanov, Boris; Wesche, Rainer; Herzog, Robert; Calzolaio, Ciro; Vogel, Martin

    2011-01-01

    The ITER Toroidal Field (TF) conductor qualification phase has been carried out by testing short sample prototype conductors in the SULTAN test facility. This phase, started in 2007, has been substantially completed after minor adjustment of the conductor specification and test procedures. All the parties involved in the TF conductor procurement passed the qualification phase. Starting 2010, the samples for TF process qualification phase are tested in SULTAN. A summary of the results for all the ITER Qualification samples and an updated statistics are presented for the V-I and V-T characteristics of the cable-in-conduit conductors (CICC), including Nb 3 Sn and NbTi samples assembled with either a 'bottom joint' or a 'U-bend'. The technical improvements of the test facility are reported, including the enhanced cyclic loading rate and the calibration of the current meter. An outlook of the ITER conductor tests in the coming years is also presented.

  2. Hearing status among Norwegian train drivers and train conductors

    OpenAIRE

    Lie, A.; Skogstad, M.; Johnsen, T. S.; Engdahl, B.; Tambs, K.

    2013-01-01

    Background There is a general perception that train drivers and conductors may be at increased risk of developing noise-induced hearing loss. Aims To study job-related hearing loss among train drivers and train conductors. Methods Audiograms from train drivers and train conductors were obtained from the medical records of the occupational health service of the major Norwegian railway company. The results were compared with audiograms from an internal control group of railway workers and an ex...

  3. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    Science.gov (United States)

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  4. Progress in R and D of coated conductor in M-PACC project

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Koizumi, T.; Kimura, K. [SWCC Showa Cable Systems Co., Ltd., Kanagawa (Japan); Kato, T. [Japan Fine Ceramics Center, Aichi (Japan); Kiss, T. [Kyushu University, Fukuoka (Japan); Izumi, T.; Ibi, A.; Nakaoka, K. [Superconductivity Research Laboratory, International Superconductivity Technology, Kanagawa (Japan); and others

    2014-06-15

    The five-year national project in Japan for R and D of coated conductors and applications, named as the Materials and Power Applications of Coated Conductors (M-PACC) project, was finished at the end of FY2013. The project consists of four sub-themes as cable, transformer, SMES and coated conductors. In the theme of coated conductors, the fabrication process had been developed to satisfy the requirements from the applications such as in-field I{sub c} performance, low AC loss in the long tapes etc. Through the project, the remarkable progress was achieved as follows; a high in-field minimum I-c value over 54A/cm-width under 3T at 77K was realized in a 200m long EuBCO tape with artificial pinning centers of BaHfO{sub 3} by the pulsed laser deposition (PLD) technique on the IBAD template. On the other hand, the AC loss reduction was confirmed in the tapes fabricated by both PLD and the metal organic deposition (MOD) techniques by scribing 100 m tapes into 10-filaments. Additionally, the mechanism of the delamination phenomenon was systematically investigated and the strength was improved by eliminating the origins of the weak points in the films. Through the development, all targeted goals were accomplished and the several results were appreciated as a world champion data.

  5. Fabrication of built-up conductors for large pulsed coils

    International Nuclear Information System (INIS)

    Henke, M.D.; Schermer, R.I.

    1979-01-01

    The development work was performed to provide a low-loss, cryostable conductor capable of carrying 5 kA at 3 T for a 30-MJ coil cycled at 0.35 Hz. Much of the work is relevant to conductor development for other pulsed coils, such as a tokamak induction heating coil. As part of the development process, various conductor configurations were subjected to ac loss measurements, stability tests, electrical resistance measurements, and mechanical load-bearing and mechanical fatigue tests. The result is a conductor that appears to satisfy the design criteria with a considerable safety margin

  6. Development of YBCO tape conductor fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G. and others

    2001-08-01

    Superconductor when fabricated into wire shape is applied for developing electric power transmission cable, transformer, generator and SMES. Such superconducting power devices are capable of maximizing the efficiency of electricity and are anticipated to contribute for solving the energy problem of humankind. Furthermore the high temperature oxide superconductor developed in late 1980s is superconducting above boiling temperature of liquid nitrogen temperature has strong potential to realize superconducting power device and a lot of researches are being done in this field. Superconducting wire is the most important core material for developing superconducting power device and thermo-mechanical powder in tube process was developed to fabricated Ag/Bi-2223 conductor in long length having high critical current carrying capacity. Several companies fabricate and sell Ag/Bi-2223 superconducting wire longer than km length and used for developed electrical power device. But because of its inherent property of sharp decrease in current carrying capacity when applying high magnetic field, the application of Bi-2223 sire is limited as low as 20 K when the power device is in operating under high magnetic field. The YBCO tape conductor has the advantages of maintaining high critical current applying high magnetic field and can be used to most of the power device without special limitation. The metal substrate having good crystallographic texture and deposition technique which can deposit the good quality superconducting thin film continuously in large area are need to fabricate coated conductor, and this technique can be applied to develop the superconducting current limiter or magnetic field shielding device. A superconducting wire for using in high magnetic field is play a critical role in developing maglev, MRI, SMES, transformer, generator and motor and the continuous film deposition technique can be applied in other industry very much.

  7. Low-dimensional chiral physics. Gross-Neveu universality and magnetic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Daniel David

    2012-09-27

    In this thesis, we investigate the 3-dimensional, chirally symmetric Gross-Neveu model with functional renormalization group methods. This low-dimensional quantum field theory describes the continuum limit of the low-energy sector in certain lattice systems. The functional renormalization group allows to study in a nonperturbative way the physical properties of many-body systems and quantum field theories. The starting point is a formally exact flow equation with 1-loop structure for the generating functional of 1-particle irreducible vertices. Within a gradient expansion - tailor-made for extracting the infrared asymptotics of the momentum and frequency dependent vertices of the theory - we study the strong-coupling fixed point of the Gross-Neveu model even beyond the formal limit of infinite flavor number. This fixed point controls a 2nd order quantum phase transition from a massless phase to a phase with massive Dirac fermions. After a first analysis of the purely fermionic theory, a Hubbard-Stratonovich transformation is used to partially bosonize the theory. Within this bosonized description, we find universal critical exponents that are in excellent quantitative agreement with available results from 1/N{sub f}-expansions and Monte Carlo simulations and are expected to improve upon earlier results. The renormalization group flow allows us to gain insights into the global and local structure of the critical manifold within given truncations and better understanding of the relevant directions in the space of couplings, which in general do not coincide with the Gaussian classification. Within the framework of the so-called ''asymptotic safety''-scenario relevant for the construction of proper field theories, the fixed-point theory could be determined exactly in the limit of infinite flavor number. Here, the Gross-Neveu model yields a simple and intuitive example for how to define a nonperturbatively renormalizable quantum field theory. Going

  8. Low-dimensional chiral physics. Gross-Neveu universality and magnetic catalysis

    International Nuclear Information System (INIS)

    Scherer, Daniel David

    2012-01-01

    In this thesis, we investigate the 3-dimensional, chirally symmetric Gross-Neveu model with functional renormalization group methods. This low-dimensional quantum field theory describes the continuum limit of the low-energy sector in certain lattice systems. The functional renormalization group allows to study in a nonperturbative way the physical properties of many-body systems and quantum field theories. The starting point is a formally exact flow equation with 1-loop structure for the generating functional of 1-particle irreducible vertices. Within a gradient expansion - tailor-made for extracting the infrared asymptotics of the momentum and frequency dependent vertices of the theory - we study the strong-coupling fixed point of the Gross-Neveu model even beyond the formal limit of infinite flavor number. This fixed point controls a 2nd order quantum phase transition from a massless phase to a phase with massive Dirac fermions. After a first analysis of the purely fermionic theory, a Hubbard-Stratonovich transformation is used to partially bosonize the theory. Within this bosonized description, we find universal critical exponents that are in excellent quantitative agreement with available results from 1/N f -expansions and Monte Carlo simulations and are expected to improve upon earlier results. The renormalization group flow allows us to gain insights into the global and local structure of the critical manifold within given truncations and better understanding of the relevant directions in the space of couplings, which in general do not coincide with the Gaussian classification. Within the framework of the so-called ''asymptotic safety''-scenario relevant for the construction of proper field theories, the fixed-point theory could be determined exactly in the limit of infinite flavor number. Here, the Gross-Neveu model yields a simple and intuitive example for how to define a nonperturbatively renormalizable quantum field theory. Going beyond the determination

  9. AA, Inner Conductor of Magnetic Horn

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Antiprotons emerging at large angles from the production target (hit by an intense 26 GeV proton beam from the PS), were focused into the acceptance of the injection line of the AA by means of a "magnetic horn" (current-sheet lens). Here we see an early protype of the horn's inner conductor, machined from solid aluminium to a thickness of less than 1 mm. The 1st version had to withstand pulses of 150 kA, 15 us long, every 2.4 s. See 8801040 for a later version.

  10. Flux pinning characteristics of YBCO coated conductor

    International Nuclear Information System (INIS)

    Matsushita, T.; Watanabe, T.; Fukumoto, Y.; Yamauchi, K.; Kiuchi, M.; Otabe, E.S.; Kiss, T.; Watanabe, T.; Miyata, S.; Ibi, A.; Muroga, T.; Yamada, Y.; Shiohara, Y.

    2005-01-01

    Flux pinning properties of PLD-processed YBCO coated conductors deposited on IBAD substrate are investigated. The thickness of YBCO layer is changed in the range of 0.27-1.0 μm. The thickness dependence of critical current density, n-value and irreversibility field are measured in a wide range of magnetic field. The results are compared with the theoretical flux creep-flow model. It is found that these pinning properties are strongly influenced by the thickness as well as the pinning strength. Optimum condition for high field application of this superconductor is discussed

  11. Relative stiffness of flat conductor cables

    Science.gov (United States)

    Hankins, J. D.

    1976-01-01

    The measurement of the bending moment required to obtain a given deflection in short lengths of flat conductor cable (FCC) is presented in this report. Experimental data were taken on 10 different samples of FCC and normalized to express all bending moments (relative stiffness factor) in terms of a cable 5.1 cm (2.0 in.) in width. Data are presented in tabular and graphical form for the covenience of designers who may be interested in finding torques exerted on critical components by short lengths of FCC.

  12. Assessment of conductor degradation in the ITER CS insert coil and implications for the ITER conductors

    Science.gov (United States)

    Mitchell, N.

    2007-01-01

    Nb3Sn cable in conduit-type conductors were expected to provide an efficient way of achieving large conductor currents at high field (up to 13 T) combined with good stability to electromagnetic disturbances due to the extensive helium contact area with the strands. Although ITER model coils successfully reached their design performance (Kato et al 2001 Fusion Eng. Des. 56/57 59-70), initial indications (Mitchell 2003 Fusion Eng. Des. 66-68 971-94) that there were unexplained performance shortfalls have been confirmed. Recent conductor tests (Pasztor et al 2004 IEEE Trans. Appl. Supercond. 14 1527-30) and modelling work (Mitchell 2005 Supercond. Sci. Technol. 18 396-404) suggest that the shortfalls are due to a combination of strand bending and filament fracture under the transverse magnetic loads. Using the new model, the extensive database from the ITER CS insert coil has been reassessed. A parametric fit based on a loss of filament area and n (the exponent of the power-law fit to the electric field) combined with a more rigorous consideration of the conductor field gradient has enabled the coil behaviour to be explained much more consistently than in earlier assessments, now fitting the Nb3Sn strain scaling laws when used with measurements of the conductor operating strain, including conditions when the insert coil current (and hence operating strain) were reversed. The coil superconducting performance also shows a fatigue-type behaviour consistent with recent measurements on conductor samples (Martovetsky et al 2005 IEEE Trans. Appl. Supercond. 15 1367-70). The ITER conductor design has already been modified compared to the CS insert, to increase the margin and provide increased resistance to the degradation, by using a steel jacket to provide thermal pre-compression to reduce tensile strain levels, reducing the void fraction from 36% to 33% and increasing the non-copper material by 25%. Test results are not yet available for the new design and performance

  13. Transport properties and giant Shubnikov-de Haas oscillations in the first organic conductor with metal complex anion containing selenocyanate ligand, (ET)2TlHg(SeCN)4

    International Nuclear Information System (INIS)

    Laukhin, V.N.; Audouard, A.; Rakoto, H.; Broto, J.M.; Goze, F.; Coffe, G.; Brossard, L.; Redoules, J.P.; Kartsovnik, M.V.; Kushch, N.D.; Buravov, L.I.; Khomenko, A.G.; Yagubskii, E.B.; Askenazy, S.; Pari, P.

    1995-01-01

    Temperature dependence of the resistivity in various crystallographic directions and high pulsed field magnetoresistance of organic metal α-(ET) 2 TlHg(SeCN) 4 have been studied at temperatures down to 80 mK. Giant Shubnikov-de Haas oscillations, which are attributed to the two-dimensional nature of the cylindrical Fermi surface with a very small warping along the direction of the lowest conductivity have been observed. Four harmonics of the fast oscillations with fundamental frequency F 0 =653±3 T and slow frequency oscillations with F s =38±5 T have been revealed. (orig.)

  14. Transport properties and giant Shubnikov-de Haas oscillations in the first organic conductor with metal complex anion containing selenocyanate ligand, (ET){sub 2}TlHg(SeCN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Laukhin, V.N. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France)]|[Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, Chernogolovka, MD 142432 (Russian Federation); Audouard, A. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Rakoto, H. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Broto, J.M. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Goze, F. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Coffe, G. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Brossard, L. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Redoules, J.P. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Kartsovnik, M.V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, MD 142432 (Russian Federation); Kushch, N.D. [Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, Chernogolovka, MD 142432 (Russian Federation); Buravov, L.I.

    1995-05-01

    Temperature dependence of the resistivity in various crystallographic directions and high pulsed field magnetoresistance of organic metal {alpha}-(ET){sub 2}TlHg(SeCN){sub 4} have been studied at temperatures down to 80 mK. Giant Shubnikov-de Haas oscillations, which are attributed to the two-dimensional nature of the cylindrical Fermi surface with a very small warping along the direction of the lowest conductivity have been observed. Four harmonics of the fast oscillations with fundamental frequency F{sub 0}=653{+-}3 T and slow frequency oscillations with F{sub s}=38{+-}5 T have been revealed. (orig.).

  15. VAMAS Nb3Sn test conductor

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A bronze-process Nb 3 Sn conductor was measured as part of the second VAMAS (Versailles Project on Advanced Materials and Standards) international critical-current round robin. The conductor specifications are given in Table 15. The critical current was measured as a function of magnetic field and axial tensile strain. The measured data are presented in Table 16 and in Figs. 23 and 24. The I c and J c values are based on an electric field criterion (E c ) of 1 μV/cm. In the first VAMAS round robin tests, differences in the test specimens' axial strain, caused by variations in the thermal contraction of different test fixtures, was a major source of interlaboratory variation in the critical-current data. Consequently, electromechanical characterization of the test specimen is important for data interpretation and error analysis. In the second round robin, the test apparatus and procedure were more rigidly specified. This increased experimental control reduced the critical-current variation by a factor of 3.5. The results of our measurements will be published in the final VAMAS report

  16. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  17. Conductor gestures influence evaluations of ensemble performance.

    Science.gov (United States)

    Morrison, Steven J; Price, Harry E; Smedley, Eric M; Meals, Cory D

    2014-01-01

    Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor's gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance: articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and non-majors (N = 285) viewed sixteen 30 s performances and evaluated the quality of the ensemble's articulation, dynamics, technique, and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble's performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity.

  18. Microscopic theory of the superconducting gap in the quasi-one-dimensional organic conductor (TMTSF) 2ClO4 : Model derivation and two-particle self-consistent analysis

    Science.gov (United States)

    Aizawa, Hirohito; Kuroki, Kazuhiko

    2018-03-01

    We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.

  19. Testing of the 3M Company ACCR Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, J.P.; RIzy, D.T.; Kisner, R.A.; Deve, H.E. (3M Comp.)

    2010-09-15

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum- Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors so the core has a lower density and higher conductivity. The objective of this work is to accelerate the commercial acceptance by electric utilities of these new conductor designs by testing four representative conductor classes in controlled conditions. Overhead transmission lines use bare aluminum conductor strands wrapped around a steel core strands to transmit electricity. The typical cable is referred to as aluminum-conductor steel-reinforced (ACSR). The outer strands are aluminum, chosen for its conductivity, low weight, and low cost. The center strand is of steel for the strength required to support the weight without stretching the aluminum due to its ductility. The power density of a transmission corridor has been directly increased by increasing the voltage level. Transmission voltages have increased from 115-kV to 765- kV over the past 80 years. In the United States, further increasing the voltage level is not feasible at this point in time, so in order to further increase the power density of a transmission corridor, conductor designs that increase the current carrying capability have been examined. One of the key limiting factors in the design of a transmission line is the conductor sag which determines the clearance of the conductor above ground or underlying structures needed for electrical safety. Increasing the current carrying capability of a conductor increases the joule heating in the conductor which increases the conductor sag. A conductor designed for high-temperature and lowsag operation requires an engineered modification of the conductor materials. To make an advanced cable, the 3M Company solution has been the development of a composite conductor consisting of Nextel ceramic fibers to replace the steel core and

  20. Beyond the Beat: Modelling Intentions in a Virtual Conductor

    NARCIS (Netherlands)

    ter Maat, Mark; Ebbers, Rob M.; Reidsma, Dennis; Nijholt, Antinus

    We describe our research on designing and implementing a Virtual Conductor. That is, a virtual human (embodied agent) that acts like a human conductor in its interaction with a real, human orchestra. We reported previously on a first version that used a digital musical score to lead an orchestra.

  1. Elastically stretchable thin film conductors on an elastomeric substrate

    Science.gov (United States)

    Jones Harris, Joyelle Elizabeth

    Imagine a large, flat screen television that can be rolled into a small cylinder after purchase in the store and then unrolled and mounted onto the wall of a home. The electronic devices within the television must be able to withstand large deformation and tensile strain. Consider a robot that is covered with an electronic skin that simulates human skin. The skin would enable the machine to lift an elderly person with care and sensitivity. The skin will endure repeated deformation with the highest tensile strains being experienced at the robot's joints. These applications and many others will benefit from stretchable electronic circuitry. While several different methods have been employed to create stretchable electronics, all methods use a common tool -- stretchable conductors. Therefore, the goal of this thesis work was to fabricate elastically stretchable conductors that can be used in stretchable electronics. We deposited Au thin films on an elastomeric substrate, and the resulting conductors remained electrically continuous when stretched by 30% and more. We developed photolithographic processes that can be used to pattern elastically stretchable conductors with a 10 mum resolution. We fabricated bi-level stretchable conductors that are separated by an elastomeric insulator and are electrically connected through via holes in the insulator. We applied our bi-level conductors to create a stretchable resistor-inductor-capacitor (RLC) circuit with a tunable resonant frequency. We also used stretchable conductors to measure action potentials in biological samples. This thesis describes the fabrication and application of our elastically stretchable conductors.

  2. 21 CFR 868.1920 - Esophageal stethoscope with electrical conductors.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Esophageal stethoscope with electrical conductors. 868.1920 Section 868.1920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... stethoscope with electrical conductors. (a) Identification. An esophageal stethoscope with electrical...

  3. The Identification of Conductor-Distinguished Functions of Conducting

    Science.gov (United States)

    Gumm, Alan J.; Battersby, Sharyn L.; Simon, Kathryn L.; Shankles, Andrew E.

    2011-01-01

    The purpose of the present study was to identify whether conductors distinguish functions of conducting similarly to functions implied in previous research. A sample of 84 conductors with a full range of experience levels (M = 9.8) and of a full range of large ensemble types and ensemble age levels rated how much they pay attention to 82…

  4. EMRS Spring Meeting 2014 Symposium D: Phonons and fluctuations in low dimensional structures

    International Nuclear Information System (INIS)

    2014-01-01

    The E-MRS 2014 Spring meeting, held from 26-30th May 2014 in Lille included the Symposium D entitled ''Phonons and Fluctuations in Low Dimensional Structures'', the first edition of its kind. The symposium was organised in response to the increasing interest in the study of phonons in the context of advances in condensed matter physics, electronics, experimental methods and theory and, in particular, the transfer of energy across atomic interfaces and the propagation of energy in the nm-scale. Steering heat by light or vice versa and examining nano-scale energy conversion (as in thermoelectricity and harvesting e.g. in biological systems) are two aspects that share the underlying science of energy processes across atomic interfaces and energy propagation in the nanoscale and or in confined systems. The nanometer scale defies several of the bulk relationships as confinement of electrons and phonons, locality and non-equilibrium become increasingly important. The propagation of phonons as energy carriers impacts not only heat transfer, but also the very concept and handling of temperature in non-equilibrium and highly localised conditions. Much of the needed progress depends on the materials studied and this symposium targeted the interface material aspects as well as the emerging concepts to advance in this field. The symposium had its origins in a series of meetings and seminars including: (1) the first Phonon Engineering Workshop, funded by Catalan Institute for Research and Advanced Studies (ICREA), the then MICINN, the CNRS, VTT, and several EU projects, held in Saint Feliu de Guixols (Girona, Spain) from 24th to 27th of May 2010 with 65 participants from Europe, the USA and Japan; (2) the first Phonons and Fluctuations workshop, held in Paris on 8th and 9th November 2010, supported by French, Spanish and Finnish national projects and EU projects, attended by about 50 researchers; (3) the second Phonon and Fluctuations workshop, held in Paris

  5. EMRS Spring Meeting 2014 Symposium D: Phonons and fluctuations in low dimensional structures

    Science.gov (United States)

    2014-11-01

    The E-MRS 2014 Spring meeting, held from 26-30th May 2014 in Lille included the Symposium D entitled ''Phonons and Fluctuations in Low Dimensional Structures'', the first edition of its kind. The symposium was organised in response to the increasing interest in the study of phonons in the context of advances in condensed matter physics, electronics, experimental methods and theory and, in particular, the transfer of energy across atomic interfaces and the propagation of energy in the nm-scale. Steering heat by light or vice versa and examining nano-scale energy conversion (as in thermoelectricity and harvesting e.g. in biological systems) are two aspects that share the underlying science of energy processes across atomic interfaces and energy propagation in the nanoscale and or in confined systems. The nanometer scale defies several of the bulk relationships as confinement of electrons and phonons, locality and non-equilibrium become increasingly important. The propagation of phonons as energy carriers impacts not only heat transfer, but also the very concept and handling of temperature in non-equilibrium and highly localised conditions. Much of the needed progress depends on the materials studied and this symposium targeted the interface material aspects as well as the emerging concepts to advance in this field. The symposium had its origins in a series of meetings and seminars including: (1) the first Phonon Engineering Workshop, funded by Catalan Institute for Research and Advanced Studies (ICREA), the then MICINN, the CNRS, VTT, and several EU projects, held in Saint Feliu de Guixols (Girona, Spain) from 24th to 27th of May 2010 with 65 participants from Europe, the USA and Japan; (2) the first Phonons and Fluctuations workshop, held in Paris on 8th and 9th November 2010, supported by French, Spanish and Finnish national projects and EU projects, attended by about 50 researchers; (3) the second Phonon and Fluctuations workshop, held in Paris on 8th and 9th

  6. Overcurrent experiments on HTS tape and cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, Kim Høj; Træholt, Chresten

    2001-01-01

    their critical current. In this light, it is important to investigate the response of HTS tapes and cable conductors to overcurrents several times the critical current. A number of experiments have been performed on HTS tapes and cable conductors, with currents up to 20 times the critical current. During...... overcurrent experiments, the voltage, and the temperature were measured as functions of time in order to investigate the dynamic behavior of the HTS tape and cable conductor. After each experiment, damage to the superconductors was assessed by measuring the critical current. Preliminary results show...... that within seconds an HTS tape (critical current=17 A) heats above room temperature with an overcurrent larger than 140 A. Similar overcurrent experiments showed that a HTS cable conductor could sustain damage with overcurrents exceeding 10 times the critical current of the cable conductor....

  7. LTS and HTS high current conductor development for DEMO

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Sedlak, Kamil; Uglietti, Davide; Bykovsky, Nikolay; Muzzi, Luigi; De Marzi, Gainluca; Celentano, Giuseppe; Della Corte, Antonio; Turtù, Simonetta; Seri, Massimo

    2015-01-01

    Highlights: • Design and R&D for DEMO TF conductors. • Wind&react vs. react&wind options for Nb_3Sn high grade TF conductors. • Progress in the manufacture of short length Nb_3Sn proptotypes. • Design and prototype manufacture for high current HTS cabled conductors. - Abstract: The large size of the magnets for DEMO calls for very large operating current in the forced flow conductor. A plain extrapolation from the superconductors in use for ITER is not adequate to fulfill the technical and cost requirements. The proposed DEMO TF magnets is a graded winding using both Nb_3Sn and NbTi conductors, with operating current of 82 kA @ 13.6 T peak field. Two Nb_3Sn prototypes are being built in 2014 reflecting the two approaches suggested by CRPP (react&wind method) and ENEA (wind&react method). The Nb_3Sn strand (overall 200 kg) has been procured at technical specification similar to ITER. Both the Nb_3Sn strand and the high RRR, Cr plated copper wire (400 kg) have been delivered. The cabling trials are carried out at TRATOS Cavi using equipment relevant for long length production. The completion of the manufacture of the two 20 m long prototypes is expected in the end of 2014 and their test is planned in 2015 at CRPP. In the scope of a long term technology development, high current HTS conductors are built at CRPP and ENEA. A DEMO-class prototype conductor is developed and assembled at CRPP: it is a flat cable composed of 20 twisted stacks of coated conductor tape soldered into copper shells. The 10 kA conductor developed at ENEA consists of stacks of coated conductor tape inserted into a slotted and twisted Al core, with a central cooling channel. Samples have been manufactured in industrial environment and the scalability of the process to long production lengths has been proven.

  8. Irreversible properties of YBCO coated conductors

    International Nuclear Information System (INIS)

    Vostner, A.

    2001-02-01

    Over the past few years substantial efforts were made to optimize the fabrication techniques of various high temperature superconductors for commercial applications. In addition to Bi-2223 tapes, Y-123 coated conductors have the potential for large-scale production and are considered as the second generation of superconducting 'wires' for high current applications. This work reports on magnetic and transport current investigations of Y-123 thick films deposited on either single crystalline substrates by liquid phase epitaxy (LPE) or on metallic substrates by pulsed laser deposition (PLD). At the beginning, a short introduction of the general idea of a coated conductor and of the different production techniques is presented, followed by a description of the different experimental set-ups and the evaluation methods. The main part starts with the results obtained from SQUID magnetometry and ac-susceptibility measurements including the transition temperatures T c , the field dependence of the magnetic critical current densities and the irreversibility lines. In addition, some issues concerning the granular structure and the inter- and intragranular current distribution of the superconducting films are discussed. The investigations by transport currents are focused on the behavior of the application relevant irreversible parameters. These are the angular and the field dependence of the critical transport current densities at 77 and 60 K, as well as the temperature dependence of the irreversibility fields up to 6 T. To gain more insight into the defect structure of the films, neutron irradiation studies were performed on some samples. The introduction of these artificial pinning centers causes large enhancements of the magnetic J c in LPE specimens for the field parallel to the c-axis (H//c) at higher temperatures and magnetic fields. The granular structure of the samples does not change up to the highest neutron fluences. However, the enhancements of the transport J c

  9. Local structure of gallate proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Giannici, F; Messana, D; Martorana, A [Universita degli Studi di Palermo, Dipartimento di Chimica Inorganica ed Analitica, Viale delle Scienze, I-90128 Palermo (Italy); Longo, A [CNR, Istituto per lo studio dei materiali nanostrutturati, Via Ugo La Malfa 153, I-90146 Palermo (Italy); Sciortino, L, E-mail: sciortino@pa.ismn.cnr.i

    2009-11-15

    Lanthanum barium gallate proton conductors are based on disconnected GaO{sub 4} groups. The insertion of hydroxyls in the LaBaGaO{sub 4} network proceeds through self-doping with Ba{sup 2+}, consequent O{sup 2-} vacancy formation to fulfill charge neutrality. With a structural investigation on self-doped LaBaGaO{sub 4} oxides using synchrotron XRD and EXAFS on the Ga K-edge, we find that: (a) the GaO{sub 4} tetrahedra retain their size throughout the whole series; (b) the GaO{sub 4} tetrahedra rotate as rigid bodies on hydration, leading to the formation of a network of shorter O-O configurations that are stabilized by hydrogen bonds; (c) contraction of the lattice occurs along the a unit cell axis, as a consequence of an overall structural rearrangement of the hydrated solid.

  10. Local structure of gallate proton conductors

    International Nuclear Information System (INIS)

    Giannici, F; Messana, D; Martorana, A; Longo, A; Sciortino, L

    2009-01-01

    Lanthanum barium gallate proton conductors are based on disconnected GaO 4 groups. The insertion of hydroxyls in the LaBaGaO 4 network proceeds through self-doping with Ba 2+ , consequent O 2- vacancy formation to fulfill charge neutrality. With a structural investigation on self-doped LaBaGaO 4 oxides using synchrotron XRD and EXAFS on the Ga K-edge, we find that: (a) the GaO 4 tetrahedra retain their size throughout the whole series; (b) the GaO 4 tetrahedra rotate as rigid bodies on hydration, leading to the formation of a network of shorter O-O configurations that are stabilized by hydrogen bonds; (c) contraction of the lattice occurs along the a unit cell axis, as a consequence of an overall structural rearrangement of the hydrated solid.

  11. Local structure of gallate proton conductors

    Science.gov (United States)

    Giannici, F.; Messana, D.; Longo, A.; Sciortino, L.; Martorana, A.

    2009-11-01

    Lanthanum barium gallate proton conductors are based on disconnected GaO4 groups. The insertion of hydroxyls in the LaBaGaO4 network proceeds through self-doping with Ba2+, consequent O2- vacancy formation to fulfill charge neutrality. With a structural investigation on self-doped LaBaGaO4 oxides using synchrotron XRD and EXAFS on the Ga K-edge, we find that: (a) the GaO4 tetrahedra retain their size throughout the whole series; (b) the GaO4 tetrahedra rotate as rigid bodies on hydration, leading to the formation of a network of shorter O-O configurations that are stabilized by hydrogen bonds; (c) contraction of the lattice occurs along the a unit cell axis, as a consequence of an overall structural rearrangement of the hydrated solid.

  12. [Trophoblast: conductor of the maternal immune tolerance].

    Science.gov (United States)

    Mesdag, V; Salzet, M; Vinatier, D

    2014-11-01

    Pregnancy is a temporary semi-allograft that survives for nine months. The importance of this event for the survival of the species justifies several tolerance mechanisms that are put into place at the beginning of pregnancy, some of which occur even at the time of implantation. The description of these mechanisms underlines the leadership of the trophoblast. The trophoblast is the conductor of the events, protects himself by expressing specific antigens and regulates the environment of the decidua according to the calendar of the events of the pregnancy The trophoblast and the decidual environment attract the effectors of immunity, almost all present in the decidua. The immunological atmosphere of the decidua evolves during the pregnancy modulating the level of activation of the immunological cells and adapting the level of activation to the stage of the pregnancy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. ELECTRODYNAMIC STABILITY COMPUTATIONS FOR FLEXIBLE CONDUCTORS OF THE AERIAL LINES

    Directory of Open Access Journals (Sweden)

    I. I. Sergey

    2015-01-01

    Full Text Available In aerial transmission lines aluminium multiwire conductors are in use. Owing to their flexible design the electrodynamic effect of short circuit currents may lead to intolerable mutual rendezvous and even cross-whipping of the phase conductors. The increasing motion of the conductors caused by effect of the short-circuit electrodynamic force impulse is accompanied by the dynamic load impact affecting the conductors, insulating and supporting constructions of the aerial lines. Intensity of the short-circuit currents electrodynamic impact on the flexible conductors depends on the short circuit current magnitude. For research into electrodynamic endurance of the conductors of the aerial lines located at the vertices of arbitrary triangle with spans of a large length, the authors assume the conductor analytical model in the form of a flexible tensile thread whose mass is distributed evenly lengthwise the conductor. With this analytical model, by the action of the imposed forces the conductor assumes the form conditioned by the diagram of applied external forces, and resists neither bending nor torsion. The initial conditions calculation task reduces to solving the flexible thread statics equations. The law of motion of the conductor marginal points comes out of the conjoint solution of dynamic equations of the conductor and structural components of the areal electric power lines. Based on the proposed algorithm, the researchers of the Chair of the Electric Power Stations of BNTU developed a software program LINEDYS+, which in its characteristics yields to no foreign analogs, e. g. SAMSEF. To calculate the initial conditions they modified a software program computing the flexible conductor mechanics named MR 21. The conductor short-circuit electrodynamic interaction estimation considers structural elements of the areal lines, ice and wind loads, objective parameters of the short circuit. The software programs are accommodated with the simple and

  14. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Yuandong Sun

    2017-01-01

    Full Text Available Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D, compared with bulky silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. In this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs applications is listed and discussed.

  15. Conductor development for the Superconducting Super Collider (SSC)

    International Nuclear Information System (INIS)

    Gregory, E.

    1988-01-01

    This review investigates the developments in fine filamentary materials over the last three years and traces how the relations between the magnet requirements and property improvements have fashioned SSC conductor specifications. The review emphasizes factors that affect filament nonuniformity and the overall quality of the product. The elimination of proximity effect-induced coupling in SCC type conductors, by introducing small percentages of manganese into the copper between the filaments, is discussed. Modification of a Fermi kit has produced materials with improved critical current densities. The possibility of using this approach to make conductors for accelerator magnets is assessed

  16. Electrical circuit modeling of conductors with skin effect

    International Nuclear Information System (INIS)

    Kerst, D.W.; Sprott, J.C.

    1986-01-01

    The electrical impedance of a lossy conductor is a complicated function of time (or frequency) because of the skin effect. By solving the diffusion equation for magnetic fields in conductors of several prototypical shapes, the impedance can be calculated as a function of time for a step function of current. The solution suggests an electrical circuit representation that allows calculation of time-dependent voltages and currents of arbitrary waveforms. A technique using an operational amplifier to determine the current in such a conductor by measuring some external voltage is described. Useful analytical approximations to the results are derived

  17. General relativistic galvano-gravitomagnetic effect in current carrying conductors

    International Nuclear Information System (INIS)

    Ahmedov, B.J.

    1998-11-01

    The analogy between general relativity and electromagnetism suggests that there is a galvano-gravitomagnetic effect, which is the gravitational analogue of the Hall effect. This new effect takes place when a current carrying conductor is placed in a gravitomagnetic field and the conduction electrons moving inside the conductor are deflected transversally with respect to the current flow. In connection with this galvano-gravitomagnetic effect, we explore the possibility of using current carrying conductors for detecting the gravitomagnetic field of the Earth. (author)

  18. General Strategy for Rapid Production of Low-Dimensional All-Inorganic CsPbBr3 Perovskite Nanocrystals with Controlled Dimensionalities and Sizes.

    Science.gov (United States)

    Liu, Wenna; Zheng, Jinju; Cao, Sheng; Wang, Lin; Gao, Fengmei; Chou, Kuo-Chih; Hou, Xinmei; Yang, Weiyou

    2018-02-05

    Currently, all-inorganic CsPbX 3 (X = Br, I, Cl) perovskite nanocrystals (NCs) are shining stars with exciting potential applications in optoelectronic devices such as solar cells, light-emitting diodes, lasers, and photodetectors, due to their superior performance in comparison to their organic-inorganic hybrid counterparts. In the present work, we report a general strategy based on a microwave technique for the rapid production of low-dimensional all-inorganic CsPbBr 3 perovskite NCs with tunable morphologies within minutes. The effect of the key parameters such as the introduced ligands, solvents, and PbBr 2 precursors and microwave powers as well as the irradiation times on the production of perovskite NCs was systematically investigated, which allowed their growth with tunable dimensionalities and sizes. As a proof of concept, the ratio of OA to OAm as well as the concentration of PbBr 2 precursor played important roles in triggering the anisotropic growth of the perovskite NCs, favoring their growth into 1D/2D single-crystalline nanostructures. Meanwhile, their sizes could be tailored by controlling the microwave powers and irradiation times. The mechanism for the tunable growth of perovskite NCs is discussed.

  19. Organic Semiconductors and Conductors with tert-Butyl Substituents

    Directory of Open Access Journals (Sweden)

    Toshiki Higashino

    2012-08-01

    Full Text Available Tetrathiafulvalene (TTF, pentacene, and quarterthiophene with tert-butyl substituents are synthesized, and the crystal structures and the transistor properties are investigated. The tetracyanoquinodimethane (TCNQ complex of tert-butyl TTF constructs highly one-dimensional segregated columns with tetragonal crystal symmetry.

  20. The first DC performance test and analysis of CC conductor short sample at ASIPP conductor test facility

    International Nuclear Information System (INIS)

    Shi Yi; Wu Yu; Liu Huajun; Long Feng; Qian Li; Ren Zhibin; Li Shaolei; Liu Bo; Chen Jinglin

    2012-01-01

    Highlights: ► In this study the first DC performance experiments of ITER correction coil conductor short sample have been carried out in ASIPP test facility. ► A CC conductor short sample was fabricated and tested to confirm the capability of this test facility for qualification tests of CC conductors. ► There is no obvious impact of cycling on DC performance measurement. ► Those measured results of current sharing temperature are in agreement with the expected results from strand scaling - Abstract: The first DC performance experiments of ITER correction coil (CC) conductor short sample have been carried out in the conductor test facility of Institute of Plasma Physics, CAS (ASIPP) in January this year. Those experiments aim to investigate the DC performance of ITER CC conductor. The tested conductor short sample is bended as a half circle with the diameter of 270 mm to meet the background magnetic field shape. The half circle part of sample is longer than the final twist pitch. The current sharing temperature (T cs ) in the 3.86 T external magnetic field (B ex ), ≤12 kA could be measured including the critical current (I c ) run. There is no obvious impact of 1000 cycles on DC performance. Those measured T cs results are in agreement with the expected results from strand scaling.

  1. HTS current lead units prepared by the TFA-MOD processed YBCO coated conductors

    International Nuclear Information System (INIS)

    Shiohara, K.; Sakai, S.; Ishii, Y.; Yamada, Y.; Tachikawa, K.; Koizumi, T.; Aoki, Y.; Hasegawa, T.; Tamura, H.; Mito, T.

    2010-01-01

    Two superconducting current lead units have been prepared using ten coated conductors of the Tri-Fluoro-Acetate - Metal Organic Deposition (TFA-MOD) processed Y 1 Ba 2 Cu 3 O 7-δ (YBCO) coated conductors with critical current (I c ) of about 170 A at 77 K in self-field. The coated conductors are 5 mm in width, 190 mm in length and about 120 μm in overall thickness. The 1.5 μm thick superconducting YBCO layer was synthesized through the TFA-MOD process on Hastelloy TM C-276 substrate tape with two buffer oxide layers of Gd 2 Zr 2 O 7 and CeO 2 . The five YBCO coated conductors are attached on a 1 mm thick Glass Fiber Reinforced Plastics (GFRP) board and soldered to Cu caps at the both ends. We prepared two 500 A-class current lead units. The DC transport current of 800 A was stably applied at 77 K without any voltage generation in all coated conductors. The voltage between both Cu caps linearly increased with increasing the applied current, and was about 350 μV at 500 A in both current lead units. According to the estimated values of the heat leakage from 77 K to 4.2 K, the heat leakage for the current lead unit was 46.5 mW. We successfully attained reduction of the heat leakage because of improvement of the transport current performance (I c ), a thinner Ag layer of YBCO coated conductor and usage of the GFRP board for reinforcement instead of a stainless steel board used in the previous study. The DC transport current of 1400 A was stably applied when the two current lead units were joined in parallel. The sum of the heat leakages from 77 K to 4.2 K for the combined the current lead units was 93 mW. In comparison with the conventional Cu current leads by gas-cooling, it could be noted that the heat leakage of the current lead is about one order of magnitude smaller than that of the Cu current lead.

  2. ELS-LEED-study of low-dimensional plasmons in DySi2 layers and nanowires

    International Nuclear Information System (INIS)

    Rugeramigabo, Eddy Patrick

    2007-01-01

    Low-dimensional dysprosium silicide metal systems grown on Si have been characterized by means of energy loss spectroscopy of low energy electron diffraction. The several silicide phases depending on the growth conditions have been observed. Moreover collective charge excitations were clearly detected and identified as low-dimensional plasmons which have a different dispersion compared to the well known bulk and surface plasmons. Dy-silicide has been grown on Si(111) by means of molecular beam epitaxy. Due to its small lattice mismatch (-0.3%) to Si(111), Dy-silicide grows in epitaxial high quality crystalline layers. In the submonolayer regime, many silicide phases coexist until the silicide coverage approaches 1ML, and shows the characteristic 1 x 1 diffraction pattern with the stoichiometry DySi 2 . With further increasing of the coverage, the silicide turns to the multilayer phase. The collective electronic excitations in the monolayer structure have been found to have a 2D-character. Accordingly the plasmon dispersion reaches zero in the long-wavelength limit (at vanishing wave number q) and shows a √(q) behaviour until it entered the domain of strong damping. When grown on Si (001) the Dy-silicide formed an array of parallel nanowires, in the direction normal to the dimer row direction and their length was limited by the crossing of another nanowire. A structure dependent energy loss was observed: the energy loss were only sufficiently intense when the 7 x 2 reconstruction has formed. An possibility of creating vast area with only parallel nanowires in one direction was performed on vicinal Si(001) with four degree miscut. At the same coverage where the 7 x 2 reconstruction occurs on flat Si(001), it was surprising that, besides the 7 x 2 periodicity, the diffraction pattern revealed a mixture of phases, with periodicities ranging from the 10 x 2 to that of the 7 x 2, which was observed as the limit of shifting reflex positions. We were able to confirm the

  3. Exotic Quantum Phases and Phase Transitions of Strongly Interacting Electrons in Low-Dimensional Systems

    Science.gov (United States)

    Mishmash, Ryan V.

    Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin

  4. Loss and Inductance Investigation in Superconducting Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Tønnesen, Ole; Træholt, Chresten

    1999-01-01

    An important parameter in the design and optimization of a superconducting cable conductor is the control of the current distribution among single tapes and layers. This distribution is to a large degree determined by inductances, since the resistances are low. The self and mutual inductances...... of transport current and current distribution.This presentation is based on a number of experiments performed on prototype superconducting cable conductors. The critical current (1uV/cm) of the conductor at 77K was 1590 A (cable #1) and 3240 A (cable #2) respectively.At an rms current of 2 kA (50 Hz) the AC......-loss was measured on cable #2 to 0.6W/mxphase. This is, to our knowledge, the lowest AC-loss (at 2kA and 77K) of a high temperature superconducting cable conductor reported so far....

  5. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  6. Gravitomagnetic effects in conductor in applied magnetic field

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Karim, M.

    1999-11-01

    The electromagnetic measurements of general relativistic gravitomagnetic effects which can be performed within a conductor embedded in the space-time of slow rotating gravitational object in the presence of magnetic field are proposed. (author)

  7. High voltage switches having one or more floating conductor layers

    Science.gov (United States)

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  8. Experimental and computational approaches to electrical conductor loading characteristics

    International Nuclear Information System (INIS)

    Vary, M.; Goga, V.; Paulech, J.

    2012-01-01

    This article describes cooling analyses of horizontally arranged bare electric conductor using analytical and numerical methods. Results of these analyses will be compared to the results obtained from experimental measurement. (Authors)

  9. Room temperature solution processed low dimensional CH3NH3PbI3 NIR detector

    Science.gov (United States)

    Besra, N.; Paul, T.; Sarkar, P. K.; Thakur, S.; Sarkar, S.; Das, A.; Chanda, K.; Sardar, K.; Chattopadhyay, K. K.

    2018-05-01

    Metal halide perovskites have recently drawn immense research interests among the worldwide scientific community due to their excellent light harvesting capabilities and above all, cost effectiveness. These new class of materials have already been used as efficient optoelectronic devices e.g. solar cells, photo detectors, etc. Here in this work, room temperature NIR (near infra red) response of organic-inorganic lead halide perovskite CH3NH3PbI3 (Methylammonium lead tri iodide) nanorods has been studied. A very simple solution process technique has been adopted to synthesize CH3NH3PbI3 nanostructures at room temperature. The NIR exposure upon the sample resulted in a considerable hike in its dark current with very good responsivity (0.37 mA/W). Along with that, a good on-off ratio (41.8) was also obtained when the sample was treated under a pulsed NIR exposure with operating voltage of 2 V. The specific detectivity of the device came in the order of 1010 Jone.

  10. On the application of the partition of unity method for nonlocal response of low-dimensional structures

    Science.gov (United States)

    Natarajan, Sundararajan

    2014-12-01

    The main objectives of the paper are to (1) present an overview of nonlocal integral elasticity and Aifantis gradient elasticity theory and (2) discuss the application of partition of unity methods to study the response of low-dimensional structures. We present different choices of approximation functions for gradient elasticity, namely Lagrange intepolants, moving least-squares approximants and non-uniform rational B-splines. Next, we employ these approximation functions to study the response of nanobeams based on Euler-Bernoulli and Timoshenko theories as well as to study nanoplates based on first-order shear deformation theory. The response of nanobeams and nanoplates is studied using Eringen's nonlocal elasticity theory. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the global response is numerically studied. The influence of a crack on the axial vibration and buckling characteristics of nanobeams is also numerically studied.

  11. Localization and diagonalization. A review of functional integral techniques for low-dimensional gauge theories and topological field theories

    International Nuclear Information System (INIS)

    Blau, M.; Thompson, G.

    1995-01-01

    We review localization techniques for functional integrals which have recently been used to perform calculations in and gain insight into the structure of certain topological field theories and low-dimensional gauge theories. These are the functional integral counterparts of the Mathai-Quillen formalism, the Duistermaat-Heckman theorem, and the Weyl integral formula respectively. In each case, we first introduce the necessary mathematical background (Euler classes of vector bundles, equivariant cohomology, topology of Lie groups), and describe the finite dimensional integration formulae. We then discuss some applications to path integrals and give an overview of the relevant literature. The applications we deal with include supersymmetric quantum mechanics, cohomological field theories, phase space path integrals, and two-dimensional Yang-Mills theory. (author). 83 refs

  12. On-surface construction of low-dimensional nanostructures with terminal alkynes: Linking strategies and controlling methodologies

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Qi-Wei Chen; Kai Wu

    2017-01-01

    Bottom-up approach to constructing low-dimensional nanostructures on surfaces with terminal alkynes has drawn great interest because of its potential applications in fabricating advanced functional nanomaterials.The diversity of the achieved products manifests rich chemistry of terminal alkynes and hence careful linking strategies and proper controlling methodologies are required for selective preparations of high-quality target nanoarchitectures.This review summarizes various on-surface linking strategies for terminal alkynes,including non-bonding interactions as well as organometallic and covalent bonds,and presents examples to show effective control of surface assemblies and reactions of terminal alkynes by variations of the precursor structures,substrates and activation modes.Systematic studies of the on-surface linkage of terminal alkynes may help efficient and predictable preparations of surface nanomaterials and further understanding of surface chemistry.

  13. Characterization of long-length, MOCVD-derived REBCO coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. J.; Maroni, V. A.; Hiller, J. M.; Koritala, R. E.; Chen, Y.; Reeves Black, J. L.; Selvamanickam, V.; SuperPower, Inc.; Development Dimensions International, Inc.

    2009-06-01

    A leading approach to the fabrication of long-length, high-performance REBa{sub 2}Cu{sub 3}O{sub 7} (REBCO) coated conductor is by metal-organic chemical vapor deposition (MOCVD) of REBCO on buffered templates. Templates are produced by ion beam assisted deposition of textured MgO onto polished metal substrates. The overall performance of MOCVD coated conductors achieved to date is impressive, but further improvement is desired. We have used a coordinated set of characterization techniques to identify the underlying causes for critical current (Ic) performance variations in long-length MOCVD conductors. Using electron microscopy and Raman spectroscopy, we studied tape specimens from specially designed experiments performed in SuperPower's MOCVD manufacturing equipment with its six-track ldquohelixrdquo tape path. We find that in multi-pass depositions used to produce thicker REBCO films, the REBCO phase uniformity and texture quality in the first pass play key roles in pass-to-pass microstructure evolution, with nucleation of second phase particles in the first layer promoting misoriented grains that propagate through subsequent layers. These misoriented grains, many growing in close proximity with second phase particles, present current-blocking obstacles that limit Ic performance. Our results show that achieving more uniform deposition in the very first deposited layer plays a critical role that in turn leads to reduced misoriented grain content and REBCO lattice disorder in the second and subsequent layers of the REBCO film.

  14. AC Loss Reduction in Filamentized YBCO Coated Conductors with Virtual Transverse Cross-cuts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei [ORNL; Duckworth, Robert C [ORNL; Ha, Tam T [ORNL; List III, Frederick Alyious [ORNL; Gouge, Michael J [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; X, Xiong, [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    While the performance of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO)-based coated conductors under dc currents has improved significantly in recent years, filamentization is being investigated as a technique to reduce ac loss so that the 2nd generation (2G) high temperature superconducting (HTS) wires can also be utilized in various ac power applications such as cables, transformers and fault current limiters. Experimental studies have shown that simply filamentizing the superconducting layer is not effective enough to reduce ac loss because of incomplete flux penetration in between the filaments as the length of the tape increases. To introduce flux penetration in between the filaments more uniformly and further reduce the ac loss, virtual transverse cross-cuts were made in superconducting filaments of the coated conductors fabricated using the metal organic chemical vapor deposition (MOCVD) method. The virtual transverse cross-cuts were formed by making cross-cuts (17 - 120 {micro}m wide) on the IBAD (ion beam assisted deposition)-MgO templates using laser scribing followed by depositing the superconducting layer ({approx} 0.6 {micro}m thick). AC losses were measured and compared for filamentized conductors with and without the cross-cuts under applied peak ac fields up to 100 mT. The results were analyzed to evaluate the efficacy of filament decoupling and the feasibility of using this method to achieve ac loss reduction.

  15. Critical current survival in the YBCO superconducting layer of a delaminated coated conductor

    Science.gov (United States)

    Feng, Feng; Fu, Qishu; Qu, Timing; Mu, Hui; Gu, Chen; Yue, Yubin; Wang, Linli; Yang, Zhirong; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    A high-temperature superconducting coated conductor can be practically applied in electric equipment due to its favorable mechanical properties and critical current (I c) performance. However, the coated conductor can easily delaminate because of its poor stress tolerance along the thickness direction. It would be interesting to investigate whether the I c of the delaminated YBa2Cu3O7-δ (YBCO) layer can be preserved. In this study, coated conductor samples manufactured through the metal organic deposition route were delaminated by liquid nitrogen immersion. Delaminated samples, including the YBCO layer and silver stabilizer, were obtained. Delamination occurred inside the YBCO layer and near the YBCO-CeO2 interface, as suggested by the results of scanning electron microscopy (SEM) and x-ray diffraction. A scanning Hall probe system was employed to measure the I c distribution of the original sample and the delaminated sample. It was found that approximately 50% of the I c can be preserved after delamination, which was verified by I c measurements using the four-probe method. Dense and crack-free morphologies of the delaminated surfaces were observed by SEM, which accounts for the I c survival of the delaminated YBCO layer. The potential application of the delaminated sample in superconducting joints was discussed based on the oxygen diffusion estimation.

  16. Manufacture of mineral-insulated conductor for ITER prototype ELM and VS coil

    Energy Technology Data Exchange (ETDEWEB)

    Long, Feng, E-mail: longf@ipp.ac.cn [Institute of Plasma Physics of Chinese Academy of Sciences, Hefei 230031 (China); Wu, Yu; Jin, Huan; Yu, Min; Han, Qiyang; Ling, Feng [Institute of Plasma Physics of Chinese Academy of Sciences, Hefei 230031 (China); Kalish, Michael [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2015-06-15

    Highlights: • Compaction method is successfully developed for MIC manufacture. • Manufactured MICs show well controlled outer diameter and good electrical properties. • Insulation resistance of all the MICs is higher than 100 GΩ@DC 2500 V. - Abstract: An ITER Organization (IO) Task Agreement (TA) “Final Design and Prototyping of the ITER In-Vessel Coils (IVC) and Feeders” is almost finished by Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). ITER IVCs consist of edge-localized mode (ELM) and vertical stabilization (VS) coils. One prototype Mid-ELM coil complete with 19 brackets brazed with the conductors and one prototype 120° section of upper VS coil with structural components brazed to the conductors have been fabricated. Compaction method is developed successfully for the mineral-insulated conductor (MIC) manufacture. Approximate 110 m Inconel 625 jacket MICs for Mid-ELM prototype coil and 80 m stainless steel 316L jacket MICs for VS prototype coil were manufactured. Most of the copper tubes used for the MICs fabrication failed the ultrasonic testing (UT), but the jacket tubes have good passing rate. Manufacture processes and inspection for the MICs are presented in this paper.

  17. Manufacture of mineral-insulated conductor for ITER prototype ELM and VS coil

    International Nuclear Information System (INIS)

    Long, Feng; Wu, Yu; Jin, Huan; Yu, Min; Han, Qiyang; Ling, Feng; Kalish, Michael

    2015-01-01

    Highlights: • Compaction method is successfully developed for MIC manufacture. • Manufactured MICs show well controlled outer diameter and good electrical properties. • Insulation resistance of all the MICs is higher than 100 GΩ@DC 2500 V. - Abstract: An ITER Organization (IO) Task Agreement (TA) “Final Design and Prototyping of the ITER In-Vessel Coils (IVC) and Feeders” is almost finished by Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). ITER IVCs consist of edge-localized mode (ELM) and vertical stabilization (VS) coils. One prototype Mid-ELM coil complete with 19 brackets brazed with the conductors and one prototype 120° section of upper VS coil with structural components brazed to the conductors have been fabricated. Compaction method is developed successfully for the mineral-insulated conductor (MIC) manufacture. Approximate 110 m Inconel 625 jacket MICs for Mid-ELM prototype coil and 80 m stainless steel 316L jacket MICs for VS prototype coil were manufactured. Most of the copper tubes used for the MICs fabrication failed the ultrasonic testing (UT), but the jacket tubes have good passing rate. Manufacture processes and inspection for the MICs are presented in this paper

  18. Investigation and optimization of YBa2Cu3O7-δ grain boundaries and coated conductors

    International Nuclear Information System (INIS)

    Held, Rainer Robert Martin

    2010-01-01

    With increasing misorientation angle grain boundaries strongly reduce the critical current density of high temperature superconductors. For this reason costly techniques are used in production of modern Coated Conductors to induce sharp textures in the polycrystalline superconductor layers. In this dissertation measurements of the critical current density of different grain boundary types are presented showing that out-of-plane grain boundaries exhibit, also in applied magnetic fields, much higher critical current densities than expected. In further analysis of the grain boundaries indications for a microstructural reason of the high critical current densities were found. The high critical current densities of the out-of-plane grain boundaries should in fabrication of Coated Conductors allow for a relaxation of the out-of-plane grain alignment requirements and a concomitant cost reduction. In this work also results of a industrial cooperation with Nexans are presented demonstrating that the critical current density of metal-organic deposited grain boundaries and Coated Conductor layers can be increased by selective Calcium-doping. In the experiments selective Calcium-doping most effectively increased the critical current density of weak spots. (orig.)

  19. Chaotic Music Generation System Using Music Conductor Gesture

    OpenAIRE

    Chen, Shuai; Maeda, Yoichiro; Takahashi, Yasutake

    2013-01-01

    In the research of interactive music generation, we propose a music generation method, that the computer generates the music, under the recognition of human music conductor's gestures.In this research, the generated music is tuned by the recognized gestures for the parameters of the network of chaotic elements in real time. The music conductor's hand motions are detected by Microsoft Kinect in this system. Music theories are embedded in the algorithm, as a result, the generated music will be ...

  20. Music Conductor Gesture Recognized Interactive Music Generation System

    OpenAIRE

    CHEN, Shuai; MAEDA, Yoichiro; TAKAHASHI, Yasutake

    2012-01-01

    In the research of interactive music generation, we propose a music generation method, that the computer generates the music automatically, and then the music will be arranged under the human music conductor's gestures, before it outputs to us. In this research, the generated music is processed from chaotic sound, which is generated from the network of chaotic elements in realtime. The music conductor's hand motions are detected by Microsoft Kinect in this system. Music theories are embedded ...

  1. Spatial Analysis of Thermal Aging of Overhead Transmission Conductors

    Czech Academy of Sciences Publication Activity Database

    Musílek, P.; Heckenbergerová, Jana; Bhuiyan, M.M.I.

    2012-01-01

    Roč. 27, č. 3 (2012), s. 1196-1204 ISSN 0885-8977 Grant - others:GA AV ČR(CZ) M100300904 Source of funding: V - iné verejné zdroje Keywords : aluminium conductor steel reinforced (ACSR) conductor * hot spot * loss of tensile strength * numerical weather prediction * power transmission lines * thermal aging Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 1.519, year: 2012

  2. Tilt stability of rotating current rings with passive conductors

    International Nuclear Information System (INIS)

    Zweibel, E.G.; Pomphrey, N.

    1984-12-01

    We study the combined effects of rotation and resistive passive conductors on the stability of a rigid current in an external magnetic field. We present numerical and approximate analytical solutions to the equations of motion, which show that the ring is always tilt unstable on the resistive decay timescale of the conductors, although rotation and eddy currents may stabilize it over short times. Possible applications of our model include spheromaks which rotate or which are encircled by energetic particle rings

  3. Test and evaluation of conductors for superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schermer, R.I.; Hassenzahl, W.V.

    1976-01-01

    Pancake coils of a monolithic conductor and several different types of braid and cable, using a variety of insulating tapes and bonding resins were constructed. The coils were tested to quench in self-field at currents up to 2700 A. Results are presented for the training behavior of the various coils as compared to short-sample tests. A conductor composed of several braids or cables in parallel, which will be suitable for the in situ fabrication of large magnets is described

  4. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    Science.gov (United States)

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  5. Transport AC losses in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [Ohio State University, Columbus, OH 43210 (United States); Ye, L [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Velichko, A V [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Coombs, T A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Sumption, M D [Ohio State University, Columbus, OH 43210 (United States); Collings, E W [Ohio State University, Columbus, OH 43210 (United States)

    2007-09-15

    Transport AC loss measurements have been made on YBCO-coated conductors prepared on two different substrate templates-RABiTS (rolling-assisted biaxially textured substrate) and IBAD (ion-beam-assisted deposition). RABiTS samples show higher losses compared with the theoretical values obtained from the critical state model, with constant critical current density, at currents lower than the critical current. An origin of this extra AC loss was demonstrated experimentally by comparison of the AC loss of two samples with different I-V curves. Despite a difference in I-V curves and in the critical currents, their measured losses, as well as the normalized losses, were practically the same. However, the functional dependence of the losses was affected by the ferromagnetic substrate. An influence of the presence of a ferromagnetic substrate on transport AC losses in YBCO film was calculated numerically by the finite element method. The presence of a ferromagnetic substrate increases transport AC losses in YBCO films depending on its relative magnetic permeability. The two loss contributions-transport AC loss in YBCO films and ferromagnetic loss in the substrate-cannot be considered as mutually independent.

  6. Electron quantum optics in ballistic chiral conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal [Laboratoire Pierre Aigrain, Ecole Normale Superieure, CNRS (UMR 8551), Universite Pierre et Marie Curie, Universite Paris Diderot, Paris (France); Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry [Aix Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal [Universite de Lyon, Federation de Physique Andre Marie Ampere, CNRS - Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, Lyon (France)

    2014-01-15

    The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Electron quantum optics in ballistic chiral conductors

    International Nuclear Information System (INIS)

    Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal; Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry; Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal

    2014-01-01

    The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Applications of inorganic Ion-conductor

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Yoshinori [Science and Technology Agency, Tokyo (Japan)

    1989-03-01

    Physical properties and application of solid electrolyte, particularly of inorganic solid electrolyte, are described. Ion conductors have been widely used not only for electric power application but also for sensors, gas separators, display elements, Coulomb meters, storage elements, etc. The most extensively used pacemakers now employ Li/I{sub 2}(PVP) primary batteries. Thin film lithium secondary battery has a feature of providing comparatively large electric current, with 2.5 V charging, 1.8 V discharging, and 3 mA.cm{sup {minus}2} short circuit current. The capacity of about 4 mAh per 1 cm{sup 2} electrode has been achieved. The most widely used solid electrolyte for the oxygen sensor is the stabilized ZrO{sub 2}. The relation of air/fuel mix proportion with the change in electromotive force is shown. Although solid electrolyte fuel cell is not yet put to practical use, a result of an experiment is introduced. Brief explanations are made on the oxygen pump, electrochromic display elements, Coulomb meter and voltage storage element. 18 refs., 11 figs., 6 tabs.

  9. Conductor gestures influence evaluations of ensemble performance

    Directory of Open Access Journals (Sweden)

    Steven eMorrison

    2014-07-01

    Full Text Available Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor’s gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance, articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and nonmajors (N = 285 viewed sixteen 30-second performances and evaluated the quality of the ensemble’s articulation, dynamics, technique and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble’s performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity.

  10. Low ac loss geometries in YBCO coated conductors

    International Nuclear Information System (INIS)

    Duckworth, R.C.; List, F.A.; Paranthaman, M.P.; Rupich, M.W.; Zhang, W.; Xie, Y.Y.; Selvamanickam, V.

    2007-01-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders

  11. Low ac loss geometries in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, R.C. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States)], E-mail: duckworthrc@ornl.gov; List, F.A.; Paranthaman, M.P. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States); Rupich, M.W.; Zhang, W. [American Superconductor, Two Technology Drive, Westborough, MA 01581 (United States); Xie, Y.Y.; Selvamanickam, V. [SuperPower, 450 Duane Ave, Schenectady, NY 12304 (United States)

    2007-10-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders.

  12. Thin film conductors for self-equalizing cables

    Science.gov (United States)

    Owen, G.; Trutna, W. R.; Orsley, T. J.; Lucia, F.; Daly, C. B.

    2017-10-01

    Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000's, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s "Eye-Opener" cables, although higher speed versions never appeared. We have revived the original 1929 idea, proposing to use glass as a solid insulating core. This technology can potentially work at frequencies of many 10's of GHz. Possible uses include short range GHz links such as USB and Thunderbolt, and intra-rack interconnections in data centers. Our feasibility experiments have validated the principle. Copper coated glass fibers can, in principle, be manufactured, but in these tests, the conductors were capillaries internally coated with silver as these are easily obtainable, relatively inexpensive and serve to test the concept. The performance of these experimental twin lead cables corresponds to calculations, confirming the general principle. By calculation, we have compared the performance of cables made from copper-on-insulator conductors to that of similar cables made with solid copper conductors, and verified that copper-on-insulator cables have significantly less frequency dependent loss. We have also made and tested cables with copper on PEEK conductors as surrogates for copper on glass fiber.

  13. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    One type of conductor under consideration for tokamak toroidal field (TF) magnets is a cable-in-conduit cooled by supercritical helium in forced convection. The main problem is designing such force-cooled conductors (fcc) is to maintain adequate stability while keeping the pumping power tolerably low. The transit time of the helium through a coil is many minutes. Since recovery of the conductor from a thermomechanical perturbation takes on the order of tens of milliseconds, for purposes of calculation, the inventory of helium available to promote recovery is finite. This means that a large enough perturbation will quench the conductor. We can then judge the stability of a fcc by the maximum perturbation of some specified type against which the conductor is stable, i.e., can still return to the superconducting state. The simplest type of perturbation is a sudden, uniform heat input over the entire length of the conductor. The maximum, sudden, uniform heat input per unit volume of metal ΔH is called the ''stability margin.''

  14. Charge carrier dynamics of methylammonium lead iodide: from PbI₂-rich to low-dimensional broadly emitting perovskites.

    Science.gov (United States)

    Klein, Johannes R; Flender, Oliver; Scholz, Mirko; Oum, Kawon; Lenzer, Thomas

    2016-04-28

    We provide an investigation of the charge carrier dynamics of the (MAI)(x)(PbI2)(1-x) system in the range x = 0.32-0.90 following the recently published "pseudobinary phase-composition processing diagram" of Song et al. (Chem. Mater., 2015, 27, 4612). The dynamics were studied using ultrafast pump-supercontinuum probe spectroscopy over the pump fluence range 2-50 μJ cm(-2), allowing for a wide variation of the initial carrier density. At high MAI excess (x = 0.90), low-dimensional perovskites (LDPs) are formed, and their luminescence spectra are significantly blue-shifted by ca. 50 nm and broadened compared to the 3D perovskite. The shift is due to quantum confinement effects, and the inhomogeneous broadening arises from different low-dimensional structures (predominantly 2D, but presumably also 1D and 0D). Accurate transient carrier temperatures are extracted from the transient absorption spectra. The regimes of carrier-carrier, carrier-optical phonon and acoustic phonon scattering are clearly distinguished. Perovskites with mole fractions x ≤ 0.71 exhibit extremely fast carrier cooling (ca. 300 fs) at low fluence of 2 μJ cm(-2), however cooling slows down significantly at high fluence of 50 μJ cm(-2) due to the "hot phonon effect" (ca. 2.8 ps). A kinetic analysis of the electron-hole recombination dynamics provides second-order recombination rate constants k2 which decrease from 5.3 to 1.5 × 10(-9) cm(3) s(-1) in the range x = 0.32-0.71. In contrast, recombination in the LDPs (x = 0.90) is more than one order of magnitude faster, 6.4 × 10(-8) cm(3) s(-1), which is related to the confined perovskite structure. Recombination in these LDPs should be however still slow enough for their potential application as efficient broadband emitters or solar light-harvesting materials.

  15. Neutron scattering investigation on low-dimensional, quantum and frustrated magnetism and utilization of neutron polarization analysis. My first encounter with neutron research

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2013-01-01

    My first encounter with neutron scattering research on low-dimensional magnetism at the Hahn-Meitner Institut under the supervision of Prof. H. Dachs and Prof. M. Steiner, were it all began, is accounted for. The polarized neutron analysis research on low-dimensional magnetism at the Institut Laue Langevin under the supervision of Dr. R. Pynn is also reported. I would like to dedicate this article to late Prof. H. Dachs expressing may deepest gratitude for his warm guidance during the early period of my neutron science carrier. (author)

  16. Texture development of HTS powder-in-tube conductors

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom)

    1998-10-01

    An overview of the fabrication and electromagnetic properties of high-temperature conductors processed by the powder-in-tube (PIT) technique with reference to texture development and critical anisotropy data is presented. Special emphasis is given to the optimization of the physicochemical and electromagnetic parameters of the multifilamentary and single-filament conductors with superconducting cores of Bi-2223, Tl-1223 and Y-123 superconducting phases. The influence of the multifilamentary and single-filament structures on texture development is discussed. Also, the importance of the local disturbances of the grain alignment and microdefects for the current distribution across and in the plane of the whole conductor is analysed. A comparative study of the critical current anisotropy with field direction in low magnetic fields of Tl-1223 and Bi-2223 conductors manufactured by the PIT technique is presented. For Tl-1223 PIT conductors the anisotropy coefficient shows a very pronounced minimum, followed by a monotonic reduction of anisotropy with the increase of the magnetic field. This is explained in terms of poor grain alignment with weak intergranular superconducting coupling which cause 3D current percolation and also by the demagnetizing effect of the grains and the ceramic core in the PIT Tl-1223 tapes. (author)

  17. Fabrication and tests of EF conductors for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname, E-mail: kizu.kaname@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Kashiwa, Yoshitoshi; Murakami, Haruyuki [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Obana, Tetsuhiro; Takahata, Kazuya [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Tsuchiya, Katsuhiko; Yoshida, Kiyoshi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Hamaguchi, Shinji [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Matsui, Kunihiro [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Nakamura, Kazuya; Takao, Tomoaki [Sophia University, Tokyo 102-8554 (Japan); Yanagi, Nagato; Imagawa, Shinsaku; Mito, Toshiyuki [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-10-15

    The conductors for plasma equilibrium field (EF) coils of JT-60SA are NbTi cable-in-conduit (CIC) conductor with stainless steel 316L jacket. The production of superconductors for actual EF coils started from February 2010. Nine superconductors with 444 m in length were produced up to July 2010. More than 300 welding of jackets were performed. Six nonconformities were found by inspections as go gauge, visual inspection and X-ray test. In order to shorten the manufacturing time schedule, helium leak test was conducted at once after connecting the long length jacket not just after the welding. The maximum force to pull the cable into jacket was about 7.6 kN on average. The mass flow rates of 9 conductors showed almost same values indicating that there are no blockages in the conductors. The measured current sharing temperature agreed with the expectation values from strand performance indicating that no degradation was caused by production process. The coupling time constants of conductors ranged from 80 to 90 ms which are much smaller than the design value of 200 ms.

  18. Use of ion conductors in the pyrochemical reduction of oxides

    International Nuclear Information System (INIS)

    Miller, W.E.; Tomczuk, Z.

    1994-01-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO 2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a β-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca o used for reducing UO 2 and PuO 2 to U and Pu. 2 figures

  19. Hearing status among Norwegian train drivers and train conductors.

    Science.gov (United States)

    Lie, A; Skogstad, M; Johnsen, T S; Engdahl, B; Tambs, K

    2013-12-01

    There is a general perception that train drivers and conductors may be at increased risk of developing noise-induced hearing loss. To study job-related hearing loss among train drivers and train conductors. Audiograms from train drivers and train conductors were obtained from the medical records of the occupational health service of the major Norwegian railway company. The results were compared with audiograms from an internal control group of railway workers and an external reference group of people not occupationally exposed to noise. The monaural hearing threshold level at 4kHz, the mean binaural value at 3, 4 and 6kHz and the prevalence of audiometric notches (≥25 dB at 4kHz) were used for comparison. Audiograms were available for 1567 drivers, 1565 conductors, 4029 railway worker controls and 15 012 people not occupationally exposed to noise. No difference in hearing level or prevalence of audiometric notches was found between study groups after adjusting for age and gender. Norwegian train drivers and conductors have normal hearing threshold levels comparable with those in non-exposed groups.

  20. Design of force-cooled conductors for large fusion magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems.

  1. Qualification tests for ITER TF conductors in SULTAN

    International Nuclear Information System (INIS)

    Bruzzone, P.; Stepanov, B.; Wesche, R.

    2009-01-01

    From February 2007 to May 2008, 18 short length conductor sections have been tested in SULTAN for design verification and manufacturer qualification of the ITER Toroidal Field (TF) conductor. The test program is focussed on the current sharing temperature, T cs , at the nominal operating conditions, 68 kA current and 11.15 T effective field, which can be fully reproduced in the SULTAN test facility. A broad range of results was observed, with over 2 K difference among the T cs of the conductors. In average, the results are poorer compared to the potential performance estimated from the strand scaling law. The key parameters to mitigate the degradation are not yet clearly identified. The experimental challenges to test conductors with performance degradation are highlighted, including enhanced instrumentation sets, the application of gas flow calorimetry to sense the current sharing power and the post-processing of voltage data to cancel the transverse potential across the cable. The updated schedule of the tests in SULTAN is presented with the short-term action plan for conductor test.

  2. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems

  3. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, Gerald; Meinke, Rainer; Senti, Mark

    2018-03-06

    A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface of second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.

  4. NATO Advanced Study Institute on Low-dimensional Cooperative Phenomena : the Possibility of High-Temperature Superconductivity

    CERN Document Server

    1975-01-01

    Theoretical and experimental work on solids with low-dimensional cooperative phenomena has been rather explosively expanded in the last few years, and it seems to be quite fashionable to con­ tribute to this field, especially to the problem of one-dimensional metals. On the whole, one could divide the huge amount of recent investigations into two parts although there is much overlap bet­ ween these regimes, namely investigations on magnetic exchange interactions constrained to mainly one or two dimensions and, secondly, work done on Id metallic solids or linear chain compounds with Id delocalized electrons. There is, of course, overlap from one extreme case to the other with these solids and in some rare cases both phenomena are studied on one and the same crystal. In fact, however, most of the scientific groups in this area could be associated roughly with one of these categories and,in addition, a separation between theoreticians and experimentalists in each of these groups leads to a further splitting of...

  5. A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference

    KAUST Repository

    Tegner, Jesper; Zenil, Hector; Kiani, Narsis A.; Ball, Gordon; Gomez-Cabrero, David

    2016-01-01

    Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems.

  6. A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference

    KAUST Repository

    Tegner, Jesper

    2016-10-04

    Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems.

  7. EXAFS as a tool for investigation of the local environment of Ge atoms in buried low-dimensional structures

    International Nuclear Information System (INIS)

    Demchenko, I.N.; Lawniczak-Jablonska, K.; Liliental-Weber, Z.; Zakharov, D.N.; Zhuravlev, K.S.

    2005-01-01

    In spite of large number of articles dedicated to the investigation of GeSi islands, a lot of problems concerning growth mechanism and island composition, as well as elastic strains inside the QDs, are still unsolved. To solve such problems, the GeSi low dimensional structures were studied by Extended X-Ray Absorption Fine Structure (EXAFS). The aim of this investigation was to get knowledge about the local structure around Ge atoms inside formed quantum dots. The paper presents a series of measurements performed for a single Ge layer buried in the silicon matrix at A1 station at the HASYLAB/DESY (Germany) with the angle of 45 o between the incident beam and sample surface. The fluorescence, total electron yield and the transmission modes of detection were used. To confirm the EXAFS analysis conclusion more measurements were performed using transmission electron microscopy (TEM). The low temperature samples with 8-20 ML of Ge were investigated by cross-section and plan-view TEM. The reported results of TEM studies of the local structure of germanium quantum dots (QDs) in Si/Ge/Si '' sandwich '' structures are in good correlation with EXAFS conclusion

  8. Thermodynamic behaviour of a coated conductor for currents above Ic

    International Nuclear Information System (INIS)

    Schwarz, M; Schacherer, Chr; Weiss, K-P; Jung, A

    2008-01-01

    Coated conductors are becoming more and more applicable. The temperature range below the critical value (T c ) or below the critical current (I c ) is well characterized. But for applications such as fault current limiters, which take advantage of the superconducting-to-normal transition, characterization beyond the superconducting regime is mandatory. Therefore, this work studies the thermodynamic behaviour of a coated conductor immersed in boiling liquid nitrogen which is driven by a sinusoidal over-current of up to more than five times I c . The temperature of the coated conductor exceeds 720 K without any significant degradation. To validate this current-induced high-temperature region, the resistance of the composite tape is measured from T c to 600 K. A thermodynamic and electrical model is conceptualized for calculating the temperature, developing as a function of time during over-currents. The calculated temperature fits well with the measured temperature

  9. Characterization of textile electrodes and conductors using standardized measurement setups

    International Nuclear Information System (INIS)

    Beckmann, L; Neuhaus, C; Medrano, G; Walter, M; Leonhardt, S; Jungbecker, N; Gries, T

    2010-01-01

    Textile electrodes and conductors are being developed and used in different monitoring scenarios, such as ECG or bioimpedance spectroscopy measurements. Compared to standard materials, conductive textile materials offer improved wearing comfort and enable long-term measurements. Unfortunately, the development and investigation of such materials often suffers from the non-reproducibility of the test scenarios. For example, the materials are generally tested on human skin which is difficult since the properties of human skin differ for each person and can change within hours. This study presents two test setups which offer reproducible measurement procedures for the systematic analysis of textile electrodes and conductors. The electrode test setup was designed with a special skin dummy which allows investigation of not only the electrical properties of textile electrodes but also the contact behavior between electrode and skin. Using both test setups, eight textile electrodes and five textile conductors were analyzed and compared

  10. Nb3Sn conductor development for the ITER magnets

    International Nuclear Information System (INIS)

    Mitchell, N.

    1997-01-01

    The ITER magnet system consists of Toroidal Field (TF) coils, Poloidal Field (PF) coils, the Central Solenoid (CS) and error field correction coils (CC). The conductors for the coils are Nb 3 Sn or NbTi cable in conduit type, forced flow cooled with supercritical helium having a maximum operating current in the range 40-60 kA. To qualify the Nb 3 Sn conductor, two large model coils (energy up to 640 MJ) are being wound by the Home Teams of the Parties to the ITER EDA Agreement. A total of 24 t of strand has been completed for the CS model coil and 4 t for the TF model coil, and fabricated into 7 km of conductor in unit lengths up to 210 m, by an international collaboration involving 12 companies in Europe, Japan, Russia and the USA

  11. Tension layer winding of cable-in-conduit conductor

    International Nuclear Information System (INIS)

    Devernoe, A.; Ciancetta, G.; King, M.; Parizh, M.; Painter, T.; Miller, J.

    1996-01-01

    A 710 mm i.d. by 440 mm long, 6 layer Cable-in-Conduit (CIC) coil was precision tension layer wound with Incoloy 908 jacketed conductor to model winding technology that will be used for the Nb 3 Sn outsert coils of the 45 Tesla Hybrid Magnet Project at the US National High Magnetic Field Laboratory. This paper reports on the set up of a new winding facility with unique capabilities for insulating and winding long length CIC conductor and on special procedures which were developed to wind and support layer to layer transitions and to safely form conductor into and out of the winding. Analytical methods used to predict conduit keystoning, springback and back tensioning requirements before winding are reported in comparison to results obtained during winding and actual winding build-up dimensions on a layer by layer basis in comparison to design requirements

  12. Thin film conductors for self-equalizing cables

    Directory of Open Access Journals (Sweden)

    G. Owen

    2017-10-01

    Full Text Available Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000’s, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s “Eye-Opener” cables, although higher speed versions never appeared. We have revived the original 1929 idea, proposing to use glass as a solid insulating core. This technology can potentially work at frequencies of many 10’s of GHz. Possible uses include short range GHz links such as USB and Thunderbolt, and intra-rack interconnections in data centers. Our feasibility experiments have validated the principle. Copper coated glass fibers can, in principle, be manufactured, but in these tests, the conductors were capillaries internally coated with silver as these are easily obtainable, relatively inexpensive and serve to test the concept. The performance of these experimental twin lead cables corresponds to calculations, confirming the general principle. By calculation, we have compared the performance of cables made from copper-on-insulator conductors to that of similar cables made with solid copper conductors, and verified that copper-on-insulator cables have significantly less frequency dependent loss. We have also made and tested cables with copper on PEEK conductors as surrogates for copper on glass fiber.

  13. Energetic Approach to Investigation of Chaotic Behavior of Low-Dimensional Dynamic Systems and its Illustration on a Two-Disc Rikitake Dynamo

    Czech Academy of Sciences Publication Activity Database

    Pánek, D.; Hrušák, J.; Doležel, Ivo

    2007-01-01

    Roč. 43, č. 596 (2007), s. 46-51 ISSN 0321-0499 R&D Projects: GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z20570509 Keywords : chaotic behavior * low-dimensional chaotic systems * Rikitake dynamo Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  14. Low-dimensional compounds containing cyanido groups. XXIV. Crystal structure, spectroscopic and thermal properties of two Cu(II) tetracyanidoplatinate complexes with tetradentate N-donor ligands

    Czech Academy of Sciences Publication Activity Database

    Vávra, M.; Potočňák, I.; Dušek, Michal

    2014-01-01

    Roč. 409, JAN (2014), s. 441-448 ISSN 0020-1693 Institutional support: RVO:68378271 Keywords : structure analysis * low-dimensional compounds * cyanido group Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.046, year: 2014

  15. Improvement of SOFC electrodes using mixed ionic-electronic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Y.; Hishinuma, M. [Tokyo Gas Co., Ltd. (Japan)

    1996-12-31

    Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.

  16. Thin film conductors for self-equalizing cables

    OpenAIRE

    G. Owen; W. R. Trutna; T. J. Orsley; F. Lucia; C. B. Daly

    2017-01-01

    Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000’s, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s “Eye-Opener” cables, although higher speed versions never appeared. We have revived the or...

  17. 33 CFR 183.435 - Conductors in circuits of 50 volts or more.

    Science.gov (United States)

    2010-07-01

    ... HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer... more. (c) This section does not apply to communication systems; electronic navigation equipment; resistance conductors that control circuit amperage; conductors in secondary circuits of ignition systems...

  18. Cognitive and collaborative demands of freight conductor activities: results and implications of a cognitive task analysis

    Science.gov (United States)

    2012-07-31

    This report presents the results of a cognitive task analysis (CTA) that examined the cognitive and collaborative demands placed on conductors, as well as the knowledge and skills that experienced conductors have developed that enable them to operate...

  19. Design of a Wireless Sensor Module for Monitoring Conductor Galloping of Transmission Lines.

    Science.gov (United States)

    Huang, Xinbo; Zhao, Long; Chen, Guimin

    2016-10-09

    Conductor galloping may cause flashovers and even tower collapses. The available conductor galloping monitoring methods often employ acceleration sensors to measure the conductor translations without considering the conductor twist. In this paper, a new sensor for monitoring conductor galloping of transmission lines based on an inertial measurement unit and wireless communication is proposed. An inertial measurement unit is used for collecting the accelerations and angular rates of a conductor, which are further transformed into the corresponding geographic coordinate frame using a quaternion transformation to reconstruct the galloping of the conductor. Both the hardware design and the software design are described in details. The corresponding test platforms are established, and the experiments show the feasibility and accuracy of the proposed monitoring sensor. The field operation of the proposed sensor in a conductor spanning 734 m also shows its effectiveness.

  20. Enhancing Light-Trapping Properties of Amorphous Si Thin-Film Solar Cells Containing High-Reflective Silver Conductors Fabricated Using a Nonvacuum Process

    Directory of Open Access Journals (Sweden)

    Jun-Chin Liu

    2014-01-01

    Full Text Available We proposed a low-cost and highly reflective liquid organic sheet silver conductor using back contact reflectors in amorphous silicon (a-Si single junction superstrate configuration thin-film solar cells produced using a nonvacuum screen printing process. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (Jsc of sheet silver conductor cells was higher than 1.25 mA/cm2. Using external quantum efficiency measurements, the sheet silver conductor using back contact reflectors in cells was observed to effectively enhance the light-trapping ability in a long wavelength region (between 600 nm and 800 nm. Consequently, we achieved an optimal initial active area efficiency and module conversion efficiency of 9.02% and 6.55%, respectively, for the a-Si solar cells. The results indicated that the highly reflective sheet silver conductor back contact reflector layer prepared using a nonvacuum process is a suitable candidate for high-performance a-Si thin-film solar cells.

  1. Conductor Temperature Estimation and Prediction at Thermal Transient State in Dynamic Line Rating Application

    DEFF Research Database (Denmark)

    Alvarez, David L.; Silva, Filipe Miguel Faria da; Mombello, Enrique Esteban

    2018-01-01

    . This paper presents an algorithm to estimate and predict the temperature in overhead line conductors using an Extended Kalman Filter. The proposed algorithm assumes both actual weather and current intensity flowing along the conductor as control variables. The temperature of the conductor, mechanical tension...

  2. Violence Against Drivers and Conductors in the Road Passenger ...

    African Journals Online (AJOL)

    This cross-sectional study examined the extent, nature and risk factors of workplace violence in the road passenger transport sector in Maputo, the capital city of Mozambique. A random sample of 504 participants was selected from a population of 2 618 registered bus, minibus, and taxi drivers/conductors. The results ...

  3. Intermediate Temperature Proton Conductors – Why and How

    DEFF Research Database (Denmark)

    Li, Qingfeng; Aili, David; Jensen, Jens Oluf

    represented by early fundamental material research for ionic electrolytes. Such materials, most likely based on proton conductors, are expected to bring a new generation of the technologies: fuel cells by direct oxidation or internal splitting of biofuels such as methanol and ethanol, as well as efficient...

  4. Comparative characterization of Cu–Ni substrates for coated conductors

    DEFF Research Database (Denmark)

    Tian, H.; Suo, H.L.; Wulff, Anders Christian

    2014-01-01

    Three Cu100xNix alloys, with x = 23, 33 and 45 at.%Ni, have been evaluated for use as substrates for coated conductors on the basis of measurements of their microstructure, crystallographic texture and hardness. It is found that high-temperature annealing after heavy rolling generates strong cube...

  5. Temporal interaction between an artificial orchestra conductor and human musicians

    NARCIS (Netherlands)

    Reidsma, Dennis; Nijholt, Antinus; Bos, Pieter

    2008-01-01

    The Virtual Conductor project concerns the development of the first properly interactive virtual orchestra conductor—a Virtual Human that can conduct a piece of music through interaction with musicians, leading and following them while they are playing. This article describes our motivation for

  6. Conductor and Ensemble Performance Expressivity and State Festival Ratings

    Science.gov (United States)

    Price, Harry E.; Chang, E. Christina

    2005-01-01

    This study is the second in a series examining the relationship between conducting and ensemble performance. The purpose was to further examine the associations among conductor, ensemble performance expressivity, and festival ratings. Participants were asked to rate the expressivity of video-only conducting and parallel audio-only excerpts from a…

  7. Structural analysis of the NET toroidal field coils and conductor

    International Nuclear Information System (INIS)

    Mitchell, N.; Collier, D.; Gori, R.

    1989-01-01

    The NET toroidal field coils will utilise A15-type superconductor at 4.2 K to generate fields up to 11.5 T. The superconductor strands themselves are sensitive to strain, which causes degradation of their current carrying capacity, and thus the detailed behaviour of the coil conductor must be analysied so that the strian can be minimised. This analysis must include the manufacturing processes of the conductor as well as the normal and abnormal loperational loads. The conductor will be insulated and bonded by glass fibre reinforced epoxy resin, with limited bonding shear strength, and the overall support of the complete coil system must be designed to reduce these shear stresses. The coils will be subjected to pulse loads form the poloidal field coils, and analysis of the slip between the various coil components, such as conductors and the coil case, giving rise to frictional heating and possible loss of superconducting properties is another important factor, which has been investigated by a number of stress analyses. The manufacturing, thermal and normal magnetic loads on the coils and the analysis leading to the proposed structural design are described. In addition to the normal operating conditions, there is a range of abnormal load conditions which could result from electrical or mechanical faults on the coils. The effect of these potential faults has been analysed and the coil design modified to prevent catastrophic structural failure. (author). 13 refs.; 8 figs.; 1 tab

  8. H/D isotope effects in high temperature proton conductors

    DEFF Research Database (Denmark)

    Bonanos, Nikolaos; Huijser, A.; Poulsen, Finn Willy

    2015-01-01

    The atomic mass ratio of ca. 2 between deuterium and hydrogen is the highest for any pair of stable isotopes and results in significant and measurable H/D isotope effects in high temperature proton conductors containing these species. This paper discusses H/D isotope effects manifested in O-H/O-D...

  9. The electric field of a current-carrying conductor

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1991-01-01

    A subject concerning the relativistic invariance of the Gauss theorem has been discussed. The appearance of the electric field around the neutral conductor after excitation of current in it doesn't signify the change of its charge. 8 refs.; 1 fig

  10. Attentional flexibility and memory capacity in conductors and pianists.

    Science.gov (United States)

    Wöllner, Clemens; Halpern, Andrea R

    2016-01-01

    Individuals with high working memory (WM) capacity also tend to have better selective and divided attention. Although both capacities are essential for skilled performance in many areas, evidence for potential training and expertise effects is scarce. We investigated the attentional flexibility of musical conductors by comparing them to equivalently trained pianists. Conductors must focus their attention both on individual instruments and on larger sections of different instruments. We studied students and professionals in both domains to assess the contributions of age and training to these skills. Participants completed WM span tests for auditory and visual (notated) pitches and timing durations, as well as long-term memory tests. In three dichotic attention tasks, they were asked to detect small pitch and timing deviations from two melodic streams presented in baseline (separate streams), selective-attention (concentrating on only one stream), and divided-attention (concentrating on targets in both streams simultaneously) conditions. Conductors were better than pianists in detecting timing deviations in divided attention, and experts detected more targets than students. We found no group differences for WM capacity or for pitch deviations in the attention tasks, even after controlling for the older age of the experts. Musicians' WM spans across multimodal conditions were positively related to selective and divided attention. High-WM participants also had shorter reaction times in selective attention. Taken together, conductors showed higher attentional flexibility in successfully switching between different foci of attention.

  11. Effect of annular secondary conductor in a linear electromagnetic ...

    Indian Academy of Sciences (India)

    This paper presents the variation of average axial force density in the annular secondary conductor of a linear electromagnetic stirrer. Different geometries of secondaries are considered for numerical and experimental validation namely, 1. hollow annular ring, 2. annular ring with a solid cylinder and 3. solid cylinder.

  12. 30 CFR 57.12080 - Bare conductor guards.

    Science.gov (United States)

    2010-07-01

    ....12080 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity... conductors are less than 7 feet above the rail, they shall be guarded at all points where persons work or...

  13. Exploring a Metamorphosis: Identity Formation for an Emerging Conductor

    Science.gov (United States)

    Ponchione, Cayenna

    2013-01-01

    Exploring the manner in which professional identity formation in emerging conductors is entangled with the cultural context of orchestras, I focus on the amorphous evolution from a student identity to that of a professional, illuminating some underlying social conditions of the ever-elusive profession of conducting. Prevailing assumptions about…

  14. Charge densities and charge noise in mesoscopic conductors

    Indian Academy of Sciences (India)

    This generalization leads to a local Wigner–Smith life-time matrix. Keywords. Density ... Of interest is the charge distribution in such a conductor and ..... is the transmission probability of the scattering problem without absorption if .... as a voltage probe which has its potential adjusted in such a way that there is no net current.

  15. Influence of the magnetic field profile on ITER conductor testing

    International Nuclear Information System (INIS)

    Nijhuis, A; Ilyin, Y; Kate, H H J ten

    2006-01-01

    We performed simulations with the numerical CUDI-CICC code on a typical short ITER (International Thermonuclear Experimental Reactor) conductor test sample of dual leg configuration, as usually tested in the SULTAN test facility, and made a comparison with the new EFDA-Dipole test facility offering a larger applied DC field region. The new EFDA-Dipole test facility, designed for short sample testing of conductors for ITER, has a homogeneous high field region of 1.2 m, while in the SULTAN facility this region is three times shorter. The inevitable non-uniformity of the current distribution in the cable, introduced by the joints at both ends, has a degrading effect on voltage-current (VI) and voltage-temperature (VT) characteristics, particularly for these short samples. This can easily result in an underestimation or overestimation of the actual conductor performance. A longer applied DC high field region along a conductor suppresses the current non-uniformity by increasing the overall longitudinal cable electric field when reaching the current sharing mode. The numerical interpretation study presented here gives a quantitative analysis for a relevant practical case of a test of a short sample poloidal field coil insert (PFCI) conductor in SULTAN. The simulation includes the results of current distribution analysis from self-field measurements with Hall sensor arrays, current sharing measurements and inter-petal resistance measurements. The outcome of the simulations confirms that the current uniformity improves with a longer high field region but the 'measured' VI transition is barely affected, though the local peak voltages become somewhat suppressed. It appears that the location of the high field region and voltage taps has practically no influence on the VI curve as long as the transverse voltage components are adequately cancelled. In particular, for a thin conduit wall, the voltage taps should be connected to the conduit in the form of an (open) azimuthally

  16. All-chemical YBa2Cu3O7 coated conductors on IBAD-YSZ stainless steel substrates

    International Nuclear Information System (INIS)

    Pomar, A; Cavallaro, A; Coll, M; Gazquez, J; Palau, A; Sandiumenge, F; Puig, T; Obradors, X; Freyhardt, H C

    2006-01-01

    We report on the fabrication of all-chemical YBa 2 Cu 3 O 7 coated conductors on IBAD-YSZ (IBAD stands for ion beam assisted deposition; YSZ is yttrium stabilized zirconia) stainless steel substrates. YBCO films were grown by the trifluoroacetates route on top of CeO 2 buffer layers made by metal-organic decomposition. The achievement of atomically flat CeO 2 surfaces is found to be a key factor for obtaining clean interfaces with YBCO and high performance. Coated conductors with percolative critical currents of J c GB (65 K) = 1.8 MA cm -2 were achieved. The determination of the intra-grain critical current J c G from inductive measurements suggests that the limiting factor for J c GB is the YBCO in-plane texture, which is already of higher quality than that of the IBAD-YSZ cap layer. (rapid communication)

  17. Doping Experiments on Low-Dimensional Oxides and a Search for Unusual Magnetic Properties of MgAlB14

    International Nuclear Information System (INIS)

    Julienne Marie Hill

    2002-01-01

    Doping experiments on La 2 CuO 4 , Sr 2 CuO 3 and SrCu 2 (BO 3 ) 2 were performed with the intent of synthesizing new metallic low-=dimensional cuprate oxide compounds. Magnetic susceptibility χ(T) measurements on a polycrystalline La 2 CuO 4 sample chemically oxidized at room temperature in aqueous NaClO showed superconductivity with a superconducting transition temperature T c of 42.6 K and a Meissner fraction of 26%. They were unable to electrochemically oxidize La 2 CuO 4 in a nonaqueous solution of tetramethylammonium hydroxide (TMAOH) and methanol. Sr 2 CuO 3 was found to decompose upon exposure to air and water. Electron paramagnetic resonance, isothermal magnetization M(H), and χ(T) measurements on the primary decomposition product, Sr 2 Cu(OH) 6 , were consistent with a nearly isolated, spin S = 1/2, local moment model for the Cu +2 spins. From a fit of χ(T) by the Curie-Weiss law and of the M(H) isotherms by a modified Brillouin function, the weakly antiferromagnetic exchange interaction between adjacent Cu +2 spins in Sr 2 Cu(OH) 6 was found to be J/k B = 1.06(4) K. Doping studies on SrCu 2 (BO 3 ) 2 were inconclusive. χ(T) measurements on an undoped polycrystalline sample of SrCu 2 (BO 3 ) 2 , a sample treated with distilled water, and a sample treated with aqueous NaClO showed no qualitative differences between the samples. In addition, χ(T) and M(H, T) studies of the ultra-hard material MgAlB 14 were carried out in search of superconductivity or ferromagnetism in this compound. χ(T) measurements on a powder sample revealed temperature-independent diamagnetism from 1.8 K up to room temperature with a Curie-Weiss impurity concentration equivalent to ∼ 1 mol% of spin-1/2 ions. In contrast, M(H, T) data on hot pressed samples showed evidence of ferromagnetic transitions above ∼ 330 K. Scanning electron microscopy and Auger microprobe analysis of the hot pressed samples indicated that the observed ferromagnetism was likely due to Fe impurities

  18. Angle resolved photoemission study of Fermi surfaces and single-particle excitations of quasi-low dimensional materials

    Science.gov (United States)

    Gweon, Gey-Hong

    Using angle resolved photoemission spectroscopy (ARPES) as the main experimental tool and the single particle Green's function as the main theoretical tool, materials of various degrees of low dimensionality and different ground states are studied. The underlying theme of this thesis is that of one dimensional physics, which includes charge density waves (CDW's) and the Luttinger liquid (LL). The LL is the prime example of a lattice non-Fermi liquid (non-FL) and CDW fluctuations also give non-FL behaviors. Non-FL physics is an emerging paradigm of condensed matter physics. It is thought by some researchers that one dimensional LL behavior is a key element in solving the high temperature superconductivity problem. TiTe2 is a quasi-2 dimensional (quasi-2D) Fermi liquid (FL) material very well suited for ARPES lineshape studies. I report ARPES spectra at 300 K which show an unusual behavior of a peak moving through the Fermi energy (EF). I also report a good fit of the ARPES spectra at 25 K obtained by using a causal Green's function proposed by K. Matho. SmTe3 is a quasi-2D CDW material. The near EF ARPES spectra and intensity map reveal rich details of an anisotropic gap and imperfectly nested Fermi surface (FS) for a high temperature CDW. A simple model of imperfect nesting can be constructed from these data and predicts a CDW wavevector in very good agreement with the value known from electron diffraction. NaMo6O17 and KMo 6O17 are also quasi-2D CDW materials. The "hidden nesting" or "hidden 1 dimensionality" picture for the CDW is confirmed very well by our direct image of the FS. K0.3MoO3, the so-called "blue bronze," is a quasi-1 dimensional (quasi-1D) CDW material. Even in its metallic phase above the CDW transition temperature, its photoemission spectra show an anomalously weak intensity at EF and no clear metallic Fermi edge. I compare predictions of an LL model and a CDW fluctuation model regarding these aspects, and find that the LL scenario explains them

  19. Doping experiments on low-dimensional oxides and a search for unusual magnetic properties of magnesium aluminum boride

    Science.gov (United States)

    Hill, Julienne Marie

    Doping experiments on La2CuO4, Sr2CuO 3 and SrCu2(BO3)2 were performed with the intent of synthesizing new metallic low-dimensional cuprate oxide compounds. Magnetic susceptibility chi(T) measurements on a polycrystalline La 2CuO4 sample chemically oxidized at room temperature in aqueous NaClO showed superconductivity with a superconducting transition temperature Tc of 42.6 K and a Meissner fraction of 26%. We were unable to electrochemically oxidize La2CuO4 in a nonaqueous solution of tetramethylammonium hydroxide (TMAOH) and methanol. Sr2CuO 3 was found to decompose upon exposure to air and water. Electron paramagnetic resonance, isothermal magnetization M(H) and chi(T) measurements on the primary decomposition product, Sr2Cu(OH)6, were consistent with a nearly isolated, spin S = 1/2, local moment model for the Cu +2 spins. From a fit of chi(T) by the Curie-Weiss law and of the M(H) isotherms by a modified Brillouin function, the weakly antiferromagnetic exchange interaction between adjacent Cu+2 spins in Sr 2Cu(OH)6 was found to be J/kB = 1.06(4) K. Doping studies on SrCu2(BO3)2 were inconclusive. chi(T) measurements on an undoped polycrystalline sample of SrCu2(BO 3)2, a sample treated with distilled water, and a sample treated with aqueous NaClO showed no qualitative differences between the samples. In addition, chi(T) and M(H, T) studies of the ultra-hard material MgAlB14 were carried out in search of superconductivity or ferromagnetism in this compound. chi(T) measurements on a powder sample revealed temperature-independent diamagnetism from 1.8 K up to room temperature with a Curie-Weiss impurity concentration equivalent to ˜1 mol% of spin-1/2 ions. In contrast, M(H, T) data on hot pressed samples showed evidence of ferromagnetic transitions above ˜330 K. Scanning electron microscopy and Auger microprobe analysis of the hot pressed samples indicated that the observed ferromagnetism was likely due to Fe impurities.

  20. Verification of a Novel Method of Detecting Faults in Medium-Voltage Systems with Covered Conductors

    Directory of Open Access Journals (Sweden)

    Mišák Stanislav

    2017-06-01

    Full Text Available This paper describes the use of new methods of detecting faults in medium-voltage overhead lines built of covered conductors. The methods mainly address such faults as falling of a conductor, contacting a conductor with a tree branch, or falling a tree branch across three phases of a medium-voltage conductor. These faults cannot be detected by current digital relay protection systems. Therefore, a new system that can detect the above mentioned faults was developed. After having tested its operation, the system has already been implemented to protect mediumvoltage overhead lines built of covered conductors.

  1. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  2. The brain, an orchestra without conductor

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The brain is a highly distributed, self-organizing system that lacks central institutions for the coordination of cognitive and executive functions. This raises the question how the multiple parallel operations are bound together to give rise to coherent percepts, decisions and intentions. The hypothesis is proposed that time is used as coding space for the flexible definition of relations and the targeted routing of activity across highly interconnected networks.

  3. New tests on the 40 kA Nb3Sn CEA conductor for ITER applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Bessette, D.; Katheder, H.

    1994-01-01

    New tests have been performed on the 40 kA CEA Nb 3 Sn conductor in the Sultan III facility. The aim of these tests is to obtain key experimental data on the behaviour of Nb 3 Sn conductors for fusion applications under high field and large transport current. The 40 kA Nb 3 Sn CEA conductor has a shape and an internal arrangement of the superconducting wires which is very similar to the ITER conductors. The level of the ac losses experienced by these conductors under varying fields influences deeply their design. The basic experiment consists of producing field pulses on the conductor by means of a coil installed in the bore of the Sultan magnet and recording the integrated voltage obtained on pick-up coils placed on the conductor as a function of time. (author) 4 refs.; 5 figs.; 2 tabs

  4. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    Science.gov (United States)

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  5. Progress in scale-up of second-generation HTS conductor

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Qiao, Y.; Reeves, J.; Rar, A.; Schmidt, R.; Lenseth, K.

    2007-01-01

    Tremendous progress has been recently made in the achievement of high-performance, high-speed, long-length second-generation (2G) HTS conductors. Using ion beam assisted deposition (IBAD) MgO and metal organic chemical vapor deposition (MOCVD), SuperPower has scaled up tape lengths to 427 m with a minimum critical current value of 191 A/cm corresponding to a critical current x length performance of 81,550 m. Tape speeds up to 120 m/h have been reached with IBAD MgO, up to 80 m/h with buffer deposition and up to 45 m/h with MOCVD, all in single pass processing of 12 mm wide tape. Critical current value of 227 A/cm has been achieved in a 203 m long tape produced in an all-high-speed fabrication process. Critical current values have been raised to 721 A/cm, 592 A/cm and 486 A/cm in short, reel-to-reel processed tape, over 1 m length and over 11.1 m, respectively, using thicker MOCVD HTS films. Finally, over 10,000 m of copper-stabilized, 4 mm wide conductor has been produced and tested for delivery to the Albany Cable project. The average critical current of the 10,000 m lot was 81 A

  6. Progress in scale-up of second-generation HTS conductor

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)], E-mail: vselva@igc.com; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Qiao, Y.; Reeves, J.; Rar, A.; Schmidt, R.; Lenseth, K. [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2007-10-01

    Tremendous progress has been recently made in the achievement of high-performance, high-speed, long-length second-generation (2G) HTS conductors. Using ion beam assisted deposition (IBAD) MgO and metal organic chemical vapor deposition (MOCVD), SuperPower has scaled up tape lengths to 427 m with a minimum critical current value of 191 A/cm corresponding to a critical current x length performance of 81,550 m. Tape speeds up to 120 m/h have been reached with IBAD MgO, up to 80 m/h with buffer deposition and up to 45 m/h with MOCVD, all in single pass processing of 12 mm wide tape. Critical current value of 227 A/cm has been achieved in a 203 m long tape produced in an all-high-speed fabrication process. Critical current values have been raised to 721 A/cm, 592 A/cm and 486 A/cm in short, reel-to-reel processed tape, over 1 m length and over 11.1 m, respectively, using thicker MOCVD HTS films. Finally, over 10,000 m of copper-stabilized, 4 mm wide conductor has been produced and tested for delivery to the Albany Cable project. The average critical current of the 10,000 m lot was 81 A.

  7. Bending Test of Conductor for ALICE and LHCb Dipole Magnets

    CERN Document Server

    Giudici, P A; CERN. Geneva; Flegel, W

    2000-01-01

    Abstract It is foreseen that the coils for the two magnets will be manufactured by winding flat pancakes, which are subsequently shaped to a semi-cylindrical form (ALICE) or bent by 45 degrees (LHCb). We propose here several methods and describe tests that were performed to estimate tolerances and forces which will have to be expected during the manufacturing process. To this end, short Aluminium conductor lengths of adequate cross-section were bent around a shaper piece to an angle of 90 degrees. The tests were repeated for conductors both wrapped with prepreg insulation tape and without this tape. The different test set-ups and the obtained results are described in this note.

  8. The electrostatics of charged insulating sheets peeled from grounded conductors

    International Nuclear Information System (INIS)

    Datta, M J; Horenstein, M N

    2008-01-01

    The physics of a charged, insulating sheet peeled from a ground-plane conductor is examined. Contact charging is ensured by charging a sheet to 10-12 kV with corona to establish intimate electrostatic contact with the underlying conductor. The surface potential is next forced to zero by sweeping the sheet with a stainless-steel brush, and the surface recharged to a new potential between 0 and 11 kV. The sheet is then peeled from the ground plane and its residual charge density is measured. Results show that the residual charge equals the breakdown-limiting value, but its polarity depends on the surface potential acquired just prior to peeling. The results have relevance to studies of industrial webs and insulating sheets.

  9. The ATLAS semi-conductor tracker operation and performance

    International Nuclear Information System (INIS)

    Robinson, D.

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The SCT was installed and commissioned within ATLAS in 2007, and has been used to exploit fully the physics potential of the LHC since the first proton–proton collisions at 7 TeV were delivered in 2009. In this paper, its operational status throughout data taking up to the end of 2011 is presented, and its tracking performance is reviewed. -- Highlights: ► The operation and performance of the ATLAS Semi-Conductor Tracker (SCT) is reviewed. ► More than 99% of the SCT strips have remained operational in all data taking periods so far. ► Tracking performance indicators have met or exceeded design specifications. ► Radiation damage effects match closely expectations from delivered fluence.

  10. Current transfer between superconductor and normal layer in coated conductors

    International Nuclear Information System (INIS)

    Takacs, S

    2007-01-01

    The current transfer between superconducting stripes coated with normal layer is examined in detail. It is shown that, in present YBCO coated conductors with striations, a considerable amount of the current flowing in the normal layer is not transferred into the superconducting stripes. This effect also influences the eddy currents and the coupling currents between the stripes. The effective resistance for the coupling currents is calculated. The maximum allowable twist length of such a striated structure is given, which ensures lower losses than in the corresponding normal conductor of the same volume as the total YBCO cable (including substrate, buffer layer, superconductor and normal coating). In addition, a new simple method for determining the transfer resistance between superconducting and normal parts is proposed

  11. Hydrogen electrolysis using a NASICON solid protonic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Gulens, J.; Longhurst, T.H.; Kuriakose, A.K.; Canaday, J.D.

    1988-09-01

    A protonic conductor based on a bonded NASICON disc has been used for hydrogen electrolysis at 300 K. Currents up to 200 mA can be passed through the disc, and the electrolysis proceeds with 100% current efficiency. The resistance of the ceramic is affected by its extent of hydration. Degradation and failure of the ceramic occurs at the cathode as a result of electrolysis.

  12. Intermediate Temperature Proton Conductors – Why and How

    OpenAIRE

    Li, Qingfeng; Aili, David; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2016-01-01

    The current technologies of fuel cells and electrolzers are based on ionic conducting electrolyte materials exclusively operational either in the low (20 - 200ºC) or high (600 - 1000ºC) temperature ranges. The intermediate temperature window, especially between 200 and 400 ºC, is still only represented by early fundamental material research for ionic electrolytes. Such materials, most likely based on proton conductors, are expected to bring a new generation of the technologies: fuel cells by ...

  13. What is a good conductor for metamaterials or plasmonics

    Directory of Open Access Journals (Sweden)

    Soukoulis Costas M.

    2015-04-01

    Full Text Available We review conducting materials like metals, conducting oxides and graphene for nanophotonic applications. We emphasize that metamaterials and plasmonic systems benefit from different conducting materials. Resonant metamaterials need conductors with small resistivity, since dissipative loss in resonant metamaterials is proportional to the real part of the resistivity of the conducting medium it contains. For plasmonic systems, one must determine the propagation length at a desired level of confinement to estimate the dissipative loss.

  14. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, AX; Khatri, N; Liu, YH; Majkic, G; Galstyan, E; Selvamanickam, V; Chen, YM; Lei, CH; Abraimov, D; Hu, XB; Jaroszynski, J; Larbalestier, D

    2015-06-01

    BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 K to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.

  15. Temperature dependence of critical current and transport current losses of 4 mm YBCO coated conductors manufactured using nonmagnetic substrate

    Science.gov (United States)

    Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.

    2015-12-01

    The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.

  16. Metal{Polymer Hybrid Materials For Flexible Transparent Conductors

    Science.gov (United States)

    Narayanan, Sudarshan

    The field of organic electronics, till recently a mere research topic, is currently making rapid strides and tremendous progress into entering the mainstream electronics industry with several applications and products such as OLED televisions, curved displays, wearable devices, flexible solar cells, etc. already having been commercialized. A major component in these devices, especially for photovoltaic applications, is a transparent conductor used as one of the electrodes, which in most commercial applications are highly doped wide bandgap semiconducting oxides also called Transparent Conducting Oxides (TCOs). However, TCOs exhibit inherent disadvantages such as limited supply, brittle mechanical properties, expensive processing that present major barriers for the more widespread economic use in applications such as exible transparent conductors, owing to which suitable alternative materials are being sought. In this context we present two approaches in realizing alternative TCs using metal-polymer hybrid materials, with high figures of merit that are easily processable, reasonably inexpensive and mechanically robust as well. In this context, our first approach employs laminated metal-polymer photonic bandgap structures to effectively tune optical and electrical properties by an appropriate design of the material stack, factoring in the effect of the materials involved, the number of layers and layer properties. We have found that in the case of a four-bilayer Au/polystyrene (AujPS) laminate structure, an enhancement in optical transmittance of ˜ 500% in comparison to a monolithic A film of equivalent thickness, can be achieved. The high conductivity (˜ 106 O--1cm--1) of the metallic component, Au in this case, also ensures planar conductivity; metallic inclusions in the dielectric polymer layer can in principle give rise to out-of-plane conductivity as well enabling a fully functional TC. Such materials also have immense potential for several other applications

  17. Modelling the V-I characteristic of coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, N A [Department of Materials Science, University of Cambridge, Cambridge (United Kingdom); IRC in Superconductivity, Cavendish Laboratory, Cambridge (United Kingdom)]. E-mail: ruttern@ornl.gov; Glowacki, B A [Department of Materials Science, University of Cambridge, Cambridge (United Kingdom); IRC in Superconductivity, Cavendish Laboratory, Cambridge (United Kingdom)

    2001-09-01

    The critical current densities of coated conductor samples are limited by the presence of low-angle grain boundaries. These boundaries provide an obstacle to current flow, which is determined by their misorientation angle. The superconducting layer of a coated conductor tape may be considered as a network of grains linked together by grain boundaries through which the supercurrent must pass. Such a network has been investigated using a two-dimensional grain model. The three-dimensional orientations of grains in the superconducting network can be assigned randomly based on information obtained from EBSD and x-ray texture measurements. By assigning critical current values to boundaries based on their calculated misorientation, the overall J{sub c} of macroscopic modelled samples can then be calculated. This paper demonstrates how such a technique is applied using a small-scale, idealized sample grain structure in an applied magnetic field. The onset of dissipation at the critical current may be viewed in terms of the flow of the magnetic flux across the sample along high-angle grain boundaries when the critical current is first exceeded. Through such a consideration, the model may be further used to predict the current-voltage characteristic of the coated conductor sample around the superconducting transition. (author)

  18. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  19. High-field thermal transports properties of REBCO coated conductors

    CERN Document Server

    Bonura, M

    2015-01-01

    The use of REBCO coated conductors is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (k) of REBCO coated conductors in magnetic fields up to 19 T applied both parallelly and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field k of coated conductors can be calculated with an accuracy of ‡ 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field k in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the ...

  20. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O

    2002-01-01

    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  1. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed

  2. Selection of a cryostabilized Nb3Sn conductor cooling system for the large coil program

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Murphy, J.H.; Jones, C.K.

    1977-01-01

    The Large Coil Project (LCP) is a program to design, fabricate and test relatively large superconducting toroidal field coils for tokamak fusion reactor applications. Some basic requirements that affect the conductor design are cryostabilization, 8 tesla peak magnetic field, and a specified maximum refrigeration load. The engineering considerations that led to the selection of a forced flow supercritical helium-cooled cable conductor are described. Comparisons of forced flow supercritical helium cooled cable conductors with pool boiling cooled monolithic conductors were made with regard to a number of factors such as the thermal capacity of the coolant, the thermal design margins, propensity for conductor normalization, predictability of the thermal-flow performance, controllability of the cooling conditions, etc. It was concluded that, although there exists a number of design uncertainties and engineering problems, forced flow supercritical helium cooled conductors can provide a far more reliable coil design than the pool boiling monolithic concept. The design of a cryostabilized Nb 3 Sn hollow cabled conductor involved detailed considerations of the need for fully transposed conductor strands, the nonuniform void and helium flow distributions, heat transfer from the twisted conductor strands, and helium flow rate and pump work requirements. The uncertainties in the design are discussed and the specifications of a reference Nb 3 Sn conductor concept that meets the design requirements and constraints are presented

  3. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges

    Science.gov (United States)

    Parizh, Michael; Lvovsky, Yuri; Sumption, Michael

    2017-01-01

    Magnetic resonance imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB2, ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS/MgB2 conductor into commercial MRI magnets. These

  4. Exploring the limits of a very large Nb3Sn conductor: the 80 kA conductor of the ITER toroidal field model coil

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Ciazynski, D.; Guerber, O.; Park, S.H.; Zani, L.

    2003-01-01

    In Phase II experiment of the International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) the operation limits of its 80 kA Nb 3 Sn conductor were explored. To increase the magnetic field on the conductor, the TFMC was tested in presence of another large coil: the EURATOM-LCT coil. Under these conditions the maximum field reached on the conductor, was around 10 tesla. This exploration has been performed at constant current, by progressively increasing the coil temperature and monitoring the coil voltage drop in the current sharing regime. Such an operation was made possible thanks to the very high stability of the conductor. The aim of these tests was to compare the critical properties of the conductor with expectations and assess the ITER TF conductor design. These expectations are based on the documented critical field and temperature dependent properties of the 720 superconducting strands which compose the conductor. In addition the conductor properties are highly dependent on the strain, due to the compression appearing on Nb 3 Sn during the heat treatment of the pancakes and related to the differential thermal compression between Nb 3 Sn and the stainless steel jacket. No precise model exists to predict this strain, which is therefore the main information, which is expected from these tests. The method to deduce this strain from the different tests is presented, including a thermalhydraulic analysis to identify the temperature of the critical point and a careful estimation of the field map across the conductor. The measured strain has been estimated in the range -0.75% to -0.79 %. This information will be taken into account for ITER design and some adjustment of the ITER conductor design is under examination. (authors)

  5. Aqueous Stability of Alkali Superionic Conductors from First-Principles Calculations

    International Nuclear Information System (INIS)

    Radhakrishnan, Balachandran; Ong, Shyue Ping

    2016-01-01

    Ceramic alkali superionic conductor solid electrolytes (SICEs) play a prominent role in the development of rechargeable alkali-ion batteries, ranging from replacement of organic electrolytes to being used as separators in aqueous batteries. The aqueous stability of SICEs is an important property in determining their applicability in various roles. In this work, we analyze the aqueous stability of twelve well-known Li-ion and Na-ion SICEs using Pourbaix diagrams constructed from first-principles calculations. We also introduce a quantitative free-energy measure to compare the aqueous stability of SICEs under different environments. Our results show that though oxides are, in general, more stable in aqueous environments than sulfides and halide-containing chemistries, the cations present play a crucial role in determining whether solid phases are formed within the voltage and pH ranges of interest.

  6. Nanocrystalline Axially Bridged Iron Phthalocyanine Polymeric Conductor: (μ-Thiocyanato(phthalocyaninatoiron(III

    Directory of Open Access Journals (Sweden)

    Eiza Shimizu

    2016-01-01

    Full Text Available Skewered Iron(III phthalocyanine conducting polymer can be constructed with the utilization of axial thiocyanato ligands ((μ-thiocyanato(phthalocyaninatoiron(III; (FeIII(Pc(SCNn thereby creating additional avenues for electron transport through a linear SCN bridge, apart from the intermolecular π-π orbital overlap between the Pc molecules. In this paper, we report on the conversion of bulk FeIII(Pc(SCNn polymeric organic conductor into crystalline nanostructures through horizontal vapor phase growth process. The needle-like nanostructures are deemed to provide more ordered and, thus, more π-π interactive interskewer FeIII(Pc(SCNn polymer orientation, resulting in a twofold increase of its electrical conductivity per materials density unit.

  7. Organics.

    Science.gov (United States)

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  8. Organizers.

    Science.gov (United States)

    Callison, Daniel

    2000-01-01

    Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a…

  9. Transport ac losses in Bi-2223 multifilamentary tapes - conductor materials aspect

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge BC2 3QZ (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Institute of Electrical Engineering, SAS, Bratislava (Slovakia)

    2000-05-01

    Transport ac losses in technical superconductors based on Bi-2223 tape material are influenced by many parameters. The major factors that define the ac performance of such conductors are the following: the size and number of filaments, their geometrical arrangement in the cross-section of the conductor, the twist pitch length, the resistivity of the matrix, the presence of oxide barriers around the filaments and deformation procedures such as sequential pressing or rolling followed by appropriate thermal treatment. In the present paper the above aspects are addressed from the viewpoint of the materials science of technical conductor design. Transport ac losses at power frequencies in different types of Bi-2223 conductor are presented and analysed. The results of conductor design analysis with respect to the coexistence of the superconductor with other materials in the conductor structure are presented. New concepts for minimization of the transport ac losses are discussed in detail. (author)

  10. A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors

    Directory of Open Access Journals (Sweden)

    Einar M. Rønquist

    1984-04-01

    Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.

  11. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa

    1999-01-01

    One important issue in the design and optimization of a superconducting cable conductor is the control of the current distribution between single tapes and layers. This presentation is based on a number of experiments performed on a 4-layer three meter long prototype superconducting cable conductor......-losses are measured as a function of transport current and a given current distribution and compared with the monoblock model. Recommendations for design of future cable conductor prototypes are given....

  12. Estimation of Equivalent Thermal Conductivity for Impregnated Electrical Windings Formed from Profiled Rectangular Conductors

    OpenAIRE

    Ayat, Sabrina S; Wrobel, Rafal; Goss, James; Drury, David

    2016-01-01

    In order to improve accuracy and reduce model setting-up, and solving time in thermal analysis of electrical machines, transformers and wound passive components, the multi-material winding region is frequently homogenised. The existing winding homogenization techniques are predo-minantly focused on winding constructions with round conductors, where thermal conductivity across conductors is usually assumed to be isotropic. However, for the profiled rectangular conductors that assumption is no ...

  13. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  14. Studies on advanced superconductors for fusion device. Pt. 1. Present status of Nb3Sn conductors

    International Nuclear Information System (INIS)

    Tachikawa, Kyoji; Yamamoto, Junya

    1996-03-01

    Nb 3 Sn conductors have been developed with great expectation as an advanced high-field superconductor to be used in fusion devices of next generation. Furthermore, Nb 3 Sn conductors are being developed for NMR magnet and superconducting generator as well as for cryogen-free superconducting magnet. A variety of fabrication procedures, such as bronze process, internal tin process and Nb tube method, have been developed based on the diffusion reaction. Recently, Nb 3 Sn conductors with ultra-thin filaments have been fabricated for AC use. Both high-field and AC performances of Nb 3 Sn conductors have been significantly improved by alloying addition. The Ti-doped Nb 3 Sn conductor has generated 21.5T at 1.8K operation. This report summarizes manufacturing procedures, superconducting performances and applications of Nb 3 Sn conductors fabricated through different processes in different countries. More detailed subjects included in this report are high-field properties, AC properties, conductors for fusion with large current capacities, stress-strain effect and irradiation effect as well as standardization of critical current measurement method regarding to Nb 3 Sn conductors. Comprehensive grasp on the present status of Nb 3 Sn conductors provided by this report will act as a useful data base for the future planning of fusion devices. (author). 172 refs

  15. Investigation of the influence of heat transfer on screen printed textile conductor

    Science.gov (United States)

    Kazani, I.; De Mey, G.; Hertleer, C.; Guxho, G.; Van Langenhove, L.

    2017-10-01

    Two different textile substrates were screen printed with silver-based inks in order to be electrically conductive. In every textile four conductors were printed with different widths in order to investigate the influence of heat transfer on each conductor. This was done, by using the thermo graphic camera and through the evaluation of each conductor’s profile. It was found that the conductors printed on the white textile had higher values of heat transfer compared to the other conductors printed on the dark textiles.

  16. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from......Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  17. Solderability study of RABiTS-based YBCO coated conductors

    International Nuclear Information System (INIS)

    Zhang Yifei; Duckworth, Robert C.; Ha, Tam T.; Gouge, Michael J.

    2011-01-01

    Study examines the implication of solder and flux selection in YBCO splice joints. Focus is on commercially available RABiTS-based YBCO coated conductors. Solderability varied with solder and flux for three different stabilizations tested. Resistivity of stabilizer was dominant factor in splice joint resistance. Solder materials affected splice joint resistance when solderability was poor. The solderability of commercially available YBa 2 Cu 3 O 7-x (YBCO) coated conductors that were made from Rolling Assisted Biaxially Textured Substrates (RABiTS)-based templates was studied. The coated conductors, also known as second-generation (2G) high temperature superconductor (HTS) wires (in the geometry of flat tapes about 4 mm wide), were laminated with copper, brass, or stainless steel strips as stabilizers. To understand the factors that influence their solderability, surface profilometry and scanning electron microscopy were used to characterize the wire surfaces. The solderability of three solders, 52In48Sn, 67Bi33In, and 100In (wt.%), was evaluated using a standard test (IPC/ECA J-STD-002) and with two different commercial fluxes. It was found that the solderability varied with the solder and flux but the three different wires showed similar solderability for a fixed combination of solder and flux. Solder joints of the 2G wires were fabricated using the tools and the procedures recommended by the HTS wire manufacturer. The solder joints were made in a lap-joint geometry and with the superconducting sides of the two wires face-to-face. The electrical resistances of the solder joints were measured at 77 K, and the results were analyzed to qualify the soldering materials and evaluate the soldering process. It was concluded that although the selection of soldering materials affected the resistance of a solder joint, the resistivity of the stabilizer was the dominant factor.

  18. Preparation of the ITER Poloidal Field Conductor Insert (PFCI) test

    International Nuclear Information System (INIS)

    Zanino, R.; Egorov, S.; Kim, K.; Martovetsky, N.; Nunoya, Y.; Okuno, K.; Salpietro, E.; Sborchia, C.; Takahashi, Y.; Weng, P.; Bangasco, M.; Savoldi Richard, L.; Polak, M.; Formisano, A.; Zapretilina, E.; Shikov, A.; Vedernikov, G.; Ciazynski, D.; Zani, L.; Muzzi, L.; Ricci, M.; Deela Corte, A.; Sugimoto, M.; Hamada, K.; Portone, A.; Hurd, F.; Mitchell, N.; Nijhuis, A.; Ilyin, Y.

    2004-01-01

    The Poloidal Field Conductor Insert (PFCI) of the International Thermonuclear Experimental Reactor (ITER) has been designed in Europe and is being manufactured at Tesla Engineering, UK, in the frame of a Task Agreement with the ITER International Team. Completion of the PFCI is expected at the beginning of 2005. Then, the coil shall be shipped to JAERI Naka, Japan, and inserted into the bore of the ITER Central Solenoid Model Coil, where it should be tested in 2005 to 2006. The PFCI consists of a NbTi dual-channel conductor, almost identical to the ITER PF1 and PF6 design, about 45 m long, with a 50 mm thick square stainless steel jacket, wound in a single-layer solenoid. It should carry up to 50 kA in a field of about 6 T, and it will be cooled by supercritical He at around 4.5 K and 0.6 MPa. An intermediate joint, representative of the ITER PF joints and located at relatively high field, will be an important new item in the test configuration with respect to the previous ITER Insert Coils. The PFCI will be fully instrumented with inductive and resistive heaters, as well as with voltage taps, Hall probes, pick-up coils, temperature sensors, pressure taps, strain and displacement sensors. The test program shall be aimed at DC and pulsed performance assessment of conductor and intermediate joint, AC loss measurement, stability and quench propagation, thermalhydraulic characterization. Here we give an overview of the preparatory work towards the test, including a review of the coil manufacturing and of the available instrumentation, a discussion of the most likely test program items, and a presentation of the supporting modeling and characterization work performed so far. (authors)

  19. Specific features of the thermodynamics of superionic conductors

    International Nuclear Information System (INIS)

    Gurevich, Yu.Ya.; Kharkats, Yu.I.

    1982-01-01

    A review of theoretical and experimental investigations devoted to a study of thermodynamic aspects of the superionic conductivity phenomena for the recent decade is presented. A relation between a superionic conductivity and the disordering of one of the crystal sublattices, the phase transitions of the disordering caused by the point defects interaction, the mechanism of polymorphic transitions conjugated with a partial disordering are considered. The effect of an abrupt change of the ionic conductivity induced by electric field, the thermodynamics of the domain states in superionic conductors and the influence of pressure on phase transitions and ionic conductivity are analyzed

  20. The ATLAS Semi-Conductor Tracker Operation and Performance

    CERN Document Server

    Robinson, D; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT), is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The SCT was installed and commissioned within ATLAS in 2007, and has been has been used to fully exploit the physics potential of the LHC since the first proton-proton collisions at 7 TeV were delivered in 2009. In this paper, its operational status throughout data taking up to the end of 2011 is presented, and its tracking performance is reviewed.

  1. Method for deposition of a conductor in integrated circuits

    Science.gov (United States)

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  2. The quantum flux in quasis one-dimensional conductors

    International Nuclear Information System (INIS)

    Ventura, J.

    1989-01-01

    A method is presented which quantizes electromagnetic fluxes directly in flux space. It is based on the commutation law [φ B , φ E ] = i, where φ B is the magnetic flux, and φ E the longitudinal electric flux of a quasi one-dimensional conductor. The relevance of such a method for the description of the quantized Hall plateaus is discussed. In a second step, the polarization electric flux is introduced, together with a method for quantization of hybrid variables formed with pure electromagnetic fluxes plus electronic variables. (author) [pt

  3. Flux line lattice in type II super conductors

    International Nuclear Information System (INIS)

    Manindra Kumar; Singh, Arun Kumar; Surendra Kumar

    2003-01-01

    The shear modules C 66 of the flux line lattice in type II super conductors can be obtained from a two body interaction between the flux lines even at large inductions B ∼ HC 2 . The potential is composed of a repulsive and an attractive part and has a range diverging at HC 2 . An explicit expression for the Ginzberg-Landau C 66 is given for arbitrary B and k' (G-L parameter). The graph for C 66 exhibits the expected maximum at a certain value of b. (author)

  4. Magnet and conductor developments for the Mirror Fusion Program

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1981-01-01

    The conductor development and the magnet design and construction for the MFTF are described. Future plans for the Mirror Program and their influence on the associated superconductor development program are discussed. Included is a summary of the progress being made to develop large, high-field, multifilamentary Nb 3 Sn superconductors and the feasibility of building a 12-T yin-yang set of coils for the machine to follow MFTF. In a further look into the future, possible magnetic configurations and requirements for mirror reactors are surveyed

  5. Application of the Lifshitz Theory to Poor Conductors

    International Nuclear Information System (INIS)

    Svetovoy, Vitaly B.

    2008-01-01

    The Lifshitz formula for dispersive forces is generalized to the materials, which cannot be described with the local dielectric response. The principal nonlocality of poor conductors is related to the finite screening length of the penetrating field and collisional relaxation; at low temperatures the role of collisions plays the Landau damping. Spatial dispersion makes the theory self-consistent. Our predictions are compared with the recent experiment. It is demonstrated that at low temperatures Casimir-Lifshitz entropy disappears as T in the case of degenerate plasma and as T 2 for the nondegenerate one

  6. Quench propagation in coated conductors for fault current limiters

    International Nuclear Information System (INIS)

    Roy, F.; Perez, S.; Therasse, M.; Dutoit, B.; Sirois, F.; Decroux, M.; Antognazza, L.

    2009-01-01

    A fundamental understanding of the quench phenomenon is crucial in the future design and operation of high temperature superconductors based fault current limiters. The key parameter that quantifies the quenching process in superconductors is the normal zone propagation (NZP) velocity, which is defined as the speed at which the normal zone expands into the superconducting volume. In the present paper, we used numerical models developed in our group recently to investigate the quench propagation in coated conductors. With our models, we have shown that the NZP in these tapes depends strongly on the substrate properties.

  7. Computer simulation of multiple stability regions in an internally cooled superconducting conductor and of helium replenishment in a bath-cooled conductor

    International Nuclear Information System (INIS)

    Turner, L.R.; Shindler, J.

    1984-09-01

    For upcoming fusion experiments and future fusion reactors, superconducting magnetic have been chosen or considered which employ cooling by pool-boiling HeI, by HeII, and by internally flowing HeI. The choice of conductor and cooling method should be determined in part by the response of the magnet to sudden localized heat pulses of various magnitudes. The paper describes the successful computer simulation of multiple stability in internally cooled conductors, as observed experimentally, using the computer code SSICC. It also describes the modeling of helium replenishment in the cooling channels of a bath-cooled conductor, using the computer code TASS

  8. With or without a conductor: Comparative analysis of leadership models in the musical ensemble

    Directory of Open Access Journals (Sweden)

    Kovačević Mia

    2016-01-01

    Full Text Available In search of innovative models of work organization and therefore the artistic process of one musical ensemble, in the last ten years musical ensembles have developed examples of non-traditional artistic-performing decisions and organizational practice. The paper is conceived as a research and analysis of the dominant models of leadership (i.e. organizing, conducting business applicable on the music ensembles and experiences of the musicians. The aim is to recognize and define leadership styles that encourage the increase of motivation and productivity of musicians within the musical ensemble. The paper will specifically investigate the relationship and differences between the two dominant models of leadership, leadership of conductor and collaborative leadership. At the same time, the paper describes and analyses an experiment that was conducted by the Ensemble Metamorphosis, which applied into their work two dominant models of leadership. In an effort to increase the motivation and productivity of musicians, Ensemble Metamorphosis also searched for a new management model of work organization and a new model of leadership. The aim of this paper was therefore to investigate the effects of leadership models that improve the artistic quality, motivation of the musicians, psychological climate and overall increase productivity of musical organization.

  9. AC loss, interstrand resistance and mechanical properties of prototype EU DEMO TF conductors up to 30 000 load cycles

    Science.gov (United States)

    Yagotintsev, K.; Nijhuis, A.

    2018-07-01

    Two prototype Nb3Sn cable-in-conduit conductors conductors were designed and manufactured for the toroidal field (TF) magnet system of the envisaged European DEMO fusion reactor. The AC loss, contact resistance and mechanical properties of two sample conductors were tested in the Twente Cryogenic Cable Press under cyclic load up to 30 000 cycles. Though both conductors were designed to operate at 82 kA in a background magnetic field of 13.6 T, they reflect different approaches with respect to the magnet winding pack assembly. The first approach is based on react and wind technology while the second is the more common wind and react technology. Each conductor was tested first for AC loss in virgin condition without handling. The impact of Lorentz load during magnet operation was simulated using the cable press. In the press each conductor specimen was subjected to transverse cyclic load up to 30 000 cycles in liquid helium bath at 4.2 K. Here a summary of results for AC loss, contact resistance, conductor deformation, mechanical heat production and conductor stiffness evolution during cycling of the load is presented. Both conductors showed similar mechanical behaviour but quite different AC loss. In comparison with previously tested ITER TF conductors, both DEMO TF conductors possess very low contact resistance resulting in high coupling loss. At the same time, load cycling has limited impact on properties of DEMO TF conductors in comparison with ITER TF conductors.

  10. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  11. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Electrical and Computer Engineering Department, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Fontecchio, Adam K. [Electrical and Computer Engineering and Materials Science and Engineering Departments, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Visell, Yon [Electrical and Computer Engineering Department, Media Arts and Technology, California NanoSystems Institute, University of California, Santa Barbara, California 93106 (United States)

    2016-01-04

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.

  12. Thermoelectric power in ionic and electronic mixed conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Masahiro; Jin-nouchi, Kenji; Esaka, Takao [Tottori Univ. (Japan). Faculty of Engineering

    1996-08-01

    In order to study the thermoelectric property of the oxide ionic and electronic mixed conductor of 10 mol% CaO-doped CeO{sub 2} (CDC), a new type of thermocell was prepared, in which platinum electrodes were embedded in the tube-type sample to diminish the large temperature gradient over the electrodes due to the local heat radiation from heating furnace. Using this thermocell, reproducible data were obtained. The thermoelectric power measured in CDC under various oxygen atmospheres (Po{sub 2}) from 1.0 to about 10{sup -15} atm showed that the sign of Seebeck coefficients changed from minus to plus. This variation of Seebeck coefficients vs. Po{sub 2} was well interpreted by considering that (1) the thermoelectric power could be a driving force to make actual and electrochemical oxygen transfer in the mixed conductor and (2) the electrode processes had limiting rates due to slow oxygen diffusion (or oxygen gas exhaustion at the cathode and evolution at the anode). (author)

  13. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  14. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    Science.gov (United States)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  15. ATLAS SemiConductor Tracker Operation and Performance

    CERN Document Server

    Tojo, J; The ATLAS collaboration

    2011-01-01

    The SemiConductor Tracker (SCT), comprising of silicon micro-strip detectors is one of the key precision tracking devices in the ATLAS Inner Detector. ATLAS is one of the experiments at CERN LHC. The completed SCT is in very good shapes with 99.3% of the SCT’s 4088 modules (a total of 6.3 million strips) are operational. The noise occupancy and hit efficiency exceed the design specifications. In the talk the current status of the SCT will be reviewed. We will report on the operation of the detector, its performance and observed problems, with stress on the sensor and electronics performance. In December 2009 the ATLAS experiment at the CERN Large Hadron Collider (LHC) recorded the first proton-proton collisions at a centre-of-mass energy of 900 GeV and this was followed by the unprecedented energy of 7 TeV in March 2010. The Semi- Conductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The signals from the stri...

  16. Mechanical characterization and assessment of the CMS conductor

    CERN Document Server

    Sequeira-Lopes-Tavares, S; Desirelli, Alberto; Sgobba, Stefano; Horváth, I L

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN. The design field of the CMS magnet is 4 T, the magnetic length is 12.5m and the free aperture is 6 m in diameter. This is achieved with a 4 layer and 5 module superconducting Al stabilized coil, resulting into 20 lengths of conductor of 2.5 km each, energized at a nominal current of 20 kA at 4.5 K. One of the unique features of this thin solenoid is an Al-stabilized conductor reinforced by an Al-alloy. An extensive characterization of mechanical properties at room temperature and 4.2 K has been carried out in order to define the most appropriate alloy and temper for the reinforcement. The effect of the coil curing cycle on the alloy properties has been taken into account. This paper summarizes the main results of these tests. (7 refs).

  17. Duality and reciprocity of fluctuation-dissipation relations in conductors.

    Science.gov (United States)

    Reggiani, Lino; Alfinito, Eleonora; Kuhn, Tilmann

    2016-09-01

    By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise, which vanishes in this limit.

  18. Internal pressure effects in the AIRCO-LCT conductor sheath

    International Nuclear Information System (INIS)

    Luton, J.N.; Clinard, J.A.; Lue, J.W.; Gray, W.H.; Summers, L.T.; Kershaw, R.

    1985-01-01

    The large Nb 3 Sn superconducting test coil produced by Westinghouse Electric Corporation for the international Large Coil Task (LCT) utilizes a conductor composed of cabled multifilamentary strands immersed in flowing supercritical helium contained by a square structural sheath made of the high-strength stainless alloy JBX-75. Peak pressures of a few hundred atmospheres are predicted to occur during quench, and measurement of these pressures seems feasible only through penetrations of the sheath wall. Fully processed short lengths of conductor were taken from production ends, fitted with pressure taps and strain gauges, and pressurized with helium gas. Failure, at 1000 atm at liquid nitrogen temperature, was by a catastrophic splitting of the sheath at a corner. Strain measurements and burst pressure agreed with elastic-plastic finite element stress calculations made for the sheath alone. Neither the production seam weld nor the pressure tap penetrations or their fillet welds contributed to the failure, although the finite element calculations show that these areas were also highly stressed, and examination of the failed sample showed that the finite welds were of poor quality. Failure was by tensile overload, with no evidence of fatigue

  19. A Systematic Inventory of Motives for Becoming an Orchestra Conductor: A Preliminary Study

    Science.gov (United States)

    Makris, Ioannis; Mullet, Etienne

    2009-01-01

    The study examined the various motives (reasons) that may have led an individual to become an orchestra conductor interpreting classical works, using Apter's (2001) Metamotivational Theory framework. Questionnaires derived from the theory, consisting of 92 possible motives for becoming an orchestra conductor, were presented to 101 orchestra…

  20. Powder-in-Tube (PIT) Nb3Sn conductors for high-field magnets

    NARCIS (Netherlands)

    Lindenhovius, J.H.; Hornsveld, E.M.; den Ouden, A.; Wessel, Wilhelm A.J.; ten Kate, Herman H.J.

    2000-01-01

    New Nb3Sn conductors, based on the powder-in-tube (PIT) process, have been developed for application in accelerator magnets and high-field solenoids. For application in accelerator magnets, SMI has developed a binary 504 filament PIT conductor by optimizing the manufacturing process and adjustment

  1. Power line conductor icing prevention by the Joule effect : parametric analysis and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Z.; Farzaneh, M.; Kiss, L.I. [Quebec Univ., Chicoutimi, PQ (Canada). Industrial Chair on Atmospheric Icing of Power Network Equipment

    2005-07-01

    A mathematical model to calculate the minimum current intensity needed to prevent potentially damaging ice accretion on power line conductors was presented. The influence of atmospheric parameters such as wind speed, air temperature and liquid water were considered. Energy analysis was developed for an aluminum and steel reinforced conductor with circular cylindrical wire and concentric layers. Atmospheric parameters and the duration of the freezing conditions were considered with reference to the Joule effect. The model was then compared with experiments and simulations performed at an icing wind tunnel and in a climate room. It was determined that the equivalent thermal conductivity of the conductor should be assessed to identify the temperature distribution in the power line conductor. The radial component of the thermal conductivity was estimated on the basis of experiments performed in the wind tunnel, which provided a good estimation of the equivalent thermal conductivity and overall heat transfer coefficient around the stranded conductor. Experimental results were compared with values obtained from theoretically equivalent conductivity models. It was observed that the convective heat transfer coefficients around stranded conductors were higher than around smooth cylinders, and that the mathematical calculations slightly overestimated the wind tunnel measurements due to difficulties in estimating the wetted surface and the overall convection heat transfer coefficient around a stranded conductor. The typical range for the equivalent thermal conductivity of stranded conductors was also presented. 13 refs., 1 tab., 11 figs.

  2. The Connoisseurship of Conducting: A Qualitative Study of Exemplary Wind Band Conductors

    Science.gov (United States)

    Barry, Nancy; Henry, Daniel

    2015-01-01

    This study aimed to gain an in-depth perspective through examining how the conducting pedagogy of three selected exemplary high school and college instrumental music conductors function within the context of an actual rehearsal. A typical rehearsal was video recorded, followed by a "think-aloud" session in which the conductor viewed the…

  3. An experimental method to determine the electrostatic field enhancement factor of a practical conductor surface

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1989-01-01

    A method of determining the field enhancement factor of a practical conductor is presented. The method is developed from a modified theory of discharge onset in a gaseous medium. This modification incorporates the influence of conductor surface roughness. Onset data from an experimental study...

  4. The Virtual Conductor: Learning and Teaching about Music, Performing, and Conducting

    NARCIS (Netherlands)

    Nijholt, Antinus; Reidsma, Dennis; Ebbers, Rob; ter Maat, Mark

    2008-01-01

    The Virtual Conductor is an artificial conducting system for tutoring purposes that uses real-time audio analysis of music played by musicians and uses this analysis to animate a virtual human that acts as a conductor. The analysis detects the tempo and the dynamics of the music, compares the

  5. Current Density Distribution on the Perimeter of Waveguide Exciter Cylindrical Vibrator Conductor

    OpenAIRE

    Zakharia, Yosyp

    2010-01-01

    On ground of electrodynamic analysis the surface current distribution nonuniformity on the perimeter of waveguide-exciter cylindrical conductor is found. Considerable influence of current distribution nonuniformity on exciter input reactance is established. It is also showed, that the current distribution on the vibrator perimeter, for conductor radius no greater then 0,07 of waveguide cross section breadth, approximately uniform is.

  6. Twenty years of cable-in-conduit conductors: 1975-1995

    International Nuclear Information System (INIS)

    Dresner, L.

    1995-01-01

    This paper reviews our progress during the last two decades in understanding cable-in-conduit conductors. The emphasis is on the physical principles governing the behavior of cable-in-conduit conductors, and no detailed mathematics is presented. The paper is constructed as a historical narrative

  7. Transport current dependence of the hysteresis loss in silver sheathed BSCOO-2212 conductors

    NARCIS (Netherlands)

    Hemmes, Herman K.; Woudstra, Martin J.; ten Kate, Herman H.J.; Tenbrink, Johannes

    1994-01-01

    A technique is described to study the critical current density and penetration fieldassociated with the transport current in a silver sheathed BSCCO conductor. A transport current flowing in a conductor in a varying magnetic field will only influence magnetisation currents that are in competition

  8. Measuring ac-loss in high temperature superconducting cable-conductors using four probe methods

    DEFF Research Database (Denmark)

    Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten; Olsen, Søren Krüger

    1999-01-01

    Measuring the ac-loss of superconducting cable conductors have many aspects in common with measuring the ac-loss of single superconducting tapes. In a cable conductor all tapes are connected to each other and to the test circuit through normal metal joints in each end. This makes such measurement...

  9. The CEA JOSEFA test facility for sub-size conductors and joints

    International Nuclear Information System (INIS)

    Decool, P.; Libeyre, P.; Van Houtte, D.; Ciazynski, D.; Zani, L.; Serries, J.P.; Cloez, H.; Bej, S.

    2003-01-01

    The JOSEFA (Joint Sub-size Experiment FAcility) experimental test facility, installed at CEA/Cadarache is devoted to perform tests at cryogenic temperature on sub-size superconducting conductor and joint samples under parallel or transverse magnetic field. This facility was built in 1993 to investigate the performances of joints of cable-in-conduit conductors at sub-size level and further upgraded in the framework of European tasks. The samples of hairpin type using sub-size ITER conductors are cooled by a circulation of supercritical helium in a temperature range from 5 to 15 K and tested at a maximum current up to 10 kA. Two different helium bath cooled magnets allow to apply DC or AC transverse magnetic field up to 3.5 T or longitudinal magnetic field up to 7.5 T. A sliding system with a 240 mm stroke on the sample cryostat allows to test separately in the same sample either the conductor or the joint performances. The paper reports on how, through the conductor and joint development tasks, the facility performances were successfully increased and tested. The ITER TFMC joints using Nb3Sn conductors were first developed on this facility. The last developments, performed on ITER PF NbTi conductors and joints proved this facility to be a versatile and useful tool for superconducting magnet developments and showed the interest of possible upgrading to finalize conductor design. (author)

  10. Status of European manufacture of Toroidal Field conductor and strand for JT-60SA project

    Energy Technology Data Exchange (ETDEWEB)

    Zani, Louis, E-mail: louis.zani@jt60sa.org [Fusion for Energy, D-85748 Garching (Germany); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Barabaschi, Pietro; Di Pietro, Enrico [Fusion for Energy, D-85748 Garching (Germany)

    2013-10-15

    In the framework of the JT-60SA project, part of the Broader Approach (BA) agreement, EURATOM provides to Japan, the Toroidal Field (TF) magnet system, consisting of 18 superconducting coils. The procurement of the conductor for the TF coils is managed by Fusion for Energy, acting as EU representative in the BA agreement. The TF conductor procurement is split into two contracts, one dedicated to the production of Niobium Titanium (NbTi) and Cu strand and the other to TF conductor production through strand cabling and cable jacketing operations. The TF conductor is a rectangular-shaped cable-in-conduit conductor formed by 486 (0.81 mm diameter) strands (2/3 NbTi–1/3 Cu) wrapped in a stainless steel foil and embedded into a stainless steel jacket. The 18 TF coils require (including spares) 115 ‘Unit Lengths’ (UL) of such conductor, each 240 m long for a total of about 28 km. Correspondingly about 10,000 km for NbTi and 5000 km for Cu strand are produced. The Japanese company Furukawa Electric Co. (FEC) is in charge of TF strand manufacture while the Italian company Italian Consortium for Applied Superconductivity (ICAS) is in charge of cabling and jacketing of TF conductor ULs. In the paper, we provide information on the production stages presently achieved in TF strand and conductor contracts.

  11. Regions of Different Confinement in Low-Dimensional AlyInxGa1−x−yN Quantum Structures

    Directory of Open Access Journals (Sweden)

    A. Gröning

    2007-01-01

    Full Text Available The optical properties of metal-organic vapor phase epitaxy grown AlyInxGa1−x−yN quantum dot structures have been studied by time-resolved photoluminescence experiments. We investigated the recombination dynamics of the photo-exited carriers in dependence of the growth parameters such as aluminium flow and the duration of the growth interruption after the dot deposition. Our results confirm the presence of localized states, where the degree of localization is strongly dependent on the growth conditions. To describe this behavior, we propose a band structure with coupled potentials for these nanostructures. Finally, we demonstrate state filling to prove the zero-dimensional character of the strongly localized states in our quaternary quantum dots.

  12. Fabrication process of a superconducting multifilament conductor of a cable and resulting electric conductor. Procede de fabrication d'un conducteur a brins multifilamentaires supraconducteurs, et conducteur en resultant

    Energy Technology Data Exchange (ETDEWEB)

    Fevrier, A; Verhaege, T; Bonnet, P

    1990-10-05

    Elementary conductors constituted of a plurality of superconducting filaments in a metallic matrix are prepared and then twisted. Elementary conductors with a diameter between 0.05 and 0.25 mm without electric insulation are twisted after heating with a pitch of four time the diameter, finally the conductor is insulated.

  13. CCAN and TCAN - 1 1/2-D compressible-flow and time-dependent codes for conductor analysis

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Wan, A.S.; Yang, T.F.

    1983-01-01

    This report documents the computer programs CCAN (steady-state Compressible flow Conductor ANalysis) and TCAN (Time-dependent incompressible-flow Conductor ANalysis). These codes calculate temperature, pressure, power and other engineering quantities along the length of an actively-cooled electrical conductor. Present versions contain detailed property information for copper and aluminum conductors; and gaseous helium, liquid nitrogen and water coolants. CCAN and TCAN are available on the NMFECC CDC 7600

  14. Functionalized Self-Assembled InAs/GaAs Quantum-Dot Structures Hybridized with Organic Molecules

    DEFF Research Database (Denmark)

    Chen, Miaoxiang Max; Kobashi, K.; Chen, B.

    2010-01-01

    Low-dimensional III-V semiconductors have many advantages over other semiconductors; however, they are not particularly stable under physiological conditions. Hybridizing biocompatible organic molecules with advanced optical and electronic semiconductor devices based on quantum dots (QDs...

  15. A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinhong; Song, Jongchan; Lee, Hongkyung; Noh, Hyungjun; Kim, Yun-Jung; Kwon, Sung Hyun; Lee, Seung Geol; Kim, Hee-Tak

    2017-04-19

    Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interface of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.

  16. Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors.

    Science.gov (United States)

    Yu, You; Yan, Casey; Zheng, Zijian

    2014-08-20

    Metal interconnects, contacts, and electrodes are indispensable elements for most applications of flexible, stretchable, and wearable electronics. Current fabrication methods for these metal conductors are mainly based on conventional microfabrication procedures that have been migrated from Si semiconductor industries, which face significant challenges for organic-based compliant substrates. This Research News highlights a recently developed full-solution processing strategy, polymer-assisted metal deposition (PAMD), which is particularly suitable for the roll-to-roll, low-cost fabrication of high-performance compliant metal conductors (Cu, Ni, Ag, and Au) on a wide variety of organic substrates including plastics, elastomers, papers, and textiles. This paper presents i) the principles of PAMD, and how to use it for making ii) flexible, stretchable, and wearable conductive metal electrodes, iii) patterned metal interconnects, and d) 3D stretchable and compressible metal sponges. A critical perspective on this emerging strategy is also provided. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold.

    Science.gov (United States)

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-10-01

    Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.

  18. Electromagnetic response of a conductor with complex conductivity

    Science.gov (United States)

    Leylekian, L.; Ocio, M.; Hammann, J.

    1993-02-01

    The aim of this paper is to describe the electromagnetic response of a conductor with complex conductivity. We will show how the geometry of the measuring apparatus can modify the amplitude of this response. We will particularly emphasize the role that plays a complex conductivity, as we can find in granular superconductors, on the mesured magnetic susceptibility of the sample. Cet article a pour but de décrire la réponse électromagnétique d'un conducteur muni d'une conductivité complexe. Nous montrerons comment la géométrie du dispositif de mesure peut modifier l'amplitude de cette réponse. Nous insisterons particulièrement sur le rôle que joue une conductivité complexe, comme nous pouvons en trouver dans les supraconducteurs granulaires, sur la susceptibilité magnétique mesurée de l'échantillon.

  19. Why is AgBr not a superionic conductor

    International Nuclear Information System (INIS)

    Andreoni, W.; Tosi, M.P.

    1982-03-01

    The behaviour of AgCl and AgBr is contrasted with that of fluorite-type crystals, which also are Frenkel conductors at low temperatures but undergo a diffuse transition to a superionic phase before melting. Concentrating on AgBr for which the relevant defect parameters are better known, a Debye-Hueckel model for the interactions between defects, modified for saturation of screening at high defect concentrations, is used to show that both Frenkel and Schottky disorder are present and rapidly increasing with temperature in the hot solid, with the Schottky component rapidly overtaking the Frenkel component. It is suggested that this defect behaviour frustrates a superionic transition and leads to melting accompanied by an anomalous ionic conductivity in the premelting region. The model is tested by a comparison with data on the Frenkel defect concentration in superionic PbF 2 . (author)

  20. Computation of transient 3-D eddy current in nonmagnetic conductor

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1978-01-01

    A numerical procedure was developed to solve transient three-dimensional (3-D) eddy current problems for nonmagnetic conductor. Integral equation formulation in terms of vector potential is used to simplify the matching of boundary conditions. The resulting equations and their numerical approximation were shown to be singular and to require special handling. Several types of symmetries were introduced. They not only reduce the number of algebraic equations to be solved, but also modify the nature of the equations and render them nonsingular. Temporal behavior was obtained with the Runge-Kutta method. The program is tested in several examples of eddy currents for its spatial and temporal profiles, shielding, boundary surface effects, and application of various symmetry options

  1. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    International Nuclear Information System (INIS)

    Hernández, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.

    2014-01-01

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor

  2. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, C. [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 101-80 Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C., E-mail: christophe.chaubet@univ-montp2.fr [Université Montpellier 2, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier (France); Degiovanni, P. [Université de Lyon, Fédération de Physique Andrée Marie Ampère, CNRS, Laboratoire de Physique de l' Ecole Normale Supérieure de Lyon, 46 allée d' Italie, 69364 Lyon Cedex 07 (France)

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  3. YBCO coated conductors by reactive thermal co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Schmatz, U.; Hoffmann, Ch.; Bauer, M.; Metzger, R.; Berberich, P.; Kinder, H. [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2001-12-01

    Coated tape conductors of YBCO require a deposition process allowing to obtain a high volume growth rate in order to produce long lengths of tape in a reasonable amount of time. We present our tape coating system where 15 parallel loops of travelling tape of 1 cm width can be coated simultaneously by reactive thermal co-evaporation. For high critical current densities, in-plane alignment of the YBCO film is necessary. Inclined substrate deposition (ISD) is a technique that allows to deposit in-plane oriented buffer layers suitable for YBCO growth at high deposition rates. We present results obtained for YBCO films grown on MgO-ISD buffer layers deposited by e-gun evaporation onto metallic tape substrates. (orig.)

  4. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  5. PAC study of ionic motion in silver compound superionic conductors

    International Nuclear Information System (INIS)

    Mekata, M.; Seguchi, Y.

    1983-01-01

    Ionic motion in superionic conductors, Ag 2 S, Ag 2 Se and Ag 3 SI was investigated by γ-γ PAC on 111 Cd. Diffusion constant measurements showed that probe ions migrate almost as fast as Ag + ions above 500 K in Ag 2 S and Ag 2 Se and above 700 K in Ag 3 SI. Multivalent impurities were found to be unstable in AgI and Ag 2 Te. The correlation time of ionic motion was deduced from the observed relaxation rate together with the diffusion constants. The correlation time and its activation energy increase in order of Ag 2 S, Ag 2 Se and Ag 3 SI. The flight distance of Ag + ions remains almost constant in the measured temperature range. (Auth.)

  6. Cable-in-conduit conductor optimization for fusion magnet applications

    International Nuclear Information System (INIS)

    Miller, J.R.; Kerns, J.A.

    1987-01-01

    Careful design of the toroidal-field (TF) and poloidal-field (PF) coils in a tokamak machine using cable-in-conduit conductors (CICC) can result in quite high overall winding-pack current densities - even with the high nuclear heat loads that may be imposed in operating a fusion reactor - and thereby help reduce the overall machine size. In our design process, we systematically examined the operational environment of a magnet, e.g., mechanical stresses, current, field, heat load, coolant temperature, and cooldown stresses, to determine the optimum amounts of copper, superconductor, helium, and sheath material for the CICC. This process is being used to design the superconducting magnet systems that comprise the Tokamak Ignition/Burn Experimental Reactor (TIBER II). 13 refs., 2 figs

  7. On Faraday's law in the presence of extended conductors

    Science.gov (United States)

    Bilbao, Luis

    2018-06-01

    The use of Faraday's Law of induction for calculating the induced currents in an extended conducting body is discussed. In a general case with arbitrary geometry, the solution to the problem of a moving metal object in the presence of a magnetic field is difficult and implies solving Maxwell's equations in a time-dependent situation. In many cases, including cases with good conductors (but not superconductors) Ampère's Law can be neglected and a simpler solution based solely in Faraday's law can be obtained. The integral form of Faraday's Law along any loop in the conducting body is equivalent to a Kirkhhoff's voltage law of a circuit. Therefore, a numerical solution can be obtained by solving a linear system of equations corresponding to a discrete number of loops in the body.

  8. Manufacture of the Poloidal Field Conductor Insert Coil (PFCI)

    International Nuclear Information System (INIS)

    Baker, W.; Rajainmaeki, H.; Salpietro, E.; Keefe, C.

    2006-01-01

    Within the framework of the R(and)D programme for ITER (International Thermonuclear Experimental Reactor) the European team EFDA (European Fusion Development Agreement) have been charged with the design and manufacture of the Poloidal Field Conductor Insert Coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long length full scale NbTi conductors in ITER relevant conditions. The PFCI will be tested in the Central Solenoid Model Coil test facility at the JAEA Naka Japan. This paper details the complete manufacturing details of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single layer wound solenoid of 9 turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, pre-formed and machined glass resin composite filler pieces are assembled with the winding and finally Vacuum Pressure Impregnated to create a single assembly unit. The PFCI is enclosed for assembly in a support structure which consist of an upper and lower flange that each are made up by 4 machined stainless steel castings which are electrically insulated by epoxy glass sheet material and 12 tie rods which preload the complete assembly in the vertical direction while the upper flange is equipped with 4 radial restraining jacks and the lower flange is equipped with 4 sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil is in the process of final impregnation and should be completed and delivered before the summer of this year. (author)

  9. Manufacture of the poloidal field conductor insert coil (PFCI)

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany); Keefe, C. [Tesla Engineering, Storrington, Sussex (United Kingdom); Rajainmaeki, H. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)], E-mail: hannu.rajainmaki@tech.efda.org; Salpietro, E. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)

    2007-10-15

    Within the framework of the R and D programme for international thermonuclear experimental reactor (ITER) the European team European Fusion Development Agreement (EFDA) has been charged with the design and manufacture of the poloidal field conductor insert coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long-length full-scale NbTi conductors in ITER-relevant conditions. The PFCI will be tested in the central solenoid model coil test facility at the JAEA, Naka, Japan. This paper details the complete manufacturing of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single-layered wound solenoid of nine turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, preformed and machined glass resin composite filler pieces are assembled with the winding and is finally vacuum pressure impregnated (VPI) to create a single assembly unit. The PFCI is enclosed for assembly in a support structure, which consists of an upper and lower flange, each made up of four electrically insulated machined stainless steel castings, and 12 tie rods preloading the complete assembly in the vertical direction. The upper flange is equipped with four radial restraining jacks and the lower flange is equipped with four sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil has passed the final acceptance tests and it is in the support structure assembly stage.

  10. Far-field potentials in cylindrical and rectangular volume conductors.

    Science.gov (United States)

    Dumitru, D; King, J C; Rogers, W E

    1993-07-01

    The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.

  11. Development of high-temperature superconducting coated conductor by MOCVD method

    International Nuclear Information System (INIS)

    Kim, Chan Joong; Jun, Byung Hyuk; Jung, Choung Hwan

    2004-07-01

    To fabricate the second generation superconductor wire, coated conductor, we selected MOCVD (Metal organic chemical vapor deposition) method which is commercially available and whose growth rate is very high. The first buffer layer CeO 2 was successfully deposited on the Ni tape. The thick Y-stabilized ZrO 2 layer was thus inserted between two CeO 2 layers by MOCVD method. The c-axis growth of the first CeO 2 , the inserted YSZ and top CeO 2 layer was achieved by optimized the deposition condition for the three buffers. It was found that the YBCO deposition was fairly dependant on the depostion temperature, time, oxygen partial pressure, amount of the source supplied. Especially the thickness of the YBCO films was linearly dedendant on the deposition temperature and time, but current properties was not linearly dependant on the film thickness. The critical current (Ic) of the YBCO film grown on SrTiO 3 and IBAD template were over 100 A/cm-width and 50 A/cm-width at 77 K and 0 field. To establish the MOCVD process, collaboration work with several organizations was made

  12. Detection of smaller Jc region and damage in YBCO coated conductors by using permanent magnet method

    International Nuclear Information System (INIS)

    Hattori, K.; Saito, A.; Takano, Y.; Suzuki, T.; Yamada, H.; Takayama, T.; Kamitani, A.; Ohshima, S.

    2011-01-01

    We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We also examined the influence of damage to the film on the J c distribution. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We tried to detect a smaller J c region in the coated conductor by using the system. The J c distribution could be determined without influence from the thick copper film on YBCO thin film. We also examined the influence of damage to the film on the J c distribution. The surface of the coated conductors was cut by using a knife. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. This J c measurement technique will be useful for detecting smaller J c regions and defects in coated conductors.

  13. Development of 1 m HTS conductor using YBCO on textured metal substrate

    International Nuclear Information System (INIS)

    Yagi, M.; Sakamoto, H.; Mukoyama, S.; Yamamoto, K.; Amemiya, N.; Nagaya, S.; Kashima, N.; Shiohara, Y.

    2009-01-01

    We fabricated 1 m high temperature superconducting conductor (HTS conductor) using YBa 2 Cu 3 O 7-x coated conductors (YBCO tapes) on textured metal substrates, which are expected to be lower in cost than YBCO tapes using ion-beam assisted deposition. Those substrate and intermediate layers were manufactured by Furukawa Electric, and YBCO and a protective layer were applied to the intermediate layer by Chubu Electric Power. Before fabricating the conductor, a 0.1 mm thick copper tape was soldered to the YBCO tape, and 10 mm wide YBCO tape was divided into three strips by a YAG laser. To have sufficient current capacity for 1 kA, a two-layer conductor was fabricated, and its critical current (I c ) was 1976 A, but the magnetic properties of the textured metal substrates affected the increase in AC loss. In a low current region, the AC loss in this conductor was much higher than the Norris strip model, but approached the Norris strip model in the high current region because the magnetization was almost saturated. Low AC loss of 0.144 W/m at 1 kA rms was achieved even though the conductor had a small outer diameter of 20 mm and was composed of YBCO tapes with magnetic substrates.

  14. Calorimetric method for current sharing temperature measurements in ITER conductor samples in SULTAN

    International Nuclear Information System (INIS)

    Bagnasco, M.

    2009-01-01

    Several Toroidal Field Conductor short samples with slight layout variations have been assembled and tested in the SULTAN facility at CRPP. The measurement campaigns started in 2007 and are still ongoing. The performance of every conductor is expressed in terms of current sharing temperature (T cs ), i.e. the temperature at which a defined electric field, 10 μV/m, is detected in the cable due to the incipient superconducting-to-normal state transition. The T cs at specific operating conditions is the key design parameter for the ITER conductors and is the main object of the qualification tests. Typically, the average electric field is measured with voltage tap pairs attached on the jacket along the conductor. The inability however to explain observed premature voltage developments opened the discussion about possible alternative measuring methods. The He flow calorimetric method is based on the measurement of the resistive power generation in the conductor. It relies on the detection of very small temperature increases along the conductor in steady state operation. The accuracy and the reliability of the calorimetric method in SULTAN are critically discussed, with particular emphasis on the instrumentation requirements and test procedures. The application of the calorimetric method to the recent SULTAN test campaigns is described with its merits and limits. For future tests of ITER conductors in SULTAN, the calorimetric method for T cs test is proposed as a routine procedure.

  15. A Novel Method for Detection and Classification of Covered Conductor Faults

    Directory of Open Access Journals (Sweden)

    Stanislav Misak

    2016-01-01

    Full Text Available Medium-Voltage (MV overhead lines with Covered Conductors (CCs are increasingly being used around the world primarily in forested or dissected terrain areas or in urban areas where it is not possible to utilize MV cable lines. The CC is specific in high operational reliability provided by the conductor core insulation compared to Aluminium-Conductor Steel-Reinforced (ACSR overhead lines. The only disadvantage of the CC is rather the problematic detection of faults compared to the ACSR. In this work, we consider the following faults: the contact of a tree branch with a CC and the fall of a conductor on the ground. The standard protection relays are unable to detect the faults and so the faults pose a risk for individuals in the vicinity of the conductor as well as it compromises the overall safety and reliability of the MV distribution system. In this article, we continue with our previous work aimed at the method enabling detection of the faults and we introduce a method enabling a classification of the fault type. Such a classification is especially important for an operator of an MV distribution system to plan the optimal maintenance or repair the faulty conductors since the fall of a tree branch can be solved later whereas the breakdown of a conductor means an immediate action of the operator.

  16. Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection

    International Nuclear Information System (INIS)

    Zheng Gao-Feng; Pei Yan-Bo; Wang Xiang; Zheng Jian-Yi; Sun Dao-Heng

    2014-01-01

    A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor—insulator—conductor multi-layer interconnection structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is utilized to fabricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained results show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10 −7 Ω·m and 1.39 × 10 −7 Ω·m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor—insulator—conductor multi-layer interconnections in the electronic industry

  17. Development of an YBCO coil with SSTC conductors for high field application

    Science.gov (United States)

    Shi, Y.; Liu, H. J.; Liu, F.; Tan, Y. F.; Jin, H.; Yu, M.; Lei, L.; Guo, L.; Hong, Z. Y.

    2018-07-01

    With the continuous reduction of the production costs and improvement of the transport performance, YBCO coated conductor is the most promising candidate for the high field magnet application due to its high irreversibility field and strong mechanical properties. Presently a stable production capacity of the YBCO conductors has been achieved by Shanghai Superconducting Technology Co., Ltd (SSTC) in China. Therefore, the demand in high field application with YBCO conductors is growing in China. This paper describes the design, fabrication and preliminary experiment of a solenoid coil with YBCO conductors supplied by SSTC to validate the possibility of high field application. Four same double pancakes were manufactured and assembled for the YBCO coil where the outer diameter and height was 54.3 and 48 mm respectively to match the dimensional limitation of the 14 T background magnets. The critical current (Ic) of YBCO conductors was obtained by measuring as a function of the applied field perpendicular to the YBCO conductor surface which provides the necessary input parameters for preliminary performance evaluation of the coil. Finally the preliminary test and discussion at 77 and 4.2 K were carried out. The consistency of four double pancakes Ic was achieved. The measured results indicate that the fabrication technology of HTS coil is reliable which gives the conference for the in-field test in high field application. This YBCO coil is the first demonstration of the SSTC YBCO coated conductors.

  18. Corona Onset Characteristics of Bundle Conductors in UHV AC Power Lines at 2200 m Altitude

    Directory of Open Access Journals (Sweden)

    Shilong Huang

    2018-04-01

    Full Text Available The corona onset characteristic of bundle conductors is an important limiting factor for the design of UHV AC power lines in high-altitude areas. An experimental study on the corona characteristics of 8 × LGJ630, 6 × LGJ720, 8 × LGJ720 and 10 × LGJ720 bundle conductors commonly used in UHV power lines under dry and wet conductor conditions, as well as artificial moderate and heavy rain conditions, was conducted in Ping’an County, Xining City (elevation 2200 m. By using the tangent line method, the corona onset voltages and onset electric field of four types of conductors at high altitudes are obtained for the first time. In addition, the calculation model of corona onset voltage considering the outer strands’ effect on the electric field and the geometric factor in the corona cage in high altitude areas is established. The comparison of the calculation results and experimental results under dry conditions verifies the model’s correctness. Based on the results, an optimal selection scheme for high altitudes is proposed. The roughness coefficient was also calculated and analysed: the roughness coefficient of bundled conductors was between 0.59 and 0.77, and the roughness coefficient of the wet conductor was between the dry and rainy conditions. Both the experimental data and the calculation model can provide a reference for conductor selection for UHV AC power lines for use in high-altitude areas.

  19. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    Science.gov (United States)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  20. n value and Jc distribution dependence of AC transport current losses in HTS conductors

    International Nuclear Information System (INIS)

    Ogawa, Jun; Sawai, Yusuke; Nakayama, Haruki; Tsukamoto, Osami; Miyagi, Daisuke

    2004-01-01

    Compared with LTS materials, HTS materials have some peculiarities affecting AC loss characteristics of the conductors. We measured the AC transport current losses in YBCO thin film coated conductors and a Bi2223/Ag sheathed tape. Comparing the measured data with analytical calculations, the dependence of the AC transport current losses on the n value and critical current density distributions are studied. It is shown that, considering the n values and J c distributions, the peculiarities in the HTS materials can be taken into consideration and the transport current losses in HTS conductors can be calculated by the same analytical method used for LTS

  1. Stress-induced heating in commercial conductors and its possible influence on magnet performance

    International Nuclear Information System (INIS)

    Easton, D.S.; Kroeger, D.M.; Moazed, A.

    1976-01-01

    Calorimetric measurements show that significant amounts of heat are generated when a multifilamentary composite conductor is stressed in tension to levels expected to occur in large, high-field magnet systems. When the stress on the conductor is repetitively cycled between zero and some maximum value, the amount of heat produced per cycle is constant after the first few cycles. Comparison is made between calorimetric determinations of heat injections and the work done on the specimen as indicated by stress-strain curves. Stress-strain curves for a number of commercial conductors indicate that the most important determinant of the magnitude of this effect is the choice of matrix material

  2. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance

    International Nuclear Information System (INIS)

    Yanagisawa, Y.; Nakagome, H.; Takematsu, T.; Takao, T.; Sato, N.; Takahashi, M.; Maeda, H.

    2011-01-01

    Cleavage strength for YBCO-coated conductor is extremely low, typically 0.5 MPa. The remarkable weakness is due to cracks on the slit edge of the conductor. The cleavage stress appears on YBCO double pancake coils impregnated with epoxy. The cleavage stress should be avoided in the coil winding. Cleavage strength for an YBCO-coated conductor at 77 K was investigated with a model experiment. The nominal cleavage strength for an YBCO-coated conductor is extremely low, typically 0.5 MPa. This low nominal cleavage strength is due to stress concentration on a small part of the YBCO-coated conductor in cleavage fracture. Debonding by the cleavage stress occurs at the interface between the buffer layer and the Hastelloy substrate. The nominal cleavage strength for a slit edge of the conductor is 2.5-times lower than that for the original edge of the conductor; cracks and micro-peel existing over the slit edge reduce the cleavage strength for the slit edge. Cleavage stress and peel stress should be avoided in coil winding, as they easily delaminate the YBCO-coated conductor, resulting in substantial degradation of coil performance. These problems are especially important for epoxy impregnated YBCO-coated conductor coils. It appears that effect of cleavage stress and peel stress are mostly negligible for paraffin impregnated YBCO-coated conductor coils or dry wound YBCO-coated conductor coils.

  3. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    International Nuclear Information System (INIS)

    Chen, Z; Kametani, F; Larbalestier, D C; Chen, Y; Xie, Y; Selvamanickam, V

    2009-01-01

    We have made extensive low temperature and high field evaluations of a recent 2.1 μm thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm) 2 O 3 nanoprecipitates, which are self-aligned in planes tilted ∼7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J c values of ∼3.1 MA cm -2 at 77 K and ∼43 MA cm -2 at 4.2 K, and by a strongly enhanced irreversibility field H irr , which reaches that of Nb 3 Sn (∼28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J c values are ∼15% of the depairing current density J d , much the highest of any superconductor suitable for magnet construction.

  4. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z; Kametani, F; Larbalestier, D C [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Chen, Y; Xie, Y; Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States)], E-mail: zhijun@asc.magnet.fsu.edu

    2009-05-15

    We have made extensive low temperature and high field evaluations of a recent 2.1 {mu}m thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm){sub 2}O{sub 3} nanoprecipitates, which are self-aligned in planes tilted {approx}7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J{sub c} values of {approx}3.1 MA cm{sup -2} at 77 K and {approx}43 MA cm{sup -2} at 4.2 K, and by a strongly enhanced irreversibility field H{sub irr}, which reaches that of Nb{sub 3}Sn ({approx}28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J{sub c} values are {approx}15% of the depairing current density J{sub d}, much the highest of any superconductor suitable for magnet construction.

  5. Predictability analysis and validation of a low-dimensional model - an application to the dynamics of cereal crops observed from satellite

    Science.gov (United States)

    Mangiarotti, Sylvain; Drapeau, Laurent

    2013-04-01

    The global modeling approach aims to obtain parsimonious models of observed dynamics from few or single time series (Letellier et al. 2009). Specific algorithms were developed and validated for this purpose (Mangiarotti et al. 2012a). This approach was applied to the dynamics of cereal crops in semi-arid region using the vegetation index derived from satellite data as a proxy of the dynamics. A low-dimensional autonomous model could be obtained. The corresponding attractor is characteristic of weakly dissipative chaos and exhibits a toroidal-like structure. At present, only few theoretical cases of such chaos are known, and none was obtained from real world observations. Under smooth conditions, a robust validation of three-dimensional chaotic models can be usually performed based on the topological approach (Gilmore 1998). Such approach becomes more difficult for weakly dissipative systems, and almost impossible under noisy observational conditions. For this reason, another validation approach is developed which consists in comparing the forecasting skill of the model to other forecasts for which no dynamical model is required. A data assimilation process is associated to the model to estimate the model's skill; several schemes are tested (simple re-initialization, Extended and Ensemble Kalman Filters and Back and Forth Nudging). Forecasts without model are performed based on the search of analogous states in the phase space (Mangiarotti et al. 2012b). The comparison reveals the quality of the model's forecasts at short to moderate horizons and contributes to validate the model. These results suggest that the dynamics of cereal crops can be reasonably approximated by low-dimensional chaotic models, and also bring out powerful arguments for chaos. Chaotic models have often been used as benchmark to test data assimilation schemes; the present work shows that such tests may not only have a theoretical interest, but also almost direct applicative potential. Moreover

  6. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Allan J. [Univ. of Houston, TX (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Grey, Clare [Stony Brook Univ., NY (United States)

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B2O5+x, where A = rare earth ion, Y and B = Ba, Sr were studied. The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo2O5+x and NdBaCo2O5+x, PrBaCo2-xFexO6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr3YCo4O10.5, YBaMn2O5+x. A0.5A’0.5BO3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr

  7. Stress-tuned conductor-polymer composite for use in sensors

    Science.gov (United States)

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  8. Study on the conductor-insulator friction at liquid helium temperature

    International Nuclear Information System (INIS)

    Batakov, Yu.P.; Kostenko, A.I.; Semenov, O.V.; Trokhachev, G.V.

    1982-01-01

    A study is made on conductor heating as a result of friction following displacements under coolina conditions close to those for conductors in superconducting magnets with cryostatic stabilization. Sliding of a 2x15 mm 2 copper plate an averawithge surface roughness of 1m over fiberglas0 μ textolite and teflon is studied. ''Sudden'' displacements are caused by application of the displacing force exceeding the static frictional force several times. If in case of friction displacements.are caused by the action of a force equal to the static frictional force, stops increasing the displacement time are possible. This may ta.ke place following the displacement of the conductor parts in the superconducting magnet coils, owing to which the displacement may turn out to be not ''sudden''. In this case in designing superconducting magnets the tolerances for conductor portion displacements, which do not affect the magnet normal operation, may be less strict

  9. Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors

    Directory of Open Access Journals (Sweden)

    Xiaowei Yu

    2016-12-01

    Full Text Available Stretchable electronics represent a new generation of electronics that utilize soft, deformable elastomers as the substrate or matrix instead of the traditional rigid printed circuit boards. As the most essential component of stretchable electronics, the conductors should meet the requirements for both high conductivity and the capability to maintain conductive under large deformations such as bending, twisting, stretching, and compressing. This review summarizes recent progresses in various aspects of this fascinating and challenging area, including materials for supporting elastomers and electrical conductors, unique designs and stretching mechanics, and the subtractive and additive patterning techniques. The applications are discussed along with functional devices based on these conductors. Finally, the review is concluded with the current limitations, challenges, and future directions of stretchable conductors.

  10. Development of conductor feedthrough module of LV electrical penetration assembly for research reactors

    International Nuclear Information System (INIS)

    Luo Zhiyuan; Wang Guangjin; Zhou Bin

    2007-01-01

    A LV electrical penetration assembly with perfusion sealing conductor feedthrough module was developed, which can be used for the connection of internal and external cables through the wall of the research reactor workshop. The LV electrical penetration assembly was combined with several independent modules. The maintenance and replacement of the assembly can be easily done in service. The sealing of conductor feedthrough module was achieved with the perfusion of self-extinguishing epoxy. The leakage between the conductor feedthrough module and the end plate module was blocked with rubber rings. The result of the leakage test and the electrical performance test for the samples of conductor feedthrough module satisfied the requirement of research reactor. The structure of the new electrical penetration assembly is simple and compact. It can be manufactured with mature technology and cost low price. The performance of the assembly is steady. It can be used widely in research reactors. (authors)

  11. A new Theory for frequencies computation of overhead lines with bundle conductors.

    OpenAIRE

    dubois, Hervé; Dal Maso, Filipo; Lilien, Jean-Louis

    1991-01-01

    Vertical, horizontal and torsional mechanical frequencies are studies for both single and bundle conductor lines. Models and tests are presented. These data are of particular impact on galloping phenomenon. Peer reviewed

  12. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    Science.gov (United States)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Jiang, L.; Silvain, J.-F.; Lu, Y. F.

    2015-10-01

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0-10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm2. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  13. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    Energy Technology Data Exchange (ETDEWEB)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Lu, Y. F., E-mail: ylu2@unl.edu [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 (United States); Jiang, L. [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Silvain, J.-F. [Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS) 87, Avenue du Docteur Albert Schweitzer F-33608 Pessac Cedex (France)

    2015-10-21

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm{sup 2}. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  14. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    International Nuclear Information System (INIS)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Lu, Y. F.; Jiang, L.; Silvain, J.-F.

    2015-01-01

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm 2 . The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films

  15. Work in the U.K. on filamentary A15 conductor development

    International Nuclear Information System (INIS)

    Lee, J.A.; Scott, C.A.

    1980-07-01

    Work on Nb 3 Sn conductor development work began at Harwell in 1967 with work on stable filamentary Nb 3 Sn composites starting in 1969. This lead to a series of small magnets built at the Rutherford laboratory, using conductors incorporating high purity copper regions protected by diffusion barriers of both tantalum and phosphorus poisoned niobium, and the Wind-react technique for magnet construction was established. A magnet development programme lead to the construction of a 450mmx50mm hexapole magnet. IMI's parallel conductor programme developed tantalum diffusion barriers and used a hot extrusion first stage. The present position on conductor development is the result of a unification in 1979 of technical and commercial interests including university programmes. This current position is reported. (U.K.)

  16. Quantitative impedance analysis of solid ionic conductors: Effects of electrode polarization

    Czech Academy of Sciences Publication Activity Database

    Patil, D.; Shimakawa, K.; Zima, Vítězslav; Wágner, T.

    2014-01-01

    Roč. 115, č. 14 (2014), "143707-1"-"143707-6" ISSN 0021-8979 Institutional support: RVO:61389013 Keywords : impedance * conductivity * ion conductors Subject RIV: CA - Inorganic Chemistry Impact factor: 2.183, year: 2014

  17. AC magnetization loss characteristics of HTS coated-conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Liu, M.; Odaka, S.; Miyagi, D.; Ohmatsu, K.

    2007-01-01

    AC magnetization loss characteristics of an HTS coated tape conductor with magnetic substrate subjected to an external AC magnetic field were investigated. The external magnetic field was perpendicular or parallel to the wide face of the tape conductor. Magnetization losses in the conductor and in the magnetic substrate itself without the superconductor layer, were measured by electric and calorimetric methods. The influence of the magnetic property of the substrate was strongly dependent on the direction of the external magnetic field. When the external magnetic field was perpendicular, magnetic property of the substrate did not affect the magnetization loss characteristics. This result suggests that the magnetization losses can be reduced by subdivisions of the superconducting layers even in the case of magnetic substrate conductors. When the external magnetic field was parallel, the magnetization losses were dominated by the losses in the magnetic substrate. Therefore, to reduce the magnetization losses in this case, reduction of magnetization losses in the substrate is necessary

  18. Cube-textured metal substrates for reel-to-reel processing of coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian

    This thesis presents the results of a study aimed at investigating important fabrication aspects of reel-to-reel processing of metal substrates for coated conductors and identifying a new substrate candidate material with improved magnetic properties. The eect of mechanical polishing on surface...... texture and the fraction of low angle grain boundaries. Finally, a Ni-5Cu-5W substrate may be a good candidate material as a substrate in future coated conductors....

  19. Bipolar energy-loss measurements on cryostable, low-loss conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.

    1981-01-01

    Losses have been measured on a prototype conductor for the 20 MJ coil for conditions which simulate closely the actual coil field sweep. The data on the prototype II conductor indicates coil losses which exceed the coil specification. The application of certain correction factors reduces the projected losses within the specification for a 2 s reversal but not for a 1 s reversal. Verification of these corrections await measurements on the actual strand and completion of coil construction and testing.

  20. Transparent conductors based on microscale/nanoscale materials for high performance devices

    Science.gov (United States)

    Gao, Tongchuan

    Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short

  1. Qualification of the US Made Conductors for ITER TF Magnet System

    International Nuclear Information System (INIS)

    Martovetsky, Nicolai N.; Hatfield, Daniel R.; Miller, John R.; Bruzzone, P.; Stepanov, B.; Seber, B.

    2010-01-01

    The US Domestic Agency (USDA) is one of the six suppliers of the Toroidal Field (TF) conductor for the International Thermonuclear Experimental Reactor (ITER). In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.

  2. Quantum oscillations of thermomagnetic coefficients of layered conductors in a strong magnetic field

    International Nuclear Information System (INIS)

    Kirichenko, O.V.; Kozlov, I.V.; Peschansky, V.G.; Krstovska, D.

    2008-01-01

    The linear response of the electronic system of a conductor to a perturbation in the form of an electric field and a temperature gradient in a quantizing magnetic field B is investigated theoretically. The thermoelectric effect in a layered conductor is analyzed and it is shown that the quasi-two-dimensional character of the dispersion law of the charge carriers results in gigantic oscillations of the thermo-emf

  3. Measurements of residual deformations of steel-aluminum conductors in operating overhead lines

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.V.; Kesel' man, L.M.; Treiger, A.S.

    1982-12-01

    Experience in the operation of overhead power lines using steel-aluminum conductors is presented. Measurements were taken on the residual deformation of the steel-aluminum lines to determine the amount of sag increase and to forecast this increase for the entire period of operation. It is recommended that the work on measuring the residual deformation in the power lines be extended to a broader range of operating conditions such as conductors, spans, and climate conditions.

  4. Microstructure Characteristics of High Lift Factor MOCVD REBCO Coated Conductors With High Zr Content

    Energy Technology Data Exchange (ETDEWEB)

    Galstyan, E; Gharahcheshmeh, MH; Delgado, L; Xu, AX; Majkic, G; Selvamanickam, V

    2015-06-01

    We report the microstructural characteristics of high levels of Zr-added REBa2Cu3O7-x (RE = Gd, Y rare earth) coated conductors fabricated by Metal Organic Chemical Vapor Deposition (MOCVD). The enhancements of the lift factor defined as a ratio of the in-field (3 T, B parallel to c-axis) critical current density (J(c)) at 30 K and self-field J(c) at 77 K have been achieved for Zr addition levels of 20 and 25 mol% via optimization of deposition parameters. The presence of strong flux pinning is attributed to the aligned nanocolumns of BaZrO3 and nanoprecipitates embedded in REBa2Cu3O7-x matrix with good crystal quality. A high density of BZO nanorods with a typical size 6-8 nm and spacing of 20 nm has been observed. Moreover, the high Zr content was found to induce a high density of intrinsic defects, including stacking faults and dislocations. The correlation between in-field performance along the c-axis and microstructure of (Gd, Y) BCO film with a high level of Zr addition is discussed.

  5. Raman scattering studies of mobile ions in superionic conductor hollandites

    International Nuclear Information System (INIS)

    Shibata, Y.; Suemoto, T.; Ishigame, M.

    1986-01-01

    The Raman spectra of the superionic conductors K/sub 1.6/Mg/sub 0.8/Ti/sub 7.2/O 16 , Cs/sub 1.2/Mg/sub 0.6/Ti/sub 7.4/O 16 , and (KTl)/sub 1.6/Mg/sub 0.8/Ti/sub 7.2/O 16 are measured in the frequency range from 5 to 1000 cm -1 . In the range from 100 to 1000 cm -1 Raman spectra hardly show alkali ion dependence. On the contrary, in the frequency range from 5 to 100 cm -1 , an additional Raman band is observed. This Raman band shows alkali ion dependence. By using the Frenkel-Kontorova model for the hollandite crystal with the given configuration of the mobile ions, it is found that the dependence of vibrational frequency of mobile ions with kinds of alkali ion is well explained and that the concept of 'super unit cell' that is introduced by Beyeler is very useful to explain the Raman bands which are observed below 100 cm -1 in hollandite crystals. (author)

  6. Aluminum alloy production for the reinforcement of the CMS conductor

    CERN Document Server

    Sequeira-Lopes-Tavares, S; Campi, D; Curé, B; Horváth, I L; Riboni, P; Sgobba, Stefano; Smith, R P

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the Large Hadron Collider (LHC) project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. To reinforce the high-purity (99.998%) Al-stabilized conductor of the magnet against the magnetic loadings experienced during operation at 4.2 K, two continuous sections of Al-alloy (AA) reinforcement are Electron Beam (EB) welded to it. The reinforcements have a section of 24*18 mm and are produced in continuous 2.55 km lengths. The alloy EN AW-6082 has been selected for the reinforcement due to its excellent extrudability, high strength in the precipitation hardened states, high toughness and strength at cryogenic temperature and good EB weldability. Each of the continuous lengths of the reinforcement is extruded billet on billet and press quenched on-line from the extrusion temperature in an industrial extrusion plant. In order to insure the ready EB welda...

  7. Liquid conductor model of instabilities in a pinched discharge

    Energy Technology Data Exchange (ETDEWEB)

    Dattnery, A; Lehnert, B [Dept. of Electronics, Royal Institute of Technology, Stockholm (Sweden); Lundquist, S [Swedish State Power Board (Sweden)

    1958-07-01

    The pinched gas discharge experiments seem to have been handicapped by the great speed with which the instability develops as well as by the light coming from impurities instead of the main body of pinched gas. In the present work a liquid conductor is used in order to study the structure of the instabilities. The study of a pinch was made with and without the axial magnetic field. In cases with a magnetic field, the currents and fields were chosen so as to give a longitudinal magnetic field equal to or three times the azimuthal field at the boundary of the mercury stream. The study of the results shows that in the case without an external magnetic field there is a similarity between the behavior of the pinch in a stream of mercury and in an ionized gas column. The stabilizing action of the surface tension is small and the instabilities develop easily. The case with an external magnetic field is more complicated. The magnetic lines of force are not frozen into the medium; they can 'escape' from the medium. In this case the magnetic field has no stabilizing effect. The influence of conducting walls around the mercury column will be studied in forthcoming experiments.

  8. Tunable Broadband Nanocarbon Transparent Conductor by Electrochemical Intercalation.

    Science.gov (United States)

    Wan, Jiayu; Xu, Yue; Ozdemir, Burak; Xu, Lisha; Sushkov, Andrei B; Yang, Zhi; Yang, Bao; Drew, Dennis; Barone, Veronica; Hu, Liangbing

    2017-01-24

    Optical transparent and electrical conducting materials with broadband transmission are important for many applications in optoelectronic, telecommunications, and military devices. However, studies of broadband transparent conductors and their controlled modulation are scarce. In this study, we report that reversible transmittance modulation has been achieved with sandwiched nanocarbon thin films (containing carbon nanotubes (CNTs) and reduced graphene oxide (rGO)) via electrochemical alkali-ion intercalation/deintercalation. The transmittance modulation covers a broad range from the visible (450 nm) to the infrared (5 μm), which can be achieved only by rGO rather than pristine graphene films. The large broadband transmittance modulation is understood with DFT calculations, which suggest a decrease in interband transitions in the visible range as well as a reduced reflection in the IR range upon intercalation. We find that a larger interlayer distance in few-layer rGO results in a significant increase in transparency in the infrared region of the spectrum, in agreement with experimental results. Furthermore, a reduced plasma frequency in rGO compared to few-layer graphene is also important to understand the experimental results for broadband transparency in rGO. The broadband transmittance modulation of the CNT/rGO/CNT systems can potentially lead to electrochromic and thermal camouflage applications.

  9. The construction of the ATLAS semi-conductor tracker

    International Nuclear Information System (INIS)

    Jones, Tim

    2006-01-01

    The ATLAS (A Toroidal LHC ApparatuS) experiment at the Large Hadron Collider (LHC) at CERN has been designed to explore physics at the TeV energy scale and will be commissioned in 2007. In the innermost region of the experiment is a charged particle tracker, the Inner Detector of which the Semiconductor Tracker (SCT) is a major component. The SCT comprises a central barrel section enclosed by two endcaps (A and C). The construction of the major components of the ATLAS Semi-conductor tracker (SCT) is now nearing completion. Following a brief description of the design of the SCT, the logistics and organisation of the construction phase of the project are discussed. Central to the delivery of a high quality detector is the testing of large numbers of modules both during assembly and after they are mounted on their final support structures. The results of these tests for endcap C are presented showing that the electrical performance of the 988 modules to be installed in ATLAS is compatible with the specifications required

  10. Eddy damping effect of additional conductors in superconducting levitation systems

    Science.gov (United States)

    Jiang, Zhao-Fei; Gou, Xiao-Fan

    2015-12-01

    Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  11. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Ralph H. [Pennsylvania State Univ., University Park, PA (United States); Maranas, Janna K. [Pennsylvania State Univ., University Park, PA (United States); Mueller, Karl T. [Pennsylvania State Univ., University Park, PA (United States); Runt, James [Pennsylvania State Univ., University Park, PA (United States); Winey, Karen I. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-01

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li+, Na+, Cs+ or polycations that conduct small anions F-, OH-, Br-. We utilize a wide range of complimentary experimental materials characterization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li+ is -60 °C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ≈ -75 °C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80 °C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  12. Progress toward a practical Nb--Ge conductor

    International Nuclear Information System (INIS)

    Braginski, A.I.; Gavaler, J.R.; Roland, G.W.; Daniel, M.R.; Janocko, M.A.; Santhanam, A.T.

    1976-01-01

    Properties of high-T/sub c/ Nb--Ge films deposited by sputtering and by chemical vapor deposition (CVD) have been investigated. Results of sputtering in the presence of controlled levels of O 2 , N 2 , Si, and of reactive sputtering in Ar--GeH 4 , suggest that the high-T/sub c/ A15 phase is impurity- or defect-stabilized. In CVD deposits two tetragonal modifications were found: sigma and T2, the latter probably stabilized by Cl 2 . High critical current densities, J/sub c/ (H, T) of fine-grained sputtered films are attributed to flux pinning on A15 grain boundaries. In coarse-grained CVD films high self-field J/sub c/'s, 10 6 to 10 7 A cm -2 at T = 4.2 0 K, are attributed to pinning on dispersed sigma-phase. Comparably high J/sub c/'s were also obtained in CVD A15 films doped with impurities. Low field ac losses p (H, T) were correlated with J/sub c/ and coating geometries. The feasibility of fabricating multifilamentary composite conductors by CVD was demonstrated experimentally and a fabrication process for long Nb 3 Ge CVD tapes is being developed

  13. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.

    Science.gov (United States)

    Meair, Jonathan; Jacquod, Philippe

    2013-02-27

    We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.

  14. Optimization study of normal conductor tokamak for commercial neutron source

    Science.gov (United States)

    Fujita, T.; Sakai, R.; Okamoto, A.

    2017-05-01

    The optimum conceptual design of tokamak with normal conductor coils was studied for minimizing the cost for producing a given neutron flux by using a system code, PEC. It is assumed that the fusion neutrons are used for burning transuranics from the fission reactor spent fuel in the blanket and a fraction of the generated electric power is circulated to opearate the tokamak with moderate plasma fusion gain. The plasma performance was assumed to be moderate ones; {β\\text{N}}~∼ ~3{--}4 in the aspect ratio A~=~2{--}3 and {{H}98y2}~=~1 . The circulating power is an important factor affecting the cost. Though decreasing the aspect ratio is useful to raise the plasma beta and decrease the toroidal field, the maximum field in the coil starts to rise in the very low aspect ratio range and then the circulating power increases with decrease in the plasma aspect ratio A below A~∼ ~2 , while the construction cost increases with A . As a result, the cost per neutron has its minimum around A~∼ ~2.2 , namely, between ST and the conventional tokamak. The average circulating power fraction is expected to be ~51%.

  15. Long Gd-123 coated conductor by PLD method

    International Nuclear Information System (INIS)

    Fuji, H.; Igarashi, M.; Hanada, Y.; Miura, T.; Hanyu, S.; Kakimoto, K.; Iijima, Y.; Saitoh, T.

    2008-01-01

    We have developed long Gd-123 coated conductors by ion-beam-assisted deposition (IBAD) and pulsed-laser-deposition (PLD) method. Recently, large-scale reel-to-reel apparatus with the 110 cm x 15 cm assisting ion source was introduced to IBAD system. It was enable to produce 500 m-class IBAD-Gd 2 Zr 2 O 7 (GZO) tapes with Δφ of below 15 deg. and high throughputs of 3 m/h. Furthermore, apparatus with multi-lane and laser scanning was introduced to PLD system. As a result, end to end I c of 318 A were obtained for a 201.5 m long tape, and I c x L values were 64,077 Am. Furthermore, 500 m-class deposition was carried out by improving PLD conditions. As a result, I c x L values of 112,166 Am was obtained and it's a world record on August 2007. In the short samples, I c of over 500 A was obtained with Gd-123 thickness of 2.0 μm and over 100 A was obtained in magnetic field of 3 T, perpendicular to c-axis

  16. Field and electric potential of conductors with fractal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de [Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador (Brazil)

    2007-11-28

    In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-{alpha}, where {alpha} is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases.

  17. Field and electric potential of conductors with fractal geometry

    International Nuclear Information System (INIS)

    Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de

    2007-01-01

    In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-α, where α is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases

  18. Study of superionic conductors dynamics by continued diffusion model

    International Nuclear Information System (INIS)

    Bennai, M.

    1993-12-01

    The superionic conductors form a special category of solids characterized by their remarkable transport properties and are in general, Simplified as being constituted by the superposition of two inter penetrable crystal lattices. The ions of the first one form a rigid structure through which the other ions of opposite charge diffuse in quasi-liquid way. Basing on experimental and theoretical arguments, it was proved necessary to adopt a model of N-body continued diffusion which the basic theory is that of brownian movement. This thesis deals with the study of the dynamic structure factor S (q,w) and its line half width by the method of development in continued fractions issued from the Mori theory. With regard to the analytical difficulty met at the time of the static correlations functions calculation, the homogeneous approximation was applied and the notion of effective strength was introduced. So, it was obtained general relationships which give the static correlation functions, only in term of the static structure factor of liquids and effective potential. 98 refs.; 22 figs. (F.M.)

  19. Organic optoelectronic materials

    CERN Document Server

    Li, Yongfang

    2015-01-01

    This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.

  20. Development of long GdBCO coated conductor using the IBAD/MPMT-PLD method

    International Nuclear Information System (INIS)

    Ibi, A; Fukushima, H; Yamada, Y; Miyata, S; Kuriki, R; Takahashi, K; Shiohara, Y

    2006-01-01

    We have developed long GdBa 2 Cu 3 O 7-X (GdBCO) coated conductors by a multi-plume and multi-turn pulsed laser deposition (MPMT-PLD) method and have successfully fabricated 32 and 60.7 m long GdBCO coated conductors with a high critical current, I c , and high deposition rate. The I c of the 32 and 60.7 m long GdBCO coated conductors were 205 A (J c = 1.36 MA cm -2 ) and 183 A (J c = 1.45 MA cm -2 ), respectively, at 77 K and 0 T. In addition, they exhibited higher I c values in a magnetic field than a YBa 2 Cu 3 O 7-X (YBCO) coated conductor: typically 20 A at 77 K and 3 T while the value for a YBCO coated conductor is 8 A. These high I c values are due to the smaller number of a-axis oriented grains in GdBCO than in YBCO. Furthermore, the speed of production of the GdBCO layer was increased to 10 m h -1 while that of the former YBCO coated conductor was 3.75 m h -1 . The material yield of long GdBCO layers using the MPMT-PLD method was about 26-28%. The high I c of GdBCO in a magnetic field, the high production rate and the high material yield are promising for applications