WorldWideScience

Sample records for low-density nozzle flow

  1. Flow visualization of a low density hypersonic flow field

    International Nuclear Information System (INIS)

    Masson, B.S.; Jumper, E.J.; Walters, E.; Segalman, T.Y.; Founds, N.D.

    1989-01-01

    Characteristics of laser induced iodine fluorescence (LIIF) in low density hypersonic flows are being investigated for use as a diagnostic technique. At low pressures, doppler broadening dominates the iodine absorption profile producing a fluorescence signal that is primarily temperature and velocity dependent. From this dependency, a low pressure flow field has the potential to be mapped for its velocity and temperature fields. The theory for relating iodine emission to the velocity and temperature fields of a hypersonic flow is discussed in this paper. Experimental observations are made of a fluorescencing free expansion and qualitatively related to the theory. 7 refs

  2. Flow-throttling orifice nozzle

    International Nuclear Information System (INIS)

    Sletten, H.L.

    1975-01-01

    A series-parallel-flow type throttling apparatus to restrict coolant flow to certain fuel assemblies of a nuclear reactor is comprised of an axial extension nozzle of the fuel assembly. The nozzle has a series of concentric tubes with parallel-flow orifice holes in each tube. Flow passes from a high pressure plenum chamber outside the nozzle through the holes in each tube in series to the inside of the innermost tube where the coolant, having dissipated most of its pressure, flows axially to the fuel element. (U.S.)

  3. Laser reflection method for determination of shear stress in low density transitional flows

    Science.gov (United States)

    Sathian, Sarith P.; Kurian, Job

    2006-03-01

    The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.

  4. Elliptic flow from Coulomb interaction and low density elastic scattering

    Science.gov (United States)

    Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang

    2018-04-01

    In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.

  5. Fluid flow nozzle energy harvesters

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim

    2015-04-01

    Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.

  6. Flow and breakup in extension of low-density polyethylene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Fasano, Andrea

    2018-01-01

    The breakup during the extension of a low-density polyethylene Lupolen 1840D, as observed experimentally by Burghelea et al. (J Non-Newt Fluid Mech 166:1198–1209 2011), was investigated. This was observed during the extension of an circular cylinder with radius R0 = 4 mm and length L0 = 5mm....... The sample was attached to two flat end plates, separated exponentially in time to extend the samples. A numerical method based on a Lagrangian kinematics description in a continuum mechanical framework was used to calculate the extension of an initially cylindrically shaped sample with and without small...... the error bars as reported experimentally by Burghelea et al. (J Non-Newt Fluid Mech 166:1198–1209 2011). At low extensional rates, the measurements were considerably above the calculated ones. A very small relative suppression in the surface (0.1%) was required to achieve an agreement with all measurements...

  7. Measurements of low density, high velocity flow by electron beam fluorescence technique

    International Nuclear Information System (INIS)

    Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru

    1981-01-01

    A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)

  8. Nozzle flow calculation for real gases

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Hartz, U.; Kissau, G.

    1977-01-01

    The flow of CHF 2 Cl vapor (refrigerant R 22) through a Laval nozzle of annular geometry has been investigated in the region near the saturation line with stagnation pressures up to 85 per cent of the critical pressure. Static pressure profiles measured along the nozzle axis were found in good agreement with profiles calculated for one-dimensional isentropic flow of the real gas the thermal properties of which were derived from an equation of state proposed previously by Rombusch. Minor deviations between measured and calculated static pressure curves occur in the supersonic part of the mozzle, especially when supersaturated states of the vapour are passed. These deviations can be attributed to uncertainties in the calculation of the enthalpy and to a small influence of the static pressure probe. An additional investigation was concerned with an approximate calculation of the nozzle flow of real gases. In this approximation the well known relations of ideal gas dynamics are applied, the ratio of specific heats for the ideal gas being replaced, however, by a suitably adapted isentropic exponent, which can be determined e.g. from measured values of the Laval pressure or of the mass flow. For pressure ratios p/po between 1 and approximately 0.1, corresponding to Mach numbers up to approximately 2.2, all the interesting properties of the investigated flow of CHF 2 Cl vapour are approximated within a few per cent. (orig.) [de

  9. Supersonic flow with shock waves. Monte-Carlo calculations for low density plasma. I

    International Nuclear Information System (INIS)

    Almenara, E.; Hidalgo, M.; Saviron, J. M.

    1980-01-01

    This Report gives preliminary information about a Monte Carlo procedure to simulate supersonic flow past a body of a low density plasma in the transition regime. A computer program has been written for a UNIVAC 1108 machine to account for a plasma composed by neutral molecules and positive and negative ions. Different and rather general body geometries can be analyzed. Special attention is played to tho detached shock waves growth In front of the body. (Author) 30 refs

  10. Flow energy piezoelectric bimorph nozzle harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary

    2014-04-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  11. A fundamental study of a variable critical nozzle flow

    International Nuclear Information System (INIS)

    Kim, Jea Hyung; Kim, Heuy Dong; Park, Kyung Am

    2003-01-01

    The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle

  12. DSMC simulation and experimental validation of shock interaction in hypersonic low density flow.

    Science.gov (United States)

    Xiao, Hong; Shang, Yuhe; Wu, Di

    2014-01-01

    Direct simulation Monte Carlo (DSMC) of shock interaction in hypersonic low density flow is developed. Three collision molecular models, including hard sphere (HS), variable hard sphere (VHS), and variable soft sphere (VSS), are employed in the DSMC study. The simulations of double-cone and Edney's type IV hypersonic shock interactions in low density flow are performed. Comparisons between DSMC and experimental data are conducted. Investigation of the double-cone hypersonic flow shows that three collision molecular models can predict the trend of pressure coefficient and the Stanton number. HS model shows the best agreement between DSMC simulation and experiment among three collision molecular models. Also, it shows that the agreement between DSMC and experiment is generally good for HS and VHS models in Edney's type IV shock interaction. However, it fails in the VSS model. Both double-cone and Edney's type IV shock interaction simulations show that the DSMC errors depend on the Knudsen number and the models employed for intermolecular interaction. With the increase in the Knudsen number, the DSMC error is decreased. The error is the smallest in HS compared with those in the VHS and VSS models. When the Knudsen number is in the level of 10(-4), the DSMC errors, for pressure coefficient, the Stanton number, and the scale of interaction region, are controlled within 10%.

  13. Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center

    Science.gov (United States)

    Scott, Carl D.

    2000-01-01

    The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.

  14. Low Density Lipoprotein and Non-Newtonian Oscillating Flow Biomechanical Parameters for Normal Human Aorta.

    Science.gov (United States)

    Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D

    2016-04-01

    The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.

  15. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

    Science.gov (United States)

    Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

    2018-05-01

    We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(flows (ρ ∝ r-1/2). In the inner solution, the gas inflow rate decreases towards the centre due to convection (\\dot{M}∝ r), and the net accretion rate (including both inflows and outflows) is strongly suppressed by several orders of magnitude from the Bondi accretion rate \\dot{M}_B. The net accretion rate depends on the viscous strength, following \\dot{M}/\\dot{M}_B∝ (α /0.01)^{0.6}. This solution holds for low accretion rates of \\dot{M}_B/\\dot{M}_Edd≲ 10^{-3} having minimal radiation cooling, where \\dot{M}_Edd is the Eddington accretion rate. In a hot plasma at the bottom (r < 10-3 RB), thermal conduction would dominate the convective energy flux. Since suppression of the accretion by convection ceases, the final BH feeding rate is found to be \\dot{M}/\\dot{M}_B˜ 10^{-3}-10-2. This rate is as low as \\dot{M}/\\dot{M}_Edd˜ 10^{-7}-10-6 inferred for SgrA* and the nuclear BHs in M31 and M87, and can explain their low luminosities, without invoking any feedback mechanism.

  16. Reverse flow through a large scale multichannel nozzle

    International Nuclear Information System (INIS)

    Duignan, M.R.; Nash, C.A.

    1992-01-01

    A database was developed for the flow of water through a scaled nozzle of a Savannah River Site reactor inlet plenum. The water flow in the nozzle was such that it ranged from stratified to water solid conditions. Data on the entry of air into the nozzle and plenum as a function of water flow are of interest in loss-of-coolant studies. The scaled nozzle was 44 cm long, had an entrance diameter of 95 mm, an exit opening of 58 mm x 356 mm, and an exit hydraulic diameter approximately equal to that of the inlet. Within the nozzle were three flow-straightening vanes which divided the flow path into four channels. All data were taken at steady-state and isothermal (300 K ± 1.5 K) conditions. During the reverse flow of water through the nozzle the point at which air begins to enter was predicted within 90% by a critical weir-flow calculation. The point of air entry into the plenum itself was found to be a function of flow conditions

  17. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    International Nuclear Information System (INIS)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo

    2007-01-01

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm 2 at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode

  18. Extending cavitation models to subcooled and superheated nozzle flow

    International Nuclear Information System (INIS)

    Schmidt, D.P.; Corradini, M.L.

    1997-01-01

    Existing models for cavitating flow are extended to apply to discharge of hot liquid through nozzles. Two types of models are considered: an analytical model and a two-dimensional numerical model. The analytical model of cavitating nozzle flow is reviewed and shown to apply to critical nozzle flow where the liquid is subcooled with respect to the downstream conditions. In this model the liquid and vapor are assumed to be in thermodynamic equilibrium. The success of this analytical model suggests that hydrodynamic effects dominate the subcooled nozzle flow. For more detailed predictions an existing multi-dimensional cavitation model based on hydrodynamic non-equilibrium is modified to apply to discharge of hot liquid. Non-equilibrium rate data from experimental measurements are used to close the equations. The governing equations are solved numerically in time and in two spatial dimensions on a boundary fitted grid. Results are shown for flow through sharp nozzles, and the coefficient of discharge is found to agree with experimental measurements for both subcooled and flashing fluid. (author)

  19. Critical flashing flows in nozzles with subcooled inlet conditions

    International Nuclear Information System (INIS)

    Abuaf, N.; Jones, O.C. Jr.; Wu, B.J.C.

    1983-01-01

    Examination of a large number of experiments dealing with flashing flows in converging and converging-diverging nozzles reveals that knowledge of the flashing inception point is the key to the prediction of critical flow rates. An extension of the static flashing inception correlation of Jones [16] and Alamgir and Lienhard [17] to flowing systems has allowed the determination of the location of flashing inception in nozzle flows with subcooled inlet conditions. It is shown that in all the experiments examined with subcooled inlet regardless of the degree of inlet subcooling, flashing inception invariably occurred very close to the throat. A correlation is given to predict flashing inception in both pipes and nozzles which matches all data available, but is lacking verification in intermediate nozzle geometries where turbulence may be important. A consequence of this behavior is that the critical mass flux may be correlated to the pressure difference between the nozzle inlet and flashing inception, through a single phase liquid discharge coefficient and an accurate prediction of the flashing inception pressure at the throat. Comparison with the available experiments indicate that the predicted mass fluxes are within 5 percent of the measurements

  20. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    Science.gov (United States)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  1. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Walkemeyer, Phillip E. (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Colonius, Tim (Inventor); Tosi, Phillipe (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor); Corbett, Thomas Gary (Inventor); Arrazola, Alvaro Jose (Inventor)

    2016-01-01

    A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.

  2. Calibration of nozzle for air mass flow measurement

    Science.gov (United States)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  3. Magnetogasdynamic Flow Acceleration in a Scramjet Nozzle

    National Research Council Canada - National Science Library

    Harrington, Brian

    2004-01-01

    .... The parameters of conductivity pattern and load factor are varied in both inviscid and viscous flow regimes with the intent of increasing axial force exerted on the flow through a scramjet accelerator...

  4. Vortex flow and cavitation in diesel injector nozzles

    Science.gov (United States)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection

  5. Gas flows in radial micro-nozzles with pseudo-shocks

    Science.gov (United States)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2017-12-01

    In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.

  6. Three Dimensional Steady Subsonic Euler Flows in Bounded Nozzles

    OpenAIRE

    Chen, Chao; Xie, Chunjing

    2013-01-01

    In this paper, we study the existence and uniqueness of three dimensional steady Euler flows in rectangular nozzles when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the exit are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal compon...

  7. Fluid dynamic modeling and numerical simulation of low-density hypersonic flow

    Science.gov (United States)

    Cheng, H. K.; Wong, Eric Y.

    1988-01-01

    The concept of a viscous shock-layer and several related versions of continuum theories/methods are examined for their adequacy as a viable framework to study flow physics and aerothermodynamics of relevance to sustained hypersonic flights. Considering the flat plate at angle of attack, or the wedge, as a generic example for the major aerodynamic component of a hypersonic vehicle, the relative importance of the molecular-transport effects behind the shock (in the form of the 'shock slip') and the wall-slip effects are studied. In the flow regime where the shock-transition-zone thickness remains small compared to the shock radius of curvature, a quasi-one-dimensional shock structure under the Burnett/thirteen-moment approximation, as well as particulate/collisional models, can be consistently developed. The fully viscous version of the shock-layer model is shown to provide the crucial boundary condition downstream the shock in this case. The gas-kinetic basis of the continuum description for the flow behind the bow shock, and certain features affecting the non-equilibrium flow chemistry, are also discussed.

  8. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  9. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    Science.gov (United States)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  10. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  11. Experimental investigation of a two-phase nozzle flow

    International Nuclear Information System (INIS)

    Kedziur, F.; John, H.; Loeffel, R.; Reimann, J.

    1980-07-01

    Stationary two-phase flow experiments with a convergent nozzle are performed. The experimental results are appropriate to validate advanced computer codes, which are applied to the blowdown-phase of a loss-of-coolant accident (LOCA). The steam-water experiments present a broad variety of initial conditions: the pressure varies between 2 and 13 MPa, the void fraction between 0 (subcooled) and about 80%, a great number of critical as well as subcritical experiments with different flow pattern is investigated. Additional air-water experiments serve for the separation of phase transition effects. The transient acceleration of the fluid in the LOCA-case is simulated by a local acceleration in the experiment. The layout of the nozzle and the applied measurement technique allow for a separate testing of blowdown-relevant, physical models and the determination of empirical model parameters, respectively. The measured quantities are essentially the mass flow rate, quality, axial pressure and temperature profiles as well as axial and radial density/void profiles obtained by a γ-ray absorption device. Moreover, impedance probes and a pitot probe are used. Observed phenomena like a flow contraction, radial pressure and void profiles as well as the appearance of two chocking locations are described, because their examination is rather instructive about the refinement of a program. The experimental facilities as well as the data of 36 characteristic experiments are documented. (orig.) [de

  12. Analysis and design of optimized truncated scarfed nozzles subject to external flow effects

    Science.gov (United States)

    Shyne, Rickey J.; Keith, Theo G., Jr.

    1990-01-01

    Rao's method for computing optimum thrust nozzles is modified to study the effects of external flow on the performance of a class of exhaust nozzles. Members of this class are termed scarfed nozzles. These are two-dimensional, nonsymmetric nozzles with a flat lower wall. The lower wall (the cowl) is truncated in order to save weight. Results from a parametric investigation are presented to show the effects of the external flowfield on performance.

  13. INVESTIGATION OF FLOW BEHAVIOR IN MINIMUM QUANTITY LUBRICATION NOZZLE FOR END MILLING PROCESSES

    Directory of Open Access Journals (Sweden)

    M.S. Najiha

    2012-12-01

    Full Text Available Minimum quantity lubrication (MQL is a sustainable manufacturing technique that has replaced conventional flooded lubrication methods and dry machining. In the MQL technique, the lubricant is sprayed onto the friction surfaces through nozzles through small pneumatically-operated pumps. This paper presents an investigation into the flow behavior of the lubricant and air mixture under certain pressures at the tip of a nozzle specially designed for MQL. The nozzle used is an MQL stainless steel nozzle, 6.35 mm in diameter. Computational fluid dynamics is used to determine the flow pattern at the tip of the nozzle where the lubricant and compressed air are mixed to form a mist. The lubricant volume flow is approximately 0.08 ml/cycle of the pump. A transient, pressure-based, three-dimensional analysis is performed with a viscous, realizable k-ε model. The results are obtained in the form of vector plots and flow fields. The flow mixing at the tip of the nozzle is wholly shown through the flow fields and vector plots. This study provides an insight into the flow distribution at the tip of the nozzle for a certain pressure to aid modifications in the design of the nozzle for future MQL studies. It attainable aids to determine the correct pressure for the air jet at the nozzle tip.

  14. EXAMPLE OF FLOW MODELLING CHARACTERISTICS IN DIESEL ENGINE NOZZLE

    Directory of Open Access Journals (Sweden)

    Dušan KOLARIČ

    2016-03-01

    Full Text Available Modern transport is still based on vehicles powered by internal combustion engines. Due to stricter ecological requirements, the designers of engines are continually challenged to develop more environmentally friendly engines with the same power and performance. Unfortunately, there are not any significant novelties and innovations available at present which could significantly change the current direction of the development of this type of propulsion machines. That is why the existing ones should be continually developed and improved or optimized their performance. By optimizing, we tend to minimize fuel consumption and lower exhaust emissions in order to meet the norms defined by standards (i.e. Euro standards. Those propulsion engines are actually developed to such extent that our current thinking will not be able to change their basic functionality, but possible opportunities for improvement, especially the improvement of individual components, could be introduced. The latter is possible by computational fluid dynamics (CFD which can relatively quickly and inexpensively produce calculations prior to prototyping and implementation of accurate measurements on the prototype. This is especially useful in early stages of development or at optimization of dimensional small parts of the object where the physical execution of measurements is impossible or very difficult. With advances of computational fluid dynamics, the studies on the nozzles and outlet channel injectors have been relieved. Recently, the observation and better understanding of the flow in nozzles at large pressure and high velocity is recently being possible. This is very important because the injection process, especially the dispersion of jet fuel, is crucial for the combustion process in the cylinder and consequently for the composition of exhaust gases. And finally, the chemical composition of the fuel has a strong impact on the formation of dangerous emissions, too. The

  15. Two-phase flow in a diverging nozzle

    International Nuclear Information System (INIS)

    Wadle, M.

    1986-05-01

    Stationary two-phase flow experiments were performed with steam-water and air-water mixtures in a well-instrumented horizontal diverging nozzle. The test section consisted of a constant diameter tube, the friction-section, followed by an expansion, the diffusor, which has a tanh-contour and finally another constant diameter tube. The diameter ratio sigma=D1/D2 is 16/80. For the steam-water experiments the flow parameters were: 0 2 and for air-water mixtures (0 2 ). The initial conditions were varied to achieve subcritical and critical mass flow rates. A new model for the pressure recovery in an abrupt expansion is presented. It is based on the superficial velocity concept and agrees well with the steam-water and the water-air experimental data as well as with the experiments of other authors. The experiments were also calculated with the two-phase code DUESE. The Drift-Flux models in this code as well as the constitutive correlations and their empirical constants could be tested. It is shown, that a 1D Drift-Flux code can handle the highly transient flow in the diffusor if the proper drift model is used. In a 1D simulation it is only necessary that the computational flow area is expanded to its full width within an axial length which is equivalent to the real contour. (orig./GL) [de

  16. Three dimensional steady subsonic Euler flows in bounded nozzles

    Science.gov (United States)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  17. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.; Zayed, M.F.; Samy, M.; Roberts, William L.; Mansour, Mohy S.

    2015-01-01

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work

  18. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    Science.gov (United States)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  19. Nature of convection-stabilized dc arcs in dual-flow nozzle geometry

    International Nuclear Information System (INIS)

    Serbetci, I.; Nagamatsu, H.T.

    1990-01-01

    In this paper, an experimental investigation of the steady-state low-current air arcs in a dual-flow nozzle system is presented. First, the cold flow with no arc as determined for various nozzle geometries, i.e., two- and three-dimensional and orifice nozzles, and nozzle pressure ratios. Supersonic flow separation and oblique and detached shock waves were observed in the flow field. Using a finite-element computer program, the Mach number contours were determined in the flow field for various nozzle-gap spacings and pressure ratios. In addition, the dc arc voltage and current measurements were made for an electrode gap spacing of ∼ 5.5 cm and current levels of I ∼ 25, 50, and 100 A for the three nozzle geometries. The arc voltage and arc power increased rapidly as the flow speed increased from zero to sonic velocity at the nozzle throat. The shock waves in the converging-diverging nozzles resulted in a decrease in the overall resistance by about 15 percent

  20. INVESTIGATION OF FLOW BEHAVIOR IN MINIMUM QUANTITY LUBRICATION NOZZLE FOR END MILLING PROCESSES

    OpenAIRE

    M.S. Najiha; M.M.Rahman; A.R. Yusoff; K. Kadirgama

    2012-01-01

    Minimum quantity lubrication (MQL) is a sustainable manufacturing technique that has replaced conventional flooded lubrication methods and dry machining. In the MQL technique, the lubricant is sprayed onto the friction surfaces through nozzles through small pneumatically-operated pumps. This paper presents an investigation into the flow behavior of the lubricant and air mixture under certain pressures at the tip of a nozzle specially designed for MQL. The nozzle used is an MQL stainless steel...

  1. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    International Nuclear Information System (INIS)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-01-01

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data

  2. Numerical Analysis of Pelton Nozzle Jet Flow Behavior Considering Elbow Pipe

    Science.gov (United States)

    Chongji, Zeng; Yexiang, Xiao; Wei, Xu; Tao, Wu; Jin, Zhang; Zhengwei, Wang; Yongyao, Luo

    2016-11-01

    In Pelton turbine, the dispersion of cylindrical jet have a great influence on the energy interaction of jet and buckets. This paper simulated the internal flow of nozzle and the downstream free jet flow at 3 different needle strokes. The nozzle model consists of the elbow pipe and the needle rod which supported by 4 ribs. Homogenous model and SST k-ω model were adopted to simulate the unsteady two-phase jet flow. The development of free flow, including a contraction process followed by an expansion process, was analysed detailed as well as the influence of the nozzle geometry on the jet flow pattern. The increase of nozzle opening results in a more dispersion jet, which means a higher hydraulic loss. Upstream bend and ribs induce the secondary flow in the jet and decrease the jet concentration.

  3. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    Choked converging nozzle flow and heat transfer characteristics are numerically investigated by means of a recent computational model that integrates the axisymmetric continuity, state, momentum and energy equations. To predict the combined effects of nozzle geometry, friction and heat transfer rates, analyses are ...

  4. Pengaruh Variasi Lip Thickness pada Nozzle Terpancung terhadap Karakteristik Api Pembakaran Difusi Concentric Jet Flow

    Directory of Open Access Journals (Sweden)

    Elka Faizal

    2016-05-01

    Full Text Available Nozzle shape greatly influence turbulence between the fuel, air and formation of flow recirculation zone to produce a homogeneous mixing and get a near-perfect combustion. The recirculation zone is area that caused by flow rate breakdown, causing vortex and backflow around the end of nozzle. This backflow that hold up while lowering the flame so the flow rate of fuel and air mixture maintained lower or equal with flame speed. This study used variation of lip thickness of truncated nozzle 0, 4, 8, 12, and 16 mm.To obtain flame stability, fuel velocity and air velocity were variated. Thermocouples were used to measure flame temperature and its distribution. The results showed that stability of concentric jet diffusion flame flow increased with narrow lip thickness on a truncated nozzle. The wider stability area obtained in 4 mm lip thickness. In addition, temperature on diffusion flames concentric jet flow also more evenly distributed evenly with size of the nozzle lip thickness. The highest temperature and temperature distribution in the horizontal direction were occured in in the nozzle with lip thickness of 0 mm. A shadowgrapgh visualization was also used to identify phenomena of the nozzle exit flow.

  5. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    Science.gov (United States)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On

  6. Nozzle flow and atomization characteristics of ethanol blended biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Han; Suh, Hyun Kyu; Lee, Chang Sik [Department of Mechanical Engineering, Graduate School of Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea)

    2010-01-15

    This study was conducted to investigate the injection and atomization characteristics of biodiesel-ethanol blended fuel. The injection performance of biodiesel-ethanol blended fuel was analyzed from the injection rate characteristics using the injection rate measuring system, and the effective injection velocity and effective spray diameter using the nozzle flow model. Moreover, the atomization characteristics, such as local and overall SMD distributions, overall axial velocity and droplet arrival time were analyzed and compared with these from diesel and biodiesel fuels to obtain the atomization characteristics of biodiesel-ethanol blended fuel. It was revealed that ethanol fuel affects the decrease of the peak injection rate and the shortening of the injection delay due to the decrease of fuel properties, such as fuel density and dynamic viscosity. In addition, the ethanol addition improved the atomization performance of biodiesel fuel, because the ethanol blended fuel has a low kinematic viscosity and surface tension, then that has more active interaction with the ambient gas, compared to BD100. (author)

  7. Two-way coupled simulation of a flow laden with metallic particulates in overexpanded TIC nozzle

    International Nuclear Information System (INIS)

    Moshfegh, Abouzar; Shams, Mehrzad; Ebrahimi, Reza; Farnia, Mohammad Ali

    2009-01-01

    A simulation of non-reacting dilute gas-solid flow in a truncated ideal contour nozzle with consideration of external stream interactions is performed. The Eulerian-Lagrangian approach involving a two-way momentum and thermal coupling between gas and particles phases is also adopted. Of interests are to investigate the effects of particles diameter and mass flow fraction on the flow pattern, Mach number, pressure and temperature contours and their distributions along the nozzle centerline and wall. The main goal is to determine the separation point quantitatively when the particles characteristics change. Particles sample trajectories are illustrated throughout the flow field and a qualitative discussion on the way that physical properties of the nozzle exit flow and particles trajectories oscillate is prepared. The existence of solid particulates delays the separation prominently in the cases studied. The bigger particles and the higher particles mass flow fractions respectively advance and delay the separation occurrence. The particles trajectories oscillate when they expose to the crisscrossing (or diamond-shape) shock waves generated outside the nozzle to approach the exit jet conditions to the ambient. The simulation code is validated and verified, respectively, against a one-phase 2D convergent-divergent nozzle flow and a two-phase Jet Propulsion Laboratory nozzle flow, and acceptable agreements are achieved.

  8. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan; Cheng, Wan; Luo, Xisheng; Qin, Fenghua

    2013-01-01

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model

  9. Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Magnetic Nozzle.

    Science.gov (United States)

    Takahashi, Kazunori; Ando, Akira

    2017-06-02

    An axial magnetic field induced by a plasma flow in a divergent magnetic nozzle is measured when injecting the plasma flow from a radio frequency (rf) plasma source located upstream of the nozzle. The source is operated with a pulsed rf power of 5 kW, and the high density plasma flow is sustained only for the initial ∼100  μsec of the discharge. The measurement shows a decrease in the axial magnetic field near the source exit, whereas an increase in the field is detected at the downstream side of the magnetic nozzle. These results demonstrate a spatial transition of the plasma-flow state from diverging to stretching the magnetic nozzle, where the importance of both the Alfvén and ion Mach numbers is shown.

  10. A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles

    International Nuclear Information System (INIS)

    Molina, S.; Salvador, F.J.; Carreres, M.; Jaramillo, D.

    2014-01-01

    Highlights: • The influence of elliptical orifices on the inner nozzle flow is compared. • Five nozzles with different elliptical and circular orifices are simulated. • Differences in the flow coefficients and cavitation morphology are observed. • Horizontal axis orifices are ease to cavitate, with a higher discharge coefficient. • A better mixing process quality is expected for the horizontal major axis nozzles. - Abstract: In this paper a computational study was carried out in order to investigate the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development. With this aim, a large number of injection conditions have been simulated and analysed for 5 different nozzles: four nozzles with different elliptical orifices and one standard nozzle with circular orifices. The four elliptical nozzles differ from each other in the orientation of the major axis (vertical or horizontal) and in the eccentricity value, but keeping the same outlet section in all cases. The comparison has been made in terms of mass flow, momentum flux and other important non-dimensional parameters which help to describe the behaviour of the inner nozzle flow: discharge coefficient (C d ), area coefficient (C a ) and velocity coefficient (C v ). The simulations have been done with a code able to simulate the flow under either cavitating or non-cavitating conditions. This code has been previously validated using experimental measurements over the standard nozzle with circular orifices. The main results of the investigation have shown how the different geometries modify the critical cavitation conditions as well as the discharge coefficient and the effective velocity. In particular, elliptical geometries with vertically oriented major axis are less prone to cavitate and have a lower discharge coefficient, whereas elliptical geometries with horizontally oriented major axis are more prone to cavitate and show a higher discharge coefficient

  11. BWR fuel assembly bottom nozzle with one-way coolant flow valve

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1987-01-01

    In a nuclear reactor having a flow of coolant/moderator fluid therein, at least one fuel assembly installed in the fluid flow, the fuel assembly is described comprising in combination: a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods; an outer tubular flow channel surrounding the fuel rods so as to direct the flow of coolant/moderator fluid along the fuel rods; bottom and top nozzles mounted at opposite ends of the flow channel and having an inlet and outlet respectively for allowing entry and exit of the flow of coolant/moderator fluid into and from the flow channel and along the fuel rods therein; and a coolant flow direction control device operatively disposed in the bottom nozzle so as to open the inlet thereof to the flow of coolant/moderator fluid in an inflow direction into the flow channel through the bottom nozzle inlet but close the inlet to the flow of coolant/moderator fluid from the flow channel through the bottom nozzle inlet upon reversal of coolant/moderator fluid flow from the inflow direction

  12. Study for discharge coefficient of flow nozzles. Prediction by using numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Sakai, Norio; Yamamoto, Yasushi; Arai, Kenji; Matsumoto, Masaaki

    2008-01-01

    In nuclear plant, as water feeding into reactor have much effect on thermal power of plant, it is important to measure accurately the flow rate of water. Flow nozzle is on of typical differential pressure type flow meters and the discharge coefficient is used to calculate the flow rate. This coefficient is given by actual experiment and theory. We studied the theoretical assumption of the discharge coefficient curve using numerical simulation and evaluated the effect of flow nozzle configuration on the coefficient numerically and experimentally. As the result, numerical simulation can predict the discharge coefficient of theoretical curve within 0.3%. And we found that the throat length and throat tapping location of flow nozzle have much effect on the coefficient. (author)

  13. Regional cerebral blood flow levels as measured by xenon-CT in vascular territorial low-density areas after subarachnoid hemorrhage are not always ischemic

    International Nuclear Information System (INIS)

    Fainardi, E.; Tagliaferri, M.F.; Compagnone, C.; Tanfani, A.; Cocciolo, F.; Targa, L.; Chieregato, A.; Battaglia, R.; Frattarelli, M.; Pascarella, R.

    2006-01-01

    The aim of this study was to assess regional cerebral blood flow (rCBV) in areas of CT hypoattenuation appearing in the postoperative period in patients treated for aneurysmal subarachnoid hemorrhage (SAH) using xenon-enhanced CT scanning (Xe-CT). We analyzed 15 patients (5 male and 10 female; mean age 49.7±12.1 years) with SAH on CT performed on admission to hospital and who showed a low-density area within a well-defined vascular territory on CT scans after clipping or coiling of a saccular aneurysm. All zones of hypoattenuation were larger than 1 cm 2 and showed signs of a mass effect suggesting a subacute phase of evolution. Two aneurysms were detected in two patients. Aneurysms were located in the middle cerebral artery (n=7), in the anterior communicating artery (n=6), in the internal carotid artery (n=3), and in the posterior communicating artery (n=1). Treatments were surgical (n=8), endovascular (n=2) or both (n=1). A total of 36 Xe-CT studies were performed and rCBF values were measured in two different regions of interest (ROI): the low-density area, and an area of normal-appearing brain tissue located symmetrically in the contralateral hemisphere. rCBF levels were significantly lower in the low-density area than in the contralateral normal-appearing area (P 55 ml/100 g per minute) in 2/36 lesions (5.6%). Our study confirmed that rCBF is reduced in new low-density lesions related to specific vascular territories. However, only about one-third of the lesions showed rCBF levels consistent with irreversible ischemia and in a relatively high proportion of lesions, rCBF levels indicated penumbral, oligemic and hyperemic areas. (orig.)

  14. The influence of cavitation on the flow characteristics of liquid nitrogen through spray nozzles: A CFD study

    Science.gov (United States)

    Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu

    2017-09-01

    Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.

  15. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  16. Exploiting the Error-Correcting Capabilities of Low Density Parity Check Codes in Distributed Video Coding using Optical Flow

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Søgaard, Jacob; Salmistraro, Matteo

    2012-01-01

    We consider Distributed Video Coding (DVC) in presence of communication errors. First, we present DVC side information generation based on a new method of optical flow driven frame interpolation, where a highly optimized TV-L1 algorithm is used for the flow calculations and combine three flows....... Thereafter methods for exploiting the error-correcting capabilities of the LDPCA code in DVC are investigated. The proposed frame interpolation includes a symmetric flow constraint to the standard forward-backward frame interpolation scheme, which improves quality and handling of large motion. The three...... flows are combined in one solution. The proposed frame interpolation method consistently outperforms an overlapped block motion compensation scheme and a previous TV-L1 optical flow frame interpolation method with an average PSNR improvement of 1.3 dB and 2.3 dB respectively. For a GOP size of 2...

  17. Nuclear research reactor IEA-R1 heat exchanger inlet nozzle flow - a preliminary study

    International Nuclear Information System (INIS)

    Angelo, Gabriel; Andrade, Delvonei Alves de; Fainer, Gerson; Angelo, Edvaldo

    2009-01-01

    As a computational fluid mechanics training task, a preliminary model was developed. ANSYS-CFX R code was used in order to study the flow at the inlet nozzle of the heat exchanger of the primary circuit of the nuclear research reactor IEA-R1. The geometry of the inlet nozzle is basically compounded by a cylinder and two radial rings which are welded on the shell. When doing so there is an offset between the holes through the shell and the inlet nozzle. Since it is not standardized by TEMA, the inlet nozzle was chosen for a preliminary study of the flow. Results for the proposed model are presented and discussed. (author)

  18. Low Density Supersonic Decelerators

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low-Density Supersonic Decelerator project will demonstrate the use of inflatable structures and advanced parachutes that operate at supersonic speeds to more...

  19. Characterization of the cavitating flow in converging-diverging nozzle based on experimental investigations

    Directory of Open Access Journals (Sweden)

    Rudolf Pavel

    2014-03-01

    Full Text Available Cavitation phenomena occuring in converging-diverging nozzle (Venturi tube are described in the paper. A closed test circuit with possibility to control both flow rate and static pressure level were used. Loss coefficient was evaluated for different sigma numbers resulting in full „static“ characterization of the nozzle. Visualizations of the cavitation pattern development were acquired and matched with evolution of the loss coefficient. Three cavitation regimes are described: partial cavitation, fully developed cavitation, supercavitation.

  20. Experimental study and theoretical modelling of two-phase flow in a converging diverging nozzle

    International Nuclear Information System (INIS)

    Selmer-Olsen, Stale

    1991-01-01

    A theoretical and experimental study of high quality two-phase flows in converging-diverging nozzles is presented. The main objectives are the prediction of critical (choked) flow rates and the evolution of characteristic parameters towards the nozzle outlet. First, a thorough analysis of available models shows the importance of a correct modelling of the mechanical and thermal interactions between the gas and liquid phases. As a second step, a purely dispersed flow model is considered. The solution algorithm which is utilized describes accurately the critical (choked) flow conditions as well as the topology of the solutions. The dispersed flow model accounts for effects on the gas flow rate of the upstream and the downstream pressures, the liquid flow rate and the nozzle geometry. The pressure profile along the nozzle and the location of the critical cross-section are also well predicted. The flow is shown to switch from critical to sub-critical when the liquid flow rate is increased, all other control parameters at the inlet and the outlet maintained. This new finding is interpreted as a result of the possible location of the critical cross-section anywhere in the diverging part of the nozzle. Moreover, the experiments show that the critical (choked) gas flow rate depends on the inlet configuration of gas/liquid. In the third step, a careful analysis of the data is used as a basis for proposing a new dispersed-annular flow model. This model accounts for the liquid flowing both as a liquid film and as entrained droplets in the core, non-developed flow is accounted for as well as flow separation in the diffuser. Finally, advanced local measuring techniques of pressure, film thickness and film velocity have been developed in the course of the work. In particular film thickness measurements allowed the development of the flow structure to be understood. (author) [fr

  1. An investigation of transient nature of the cavitating flow in injector nozzles

    International Nuclear Information System (INIS)

    He, Zhixia; Zhong, Wenjun; Wang, Qian; Jiang, Zhaochen; Fu, Yanan

    2013-01-01

    In diesel engines, the cavitating flow in nozzles greatly affects the fuel atomization characteristics and then the subsequent combustion and exhaust emissions. In this paper, with the needle lift curve on the basis of injection rate experimental data, a moving mesh generation strategy was applied for 3D simulation of the nozzle cavitating flow. Based on the third-generation synchrotrons of Shanghai Synchrotron Radiation facility (SSRF), a high-precision three-dimension structure of testing nozzle with detailed internal geometry information was obtained using X-ray radiography for a more accurate simulation. A flow visualization experiment system with a transparent scaled-up vertical multi-hole injector nozzle tip was setup. The experimental data was obtained to make a comparison to validate the calculated results and good qualitative agreement was shown between them. Afterward, the effects of needle movement on development of the cavitating flow and flow characteristics parameters were investigated. Finally, the influence of fuel temperature on development of the cavitating flow was also studied. Research of the flow characteristics for the diesel and biodiesel revealed that the flow characteristics of the biodiesel with a temperature rise of between 50 K and 60 K in injector nozzles will be similar to those of the diesel fuel. -- Highlights: ► The detailed geometry information was obtained using X-ray radiography. ► A visualization experiment system was setup for validating the numerical models. ► The detailed cavitating flow in nozzles can be gotten with a moving mesh. ► The flow characteristics between the diesel and biodiesel fuel are investigated

  2. Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Flow characteristics in small coflow diffusion flames were investigated with a particular focus on the near-nozzle region and on the buoyancy force exerted on fuels with densities lighter and heavier than air (methane, ethylene, propane, and n-butane). The flow-fields were visualized through the trajectories of seed particles. The particle image velocimetry technique was also adopted for quantitative velocity field measurements. The results showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle, emphasizing the importance of the relative density of the fuel to that of the air on the flow-field. Nozzle heating influenced the near-nozzle flow-field particularly among lighter fuels (methane and ethylene). Numerical simulations were also conducted, focusing specifically on the effect of specifying inlet boundary conditions for fuel. The results showed that a fuel inlet boundary with a fully developed velocity profile for cases with long tubes should be specified inside the fuel tube to permit satisfactory prediction of the flow-field. The calculated temperature fields also indicated the importance of the selection of the location of the inlet boundary, especially in testing various combustion models that include soot in small coflow diffusion flames. © 2014 The Combustion Institute.

  3. Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM

    Science.gov (United States)

    Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.

    1989-01-01

    A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru

  4. Fertility and flow cytometric evaluations of frozen-thawed rooster semen in cryopreservation medium containing low-density lipoprotein.

    Science.gov (United States)

    Shahverdi, A; Sharafi, M; Gourabi, H; Yekta, A Amiri; Esmaeili, V; Sharbatoghli, M; Janzamin, E; Hajnasrollahi, M; Mostafayi, F

    2015-01-01

    Frozen-thawed rooster semen is not reliable for use in artificial insemination in commercial stocks. Low-density lipoprotein (LDL) has been assessed for effectiveness as a cryoprotectant in the extender to improve the quality of frozen-thawed rooster semen. Although LDL has been evaluated in a few studies in other species for semen cryopreservation, so far no study has been conducted to examine this cryoprotectant for cryopreservation of fowl semen. Thus, this study aims to analyze the effects of different concentrations of LDL (0%, 2%, 4%, 6%, and 8%) in a Beltsville extender for cryopreservation of rooster spermatozoa. In experiment 1, motion parameters, membrane integrity, acrosome integrity, apoptosis status, and mitochondria activity were assessed after freeze-thawing. The highest quality frozen-thawed semen was selected to be used for evaluation of the fertility rate in experiment 2. Semen was collected from six roosters, twice weekly, then extended in a Beltsville extender that contained different concentrations of LDL as follows: 0% (control), 1% (Beltsville plus 1% LDL [BLDL1]), 2% (BLDL2), 4% (BLDL4), 6% (BLDL6), and 8% (BLDL8). Supplementation of the Beltsville extender with 4% LDL produced the most significant percentage of motility (43.1 ± 1.3), membrane integrity (59.4 ± 2.1),mitochondria activity (49.1 ± 1.19), and viable spermatozoa (45 ± 2.28) compared with the control treatment with the results of 22.7 ± 1.3 (motility), 38.4 ± 2.1 (membrane integrity), 40.25 ± 1.19 (mitochondrial activity), and 37.8 ± 2.28 (viability). In experiment 2, a significantly higher percentage of fertility rate was observed for frozen-thawed semen in the extender supplemented with 4% LDL (49.5 ± 1.6) compared with the control (29.2 ± 2.9). Progressive motility and acrosome integrity were not affected by LDL levels in the extenders. The results revealed that supplementation of the Beltsville extender with 4% LDL resulted in higher quality of frozen-thawed rooster

  5. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  6. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

    Science.gov (United States)

    Chen, Gui-Qiang G.; Schrecker, Matthew R. I.

    2018-04-01

    We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).

  7. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan

    2013-12-17

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model are used to describe the nucleation rate and the droplet growth, respectively. The conservation of the liquid phase is described by a finite number of moments of the size distribution function. The moment equations are then combined with the Euler equations and are solved by the finite-volume method. The numerical method is first validated by comparing its prediction with experimental results from the literature. The effects of nitrogen condensation on hypersonic nozzle flows are then numerically examined. The parameters at the nozzle exit under the conditions of condensation and no-condensation are evaluated. For the condensation case, the static pressure, the static temperature, and the amount of condensed fluid at the nozzle exit decrease with the increase of the total temperature. Compared with the no-condensation case, both the static pressure and temperature at the nozzle exit increase, and the Mach number decreases due to the nitrogen condensation. It is also indicated that preheating the nitrogen gas is necessary to avoid the nitrogen condensation even for a hypersonic nozzle with a Mach number of 5 operating at room temperatures. © 2013 Springer-Verlag Berlin Heidelberg.

  8. Fluorescence Imaging of Rotational and Vibrational Temperature in a Shock Tunnel Nozzle Flow

    Science.gov (United States)

    Palma, Philip C.; Danehy, Paul M.; Houwing, A. F. P.

    2003-01-01

    Two-dimensional rotational and vibrational temperature measurements were made at the nozzle exit of a free-piston shock tunnel using planar laser-induced fluorescence. The Mach 7 flow consisted predominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as the probe species and was excited at 225 nm. Nonuniformities in the distribution of nitric oxide in the test gas were observed and were concluded to be due to contamination of the test gas by driver gas or cold test gas.The nozzle-exit rotational temperature was measured and is in reasonable agreement with computational modeling. Nonlinearities in the detection system were responsible for systematic errors in the measurements. The vibrational temperature was measured to be constant with distance from the nozzle exit, indicating it had frozen during the nozzle expansion.

  9. Investigation of the cavitating flow in injector nozzles for diesel and biodiesel

    Science.gov (United States)

    Zhong, Wenjun; He, Zhixia; Wang, Qian; Jiang, Zhaochen; Fu, Yanan

    2013-07-01

    In diesel engines, the cavitating flow in nozzles greatly affects the fuel atomization characteristics and then the subsequent combustion and exhaust emissions. At present the biodiesel is a kind of prospective alternative fuel in diesel engines, the flow characteristics for the biodiesel fuel need to be investigated. In this paper, based on the third-generation synchrotrons of Shanghai Synchrotron Radiation facility (SSRF), a high-precision three-dimension structure of testing nozzle with detailed internal geometry information was obtained using X-ray radiography for a more accurate physical model. A flow visualization experiment system with a transparent scaled-up vertical multi-hole injector nozzle tip was setup. A high resolution and speed CCD camera equipped with a long distance microscope device was used to acquire flow images of diesel and biodiesel fuel, respectively. Then, the characteristics of cavitating flow and their effects on the fuel atomization characteristics were investigated. The experimental results show that the nozzle cavitating flow of both the diesel and biodiesel fuel could be divided into four regimes: turbulent flow, cavitation inception, development of cavitation and hydraulic flip. The critical pressures of both the cavitating flow and hydraulic flip of biodiesel are higher than those of diesel. The spray cone angle increases as the cavitation occurs, but it decreases when the hydraulic flip appears. Finally, it can be concluded that the Reynolds number decreases with the increase of cavitation number, and the discharge coefficient increases with the increase of cavitation number.

  10. Numerical analysis of critical two-phase flow in a convergent-divergent nozzle

    International Nuclear Information System (INIS)

    Romstedt, P.; Werner, W.

    1985-01-01

    The numerical calculation of critical two-phase flow in a convergent-divergent nozzle is complicated by a singularity of the fluid flow equations at the unknown critical point. This paper describes a method which is able to calculate critical state and its location without any additional assumptions. The critical state is identified by its mathematical properties: characteristics and solvability of linear systems with singular matrix. Because the numerically evaluable mathematical properties are only necessary conditions for the existence of critical flow, some physical ''compatibility-criteria'' (flow velocity equals two-phase sonic velocity, critical flow is independent of downstream flow state variations) are used as a substitute for mathematically sufficient conditions. Numerical results are shown for the critical flow in a LOBI nozzle; the two-phase flow is described by a model with equal phase velocities and thermodynamic non-equilibrium

  11. Three layer model analysis on two-phase critical flow through a converging nozzle

    International Nuclear Information System (INIS)

    Ochi, J.; Ayukawa, K.

    1991-01-01

    A three layer model is proposed for a two-phase critical flow through a converging nozzle in this paper. Most previous analyses of the two phase flow have been based on a homogeneous or a separated flow model as the conservation equations. These results were found to have large deviations from the actual measurements for two phase critical flows. The presented model is based on the assumption that a flow consists of three layers with a mixing region between gas and liquid phase layers. The effect of gas and liquid fraction occupied in the mixing layer was made clear from the numerical results. The measurements of the critical flow rate and the pressure profiles through a converging nozzle were made with air-water flow. The calculated results of these models are discussed in comparison with the experimental data for the flow rates and the pressure distributions under critical conditions

  12. An analytical evaluation for the pressure drop characteristics of bottom nozzle flow holes

    International Nuclear Information System (INIS)

    Yang, S. G.; Kim, H. J.; Lim, H. T.; Park, E. J.; Jeon, K. L.

    2002-01-01

    An analytical evaluation for the bottom nozzle flow holes was performed to find a best design concept in terms of pressure drop. For this analysis, Computational Fluid Dynamics (CFD), FLUENT 5.5, code was selected as an analytical evaluation tool. The applicability of CFD code was verified by benchmarking study with Vibration Investigation of Small-scale Test Assemblies (VISTA) test data in several flow conditions and typical flow hole shape. From this verification, the analytical data were benchmarked roughly within 17% to the VISTA test data. And, overall trend under various flow conditions looked very similar between both cases. Based on the evaluated results using CFD code, it is concluded that the deburring and multiple chamfer hole features at leading edge are the excellent design concept to decrease pressure drop across bottom nozzle plate. The deburring and multiple chamfer hole features at leading edge on the bottom nozzle plate have 12% and 17% pressure drop benefit against a single chamfer hole feature on the bottom nozzle plate, respectively. These design features are meaningful and applicable as a low pressure drop design concept of bottom nozzle for Pressurized Water Reactor (PWR) fuel assembly

  13. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  14. Droplet phase characteristics in liquid-dominated steam--water nozzle flow

    International Nuclear Information System (INIS)

    Alger, T.W.

    1978-01-01

    An experimental study was undertaken to determine the droplet size distribution, the droplet spatial distribution and the mean droplet velocity in low-quality, steam-water flow from a rectangular cross-section, converging-diverging nozzle. A unique forward light scattering technique was developed for droplet size distribution measurements. Droplet spatial variations were investigated using light transmission measurements, and droplet velocities were measured with a laser-Doppler velocimeter (LDV) system incorporating a confocal Fabry-Perot interferometer. Nozzle throat radius of curvature and height were varied to investigte their effects on droplet size. Droplet size distribution measurements yielded a nominal Sauter mean droplet diameter of 1.7 μm and a nominal mass-mean droplet diameter of 2.4 μm. Neither the throat radius of curvature nor the throat height were found to have a significant effect upon the nozzle exit droplet size. The light transmission and LDV measurement results confirmed both the droplet size measurements and demonstrated high spatial uniformity of the droplet phase within the nozzle jet flow. One-dimensional numerical calculations indicated that both the dynamic breakup (thermal equilibrium based on a critical Weber number of 6.0) and the boiling breakup (thermal nonequilibrium based on average droplet temperature) models predicted droplet diameters on the order of 7.5 μm, which are approximately equal to the maximum stable droplet diameters within the nozzle jet flow

  15. Numerical Study of Controlling Jet Flow and Noise using Pores on Nozzle Inner Wall

    Science.gov (United States)

    Lin, Jian; Shi, Zhixiao; Lai, Huanxin

    2018-04-01

    In this paper, the feasibility of controlling the subsonic jet flow and its noise using pores of blind holes added on the nozzle inner wall is explored numerically. These pores are intended to introduce disturbances to the shear layer so as to change the flow mixing. This passive strategy has not been attempted so far. A convergent nozzle with a cylindrical extension is selected as the baseline case. Three nozzles with pores on the inner wall are set up. Validations of the numerical settings are carried out, then the compressible turbulent jets at the exit Mach number M j = 0.6 in the four nozzles are calculated by large eddy simulations (LES), while the radiated sounds are predicted by the FW-H acoustic analogy. The results show that the blind holes have produced some effects on weakening the turbulence intensity in the shear layer. Comparison reveals that both temporal and spatial correlations of the turbulent fluctuations in the modified cases are suppressed to some extent. Meanwhile, the porous nozzles are shown to suppress the pairing of vortices and enhance the flow mixing, and therefore, the development of shear layer and the fragmentation of large scale vortices are accelerated.

  16. In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Som, Sibendu; Shukla, Pravesh Chandra; Goyal, Harsh; Longman, Douglas

    2015-01-01

    Highlights: • In-nozzle flow characterization for biodiesel sprays. • Comparison of experimental spray parameters and nozzle hole simulations. • Effect of Karanja and Jatropha biodiesel on in-nozzle cavitation. • Cavitation formation investigation with diesel and biodiesels. • Nozzle hole outlet fuel velocity profile determination for test fuels. - Abstract: Superior spray behavior of fuels in internal combustion engines lead to improved combustion and emission characteristics therefore it is necessary to investigate fuel spray behavior of new alternative fuels. This study discusses the evolution of the in-nozzle orifice parameters of a numerical simulation and the evolution of spray parameters of fuel spray in a constant-volume spray chamber during an experiment. This study compares mineral diesel, biodiesels (Karanja-and Jatropha-based), and their blends with mineral diesel. The results show that mineral diesel provides superior atomization and evaporation behavior compared to the biodiesel test fuels. Karanja biodiesel provides superior atomization and evaporation characteristics compared to Jatropha biodiesel. The qualitative comparison of simulation and experimental results in tandem shows that nozzle-hole design is a critical parameter for obtaining optimum spray behavior in the engine combustion chamber

  17. Numerical investigation of the variable nozzle effect on the mixed flow turbine performance characteristics

    Science.gov (United States)

    Meziri, B.; Hamel, M.; Hireche, O.; Hamidou, K.

    2016-09-01

    There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.

  18. THE APPLICATION OF LASERS IN MEASUREMENT OF FLUID FLOW THROUGH DRILLING BIT NOZZLES

    Directory of Open Access Journals (Sweden)

    Radenko Drakulić

    1993-12-01

    Full Text Available Two optical methods based on laser and video technology and digital signal and image processing techniques - Laser Doppler velocimetry (LDV and Particle image velocimetry (PIV were applied in highly accurate fluid flow measurement. Their application in jet velocity measurement of flows through drilling bit nozzles is presented. The role of nozzles in drilling technology together with procedures and tests performed on their optimization are reviewed. In addition, some experimental results for circular nozzle obtained both with LDV and PIV are elaborated. The experimental set-up and the testing procedure arc briefly discussed, as well as potential improvements in the design. Possible other applications of LDV and PIV in the domain of petroleum engineering are suggested (the paper is published in Croatian.

  19. Isentropic Gas Flow for the Compressible Euler Equation in a Nozzle

    Science.gov (United States)

    Tsuge, Naoki

    2013-08-01

    We study the motion of isentropic gas in a nozzle. Nozzles are used to increase the thrust of engines or to accelerate a flow from subsonic to supersonic. Nozzles are essential parts for jet engines, rocket engines and supersonicwind tunnels. In the present paper, we consider unsteady flow, which is governed by the compressible Euler equation, and prove the existence of global solutions for the Cauchy problem. For this problem, the existence theorem has already been obtained for initial data away from the sonic state, (Liu in Commun Math Phys 68:141-172, 1979). Here, we are interested in the transonic flow, which is essential for engineering and physics. Although the transonic flow has recently been studied (Tsuge in J Math Kyoto Univ 46:457-524, 2006; Lu in Nonlinear Anal Real World Appl 12:2802-2810, 2011), these papers assume monotonicity of the cross section area. Here, we consider the transonic flow in a nozzle with a general cross section area. When we prove global existence, the most difficult point is obtaining a bounded estimate for approximate solutions. To overcome this, we employ a new invariant region that depends on the space variable. Moreover, we introduce a modified Godunov scheme. The corresponding approximate solutions consist of piecewise steady-state solutions of an auxiliary equation, which yield a desired bounded estimate. In order to prove their convergence, we use the compensated compactness framework.

  20. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    Science.gov (United States)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  1. Development of supersonic plasma flows by use of a magnetic nozzle and an ICRF heating

    Energy Technology Data Exchange (ETDEWEB)

    Inutake, M.; Ando, A.; Hattori, K.; Tobari, H.; Hosokawa, Y.; Sato, R.; Hatanaka, M.; Harata, K. [Tohoku Univ., Dept. of Electrical Engineering, Sendai (Japan)

    2004-07-01

    A high-beta, supersonic plasma flow plays a crucial role in MHD phenomena in space and fusion plasmas. There are a few experimental researches on production and control of a fast flowing plasma in spite of a growing significance in the magnetized-plasma flow dynamics. A magneto-plasma-dynamic arc-jet (MPDA) is one of promising devices to produce a supersonic plasma flow and has been utilized as an electric propulsion device with a higher specific impulse and a relatively larger thrust. We have improved the performance of an MPDA to produce a quasi-steady plasma flow with a transonic and supersonic Mach number in a highly-ionized state. There are two methods in order to control an ion-acoustic Mach number of the plasma flow exhausted from an MPDA: one is to use a magnetic Laval nozzle to convert a thermal energy to a flow energy and the other is a combined system of an ion heating and a divergent magnetic nozzle. The former is an analogous method to a compressible air flow and the latter is the method proposed in an advanced thruster for a manned interplanetary space mission. We have clarified the plasma flow characteristics in various shapes of a magnetic field configuration. It was demonstrated that the Mach number of the plasma flow could increase up to almost 3 in a divergent magnetic nozzle field. This paper reports recent results on the flow field improvements: one is on a magnetic-Laval-nozzle effects observed at the muzzle region of the MPDA, and the other is on ICRF (ion-cyclotron-range of frequency) heating of a supersonic plasma by use of a helical antenna. (authors)

  2. Testing and qualification of CIRCE venturi-nozzle flow meter for large scale experiments

    International Nuclear Information System (INIS)

    Ambrosini, W.; Forgione, N.; Oriolo, F.; Tarantino, M.; Agostini, P.; Benamati, G.; Bertacci, G.; Elmi, N.; Alemberti, A.; Cinotti, L.; Scaddozzo, G.

    2005-01-01

    This paper is focused on the tests carried out at the ENEA Brasimone Centre for the qualification of a large Venturi-Nozzle flow meter operating in Lead Bismuth Eutectic (LBE). Such flow meter has been selected to provide flow rate measurements during the thermal-hydraulic tests that will be performed on the experimental facility CIRCE. This large-scale facility is installed at the ENEA Brasimone Centre for studying the fluid-dynamics and operating behaviour of ADS reactor plants, as well as to qualify several components intended to be used in the LBE technology. The Venturi-Nozzle flow meter has been supplied by the Euromisure s.r.l., together with the calculated theoretical characteristic equation. The results obtained by the tests performed allowed to qualify this theoretical curve supplied by the manufacturer, that presents a very good agreement especially at high flow rate values. (authors)

  3. Flow regime effects on non-cavitating injection nozzles over spray behavior

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R., E-mail: rpayri@mot.upv.e [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain); Salvador, F.J.; Gimeno, J.; Novella, R. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain)

    2011-02-15

    This paper deals with the influence of flow regime (laminar, transition or turbulent) on the internal flow behavior, and how it affects the spray development in diesel nozzles. In particular, the research described here aims at studying and quantifying the internal flow regime effects on the spray behavior. With this purpose, internal flow results, based on mass flow rate and momentum flux measurements performed on three different tapered nozzles and which helped to determine the flow regime, has been taken into account as a point of departure for the spray behavior analysis. Thus, in this work, spray macroscopic visualization tests have been performed and analyzed which clearly revealed a change in the behavior of the angle and penetration of the spray related to the change of the flow nature. Moreover, with all the experimental data available, it has been possible to relate macroscopic parameters of the spray with those describing the internal flow (momentum and effective velocity) or the geometry of the nozzle (length or diameter) through correlations.

  4. Numerical study for two phase flow in the near nozzle region of turbine combustors

    International Nuclear Information System (INIS)

    Pervez, K.; Mushtaq, S.

    1999-01-01

    In the present study flow conditions in the near nozzle region of the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion zone largely depends on the spray field in the near nozzle region the studies are conducted to determined the effects of multi jets on the flow pattern in the near nozzle region The phase doppler particle analyzer (PDPA) has been used to measure the velocities and sizes of the droplets. The flow field of two-phase liquid drop-air jets is formed from three injectors arranged in t line. Furthermore the two-phase flow field has been analyzed numerically also. The numerical analysis consists of two computational models, namely (i) 3 non-evaporating two-phase jets, (II) 3 evaporating two phase jets. The Eulerian-Eulerian approach in incorporated in both the numerical models. Since the flow is turbulent, a two-equation model (k-Epsilon) is implemented in the numerical analysis. Numerical solution of the conservation equation is obtained using PHOENICS computer code. Boundary conditions are provided from the experimental measurements. Numerical domain for the two models of the analysis starts at some distance (about 10 diameters of the injector orifice) where the atomization process is complete and droplet size and velocity could be measured experimentally. (author)

  5. Indirect Combustion Noise: Noise Generation by Accelerated Vorticity in a Nozzle Flow

    Directory of Open Access Journals (Sweden)

    Nancy Kings

    2010-09-01

    Full Text Available The noise generation by accelerated vorticity waves in a nozzle flow was investigated in a model experiment. This noise generation mechanism belongs, besides entropy noise, to the indirect combustion noise phenomena. Vorticity as well as entropy fluctuations, originating from the highly turbulent combustion zone, are convected with the flow and produce noise during their acceleration in the outlet nozzle of the combustion chamber. In the model experiment, noise generation of accelerated vorticity fluctuations was achieved. The vorticity fluctuations in the tube flow were produced by injecting temporally additional air into the mean flow. As the next step, a parametric study was conducted to determine the major dependencies of the so called vortex noise. A quadratic dependency of the vortex noise on the injected air amount was found. In order to visualise and classify the artificially generated vorticity structures, planar velocity measurements have been conducted applying Particle Image Velocimetry (PIV.

  6. Prediction of sonic flow conditions at drill bit nozzles to minimize complications in UBD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.; Ghalambor, A. [Louisiana Univ., Lafayette, LA (United States); Al-Bemani, A.S. [Sultan Qaboos Univ. (Oman)

    2002-06-01

    Sonic flow at drill bit nozzles can complicate underbalanced drilling (UBD) operations, and should be considered when choosing bit nozzles and fluid injection rates. The complications stem from pressure discontinuity and temperature drop at the nozzle. UBD refers to drilling operations where the drilling fluid pressures in the borehole are maintained at less than the pore pressure in the formation rock in the open-hole section. UBD has become a popular drilling method because it offers minimal lost circulation and reduces formation damage. This paper presents an analytical model for calculating the critical pressure ratio where two-phase sonic flow occurs. In particular, it describes how Sachdeva's two-phase choke model can be used to estimate the critical pressure ratio at nozzles that cause sonic flow. The critical pressure ratio charts can be coded in spreadsheets. The critical pressure ratio depends on the in-situ volumetric gas content, or gas-liquid ratio, which depends on gas injection and pressure. 6 refs., 2 tabs., 5 figs.

  7. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  8. Five-hole pitot probe measurements of swirl, confinement and nozzle effects on confined turbulent flow

    Science.gov (United States)

    Lilley, D. G.; Scharrer, G. L.

    1984-01-01

    The results of a time-mean flow characterization of nonswirling and swirling inert flows in a combustor are reported. The five-hole pitot probe technique was used in axisymmetric test sections with expansion ratios of 1 and 1.5. A prominent corner recirculation zone identified in nonswirling expanding flows decreased in size with swirling flows. The presence of a downstream nozzle led to an adverse pressure gradient at the wall and a favorable gradient near the centerline. Reducing the expansion ratio reduced the central recirculation length. No significant effect was introduced in the flowfield by a gradual expansion.

  9. Numerical investigation of over expanded flow behavior in a single expansion ramp nozzle

    Science.gov (United States)

    Mousavi, Seyed Mahmood; Pourabidi, Reza; Goshtasbi-Rad, Ebrahim

    2018-05-01

    The single expansion ramp nozzle is severely over-expanded when the vehicle is at low speed, which hinders its ability to provide optimal configurations for combined cycle engines. The over-expansion leads to flow separation as a result of shock wave/boundary-layer interaction. Flow separation, and the presence of shocks themselves, result in a performance loss in the single expansion ramp nozzle, leading to reduced thrust and increased pressure losses. In the present work, the unsteady two dimensional compressible flow in an over expanded single expansion ramp nozzle has been investigated using finite volume code. To achieve this purpose, the Reynolds stress turbulence model and full multigrid initialization, in addition to the Smirnov's method for examining the errors accumulation, have been employed and the results are compared with available experimental data. The results show that the numerical code is capable of predicting the experimental data with high accuracy. Afterward, the effect of discontinuity jump in wall temperature as well as the length of straight ramp on flow behavior have been studied. It is concluded that variations in wall temperature and length of straight ramp change the shock wave boundary layer interaction, shock structure, shock strength as well as the distance between Lambda shocks.

  10. Effect of fuel temperature on the methanol spray and nozzle internal flow

    International Nuclear Information System (INIS)

    Chen, Zhifang; Yao, Anren; Yao, Chunde; Yin, Zenghui; Xu, Han; Geng, Peilin; Dou, Zhancheng; Hu, Jiangtao; Wu, Taoyang; Ma, Ming

    2017-01-01

    Highlights: • Cavitation region increases with the increasing of methanol temperature. • The nozzle exit velocity increases with the increasing of methanol temperature. • The discharge coefficient decreases with the increasing of methanol temperature. • Droplet SMD reduces when methanol temperature increases measured by PDPA system. • Droplet velocity has the maximum value when methanol temperature is 60 °C. - Abstract: The increasing of fuel temperature can reduce the droplet size and have an advantage of improving spray atomization, while investigations of the effect of temperature on the methanol injector internal flow and external spray is rare. Firstly, a detailed three dimensional numerical simulations of nozzle internal flow have been conducted to probe into the cavitation in methanol injector nozzles, and then an experimental study has been carried out to investigate the droplet size and velocity of methanol spray at various temperatures using the Phase Doppler Particle Analyzer (PDPA) detecting system. And results show that the region of cavitations in nozzle orifice enlarges as methanol temperature and injection pressure increases, and the temperature for 'super-cavitation' occurring decreases gradually with the increasing of injection pressure. Moreover, the nozzle exit velocity, discharge coefficient and cavitations number were also analyzed. However, the discharge coefficient reduces nearly equal under various pressure when the methanol temperature is higher than 60 °C. In addition, the Sauter Mean Diameter (SMD) and velocity of methanol droplet were also analyzed, and found that the droplet velocity reaches the maximum value when the methanol temperature is 60 °C.

  11. Structure of the gas-liquid annular two-phase flow in a nozzle section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu

    2006-01-01

    Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)

  12. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  13. The characterisation of diesel nozzle flow using high speed imaging of elastic light scattering

    OpenAIRE

    Lockett, R. D.; Liverani, L.; Thaker, D.; Jeshani, M.; Tait, N. P.

    2013-01-01

    Two identical, conventional six-hole, valve-covered orifice (VCO) diesel injectors have been modified in order to provide optical access to the region below the needle, and the nozzle-flow passages. This has been achieved through the removal of the metal tips, and their replacement with transparent acrylic tips of identical geometry. \\ud \\ud These two identical injectors were employed in order to offer comparability between the measurements. One of them had a dark, anodised inner surface at t...

  14. Influence of biofuels on the internal flow in diesel injector nozzles

    OpenAIRE

    Salvador, F.J.; Martínez López, Jorge; Romero Bauset, José Vicente; Roselló, M.D.

    2011-01-01

    [EN] In this paper, the behavior of the internal nozzle flow of a standard diesel fuel has been compared against a biodiesel fuel (soybean oil) at cavitating and non-cavitating conditions, using a homogeneous equilibrium model. The model takes into account the compressibility of both phases (liquid and vapour) and use a barotropic equation of state which relates pressure and density to calculate the growth of cavitation. Furthermore, turbulence effects have been introduced using a RNG k- ¿ mo...

  15. Visualization of Atomization Gas Flow and Melt Break-up Effects in Response to Nozzle Design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver; Rieken, Joel; Meyer, John; Byrd, David; Heidloff, Andy

    2011-04-01

    Both powder particle size control and efficient use of gas flow energy are highly prized goals for gas atomization of metal and alloy powder to minimize off-size powder inventory (or 'reverb') and excessive gas consumption. Recent progress in the design of close-coupled gas atomization nozzles and the water model simulation of melt feed tubes were coupled with previous results from several types of gas flow characterization methods, e.g., aspiration measurements and gas flow visualization, to make progress toward these goals. Size distribution analysis and high speed video recordings of gas atomization reaction synthesis (GARS) experiments on special ferritic stainless steel alloy powders with an Ar+O{sub 2} gas mixture were performed to investigate the operating mechanisms and possible advantages of several melt flow tube modifications with one specific gas atomization nozzle. In this study, close-coupled gas atomization under closed wake gas flow conditions was demonstrated to produce large yields of ultrafine (dia.<20 {mu}m) powders (up to 32%) with moderate standard deviations (1.62 to 1.99). The increased yield of fine powders is consistent with the dual atomization mechanisms of closed wake gas flow patterns in the near-field of the melt orifice. Enhanced size control by stabilized pre-filming of the melt with a slotted trumpet bell pour tube was not clearly demonstrated in the current experiments, perhaps confounded by the influence of the melt oxidation reaction that occurred simultaneously with the atomization process. For this GARS variation of close-coupled gas atomization, it may be best to utilize the straight cylindrical pour tube and closed wake operation of an atomization nozzle with higher gas mass flow to promote the maximum yields of ultrafine powders that are preferred for the oxide dispersion strengthened alloys made from these powders.

  16. Oscillations of the fluid flow and the free surface in a cavity with a submerged bifurcated nozzle

    International Nuclear Information System (INIS)

    Kalter, R.; Tummers, M.J.; Kenjereš, S.; Righolt, B.W.; Kleijn, C.R.

    2013-01-01

    Highlights: • Self-sustained oscillations in a thin cavity with submerged nozzle were observed. • Three flow regimes are detected depending on nozzle depth and inlet velocity. • The three flow regimes have been summarized in a flow regime map. • PIV measurements are performed to link free surface behavior to the bulk-flow. • We report a close correlation between jet-behavior and free surface dynamics. -- Abstract: The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur. For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity

  17. Propagation of temperature disturbances in bounded flows downstream of a nozzle block

    International Nuclear Information System (INIS)

    Krebs, L.

    1979-12-01

    The early detection of cooling disturbances in a fuel element of a sodium cooled reactor is a must for safety reasons. One possibility of achieving this goal is by measuring and analyzing the coolant temperature at the fuel element outlet. Assessment of the potential of this method requires knowledge of the flow phenomena downstream of the fuel element. As a fluid dynamics model of a fuel element a nozzle block is used, the bores of which correspond to the subchannels between the fuel rods. The studies are conducted in water which has kinematic properties comparable to those of sodium. The velocity and temperature fields downstream of the nozzle block are examined for two REYNOLDS numbers. To simulate a disturbed cooling condition, water with a temperature higher by ΔT anti T = 10 K is injected through one subchannel of the nozzle block. At the same time, the volume injected is varied. The central channel and one side channel close to the wall are selected as injection sites. Statisticl analysis of the measured velocity and temperature signals covers the following parameters: Linear averages, intensities, probability densities, spectral power densities, autocorrelation functions, integral turbulence lengths, dissipation lengths, dissipation, skewness and flatness values. On the basis of FOURIER's differential equation of heat conduction a theoretical model is developed to describe both the average temperature field and the intensity field in the flow downstream of the nozzle block. Comparison of measurements and calculations furnishes good agreement and indicates that extrapolation of the model to sodium as a fluid is possible. Supplementary to the measurements and calculations details of the water test rig and the anemometer measuring system used for velocity and temperature measurements are shown in the Appendix. (orig.) 891 GL/orig. 892 KN [de

  18. Cavitation characteristics of multihole diesel-fuel nozzles in high-speed oil flows. Diesel kikan yo nenryo tako nozzle no abura cavitation tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, M. (Shimonoseki Univ. of Fisheris, Yamaguchi (Japan)); Ito, Y. (Hachinohe Inst. of Tech., Aomori (Japan)); Aoki, H. (Xexel-Gleason U.S.A. Inc., New York (U.S.A))

    1991-07-25

    Recently, since higher velocity and higher pressure are required for diesel injection systems, cavitation behaviors in high velocity oil flows are strongly interested in such as 100 to 500 m/s for oil flow velocity and less than the cavitation factor {sigma} of 0.01. In this paper, oil cavitation characteristics at the injection part of multihole nozzles, especially on the flow characteristics, were studied systematically using fuel injection multihole nozzles for an actual use. As a result, it was clarified that subcavitation area (sub C), transition area, and supercavitation area (SC) could be existing in C{sub d}-{sigma} relation, which was similar to that specified cavitation conditions could be exisiting in the actual working area of multihole nozzles. And it was also clarified that flow coefficient C{sub d} relied on Reynolds number R{sub e} in the transition of {sigma}{ge}{sigma}{sub cr} and in {sub C} area, and mainly relied on {sigma} in SC area of {sigma}<{sigma}{sub cr}. Moreover, it was also confirmed that such tendency was similar to the one of the two-dimensional contraction of an area. 22 refs., 10 figs., 1 tab.

  19. Three-dimensional analysis of internal flow characteristics in the injection nozzle tip of direct-injection diesel engines; Sanjigen suchi kaiseki ni yoru DI diesel kikan no nenryo funsha nozzle nai ryudo tokusei no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H; Matsui, Y; Kimura, S [Nissan Motor Co. Ltd. Tokyo (Japan)

    1997-10-01

    To reduce the exhaust emissions and fuel consumption of direct-injection diesel engines, it is essential to optimize the fuel injection equipment closely related to combustion and emission characteristics. In this study, three-dimensional computation has been applied to investigate the effects of the injection nozzle specifications (e.g., sac volume, round shape at the inlet of the nozzle hole) and needle tip deviation on internal flow characteristics. The computational results revealed that the effects of the nozzle specifications and needle tip deviation with a smaller needle lift on internal flow characteristics and a general approach to optimize the injection nozzle specifications were obtained. 3 refs., 10 figs., 1 tab.

  20. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  1. Assessment of NASA and RAE viscous-inviscid interaction methods for predicting transonic flow over nozzle afterbodies

    Science.gov (United States)

    Putnam, L. E.; Hodges, J.

    1983-01-01

    The Langley Research Center of the National Aeronautics and Space Administration and the Royal Aircraft Establishment have undertaken a cooperative program to conduct an assessment of their patched viscous-inviscid interaction methods for predicting the transonic flow over nozzle afterbodies. The assessment was made by comparing the predictions of the two methods with experimental pressure distributions and boattail pressure drag for several convergent circular-arc nozzle configurations. Comparisons of the predictions of the two methods with the experimental data showed that both methods provided good predictions of the flow characteristics of nozzles with attached boundary layer flow. The RAE method also provided reasonable predictions of the pressure distributions and drag for the nozzles investigated that had separated boundary layers. The NASA method provided good predictions of the pressure distribution on separated flow nozzles that had relatively thin boundary layers. However, the NASA method was in poor agreement with experiment for separated nozzles with thick boundary layers due primarily to deficiencies in the method used to predict the separation location.

  2. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

    International Nuclear Information System (INIS)

    Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

    2016-01-01

    Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

  3. A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow

    International Nuclear Information System (INIS)

    Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C.

    2011-01-01

    A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)

  4. A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C., E-mail: delvonei@ipen.b, E-mail: gfainer@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)

  5. Numerical Simulation of Non-Equilibrium Two-Phase Wet Steam Flow through an Asymmetric Nozzle

    Directory of Open Access Journals (Sweden)

    Miah Md Ashraful Alam

    2017-11-01

    Full Text Available The present study reported of the numerical investigation of a high-speed wet steam flow through an asymmetric nozzle. The spontaneous non-equilibrium homogeneous condensation of wet steam was numerically modeled based on the classical nucleation theory and droplet growth rate equation combined with the field conservations within the computational fluid dynamics (CFD code of ANSYS Fluent 13.0. The equations describing droplet formations and interphase change were solved sequentially after solving the main flow conservation equations. The calculations were carried out assuming the flow two-dimensional, compressible, turbulent, and viscous. The SST k-ω model was used for modeling the turbulence within an unstructured mesh solver. The validation of numerical model was accomplished, and the results showed a good agreement between the numerical simulation and experimental data. The effect of spontaneous non-equilibrium condensation on the jet and shock structures was revealed, and the condensation shown a great influence on the jet structure.

  6. Experimental study of micron size droplets in a two phase flow in a converging - diverging nozzle

    International Nuclear Information System (INIS)

    Jurski, Kristine

    1997-01-01

    The fluid present in a pressurized vessel in normal operation is generally a mono-phase one. In accidental regime (a breach for example), a two-phase (ring and/or dispersed) flow appears and the flow is submitted to large accelerations when passing through the breach, and is then dispersed in the atmosphere. This research thesis reports an experimental simulation of an accident by generating, through a discharge of an upstream vessel into a downstream vessel, a strongly accelerated gaseous-liquid two-phase flow, with an essentially dispersed configuration in a convergent-divergent nozzle. In order to characterize the speed and diameter evolution of the dispersed liquid phase, the author reports a comparative study of two different liquid aerosols: micron-size droplets of di-octyl phthalate (DOP) of known concentration and diameter, and water droplets obtained by heterogeneous spontaneous condensation [fr

  7. Supersonic flow with shock waves. Monte-Carlo calculations for low density plasma. I; Flujo supersonico de un plasma con ondas de choque, un metodo de montecarlo para plasmas de baja densidad, I.

    Energy Technology Data Exchange (ETDEWEB)

    Almenara, E; Hidalgo, M; Saviron, J M

    1980-07-01

    This Report gives preliminary information about a Monte Carlo procedure to simulate supersonic flow past a body of a low density plasma in the transition regime. A computer program has been written for a UNIVAC 1108 machine to account for a plasma composed by neutral molecules and positive and negative ions. Different and rather general body geometries can be analyzed. Special attention is played to tho detached shock waves growth In front of the body. (Author) 30 refs.

  8. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2018-01-11

    Partially premixed turbulent flames with non-homogeneous jet of propane were generated in a concentric flow conical nozzle burner in order to investigate the effect of the coflow on the stability and flame structure. The flame stability is first mapped and then high-speed stereoscopic particle image velocimetry, SPIV, plus OH planar laser-induced fluorescence, OH-PLIF, measurements were conducted on a subset of four flames. The jet equivalence ratio Φ = 2, Jet exit Reynolds number Re = 10,000, and degree of premixing are kept constant for the selected flames, while the coflow velocity, Uc, is progressively changed from 0 to 15 m/s. The results showed that the flame is stable between two extinction limits of mixture inhomogeneity, and the optimum stability is obtained at certain degree of mixture inhomogeneity. Increasing Φ, increases the span between these two extinction limits, while these limits converge to a single point (corresponding to optimum mixture inhomogeneity) with increasing Re. Regardless the value of Φ, increasing the coflow velocity improves the flame stability. The correlation between recessed distance of the burner tubes and the fluctuation of the mixture fraction, Δξ, shows that at Δξ around 40% of the flammability limits leads to optimum flame stability. The time averaged SPIV results show that the coflow induces a big annular recirculation zone surrounds the jet flames. The size and the location of this zone is seen to be sensitive to Uc. However, the instantaneous images show the existence of a small vortical structure close to the shear layer, where the flame resides there in the case of no-coflow. These small vertical structures are seen playing a vital role in the flame structure, and increasing the flame corrugation close to the nozzle exit. Increasing the coflow velocity expands the central jet at the expense of the jet velocity, and drags the flame in the early flame regions towards the recirculation zone, where the flame tracks

  9. Large-eddy simulation of cavitating nozzle flow and primary jet break-up

    Energy Technology Data Exchange (ETDEWEB)

    Örley, F., E-mail: felix.oerley@aer.mw.tum.de; Trummler, T.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Hickel, S. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Chair of Computational Aerodynamics, Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2015-08-15

    We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.

  10. Effect of Shrouding Gas Temperature on Characteristics of a Supersonic Jet Flow Field with a Shrouding Laval Nozzle Structure

    Science.gov (United States)

    Liu, Fuhai; Sun, Dongbai; Zhu, Rong; Li, Yilin

    2018-05-01

    Coherent jet technology was been widely used in the electric arc furnace steelmaking process to protect the kinetic energy of supersonic oxygen jets and achieve a better mixing effect. For this technology, the total temperature distribution of the shrouding jet has a great impact on the velocity of the main oxygen jet. In this article, a supersonic shrouding nozzle using a preheating shrouding jet is proposed to increase the shrouding jet velocity. Both numerical simulation and experimental studies were carried out to analyze its effect on the axial velocity, total temperature and turbulence kinetic energy profiles of the main oxygen jet. Based on these results, it was found that a significant amount of kinetic energy was removed from the main oxygen jet when it passed though the shock wave using a high-temperature shrouding jet, which made the average axial velocity of the coherent jet lower than for a conventional jet in the potential core region. However, the supersonic shrouding nozzle and preheating technology employed for this nozzle design significantly improved the shrouding gas velocity, forming a low-density gas zone at the exit of the main oxygen jet and prolonging the velocity potential core length.

  11. Droplet size and velocity at the exit of a nozzle with two-component near critical and critical flow

    International Nuclear Information System (INIS)

    Lemonnier, H.; Camelo-Cavalcanti, E.S.

    1993-01-01

    Two-component critical flow modelling is an important issue for safety studies of various hazardous industrial activities. When the flow quality is high, the critical flow rate prediction is sensitive to the modelling of gas droplet mixture interfacial area. In order to improve the description of these flows, experiments were conducted with air-water flows in converging nozzles. The pressure was 2 and 4 bar and the gas mass quality ranged between 100% and 20%. The droplets size and velocity have been measured close to the outlet section of a nozzle with a 10 mm diameter throat. Subcritical and critical conditions were observed. These data are compared with the predictions of a critical flow model which includes an interfacial area model based on the classical ideas of Hinze and Kolmogorov. (authors). 9 figs., 12 refs

  12. Base Flow and Heat Transfer Characteristics of a Four-Nozzle Clustered Rocket Engine: Effect of Nozzle Pressure Ratio

    Science.gov (United States)

    Nallasamy, R.; Kandula, M.; Duncil, L.; Schallhorn, P.

    2010-01-01

    The base pressure and heating characteristics of a four-nozzle clustered rocket configuration is studied numerically with the aid of OVERFLOW Navier-Stokes code. A pressure ratio (chamber pressure to freestream static pressure) range of 990 to 5,920 and a freestream Mach number range of 2.5 to 3.5 are studied. The qualitative trends of decreasing base pressure with increasing pressure ratio and increasing base heat flux with increasing pressure ratio are correctly predicted. However, the predictions for base pressure and base heat flux show deviations from the wind tunnel data. The differences in absolute values between the computation and the data are attributed to factors such as perfect gas (thermally and calorically perfect) assumption, turbulence model inaccuracies in the simulation, and lack of grid adaptation.

  13. System and method having multi-tube fuel nozzle with differential flow

    Science.gov (United States)

    Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight; York, William David

    2017-01-03

    A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.

  14. Molecular dynamics study of Ar flow and He flow inside carbon nanotube junction as a molecular nozzle and diffuser

    Directory of Open Access Journals (Sweden)

    Itsuo Hanasaki, Akihiro Nakatani and Hiroshi Kitagawa

    2004-01-01

    Full Text Available A carbon nanotube junction consists of two connected nanotubes with different diameters. It has been extensively investigated as a molecular electronic device since carbon nanotubes can be metallic and semiconductive, depending on their structure. However, a carbon nanotube junction can also be viewed as a nanoscale nozzle andv diffuser. Here, we focus on the nanotube junction from the perspective of an intersection between machine, material and device. We have conducted a molecular dynamics simulation of the molecular flow inside a modeled (12,12–(8,8 nanotube junction. A strong gravitational field and a periodic boundary condition are applied in the flow direction. We investigated dense-Ar flows and dense-He flows while controlling the temperature of the nanotube junction. The results show that Ar atoms tend to be near to the wall and the density of the Ar is higher in the wide (12,12 nanotube than in the narrow (8,8 nanotube, while it is lower in the wide tube when no flow occurs. The streaming velocities of both the Ar and the He are higher in the narrow nanotube than in the wide nanotube, but the velocity of the Ar is higher than the velocity of the He and the temperature of the flowing Ar is higher than the temperature of the He when the same magnitude of gravitational field is applied.

  15. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.; Elbaz, Ayman M.; Roberts, William L.; Senosy, Mohamed S.; Zayed, Mohamed F.; Juddoo, Mrinal; Masri, Assaad R.

    2016-01-01

    of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some

  16. Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Torelli, R.; Som, S.; Pei, Y.; Zhang, Yu; Traver, Michael

    2017-05-15

    Spray formation in internal combustion engines with direct injection is strictly correlated with internal nozzle flow characteristics, which are in turn influenced by fuel physical properties and injector needle motion. This paper pre-sents a series of 3D simulations that model the in-nozzle flow in a 5-hole mini-sac diesel injector. Two gasoline-like naphtha fuels, namely full-range and light naphtha, were tested under operating conditions typical of diesel applica-tions and were compared with n-dodecane, selected from a palette used as diesel surrogates. Validated methodolo-gies from our previous work were employed to account for realistic needle motion. The multi-phase nature of the problem was described by the mixture model assumption with the Volume of Fluid method. Cavitation effects were included by means of the Homogeneous Relaxation Model and turbulence closure was achieved with the Standard k-ε model in an Unsteady Reynolds-Averaged Navier-Stokes formulation. The results revealed that injector perfor-mance and propensity to cavitation are influenced by the fuel properties. Analyses of several physical quantities were carried out to highlight the fuel-to-fuel differences in terms of mass flow rate, discharge coefficients, and fuel vapor volume fraction inside the orifices. A series of parametric investigations was also performed to assess the fuel response to varied fuel injection temperature, injection pressure, and cross-sectional orifice area. For all cases, the strict correlation between cavitation magnitude and saturation pressure was confirmed. Owing to their higher volatil-ity, the two gasoline-like fuels were characterized by higher cavitation across all the simulated conditions. Occur-rence of cavitation was mostly found at the needle seat and at the orifice inlets during the injection event’s transient, when very small gaps exist between the needle and its seat. This behavior tended to disappear at maximum needle lift, where cavitation was

  17. Flow characteristics and heat transfer performances of a semi-confined impinging array of jets: effect of nozzle geometry

    Energy Technology Data Exchange (ETDEWEB)

    Dano, B.P.E.; Liburdy, J.A. [Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering; Kanokjaruvijit, Koonlaya [Imperial College, London (United Kingdom). Dept. of Mechanical Engineering

    2005-02-01

    The flow and heat transfer characteristics of confined jet array impingement with crossflow is investigated. Discrete impingement pressure measurements are used to obtain the jet orifice discharge flow coefficient. Digital particle image velocimetry (DPIV) and flow visualization are used to determine the flow characteristics. Two thermal boundary conditions at the impinging surface are presented: an isothermal surface, and a uniform heat flux, where thermocouple and thermochromic liquid crystal methods were used, respectively, to determine the local heat transfer coefficient. Two nozzle geometries are studied, circular and cusped ellipse. Based on the interaction with the jet impingement at the surface, the crossflow is shown to influence the heat transfer results. The two thermal boundary conditions differ in overall heat transfer correlation with the jet Reynolds number. Detailed velocity data show that the flow development from the cusped ellipse nozzle affects the wall region flow more than the circular nozzle, as influenced by the crossflow interactions. The overall heat transfer for the uniform heat flux boundary condition is found to increase for the cusped ellipse orifice. (Author)

  18. Gamma irradiation effects in low density polyethylene

    International Nuclear Information System (INIS)

    Ono, Lilian S.; Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Lugao, Ademar B.

    2011-01-01

    Low density polyethylene (LDPE) is obtained from ethylene gas polymerization, being one of the most commercialized polymers due to its versatility and low cost. It's a semi-crystalline polymer, usually inactive at room temperature, capable to attain temperatures within a 80 deg C - 100 deg C range, without changing its physical-chemical properties. LDPE has more resistance when compared to its equivalent High Density Polyethylene (HDPE). LDPE most common applications consist in manufacturing of laboratory materials, general containers, pipes, plastic bags, etc. Gamma radiation is used on polymers in order to modify mechanical and physical-chemical features according to utility purposes. This work aims to the study of gamma (γ) radiation interaction with low density polyethylene to evaluate changes in its physical-chemical properties. Polymer samples were exposed to 5, 10, 15, 20 and 30kGy doses, at room temperature. Samples characterization employed Thermal Analysis, Melt Flow Index, Infrared Spectroscopy and Swelling tests. (author)

  19. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Wook [Korea Institue of Machinery and Materials, Daejeon (Korea, Republic of); Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2006-06-15

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

  20. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Min, Kyoung Doug

    2006-01-01

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images

  1. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  2. Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2016-04-15

    It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.

  3. Behaviour of a pressure vessel nozzle with thermo-sleeve under thermal loading induced by stratified flow

    International Nuclear Information System (INIS)

    Kussmaul, K.; Mayinger, W.; Diem, H.; Katzenmeier, G.

    1993-01-01

    Startup at low reactor power may give rise to stratified flow conditions in pipes of boiling water and pressurized water reactors. Stratified flow regimes cause a steep temperature gradient between the cold and the hot fluid layer. This temperature gradient produces high axial stresses which, in the case of intermittent feeding of cold water and an appropriate number of repetitions, in principle may initiate cracking in the feedwater pipe and close to the feeding nozzle. Thermosleeves have been installed in a number of reactors to mitigate thermally induced stresses; they reduce the intensity of thermal transients by means of an insulating fluid annulus developing between the sleeve and the nozzle, in order to measure the temperature and stress gradients occurring in the region of the nozzle edge, the so-called TEMS experiments were carried out under realistic operating conditions, and with different cold water levels within the framework of German research activities in the field of reactor safety at the HDR test facility. The experiments served to simulate the physics phenomena by means of a FE-program and to verify the computational approach by comparisons of measurements and calculations

  4. Altitude Compensating Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; Jones, Daniel

    2015-01-01

    The dual-bell nozzle (fig. 1) is an altitude-compensating nozzle that has an inner contour consisting of two overlapped bells. At low altitudes, the dual-bell nozzle operates in mode 1, only utilizing the smaller, first bell of the nozzle. In mode 1, the nozzle flow separates from the wall at the inflection point between the two bell contours. As the vehicle reaches higher altitudes, the dual-bell nozzle flow transitions to mode 2, to flow full into the second, larger bell. This dual-mode operation allows near optimal expansion at two altitudes, enabling a higher mission average specific impulse (Isp) relative to that of a conventional, single-bell nozzle. Dual-bell nozzles have been studied analytically and subscale nozzle tests have been completed.1 This higher mission averaged Isp can provide up to a 5% increase2 in payload to orbit for existing launch vehicles. The next important step for the dual-bell nozzle is to confirm its potential in a relevant flight environment. Toward this end, NASA Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) have been working to develop a subscale, hot-fire, dual-bell nozzle test article for flight testing on AFRC's F15-D flight test bed (figs. 2 and 3). Flight test data demonstrating a dual-bell ability to control the mode transition and result in a sufficient increase in a rocket's mission averaged Isp should help convince the launch service providers that the dual-bell nozzle would provide a return on the required investment to bring a dual-bell into flight operation. The Game Changing Department provided 0.2 FTE to ER42 for this effort in 2014.

  5. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    Science.gov (United States)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  6. Hemodynamics alter arterial low-density lipoprotein metabolism

    International Nuclear Information System (INIS)

    Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S.

    1989-01-01

    We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels

  7. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    Nozzle reaction and hose tension are analyzed using conservation of fluid momentum and assuming steady, inviscid flow and a flexible hose in frictionless contact with the ground. An expression that is independent of the bend angle is derived for the hose tension. If this tension is exceeded owing...... to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  8. Simulation of a flow spontaneously condensed moist steam in Laval nozzles

    International Nuclear Information System (INIS)

    Avetisyan, A.R.; Alipchenkov, V.M.; Zajchik, L.I.

    2002-01-01

    The method for simulating the evolution of the drops distribution by size in the course of commonly proceeding processes of nucleation (spontaneous condensation), heterogeneous condensation) evaporation and coagulation is proposed. The results of the analysis of the initial moisture effect on the steam spontaneous condensation in the transonic nozzles are presented. The availability of the minima in the output moisture dependences on the drops initial moisture and size is the most interesting result of the initial moisture effect on the spontaneous condensation in the Laval nozzles [ru

  9. An analysis of the shielding gas flow from a coaxial conical nozzle during high power CO2 laser welding

    International Nuclear Information System (INIS)

    Ancona, Antonio; Sibillano, Teresa; Lugara, Pietro Mario; Gonnella, Giuseppe; Pascazio, Giuseppe; Maffione, Donato

    2006-01-01

    An experimental and theoretical study on the role of the nitrogen gas stream, exiting from a conventional conical nozzle tip during a laser welding process, has been carried out. A mathematical model has been used, based on the Navier-Stokes equations which express fundamental conservation laws of mass, momentum and energy for a compressible fluid. Numerical simulations of the gas stream colliding onto a plane surface have been performed showing the effects of variations of inlet gas pressure, nozzle exit diameter and standoff distance on the density and Mach number contours, axis pressure of the gas jet and plate pressure produced on the workpiece surface. Laser welding experiments have been performed on carbon and stainless steel specimens, by varying the process parameters in the same range as in the simulations and keeping constant the incident power and the travel speed. Two different gas stream regimes were found, namely sonic and subsonic, which were experimentally verified to produce cutting and welding conditions, respectively. Weld performances have been evaluated in terms of bead width, penetration depth and melted area. Nozzle standoff distance was found to have a negligible influence, while the exit diameter and the flow rate significantly affect the weld results. The numerical predictions allowed an explanation of the experimental results yielding useful suggestions for enhancing the weld quality, acting simply on the shielding gas parameters

  10. Influence of Fluid–Thermal–Structural Interaction on Boundary Layer Flow in Rectangular Supersonic Nozzles

    Directory of Open Access Journals (Sweden)

    Kalyani Bhide

    2018-03-01

    Full Text Available The aim of this work is to highlight the significance of Fluid–Thermal–Structural Interaction (FTSI as a diagnosis of existing designs, and as a means of preliminary investigation to ensure the feasibility of new designs before conducting experimental and field tests. The novelty of this work lies in the multi-physics simulations, which are, for the first time, performed on rectangular nozzles. An existing experimental supersonic rectangular converging/diverging nozzle geometry is considered for multi-physics 3D simulations. A design that has been improved by eliminating the sharp throat is further investigated to evaluate its structural integrity at design Nozzle Pressure Ratio (NPR 3.67 and off-design (NPR 4.5 conditions. Static structural analysis is performed by unidirectional coupling of pressure loads from steady 3D Computational Fluid Dynamics (CFD and thermal loads from steady thermal conduction simulations, such that the simulations represent the experimental set up. Structural deformation in the existing design is far less than the boundary layer thickness, because the impact of Shock wave Boundary Layer Interaction (SBLI is not as severe. FTSI demonstrates that the discharge coefficient of the improved design is 0.99, and its structural integrity remains intact at off-design conditions. This proves the feasibility of the improved design. Although FTSI influence is shown for a nozzle, the approach can be applied to any product design cycle, or as a prelude to building prototypes.

  11. Analysis of Flow Evolution and Thermal Instabilities in the Near-Nozzle Region of a Free Plane Laminar Jet

    Directory of Open Access Journals (Sweden)

    Hector Barrios-Piña

    2015-01-01

    Full Text Available This work focuses on the evolution of a free plane laminar jet in the near-nozzle region. The jet is buoyant because it is driven by a continuous addition of both buoyancy and momentum at the source. Buoyancy is given by a temperature difference between the jet and the environment. To study the jet evolution, numerical simulations were performed for two Richardson numbers: the one corresponding to a temperature difference slightly near the validity of the Boussinesq approximation and the other one corresponding to a higher temperature difference. For this purpose, a time dependent numerical model is used to solve the fully dimensional Navier-Stokes equations. Density variations are given by the ideal gas law and flow properties as dynamic viscosity and thermal conductivity are considered nonconstant. Particular attention was paid to the implementation of the boundary conditions to ensure jet stability and flow rates control. The numerical simulations were also reproduced by using the Boussinesq approximation to find out more about its pertinence for this kind of flows. Finally, a stability diagram is also obtained to identify the onset of the unsteady state in the near-nozzle region by varying control parameters of momentum and buoyancy. It is found that, at the onset of the unsteady state, momentum effects decrease almost linearly when buoyancy effects increase.

  12. Investigation of a two-phase nozzle flow and validation of several computer codes by the experimental data

    International Nuclear Information System (INIS)

    Kedziur, F.

    1980-03-01

    Stationary experiments with a convergent nozzle are performed in order to validate advanced two-phase computer codes, which find application in the blowdown-phase of a loss-of-coolant accident (LOCA). The steam/water flow presents a broad variety of initial conditions: The pressure varies between 2 and 13 MPa, the void fraction between 0 (subcooled) and about 80%, a great number of subcritical as well as critical experiments with different flow pattern is investigated. Additional air/water experiments serve for the separation of phase transition effects. The transient acceleration of the fluid in the LOCA-case is simulated by a local acceleration in the experiments. The layout of the nozzle and the applied measurement technique allow for a separate testing of physical models and the determination of empirical model parameters, respectively: In the four codes DUESE, DRIX-20, RELAP4/MOD6 and STRUYA the models - if they exist - for slip between the phases, thermodynamic non-equilibrium, pipe friction and critical mass flow rate are validated and criticised in comparison with the experimental data, and the corresponding model parameters are determined. The parameters essentially are a function of the void fraction. (orig.) [de

  13. Investigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow

    Directory of Open Access Journals (Sweden)

    Seyed mohammadjavad Zeidi

    2015-04-01

    Full Text Available Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001. Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results include the effects of contraction inside nozzle’s orifice, effect of compressibility; effect of injection pressures and several orifice entries are also simulated in this study. For considering the effect of compressibility a user defined function used in this simulation. Cavitation model which is used in this simulation is Singhal et al. cavitation model. Presto discretization method is used for Pressure equation and second upwind discretization method is used for Momentum equation. Converging Singhal et al. cavitation model is very challenging and it needs several efforts and simulations.

  14. Transition of cavitating flow to supercavitation within Venturi nozzle – hysteresis investigation

    OpenAIRE

    Jiří Kozák; Pavel Rudolf; Rostislav Huzlík; Martin Hudec; Radomír Chovanec; Ondřej Urban; Blahoslav Maršálek; Eliška Maršálková; František Pochylý; David Štefan

    2017-01-01

    Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics ...

  15. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  16. Influence of transit water flow rate on its dispensation and on inflow through nozzles in pressure pipeline under action of external pressure

    Science.gov (United States)

    Cherniuk, V. V.; Riabenko, O. A.; Ivaniv, V. V.

    2017-12-01

    The influence of transit flow rate of water upon operative of the equipped with nozzles pressure pipeline is experimentally investigated. External pressure, which varies in the range of 1465-2295 mm, acted upon the pipeline. The angle β between vectors of velocities of the stream in the pipeline and jets which branch off through nozzles were given the value: 0° ; 45° ; 90° ; 135° ; 180°. The diameter of the pipeline was of D=20.18 mm, the diameter of nozzles d=6.01 mm. The distances between the nozzles were 180 mm, and the number of them 11. The value of the transit flow rate at input into the pipeline varied from 4.05 to 130.20 cm3 / s. The increase in flow rate of the transit flux Qtr caused increase in non-uniformity of distribution of operating heads and increase in flow rate of water along the pipeline over the segment of its dispensation. On the segment of collecting of water, inverse tendency was observed. The number of nozzles through which water became to be dispensed increased with the increase in Qtr.

  17. Numerical study of the SSME nozzle flow fields during transient operations: A comparison of the animated results with test

    Science.gov (United States)

    Wang, Ten-See; Dumas, Catherine

    1993-01-01

    A computational fluid dynamics (CFD) model has been applied to study the transient flow phenomena of the nozzle and exhaust plume of the Space Shuttle Main Engine (SSME), fired at sea level. The CFD model is a time accurate, pressure based, reactive flow solver. A six-species hydrogen/oxygen equilibrium chemistry is used to describe the chemical-thermodynamics. An adaptive upwinding scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the temporal solution. Both engine start-up and shut-down processes were simulated. The elapse time is approximately five seconds for both cases. The computed results were animated and compared with the test. The images for the animation were created with PLOT3D and FAST and then animated with ABEKAS. The hysteresis effects, and the issues of free-shock separation, restricted-shock separation and the end-effects were addressed.

  18. A Study on the Nonmetallic Inclusion Motions in a Swirling Flow Submerged Entry Nozzle in a New Cylindrical Tundish Design

    Science.gov (United States)

    Ni, Peiyuan; Ersson, Mikael; Jonsson, Lage Tord Ingemar; Jönsson, Pär Göran

    2018-04-01

    Different sizes and shapes of nonmetallic inclusions in a swirling flow submerged entry nozzle (SEN) placed in a new tundish design were investigated by using a Lagrangian particle tracking scheme. The results show that inclusions in the current cylindrical tundish have difficulties remaining in the top tundish region, since a strong rotational steel flow exists in this region. This high rotational flow of 0.7 m/s provides the required momentum for the formation of a strong swirling flow inside the SEN. The results show that inclusions larger than 40 µm were found to deposit to a smaller extent on the SEN wall compared to smaller inclusions. The reason is that these large inclusions have Separation number values larger than 1. Thus, the swirling flow causes these large size inclusions to move toward the SEN center. For the nonspherical inclusions, large size inclusions were found to be deposited on the SEN wall to a larger extent, compared to spherical inclusions. More specifically, the difference of the deposited inclusion number is around 27 pct. Overall, it was found that the swirling flow contains three regions, namely, the isotropic core region, the anisotropic turbulence region and the near-wall region. Therefore, anisotropic turbulent fluctuations should be taken into account when the inclusion motion was tracked in this complex flow. In addition, many inclusions were found to deposit at the SEN inlet region. The plotted velocity distribution shows that the inlet flow is very chaotic. A high turbulent kinetic energy value of around 0.08 m2/s2 exists in this region, and a recirculating flow was also found here. These flow characteristics are harmful since they increase the inclusion transport toward the wall. Therefore, a new design of the SEN inlet should be developed in the future, with the aim to modify the inlet flow so that the inclusion deposition is reduced.

  19. Axisymmetric thrust-vectoring nozzle performance prediction

    International Nuclear Information System (INIS)

    Wilson, E. A.; Adler, D.; Bar-Yoseph, P.Z

    1998-01-01

    Throat-hinged geometrically variable converging-diverging thrust-vectoring nozzles directly affect the jet flow geometry and rotation angle at the nozzle exit as a function of the nozzle geometry, the nozzle pressure ratio and flight velocity. The consideration of nozzle divergence in the effective-geometric nozzle relation is theoretically considered here for the first time. In this study, an explicit calculation procedure is presented as a function of nozzle geometry at constant nozzle pressure ratio, zero velocity and altitude, and compared with experimental results in a civil thrust-vectoring scenario. This procedure may be used in dynamic thrust-vectoring nozzle design performance predictions or analysis for civil and military nozzles as well as in the definition of initial jet flow conditions in future numerical VSTOL/TV jet performance studies

  20. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    Science.gov (United States)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-04-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  1. Transition of cavitating flow to supercavitation within Venturi nozzle - hysteresis investigation

    Science.gov (United States)

    Jiří, Kozák; Pavel, Rudolf; Rostislav, Huzlík; Martin, Hudec; Radomír, Chovanec; Ondřej, Urban; Blahoslav, Maršálek; Eliška, Maršálková; František, Pochylý; David, Štefan

    Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics of cavitation was investigated using experimental data of pressure pulsations and analysis of high speed videos, where FFT of the pixel intensity and Proper Orthogonal Decomposition (POD) of the records were done to identify dominant frequencies connected with the presence of cavitation. The methodology of the high speed (HS) records semiautomated analysis using the FFT was described. Obtained results were correlated and above that the possible presence of hysteresis was discussed.

  2. Transition of cavitating flow to supercavitation within Venturi nozzle – hysteresis investigation

    Directory of Open Access Journals (Sweden)

    Jiří Kozák

    2017-01-01

    Full Text Available Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics of cavitation was investigated using experimental data of pressure pulsations and analysis of high speed videos, where FFT of the pixel intensity and Proper Orthogonal Decomposition (POD of the records were done to identify dominant frequencies connected with the presence of cavitation. The methodology of the high speed (HS records semiautomated analysis using the FFT was described. Obtained results were correlated and above that the possible presence of hysteresis was discussed.

  3. Coherence resonance in low-density jets

    Science.gov (United States)

    Zhu, Yuanhang; Gupta, Vikrant; Li, Larry K. B.

    2017-11-01

    Coherence resonance is a phenomenon in which the response of a stable nonlinear system to noise exhibits a peak in coherence at an intermediate noise amplitude. We report the first experimental evidence of coherence resonance in a purely hydrodynamic system, a low-density jet whose variants can be found in many natural and engineering systems. This evidence comprises four parts: (i) the jet's response amplitude increases as the Reynolds number approaches the instability boundary under a constant noise amplitude; (ii) as the noise amplitude increases, the amplitude distribution of the jet response first becomes unimodal, then bimodal, and finally unimodal again; (iii) a distinct peak emerges in the coherence factor at an intermediate noise amplitude; and (iv) for a subcritical Hopf bifurcation, the decay rate of the autocorrelation function exhibits a maximum at an intermediate noise amplitude, but for a supercritical Hopf bifurcation, the decay rate decreases monotonically with increasing noise amplitude. It is clear that coherence resonance can provide valuable information about a system's nonlinearity even in the unconditionally stable regime, opening up new possibilities for its use in system identification and flow control. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  4. Nozzle geometry for organic vapor jet printing

    Science.gov (United States)

    Forrest, Stephen R.; McGraw, Gregory

    2017-10-25

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  5. Acoustic characteristics of the flow over different shapes of nozzle chevrons,

    Directory of Open Access Journals (Sweden)

    Daniel CRUNTEANU

    2013-09-01

    Full Text Available The objective of this paper is to present a comparison between different types of chevrons and their influence on the acoustic power level radiated by the flow over them. The comparison was performed using a two-dimensional simulation of the flow over four different shapes of chevrons resulting propagation of the acoustic waves for each shape. Acoustic characteristics were revealed studying the main flow parameters (pressure, velocity, kinetic energy in order to be able to discover the most efficient shape of chevron regarding the acoustic power level emitted.

  6. Application of low density from pig in subsea satellite well flow line; Utilizacao de pig-espuma de baixa densidade em linhas de producao de pocos-satelites submersos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Paulo Cesar Ribeiro; Couto, Nilton Castro; Souza, Robson Oliveira [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Divisao de Explotacao

    1995-01-01

    This work describes a new concept of pigging using low density form to prevent/removal of wax in subsea satellite well flowline. The methodology of wax control is world pioneer. The pigs are sent through a 2.5 in lift gas line, and through a wet x-mas tree, not designed to be pigged, and back through the flowline. (author) 2 refs., 1 fig.

  7. Pitot-Pressure Measurements in Flow Fields Behind a Rectangular Nozzle with Exhaust Jet for Free-Stream Mach Numbers of 0.00, 0.60, and 1.20

    Science.gov (United States)

    Putnam, L. E.; Mercer, C. E.

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to measure the flow field in and around the jet exhaust from a nonaxisymmetric nozzle configuration. The nozzle had a rectangular exit with a width-to-height ratio of 2.38. Pitot-pressure measurements were made at five longitudinal locations downstream of the nozzle exit. The maximum distance downstream of the exit was about 5 nozzle heights. These measurements were made at free-stream Mach numbers of 0.00, 0.60, and 1.20 with the nozzle operating at a ratio of nozzle total pressure to free-stream static pressure of 4.0. The jet exhaust was simulated with high-pressure air that had an exit total temperature essentially equal to the free-stream total temperature.

  8. Nozzle seal

    International Nuclear Information System (INIS)

    Herman, R.F.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing members operatively disposed between the outlet nozzle and the hoop. The sealing members are biased against the pressure vessel and the hoop and are connected by a leak restraining member establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel

  9. Nozzle seal

    International Nuclear Information System (INIS)

    Walling, G.A.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing rings operatively disposed between the outlet nozzles and the hoop. The sealing rings connected by flexible members are biased against the pressure vessel and the hoop, establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel. 4 claims, 2 figures

  10. 3D nozzle flow simulations including state-to-state kinetics calculation

    Science.gov (United States)

    Cutrone, L.; Tuttafesta, M.; Capitelli, M.; Schettino, A.; Pascazio, G.; Colonna, G.

    2014-12-01

    In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma. In this paper, we present an optimized methodology to approach plasma numerical simulation by state-to-state kinetics calculations in a fully 3D Navier-Stokes CFD solver. Numerical simulations of an expanding flow are presented aimed at comparing the behavior of state-to-state chemical kinetics models with respect to the macroscopic thermochemical non-equilibrium models that are usually used in the numerical computation of high temperature hypersonic flows. The comparison is focused both on the differences in the numerical results and on the computational effort associated with each approach.

  11. Jet flow issuing from an axisymmetric pipe-cavity-orifice nozzle

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2016-01-01

    Full Text Available An axisymmetric air jet flow is experimentally investigated under passive flow control. The jet issues from a pipe of the inner diameter and length of 10 mm and 150 mm which is equipped with an axisymmetric cavity at the pipe end. The cavity operates as a resonator creating self-sustained acoustic excitations of the jet flow. A mechanism of excitations is rather complex – in comparison with a common Helmholtz resonator. The experiments were performed using flow visualization, microphone measurements and time-mean velocity measurements by the Pitot probe. The power spectral density (PSD and the sound pressure level (SPL were evaluated from microphone measurements. The jet Reynolds number ranged Re = 1600–18 000. Distinguishable peaks in PSD indicated a function of the resonator. Because the most effective acoustic response was found at higher Re, a majority of experiments focused on higher Re regime. The results demonstrate effects of the passive control on the jet behavior. Fluid mixing and velocity decay along the axis is intensified. It causes shortening of the jet transition region. On the other hand, an inverse proportionality of the velocity decay (u ~ 1/x in the fully developed region is not changed. The momentum and kinetic energy fluxes decrease more intensively in the controlled jets in comparison with common jets.

  12. Vorticity and circulation aspects of twin jets in cross-flow for an oblique nozzle arrangement

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav; Savory, E.; Takao, H.; Todoroki, T.; Okamoto, S.; Toy, N.

    2006-01-01

    Roč. 220, č. 4 (2006), s. 247-252 ISSN 0954-4100 R&D Projects: GA AV ČR IAA2060302 Institutional research plan: CEZ:AV0Z20600510 Keywords : twin jets in cross-flow * vorticity * circulation Subject RIV: BK - Fluid Dynamics Impact factor: 0.143, year: 2006

  13. A Novel Hybrid Approach for Numerical Modeling of the Nucleating Flow in Laval Nozzle and Transonic Steam Turbine Blades

    Directory of Open Access Journals (Sweden)

    Edris Yousefi Rad

    2017-08-01

    Full Text Available In the present research, considering the importance of desirable steam turbine design, improvement of numerical modeling of steam two-phase flows in convergent and divergent channels and the blades of transonic steam turbines has been targeted. The first novelty of this research is the innovative use of combined Convective Upstream Pressure Splitting (CUSP and scalar methods to update the flow properties at each calculation point. In other words, each property (density, temperature, pressure and velocity at each calculation point can be computed from either the CUSP or scalar method, depending on the least deviation criterion. For this reason this innovative method is named “hybrid method”. The next novelty of this research is the use of an inverse method alongside the proposed hybrid method to find the amount of the important parameter z in the CUSP method, which is herein referred to as “CUSP’s convergence parameter”. Using a relatively simple computational grid, firstly, five cases with similar conditions to those of the main cases under study in this research with available experimental data were used to obtain the value of z by the Levenberg-Marquardt inverse method. With this innovation, first, an optimum value of z = 2.667 was obtained using the inverse method and then directly used for the main cases considered in the research. Given that the aim is to investigate the two-dimensional, steady state, inviscid and adiabatic modeling of steam nucleating flows in three different nozzle and turbine blade geometries, flow simulation was performed using a relatively simple mesh and the innovative proposed hybrid method (scalar + CUSP, with the desired value of z = 2.667 . A comparison between the results of the hybrid modeling of the three main cases with experimental data showed a very good agreement, even within shock zones, including the condensation shock region, revealing the efficiency of this numerical modeling method innovation

  14. Sampling low-density gypsy moth populations

    Science.gov (United States)

    William E. Wallner; Clive G. Jones; Joseph S. Elkinton; Bruce L. Parker

    1991-01-01

    The techniques and methodology for sampling gypsy moth, Lymantria dispar L., at low densities, less than 100 egg masses/ha (EM/ha), are compared. Forest managers have constraints of time and cost, and need a useful, simple predictable means to assist them in sampling gypsy moth populations. A comparison of various techniques coupled with results of...

  15. Simulation of a Downsized FDM Nozzle

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pimentel, Rodrigo; Pedersen, David B.

    2015-01-01

    This document discusses the simulat-ion of a downsized nozzle for fused deposition modelling (FDM), namely the E3D HotEnd Extruder with manufactured diameters of 200-400 μm in the nozzle tip. The nozzle has been simulated in terms of heat transfer and fluid flow giving an insight into the physical...

  16. An experimental study on the effects of swirling oxidizer flow and diameter of fuel nozzle on behaviour and light emittance of propane-oxygen non-premixed flame

    Directory of Open Access Journals (Sweden)

    Javareshkian Alireza

    2017-01-01

    Full Text Available In this study, the stability and the light emittance of non-premixed propane-oxygen flames have been experimentally evaluated with respect to swirling oxidizer flow and variations in fuel nozzle diameter. Hence, three types of the vanes with the swirl angles of 30°, 45°, and 60° have been chosen for producing the desired swirling flows. The main aims of this study are to determine the flame behaviour, light emittance, and also considering the effect of variation in fuel nozzle diameter on combustion phenomena such as flame length, flame shape, and soot free length parameter. The investigation into the flame phenomenology was comprised of variations of the oxidizer and fuel flow velocities (respective Reynolds numbers and the fuel nozzle diameter. The results showed that the swirl effect could change the flame luminosity and this way could reduce or increase the maximum value of the flame light emittance in the combustion zone. Therefore, investigation into the flame light emittance can give a good clue for studying the mixing quality of reactants, the flame phenomenology (blue flame or sooty flame, localized extinction, and the combustion intensity in non-premixed flames.

  17. Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Chen, Chuan; Yu, Yu-Song; Gao, Guo-Xi

    2015-01-01

    Highlights: • The cavitation characteristics within nozzle were numerical studied. • The studied nozzle is from high pressure common-rail injection system. • The effects of nozzle’s geometrical parameters were considered. - Abstract: In the present paper, the influences of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle have been numerically investigated on basis of a high-pressure common-rail DI diesel engine. For obtaining more beneficial information, five essential parameters (the pressure difference on the nozzle, circular bead of nozzle’s inlet, orifice coefficient, the ratio of nozzle’s length to orifice’s diameter, and the roughness of orifice’s inner wall) have been investigated. The variation regulations of the flow and the cavitation characteristics induced by the mentioned parameters have been observed and analysed in terms of the distributions of essential physical fields (including statistic pressure field, velocity magnitude field, turbulent kinetic energy field, mass transfer coefficient field, and vapour’s volume fraction field) and the variation regulations of crucial physical parameters (including mass flow rate, flow coefficient, average vapour’s volume fraction, average flow velocity at orifice’s outlet, and average turbulent kinetic energy at orifice’s outlet). The main results obtained in the present investigation have illustrated how the cavitation occurs, develops and extinguishes within nozzle; meanwhile, how each geometric parameter affects the flow and the cavitation characteristics within nozzle have been explored

  18. Multielement suppressor nozzles for thrust augmentation systems.

    Science.gov (United States)

    Lawrence, R. L.; O'Keefe, J. V.; Tate, R. B.

    1972-01-01

    The noise reduction and nozzle performance characteristics of large-scale, high-aspect-ratio multielement nozzle arrays operated at low velocities were determined by test. The nozzles are selected for application to high-aspect-ratio augmentor suppressors to be used for augmentor wing airplanes. Significant improvements in noise characteristics for multielement nozzles over those of round or high-aspect-ratio slot nozzles are obtained. Elliptical noise patterns typical of slot nozzles are presented for high-aspect-ratio multielement nozzle arrays. Additional advantages are available in OASPL noise reduction from the element size and spacing. Augmentor-suppressor systems can be designed for maximum beam pattern directivity and frequency spectrum shaping advantages. Measurements of the nozzle wakes show a correlation with noise level data and frequency spectrum peaks. The noise and jet wake results are compared with existing prediction procedures based on empirical jet flow equations, Lighthill relationships, Strouhal number, and empirical shock-induced screech noise effects.

  19. Numerical investigation on transient flow and cavitation characteristic within nozzle during the oil drainage process for a high-pressure common-rail DI diesel engine

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Yu, Yu-Song; Gao, Si-Chao; Gao, Guo-Xi

    2015-01-01

    Highlights: • The flow process within nozzle during oil drainage process were studied. • The effects of needle movement on flow characteristics were studied. • The cavitation characteristics in a transient flow were numerical studied. - Abstract: In the present investigation, the transient developments of flow and cavitation within an injector’s nozzle during the oil drainage process have been studied by numerical method for a high-pressure common-rail DI diesel engine, both the variation regulations of macro parameters (indicating flow characteristics and cavitation characteristics) and the distribution manners of important physical fields (indicating the cavitation evolution in the micro) have been obtained and analyzed. The obtained numerical results indicate that, during the oil drainage process, both mass flow rate and flow coefficient monotonously increase with declining variation rates, both averaged flow velocity and averaged turbulent kinetic energy also monotonously increase; however, to the curve of TKE-needle lift, there exist certain points give abrupt increase. The difference in TKE curve compared to averaged flow velocity is mainly attributed to the sudden variation of cavitation. Based upon the numerical results, the cavitation bubble will not be formed until the needle lift has been raised to a certain position due to the lower flow velocity and the lack of low (even negative) pressure zones. As needle rises, the primary bubbles are formed near the lower corner after nozzle’s entrance; but as needle further rises, the positions at where bubbles are formed have been transferred to the upper corner and then being blow downwards orifice as the increase of flow velocity

  20. Cross-talk effect in electrostatic based capillary array nozzles

    International Nuclear Information System (INIS)

    Choi, Kyung Hyun; Rahman, Khalid; Khan, Arshad; Kim, Dong Soo

    2011-01-01

    Electrohydrodynamic printing is a promising technique for printed electronics application. Most researchers working in this field are using a single nozzle configuration. However, for large area printing a multi-nozzle setup will be required for time and cost effective process. In this paper the influence of electric field and flow-rate on jetting angle on multi-nozzle array has been investigated experimentally. A three nozzle setup has been used in a linear array by using glass capillary as a nozzle with independent voltage applied on each nozzle and independent ink supply. The experiments are performed by changing the nozzle to nozzle gap and the effect on the jetting angle has been investigated. It has been observed that by increasing the applied voltage the jetting angle also increases at fixed flow-rate. In case of increasing the flow-rate, the jetting angle first increases with increase in flow-rate, but as the flow-rate increases at certain level the jetting angle decreases; moreover, at a high flow-rate the cone-jet length starts increasing. Numerical simulation has been performed to have a better understanding of the electric-field with respect to jetting angles. The influence of one nozzle on another nozzle is also investigated by operating the nozzle independently by using different operating cases. The cross-talk effect is also minimized by reducing the nozzle diameter. At 250 μm nozzle diameter the cross-talk effect was negligible for 5 mm nozzle-to-nozzle gap. This study will help in better understanding of the interaction between different nozzles in multi-nozzle cases and better design of the multi-nozzle system by minimizing the effects of adjacent nozzles for multi-nozzle electrohydrodynamic printing system

  1. Nozzle geometry variations on the discharge coefficient

    Directory of Open Access Journals (Sweden)

    M.M.A. Alam

    2016-03-01

    Full Text Available Numerical works have been conducted to investigate the effect of nozzle geometries on the discharge coefficient. Several contoured converging nozzles with finite radius of curvatures, conically converging nozzles and conical divergent orifices have been employed in this investigation. Each nozzle and orifice has a nominal exit diameter of 12.7×10−3 m. A 3rd order MUSCL finite volume method of ANSYS Fluent 13.0 was used to solve the Reynolds-averaged Navier–Stokes equations in simulating turbulent flows through various nozzle inlet geometries. The numerical model was validated through comparison between the numerical results and experimental data. The results obtained show that the nozzle geometry has pronounced effect on the sonic lines and discharge coefficients. The coefficient of discharge was found differ from unity due to the non-uniformity of flow parameters at the nozzle exit and the presence of boundary layer as well.

  2. An analysis of the shielding gas flow from a coaxial conical nozzle during high power CO{sub 2} laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, Antonio [CNR-INFM Regional Laboratory LIT3, via Orabona 4, 70126 Bari (Italy); Sibillano, Teresa [CNR-INFM Regional Laboratory LIT3, via Orabona 4, 70126 Bari (Italy); Dipartimento Interateneo di Fisica, Universita Degli Studi di Bari, via Orabona 4, 70126 Bari (Italy); Lugara, Pietro Mario [CNR-INFM Regional Laboratory LIT3, via Orabona 4, 70126 Bari (Italy); Dipartimento Interateneo di Fisica, Universita Degli Studi di Bari, via Orabona 4, 70126 Bari (Italy); Gonnella, Giuseppe [Dipartimento Interateneo di Fisica, Universita Degli Studi di Bari, via Orabona 4, 70126 Bari (Italy); Pascazio, Giuseppe [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy); Centro di Eccellenza in Meccanica Computazionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy); Maffione, Donato [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy); Centro di Eccellenza in Meccanica Computazionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy)

    2006-02-07

    An experimental and theoretical study on the role of the nitrogen gas stream, exiting from a conventional conical nozzle tip during a laser welding process, has been carried out. A mathematical model has been used, based on the Navier-Stokes equations which express fundamental conservation laws of mass, momentum and energy for a compressible fluid. Numerical simulations of the gas stream colliding onto a plane surface have been performed showing the effects of variations of inlet gas pressure, nozzle exit diameter and standoff distance on the density and Mach number contours, axis pressure of the gas jet and plate pressure produced on the workpiece surface. Laser welding experiments have been performed on carbon and stainless steel specimens, by varying the process parameters in the same range as in the simulations and keeping constant the incident power and the travel speed. Two different gas stream regimes were found, namely sonic and subsonic, which were experimentally verified to produce cutting and welding conditions, respectively. Weld performances have been evaluated in terms of bead width, penetration depth and melted area. Nozzle standoff distance was found to have a negligible influence, while the exit diameter and the flow rate significantly affect the weld results. The numerical predictions allowed an explanation of the experimental results yielding useful suggestions for enhancing the weld quality, acting simply on the shielding gas parameters.

  3. Arcjet nozzle area ratio effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  4. Arcjet Nozzle Area Ratio Effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  5. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace

    Science.gov (United States)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.

    2017-02-01

    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion

  6. Parametric Study of Sealant Nozzle

    Science.gov (United States)

    Yamamoto, Yoshimi

    It has become apparent in recent years the advancement of manufacturing processes in the aerospace industry. Sealant nozzles are a critical device in the use of fuel tank applications for optimal bonds and for ground service support and repair. Sealants has always been a challenging area for optimizing and understanding the flow patterns. A parametric study was conducted to better understand geometric effects of sealant flow and to determine whether the sealant rheology can be numerically modeled. The Star-CCM+ software was used to successfully develop the parametric model, material model, physics continua, and simulate the fluid flow for the sealant nozzle. The simulation results of Semco sealant nozzles showed the geometric effects of fluid flow patterns and the influences from conical area reduction, tip length, inlet diameter, and tip angle parameters. A smaller outlet diameter induced maximum outlet velocity at the exit, and contributed to a high pressure drop. The conical area reduction, tip angle and inlet diameter contributed most to viscosity variation phenomenon. Developing and simulating 2 different flow models (Segregated Flow and Viscous Flow) proved that both can be used to obtain comparable velocity and pressure drop results, however; differences are seen visually in the non-uniformity of the velocity and viscosity fields for the Viscous Flow Model (VFM). A comprehensive simulation setup for sealant nozzles was developed so other analysts can utilize the data.

  7. Premixed direct injection nozzle

    Science.gov (United States)

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  8. Low-Density Lipoproteins Oxidation and Endometriosis

    Directory of Open Access Journals (Sweden)

    Grzegorz Polak

    2013-01-01

    Full Text Available The etiopathogenesis of endometriosis still remains unknown. Recent data provide new valuable information concerning the role of oxidative stress in the pathophysiology of the disease. It has been proved that levels of different lipid peroxidation end products are increased in both peritoneal fluid (PF and serum of endometriotic patients. We assessed the concentration of oxidized low-density lipoproteins (oxLDL in PF of 110 women with different stages of endometriosis and 119 women with serous ( or dermoid ( ovarian cysts, as the reference groups. PF oxLDL levels were evaluated by ELISA. We found that concentrations of oxLDL in PF of endometriotic women were significantly higher compared to women with serous but not dermoid ovarian cysts. Interestingly, by analyzing concentrations of oxLDL in women with different stages of the disease, it was noted that they are significantly higher only in the subgroup of patients with stage IV endometriosis as compared to women with ovarian serous cysts. In case of minimal, mild, and moderate disease, PF oxLDL levels were similar to those noted in reference groups. Our results indicate that disrupted oxidative status in the peritoneal cavity of women with endometriosis may play a role in the pathogenesis of advanced stages of the disease.

  9. Focusing liquid microjets with nozzles

    International Nuclear Information System (INIS)

    Acero, A J; Ferrera, C; Montanero, J M; Gañán-Calvo, A M

    2012-01-01

    The stability of flow focusing taking place in a converging–diverging nozzle, as well as the size of the resulting microjets, is examined experimentally in this paper. The results obtained in most aspects of the problem are similar to those of the classical plate-orifice configuration. There is, however, a notable difference between flow focusing in nozzles and in the plate-orifice configuration. In the former case, the liquid meniscus oscillates laterally (global whipping) for a significant area of the control parameter plane, a phenomenon never observed when focusing with the plate-orifice configuration. Global whipping may constitute an important drawback of flow focusing with nozzles because it reduces the robustness of the technique. (paper)

  10. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  11. Computational study of performance characteristics for truncated conical aerospike nozzles

    Science.gov (United States)

    Nair, Prasanth P.; Suryan, Abhilash; Kim, Heuy Dong

    2017-12-01

    Aerospike nozzles are advanced rocket nozzles that can maintain its aerodynamic efficiency over a wide range of altitudes. It belongs to class of altitude compensating nozzles. A vehicle with an aerospike nozzle uses less fuel at low altitudes due to its altitude adaptability, where most missions have the greatest need for thrust. Aerospike nozzles are better suited to Single Stage to Orbit (SSTO) missions compared to conventional nozzles. In the current study, the flow through 20% and 40% aerospike nozzle is analyzed in detail using computational fluid dynamics technique. Steady state analysis with implicit formulation is carried out. Reynolds averaged Navier-Stokes equations are solved with the Spalart-Allmaras turbulence model. The results are compared with experimental results from previous work. The transition from open wake to closed wake happens in lower Nozzle Pressure Ratio for 20% as compared to 40% aerospike nozzle.

  12. Low density in liver of idiopathic portal hypertension

    International Nuclear Information System (INIS)

    Ishito, Hiroyuki

    1988-01-01

    In order to evaluate the diagnostic value of low density in liver on computed tomography (CT), CT scans of 11 patients with idiopathic portal hypertension (IPH) were compared with those from 22 cirrhotic patients, two patients with scarred liver and 16 normal subjects. Low densities on plain CT scans in patients with IPH were distinctly different from those observed in normal liver. Some of the low densities had irregular shape with unclear margin and were scattered near the liver surface, and others had vessel-like structures with unclear margin and extended as far as near the liver surface. Ten of the 11 patients with IPH had low densities mentioned above, while none of the 22 cirrhotic patients had such low densities. The present results suggest that the presence of low densities in liver on plain CT scan is clinically beneficial in diagnosis of IPH. (author)

  13. Refractory Coated/Lined Low Density Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses the development of refractory coated or lined low density structures applicable for advanced future propulsion system technologies. The...

  14. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  15. Investigation of turbines for driving supersonic compressors II : performance of first configuration with 2.2 percent reduction in nozzle flow area / Warner L. Stewart, Harold J. Schum, Robert Y. Wong

    Science.gov (United States)

    Stewart, Warner L; Schum, Harold J; Wong, Robert Y

    1952-01-01

    The experimental performance of a modified turbine for driving a supersonic compressor is presented and compared with the performance of the original configuration to illustrate the effect of small changes in the ratio of nozzle-throat area to rotor-throat area. Performance is based on the performance of turbines designed to operate with both blade rows close to choking. On the basis of the results of this investigation, the ratio of areas is concluded to become especially critical in the design of turbines such as those designed to drive high-speed, high-specific weight-flow compressors where the turbine nozzles and rotor are both very close to choking.

  16. Nozzle airfoil having movable nozzle ribs

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  17. Low Density Real Gas Flows About Hypersonic Vehicles.

    Science.gov (United States)

    1991-11-01

    equations with fully-coupled finite rate air chemistry. The development of the HYLDA code was motivated by the difficulty of current wind tunnel...2ps,,.,, - psj = , (3-30) PN. 2pNwa - pNead u Uadj v Vadj w T Wadj bc 2TLMau - TadJ where PS4 -- PSj if noncatalytic wall = calculated if catalytic wall

  18. External Cylindrical Nozzle with Controlled Vacuum

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2015-01-01

    Full Text Available There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice

  19. Laval nozzles for cluster-jet targets

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Silke; Bonaventura, Daniel; Hergemoeller, Ann-Katrin; Hetz, Benjamin; Koehler, Esperanza; Lessmann, Lukas; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2016-07-01

    Cluster-jet targets are highly suited for storage ring experiments due to the fact that they provide high and constant beam densities. Therefore, a cluster-jet target is planned to be the first internal target for the PANDA experiment at FAIR. A cluster source generates a continuous flow of cryogenic solid clusters by the expansion of pre-cooled gases within fine Laval nozzles. For the production of clusters the geometry of the nozzle is crucial. The production of such nozzles with their complex inner geometry represents a major technical challenge. The possibility to produce new fine Laval nozzles ensures the operation of cluster-jet targets, e.g. for the PANDA experiment, and opens the way for future investigations on the cluster production process to match the required targets performance. Optimizations on the recently developed production process and the fabrication of new glass nozzles were done. Initial measurements of these nozzles at the PANDA cluster-jet target prototype and the investigation of the cluster beam origin within the nozzle will be presented and discussed. For the future more Laval nozzles with different geometries will be produced and additional measurements with these new nozzles at the PANDA cluster-jet target prototype towards higher performance will be realized.

  20. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    Science.gov (United States)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  1. Design and analysis approach for linear aerospike nozzle

    International Nuclear Information System (INIS)

    Khan, S.U.; Khan, A.A.; Munir, A.

    2014-01-01

    The paper presents an aerodynamic design of a simplified linear aerospike nozzle and its detailed exhaust flow analysis with no spike truncation. Analytical method with isentropic planar flow was used to generate the nozzle contour through MATLAB . The developed code produces a number of outputs comprising nozzle wall profile, flow properties along the nozzle wall, thrust coefficient, thrust, as well as amount of nozzle truncation. Results acquired from design code and numerical analyses are compared for observing differences. The numerical analysis adopted an inviscid model carried out through commercially available and reliable computational fluid dynamics (CFD) software. Use of the developed code would assist the readers to perform quick analysis of different aerodynamic design parameters for the aerospike nozzle that has tremendous scope of application in future launch vehicles. Keyword: Rocket propulsion, Aerospike Nozzle, Control Design, Computational Fluid Dynamics. (author)

  2. A new look at extensional rheology of low-density polyethylene

    DEFF Research Database (Denmark)

    Huang, Qian; Mangnus, Marc; Alvarez, Nicolas J.

    2016-01-01

    The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a co...

  3. Turbocharger with variable nozzle having vane sealing surfaces

    Science.gov (United States)

    Arnold, Philippe [Hennecourt, FR; Petitjean, Dominique [Julienrupt, FR; Ruquart, Anthony [Thaon les Vosges, FR; Dupont, Guillaume [Thaon les Vosges, FR; Jeckel, Denis [Thaon les Vosges, FR

    2011-11-15

    A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.

  4. Pitot survey of exhaust flow field of a 2-D scramjet nozzle at Mach 6 with air or freon and argon used for exhaust simulation

    Science.gov (United States)

    Monta, William J.

    1992-01-01

    A pitot-rake survey of the simulated exhaust of a half-span scramjet nozzle model was conducted in the Langley 20-Inch Mach 6 Tunnel to provide an additional data set for computational fluid dynamics (CFD) code comparisons. A wind-tunnel model was tested with a 26-tube pitot rake that could be manually positioned along the mid-semispan plane of the model. The model configuration had an external expansion surface of 20 degrees and an internal cowl expansion of 12 degrees; tests were also performed with a flow fence. Tests were conducted at a free-stream Reynolds number of approximately 6.5 x 10(exp 6) per foot and a model angle of attack of -0.75 degrees. The two exhaust gas mediums that were tested were air and a Freon 12-argon mixture. Each medium was tested at two jet total pressures at approximately 28 and 14 psia. This document presents the flow-field survey results in graphical as well as tabular form, and several observations concerning the results are discussed. The surveys reveal the major expected flow-field characteristics for each test configuration. For a 50-percent freon 12 and 50-percent argon mixture by volume (Fr-Ar), the exhaust jet pressures were slightly higher than those for air. The addition of a flow fence slightly raised the pitot pressure for the Fr-Ar mixture, but it produced little change for air. For the Fr-Ar exhaust, the plume was larger and the region between the shock wave and plume was smaller.

  5. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  6. Prototype Morphing Fan Nozzle Demonstrated

    Science.gov (United States)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  7. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.

    2016-10-22

    The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.

  8. Microbial biodegradable potato starch based low density polyethylene

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Key words: Low density polyethylene, fungi, biodegradable polymer, Pseudomonas aeruginosa. ... particle such as CO2 or water by microorganism's activities. ... package and production of bags, composites and agricultural.

  9. Clustering and Symmetry Energy in a Low Density Nuclear Gas

    International Nuclear Information System (INIS)

    Kowalski, S.; Natowitz, J.B.; Shlomo, S.; Wada, R.; Hagel, K.; Wang, J.; Materna, T.; Chen, Z.; Ma, Y.G.; Qin, L.; Botvina, A.S.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Rizzi, V.; Viesti, G.; Cinausero, M.; Prete, G.; Keutgen, T.; El Masri, Y.; Majka, Z.; Ono, A.

    2007-01-01

    Temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A= 64 Zn projectiles with 92 Mo and 197 Au target nuclei. The symmetry energies at low density are larger than those obtained in mean field calculations, reflecting the clustering of low density nuclear matter. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation

  10. Metabolism of cholesteryl esters of rat very low density lipoproteins.

    Science.gov (United States)

    Faergeman, O; Havel, R J

    1975-06-01

    Rat very low density lipoproteins (d smaller than 1.006), biologically labeled in esterified and free cholesterol, were obtained form serum 6 h after intravenous injection of particulate (3-H) cholesterol. When injected into recipient animals, the esterified cholesterol was cleared form plasma with a half-life of 5 min. After 15 min, 71% of the injected esterified (3-H) cholesterol had been taken up by the liver, where it was rapidly hydrolyzed. After 60 min only 3.3% of the amount injected had been transferred, via lipoproteins of intermediate density, to the low density lipoproteins of plasma (d 1.019-1.063). Both uptake in the liver and transfer to low density lipoproteins occurred without change of distribution of 3-H in the various cholesteryl esters. 3-H appearing in esterified cholesterol of high density lipoproteins (d greater than 1.063) was derived from esterification, presumably by lecithin: cholesterol acyltransferase, of simultaneously injected free (3-H) cholesterol. Content of free (3-H) cholesterol in the very low density lipoproteins used for injection could be reduced substantially by incubation with erythrocytes. This procedure, however, increased the rate of clearance of the lipoproteins after injection into recipient rats. These studies show that hepatic removal is the major catabolic pathway for cholesteryl esters of rat very low density lipoproteins and that transfer to low density lipoproteins occurs to only a minor extent.

  11. CFD Analysis On The Performance Of Wind Turbine With Nozzles

    Directory of Open Access Journals (Sweden)

    Chunkyraj Kh

    2015-08-01

    Full Text Available In this paper an effort has been made in dealing with fluid characteristic that enters a converging nozzle and analysis of the nozzle is carried out using Computational Fluid Dynamics package ANSYS WORKBENCH 14.5. The paper is the continuation of earlier work Analytical and Experimental performance evaluation of Wind turbine with Nozzles. First the CFD analysis will be carried out on nozzle in-front of wind turbine where streamline velocity at the exit volume flow rate in the nozzle and pressure distribution across the nozzle will be studied. Experiments were conducted on the Wind turbine with nozzles and the corresponding power output at different air speed and different size of nozzles were calculated. Different shapes and dimensions with special contours and profiles of nozzles were studied. It was observed that the special contour nozzles have superior outlet velocity and low pressure at nozzle exit the design has maximum Kinetic energy. These indicators conclude that the contraction designed with the new profile is a good enhancing of the nozzle performance.

  12. Through an Annular Turbine Nozzle

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    1995-01-01

    is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect is localized to the immediate neighborhood of the involved blades. The effects on the wakes and on the inviscid flow are discussed separately. The mean velocities show a strong sensitivity to the changes of the pitch, which is due to a potential flow effect rather than a viscous effect.

  13. Bilateral anterior thalamic low densities in descending transtentorial herniation

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Chikao; Watanabe, Takao

    1985-02-01

    Round, well-demarcated, symmetrical low densities in a bilateral thalamus in a case of descending transtentorial herniation due secondarily to acute traumatic left subdural hematoma are reported. An 8-year-old boy, on whom emergency surgery was refused by his parents, showed a marked shift due to the hematoma on admission; this was followed by a low density in the left PCA territory and round, equivocal hypodensities in the anterior thalamus 44 hours post-trauma. The equivocal hypodensities became definite, well-demarcated, round low densities situated symmetrically in the anterior thalamus on the 39th day post-trauma. Akinetic mutism was noted at this time. The symmetrical low densities and the PCA-territory low density persisted as late as the 39th day post-trauma, suggesting infarcts. The downward stretch of the bilateral thalamoperforators, which was effected by a narrowing of the interpeduncular fossa with an approximation of the bilateral perforators, plus a downward shift of the PCA due to descending transtentorial herniation, was assumed to be the mechanism involved. (author).

  14. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  15. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  16. Advanced exhaust nozzle technology

    Energy Technology Data Exchange (ETDEWEB)

    Glidewell, R J; Warburton, R E

    1981-01-01

    Recent developments in turbine engine exhaust nozzle technology include nonaxisymmetric nozzles, thrust reversing, and thrust vectoring. Trade studies have been performed to determine the impact of these developments on the thrust-to-weight ratio and specific fuel consumption of an advanced high performance, augmented turbofan engine. Results are presented in a manner which provides an understanding of the sources and magnitudes of differences in the basic elements of nozzle internal performance and weight as they relate to conventional, axisymmetric nozzle technology. Conclusions are presented and recommendations are made with regard to future directions of advanced development and demonstration. 5 refs.

  17. Clathrates and beyond: Low-density allotropy in crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Beekman, Matt [Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407 (United States); Wei, Kaya; Nolas, George S., E-mail: gnolas@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2016-12-15

    In its common, thermodynamically stable state, silicon adopts the same crystal structure as diamond. Although only a few alternative allotropic structures have been discovered and studied over the past six decades, advanced methods for structure prediction have recently suggested a remarkably rich low-density phase space that has only begun to be explored. The electronic properties of these low-density allotropes of silicon, predicted by first-principles calculations, indicate that these materials could offer a pathway to improving performance and reducing cost in a variety of electronic and energy-related applications. In this focus review, we provide an introduction and overview of recent theoretical and experimental results related to low-density allotropes of silicon, highlighting the significant potential these materials may have for technological applications, provided substantial challenges to their experimental preparation can be overcome.

  18. Bilateral symmetrical low density areas in the basal ganglia

    International Nuclear Information System (INIS)

    Ugawa, Yoshikazu; Ihara, Yasuo

    1984-01-01

    We reported a case with dysarthria and gait disturbance, in which CT revealed symmetrical well-demarcated low density areas in the basal ganglia. The patient was a 43-year-old woman. Her family history and past history were not contributory. She had a little difficulty in speaking at the age of 17. Gait disturbance and micrographia appeared later. Although her expressionless face resembles to that seen in Parkinsonism, rigidity, akinesia and small-stepped gait were not present. The unclassified types of dysarthria and gait disturbance, which characterize the present case, were considered to be a kind of extrapyramidal symptoms, which were distinct from those of Parkinsonism. CT showed well demarcated low density areas predominantly in bilateral putamen. Metrizamide CT failed to show any communication between low density areas and subarachnoid spaces. To date, six cases, which presented similar clinical features and almost same CT findings as our case, were reported. (author)

  19. Lower nozzle of PWR fuel assembly

    International Nuclear Information System (INIS)

    Furutani, Nobuo.

    1994-01-01

    A lower nozzle comprises a regular square plate and legs. The plate has a plurality of holes for securing thimble tubes and a great number of water flowing ports. Ridges each having a lower end surface inclined toward inner side of the plate are disposed at the outer circumference of the plate. The legs suspend downwardly from the corners of the plate and support the plate at a predetermined gap between a lower reactor core plate and the plate. The inclined surfaces of the ridges disposed at the outer circumference of the plate retain coolants, that were caused to flow to the outside passing between the legs of the nozzle, while dividing them to the inside of the nozzle and circulate the coolants upwardly passing through the water flowing ports of the plate. Further, since obstacles abut against the inclined surfaces of the ridges and flow to the inner side of the lower nozzle, obstacles in the coolants can be captured substantially entirely by the lower nozzle. (I.N.)

  20. Low-density lipoprotein cholesterol and risk of gallstone disease

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Benn, Marianne

    2013-01-01

    Drugs which reduce plasma low-density lipoprotein cholesterol (LDL-C) may protect against gallstone disease. Whether plasma levels of LDL-C per se predict risk of gallstone disease remains unclear. We tested the hypothesis that elevated LDL-C is a causal risk factor for symptomatic gallstone...

  1. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Arnholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...

  2. Increased oxidizability of low-density lipoproteins in hypothyroidism

    NARCIS (Netherlands)

    Diekman, T.; Demacker, P. N.; Kastelein, J. J.; Stalenhoef, A. F.; Wiersinga, W. M.

    1998-01-01

    Hypothyroidism leads to an increase of plasma low-density lipoprotein (LDL) cholesterol levels. Oxidation of LDL particles changes their intrinsic properties, thereby enhancing the development of atherosclerosis. T4 has three specific binding sites on apolipoprotein B; furthermore it inhibits LDL

  3. Role of oxidized low-density lipoprotein in renal disease

    NARCIS (Netherlands)

    Heeringa, P; Tervaert, JWC

    Accelerated atherosclerosis is often observed in patients with chronic renal failure. In the present review we summarize and discuss the recent literature on the pathogenic role of low-density lipoproteins modified by oxidative processes in atherosclerosis and the possible role in renal diseases.

  4. Three-dimensional structure of low-density nuclear matter

    International Nuclear Information System (INIS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2012-01-01

    We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

  5. Three-dimensional structure of low-density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Minoru, E-mail: okamoto@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Maruyama, Toshiki, E-mail: maruyama.toshiki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Yabana, Kazuhiro, E-mail: yabana@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Center of Computational Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Tatsumi, Toshitaka, E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2012-07-09

    We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

  6. Thermal Cracking of Low Density Polyethylene (LDPE) Waste into ...

    African Journals Online (AJOL)

    Waste low density polyethylene film (table water sachets) was converted into solid, liquid oil and gaseous products by thermal process in a self- designed stainless steel laboratory reactor. The waste polymer was completely pyrolized within the temperature range of 474 – 520°C and 2hours reaction time. The solid residue ...

  7. Plasma probe characteristics in low density hydrogen pulsed plasmas

    International Nuclear Information System (INIS)

    Astakhov, D I; Lee, C J; Bijkerk, F; Goedheer, W J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V

    2015-01-01

    Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates. (paper)

  8. Human Low Density Lipoprotein as a Vehicle of Atherosclerosis ...

    African Journals Online (AJOL)

    Low-density lipoproteins have been sufficiently established as an important precursor of atherosclerosis. The actual mechanism is still unclear, and the current technique of using radioisotopes has clinical limitation. However, the current study techniques or methods excellently elucidate the functional aspects of ...

  9. Experimental study of subsonic microjet escaping from a rectangular nozzle

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.

    2016-10-01

    The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.

  10. On the mechanism of charge transport in low density polyethylene

    Science.gov (United States)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  11. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  12. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  13. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  14. Development of Low Density, Flexible Carbon Phenolic Ablators

    Science.gov (United States)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  15. Performance of Low-Density Parity-Check Coded Modulation

    Science.gov (United States)

    Hamkins, Jon

    2010-01-01

    This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.

  16. Low density lipoprotein sensor based on surface plasmon resonance

    International Nuclear Information System (INIS)

    Matharu, Zimple; Sumana, G.; Pandey, M.K.; Gupta, Vinay; Malhotra, B.D.

    2009-01-01

    Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m o /μM.

  17. Low density lipoprotein sensor based on surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matharu, Zimple [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Sumana, G.; Pandey, M.K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

    2009-11-30

    Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m{sup o}/{mu}M.

  18. Low-density lipoproteins cause atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Ference, Brian A.; Ginsberg, Henry N.; Graham, Ian

    2017-01-01

    Aims To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). Methods and results We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from...... proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. Conclusion Consistent evidence from...

  19. Low density lipoproteins mediated nanoplatforms for cancer targeting

    International Nuclear Information System (INIS)

    Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant; Jain, Narendra K.

    2013-01-01

    Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body’s defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature’s method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL–drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier

  20. Low density lipoproteins mediated nanoplatforms for cancer targeting

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant, E-mail: prashant_pharmacy04@rediffmail.com; Jain, Narendra K., E-mail: jnarendr@yahoo.co.in [Dr. H. S. Gour University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences (India)

    2013-09-15

    Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body's defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature's method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL-drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier.

  1. Low density lipoproteins mediated nanoplatforms for cancer targeting

    Science.gov (United States)

    Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant; Jain, Narendra K.

    2013-09-01

    Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body's defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature's method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL-drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier.

  2. Experimental Evidence of Low Density Liquid Water under Decompression

    Science.gov (United States)

    Shen, G.; Lin, C.; Sinogeikin, S. V.; Smith, J.

    2017-12-01

    Water is not only the most important substance for life, but also plays important roles in liquid science for its anomalous properties. It has been widely accepted that water's anomalies are not a result of simple thermal fluctuation, but are connected to the formation of various structural aggregates in the hydrogen bonding network. Among several proposed scenarios, one model of fluctuations between two different liquids has gradually gained traction. These two liquids are referred to as a low-density liquid (LDL) and a high-density liquid (HDL) with a coexistence line in the deeply supercooled regime at elevated pressure. The LDL-HDL transition ends with decreasing pressure at a liquid-liquid critical point (LLCP) with its Widom line extending to low pressures. Above the Widom line lies mostly HDL which is favored by entropy, while LDL, mostly lying below the Widom line, is favored by enthalpy in the tetrahedral hydrogen bonding network. The origin of water's anomalies can then be explained by the increase in structural fluctuations, as water is cooled down to deeply supercooled temperatures approaching the Widom line. Because both the LLCP and the LDL-HDL transition line lie in water's "no man's land" between the homogeneous nucleation temperature (TH, 232 K) and the crystallization temperature (TX, 150 K), the success of experiments exploring this region has been limited thus far. Using a rapid decompression technique integrated with in situ x-ray diffraction, we observe that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. The change in crystallization rate with temperature indicates that the LDN is a LDL with its tetrahedrally-coordinated network fully developed and clearly linked to low-density amorphous ices. The observation of the tetrahedral LDL supports the two-liquid model for

  3. Computational Simulation on a Coaxial Substream Powder Feeding Laval Nozzle of Cold Spraying

    Directory of Open Access Journals (Sweden)

    Guosheng HUANG

    2014-09-01

    Full Text Available In this paper, a substream coaxial powder feeding nozzle was investigated for use in cold spraying. The relationship between nozzle structure and gas flow, the acceleration behavior of copper particles were examined by computational simulation method. Also, one of the nozzle was used to spray copper coating on steel substrate. The simulation results indicate that: the velocity of gas at the center of the nozzle is lower than that of the conventional nozzle. Powders are well restrained near the central line of the nozzle, no collision occurred between the nozzle wall and the powders. This type of nozzle with expansion 3.25 can successfully deposit copper coating on steel substrate, the copper coating has low porosity about 3.1 % – 3.8 % and high bonding strength about 23.5 MPa – 26.8 MPa. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4244

  4. Mechanical Properties of Low Density Alloys at Cryogenic Temperatures

    International Nuclear Information System (INIS)

    Jiao, X. D.; Liu, H. J.; Li, L. F.; Yang, K.

    2006-01-01

    Low-density alloys include aluminum alloys, titanium alloys and magnesium alloys. Aluminum alloys and titanium alloys have been widely investigated and used as structural materials for cryogenic applications because of their light weight and good low-temperature mechanical properties.For aerospace applications, persistent efforts are being devoted to reducing weight and improving performance. Magnesium alloys are the lightest structural alloys among those mentioned above. Therefore, it is necessary to pay attention to magnesium alloys and to investigate their behaviors at cryogenic temperatures. In this paper, we have investigated the mechanical properties and microstructures of some magnesium alloys at cryogenic temperatures. Experimental results on both titanium and magnesium alloys are taken into account in considering these materials for space application

  5. Low density lipoprotein receptors: preliminary results on 'in vivo' study

    International Nuclear Information System (INIS)

    Lupattelli, G.; Virgolini, I.; Li, S.R.; Sinzinger, H.

    1991-01-01

    Plasmatic levels of low density lipoproteins (LDL) are regulated by the receptor pathway and most LDL receptor are located in the liver. A receptor defect due to genetic mutations of the LDL receptor gene is the cause of familial hypercholesterolemia (F.H.), a disease characterized by high cholesterol levels and premature atherosclerosis. Injections of autologous radiolabelled LDL, followed by hepatic scintiscanning, can be used to obtain 'in vivo' quantification of hepatic receptor activity, both in normal and hypercholesterolemic patients. In this study we observe no hepatic increase of radioactivity in patients affected by F.H., confirming the liver receptor defect. Scintigraphy is a non-invasive technique which can be used to diagnose this disease and to monitor the efficiacy of hypolipidemic therapy. (Authors)

  6. Statistical mechanics of low-density parity-check codes

    Energy Technology Data Exchange (ETDEWEB)

    Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 2268502 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)

    2004-02-13

    We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)

  7. Ballistics considerations for small-caliber, low-density projectiles

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.

    1993-01-01

    One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at ∼ 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these small (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases

  8. Physical properties of drawn very low density polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S. [Yeungnam University, Kyongsan (Korea, Republic of); Lee, J.Y. [Korea Institute of Footwear and Leather Technology, Pusan (Korea, Republic of)

    1998-05-01

    Very low density polyethylene (VLDPE) films were prepared by quenching the pressed melt in ice water. The films were drawn with universal testing machine under constant temperature at four different temperatures, 30, 60, 80, and 110 {sup o} C. Thermal, mechanical properties, grossity, and gas permeability of the drawn VLDPE films as a function of draw ratio were investigated to examine their applicability to packaging. The films showed tow melting peaks, i.e., low temperature endotherm (LTE) and high temperature endotherm (HTE). The melting temperatures were increased with the draw ratio and the drawing temperature. The mechanical properties of the VLDPE film drawn at 80 {sup o} C were superior to those drawn at 110 {sup o} C. The grossity and gas permeability of the VLDPE film drawn at 110 {sup o} C were found to be best among the drawn films.

  9. Statistical mechanics of low-density parity-check codes

    International Nuclear Information System (INIS)

    Kabashima, Yoshiyuki; Saad, David

    2004-01-01

    We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)

  10. KEPLER-7b: A TRANSITING PLANET WITH UNUSUALLY LOW DENSITY

    International Nuclear Information System (INIS)

    Latham, David W.; Buchhave, Lars A.; Furesz, Gabor; Geary, John C.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Rowe, Jason F.; Brown, Timothy M.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Jenkins, Jon M.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Gilliland, Ronald L.; Howell, Steve B.; Marcy, Geoffrey W.; Monet, David G.

    2010-01-01

    We report on the discovery and confirmation of Kepler-7b, a transiting planet with unusually low density. The mass is less than half that of Jupiter, M P = 0.43 M J , but the radius is 50% larger, R P = 1.48 R J . The resulting density, ρ P = 0.17 g cm -3 , is the second lowest reported so far for an extrasolar planet. The orbital period is fairly long, P = 4.886 days, and the host star is not much hotter than the Sun, T eff = 6000 K. However, it is more massive and considerably larger than the Sun, M * = 1.35 M sun and R * = 1.84 R sun , and must be near the end of its life on the main sequence.

  11. Oxidized low-density lipoprotein in postmenopausal women

    DEFF Research Database (Denmark)

    Jankowski, Vera; Just, Alexander R; Pfeilschifter, Johannes

    2014-01-01

    BACKGROUND: Oxidized low-density lipoprotein (oxLDL) leads to atherosclerosis and cardiovascular disease, the most frequent causes of death worldwide. After menopause, lipid and lipoprotein metabolism changes and women are at greater risk of cardiovascular disease compared to fertile women. The aim.......10-0.43). Although intima-media thickness did not differ, postmenopausal women with serous oxLDL had more often atherosclerotic plaques compared to women without oxLDL (6/66 vs. 0/467; P lipoprotein, impaired glucose intolerance, and DBP were independently associated...... with the occurrence of oxLDL. If oxLDL was present, higher high-density lipoprotein and glucose intolerance were associated with higher concentrations of oxLDL. In contrast, higher blood urea concentrations were associated with lower concentrations of oxLDL. CONCLUSION: This study presents the prevalence...

  12. Thermoluminescence glow curves of irradiated PMMA and low density polyethylene

    International Nuclear Information System (INIS)

    Matsuda, Koji; Nakase, Yoshiaki; Kumakiri, Yasuhito; Tsuji, Yoshio.

    1985-03-01

    Light emission from polymers is observed when polymers preirradiated with ionizing radiation at low temperature are heated gradually. The light emission is supposedly resulted from recombination of electrons with active centers produced in polymers or from some other processes involving charge transfer, but no definite explanation has been given at present on the thermoluminescent centers. This report describes our studies on the effects of impurities contained in polymers and pressure of ambient gases on the thermoluminescent glow curve of PMMA and low density polyethylene, which are often used for plastic film dosimeters. In the glow curve of PMMA, only one peak was observed at 110 K in an H 2 or He atmosphere at 760 Torr, but the intensity of the peak decreased with decreasing the H 2 or He gas pressure. At 10 -5 Torr H 2 or He atmosphere the peak disappered, and two sharp peaks appeared in the temperature range from 200 to 250 K. On the other hand, in the glow curve of low density polyethylene, three peaks were observed at 120 K, 180 K and 250 K in the presence of H 2 or He gas at 760 Torr. The effects of pressure of ambient gases and impurities in the polyethylene on these peaks indicate that the peak at 120 K is due to luminescent center produced on the surface or just below the surface of the matrix by collision of excited atoms or molecules of gases with polymer molecules, the peak at 120 K is originated from impurities in the matrix, and the peak at 250 0 K corresponds to luminescent center produced in polyethylene matrix. (author)

  13. An empirical probability model of detecting species at low densities.

    Science.gov (United States)

    Delaney, David G; Leung, Brian

    2010-06-01

    False negatives, not detecting things that are actually present, are an important but understudied problem. False negatives are the result of our inability to perfectly detect species, especially those at low density such as endangered species or newly arriving introduced species. They reduce our ability to interpret presence-absence survey data and make sound management decisions (e.g., rapid response). To reduce the probability of false negatives, we need to compare the efficacy and sensitivity of different sampling approaches and quantify an unbiased estimate of the probability of detection. We conducted field experiments in the intertidal zone of New England and New York to test the sensitivity of two sampling approaches (quadrat vs. total area search, TAS), given different target characteristics (mobile vs. sessile). Using logistic regression we built detection curves for each sampling approach that related the sampling intensity and the density of targets to the probability of detection. The TAS approach reduced the probability of false negatives and detected targets faster than the quadrat approach. Mobility of targets increased the time to detection but did not affect detection success. Finally, we interpreted two years of presence-absence data on the distribution of the Asian shore crab (Hemigrapsus sanguineus) in New England and New York, using our probability model for false negatives. The type of experimental approach in this paper can help to reduce false negatives and increase our ability to detect species at low densities by refining sampling approaches, which can guide conservation strategies and management decisions in various areas of ecology such as conservation biology and invasion ecology.

  14. Study on steam pressure characteristics in various types of nozzles

    Science.gov (United States)

    Firman; Anshar, Muhammad

    2018-03-01

    Steam Jet Refrigeration (SJR) is one of the most widely applied technologies in the industry. The SJR system was utilizes residual steam from the steam generator and then flowed through the nozzle to a tank that was containing liquid. The nozzle converts the pressure energy into kinetic energy. Thus, it can evaporate the liquid briefly and release it to the condenser. The chilled water, was produced from the condenser, can be used to cool the product through a heat transfer process. This research aims to study the characteristics of vapor pressure in different types of nozzles using a simulation. The Simulation was performed using ANSYS FLUENT software for nozzle types such as convergent, convrgent-parallel, and convergent-divergent. The results of this study was presented the visualization of pressure in nozzles and was been validated with experiment data.

  15. Characterisation of subsonic axisymmetric nozzles

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2008-01-01

    Roč. 86, č. 11 (2008), s. 1253-1262 ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * characterisation * nozzle properties * nozzle invariants Subject RIV: BK - Fluid Dynamics Impact factor: 0.989, year: 2008

  16. Flame Interactions and Thermoacoustics in Multiple-Nozzle Combustors

    Science.gov (United States)

    Dolan, Brian

    between the two nozzles. A decrease in inter-nozzle spacing resulted in a penalty to the lean blowout point and NO X emissions. Particle image velocimetry shows that the nozzle spacing also has an important effect on the flowfield of the nozzles including the shape of the recirculation region and the quantitative flow velocities. In particular, interaction in the tangential velocity between the two nozzles has large effects on the swirl number and the recirculation zone. Numerical simulations of the isothermal airflows of two pilot nozzles are validated using experimental measurements and used to provide flowfield information outside of the measurement domain. At wider inter-nozzle spacings under certain reacting conditions, an alternating flow pattern develops in the combustion chamber. The shear layers of one nozzle extent into the combustion chamber whereas the inlet reactants from the other nozzle attach near the dome wall to create a very wide recirculation region. Combustion properties, including the fuel type, are shown experimentally to affect whether or not a system will develop an alternating pattern. Simplified computational models of two interacting swirling flows are used to parametrically study the effects of nozzle exit geometry and swirl number on an alternating pattern. Both parameters are shown to be potential drivers of an alternating pattern under some conditions. A hypothesis that proposes a physical mechanism explaining the alternating flow pattern, consistent with the work in this proposal and the research of other groups, is presented. When the nozzle design, flow, or combustion characteristics cause the shear layers of the adjacent nozzles to become sufficiently opposite in direction, the two flows can no longer mix. Instead, one shear layer goes underneath the other which results in the differing flow features of the adjacent nozzles.

  17. Fabrication of Microglass Nozzle for Microdroplet Jetting

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2015-02-01

    Full Text Available An ejection aperture nozzle is the essential part for all microdrop generation techniques. The diameter size, the flow channel geometry, and fluid impedance are the key factors affecting the ejection capacity. A novel low-cost fabrication method of microglass nozzle involving four steps is developed in this work. In the first heating step, the glass pipette is melted and pulled. Then, the second heating step is to determine the tip cone angle and modify the flow channel geometry. The desired included angle is usually of 30~45 degrees. Fine grind can determine the exact diameter of the hole. Postheating step is the final process and it can reduce the sharpness of the edges of the hole. Micronozzles with hole diameters varying from 30 to 100 µm are fabricated by the homemade inexpensive and easy-to-operate setup. Hydrophobic treating method of microglass nozzle to ensure stable and accurate injection is also introduced in this work. According to the jetting results of aqueous solution, UV curing adhesive, and solder, the fabricated microglass nozzle can satisfy the need of microdroplet jetting of multimaterials.

  18. Duplex tab exhaust nozzle

    Science.gov (United States)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  19. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  20. Properties and processing characteristics of low density carbon cloth phenolic composites

    Science.gov (United States)

    Wang, C. Jeff

    1993-01-01

    Ply-lift and pocketing are two critical anomalies of carbon cloth phenolic composites (CCPC) in rocket nozzle applications. Ply lift occurs at low temperatures when the A/P and in-plane permeabilities of the composite materials are still very low and in-plane porous paths are blocked. Pocketing occurs at elevated temperatures when in-plane permeability is reduced by the A/P compressive stress. The thermostructural response of CCPC in a rapid heating environment involves simultaneous heat, mass, and momentum transfer along with the degradation of phenolic resin in a multiphase system with temperature- and time-dependent material properties as well as dynamic processing conditions. Three temperature regions represent the consequent chemical reactions, material transformations, and property transitions, and provide a quick qualitative method for characterizing the thermostructural behavior of a CCPC. In order to optimize the FM5939 LDCCP (low density carbon cloth phenolic) for the nozzle performance required in the Advanced Solid Rocket Motor (ASRM) program, a fundamental study on LDCCP materials was conducted. The cured composite has a density of 1.0 +/- 0.5 gm/cc which includes 10 to 25 percent void volume. The weight percent of carbon microballoon is low (7-15 percent). However, they account for approximately one third of the volume and historically their percentages have not been controlled very tightly. In addition, the composite properties show no correlation with microballoon weight percent or fiber properties (e.g. fiber density or fiber moisture adsorption capacity). Test results concerning the ply-lift anomaly in the MNASA motor firings were: (1) Steeper ply angle (shorter path lenght) designs minimized/eliminated by lifting, (2) material with higher void volume ply lifted less frequently, (3) materials with high (greater than 9 percent) microballoon content had a higher rate of ply lifting, and (4) LDCCP materials failed at microballoon-resin interfaces

  1. A static investigation of yaw vectoring concepts on two-dimensional convergent-divergent nozzles

    Science.gov (United States)

    Berrier, B. L.; Mason, M. L.

    1983-01-01

    The flow-turning capability and nozzle internal performance of yaw-vectoring nozzle geometries were tested in the NASA Langley 16-ft Transonic wind tunnel. The concept was investigated as a means of enhancing fighter jet performance. Five two-dimensional convergent-divergent nozzles were equipped for yaw-vectoring and examined. The configurations included a translating left sidewall, left and right sidewall flaps downstream of the nozzle throat, left sidewall flaps or port located upstream of the nozzle throat, and a powered rudder. Trials were also run with 20 deg of pitch thrust vectoring added. The feasibility of providing yaw-thrust vectoring was demonstrated, with the largest yaw vector angles being obtained with sidewall flaps downstream of the nozzle primary throat. It was concluded that yaw vector designs that scoop or capture internal nozzle flow provide the largest yaw-vector capability, but decrease the thrust the most.

  2. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    Science.gov (United States)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  3. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  4. Bilateral symmetrical low density areas in the striatum

    International Nuclear Information System (INIS)

    Okabe, Ichiro; Shimoizumi, Hideo; Miyao, Masutomo; Kamoshita, Shigehiko

    1986-01-01

    A 10-year-old boy, who showed low density areas at bilateral striatal portion on brain CT, was reported. Characteristic clinical features were summarized as follows: 1. Onset in childhood (3 years old), 2. gait disturbance, dysarthria, involuntaly movement such as choreoathetosis and dystonia, 3. mild mental retardation (IQ 70), and 4. slowly progressive course over several years. Family history was unremarkable. His parents were not consanguineous. He was well until 3 years old, when he developed gait disturbance. At the age of 4, CT showed hypodensity lesions in the bilateral putamens, and right caudate was involved at 7, followed by bilateral caudate involvements at 10. Laboratory findings including blood lactate, pyruvate, serum copper, ceruloplasmin, aminoacids, urine and CSF catecholamines were within normal limits. TRH and thiamine therapies were ineffective L-dopa was slightly effective in movements, but symptoms were slowly progressive. We reviewed fourteen reported cases which were similar to our case in their onset, symptoms, clinical course and CT findings. Although the etiology was unknown, this case is possibly a new disease entity. (author)

  5. Morphology of Burned Ultra-low Density Fiberboards

    Directory of Open Access Journals (Sweden)

    Min Niu

    2015-09-01

    Full Text Available The synergistic effect of two fire retardants, a Si-Al compound and chlorinated paraffin, was tested on ultra-low density fiberboards (ULDFs. To further understand the mechanism of fire retardancy, morphologies of unburned and burned ULDFs were studied using a scanning electron microscope with energy dispersive spectroscopy. It was found that as the volume of the burned ULDFs shrank, some crevices appeared. In addition, less fly ash formed on the top of specimens, and more bottom ashes remained in the original framework, with a clear network of structure built by the fibers. Carbon was almost absent in the fly ash; however, the weight ratio of C in the bottom ashes reached the maximum (> 43% of the composition. Oxygen, Al, and Si appeared to have varying weight ratios for different ashes. Oxygen content increased with increasing Si and Al contents. Furthermore, Cl sharply decreased to less than 1% after combustion. Therefore, upon combustion, it was found that almost all of the substances in ULDFs, except for the Si-Al compound, were pyrolyzed to volatile carbon oxides and Cl compounds, especially the fly ash and lightweight C compounds.

  6. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  7. DAQ system for low density plasma parameters measurement

    International Nuclear Information System (INIS)

    Joshi, Rashmi S.; Gupta, Suryakant B.

    2015-01-01

    In various cases where low density plasmas (number density ranges from 1E4 to 1E6 cm -3 ) exist for example, basic plasma studies or LEO space environment measurement of plasma parameters becomes very critical. Conventional tip (cylindrical) Langmuir probes often result into unstable measurements in such lower density plasma. Due to larger surface area, a spherical Langmuir probe is used to measure such lower plasma densities. Applying a sweep voltage signal to the probe and measuring current values corresponding to these voltages gives V-I characteristics of plasma which can be plotted on a digital storage oscilloscope. This plot is analyzed for calculating various plasma parameters. The aim of this paper is to measure plasma parameters using a spherical Langmuir probe and indigenously developed DAQ system. DAQ system consists of Keithley source-meter and a host system connected by a GPIB interface. An online plasma parameter diagnostic system is developed for measuring plasma properties for non-thermal plasma in vacuum. An algorithm is developed using LabVIEW platform. V-I characteristics of plasma are plotted with respect to different filament current values and different locations of Langmuir probe with reference to plasma source. V-I characteristics is also plotted for forward and reverse voltage sweep generated programmatically from the source meter. (author)

  8. Microwave characteristics of low density flaky magnetic particles

    International Nuclear Information System (INIS)

    Wenqiang, Zhang; Deyuan, Zhang; Jun, Cai

    2013-01-01

    Diatomite coated with thin Fe films were obtained by the Chemical Vapor Deposition process. The resultant Fe-coated flaky diatomite particles had low densities (2.7–4.0 g/cm 3 ) and high saturation magnetization (93–157 emu/g). Annealing treatment led to grain growth and an increased saturation magnetization. The high frequency properties of the composites consisting of Fe-coated flaky diatomite particles and wax were investigated. The permittivity and permeability increased with increasing flaky magnetic particles content in the composite and increasing the Fe weight percentage of the particles. The reflection loss of the composite was found dependent on the absorber material thickness, wax:flaky magnetic particles ratios, the Fe content, as well as the annealing treatment. At a thickness of 1 mm, the composite records a minimum reflection loss of −18 dB at 6 GHz. - Highlights: ► We synthesize the flaky magnetic particles with the diatomite as template. ► The flaky magnetic particles coating layers are constituted by α-Fe. ► The flaky magnetic particles have good static magnetic properties. ► The flaky magnetic particles are a kind light weight high performance microwave absorber

  9. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  10. Surface determinants of low density lipoprotein uptake by endothelial cells

    International Nuclear Information System (INIS)

    Goeroeg, P.; Pearson, J.D.

    1984-01-01

    The surface sialic acid content of aortic endothelial cells in vitro was substantially lower in sparse cultures than at confluence. Binding of LDL to endothelial cells did not change at different culture densities and was unaffected by brief pretreatment with neuraminidase to partially remove surface sialic acid residues. In contrast, internalisation of LDL declined by a factor of 3 between low density cell cultures and confluent monolayers; neuraminidase pretreatment increased LDL uptake and the effect was most marked (>10-fold) at confluence. Pretreatment with cationised ferritin, which removed most of the surface sialic acid residues as well as glycosaminoglycans, increased LDL internalisation by up to 20-fold, again with most effect on confluent monolayers. Thus LDL uptake is inversely correlated with sialic acid content. We conclude that changes in the surface density of sialic acid (and possibly other charged) residues significantly modulate endothelial LDL uptake, and suggest that focal increases in LDL accumulation during atherogenesis may be related to alterations in endothelial endocytic properties at sites of increased cell turnover or damage. (author)

  11. Simulated Tip Rub Testing of Low-Density Metal Foam

    Science.gov (United States)

    Bowman, Cheryl L.; Jones, Michael G.

    2009-01-01

    Preliminary acoustic studies have indicated that low-density, open-cell, metal foams may be suitable acoustic liner material for noise suppression in high by-pass engines. Metal foam response under simulated tip rub conditions was studied to assess whether its durability would be sufficient for the foam to serve both as a rub strip above the rotor as well as an acoustic treatment. Samples represented four metal alloys, nominal cell dimensions ranging from 60 to 120 cells per inch (cpi), and relative densities ranging from 3.4 to 10 percent. The resulting rubbed surfaces were relatively smooth and the open cell structure of the foam was not adversely affected. Sample relative density appeared to have significant influence on the forces induced by the rub event. Acoustic responses of various surface preparations were measured using a normal incidence tube. The results of this study indicate that the foam s open-cell structure was retained after rubbing and that the acoustic absorption spectra variation was minimal.

  12. Direct numerical simulation of axisymmetric laminar low-density jets

    Science.gov (United States)

    Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro

    2017-11-01

    The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.

  13. Low density molecular cloud in the vicinity of the Pleiades

    International Nuclear Information System (INIS)

    Federman, S.R.; Wilson, R.F.

    1984-01-01

    The central region of a small, low density molecular cloud, which lies to the south of the Pleiades cluster, has been studied through the use of molecular line observations. Column densities for CH, OH, 12 CO, and 13 CO are derived from the radio data. The CH and OH data yield a visual extinction through the center of the cloud of about 3 mag. The ratio of the antenna temperatures for the OH main lines is consistent with optically thin emission; therefore, the OH results are a good indication of the total extinction through the optically thin emission; therefore, the OH results are a good indication of the total extinction through the cloud. The analysis of the carbon monoxide data produces a relatively high kinetic temperature of at least 20 K, a low total gas density of approx.300-500 cm -3 , and a column density of approx.4 x 10 17 cm -2 for 12 CO. Thus this small molecular cloud is not typical of the molecular material generally studied in Taurus

  14. Microwave characteristics of low density flaky magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Wenqiang, Zhang, E-mail: zwqzwqzwqzwq@126.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); College of Engineering, China Agricultural University, Beijing 100083 (China); Deyuan, Zhang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Jun, Cai, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China)

    2013-04-15

    Diatomite coated with thin Fe films were obtained by the Chemical Vapor Deposition process. The resultant Fe-coated flaky diatomite particles had low densities (2.7–4.0 g/cm{sup 3}) and high saturation magnetization (93–157 emu/g). Annealing treatment led to grain growth and an increased saturation magnetization. The high frequency properties of the composites consisting of Fe-coated flaky diatomite particles and wax were investigated. The permittivity and permeability increased with increasing flaky magnetic particles content in the composite and increasing the Fe weight percentage of the particles. The reflection loss of the composite was found dependent on the absorber material thickness, wax:flaky magnetic particles ratios, the Fe content, as well as the annealing treatment. At a thickness of 1 mm, the composite records a minimum reflection loss of −18 dB at 6 GHz. - Highlights: ► We synthesize the flaky magnetic particles with the diatomite as template. ► The flaky magnetic particles coating layers are constituted by α-Fe. ► The flaky magnetic particles have good static magnetic properties. ► The flaky magnetic particles are a kind light weight high performance microwave absorber.

  15. Design and Checkout of a High Speed Research Nozzle Evaluation Rig

    Science.gov (United States)

    Castner, Raymond S.; Wolter, John D.

    1997-01-01

    The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals.

  16. Effects of dimensional size and surface roughness on service performance for a micro Laval nozzle

    International Nuclear Information System (INIS)

    Cai, Yukui; Liu, Zhanqiang; Shi, Zhenyu

    2017-01-01

    Nozzles with large and small dimensions are widely used in various industries. The main objective of this research is to investigate the effects of dimensional size and surface roughness on the service performance of a micro Laval nozzle. The variation of nozzle service performance from the conventional macro to micro scale is presented in this paper. This shows that the dimensional nozzle size has a serious effect on the nozzle gas flow friction. With the decrease of nozzle size, the velocity performance and thrust performance deteriorate. The micro nozzle performance has less sensitivity to the variation of surface roughness than the large scale nozzle does. Surface quality improvement and burr prevention technologies are proposed to reduce the friction effect on the micro nozzle performance. A novel process is then developed to control and depress the burr generation during micro nozzle machining. The polymethyl-methacrylate as a coating material is coated on the rough machined surface before finish machining. Finally, the micro nozzle with a throat diameter of 1 mm is machined successfully. Thrust test results show that the implement and application of this machining process benefit the service performance improvement of the micro nozzle. (paper)

  17. Limit loads in nozzles

    International Nuclear Information System (INIS)

    Zouain, N.

    1983-01-01

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author) [pt

  18. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    International Nuclear Information System (INIS)

    Miller, F.A.; Stout, L.A.

    1981-05-01

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-μ median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-μ median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure

  19. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1992-01-01

    Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.

  20. Aggregation and fusion of modified low density lipoprotein.

    Science.gov (United States)

    Pentikäinen, M O; Lehtonen, E M; Kovanen, P T

    1996-12-01

    In atherogenesis, low density lipoprotein (LDL, diameter 22 nm) accumulates in the extracellular space of the arterial intima in the form of aggregates of lipid droplets (droplet diameter up to 400 nm). Here we studied the effects of various established in vitro LDL modifications on LDL aggregation and fusion. LDL was subjected to vortexing, oxidation by copper ions, proteolysis by alpha-chymotrypsin, lipolysis by sphingomyelinase, and nonenzymatic glycosylation, and was induced to form adducts with malondialdehyde or complexes with anti-apoB-100 antibodies. To assess the amount of enlarged LDL-derived structures formed (due to aggregation or fusion), we measured the turbidity of solutions containing modified LDL, and quantified the proportion of modified LDL that 1) sedimented at low-speed centrifugation (14,000 g), 2) floated at an increased rate at high-speed centrifugation (rate zonal flotation at 285,000 gmax), 3) were excluded in size-exclusion column chromatography (exclusion limit 40 MDa), or 4) failed to enter into 0.5%. Fast Lane agarose gel during electrophoresis. To detect whether particle fusion had contributed to the formation of the enlarged LDL-derived structures, particle morphology was examined using negative staining and thin-section transmission electron microscopy. We found that 1) aggregation was induced by the formation of LDL-antibody complexes, malondialdehyde treatment, and glycosylation of LDL; 2) fusion of LDL was induced by proteolysis of LDL by alpha-chymotrypsin; and 3) aggregation and fusion of LDL were induced by vortexing, oxidation by copper ions, and lipolysis by sphingomyclinase of LDL. The various modifications of LDL differed in their ability to induce aggregation and fusion.

  1. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  2. Characterization of injected linear low density polyethylene (LLDPE) irradiated by gamma-ray

    International Nuclear Information System (INIS)

    Oliveira, Ana C.F.; Parra, Duclerc F.; Ferreto, Helio F.R.; Lugao, Ademar B.

    2013-01-01

    The aim of this paper is to investigate of gamma irradiation effects on linear low density polyethylene (LLDPE) injected. Polymers processed by gamma radiation have new physical-chemical and mechanical properties. The ionizing radiation promotes chain scission and creates free radicals which can recombine, providing their annihilation, for crosslinking or branching. The polymer was irradiated with a source of 60 Co at doses of 5, 10, 20, 50 or 100 kGy at about 5 kGy s -1 rate, at room temperature. The changes in molecular structure of LLDPE were evaluated using melt flow index, gel fraction, differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR) and thermogravimetry analysis (TG). The results showed that the properties depend on dose irradiation. (author)

  3. Gamma radiation effects on the rheological properties of high and low density polyethylenes

    International Nuclear Information System (INIS)

    Rangel-Nafaile, C.; Garcia-Rejon, A.; Garcia Leon, A.

    1986-01-01

    High energy radiation of polymeric materials is a topic of considerable interest from commercial and scientific points of view. Within an inert atmosphere, irradiation of polyethylene yields a crosslinking effect with a consequent improvement in its mechanical properties in comparison to the virgin materials. Additionally, if irradiated specimens are melted and recrystallized, the radiation-induced crosslinking hinders their crystalline growth altering dramatically their flow properties such as the elasticity. This work portrays the effects of the gamma radiation on the rheological properties of high and low density polyethylenes manufactured by PEMEX and analyzes the implications of theoretical results derived from the Acierno's model when it is implemented with the rheological properties of high energy irradiated polyethylenes. (author)

  4. Low density, variation in sintered density and high nitrogen in uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

    2000-01-01

    Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

  5. Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemical Properties for Treatment of intracranial Aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Pooja [Texas A & M Univ., College Station, TX (United States)

    2013-12-01

    Shape memory polymers (SMPs) are a rapidly emerging class of smart materials that can be stored in a deformed temporary shape, and can actively return to their original shape upon application of an external stimulus such as heat, pH or light. This behavior is particularly advantageous for minimally invasive biomedical applications comprising embolic/regenerative scaffolds, as it enables a transcatheter delivery of the device to the target site. The focus of this work was to exploit this shape memory behavior of polyurethanes, and develop an efficient embolic SMP foam device for the treatment of intracranial aneurysms.In summary, this work reports a novel family of ultra low density polymer foams which can be delivered via a minimally invasive surgery to the aneurysm site, actuated in a controlled manner to efficiently embolize the aneurysm while promoting physiological fluid/blood flow through the reticulated/open porous structure, and eventually biodegrade leading to complete healing of the vasculature.

  6. Experimental investigation and exergy analysis of the performance of a counter flow Ranque-Hilsch vortex tube with regard to nozzle cross-section areas

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, K.; Avci, A.; Berber, A. [Dept. of Mechanical Eng., Fac. of Eng. and Architecture, Selcuk Univ., Selcuklu, Konya (Turkey); Baskaya, S. [Dept. of Mechanical Eng., Fac. of Eng. and Architecture, Gazi Univ., Maltepe, Ankara (Turkey)

    2010-08-15

    Exergy analysis and performance of a Ranque-Hilsch Vortex Tube (RHVT) with various nozzle cross-section areas (NCSA = 3 x 3, 4 x 4, 5 x 5 mm{sup 2}) were determined under inlet pressures (P{sub i}) of 260, 300 kPa (absolute) pressurized air. The maximum difference in the temperatures of hot output and cold output streams was obtained for NCSA = 3 x 3 mm{sup 2}. The total inlet exergy (sum E{sub i}), total outlet exergy (sum E{sub O}), total lost exergy (sum E{sub Lost}) and exergy efficiency ({eta}, %) were calculated. It was determined that the exergy efficiency of the system, varied between 1% and 39%, and the highest exergy efficiency was obtained for NCSA = 3 x 3 mm{sup 2}. The exergy efficiency strongly depends on the level of P{sub i}, {xi} and v{sub cold}. Variation of the exergy efficiency decreased with decreasing P{sub i}, {xi}, v{sub cold} and the highest and lowest exergy efficiencies were found when the values of P{sub i}, {xi}, v{sub cold} reached maximum and minimum levels, respectively. (author)

  7. Development of built-in debris-filter bottom nozzle for PWR fuel assemblies

    International Nuclear Information System (INIS)

    Juntaro Shimizu; Kazuki Monaka; Masaji Mori; Kazuo Ikeda

    2005-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has worked to improve the capability of anti debris bottom nozzle for a PWR fuel assembly. The Current debris filter bottom nozzle (DFBN) having 4mm diameter flow holes can capture the larger size of debris than the flow hole inner diameter. MHI has completed the development of the built-in debris filter bottom nozzle, which is the new idea of the debris-filter for high burnup (55GWd/t assembly average burnup). Built-in debris filter bottom nozzle consists of the blades and nozzle body. The blades made from inconel strip are embedded and welded on the grooved top surface of the bottom nozzle adapter plate. A flow hole is divided by the blade and the trap size of the debris is reduced. Because the blades block the coolant flow, it was anticipated to increase the pressure loss of the nozzle, however, adjusting the relation between blade and taper shape of the flow hole, the pressure loss has been successfully maintained the satisfactory level. Grooves are cut on the nozzle plate; nevertheless, the additional skirts on the four sides of the nozzle compensate the structural strength. (authors)

  8. Combining Ratio Estimation for Low Density Parity Check (LDPC) Coding

    Science.gov (United States)

    Mahmoud, Saad; Hi, Jianjun

    2012-01-01

    The Low Density Parity Check (LDPC) Code decoding algorithm make use of a scaled receive signal derived from maximizing the log-likelihood ratio of the received signal. The scaling factor (often called the combining ratio) in an AWGN channel is a ratio between signal amplitude and noise variance. Accurately estimating this ratio has shown as much as 0.6 dB decoding performance gain. This presentation briefly describes three methods for estimating the combining ratio: a Pilot-Guided estimation method, a Blind estimation method, and a Simulation-Based Look-Up table. The Pilot Guided Estimation method has shown that the maximum likelihood estimates of signal amplitude is the mean inner product of the received sequence and the known sequence, the attached synchronization marker (ASM) , and signal variance is the difference of the mean of the squared received sequence and the square of the signal amplitude. This method has the advantage of simplicity at the expense of latency since several frames worth of ASMs. The Blind estimation method s maximum likelihood estimator is the average of the product of the received signal with the hyperbolic tangent of the product combining ratio and the received signal. The root of this equation can be determined by an iterative binary search between 0 and 1 after normalizing the received sequence. This method has the benefit of requiring one frame of data to estimate the combining ratio which is good for faster changing channels compared to the previous method, however it is computationally expensive. The final method uses a look-up table based on prior simulated results to determine signal amplitude and noise variance. In this method the received mean signal strength is controlled to a constant soft decision value. The magnitude of the deviation is averaged over a predetermined number of samples. This value is referenced in a look up table to determine the combining ratio that prior simulation associated with the average magnitude of

  9. Modification of low-density lipoprotein by different radioiodination methods

    International Nuclear Information System (INIS)

    Sobal, G.; Resch, U.; Sinzinger, H.

    2004-01-01

    Scintigraphic imaging of radiolabeled low-density lipoproteins (LDL) is an interesting tool for the understanding of its role in pathomechanism of atherosclerosis. Metabolism of native LDL shows quite different pattern and kinetics as compared to that of modified LDL which is not mediated by classical LDL-receptor and accumulates in atherosclerotic lesions to form lipid-laden foam cells. Therefore we were interested whether radiolabelling of LDL induces structural modifications. We performed the iodine labeling of LDL for scintigraphic imaging of atherosclerosis by three different methods: chloramine-T (A), iodine monochloride (B) and iodogen (C). The highest radiolabelling yield of 125 I was obtained by the iodogen method (75.44±13.52%) and the lowest (49.01±12.74%) by iodine monochloride. Chloramine T showed a labeling yield of 62.82±6.17%. The stability of the tracer was very high with all the methods, persisting up to 6 h (98.83±1.2% - 91.38±4.7%, 15 min vs 6 h after labeling). For the first time we not only investigated the influence of radiolabelling on relative electrophoretic mobility (REM), but also various oxidation parameters such as baseline dienes (BD), thiobarbituric acid reactive substances (TBARS), endogenous peroxides (POX) and oxidation resistance in the copper-mediated oxidation system (expressed as lag-time) were measured. Furthermore, oxidation- derived fragmentation of the lipoproteins was examined with SDS-PAGE electrophoresis. Data are expressed as % change compared to native LDL before radiolabeling. BD were reduced by 32% using the method (A), but increased by 33% and 47% with the monochloride (B) and iodogen method (C), respectively. The effect on lag-time was comparable for all the three methods, ranging from 25 to 36% reduction in lag-time. TBARS were strongly increased 5-7 fold by all the methods. REM was changed by all three methods. While by methods A and C we have found a moderate increase in REM by 1.75 and 2.0 fold

  10. Plasma acceleration by magnetic nozzles and shock waves

    International Nuclear Information System (INIS)

    Hattori, Kunihiko; Murakami, Fumitake; Miyazaki, Hiroyuki; Imasaki, Atsushi; Yoshinuma, Mikirou; Ando, Akira; Inutake, Masaaki

    2001-01-01

    We have measured axial profiles of ion acoustic Mach number, M i , of a plasma flow blowing off from an MPD (magneto-plasma-dynamic) arc-jet in various magnetic configurations. It is found that the Mach number increases in a divergent nozzle up to 3, while it stays at about unity in a uniform magnetic channel. When a magnetic bump is added in the exit of the divergent magnetic nozzle, the Mach number suddenly decreases below unity, due to an occurrence of shock wave. The subsonic flow after the shock wave is re-accelerated to a supersonic flow through a magnetic Laval nozzle. This behavior is explained well by the one-dimensional isotropic flow model. The shock wave is discussed in relation to the Rankine-Hugoniot relation. (author)

  11. Shock unsteadiness in a thrust optimized parabolic nozzle

    Science.gov (United States)

    Verma, S. B.

    2009-07-01

    This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up {(δ P0 /δ t > 0)} and shut down {(δ P0/δ t The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure ( rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.

  12. Next-generation nozzle check valve significantly reduces operating costs

    Energy Technology Data Exchange (ETDEWEB)

    Roorda, O. [SMX International, Toronto, ON (Canada)

    2009-01-15

    Check valves perform an important function in preventing reverse flow and protecting plant and mechanical equipment. However, the variety of different types of valves and extreme differences in performance even within one type can change maintenance requirements and life cycle costs, amounting to millions of dollars over the typical 15-year design life of piping components. A next-generation non-slam nozzle check valve which prevents return flow has greatly reduced operating costs by protecting the mechanical equipment in a piping system. This article described the check valve varieties such as the swing check valve, a dual-plate check valve, and nozzle check valves. Advancements in optimized design of a non-slam nozzle check valve were also discussed, with particular reference to computer flow modelling such as computational fluid dynamics; computer stress modelling such as finite element analysis; and flow testing (using rapid prototype development and flow loop testing), both to improve dynamic performance and reduce hydraulic losses. The benefits of maximized dynamic performance and minimized pressure loss from the new designed valve were also outlined. It was concluded that this latest non-slam nozzle check valve design has potential applications in natural gas, liquefied natural gas, and oil pipelines, including subsea applications, as well as refineries, and petrochemical plants among others, and is suitable for horizontal and vertical installation. The result of this next-generation nozzle check valve design is not only superior performance, and effective protection of mechanical equipment but also minimized life cycle costs. 1 fig.

  13. Measurement of unsteady airflow velocity at nozzle outlet

    Science.gov (United States)

    Pyszko, René; Machů, Mário

    2017-09-01

    The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.

  14. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Da Sol; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of); Lee, Hyun Seop [Tongmyong University, Busan (Korea, Republic of)

    2015-12-15

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  15. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    International Nuclear Information System (INIS)

    Lee, Da Sol; Jeong, Hae Do; Lee, Hyun Seop

    2015-01-01

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  16. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    Science.gov (United States)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  17. Studies on Impingement Effects of Low Density Jets on Surfaces — Determination of Shear Stress and Normal Pressure

    Science.gov (United States)

    Sathian, Sarith. P.; Kurian, Job

    2005-05-01

    This paper presents the results of the Laser Reflection Method (LRM) for the determination of shear stress due to impingement of low-density free jets on flat plate. For thin oil film moving under the action of aerodynamic boundary layer the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope is measured using a position sensing detector (PSD). The thinning rate of oil film is directly measured which is the major advantage of the LRM over LISF method. From the oil film slope history, direct calculation of the shear stress is done using a three-point formula. For the full range of experiment conditions Knudsen numbers varied till the continuum limit of the transition regime. The shear stress values for low-density flows in the transition regime are thus obtained using LRM and the measured values of shear show fair agreement with those obtained by other methods. Results of the normal pressure measurements on a flat plate in low-density jets by using thermistors as pressure sensors are also presented in the paper. The normal pressure profiles obtained show the characteristic features of Newtonian impact theory for hypersonic flows.

  18. Effect of nozzle arrangement on Venturi scrubber performance

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayanan, N.V.; Viswanathan, S.

    1999-12-01

    The effect of nozzle arrangement on flux distribution is studied in a rectangular, pilot-scale, Pease-Anthony-type Venturi scrubber. The annular, two-phase, heterogeneous, three-dimensional gas-liquid flow inside the scrubber is modeled using a commercial computational fluid dynamic (CFD) package, FLUENT. The comparison of predicted liquid drop concentration shows good agreement with experimental data. The model predicts the fraction of liquid flowing as film on the walls reasonably well. Visualization of flux patterns studied using four typical nozzle configurations indicate that the nonuniformity in flux distribution increases when the nozzle-to-nozzle distance is greater than 10% of the width of the side on which the nozzles are placed. An analysis of the effect of multiple jet penetration lengths on liquid flux distribution yielded a comparable distribution at 10--45% less liquid than uniform penetration for a particular nozzle configuration. This would lead to significant improvements in scrubber performance by achieving comparable collection efficiency at a lower pressure drop.

  19. Low density in liver of idiopathic portal hypertension. A computed tomographic observation with possible diagnostic significance

    Energy Technology Data Exchange (ETDEWEB)

    Ishito, Hiroyuki

    1988-01-01

    In order to evaluate the diagnostic value of low density in liver on computed tomography (CT), CT scans of 11 patients with idiopathic portal hypertension (IPH) were compared with those from 22 cirrhotic patients, two patients with scarred liver and 16 normal subjects. Low densities on plain CT scans in patients with IPH were distinctly different from those observed in normal liver. Some of the low densities had irregular shape with unclear margin and were scattered near the liver surface, and others had vessel-like structures with unclear margin and extended as far as near the liver surface. Ten of the 11 patients with IPH had low densities mentioned above, while none of the 22 cirrhotic patients had such low densities. The present results suggest that the presence of low densities in liver on plain CT scan is clinically beneficial in diagnosis of IPH.

  20. Thermal-Hydraulic Performance of Scrubbing Nozzle Used for CFVS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Lee, Doo Yong; Jung, Woo Young; Lee, Jong Chan; Kim, Gyu Tae [FNC TECH, Yongin (Korea, Republic of)

    2016-05-15

    A Containment Filtered Venting System (CFVS) is the most interested device to mitigate a threat against containment integrity under the severe accident of nuclear power plant by venting with the filtration of the fission products. FNC technology and partners have been developed the self-priming scrubbing nozzle used for the CFVS which is based on the venturi effect. The thermal-hydraulic performances such as passive scrubbing water suction as well as pressure drop across the nozzle have been tested under various thermal-hydraulic conditions. The two types of test section have been built for testing the thermal-hydraulic performance of the self-priming scrubbing nozzle. Through the visualization loop, the liquid suction performance through the slit, pressure drop across the nozzle are measured. The passive water suction flow through the suction slit at the throat is important parameter to define the scrubbing performance of the self-priming scrubbing nozzle. The water suction flow is increased with the increase of the overhead water level at the same inlet gas flow. It is not so much changed with the change of inlet gas flow at the overhead water level.

  1. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    Science.gov (United States)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  2. A CFD-based aerodynamic design procedure for hypersonic wind-tunnel nozzles

    Science.gov (United States)

    Korte, John J.

    1993-01-01

    A new procedure which unifies the best of current classical design practices, computational fluid dynamics (CFD), and optimization procedures is demonstrated for designing the aerodynamic lines of hypersonic wind-tunnel nozzles. The new procedure can be used to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been shown to break down. An efficient CFD code, which solves the parabolized Navier-Stokes (PNS) equations using an explicit upwind algorithm, is coupled to a least-squares (LS) optimization procedure. A LS problem is formulated to minimize the difference between the computed flow field and the objective function, consisting of the centerline Mach number distribution and the exit Mach number and flow angle profiles. The aerodynamic lines of the nozzle are defined using a cubic spline, the slopes of which are optimized with the design procedure. The advantages of the new procedure are that it allows full use of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, can be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure. The new procedure is demonstrated by designing two Mach 15, a Mach 12, and a Mach 18 helium nozzles. The flexibility of the procedure is demonstrated by designing the two Mach 15 nozzles using different constraints, the first nozzle for a fixed length and exit diameter and the second nozzle for a fixed length and throat diameter. The computed flow field for the Mach 15 least squares parabolized Navier-Stokes (LS/PNS) designed nozzle is compared with the classically designed nozzle and demonstrates a significant improvement in the flow expansion process and uniform core region.

  3. Low-density moderation in the storage of PWR fuel assemblies

    International Nuclear Information System (INIS)

    Alcorn, F.M.

    1987-01-01

    The nuclear criticality safety of PWR fuel storage arrays requires that the potential of low-density moderation within the array be considered. The calculated criticality effect of low-density moderation in a typical PWR fuel assembly array is described in this paper. Calculated reactivity due to low-density moderation can vary significantly between physics codes that have been validated for well moderated systems. The availability of appropriate benchmark experiments for low-density moderation is quite limited; attempts to validate against the one set of suitable experiments at low density have been disappointing. Calculations indicate that a typical array may be unacceptable should the array be subjected to interstitial moderation equivalent to 5 % of full density water. Array parameters (such as spacing and size) will dramatically affect the calculated maximum K-eff at low-density moderation. Administrative and engineered control may be necessary to assure maintenance of safety at low-density moderation. Potential sources for low-density moderation are discussed; in general, accidentally achieving degrees of low-density moderation which might lead to a compromise of safety are not credible. (author)

  4. Cholesterol transfer from normal and atherogenic low density lipoproteins to Mycoplasma membranes

    International Nuclear Information System (INIS)

    Mitschelen, J.J.; St Clair, R.W.; Hester, S.H.

    1981-01-01

    The purpose of this study was to determine whether the free cholesterol of hypercholesterolemic low density lipoprotein from cholesterol-fed nonhuman primates has a greater potential for surface transfer to cell membranes than does the free cholesterol of normal low density lipoprotein. The low density lipoproteins were isolated from normal and hypercholesterolemic rhesus and cynomolgus monkeys, incubated with membranes from Acholeplasma laidlawii, a mycoplasma species devoid of cholesterol in its membranes, and the mass transfer of free cholesterol determined by measuring membrane cholesterol content. Since these membranes neither synthesize nor esterify cholesterol, nor degrade the protein or cholesterol ester moieties of low density lipoprotein, they are an ideal model with which to study differences in the cholesterol transfer potential of low density lipoprotein independent of the uptake of the intact low density lipoprotein particle. These studies indicate that, even though there are marked differences in the cholesterol composition of normal and hypercholesterolemic low density lipoproteins, this does not result in a greater chemical potential for surface transfer of free cholesterol. Consequently, if a difference in the surface transfer of free cholesterol is responsible for the enhanced ability of hypercholesterolemic low density lipoprotein to promote cellular cholesterol accumulation and, perhaps, also atherosclerosis, it must be the result of differences in the interaction to the hypercholesterolemic low density lipoprotein with the more complicated mammalian cell membranes, rather than differences in the chemical potential for cholesterol transfer

  5. Low-density lipoprotein apheresis: an evidence-based analysis.

    Science.gov (United States)

    2007-01-01

    To assess the effectiveness and safety of low-density lipoprotein (LDL) apheresis performed with the heparin-induced extracorporeal LDL precipitation (HELP) system for the treatment of patients with refractory homozygous (HMZ) and heterozygous (HTZ) familial hypercholesterolemia (FH). BACKGROUND ON FAMILIAL HYPERCHOLESTEROLEMIA: Familial hypercholesterolemia is a genetic autosomal dominant disorder that is caused by several mutations in the LDL-receptor gene. The reduced number or absence of functional LDL receptors results in impaired hepatic clearance of circulating low-density lipoprotein cholesterol (LDL-C) particles, which results in extremely high levels of LDL-C in the bloodstream. Familial hypercholesterolemia is characterized by excess LDL-C deposits in tendons and arterial walls, early onset of atherosclerotic disease, and premature cardiac death. Familial hypercholesterolemia occurs in both HTZ and HMZ forms. Heterozygous FH is one of the most common monogenic metabolic disorders in the general population, occurring in approximately 1 in 500 individuals. Nevertheless, HTZ FH is largely undiagnosed and an accurate diagnosis occurs in only about 15% of affected patients in Canada. Thus, it is estimated that there are approximately 3,800 diagnosed and 21,680 undiagnosed cases of HTZ FH in Ontario. In HTZ FH patients, half of the LDL receptors do not work properly or are absent, resulting in plasma LDL-C levels 2- to 3-fold higher than normal (range 7-15mmol/L or 300-500mg/dL). Most HTZ FH patients are not diagnosed until middle age when either they or one of their siblings present with symptomatic coronary artery disease (CAD). Without lipid-lowering treatment, 50% of males die before the age of 50 and 25% of females die before the age of 60, from myocardial infarction or sudden death. In contrast to the HTZ form, HMZ FH is rare (occurring in 1 case per million persons) and more severe, with a 6- to 8-fold elevation in plasma LDL-C levels (range 15-25mmol

  6. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    International Nuclear Information System (INIS)

    Zhang, Q; Liu, J; Yan, J D; Fang, M T C

    2016-01-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF 6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (d i /d t ) before current zero and a voltage ramp (d V /d t ) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures ( P 0 ) and two values of d i /d t for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0 , rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed. (paper)

  7. Control of Surge in Centrifugal Compressor by Using a Nozzle Injection System: Universality in Optimal Position of Injection Nozzle

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hirano

    2012-01-01

    Full Text Available The passive control method for surge and rotating stall in centrifugal compressors by using a nozzle injection system was proposed to extend the stable operating range to the low flow rate. A part of the flow at the scroll outlet of a compressor was recirculated to an injection nozzle installed on the inner wall of the suction pipe of the compressor through the bypass pipe and injected to the impeller inlet. Two types of compressors were tested at the rotational speeds of 50,000 rpm and 60,000 rpm with the parameter of the circumferential position of the injection nozzle. The present experimental results revealed that the optimum circumferential position, which most effectively reduced the flow rate for the surge inception, existed at the opposite side of the tongue of the scroll against the rotational axis and did not depend on the compressor system and the rotational speeds.

  8. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  9. Absolute measurement of alkaline atoms in low density jet

    International Nuclear Information System (INIS)

    Labbe, J.; Guernigou, J.

    1974-01-01

    In order to determine the neutral fraction of cesium vapor which is not ionized in the beam issuing from an ion thruster, a particular sensor was developed at ONERA. This probe, the sensibility of which is 6 10 7 atoms sec -1 was used in order to measure the variation of cesium atom flux ejected from a spherical isothermal cavity. Experiments were performed in three flow conditions caracterized by the ratio of the mean free path to the dimension of the orifice or to the diameter of the cavity. Results demonstrate that it is possible in this configuration to obtain an efflux of 5 10 13 atoms sec -1 in accordance to cosine law when the mean free path is about the diameter of the spherical cavity [fr

  10. Injection and spray characteristics of a variable orifice nozzle applied the jerk type fuel injection pump for DI diesel engine; Jerk shiki nenryo funsha pump wo mochiita kahen funko nozzle no funsha funmu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T; Matsui, K; Iwasaki, T; Kobayashi, T [Zexel Corp., Tokyo (Japan); Matsumoto, Y [The University of Tokyo, Tokyo (Japan)

    1997-10-01

    A Variable Orifice Nozzle (VON) by changing a cross-sectional area of the nozzle injection hole, for improving a rate of injection and injection duration, has been developed to study its injection and spray characteristics. The nozzle geometry was optimized to analyze a nozzle internal flow by computational method. Results show that, injection and spray pattern responded to the nozzle orifice cross-sectional area which is changing larger to smaller in the part load range. This results suggest to contribute a combustion improvement which decreasing NOx and soot. 14 refs., 10 figs.

  11. Do Low-Density Diets Improve Broiler Breeder Welfare During Rearing and Laying.

    NARCIS (Netherlands)

    Jong, de I.C.; Enting, H.; Voorst, van A.; Blokhuis, H.J.

    2005-01-01

    Low-density diets may improve welfare of restricted fed broiler breeders by increasing feed intake time with less frustration of feed intake behavior as a result. Moreover, low-density diets may promote satiety through a more filled gastrointestinal tract, and thus feelings of hunger may be reduced.

  12. Scat-detection dogs survey low density moose in New York

    Science.gov (United States)

    Heidi Kretser; Michale Glennon; Alice Whitelaw; Aimee Hurt; Kristine Pilgrim; Michael Schwartz

    2016-01-01

    The difficulty of collecting occurrence and population dynamics data in mammalian populations of low density poses challenges for making informed management decisions. We assessed the use of scat-detection dogs to search for fecal pellets in a low density moose (Alces alces) population in the Adirondack Park in New York State, and the success rate of DNA...

  13. Modification of low density polyethylene, isostatic polypropylene and their blends by gamma radiation

    International Nuclear Information System (INIS)

    Santos Rosa, D. dos

    1991-01-01

    The effects of the gamma radiation (of a 60 Co source), over low density polyethylene, isostatic polypropylene and their blends of low density polyethylene / polypropylene were studied. The structures modifications were attended by infrared spectrometry (IV), differential scanning calorimeter (DSC), strain-strain measurement, density measurement and scanning electron microscope (SEM). (author)

  14. Numerical Analysis on Effects of Positioning and Height of the Contoured Endwall on the Three-Dimensional Flow in an Annular Turbine Nozzle Guide Vane Cascade

    International Nuclear Information System (INIS)

    Lee, Wu Sang; Kim, Dae Hyun; Min, Jae Hong; Chung Jin Taek

    2007-01-01

    Endwall losses contribute significantly to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratio are increased. Hence, reducing the extend and intensity of the secondary flow structures helps to enhance overall efficiency. From the large range of viable approaches, a promising combination positioning and height of endwall contouring was chosen. The objective of this study is to document the three-dimensional flow in a turbine cascade in terms of streamwise vorticity, total pressure loss distribution and static pressure distribution on the endwall and blade surface and to propose an appropriate positioning and height of the endwall contouring which show best secondary, overall loss reduction among the simulated endwall. The flow through the gas turbine were numerically analyzed using three dimensional Navier-Stroke equations with a commercial CFD code ANSYS CFX-10. The result shows that the overall loss is reduced near the flat endwall rather than contoured endwall, and the case of contoured endwall installed at 30% from leading edge with height of 25% for span showed best performance

  15. Influence of throttling of the heavy fraction on the uranium isotope separation in the separation nozzle

    International Nuclear Information System (INIS)

    Bley, P.; Ehrfeld, W.; Heiden, U.

    1978-04-01

    In a separation nozzle cascade for enrichment of U-235 the cut of the separation elements is adjusted by throttling the heavy fraction. This control process influences directly the flow properties in the nozzle and may noticeably change its separation characteristics. This paper deals with an experimental investigation of the throttling effect on the separation and control characteristics of the separation nozzle operated with a H 2 /UF 6 mixture. In consideration of the extremely small characteristic dimensions of commercial separation nozzle elements the influence of manufacturing tolerances on the characteristics of the throttled nozzle was analysed in detail. It appears, that the elementary effect of isotope separation increases by throttling of the heavy fraction up to 5% without changing the optimum operating conditions. This increase of the elementary effect is not only obtained for separation nozzles with zero tolerances but also for separation nozzles having finite tolerances of the skimmer position. Tolerances of the nozzle width, however, become increasingly detrimental, when the heavy fraction is throttled. Regarding the control characteristics of the separation nozzle it was found out, that the UF 6 -cut of the throttled nozzle reacts more sensitively to alterations of the operating pressures and less sensitively to alterations of the UF 6 -concentration of the process gas mixture. (orig.) [de

  16. Thrust Augmentation by Airframe-Integrated Linear-Spike Nozzle Concept for High-Speed Aircraft

    Directory of Open Access Journals (Sweden)

    Hidemi Takahashi

    2018-02-01

    Full Text Available The airframe-integrated linear-spike nozzle concept applied to an external nozzle for high-speed aircraft was evaluated with regard to the thrust augmentation capability and the trim balance. The main focus was on the vehicle aftbody. The baseline airframe geometry was first premised to be a hypersonic waverider design. The baseline aftbody case had an external nozzle comprised of a simple divergent nozzle and was hypothetically replaced with linear-spike external nozzle configurations. Performance evaluation was mainly conducted by considering the nozzle thrust generated by the pressure distribution on the external nozzle surface at the aftbody portion calculated by computer simulation at a given cruise condition with zero angle of attack. The thrust performance showed that the proposed linear-spike external nozzle concept was beneficial in thrust enhancement compared to the baseline geometry because the design of the proposed concept had a compression wall for the exhaust flow, which resulted in increasing the wall pressure. The configuration with the boattail and the angled inner nozzle exhibited further improvement in thrust performance. The trim balance evaluation showed that the aerodynamic center location appeared as acceptable. Thus, benefits were obtained by employing the airframe-integrated linear-spike external nozzle concept.

  17. Effects of injection nozzle exit width on rotating detonation engine

    Science.gov (United States)

    Sun, Jian; Zhou, Jin; Liu, Shijie; Lin, Zhiyong; Cai, Jianhua

    2017-11-01

    A series of numerical simulations of RDE modeling real injection nozzles with different exit widths are performed in this paper. The effects of nozzle exit width on chamber inlet state, plenum flowfield and detonation propagation are analyzed. The results are compared with that using an ideal injection model. Although the ideal injection model is a good approximation method to model RDE inlet, the two-dimensional effects of real nozzles are ignored in the ideal injection model so that some complicated phenomena such as the reflected waves caused by the nozzle walls and the reversed flow into the nozzles can not be modeled accurately. Additionally, the ideal injection model overpredicts the block ratio. In all the cases that stabilize at one-wave mode, the block ratio increases as the nozzle exit width gets smaller. The dual-wave mode case also has a relatively high block ratio. A pressure oscillation in the plenum with the same main frequency with the rotating detonation wave is observed. A parameter σ is applied to describe the non-uniformity in the plenum. σ increases as the nozzle exit width gets larger. Under some condition, the heat release on the interface of fresh premixed gas layer and detonation products can be strong enough to induce a new detonation wave. A spontaneous mode-transition process is observed for the smallest exit width case. Due to the detonation products existing in the premixed gas layer before the detonation wave, the detonation wave will propagate through reactants and products alternately, and therefore its strength will vary with time, especially near the chamber inlet. This tendency gets weaker as the injection nozzle exit width increases.

  18. Injection nozzle for a turbomachine

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  19. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  20. Rapid characterization of disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene by overexpression in COS cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Jensen, H K

    1996-01-01

    To characterize disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene, COS cells are transfected with the mutant gene in an EBV-based expression vector and characterized by flow cytometry. Using antibodies against the LDL-receptor the amount of receptor protein on the cel...

  1. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    Science.gov (United States)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  2. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  3. PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.; Frate, Franco C.

    2011-01-01

    Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.

  4. The Investigation of the Cavitation Phenomenon in the Laval Nozzle with Full and Partial Surface Wetting

    Directory of Open Access Journals (Sweden)

    Jablonská Jana

    2017-04-01

    Full Text Available The article deals with the cavitation phenomenon affected by full and partial wetting of the wall. For the numerical computation of flow in the Laval nozzle the Schnerr-Sauer cavitation model was tested and was used for cavitation research of flow within the nozzle considering partial surface wetting. The coefficient of wetting for various materials was determined using experimental, theoretical and numerical methods of fluid flow due to partial surface wetting.

  5. Bottom nozzle of a LWR fuel assembly

    International Nuclear Information System (INIS)

    Leroux, J.C.

    1991-01-01

    The bottom nozzle consists of a transverse element in form of box having a bending resistant grid structure which has an outer peripheral frame of cross-section corresponding to that of the fuel assembly and which has walls defining large cells. The transverse element has a retainer plate with a regular array of openings. The retainer plate is fixed above and parallel to the grid structure with a spacing in order to form, between the grid structure and the retainer plate a free space for tranquil flow of cooling water and for debris collection [fr

  6. Airfoil shape for a turbine nozzle

    Science.gov (United States)

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  7. Equivalent nozzle in thermomechanical problems

    International Nuclear Information System (INIS)

    Cesari, F.

    1977-01-01

    When analyzing nuclear vessels, it is most important to study the behavior of the nozzle cylinder-cylinder intersection. For the elastic field, this analysis in three dimensions is quite easy using the method of finite elements. The same analysis in the non-linear field becomes difficult for designs in 3-D. It is therefore necessary to resolve a nozzle in two dimensions equivalent to a 3-D nozzle. The purpose of the present work is to find an equivalent nozzle both with a mechanical and thermal load. This has been achieved by the analysis in three dimensions of a nozzle and a nozzle cylinder-sphere intersection, of a different radius. The equivalent nozzle will be a nozzle with a sphere radius in a given ratio to the radius of a cylinder; thus, the maximum equivalent stress is the same in both 2-D and 3-D. The nozzle examined derived from the intersection of a cylindrical vessel of radius R=191.4 mm and thickness T=6.7 mm with a cylindrical nozzle of radius r=24.675 mm and thickness t=1.350 mm, for which the experimental results for an internal pressure load are known. The structure was subdivided into 96 finite, three-dimensional and isoparametric elements with 60 degrees of freedom and 661 total nodes. Both the analysis with a mechanical load as well as the analysis with a thermal load were carried out on this structure according to the Bersafe system. The thermal load consisted of a transient typical of an accident occurring in a sodium-cooled fast reactor, with a peak of the temperature (540 0 C) for the sodium inside the vessel with an insulating argon temperature constant at 525 0 C. The maximum value of the equivalent tension was found in the internal area at the union towards the vessel side. The analysis of the nozzle in 2-D consists in schematizing the structure as a cylinder-sphere intersection, where the sphere has a given relation to the

  8. Numerical Simulation of Twin Nozzle Injectors

    OpenAIRE

    Milak, Dino

    2015-01-01

    Fuel injectors for marine applications have traditionally utilized nozzles with symmetric equispaced orifice configuration. But in light of the new marine emission legislations the twin nozzle concept has arisen. The twin nozzle differs from the conventional configuration by utilizing two closely spaced orifices to substitute each orifice in the conventional nozzle. Injector manufacturers regard twin nozzle injectors as a promising approach to facilitate stable spray patterns independent of t...

  9. Gamma irradiation effects on the grafting of low-density polyethylene with diethyl maleate

    International Nuclear Information System (INIS)

    Sanchez, Y.; Albano, C.; Karam, A.; Perera, R.; Silva, P.; Gonzalez, J.

    2005-01-01

    In this work, a low-density polyethylene (LDPE) was grafted with diethyl maleate (DEM) using gamma-rays from a Cobalt-60 source at different absorbed doses and monomer concentrations between 5 and 30 wt.%. This process was carried out in a decalin solution at 10 w/v% to obtain a homogeneous dispersion of the monomer into the polyethylene matrix. It was found that the grafting degree increases with the absorbed doses, as a consequence of the increased amount of energy given to the system, which made the grafting process more favorable. The grafting degree also increases with the concentration of DEM, because a higher concentration makes the insertion easier due to the increased availability of the free monomer. The highest grafting degree was obtained at 200 kGy of absorbed dose and with 30 wt.% of DEM. The melt flow index (MFI) values showed a decreasing trend as the absorbed dose was increased. This fact reveals that crosslinking and grafting are taking place simultaneously, this behavior being remarkable at higher irradiation doses. The results from thermogravimetric analysis (TGA) showed that the initial degradation temperatures remained almost unchanged with the absorbed dose

  10. Hydroxysafflor yellow A suppresses oxidized low density lipoprotein induced proliferation of vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Lin Sheng

    2012-06-01

    Full Text Available To investigate the relationship between the suppression of Hydroxysafflor yellow A (HSYA on the oxidized low density lipoprotein (ox-LDL induced proliferation of vascular smooth muscle cells (VSMCs and the mRNA and protein expression of extracellular signal-regulated protein kinase 1/2 (ERK1/2 and mitogen activated protein kinase phospholipase-1 (MAKP-1, VSMCs were treated with HSYA at 10 ?mol/L and/or ox-LDL at 35 mg/L for 48 h. MTT assay was done to measure cell survival rate, flow cytometry to detect cell cycle, reverse transcription PCR and Western blot to detect the expression of ERK1/2 and MAKP-1. When compared to cells treated with ox-LDL alone, the survival rate of cells treated with two reagents was reduced and the proportion of cells in G0/G1 phase significantly increased, with increased MKP-1 expression. The study suggests HSYA can inhibit VSMC proliferation via increasing MKP-1 expression, reducing p-ERK1/2 activity and suppressing cell cycle.

  11. Investigation of the mechanism for penetration of low density lipoprotein into the arterial wall

    Science.gov (United States)

    Glukhova, O. E.; Zyktin, A. A.; Slepchenkov, M. M.

    2018-02-01

    Currently, the pathology of the cardiovascular system is an extremely urgent problem of fundamental and clinical medicine. These diseases are caused, mainly, by atherosclerotic changes in the wall of blood vessels. The predominant role in the development of atherosclerosis is attributed to the penetration of various kinds of lipoproteins into the arterial intima. In this paper, we in silico investigated the dynamics of the penetration of low density lipoprotein (LDL) through the intercellular gap using molecular modeling methods. The simulation was carried out in the GROMACS software package using a coarse-grained MARTINI model. During investigation we carried out the LDL self-assembly for the first time. The coarse-grained model of LDL was collected from the following molecules: POPC (phosphatidylcholine) - 630 molecules, LPC (lysophosphatidylcholine) - 80 molecules CHOL (cholesterol) - 600 molecules CHYO (cholesteryl oleate) - 1600 molecules TOG (glycerol trioleate) 180 Molecules. The coarse-grained model of the intercellular endothelial gap was based on a model of lipid bilayer consisting of DPPC phospholipids and cholesterol in a percentage ratio of 70% and 30%, respectively. Based on the obtained results, we can predict the mechanism of LDL diffusion. Lipoproteins can be deformed so as to pass through narrow gaps. Our investigations open the way for the research of the behavior dynamics of LDL moving with the blood flow rate when interacting with the intercellular gaps of the endothelial layer of the vessel inner wall.

  12. Study of effects gamma radiation linear low density polyethylene (LLDPE) injected

    International Nuclear Information System (INIS)

    Oliveira, Ana Claudia Feitoza de

    2014-01-01

    The use of package sterilization through gamma radiation aim to reduce the microbiological contamination. The linear low density polyethylene (LLDPE) can be obtained by a process in solution, suspension or gaseous phase, depending on the type of the catalyzer used, that can be heterogeneous, or homogeneous, or metallocenes Ziegler-Natta. According to the literature, the gamma radiation presents a high penetration at polymeric materials causing the appearing of scissions, reticulation, and degradation when oxygen presence. This paper were irradiated with 60 Co with 2000 kCi of activity, in presence of air, samples of LLDPE injected. Utilized doses of 5, 10, 20, 50 or 100 kGy, and about 5 kGy.h -1 dose rates, at room temperature. After irradiation, the samples were heated for 60 min at 100 deg C to promote recombination and annihilation of residual radicals. For characterization of PEBLD were used methods; Melt flow index, swelling, gel fraction, Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (DRX), Thermogravimetric Analysis (TG), Dynamic Mechanical Analysis (DMA), rheological measurements, Scanning Electronic Microscopy and mechanical tests to identify the effects or gamma radiation in polyethylene. (author)

  13. Evaluation of corn husk fibers reinforced recycled low density polyethylene composites

    International Nuclear Information System (INIS)

    Youssef, Ahmed M.; El-Gendy, Ahmed; Kamel, Samir

    2015-01-01

    Responding to the community demand for disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low-density polyethylene (R-LDPE) and corn husk fibers were prepared by melt compounding and compression molding. These composites were prepared in different concentrations (5, 10, 15, and 20%) of powder corn husk with 125 μ particle size based on R-LDPE matrix. Beside the importance of property improvement, an additional incentive was responding to the social demand for the disposal of environmental problematic agricultural waste. The influence of loading rate on R-LDPE crystallization behavior, mechanical, and swilling properties were investigated. Increasing in fiber loading led to increased moduli and tensile strength while hardness was decreased. X-ray diffraction (XRD) examinations indicated that introducing fiber to R-LDPE matrix did not change characteristic peak position. The thermal stability of the prepared composites was evaluated using differential scanning calorimetry (DSC) which displayed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, indicating higher crystallization rates for R-LDPE. The prepared composites materials can be used in packaging applications. - Highlights: • New composite based on recycled LDPE and corn husk fibers has been prepared. • The prepared composite has a benefit of minimizing solid waste problem. • The prepared composites were characterized using XRD, FTIR and DSC. • Crystallization behaviors, mechanical and swilling properties of the prepared composites were investigated

  14. Evaluation of corn husk fibers reinforced recycled low density polyethylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Ahmed M., E-mail: amyoussef27@yahoo.com [Packing and Packaging Materials Department, National Research Center, Dokki, P.C. 12622, Cairo (Egypt); El-Gendy, Ahmed; Kamel, Samir [Cellulose and Paper Department, National Research Center, Dokki, Cairo (Egypt)

    2015-02-15

    Responding to the community demand for disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low-density polyethylene (R-LDPE) and corn husk fibers were prepared by melt compounding and compression molding. These composites were prepared in different concentrations (5, 10, 15, and 20%) of powder corn husk with 125 μ particle size based on R-LDPE matrix. Beside the importance of property improvement, an additional incentive was responding to the social demand for the disposal of environmental problematic agricultural waste. The influence of loading rate on R-LDPE crystallization behavior, mechanical, and swilling properties were investigated. Increasing in fiber loading led to increased moduli and tensile strength while hardness was decreased. X-ray diffraction (XRD) examinations indicated that introducing fiber to R-LDPE matrix did not change characteristic peak position. The thermal stability of the prepared composites was evaluated using differential scanning calorimetry (DSC) which displayed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, indicating higher crystallization rates for R-LDPE. The prepared composites materials can be used in packaging applications. - Highlights: • New composite based on recycled LDPE and corn husk fibers has been prepared. • The prepared composite has a benefit of minimizing solid waste problem. • The prepared composites were characterized using XRD, FTIR and DSC. • Crystallization behaviors, mechanical and swilling properties of the prepared composites were investigated.

  15. Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements

    Science.gov (United States)

    Spaid, Frank W.; Keener, Earl R.

    1993-01-01

    This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.

  16. Regions of low density in the contrast-enhanced pituitary gland: normal and pathologic processes

    International Nuclear Information System (INIS)

    Chambers, E.F.; Turski, P.A.; LaMasters, D.; Newton, T.H.

    1982-01-01

    The incidence of low-density regions in the contrast-enhanced pituitary gland and the possible causes of these regions were investigated by a retrospective review of computed tomographic (CT) scans of the head in 50 patients and autopsy specimens of the pituitary in 100 other patients. It was found that focal areas of low density within the contrast enhanced pituitary gland can be caused by various normal and pathologic conditions such as pituitary microadenomas, pars intermedia cysts, foci of metastasis, infarcts, epidermoid cysts, and abscesses. Although most focal low-density regions probably represent pituitary microadenomas, careful clinical correlation is needed to establish a diagnosis

  17. SHINE Tritium Nozzle Design: Activity 6, Task 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, Brett S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-05

    In FY14, we studied the qualitative and quantitative behavior of a SHINE/PNL tritium nozzle under varying operating conditions. The result is an understanding of the nozzle’s performance in terms of important flow features that manifest themselves under different parametric profiles. In FY15, we will consider nozzle design with a focus on nozzle geometry and integration. From FY14 work, we will understand how the SHINE/PNL nozzle behaves under different operating scenarios. The first task for FY15 is to evaluate the FY14 model as a predictor of the actual flow. Considering different geometries is more time-intensive than parameter studies, therefore we recommend considering any relevant flow features that were not included in the FY14 model. In the absence of experimental data, it is particularly important to consider any sources of heat in the domain or boundary conditions that may affect the flow and incorporate these into the simulation if they are significant. Additionally, any geometric features of the beamline segment should be added to the model such as the orifice plate. The FY14 model works with hydrogen. An improvement that can be made for FY15 is to develop CFD properties for tritium and incorporate those properties into the new models.

  18. Low-density lipoprotein concentration in the normal left coronary artery tree

    Directory of Open Access Journals (Sweden)

    Louridas George E

    2008-10-01

    Full Text Available Abstract Background The blood flow and transportation of molecules in the cardiovascular system plays a crucial role in the genesis and progression of atherosclerosis. This computational study elucidates the Low Density Lipoprotein (LDL site concentration in the entire normal human 3D tree of the LCA. Methods A 3D geometry model of the normal human LCA tree is constructed. Angiographic data used for geometry construction correspond to end-diastole. The resulted model includes the LMCA, LAD, LCxA and their main branches. The numerical simulation couples the flow equations with the transport equation applying realistic boundary conditions at the wall. Results High concentration of LDL values appears at bifurcation opposite to the flow dividers in the proximal regions of the Left Coronary Artery (LCA tree, where atherosclerosis frequently occurs. The area-averaged normalized luminal surface LDL concentrations over the entire LCA tree are, 1.0348, 1.054 and 1.23, for the low, median and high water infiltration velocities, respectively. For the high, median and low molecular diffusivities, the peak values of the normalized LDL luminal surface concentration at the LMCA bifurcation reach 1.065, 1.080 and 1.205, respectively. LCA tree walls are exposed to a cholesterolemic environment although the applied mass and flow conditions refer to normal human geometry and normal mass-flow conditions. Conclusion The relationship between WSS and luminal surface concentration of LDL indicates that LDL is elevated at locations where WSS is low. Concave sides of the LCA tree exhibit higher concentration of LDL than the convex sides. Decreased molecular diffusivity increases the LDL concentration. Increased water infiltration velocity increases the LDL concentration. The regional area of high luminal surface concentration is increased with increasing water infiltration velocity. Regions of high LDL luminal surface concentration do not necessarily co-locate to the

  19. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    Science.gov (United States)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  20. Fluorocarbon seal replaces metal piston ring in low density gas environment

    Science.gov (United States)

    Morath, W. D.; Morgan, N. E.

    1967-01-01

    Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

  1. Development of Low Density CaMg-A1-Based Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    Low density Ca-Mg-Al-based bulk metallic glasses containing additionally Cu and Zn, were produced by a copper mold casting method as wedge-shaped samples with thicknesses varying from 0.5 mm to 10 rom...

  2. Response of ecosystem metabolism to low densities of spawning Chinook Salmon

    Science.gov (United States)

    Joseph R. Benjamin; J. Ryan Bellmore; Grace A. Watson

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to salmon runs. We explored whether low densities...

  3. Development of antifungal films based on low-density polyethylene and thyme oil for avocado packaging

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2015-10-01

    Full Text Available Trilayer low-density polyethylene (LDPE) films were prepared by incorporating varying concentrations of thyme oil, as the antifungal active additive for avocado packaging. A comprehensive thermal, structural, mechanical, and functional...

  4. Numerical study on drop formation through a micro nozzle

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2005-01-01

    The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation

  5. Obtention of scintillography images by low density lipoproteins labelled with technetium 99

    International Nuclear Information System (INIS)

    Silva, S.; Coelho, I.; Zanardo, E.; Pileggi, F.; Meneguethi, C.; Maranhao, R.C.

    1992-01-01

    The low density lipoproteins carry the most part of the cholesterol in the blood plasma. These lipoproteins are labelled with technetium-99-m and have been used for obtaining images in nuclear medicine. The introduction of this technique is presented, aiming futures clinical uses. Scintillographic images are obtained 25 minutes and 24 hours after the injection of 3 m Ci of low density lipoproteins - technetium-99 m in rabbits. (C.G.C.)

  6. A review of low density porous materials used in laser plasma experiments

    Science.gov (United States)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  7. IMPROVING GLOBALlAND30 ARTIFICIAL TYPE EXTRACTION ACCURACY IN LOW-DENSITY RESIDENTS

    Directory of Open Access Journals (Sweden)

    L. Hou

    2016-06-01

    Full Text Available GlobalLand 30 is the first 30m resolution land cover product in the world. It covers the area within 80°N and 80°S. There are ten classes including artificial cover, water bodies, woodland, lawn, bare land, cultivated land, wetland, sea area, shrub and snow,. The TM imagery from Landsat is the main data source of GlobalLand 30. In the artificial surface type, one of the omission error happened on low-density residents’ part. In TM images, hash distribution is one of the typical characteristics of the low-density residents, and another one is there are a lot of cultivated lands surrounded the low-density residents. Thus made the low-density residents part being blurred with cultivated land. In order to solve this problem, nighttime light remote sensing image is used as a referenced data, and on the basis of NDBI, we add TM6 to calculate the amount of surface thermal radiation index TR-NDBI (Thermal Radiation Normalized Difference Building Index to achieve the purpose of extracting low-density residents. The result shows that using TR-NDBI and the nighttime light remote sensing image are a feasible and effective method for extracting low-density residents’ areas.

  8. Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications

    Science.gov (United States)

    Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.

    1961-01-01

    For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.

  9. Modified computation of the nozzle damping coefficient in solid rocket motors

    Science.gov (United States)

    Liu, Peijin; Wang, Muxin; Yang, Wenjing; Gupta, Vikrant; Guan, Yu; Li, Larry K. B.

    2018-02-01

    In solid rocket motors, the bulk advection of acoustic energy out of the nozzle constitutes a significant source of damping and can thus influence the thermoacoustic stability of the system. In this paper, we propose and test a modified version of a historically accepted method of calculating the nozzle damping coefficient. Building on previous work, we separate the nozzle from the combustor, but compute the acoustic admittance at the nozzle entry using the linearized Euler equations (LEEs) rather than with short nozzle theory. We compute the combustor's acoustic modes also with the LEEs, taking the nozzle admittance as the boundary condition at the combustor exit while accounting for the mean flow field in the combustor using an analytical solution to Taylor-Culick flow. We then compute the nozzle damping coefficient via a balance of the unsteady energy flux through the nozzle. Compared with established methods, the proposed method offers competitive accuracy at reduced computational costs, helping to improve predictions of thermoacoustic instability in solid rocket motors.

  10. Optimization design of energy deposition on single expansion ramp nozzle

    Science.gov (United States)

    Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei

    2017-11-01

    Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.

  11. Influence of Diesel Nozzle Geometry on Cavitation Using Eulerian Multi-Fluid Method

    Institute of Scientific and Technical Information of China (English)

    张军; 杜青; 杨延相

    2010-01-01

    Dependent on automatically generated unstructured grids, a comprehensive computational fluid dynamics(CFD)numerical simulation is performed to analyze the influence of nozzle geometry on the internal flow characteristics of a multi-hole diesel injector with the multi-phase flow model based on Eulerian multi-fluid method.The diesel components in nozzle are considered as two continuous phases, diesel liquid and diesel vapor respectively.Considering that both of them are fully coupled and interpenetrated, sepa...

  12. Device to enrich uranium using the separation nozzle method

    International Nuclear Information System (INIS)

    Wenzel, W.

    1984-01-01

    Separation nozzle units, coolers and the radial-flow compressor are integrated in such manner that the volume of the device is reduced and the efficiency is increased. The radial-flow compressor that is placed in a central and axial position in the cylindrical casing of the tank is concentrically surrounded by the other elements, which are arranged in a way that regular maintenance becomes possible without difficulties. The detailed description is supplemented by drawings. (ori./PW)

  13. Improved Nozzle Testing Techniques in Transonic Flow

    Science.gov (United States)

    1975-10-01

    axiale) et comporte un barreau dynamometrique equips de jauges de contrainte. La canne est solidaire d’un ensemble balance-bloc d’alimentation des...s a l’aide de capteurs produisant un signal ilectrique : Pressions : capteurs ä jauges Temperatures : thermocouples Chromel-Alumel - Efforts...barreau dynamometrique a jauges de contrainte. Les signaux eiectriques sont acquis et traites par la chaine automatique de la soufflerie. Les mesures

  14. Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel

    Science.gov (United States)

    Huang, Junji; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    The acoustic radiation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube is simulated using Direct Numerical Simulations (DNS), with the flow conditions falling within the operational range of the Mach 6 Hypersonic Ludwieg Tube, Braunschweig (HLB). The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate's correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The rms pressure fluctuation P'(rms)/T(w) plateaus in the freestream core of the nozzle. The intensity of the freestream noise within the nozzle is approximately 20% higher than that radiated from a single at pate with a similar freestream Mach number, potentially because of the contributions to the acoustic radiation from multiple azimuthal segments of the nozzle wall.

  15. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  16. The influence of collapse wall on self-excited oscillation pulsed jet nozzle performance

    International Nuclear Information System (INIS)

    Fang, Z L; Kang, Y; Yang, X F; Yuan, B; Li, D

    2012-01-01

    The self-excited oscillation pulsed jet (SOPJ) is widely used owing to its simple structure and good separation of pressure source and system. The structure of nozzle is one of the main factors that influence the performance of the SOPJ nozzle. Upper collapse wall and lower collapse wall is important to the formation and transmission of eddy in oscillation cavity. In this paper, the influence of collapse wall on SOPJ nozzle was analyzed by numerical simulation. The LES algorithm was used to simulate the flow of different combinations of collapse wall. The result showed that when both collapse walls are of the same type, the SOPJ nozzle will have a good performance; the influence of upper collapse wall is more obvious than lower one; model of two-semi-circle upper collapse wall is the first choice when we design SOPJ nozzle.

  17. Low density lesion in solid mass on CT: Pathologic change and housfield number

    International Nuclear Information System (INIS)

    Han, Tae Il; Lim, Joo Won; Ryu, Kyung Nam; Ko, Young Tae; Song, Mi Jin; Lee, Dong Ho; Lee, Ju Hie

    1994-01-01

    We retrospectively reviewed the pathologic changes and housfield unit of the low density lesion in solid mass on CT. Pathologically proved solid mass was evaluated in regard to the shape and margin of the low density in the mass on the CT scans of 23 patient. The CT number of the low density lesion was correlated with the pathologic changes. Pathologic changes of the low density lesions were; necrosis (n=17), hemorrhage (n=13), cyst (n=4), myxoid degeneration (n=2), hyaline degeneration (n=1), fibrosis (n=1), and mixed cellularity (n=1). In 14 cases, more than 2 pathologic changes were seen. In 11 cases, necrosis was associated with hemorrhage. The CT number ranged from 11.5 to 44.9 Housfield unit(HU) (mean, 25.2 HU). The average CT number was 26.9 HU in hemorrhage and necrosis, 17.2 HU in cystic change, 20.9 HU in myxoid degeneration, 35.7 HU in hyaline de generation, 22.3 HU in fibrosis, and 21.4 HU in mixed cellularity. The hemorrhage and necrosis in 17 cases showed irregular margin, amorphous shape, and showed centrifugal distribution. The cystic change in 4 cases showed well defined margin, round shape, and peripheral location in solid mass. The low density lesions in solid mass on CT represented variable pathologic changes; necrosis, hemorrhage, cyst, myxoid degeneration, hyaline degeneration, fibrosis, and mixed cellularity. Pathologic changes would not be differentiated on the basis of CT number

  18. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Science.gov (United States)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  19. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1993-01-01

    This report summarizes the findings on the NASA contract NAG8-212, Task No. 3. The overall project consists of three tasks, all of which have been successfully completed. In addition, some supporting supplemental work, not required by the contract, has been performed and is documented herein. Task 1 involved the modification of the wall functions in the code FDNS (Finite Difference Navier-Stokes) to use a Reynolds Analogy-based method. This task was completed in August, 1992. Task 2 involved the verification of the code against experimentally available data. The data chosen for comparison was from an experiment involving the injection of helium from a wall jet. Results obtained in completing this task also show the sensitivity of the FDNS code to unknown conditions at the injection slot. This task was completed in September, 1992. Task 3 required the computation of the flow of hot exhaust gases through the P&W 40K subscale nozzle. Computations were performed both with and without film coolant injection. This task was completed in July, 1993. The FDNS program tends to overpredict heat fluxes, but, with suitable modeling of backside cooling, may give reasonable wall temperature predictions. For film cooling in the P&W 40K calorimeter subscale nozzle, the average wall temperature is reduced from 1750R to about 1050R by the film cooling. The average wall heat flux is reduced by a factor of 3.

  20. The separation nozzle process for uranium isotope enrichment

    International Nuclear Information System (INIS)

    Becker, E.W.

    1977-01-01

    In the separation nozzle process, uranium isotope separation is brought about by the mass dependence of the centrifugal forces in a curved flow of a UF 6 /H 2 -mixture. Due to the large excess in hydrogen the high ration of UF 6 flow velocity to thermal velocity required for an effective isotope separation is obtained at relatively low expansion ratios and, accordingly, with relatively low gas-dynamic losses. As the optimum Reynolds number of the curved jet is comparatively low and a high absolute pressure is essential for economic reasons, the characteristic dimensions of the nozzle systems are made as small as possible. For commercial application in the near future systems involving mechanical jet deflection were developed. However, promising results were also obtained with separation nozzle systems generating a streamline curvature by the interaction of opposed jets. Most of the development work has been done at the Nuclear Research Center of Karlsruhe. Since 1970 the German company STEAG has been involved in the commercial implementation of the process. Two industrial-scale separative stages were tested successfully. This work constitutes the basis of planning of a separation nozzle demonstration plant to be built in Brazil

  1. Process for manufacturing separating nozzles

    International Nuclear Information System (INIS)

    Bier, W.; Linder, G.; Mayer, E.

    1979-01-01

    The final form of the basic body and the unit consisting of the nozzle and peeling orifice provides immovable fixing of these parts. Surfaces of various components can then be milled, using milling tools, in one operation. Assembly can be made automatic. (DG) [de

  2. Nozzle for electric dispersion reactor

    Science.gov (United States)

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  3. Heat exchanger nozzle stresses due to pipe vibration

    International Nuclear Information System (INIS)

    Wolgemuth, G.A.

    1983-01-01

    A large diameter pipe in a heavy water production plant was excited into a low frequency vibration due to void collapse of the pipe contents at a sharp vertical drop in the pipe run. Fears that this vibration would fatigue the inlet nozzle to the heat exchanger prompted the introduction of a flow of cold water into the pipe to prevent the two-phase flow from developing but at the cost of reduced heat exchanger efficiency. An investigation was carried out to determine the stress levels in the nozzle with the quenching flow off and suggest means of reducing them if excessive. A finite element dynamic simulation of the pipe run was performed to determine the likely mode shapes. This information was used to optimize the placement of velocity probes on the pipe. Field measurements of vibration were taken for several operating conditions. This data was analyzed and the results used to refine the support stiffness used in the finite element simulation. The finite element model was then used to predict the nozzle forces and moments. In turn this data was used to determine the local stresses in the nozzle. The ASME Section III code was used to determine the allowable fully reversing stresses for the unit in question. It was found that the endurance limit of 83 MPa was exceeded in the analysis only when using the most conservative estimates for each uncertainty. It was recommended that if the safety factor was not deemed high enough, the nozzle should be built up with a reinforcing pad no thicker than 12 mm

  4. Three cases of acute encephalopathy with low density areas in the occipital lobes on CT

    International Nuclear Information System (INIS)

    Nakajima, Masako; Nakano, Chizuko; Takakura, Hiroki; Otani, Kyoichi.

    1985-01-01

    Three female infants with acute encephalopathy (aged from 5 months to 1 year and 8 months) are presented in whom peculiar features were obtained on cranial CT. Disturbances of consciousness and spasm were seen in all patients. Although two patients had been in good health until the onset, the other patient had had nodular sclerosis. Laboratory data showed no evidence of inflammation in the spinal fluid, but increased levels of transaminase and LDH. CT around 7 days after the onset revealed diffuse low density areas. This was noted in the temporal and occipital lobes, mainly resulting from edema. Follow-up CT examinations revealed localized low density areas corresponding to the surface area, being probably attributable to disturbances of the arterial and venous circulations. In two patients with severe disturbances of consciousness, low density areas became more marked with time. (Namekawa, K.)

  5. Analysis of compaction shock interactions during DDT of low density HMX

    Science.gov (United States)

    Rao, Pratap T.; Gonthier, Keith A.

    2017-01-01

    Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.

  6. Experimental hypothyroidism modulates the expression of the low density lipoprotein receptor by the liver

    International Nuclear Information System (INIS)

    Scarabottolo, Lia; Trezzi, Ermanno; Roma, Paola; Catapano, A.L.

    1986-01-01

    The effect of exprimental hypothyroidism of the catabolism of plasma lipoproteins and on the expression of low density lipoprotein receptors by the liver was investigated in rats made hypothyroid by surgery. The animals developed mild hypercholesterolemia, mainly due to an increase of plasma low density lipoprotein, while other lipoprotein classes were only marginally affected. Kinetic studies using ( 125 I)LDL indicated that a decreased fractional catabolic rate of the lipoprotein was responsible for this finding in agreement with the in vitro observation of a reduced binding of lipoproteins to liver membranes from hyperthyroid rats and with the demonstrations, by ligand blotting analysis, of a decreasd expression of lipoprotein receptors in liver membranes. These data suggest that hypothyroidism affects lipoprotein distribution also by decreasing the catabolism of low density lipoproteins by the liver (author)

  7. RSRM Nozzle-to-Case Joint J-leg Development

    Science.gov (United States)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  8. Diffusive dynamics during the high-to-low density transition in amorphous ice

    Science.gov (United States)

    Perakis, Fivos; Amann-Winkel, Katrin; Lehmkühler, Felix; Sprung, Michael; Mariedahl, Daniel; Sellberg, Jonas A.; Pathak, Harshad; Späh, Alexander; Cavalca, Filippo; Schlesinger, Daniel; Ricci, Alessandro; Jain, Avni; Massani, Bernhard; Aubree, Flora; Benmore, Chris J.; Loerting, Thomas; Grübel, Gerhard; Pettersson, Lars G. M.; Nilsson, Anders

    2017-08-01

    Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

  9. CFD Analysis of Nozzle Exit Position Effect in Ejector Gas Removal System in Geothermal Power Plant

    Directory of Open Access Journals (Sweden)

    Setyo Nugroho

    2015-06-01

    Full Text Available The single stage ejector is used to extract the Non CondensableGas (NCG in the condenser using the working principle of the Venturi tube. Three dimensional computational simulation of the ejector according to the operating conditions was conducted to determine the flow in the ejector. Motive steam entering through the convergent – divergent nozzle with increasing flow velocity so that the low pressure exist around the nozzle. Comparison is done also in a two dimensional simulation to know the differences occurring phenomena and flow inside ejector. Different simulation results obtained between two dimensional and three dimensional simulation. Reverse flow which occurs in the mixing chamber made the static pressure in the area has increased dramatically. Then the variation performed on Exit Nozzle Position (NXP to determine the changes of the flow of the NCG and the vacuum level of the ejector. Keywords: Ejector, NCG, CFD, Compressible flow.

  10. Low Density Symmetry Energy Effects and the Neutron Star Crust Properties

    International Nuclear Information System (INIS)

    Kubis, S.; Alvarez-Castillo, D.E.; Porebska, J.

    2010-01-01

    The form of the nuclear symmetry energy E s around saturation point density leads to a different crust-core transition point in the neutron star and affects the crust properties. We show that the knowledge of E s close to the saturation point is not sufficient to determine the position of the transition point and the very low density behaviour is required. We also claim that crust properties are strongly influenced by the very high density behaviour of E s , so in order to conclude about the form of low density part of the symmetry energy from astrophysical data one must isolate properly the high density part. (authors)

  11. Internal performance of a 10 deg conical plug nozzle with a multispoke primary and translating external shroud

    Science.gov (United States)

    Bresnahan, D. L.

    1972-01-01

    An experimental investigation was conducted in a nozzle static test facility to determine the performance characteristics of a cold-flow, 21.59-centimeter-diameter plug nozzle with a multispoke primary. Two multispoke primary nozzles, a 12-spoke and a 24-spoke, were tested and compared with an annular plug nozzle. The supersonic cruise configurations for both spoke primaries performed about the same, with a gross thrust coefficient of 0.974, a decrease of approximately 1.5 percent from the reference nozzle. The takeoff configuration for the 12-spoke primary had a gross thrust coefficient of 0.957, a decrease of 1.5 percent from the reference nozzle, and the 24-spoke primary had a gross thrust coefficient of 0.95.

  12. Performance Prediction of Darrieus-Type Hydroturbine with Inlet Nozzle Operated in Open Water Channels

    Science.gov (United States)

    Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.

    2016-11-01

    Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.

  13. Evaluation of flip-flop jet nozzles for use as practical excitation devices

    Science.gov (United States)

    Raman, Ganesh; Rice, Edward J.; Cornelius, David M.

    1994-01-01

    This paper describes the flowfield characteristics of the flip-flop jet nozzle and the potential for using this nozzle as a practical excitation device. It appears from the existing body of published information that there is a lack of data on the parameters affecting the operation of such nozzles and on the mechanism of operation of these nozzles. An attempt is made in the present work to study the important parameters affecting the operation and performance of a flip-flop jet nozzle. Measurements were carried out to systematically assess the effect of varying the nozzle pressure ratio (NPR) as well as the length and volume of the feedback tube on the frequency of oscillation of this device. Flow visualization was used to obtain a better understanding of the jet flowfield and of the processes occurring within the feedback tube. The frequency of oscillation of the flip-flop jet depended significantly on the feedback tube length and volume as well as on the nozzle pressure ratio. In contrast, the coherent velocity perturbation levels did not depend on the above mentioned parameters. The data presented in this paper would be useful for modeling such flip-flop excitation devices that are potentially useful for controlling practical shear flows.

  14. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  15. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S P; Waitz, I A [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R C; Brown, R C; Anderson, M R [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W N [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1998-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  16. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  17. Simulated blood transport of low density lipoproteins in a three-dimensional and permeable T-junction.

    Science.gov (United States)

    Shibeshi, Shewaferaw S; Everett, Joseph; Venable, Demetrius D; Collins, William E

    2005-01-01

    Previous studies indicate that blood flow and transport of macromolecules in the cardiovascular system and tissues are essential to understand the genesis and progression of arterial diseases and for the effective implementation of arterial grafts, as well as to devise efficient drug delivery mechanisms. In the present study, we use computational fluid dynamics to simulate the blood flow and transport of low-density lipoproteins (LDL) in a three-dimensional and permeable T junction. The Navier-Stokes equation, Darcy's Law, and the advective diffusion equations are the mathematical models used to simulate the flow and transport phenomena of the system. In the numeric model to implement the finite volume method, we used the computational fluid dynamics software Fluent 6.1. The simulation shows higher LDL concentration in the luminal surface at the junction under physiologic flow conditions. At 1 mm depth into the artery from the luminal surface, the LDL concentration is approximately 40% of the lumenal concentration, and at 2 mm depth, it reduces to 20%. Ultimately, the concentration drops further and reaches zero at the outer wall boundary.

  18. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  19. Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein

    NARCIS (Netherlands)

    Schalkwijk, C.G.; Vermeer, M.A.; Stehouwer, C.D.A.; Koppele, J. te; Princen, H.M.G.; Hinsbergh, V.W.M. van

    1998-01-01

    In patients with diabetes, non-enzymatic glycation of low-density lipoprotein (LDL) has been suggested to be involved in the development of atherosclerosis. α-Dicarbonyl compounds were identified as intermediates in the non-enzymatic glycation and increased levels were reported in patients with

  20. Genetics, Lifestyle, and Low-Density Lipoprotein Cholesterol in Young and Apparently Healthy Women

    NARCIS (Netherlands)

    Balder, Jan-Willem; Rimbert, Antoine; Zhang, Xiang; Viel, Martijn; Kanninga, Roan; van Dijk, Freerk; Lansberg, Peter; Sinke, Richard; Kuivenhoven, Jan Albert

    2018-01-01

    BACKGROUND: Atherosclerosis starts in childhood but low-density lipoprotein cholesterol (LDL-C), a causal risk factor, is mostly studied and dealt with when clinical events have occurred. Women are usually affected later in life than men and are underdiagnosed, undertreated, and understudied in

  1. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes

    International Nuclear Information System (INIS)

    Sabet, Maziyar; Soleimani, Hassan

    2014-01-01

    Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research

  2. Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma

    DEFF Research Database (Denmark)

    Handberg, Aase; Levin, Klaus; Højlund, Kurt

    2006-01-01

    BACKGROUND: Macrophage CD36 scavenges oxidized low-density lipoprotein, leading to foam cell formation, and appears to be a key proatherogenic molecule. Increased expression of CD36 has been attributed to hyperglycemia and to defective macrophage insulin signaling in insulin resistance. Premature...

  3. THE HI INFRARED LINE SPECTRUM FOR BE STARS WITH LOW-DENSITY DISCS

    NARCIS (Netherlands)

    ZAAL, PA; WATERS, LBFM; MARLBOROUGH, JM

    We present theoretical H alpha and HI infrared recombination line calculations for low-density discs around B stars. Such a disc shows no visible emission in H alpha, while the HI IR recombination lines are in emission. This phenomenon has been found in the spectrum of the B0.2V star, tau Sco and

  4. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    Science.gov (United States)

    Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to runs. We explored whether low densities (how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  5. A note on asymptotic normality in the thermodynamic limit at low densities

    DEFF Research Database (Denmark)

    Jensen, J.L.

    1991-01-01

    We consider a continuous statistical mechanical system with a pair interaction in a region λ tending to infinity. For low densities asymptotic normality of the canonical statistic is proved, both in the grand canonical ensemble and in the canonical ensemble. The results are illustrated through...

  6. Modeling of branching density and branching distribution in low-density polyethylene polymerization

    NARCIS (Netherlands)

    Kim, D.M.; Iedema, P.D.

    2008-01-01

    Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties

  7. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

    NARCIS (Netherlands)

    Rianasari, I.; de Jong, Machiel Pieter; Huskens, Jurriaan; van der Wiel, Wilfred Gerard

    2013-01-01

    We demonstrate the application of the 1,3-dipolar cycloaddition (“click‿ reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining

  8. Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level

    NARCIS (Netherlands)

    Allijn, Iris E.; Leong, Wei; Tang, Jun; Gianella, Anita; Mieszawska, Aneta J.; Fay, Francois; Ma, Ge; Russell, Stewart; Callo, Catherine B.; Gordon, Ronald E.; Korkmaz, Emine; Post, Jan Andries; Zhao, Yiming; Gerritsen, Hans C.; Thran, Axel; Proksa, Roland; Daerr, Heiner; Storm, Gert; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.; Cormode, David P.

    2013-01-01

    Low-density lipoprotein (LDL) plays a critical role in cholesterol transport and is closely linked to the progression of several diseases. This motivates the development of methods to study LDL behavior from the microscopic to whole-body level. We have developed an approach to efficiently load LDL

  9. Oxidized low-density lipoprotein in children with familial hypercholesterolemia and unaffected siblings: effect of pravastatin

    NARCIS (Netherlands)

    Rodenburg, Jessica; Vissers, Maud N.; Wiegman, Albert; Miller, Elizabeth R.; Ridker, Paul M.; Witztum, Joseph L.; Kastelein, John J. P.; Tsimikas, Sotirios

    2006-01-01

    OBJECTIVES: To assess the role of oxidized phospholipids (OxPLs) in children with familial hypercholesterolemia (FH) and the effect of pravastatin. BACKGROUND: Oxidized phospholipids are a major component of oxidized low-density lipoprotein (OxLDL) and are bound to lipoprotein (a) [Lp(a)]. The

  10. Identifying low density lipoprotein cholesterol associated variants in the Annexin A2 (ANXA2) gene

    DEFF Research Database (Denmark)

    Fairoozy, Roaa Hani; Cooper, Jackie; White, Jon

    2017-01-01

    Background and aims: Annexin-A2 (AnxA2) is an endogenous inhibitor of proprotein convertase subtilisin/kexin type-9 (PCSK9). The repeat-one (R1) domain of AnxA2 binds to PCSK9, blocking its ability to promote degradation of low-density lipoprotein cholesterol-receptors (LDL-R) and thereby regulat...

  11. Determination of charge carrier mobility in doped low density polyethylene using DC transients

    DEFF Research Database (Denmark)

    Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens

    1989-01-01

    Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...

  12. Low density lipoprotein : structure, dynamics, and interactions of apoB-100 with lipids

    NARCIS (Netherlands)

    Murtola, T.; Vuorela, T.A.; Hyvönen, M.T.; Marrink, S.J.; Karttunen, M.E.J.; Vattulainen, I.

    2011-01-01

    Low-density lipoprotein (LDL) transports cholesterol in the bloodstream and plays an important role in the development of cardiovascular diseases, in particular atherosclerosis. Despite its importance to health, the structure of LDL is not known in detail. This is worrying since the lack of LDL's

  13. Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus

    Science.gov (United States)

    Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) has been associated with a decreased risk of these complications. We evaluated the ut...

  14. Interaction of laser radiation with a low-density structured absorber

    Czech Academy of Sciences Publication Activity Database

    Rozanov, V. B.; Barishpol’tsev, D.V.; Vergunova, G.A.; Demchenko, N. N.; Ivanov, E.M.; Aristova, E.N.; Zmitrenko, N.V.; Limpouch, I.; Ullschmied, Jiří

    2016-01-01

    Roč. 122, č. 2 (2016), s. 256-276 ISSN 1063-7761 Institutional support: RVO:61389021 Keywords : laser radiation interaction * laser with low-density Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.196, year: 2016

  15. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    Science.gov (United States)

    Osinski, G. R.; Spray, J. G.

    2001-01-01

    We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

  16. Use of Low-Density DNA Microarrays and Photopolymerization for Genotyping Foodborne-Associated Noroviruses

    Science.gov (United States)

    Human noroviruses cause up to 21 million cases of foodborne disease in the United States annually and are the most common cause of acute gastroenteritis in industrialized countries. To reduce the burden of foodborne disease associated with viruses, the use of low density DNA microarrays in conjunct...

  17. Experiments on the spray nozzles used in the pressurizer of power reactor

    International Nuclear Information System (INIS)

    Diao Wentang

    1989-04-01

    The spray nozzle, which is used in the pressurizer of pressurized water reactor system, usually uses a less differential pressure between the reactor inlet and outlet as the spray drive pressure, but its flow rate is relatively larger. It is difficult to obtain a optimum spray performance of such a nozzle. The experimental results of five types of twenty seven spray nozzles in different structures and sizes with the range of the spray drive pressure from 0.127 to 0.245 MPa and the flow rates from 5 to 50 t/h are given. The main factors affecting spray performances and their distribution characteristics have been found. And some relatively suitable spray structures have been recommended, which can be used as references for improving the spray nozzles used in the pressurizers of existing PWRs or of the PWRs to be built

  18. Method and equipment of separation of gaseous and vaporous materials, particularly isotopes, with separation nozzles

    International Nuclear Information System (INIS)

    Becker, E.W.; Eisenbeiss, G.; Ehrfeld, W.

    1975-01-01

    The invention improves on the already known separation nozzle method by the two following steps: 1) The partial flows produced within the cascade with various shares of additional gas are introduced into the separating nozzle systems in such a manner that with regard to the additional gas, a molar fraction gradient is created which is in the opposite direction to the gradient created by the separation process. 2) The partial flows produced within the cascade with various compositions of the mixture of substances to be separated are introduced into the separating nozzle systems in such a manner that regarding the substances to be separated, a molar fraction gradient is created which is in the same direction as the molar fraction gradient formed by the separation process. Both measures can be separately applied or in combination with one another; flowsheets of the invented cascade circuits and separating nozzle systems are given. (GG/LH) [de

  19. Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities

    Science.gov (United States)

    Fenn, Daniel

    The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent

  20. Aqueous extracts of Tribulus terrestris protects against oxidized low-density lipoprotein-induced endothelial dysfunction.

    Science.gov (United States)

    Jiang, Yue-hua; Yang, Chuan-hua; Li, Wei; Wu, Sai; Meng, Xian-qing; Li, Dong-na

    2016-03-01

    To investigate the role of aqueous extracts of Tribulus terrestris (TT) against oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) dysfunction in vitro. HUVECs were pre-incubated for 60 min with TT (30 and 3 μg/mL respectively) or 10(-5) mol/L valsartan (as positive controls) and then the injured endothelium model was established by applying 100 μg/mL ox-LDL for 24 h. Cell viability of HUVECs was observed by real-time cell electronic sensing assay and apoptosis rate by Annexin V/PI staining. The cell migration assay was performed with a transwell insert system. Cytoskeleton remodeling was observed by immunofluorescence assay. The content of endothelial nitric oxide synthase (eNOS) was measured by enzyme-linked immunosorbent assay. Intracellular reactive oxygen species (ROS) generation was assessed by immunofluorescence and flow cytometer. Key genes associated with the metabolism of ox-LDL were chosen for quantitative real-time polymerase chain reaction to explore the possible mechanism of TT against oxidized LDL-induced endothelial dysfunction. TT suppressed ox-LDL-induced HUVEC proliferation and apoptosis rates significantly (41.1% and 43.5% after treatment for 3 and 38 h, respectively; P<0.05). It also prolonged the HUVEC survival time and postponed the cell's decaying stage (from the 69th h to over 100 h). According to the immunofluorescence and transwell insert system assay, TT improved the endothelial cytoskeletal network, and vinculin expression and increased cell migration. Additionally, TT regulated of the synthesis of endothelial nitric oxide synthase and generation of intracellular reactive oxygen species (P<0.05). Both 30 and 3 μg/mL TT demonstrated similar efficacy to valsartan. TT normalized the increased mRNA expression of PI3Kα and Socs3. It also decreased mRNA expression of Akt1, AMPKα1, JAK2, LepR and STAT3 induced by ox-LDL. The most notable changes were JAK2, LepR, PI3Kα, Socs3 and STAT3. TT

  1. Maximizing performance in supercritical fluid chromatography using low-density mobile phases.

    Science.gov (United States)

    Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A

    2016-10-14

    The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All

  2. Experimental investigation on motive nozzle throat diameter for an ejector expansion refrigeration system

    International Nuclear Information System (INIS)

    Bilir Sag, Nagihan; Ersoy, H. Kursad

    2016-01-01

    Highlights: • Effects of nozzle throat diameter and its location on performance were investigated. • The nozzle has an optimum throat diameter under the experiment condition. • The maximum performance has been achieved by using optimum nozzle throat diameter. • The variation of nozzle throat diameter with condenser water inlet temperature was examined. • Motive nozzle has no optimum position in the ejector refrigeration system. - Abstract: In this study, ejector was used to reduce throttling losses in a vapour compression refrigeration system. Effects on system performance of throat diameter and position of motive nozzle of ejector were investigated experimentally. An ejector was designed based on the established mathematical model and manufactured. The experiments were carried out by using different primary nozzle throat diameters. The experiments were further conducted by changing condenser water inlet temperature, which is one of the external parameters. The experimental results of the ejector system and those of the classic system were compared under same external operating conditions and for the same cooling capacity. In order to obtain same external operating conditions in both systems, the inlet conditions of the brine supplied to the evaporator and inlet water conditions (flow rate and temperature) to the condenser were kept constant. Maximum performance was obtained when the primary nozzle throat diameter was 2.3 mm within the areas considered in this study. When compared, it was experimentally determined that the ejector system that uses the optimum motive nozzle throat diameter exhibits higher COP than the classic system by 5–13%. Furthermore, it was found that the variation of coefficient of performance based on position of motive nozzle in two-phase ejector expander refrigeration cycle is lower than 1%.

  3. A study of low-density areas, clinical findings, and angiographic findings in patients with cerebral infarction

    International Nuclear Information System (INIS)

    Saiki, Iwao; Sakai, Yoshiaki; Oikawa, Tadato; Koide, Kohji; Kanaya, Haruyuki.

    1978-01-01

    55 out of 62 patients with cerebral infarction were investigated in terms of CT scan findings, angiographic findings, and clinical symptoms. The results obtained were as follows: 1) The low-density areas of the CT scan findings were classified into the following four types: large hemispheric or lobular --Type I; wedge-shaped --Type II; small --Type III; and lacunar low-density area. --Type IV. 2) Almost all patients with angiographically occlusive findings showed low-density areas of Type I; however, one patient with ICA occlusion revealed only a lacunar low-density area. 3) The patients with lacunar low-density areas showed an angiographically delayed filling of the angular artery and posterior parietal artery of the middle cerebral artery. 4) The relationship between the types of low-density areas and the clinical conscious disorders was not clear. On the other hand, the patients with Type I low-density areas almost all had motor disturbances, while patients with other types of low-density areas showed only 60 - 70% motor disturbances. 5) In patients with speech disorders, total aphasia cases were found in patients with large hemispheric low-density areas on the left side. Although, motor aphasia cases were seen in patients with various low-density areas on the left inferior frontal and precentral gyri, dysarthria cases were found in the patients with several low-density areas on both sides. 6) The localization of lacunar low-density areas seemed to be near the caudate nucleus on the right side and in the putaminal regions on the left side. The mean and the standard deviation of CT numbers in the lacunar low-density areas showed higher values on the right side than on the left side. (author)

  4. Effective hydraulic resistance of actuator nozzle generating a periodic jet

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2012-01-01

    Roč. 179, JUN 2012 (2012), s. 211-222 ISSN 0924-4247 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR(CZ) TA02020795 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * periodic flow * compressibility Subject RIV: BK - Fluid Dynamics Impact factor: 1.841, year: 2012 http://www.sciencedirect.com/science/article/pii/S0924424712001781

  5. RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction

    Science.gov (United States)

    DeBonis, James R.

    2009-01-01

    Computational fluid dynamics (CFD) was used to evaluate the flow field and thrust performance of a promising concept for reducing the noise at take-off of dual-stream turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) a portion of the fan flow below the core flow, thickening and lengthening this layer between the high-velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds averaged Navier-Stokes (RANS) code, was used to analyze the flow field of the exhaust plume and to calculate nozzle performance. Results showed that the wedge diverts all of the fan flow to the lower side of the nozzle, and the turbulent kinetic energy on the observer side of the nozzle is reduced. This reduction in turbulent kinetic energy should correspond to a reduction in noise. However, because all of the fan flow is diverted, the upper portion of the core flow is exposed to the freestream, and the turbulent kinetic energy on the upper side of the nozzle is increased, creating an unintended noise source. The blockage due to the wedge reduces the fan mass flow proportional to its blockage, and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental flow field data, demonstrating that RANS CFD can accurately predict the velocity and turbulent kinetic energy fields. While this initial design of a large scale wedge nozzle did not meet noise reduction or thrust goals, this study identified areas for improvement and demonstrated that RANS CFD can be used to improve the concept.

  6. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    Science.gov (United States)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  7. The effects of finite rate chemical processes on high enthalpy nozzle performance - A comparison between SPARK and SEAGULL

    Science.gov (United States)

    Carpenter, M. H.

    1988-01-01

    The generalized chemistry version of the computer code SPARK is extended to include two higher-order numerical schemes, yielding fourth-order spatial accuracy for the inviscid terms. The new and old formulations are used to study the influences of finite rate chemical processes on nozzle performance. A determination is made of the computationally optimum reaction scheme for use in high-enthalpy nozzles. Finite rate calculations are compared with the frozen and equilibrium limits to assess the validity of each formulation. In addition, the finite rate SPARK results are compared with the constant ratio of specific heats (gamma) SEAGULL code, to determine its accuracy in variable gamma flow situations. Finally, the higher-order SPARK code is used to calculate nozzle flows having species stratification. Flame quenching occurs at low nozzle pressures, while for high pressures, significant burning continues in the nozzle.

  8. Effect of shocks on film cooling of a full scale turbojet exhaust nozzle having an external expansion surface

    Science.gov (United States)

    Straight, D. M.

    1979-01-01

    Cooling is one of the critical technologies for efficient design of exhaust nozzles, especially for the developing technology of nonaxisymmetric (2D) nozzles for future aircraft applications. Several promising 2D nozzle designs have external expansion surfaces which need to be cooled. Engine data are scarce, however, on nozzle cooling effectiveness in the supersonic flow environment (with shocks) that exists along external expansion surfaces. This paper will present experimental film cooling data obtained during exploratory testing with an axisymmetric plug nozzle having external expansion and installed on an afterburning turbojet engine in an altitude test facility. The data obtained shows that the shocks and local hot gas stream conditions have a marked effect on film cooling effectiveness. An existing film cooling correlation is adequate at some operating conditions but inadequate at other conditions such as in separated flow regions resulting from shock-boundary-layer interactions.

  9. Fluorine-18 radiolabeling of low-density lipoproteins: a potential approach for characterization and differentiation of metabolism of native and oxidized low-density lipoproteins in vivo

    International Nuclear Information System (INIS)

    Pietzsch, Jens; Bergmann, Ralf; Rode, Katrin; Hultsch, Christina; Pawelke, Beate; Wuest, Frank; Hoff, Joerg van den

    2004-01-01

    Oxidative modification of low-density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Assessing the metabolic fate of oxidized LDL (oxLDL) in vivo with radiotracer techniques is hindered by the lack of suitable sensitive and specific radiolabeling methods. We evaluated an improved methodology based on the radiolabeling of native LDL (nLDL) and oxLDL with the positron emitter fluorine-18 ( 18 F) by conjugation with N-succinimidyl-4-[ 18 F]fluorobenzoate ([ 18 F]SFB). We investigated whether radiolabeling of LDL induces adverse structural modifications. Results suggest that radiolabeling of both nLDL and oxLDL using [ 18 F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively. Thus, radiolabeling of LDL using [ 18 F]SFB could prove to be a promising approach for studying the kinetics of oxLDL in vivo

  10. Fluorine-18 radiolabeling of low-density lipoproteins: a potential approach for characterization and differentiation of metabolism of native and oxidized low-density lipoproteins in vivo.

    Science.gov (United States)

    Pietzsch, Jens; Bergmann, Ralf; Rode, Katrin; Hultsch, Christina; Pawelke, Beate; Wuest, Frank; van den Hoff, Joerg

    2004-11-01

    Oxidative modification of low-density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Assessing the metabolic fate of oxidized LDL (oxLDL) in vivo with radiotracer techniques is hindered by the lack of suitable sensitive and specific radiolabeling methods. We evaluated an improved methodology based on the radiolabeling of native LDL (nLDL) and oxLDL with the positron emitter fluorine-18 ((18)F) by conjugation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). We investigated whether radiolabeling of LDL induces adverse structural modifications. Results suggest that radiolabeling of both nLDL and oxLDL using [(18)F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively. Thus, radiolabeling of LDL using [(18)F]SFB could prove to be a promising approach for studying the kinetics of oxLDL in vivo.

  11. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

    2016-11-01

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and

  12. Effect of Pressure on the Uniformity of Nozzles Transverse Distribution and Mathematical Model Development

    Directory of Open Access Journals (Sweden)

    Vladimir Višacki

    2017-01-01

    Full Text Available Timely and high-quality application of pesticides contributes to environmental protection, economical production and production of healthy food. The efficacy of pesticide application depends not only on the quality of pesticides but also the quality of the application. One of the factor that most influences the quality of applications, from the standpoint of mechanization, are nozzles. They working liquid applied on the surface the plant resulting in the same volume of pesticide is applied to the entire surface of the plants. To achieve this goal, nozzles must be performed uniform application of working liquid per unit area, or tractor sprayer working width. The variable factor in the application of pesticides may be nozzle and operating pressure. With increasing working pressure obtained smaller droplets. The paper presents test of three different nozzles. Each nozzle is characterized by a flat jet with an angle of 110° and a flow rate of 1.6 l∙min−1 at a pressure of 3 bar. Differ from each other are by the way of disintegration of the jet. Exactly this characteristic causes that with pressure change coming to changes in the uniformity of nozzles transverse distribution. So the best distribution has nozzle with a flat jet. The coefficient of variation is between roughly from 4 to 6 % at the pressure application of 2 to 4 bar. Obtained mathematical model that describes changes in the coefficient of variation depending on pressure applications can be a good basis for easy harmonization parameters in the pesticide application.

  13. Aerosol Scrubbing Performance Test for Self-Priming Scrubbing Nozzle Submerged in Water Pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Doo Yong; Jung, Woo Young; Lee, Hyun Chul; Lee, Jong Chan; Kim, Gyu Tae; Song, Yong Jae [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    A scrubbing nozzle is one of the key components for a wet scrubber process based Containment Filtered Venting System (CFVS). As a part of a development of Korean CFVS, a self-priming scrubbing nozzle shown in Fig. 1 has been developed based on the well-known venturi scrubber concept. The thermal-hydraulic performances such as the pressure drop across the nozzle, water suction behavior and droplet generation inside throat have been tested in the non-submerged condition as well as submerged condition. The self-priming scrubbing nozzle used for the wet scrubber based CFVS has been developed, which is submerged in the water pool. When there is gas flow at the inlet of the nozzle, the pool water is passively sucked from the water suction slit. The fine droplets generated inside the throat capture the aerosol particles and is discharged into the water pool. In the water pool, the pool scrubbing happens. The aerosol scrubbing performance tests for the developed self-priming scrubbing nozzle has been conducted under the operational conditions such as different aerosol sizes, different carrier gas steam fractions, different, different pool water level and nozzle inlet pressure. The major findings are as follows. (1) Aerosol scrubbing efficiency increases with the increase of the aerosol size. (2) Aerosol scrubbing efficiency increases with the increase of the carrier gas steam fraction. (3) Aerosol scrubbing.

  14. Aerosol Scrubbing Performance Test for Self-Priming Scrubbing Nozzle Submerged in Water Pool

    International Nuclear Information System (INIS)

    Lee, Doo Yong; Jung, Woo Young; Lee, Hyun Chul; Lee, Jong Chan; Kim, Gyu Tae; Song, Yong Jae

    2016-01-01

    A scrubbing nozzle is one of the key components for a wet scrubber process based Containment Filtered Venting System (CFVS). As a part of a development of Korean CFVS, a self-priming scrubbing nozzle shown in Fig. 1 has been developed based on the well-known venturi scrubber concept. The thermal-hydraulic performances such as the pressure drop across the nozzle, water suction behavior and droplet generation inside throat have been tested in the non-submerged condition as well as submerged condition. The self-priming scrubbing nozzle used for the wet scrubber based CFVS has been developed, which is submerged in the water pool. When there is gas flow at the inlet of the nozzle, the pool water is passively sucked from the water suction slit. The fine droplets generated inside the throat capture the aerosol particles and is discharged into the water pool. In the water pool, the pool scrubbing happens. The aerosol scrubbing performance tests for the developed self-priming scrubbing nozzle has been conducted under the operational conditions such as different aerosol sizes, different carrier gas steam fractions, different, different pool water level and nozzle inlet pressure. The major findings are as follows. (1) Aerosol scrubbing efficiency increases with the increase of the aerosol size. (2) Aerosol scrubbing efficiency increases with the increase of the carrier gas steam fraction. (3) Aerosol scrubbing

  15. Variable volume combustor with pre-nozzle fuel injection system

    Science.gov (United States)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  16. Study on intense relativistic electron beam propagation in a low density collisionless plasma

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam

  17. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    Science.gov (United States)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

    2017-12-12

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.

  18. Competing Quantum Hall Phases in the Second Landau Level in Low Density Limit

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Serafin, A. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Xia, J. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Liang, Y. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Sullivan, N. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Baldwin, K. W. [Princeton Univ., NJ (United States); West, K. W. [Princeton Univ., NJ (United States); Pfeiffer, L. N. [Princeton Univ., NJ (United States); Tsui, D. C. [Princeton Univ., NJ (United States)

    2015-01-01

    Up to date, studies of the fractional quantum Hall effect (FQHE) states in the second Landau level have mainly been carried out in the high electron density regime, where the electron mobility is the highest. Only recently, with the advance of high quality low density MBE growth, experiments have been pushed to the low density regime [1], where the electron-electron interactions are strong and the Landau level mixing parameter, defined by κ = e2/εIB/ℏωe, is large. Here, lB = (ℏe/B)1/2 is the magnetic length and ωc = eB/m the cyclotron frequency. All other parameters have their normal meanings. It has been shown that a large Landau level mixing effect strongly affects the electron physics in the second Landau level [2].

  19. Breakdown of quasiparticle picture in the low-density limit of the 1D Hubbard model

    International Nuclear Information System (INIS)

    Qin Shaojin; Qian Tiezheng; Su Zhaobin

    1995-03-01

    Using the finite-size scaling of results obtained by exact diagonalization, we study the low-density limit of the one-dimensional Hubbard model. Calculating the quasiparticle weight, we demonstrate that for a given particle number N and system size L, there always exists a crossover point U c separating the Fermi-liquid (U c ) and non-Fermi-liquid (U > U c ) regimes (U is the Hubbard repulsion). We find that for a fixed N, U c is inversely proportional to L, keeping U c L/t constant (with t as the hopping integral), as L is large enough. It follows that in the low-density (in fact vanishing density) limit L → ∞, U c → 0, so the system is always in non-Fermi-liquid regime as long as U > 0. We show that our numerical results are consistent with the Bethe ansatz solution. (author). 11 refs, 3 figs

  20. Role of strangeness and isospin in low density expansions of hadronic matter

    Science.gov (United States)

    de Oliveira, Thamirys; Menezes, Débora P.; Pinto, Marcus B.; Gulminelli, Francesca

    2018-05-01

    We compare relativistic mean-field models with their low density expansion counterparts used to mimic nonrelativistic models by consistently expanding the baryonic scalar density in powers of the baryonic number density up to O (13 /3 ) , which goes two orders beyond the order considered in previous works. We show that, due to the nontrivial density dependence of the Dirac mass, the convergence of the expansion is very slow, and the validity of the nonrelativistic approximation is questionable even at subsaturation densities. In order to analyze the roles played by strangeness and isospin we consider n -Λ and n -p matter separately. Our results indicate that these degrees of freedom play quite different roles in the expansion mechanism and n -Λ matter can be better described by low density expansions than n -p matter in general.

  1. Quasi Cyclic Low Density Parity Check Code for High SNR Data Transfer

    Directory of Open Access Journals (Sweden)

    M. R. Islam

    2010-06-01

    Full Text Available An improved Quasi Cyclic Low Density Parity Check code (QC-LDPC is proposed to reduce the complexity of the Low Density Parity Check code (LDPC while obtaining the similar performance. The proposed QC-LDPC presents an improved construction at high SNR with circulant sub-matrices. The proposed construction yields a performance gain of about 1 dB at a 0.0003 bit error rate (BER and it is tested on 4 different decoding algorithms. Proposed QC-LDPC is compared with the existing QC-LDPC and the simulation results show that the proposed approach outperforms the existing one at high SNR. Simulations are also performed varying the number of horizontal sub matrices and the results show that the parity check matrix with smaller horizontal concatenation shows better performance.

  2. Kinetics of the high- to low-density amorphous water transition

    International Nuclear Information System (INIS)

    Koza, M M; Schober, H; Fischer, H E; Hansen, T; Fujara, F

    2003-01-01

    In situ neutron diffraction experiments have been carried out to study the kinetics of the transformation of high-density amorphous (HDA) water into its low-density amorphous state at temperatures 87 K ≤ T ≤ 110 K. It is found that three different stages are comprised in this transformation, namely an annealing process of the high-density matrix followed by a first-order-like transition into a low-density state, which can be further annealed at higher temperatures T ≤ 127 K. The annealing kinetics of the HDA state follows the logarithm of time as found in other systems showing polyamorphism. According to the theory of transformation by nucleation and growth the apparent first-order transition follows an Avrami-Kolmogorov behaviour. An energy barrier ΔE ∼ 33 k Jmol -1 is estimated from the temperature dependence of this transition

  3. Nonfasting Triglycerides, Low-Density Lipoprotein Cholesterol, and Heart Failure Risk

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G

    2018-01-01

    OBJECTIVE: The prevalence of heart failure is increasing in the aging population, and heart failure is a disease with large morbidity and mortality. There is, therefore, a need for identifying modifiable risk factors for prevention. We tested the hypothesis that high concentrations of nonfasting...... triglycerides and low-density lipoprotein cholesterol are associated with higher risk of heart failure in the general population. APPROACH AND RESULTS: We included 103 860 individuals from the Copenhagen General Population Study and 9694 from the Copenhagen City Heart Study in 2 prospective observational...... association studies. Nonfasting triglycerides and low-density lipoprotein cholesterol were measured at baseline. Individuals were followed for ≤23 years, during which time 3593 were diagnosed with heart failure. Hazard ratios were estimated using Cox proportional hazard regression models. In the Copenhagen...

  4. Growth-interruption-induced low-density InAs quantum dots on GaAs

    International Nuclear Information System (INIS)

    Li, L. H.; Alloing, B.; Chauvin, N.; Fiore, A.; Patriarche, G.

    2008-01-01

    We investigate the use of growth interruption to obtain low-density InAs quantum dots (QDs) on GaAs. The process was realized by Ostwald-type ripening of a thin InAs layer. It was found that the optical properties of the QDs as a function of growth interruption strongly depend on InAs growth rate. By using this approach, a low density of QDs (4 dots/μm 2 ) with uniform size distribution was achieved. As compared to QDs grown without growth interruption, a larger energy separation between the QD confined levels was observed, suggesting a situation closer to the ideal zero-dimensional system. Combining with an InGaAs capping layer such as In-rich QDs enable 1.3 μm emission at 4 K

  5. Fractal analysis of agricultural nozzles spray

    Directory of Open Access Journals (Sweden)

    Francisco Agüera

    2012-02-01

    Full Text Available Fractal scaling of the exponential type is used to establish the cumulative volume (V distribution applied through agricultural spray nozzles in size x droplets, smaller than the characteristic size X. From exponent d, we deduced the fractal dimension (Df which measures the degree of irregularity of the medium. This property is known as 'self-similarity'. Assuming that the droplet set from a spray nozzle is self-similar, the objectives of this study were to develop a methodology for calculating a Df factor associated with a given nozzle and to determine regression coefficients in order to predict droplet spectra factors from a nozzle, taking into account its own Df and pressure operating. Based on the iterated function system, we developed an algorithm to relate nozzle types to a particular value of Df. Four nozzles and five operating pressure droplet size characteristics were measured using a Phase Doppler Particle Analyser (PDPA. The data input consisted of droplet size spectra factors derived from these measurements. Estimated Df values showed dependence on nozzle type and independence of operating pressure. We developed an exponential model based on the Df to enable us to predict droplet size spectra factors. Significant coefficients of determination were found for the fitted model. This model could prove useful as a means of comparing the behavior of nozzles which only differ in not measurable geometric parameters and it can predict droplet spectra factors of a nozzle operating under different pressures from data measured only in extreme work pressures.

  6. High Pressure Water Stripping Using Multi-Orifice Nozzles

    Science.gov (United States)

    Hoppe, David

    1999-01-01

    The use of multi-orifice rotary nozzles greatly increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with its transverse velocity as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Orifices at the outer edge of the nozzle head move at a faster rate than the orifices located near the center. The energy transmitted to the surface from the impact force of the water stream from an outer orifice is therefore spread over a larger area than energy from an inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the total energy transmitted from the outer orifice to compensate for the wider distribution of energy. The total flow rate from the combination of all orifices must be monitored and should be kept below the pump capacity while choosing orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all the orifices in the nozzle head pass through the center section. All orifices contribute to the stripping in the center of the path while only the outer most orifice contributes to the stripping at the edge of the nozzle. Additional orifices contribute to the stripping from the outer edge toward the center section. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation graphically indicates the cumulative affect from each parameter selected. The result from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas

  7. Simulasi Low Density Parity Check (Ldpc) dengan Standar Dvb-t2

    OpenAIRE

    Kurniawan, Yusuf; Hafizh, Idham

    2014-01-01

    Artikel ini berisi implementasi simulasi encoding-decoding yang dilakukanpada suatu sampel data biner acak sesuai dengan standar yang digunakanpada Digital Video Broadcasting – Terrestrial 2nd Generation (DVB-T2),dengan menggunakan MATLAB. Low Density Parity Check (LDPC)digunakan dalam proses encoding-decoding sebagai fitur untuk melakukankoreksi kesalahan pada saat pengiriman data. Modulasi yang digunakandalam simulasi adalah BPSK dengan model kanal AWGN. Dalam simulasitersebut, diperbanding...

  8. Stark broadening of the Hα line of hydrogen at low densities: quantal and semiclassical results

    International Nuclear Information System (INIS)

    Stehle, C.; Feautrier, N.

    1984-01-01

    Stark profiles of the Hα lines of hydrogen are computed at low densities in the 'impact' theory. By a comparison with quantal results, it is shown that a simple semiclassical perturbational approach with appropriate cutoffs is sufficient to give accurate profiles in the line centre. Neglecting the natural broadening and the fine-structure effects, the authors prove that the electronic broadening is negligible and that the profile has a Lorentzian shape. An analytical expression of the half width is given. (author)

  9. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  10. Electrons of high perpendicular energy in the low-density regime of Tokamaks

    International Nuclear Information System (INIS)

    Bornatici, M.; Engelmann, F.

    1978-01-01

    Effects due to instabilities excited in the low-density regime of tokamaks by runaway electrons via the cyclotron resonance ω+Ω=kV along with the formation of a positive slope in the runaway distribution are considered. Conditions for the production of electrons of high perpendicular energy and their trapping in toroidal field ripples, leading to liner damage, are discussed and found to be rather stringent. Fairly good agreement with the experiments is found

  11. Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles

    Science.gov (United States)

    Seyedehsan Hosseini; Qi Li; Manish Shrivastava; David R. Weise; David R. Cocker; J. Wayne Miller; Heejung S Jung

    2014-01-01

    Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activities—activities associated with development and care of forests—dry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (

  12. Low-density Lipoprotein Improves Motility and Plasma Membrane Integrity of Cryopreserved Canine Epididymal Spermatozoa

    OpenAIRE

    N. Prapaiwan; T. Tharasanit; S. Punjachaipornpol; D. Yamtang; A. Roongsitthichai; W. Moonarmart; K. Kaeoket; S. Manee-in

    2016-01-01

    Cryopreservation of caudal epididymal spermatozoa is an effective technique to conserve genetic potentials of superior dogs when it is not possible to collect ejaculated spermatozoa. Although hen egg yolk is commonly supplemented into the semen extender, active substances within the egg yolk which protect sperm against cryoinjury remain to be discovered. Among its compositions, low-density lipoprotein (LDL) has been reported to have a cryoprotective property for sperm cryopreservation. Howeve...

  13. Quantum quasi-cyclic low-density parity-check error-correcting codes

    International Nuclear Information System (INIS)

    Yuan, Li; Gui-Hua, Zeng; Lee, Moon Ho

    2009-01-01

    In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated. (general)

  14. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

    OpenAIRE

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M.

    2009-01-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible ...

  15. Low density, microcellular, dopable, agar/gelatin foams for pulsed power experiments

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, W.F. [Orion International Technologies, Inc., Albuquerque, NM (United States); Aubert, J.H. [Sandia National Lab., Albuquerque, NM (United States)

    1997-04-01

    Low-density, microcellular foams prepared from the natural polymers agar and gelatin have been developed for pulsed-power physics experiments. Numerous experiments were supported with foams having densities at or below 10 mg/cm{sup 3}. For some of the experiments, the agar/gelatin foam was uniformly doped with metallic elements using soluble salts. Depending on the method of preparation, cell sizes were typically below 10 microns and for one process were below 1.0 micron.

  16. Convective cell excitation by inertial Alfven waves in a low density plasma

    International Nuclear Information System (INIS)

    Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Srenflo, L.; Balikhin, M.A.

    2005-01-01

    The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained [ru

  17. Low density lipoprotein uptake by an endothelial-smooth muscle cell bilayer

    International Nuclear Information System (INIS)

    Alexander, J.J.; Miguel, R.; Graham, D.

    1991-01-01

    To study the interaction of endothelial and smooth muscle cells, and the means by which such interaction may affect lipid permeability of the arterial wall, cell bilayers were established by use of a transwell culture system. After confluent growth of both cell types had been achieved, iodine 125 bound to low-density lipoprotein (10 ng protein/ml) was added to the media of the upper well. After a 3-hour incubation period, the iodine 125-bound low-density lipoprotein content of the upper and lower media demonstrated an impedance to lipoprotein movement across the endothelial cell monolayer as compared to the bare porous polycarbonate filter of the transwell (p less than 10(-6)). The presence of smooth muscle cells in the bottom well significantly enhanced the permeability of the endothelial cell layer (p less than 10(-60)). This effect remained unchanged over a 9-day time course. Membrane binding and cellular uptake of low-density lipoprotein by endothelial cells was not altered by smooth muscle cells, indicating that this change in permeability could not be easily attributed to changes in receptor-mediated transport or transcytosis. Membrane binding (p less than 0.02) and cellular uptake (p less than 10(-6)) of low-density lipoprotein by smooth muscle cells in the bilayer, when adjusted for counts available in the smooth muscle cell media, were both reduced in the early incubation period as compared to isolated smooth muscle cells. The disproportionate reduction in uptake as compared to binding would suggest that this was not entirely a receptor-dependent process

  18. Computer Graphic Design Using Auto-CAD and Plug Nozzle Research

    Science.gov (United States)

    Rogers, Rayna C.

    2004-01-01

    The purpose of creating computer generated images varies widely. They can be use for computational fluid dynamics (CFD), or as a blueprint for designing parts. The schematic that I will be working on the summer will be used to create nozzles that are a part of a larger system. At this phase in the project, the nozzles needed for the systems have been fabricated. One part of my mission is to create both three dimensional and two dimensional models on Auto-CAD 2002 of the nozzles. The research on plug nozzles will allow me to have a better understanding of how they assist in the thrust need for a missile to take off. NASA and the United States military are working together to develop a new design concept. On most missiles a convergent-divergent nozzle is used to create thrust. However, the two are looking into different concepts for the nozzle. The standard convergent-divergent nozzle forces a mixture of combustible fluids and air through a smaller area in comparison to where the combination was mixed. Once it passes through the smaller area known as A8 it comes out the end of the nozzle which is larger the first or area A9. This creates enough thrust for the mechanism whether it is an F-18 fighter jet or a missile. The A9 section of the convergent-divergent nozzle has a mechanism that controls how large A9 can be. This is needed because the pressure of the air coming out nozzle must be equal to that of the ambient pressure other wise there will be a loss of performance in the machine. The plug nozzle however does not need to have an A9 that can vary. When the air flow comes out it can automatically sense what the ambient pressure is and will adjust accordingly. The objective of this design is to create a plug nozzle that is not as complicated mechanically as it counterpart the convergent-divergent nozzle.

  19. INHIBITION OF HUMAN LOW-DENSITY LIPOPROTEINS OXIDATION BY Hibiscus radiatus CUV. CALYCES EXTRACT

    Directory of Open Access Journals (Sweden)

    Hernawan Hernawan

    2010-06-01

    Full Text Available Hibiscus radiatus Cuv calyces extracts rich in polyphenols was screened for their potential to inhibit oxidation of human low-density lipoproteins-cholesterol (LDL-C in vitro. The inhibition of LDL-C oxidation (antioxidant activity was determined by measuring the formation of conjugated dienes and thiobarbituric acid reagent substances (TBARS. LDL-C oxidation was carried out in the presence of H. radiatus Cuv calyces extract (20 and 50 μM. CuSO4 (10 μM was used as the oxidation initiator and  butylated hydroxytoluene (BHT at 50 μM was used as standard antioxidant. The protective effect of H. radiatus Cuv. calyces extract toward human low-density lipoproteins, complex lipid system was  demonstrated by significant increase lag time (> 103 min, diminished of the propagation rate (44 %, and diminution of conjugated dienes formation 59.42 % (50 μM compared to control.   Keywords: antioxidant, conjugated dienes, Hibiscus radiatus Cuv, low-density lipoproteins-cholesterol

  20. Effect of phospholipase A treatment of low density lipoproteins on the dextran sulfate--lipoprotein interaction.

    Science.gov (United States)

    Nishida, T

    1968-09-01

    The effect of phospholipase A on the interaction of low density lipoproteins of the S(f) 0-10 class with dextran sulfate was studied in phosphate buffer of pH 7.4, ionic strength 0.1, by chemical, spectrophotometric, and centrifugal methods. When low density lipoproteins that had been treated with phospholipase A were substituted for untreated lipoproteins, the amount of insoluble dextran sulfate-lipoprotein complex formed was greatly reduced. Hydrolysis of over 20% of the lecithin and phosphatidyl ethanolamine constituents of the lipoproteins prevented the formation of insoluble complex. However, even the lipoproteins in which almost all the phosphoglycerides were hydrolyzed produced soluble complex, which was converted to insoluble complex upon addition of magnesium sulfate. It is apparent that the lipoproteins altered extensively by treatment with phospholipase A retain many characteristic properties of native low density lipoproteins. Fatty acids, but not lysolecithin, released by the action of phospholipase A interfered with the formation of insoluble complex; this interference was due to association of the fatty acids with the lipoproteins. With increases in the concentration of the associated fatty acids, the amounts of magnesium ion required for the conversion of soluble complex to insoluble complex increased progressively. Charge interaction is evidently of paramount importance in the formation of sulfated polysaccharide-lipoprotein complexes.

  1. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  2. Membrane receptors for very low density lipoprotein (VLDL) inhibitor of lymphocyte proliferation

    International Nuclear Information System (INIS)

    Yi, P.I.; Beck, G.; Zucker, S.

    1981-01-01

    Physiologic concentrations of human plasma very low density lipoproteins inhibit the DNA synthesis of lymphocytes stimulated by allogeneic cells or lectins. In this report reachers have compared the effects of isolated lipoproteins [very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)] and lipoprotein-depleted plasma (LDP) on DNA synthesis by phytohemagglutinin-stimulated human lymphocytes. The relative potency for the inhibition of lymphocyte proliferation was VLDL greater than LDL greater than HDL greater than LDP. Fifty percent inhibition of DNA synthesis was observed at a VLDL protein concentration of 1.5--2.0 microgram/ml. Researchers have further demonstrated the presence of specific receptors for VLDL on human lymphocytes. Native VLDL was more effective than LDL in competing for 125I-VLDL binding sites. Subsequent to binding to lymphocytes, 125I-VLDL was internalized and degraded to acid-soluble products. Based on a Scatchard analysis of VLDL binding at 4 degrees C, the number of VLDL receptors per lymphocyte was estimated at 28,000 +/- 1300. Based on an estimated mean binding affinity for the VLDL receptor complex at half saturation of approximately 8.8 X 10(7) liter/mole, it is estimated that 91% of lymphocyte VLDL receptors are occupied at physiologic VLDL concentrations in blood. Although the immune regulatory role of plasma lipoproteins is uncertain, researchers suggest tha VLDL and LDL-In may maintain circulating blood lymphocytes in a nonproliferative state via their respective cell receptor mechanisms

  3. Axisymmetric nozzles with chamfered contraction

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2017-01-01

    Roč. 263, August (2017), s. 147-158 ISSN 0924-4247 Institutional support: RVO:61388998 Keywords : nozzles * chamfering * invariant Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S0924424716310329/1-s2.0-S0924424716310329-main.pdf?_tid=f953dc4c-873c-11e7-b8d0-00000aacb35d&acdnat=1503408341_51527a384c272a3c4e8f43e6046d789d

  4. Thermal-Hydraulic Integral Effect Test with the ATLS for Investigation on CEDM Penetration Nozzle Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoungho; Seokcho; Park, Hyunsik; Choi, Namhyun; Park, Yusun; Kim, Jongrok; Bae, Byounguhn; Kim, Yeonsik; Choi, Kiyong; Song, Chulhwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this study, thermal-hydraulic integral effect test with the ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation) was performed for simulating a failure of CEDM penetration nozzle. The main objectives of the present test were not only to provide physical insight into the system response during a failure of CEDM penetration nozzle but also to establish an integral effect test database for the validation of the safety analysis codes. Furthermore, present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3. Thermal-hydraulic integral effect test with the ATLAS was performed for simulating a failure of CEDM penetration nozzle. Failure of two penetration nozzles of the CEDM in the APR1400 was simulated. Initial and boundary conditions were determined with respect to the reference conditions of the APR1400. However, with an aim of corresponding to the YGN-3 situation, the safety injection water was supplied via CLI mode. Compared to the cold leg break SBLOCA, the consequences of the event were milder in terms of a loop seal clearance, break flow rate, collapsed water level, and PCT. This could be mainly attributed to the small break flow rate in case of the failure in the RPV upper head. Present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3.

  5. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    Science.gov (United States)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  6. Black hole acoustics in the minimal geometric deformation of a de Laval nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)

    2017-05-15

    The correspondence between sound waves, in a de Laval propelling nozzle, and quasinormal modes emitted by brane-world black holes deformed by a 5D bulk Weyl fluid are here explored and scrutinized. The analysis of sound waves patterns in a de Laval nozzle in the laboratory, reciprocally, is here shown to provide relevant data about the 5D bulk Weyl fluid and its on-brane projection, comprised by the minimal geometrically deformed compact stellar distribution on the brane. Acoustic perturbations of the gas fluid flow in the de Laval nozzle are proved to coincide with the quasinormal modes of black holes solutions deformed by the 5D Weyl fluid, in the geometric deformation procedure. Hence, in a phenomenological Eoetvoes-Friedmann fluid brane-world model, the realistic shape of a de Laval nozzle is derived and its consequences studied. (orig.)

  7. Cavitation inception in nozzle-plate and wire mesh pressure droppers in water and sodium

    International Nuclear Information System (INIS)

    Collinson, A.E.

    1976-01-01

    Cavitation tests on multi-hole nozzle plates and wire meshes approximately 100mm diameter in water at 20 deg C and sodium at 300 deg C are described. These pressure dropping elements were mounted in recirculating loops where cavitation was induced by gradually lowering the back-ground pressure at constant flow. Cavitation was detected acoustically using wall mounted piezoelectric microphones, the signal being displayed on a ratemeter recording individual cavitation events. For nozzle plates, cavitation started intermittently as the pressure was lowered, the noise level suddenly increasing at a critical cavitation number sigma. For meshes the intermittent region was absent. Values of sigma for nozzles and meshes were similar in water and sodium for the conditions prevailing during the tests. It was apparent that cavitation took place on the axes of vortices both in the free stream and close to nozzle curved surfaces

  8. A Comparative Study of Nozzle/Diffuser Micropumps with Novel Valves

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Shyu

    2012-02-01

    Full Text Available This study conducts an experimental study concerning the improvement of nozzle/diffuser micropump design using some novel no-moving-part valves. A total of three micropumps, including two enhancement structures having two-fin or obstacle structure and one conventional micro nozzle/diffuser design, are made and tested in this study. It is found that dramatic increase of the pressure drops across the designed micro nozzles/diffusers are seen when the obstacle or fin structure is added. The resultant maximum flow rates are 47.07 mm3/s and 53.39 mm3/s, respectively, for the conventional micro nozzle/diffuser and the added two-fin structure in micro nozzle/diffuser operated at a frequency of 400 Hz. Yet the mass flow rate for two-fin design surpasses that of conventional one when the frequency is below 425 Hz but the trend is reversed with a further increase of frequency. This is because the maximum efficiency ratio improvement for added two-fin is appreciably higher than the other design at a lower operating frequency. In the meantime, despite the efficiency ratio of the obstacle structure also reveals a similar trend as that of two-fin design, its significant pressure drop (flow resistance had offset its superiority at low operating frequency, thereby leading to a lesser flow rate throughout the test range.

  9. Prediction of the Inlet Nozzle Velocity Profiles for the CANDU-6 Moderator Analysis

    International Nuclear Information System (INIS)

    Yoon, Churl; Park, Joo Hwan

    2006-01-01

    For the moderator analysis of the CANDU reactors in Korea, predicting local moderator subcooling in the Calandria vessels is one of the main concerns for the estimation of heat sink capability of moderator under LOCA transients. The moderator circulation pattern is determined by the combined forces of the inlet jet momentum and the buoyancy flow. Even though the inlet boundary condition plays an important role in determining the moderator circulations, no measured data of detailed inlet velocity profiles is available. The purpose of this study is to produce the velocity profiles at the inlet nozzles by a CFD simulation. To produce the velocity vector fields at the inlet nozzle surfaces, the internal flows in the nozzle assembly were simulated by using a commercial CFD code, CFX-5.7. In the reference, the analytical capability of CFX-5.7 had been estimated by a validation of the CFD code against available experimental data for separate flow phenomena. Various turbulence models and grid spacing had been also tested. In the following section, the interface treatment between the computational domains would be explained. In section 3, the inlet nozzle flow through the CANDU moderator nozzle assembly was predicted by using the obtained technology of the CFD simulation

  10. Pengaruh Jarak dan Posisi Nozzle terhadap Daya Turbin Pelton

    OpenAIRE

    Kurniawan, Yani; Pane, Erlanda Augupta; Ismail, Ismail

    2017-01-01

    Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position o...

  11. Pengaruh Jarak dan Posisi Nozzle Terhadap Daya Turbin Pelton

    OpenAIRE

    Yani Kurniawan; Erlanda Augupta Pane; Ismail

    2017-01-01

    Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position o...

  12. Fluorine-18 radiolabeling of low-density lipoproteins: a potential approach for characterization and differentiation of metabolism of native and oxidized low-density lipoproteins in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Pietzsch, Jens [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Bergmann, Ralf [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Rode, Katrin [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Hultsch, Christina [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Pawelke, Beate [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Wuest, Frank [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Hoff, Joerg van den [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany)

    2004-11-01

    Oxidative modification of low-density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Assessing the metabolic fate of oxidized LDL (oxLDL) in vivo with radiotracer techniques is hindered by the lack of suitable sensitive and specific radiolabeling methods. We evaluated an improved methodology based on the radiolabeling of native LDL (nLDL) and oxLDL with the positron emitter fluorine-18 ({sup 18}F) by conjugation with N-succinimidyl-4-[{sup 18}F]fluorobenzoate ([{sup 18}F]SFB). We investigated whether radiolabeling of LDL induces adverse structural modifications. Results suggest that radiolabeling of both nLDL and oxLDL using [{sup 18}F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively. Thus, radiolabeling of LDL using [{sup 18}F]SFB could prove to be a promising approach for studying the kinetics of oxLDL in vivo.

  13. Common low-density lipoprotein receptor p.G116S variant has a large effect on plasma low-density lipoprotein cholesterol in circumpolar inuit populations.

    Science.gov (United States)

    Dubé, Joseph B; Wang, Jian; Cao, Henian; McIntyre, Adam D; Johansen, Christopher T; Hopkins, Scarlett E; Stringer, Randa; Hosseinzadeh, Siyavash; Kennedy, Brooke A; Ban, Matthew R; Young, T Kue; Connelly, Philip W; Dewailly, Eric; Bjerregaard, Peter; Boyer, Bert B; Hegele, Robert A

    2015-02-01

    Inuit are considered to be vulnerable to cardiovascular disease because their lifestyles are becoming more Westernized. During sequence analysis of Inuit individuals at extremes of lipid traits, we identified 2 nonsynonymous variants in low-density lipoprotein receptor (LDLR), namely p.G116S and p.R730W. Genotyping these variants in 3324 Inuit from Alaska, Canada, and Greenland showed they were common, with allele frequencies 10% to 15%. Only p.G116S was associated with dyslipidemia: the increase in LDL cholesterol was 0.54 mmol/L (20.9 mg/dL) per allele (P=5.6×10(-49)), which was >3× larger than the largest effect sizes seen with other common variants in other populations. Carriers of p.G116S had a 3.02-fold increased risk of hypercholesterolemia (95% confidence interval, 2.34-3.90; P=1.7×10(-17)), but did not have classical familial hypercholesterolemia. In vitro, p.G116S showed 60% reduced ligand-binding activity compared with wild-type receptor. In contrast, p.R730W was associated with neither LDL cholesterol level nor altered in vitro activity. LDLR p.G116S is thus unique: a common dysfunctional variant in Inuit whose large effect on LDL cholesterol may have public health implications. © 2014 American Heart Association, Inc.

  14. Palo Verde Unit 3 BMI nozzle modification

    International Nuclear Information System (INIS)

    Waskey, D.

    2015-01-01

    The 61 BMI (Bottom Mount Instrumentation) nozzles of the unit 3 of the Palo Verde plant have been examined through ASME Code Case N722. The nozzle 3 was the only one with leakage noted. The ultrasound testing results are characteristic of PWSCC (Primary Water Stress Corrosion Cracking). The initiation likely occurred at a weld defect which was exposed to the primary water environment resulting in PWSCC. All other nozzles (60) showed no unacceptable indications. Concerning nozzle 3 one crack in J-groove weld connected large defect to primary water. An environmental model has been used to simulate and optimize the repair. The AREVA crew was on site 18 days after contract award and the job was completed in 12 days, 30 hours ahead of baseline schedule. This series of slides describes the examination of the BMI nozzles, the repair steps, and alternative design concepts

  15. Traumatic interhemispheric subdural hematoma extending above the tentorium demonstrated as a low-density mass

    International Nuclear Information System (INIS)

    Katagiri, Kunihiko; Takaki, Tadahiro; Fukushima, Takeo; Tomonaga, Masamichi

    1984-01-01

    This report presents a case of traumatic interhemispheric subdural hematoma extending above the right tentorium, which showed a low-density mass in the CT scan and which brought up a problem of differential diagnosis from subdural empyema because the patient had a long history of bilateral chronic otitis media. The 47-year-old man fell downstairs while drunk; this accident was followed by an increasing member of incidents of headache and vomiting, and he was admitted on the 15th day after the episode. Upon admission, his mental state was slightly dull; a neurologic examination revealed a mild choked disc and increased DTRs on the left. There was otorrhea and hearing difficulty on the left side, and his blood pressure was slightly elevated (170/110 mmHg). The laboratory data were negative except for an increased blood-sedimentation ratio (50/80 mm) and 1 + CRP. The precontrast CT scan demonstrated a lentiform low-density mass in the posterior part of the interhemispheric fissure extending above the right tentorium, with an unusual mass effect for the volume and a location of this mass. The postcontrast CT scan showed a marked enhancement of the falx and the tentorium around the mass. Furthermore, the pneumatization of the mastoid cells was markedly decreased. An operation was performed following the day of admission; when subdural hematoma was confirmed, it was evacuated and irrigated. The postoperative course was excellent, and the low-density mass had disappeared by the time of a follow-up CT scan 19 days after the operation. (J.P.N.)

  16. Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

    2006-06-14

    This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

  17. Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage

    Science.gov (United States)

    Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo

    2005-01-01

    Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.

  18. Degradation of low-density polyethylene in the presence of water and deuterium oxide

    International Nuclear Information System (INIS)

    Sedgwick, R.D.; Al-Sultan, Y.Y.; Abushihada, A.M.

    1981-01-01

    The degradation of low-density polyethylene in the presence of water as the degradative agent was studied at a temperature of 450 0 C and a pressure greater than 160 atm. The experimental work was conducted in an autoclave of 333-mL capacity. The results indicate the presence of paraffins, olefines, dienes, and aromatics in the degradation products. The occurrence of aromatics in the products demonstrates the importance of this degradation procedure for obtaining these valuable materials. The present work (Part 1) is believed to be the first publication to discuss the production of aromatics from polyethylenes degradation

  19. Preliminary characterization in the development of the nano composite low density polyethylene with attapulgite clay

    International Nuclear Information System (INIS)

    Domingos, Luanda G.; Rego, Jose K.M.A. do; Ito, Edson N.; Acchar, Wilson

    2011-01-01

    The aim of this study was a preliminary study of the physical, thermal and rheological properties of the materials to be used in the development of nano composite low density polyethylene (LDPE) with Brazilian attapulgite clay (ATP), with and without the use of a compatibilizing agent interfacial, polyethylene grafted with maleic anhydride (PE-g-MAH). The materials were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and torque rheometry. The materials were characterized and potentially could be developed polymeric nano composites with technological applications using attapulgite fibers in the nanometer scale. (author)

  20. Transvascular low-density lipoprotein transport in patients with diabetes mellitus (type 2)

    DEFF Research Database (Denmark)

    Kornerup, Karen; Nordestgaard, Børge Grønne; Feldt-Rasmussen, Bo

    2002-01-01

    accumulation and, thus, atherosclerosis. METHODS AND RESULTS: We developed an in vivo method for measurement of transvascular transport of low density lipoprotein (LDL) and applied it in 16 patients with maturity-onset diabetes (type 2) and 29 healthy control subjects. Autologous 131I-labeled LDL...... plasma insulin levels in diabetic patients. CONCLUSIONS: Transvascular LDL transport may be increased in patients with type 2 diabetes. This suggests that lipoprotein flux into the arterial wall is increased in people with diabetes, possibly explaining the accelerated development of atherosclerosis....... in patients with diabetes and control subjects, respectively (P2.5%/h and 5.3+/-1.6%/h (P

  1. Low-density silicon thin films for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Demirkan, M.T., E-mail: tmdemirkan@ualr.edu [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Materials Science and Engineering, Gebze Technical University, Kocaeli (Turkey); Trahey, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2016-02-01

    Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm{sup 3} (film porosity ~ 3%) down to 1.64 g/cm{sup 3} (~ 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm{sup 3} suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to ~ 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm{sup 3} (~ 15% porosity) and 1.77 g/cm{sup 3} (~ 24% porosity) got worse resulting in only ~ 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm{sup 3} (~ 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values ~ 650 mAh/g at 100th cycle with coulombic efficiencies of > 98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. - Highlights: • Low density Si thin films were studied as Li-ion battery anodes. • Low density Si films were fabricated by magnetron sputter deposition. • Density of Si films reduced down to as low as ~ 1.64 g/cm{sup 3} with a porosity of ~ 30% • Low density Si films presented superior mechanical properties during cycling.

  2. Enzymatic Modification of Plasma Low Density Lipoproteins in Rabbits: A Potential Treatment for Hypercholesterolemia

    Science.gov (United States)

    Labeque, Regine; Mullon, Claudy J. P.; Ferreira, Joao Paulo M.; Lees, Robert S.; Langer, Robert

    1993-04-01

    Phospholipase A_2 (EC 3.1.1.4) hydrolyzes certain phospholipids of low density lipoprotein (LDL). Plasma clearance of phospholipase A_2-modified human LDL is up to 17 times faster than that of native human LDL in hypercholesterolemic rabbits. Modification of blood lipoproteins of hypercholesterolemic rabbits was performed by using an extracorporeal circuit containing immobilized phospholipase A_2. After 90-min treatments, nearly 30% decreases in plasma cholesterol concentrations were observed. Erythrocyte, leukocyte, and platelet counts showed no net change after treatment. This technique does not require any fluid replacement or sorbent regeneration and offers a potential approach for lowering serum cholesterol and LDL levels.

  3. Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation

    Science.gov (United States)

    Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie

    2009-01-01

    In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.

  4. Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.

    Science.gov (United States)

    Djordjevic, Ivan B

    2010-05-01

    I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.

  5. Langmuir-Blodgett films of polyaniline for low density lipoprotein detection

    Energy Technology Data Exchange (ETDEWEB)

    Matharu, Zimple [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Sumana, G. [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

    2010-11-30

    Langmuir-Blodgett (LB) films of polyaniline (PANI) were utilized for the fabrication of impedimetric immunosensor for detection of human plasma low density lipoprotein (LDL) by immobilizing anti-apolipoprotein B (AAB) via EDC-NHS coupling. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. AAB/PANI-SA LB immunoelectrodes studied by EIS spectroscopy revealed detection of LDL in the wide range of 0.018 {mu}M (6 mg/dl) to 0.39 {mu}M (130 mg/dl), covering the physiological range in blood, with a sensitivity of 11.25 k{Omega} {mu}M{sup -1}.

  6. Langmuir-Blodgett films of polyaniline for low density lipoprotein detection

    International Nuclear Information System (INIS)

    Matharu, Zimple; Sumana, G.; Gupta, Vinay; Malhotra, B.D.

    2010-01-01

    Langmuir-Blodgett (LB) films of polyaniline (PANI) were utilized for the fabrication of impedimetric immunosensor for detection of human plasma low density lipoprotein (LDL) by immobilizing anti-apolipoprotein B (AAB) via EDC-NHS coupling. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. AAB/PANI-SA LB immunoelectrodes studied by EIS spectroscopy revealed detection of LDL in the wide range of 0.018 μM (6 mg/dl) to 0.39 μM (130 mg/dl), covering the physiological range in blood, with a sensitivity of 11.25 kΩ μM -1 .

  7. Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene

    OpenAIRE

    Jaerger,Silvia; Zimmermann,Ademir; Zawadzki,Sonia Faria; Wypych,Fernando; Amico,Sandro Campos

    2014-01-01

    In this study, polymer composites using low-density polyethylene (LDPE) and layered hydroxide salts (LHS) were synthesized. The following compositions of LHS were obtained Zn5(OH)8(An-)2/n.yH2O, where A was varied in order to obtain hydrophilic (A = NO3 -) or hydrophobic (A = DDS- – dodecyl sulfate or DBS- – dodecyl benzene sulfonate). Synthesis was carried out by co-precipitation in alkaline medium and drying, being followed by characterization via Fourier-transform infrared spectroscopy, th...

  8. Study of the effect of gamma irradiation on carbon black loaded low-density polyethylene films

    International Nuclear Information System (INIS)

    Salem, M.A.; Hussein, A.; El-Ahdal, M.A.

    2003-01-01

    The effect of gamma irradiation on the tensile and physico-chemical properties of low-density polyethylene (LDPE) films loaded with different concentrations of carbon black (C.B) has been studied. The results showed that the behavior of the samples during gamma irradiation is complicated and this may be due to scission and the interaction between oxidation and crosslinking processes. The tensile properties are modified by the presence of carbon black. Film sample containing 7% C.B was found to exhibit a nearly stabilized tensile behavior with radiation dose, which allows to use this formulation in packaging for food sterilization and in preservation of weak cobalt-gamma sources. (author)

  9. Optimized Min-Sum Decoding Algorithm for Low Density Parity Check Codes

    OpenAIRE

    Mohammad Rakibul Islam; Dewan Siam Shafiullah; Muhammad Mostafa Amir Faisal; Imran Rahman

    2011-01-01

    Low Density Parity Check (LDPC) code approaches Shannon–limit performance for binary field and long code lengths. However, performance of binary LDPC code is degraded when the code word length is small. An optimized min-sum algorithm for LDPC code is proposed in this paper. In this algorithm unlike other decoding methods, an optimization factor has been introduced in both check node and bit node of the Min-sum algorithm. The optimization factor is obtained before decoding program, and the sam...

  10. Social Inclusion Predicts Lower Blood Glucose and Low-Density Lipoproteins in Healthy Adults.

    Science.gov (United States)

    Floyd, Kory; Veksler, Alice E; McEwan, Bree; Hesse, Colin; Boren, Justin P; Dinsmore, Dana R; Pavlich, Corey A

    2017-08-01

    Loneliness has been shown to have direct effects on one's personal well-being. Specifically, a greater feeling of loneliness is associated with negative mental health outcomes, negative health behaviors, and an increased likelihood of premature mortality. Using the neuroendocrine hypothesis, we expected social inclusion to predict decreases in both blood glucose levels and low-density lipoproteins (LDLs) and increases in high-density lipoproteins (HDLs). Fifty-two healthy adults provided self-report data for social inclusion and blood samples for hematological tests. Results indicated that higher social inclusion predicted lower levels of blood glucose and LDL, but had no effect on HDL. Implications for theory and practice are discussed.

  11. Assessment of the Resistance to External Factors of Low-Density Polyethylene Modified with Natural Fillers

    Directory of Open Access Journals (Sweden)

    Karolina Głogowska

    2017-12-01

    Full Text Available The study reports the results of investigation of basic processing and thermal properties of low-density polyethylene modified with two types of natural filler: wheat bran and pumpkin seed hulls, their content ranging from 5% to 15% relative to the matrix. In addition, the physical properties of the produced granulates are determined, i.e. the relationship between their density and the applied contents of the tested fillers. Furthermore, the study reports the results concerning the longitudinal shrinkage, abrasion resistance and cold water absorption of injection molded tensile specimens.

  12. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets

    DEFF Research Database (Denmark)

    Carotenuto, G.; De Nicola, S.; Palomba, M.

    2012-01-01

    The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change...... in the microscopic structure of the polymer. However, on a macroscopic scale, GNPs limit the mobility of the polymer chains, resulting in an increase in stiffness for the final composite. Orientation of GNPs within the LDPE matrix is also an important issue that affects mechanical properties and it has been...

  13. Ion cyclotron modes in a low density plasma cavity. Part I: Theory

    International Nuclear Information System (INIS)

    Sawley, M.L.

    1990-12-01

    Ion cyclotron modes excited in a low density, cylindrical plasma cavity using an external inductive antenna are investigated theoretically. These modes, which have a long parallel wavelength, exhibit a strong electrostatic character and are only weakly coupled to the antenna fields. It is shown that, despite the low frequency considered, electron dynamics play a dominant role via the effects of both Landau damping and electron inertia. The characteristics of the wavefields associated with these modes, relevant to an experimental investigation, are described. (author) 8 figs., 1 tab., 10 refs

  14. A study on bifrontal extracerebral low density areas of CT in infancy

    International Nuclear Information System (INIS)

    Nagaura, Tomoaki; Sumi, Kiyoomi

    1983-01-01

    Bifrontal extracerebral low density area (BELD) was observed in 38 (39.6 %) of 96 infants aged 1 to 22 months (a mean of 6.2 months) at a particulary high rate in 2- -- 6-mos.-olds. They consisted of 15/19 cases of infantile spasm/epilepsy, 0/5 of simple febrile convulsion, 7/9 of psychomotor retardation and 0/5 simple premature babies. BELD disappeared by a mean age of 14 months in cases without psychomotor retardation, but its disappearance tended to be delayed in retarded infants. BELD seemed to indicate a type of brain injury, rather than a simple physiologic phenomenon. (Chiba, N)

  15. Calculations of the nozzle coefficient of discharge of wet steam turbine stages

    International Nuclear Information System (INIS)

    Jinling, Z.; Yinian, C.

    1989-01-01

    A method is presented for calculating the coefficient of discharge of wet steam turbine nozzles. The theoretical formulation of the problem is rigorously in accordance with the theory of two-phase wet steam expansion flow through steam turbine nozzles. The computational values are plotted as sets of curves in accordance with orthogonality test principles. They agree satisfactorily both with historical empirical data and the most recent experimental data obtained in the wet steam two-phase flow laboratory of Xian Jiaotong University. (author)

  16. Thrust characteristics of a series of convergent-divergent exhaust nozzles at subsonic and supersonic flight speeds

    Science.gov (United States)

    Fradenburgh, Evan A; Gorton, Gerald C; Beke, Andrew

    1954-01-01

    An experimental investigation of a series of four convergent-divergent exhaust nozzles was conducted in the Lewis 8-by-6 foot supersonic wind tunnel at Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a range of nozzle pressure ratios. The thrust characteristics of these nozzles were determined by a pressure-integration technique. From a thrust standpoint, a nozzle designed to give uniform parallel flow at the exit had no advantage over the simple geometric design with conical convergent and divergent sections. The rapid-divergent nozzles might be competitive with the more gradual-divergent nozzles since the relatively short length of these nozzles would be advantageous from a weight standpoint and might result in smaller thrust losses due to friction. The thrusts, with friction losses neglected, were predicted satisfactorily by one-dimensional theory for the nozzles with relatively gradual divergence. The thrusts of the rapid-divergent designs were several percentages below the theoretical values at the design pressure ratio or above, while at low pressure ratios there was a considerable effect of free-stream Mach number, with thrusts considerably above theoretical values at subsonic speeds and somewhat above theoretical values at supersonic speeds. This Mach numb effect appeared to be related to the variation of the model base pressure with free-stream Mach number.

  17. Thrust Augmented Nozzle for a Hybrid Rocket with a Helical Fuel Port

    Science.gov (United States)

    Marshall, Joel H.

    A thrust augmented nozzle for hybrid rocket systems is investigated. The design lever-ages 3-D additive manufacturing to embed a helical fuel port into the thrust chamber of a hybrid rocket burning gaseous oxygen and ABS plastic as propellants. The helical port significantly increases how quickly the fuel burns, resulting in a fuel-rich exhaust exiting the nozzle. When a secondary gaseous oxygen flow is injected into the nozzle downstream of the throat, all of the remaining unburned fuel in the plume spontaneously ignites. This secondary reaction produces additional high pressure gases that are captured by the nozzle and significantly increases the motor's performance. Secondary injection and combustion allows a high expansion ratio (area of the nozzle exit divided by area of the throat) to be effective at low altitudes where there would normally be significantly flow separation and possibly an embedded shock wave due. The result is a 15 percent increase in produced thrust level with no loss in engine efficiency due to secondary injection. Core flow efficiency was increased significantly. Control tests performed using cylindrical fuel ports with secondary injection, and helical fuel ports without secondary injection did not exhibit this performance increase. Clearly, both the fuel-rich plume and secondary injection are essential features allowing the hybrid thrust augmentation to occur. Techniques for better design optimization are discussed.

  18. Designs of contraction nozzle and concave back-wall for IFMIF target

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Mizuho E-mail: ida@ifmif.tokai.jaeri.go.jp; Nakamura, Hideo; Nakamura, Hiroo; Takeuchi, Hiroshi

    2004-02-01

    For the liquid lithium flow target of International Fusion Materials Irradiation Facility (IFMIF), the double reducer (two-step contraction) nozzle with a high-contraction ratio of 10 which generated high-speed uniform jet flows up to 20 m/s was proposed. Multi-dimensional hydraulic analyses were carried out to verify the performance of the proposed nozzle. The analytical results showed that the double reducer nozzle would well generate high-speed uniform flow, while one-step contraction nozzle generated non-uniform flow and resulted in flow thickening at the beam footprint. For the target design, the range of the concave back-wall radius with no lithium boiling due to the centrifugal force and proper component arrangement in the irradiation test cell was determined by the thermal-hydraulic analysis of a free-surface flow. It was verified that the back-wall radius from 0.25 to 10 m was acceptable in the velocity range of 10-20 m/s.

  19. Designs of contraction nozzle and concave back-wall for IFMIF target

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hideo; Nakamura, Hiroo; Takeuchi, Hiroshi

    2004-01-01

    For the liquid lithium flow target of International Fusion Materials Irradiation Facility (IFMIF), the double reducer (two-step contraction) nozzle with a high-contraction ratio of 10 which generated high-speed uniform jet flows up to 20 m/s was proposed. Multi-dimensional hydraulic analyses were carried out to verify the performance of the proposed nozzle. The analytical results showed that the double reducer nozzle would well generate high-speed uniform flow, while one-step contraction nozzle generated non-uniform flow and resulted in flow thickening at the beam footprint. For the target design, the range of the concave back-wall radius with no lithium boiling due to the centrifugal force and proper component arrangement in the irradiation test cell was determined by the thermal-hydraulic analysis of a free-surface flow. It was verified that the back-wall radius from 0.25 to 10 m was acceptable in the velocity range of 10-20 m/s

  20. Dose response evaluation of a low-density normoxic polymer gel dosimeter using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, P [Medical Radiation Physics, Department of Clinical Sciences, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Department of Radiation Physics, Finsen Centre, Copenhagen University Hospital, DK-2100 Copenhagen (Denmark); Karlsson, A [Medical Radiation Physics, Department of Clinical Sciences, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Wieslander, E [Medical Radiation Physics, Department of Clinical Sciences, Lund University Hospital, SE-221 85 Lund (Sweden); Gustavsson, H [Medical Radiation Physics, Department of Clinical Sciences, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Baeck, S A J [Medical Radiation Physics, Department of Clinical Sciences, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden)

    2006-02-21

    A low-density ({approx}0.6 g cm{sup -3}) normoxic polymer gel, containing the antioxidant tetrakis (hydroxymethyl) phosponium (THP), has been investigated with respect to basic absorbed dose response characteristics. The low density was obtained by mixing the gel with expanded polystyrene spheres. The depth dose data for 6 and 18 MV photons were compared with Monte Carlo calculations. A large volume phantom was irradiated in order to study the 3D dose distribution from a 6 MV field. Evaluation of the gel was carried out using magnetic resonance imaging. An approximately linear response was obtained for 1/T2 versus dose in the dose range of 2 to 8 Gy. A small decrease in the dose response was observed for increasing concentrations of THP. A good agreement between measured and Monte Carlo calculated data was obained, both for test tubes and the larger 3D phantom. It was shown that a normoxic polymer gel with a reduced density could be obtained by adding expanded polystyrene spheres. In order to get reliable results, it is very important to have a uniform distribution of the gel and expanded polystyrene spheres in the phantom volume.

  1. Dose response evaluation of a low-density normoxic polymer gel dosimeter using MRI

    Science.gov (United States)

    Haraldsson, P.; Karlsson, A.; Wieslander, E.; Gustavsson, H.; Bäck, S. Å. J.

    2006-02-01

    A low-density (~0.6 g cm-3) normoxic polymer gel, containing the antioxidant tetrakis (hydroxymethyl) phosponium (THP), has been investigated with respect to basic absorbed dose response characteristics. The low density was obtained by mixing the gel with expanded polystyrene spheres. The depth dose data for 6 and 18 MV photons were compared with Monte Carlo calculations. A large volume phantom was irradiated in order to study the 3D dose distribution from a 6 MV field. Evaluation of the gel was carried out using magnetic resonance imaging. An approximately linear response was obtained for 1/T2 versus dose in the dose range of 2 to 8 Gy. A small decrease in the dose response was observed for increasing concentrations of THP. A good agreement between measured and Monte Carlo calculated data was obained, both for test tubes and the larger 3D phantom. It was shown that a normoxic polymer gel with a reduced density could be obtained by adding expanded polystyrene spheres. In order to get reliable results, it is very important to have a uniform distribution of the gel and expanded polystyrene spheres in the phantom volume.

  2. Uniform electron gases. III. Low-density gases on three-dimensional spheres

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au; Loos, Pierre-François, E-mail: pf.loos@anu.edu.au [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)

    2015-08-28

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.

  3. Effects of low-density feeding on elk–fetus contact rates on Wyoming feedgrounds

    Science.gov (United States)

    Creech, Tyler G.; Cross, Paul C.; Scurlock, Brandon M.; Maichak, Eric J.; Rogerson, Jared D.; Henningsen, John C.; Creel, Scott

    2012-01-01

    High seroprevalance for Brucella abortus among elk on Wyoming feedgrounds suggests that supplemental feeding may influence parasite transmission and disease dynamics by altering the rate at which elk contact infectious materials in their environment. We used proximity loggers and video cameras to estimate rates of elk-to-fetus contact (the primary source of brucellosis transmission) during winter supplemental feeding. We compared contact rates during high-density and low-density (LD) feeding treatments that provided the same total amount of food distributed over different areas. Low-density feeding led to >70% reductions in total number of contacts and number of individuals contacting a fetus. Proximity loggers and video cameras provided similar estimates of elk–fetus contact rates. Elk contacted fetuses and random control points equally, suggesting that elk were not attracted to fetuses but encountered them incidentally while feeding. The modeled relationship between contact rate and disease prevalence is nonlinear and LD feeding may result in large reductions in brucellosis prevalence, but this depends on the amount of transmission that occurs on and off feedgrounds.

  4. An intermittency route to global instability in low-density jets

    Science.gov (United States)

    Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.

    2017-11-01

    Above a critical Reynolds number (Re), a low-density jet can become globally unstable, transitioning from a steady state (i.e. a fixed point) to a self-excited oscillatory state (i.e. a limit cycle) via a Hopf bifurcation. In this experimental study, we show that this transition can sometimes involve intermittency. When Re is just slightly above the critical point, intermittent bursts of high-amplitude periodic oscillations emerge amidst a background of low-amplitude aperiodic fluctuations. As Re increases further, these intermittent bursts persist longer in time until they dominate the overall dynamics, causing the jet to transition fully to a periodic limit cycle. We identify this as Type-II Pomeau-Manneville intermittency by quantifying the statistical distribution of the duration of the aperiodic fluctuations at the onset of intermittency. This study shows that the transition to global instability in low-density jets is not always abrupt but can involve an intermediate state with characteristics of both the initial fixed point and the final limit cycle. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  5. Electron beam cross-linking of natural rubber/linear-low density polyethylene blends

    International Nuclear Information System (INIS)

    Ahmad, A.; Mohd, D. H.; Abdullah, I.

    2005-01-01

    Effects of electron beam irradiation on the mechanical properties and morphological structure of natural rubber/linear-low density polyethylene blend was investigated The natural rubber/linear-low density polyethylene blend was prepared by melt blending in a Haake internal mixer at 140 d ig C , rotor speed of 50 rpm, and in 15 min Liquid natural rubber was incorporated into the blend as a compatibilizer Samples in the form of 1 mm sheets were exposed to 50-300 kGy of electron beam irradiation and analyzed for swelling index and gel content, tensile strength, and surface morphology. The result Indicated that gel content and mechanical properties of the samples increased with radiation dosage. The honey-comb structure of the surface morphology in low dosage irradiated samples slowly transformed into a continuous matrix on increasing radiation dose The variation of mechanical and physical properties was due to Increase in cross-linking density in the rubber and plastic phases and rubber-plastic Interaction on irradiation

  6. Protocol for culturing low density pure rat hippocampal neurons supported by mature mixed neuron cultures.

    Science.gov (United States)

    Yang, Qian; Ke, Yini; Luo, Jianhong; Tang, Yang

    2017-02-01

    primary hippocampal neuron cultures allow for subcellular morphological dissection, easy access to drug treatment and electrophysiology analysis of individual neurons, and is therefore an ideal model for the study of neuron physiology. While neuron and glia mixed cultures are relatively easy to prepare, pure neurons are particular hard to culture at low densities which are suitable for morphology studies. This may be due to a lack of neurotrophic factors such as brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and Glial cell line-derived neurotrophic factor (GDNF). In this study we used a two step protocol in which neuron-glia mixed cultures were initially prepared for maturation to support the growth of young neurons plated at very low densities. Our protocol showed that neurotrophic support resulted in physiologically functional hippocampal neurons with larger cell body, increased neurite length and decreased branching and complexity compared to cultures prepared using a conventional method. Our protocol provides a novel way to culture highly uniformed hippocampal neurons for acquiring high quality, neuron based data. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Preferential enrichment of large-sized very low density lipoprotein populations with transferred cholesteryl esters

    International Nuclear Information System (INIS)

    Eisenberg, S.

    1985-01-01

    The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [ 3 H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [ 3 H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [ 3 H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles

  8. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor

    International Nuclear Information System (INIS)

    Gurav, Jyoti L.; Rao, A. Venkateswara; Bangi, Uzma K.H.

    2009-01-01

    In the conventional ambient pressure drying of silica aerogels, tedious repetitive gel washing and solvent exchange steps (∼6 days) are involved. Therefore, in the present studies, we intended to reduce the processing time of TEOS based ambient pressure dried silica aerogels. Solvents such as methanol, hexane and Hexamethyldisilazane (HMDZ) as surface chemical modification agents have been used. To get good quality aerogels in terms of low density, high porosity, high contact angle and low volume shrinkage in less processing time, we varied MeOH/TEOS, HMDZ/TEOS molar ratios, oxalic acid (A) and NH 4 OH (B) concentrations and stirring time from 1 to 27.7, 0.34 to 2.1, 0 to 0.1 M, 0 to 2 M and 15 to 90 min respectively. The transparent and low-density aerogels were obtained for TEOS:MeOH:acidic H 2 O:basic H 2 O:HMDZ molar ratio of 1:16.5:0.81:0.50:0.681 respectively. The thermal stability and hydrophobicity have been confirmed with Thermogravimetric and Differential Thermal (TG-DT) analyses and Fourier Transform Infrared Spectroscopy. Microstructural study was carried out by Scanning Electron Microscopy (SEM)

  9. DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2017-06-01

    Full Text Available The exponential increase of plastic production produces 100 million tonnes of waste plastics annually which could be converted into hydrocarbon fuels in a thermal cracking process called pyrolysis. In this research work, a direct current (DC thermal plasma circuit is designed and used for conversion of low density polyethylene (LDPE into diesel oil in a laboratory scale pyrolysis reactor. The experimental setup uses a 270 W DC thermal plasma at operating temperatures in the range of 625 °C to 860 °C for a low density polyethylene (LDPE pyrolysis reaction at pressure = −0.95, temperature = 550 °C with τ = 30 min at a constant heating rate of 7.8 °C/min. The experimental setup consists of a vacuum pump, closed system vessel, direct current (DC plasma circuit, and a k-type thermocouple placed a few millimeters from the reactant sample. The hydrocarbon products are condensed to diesel oil and analyzed using flame ionization detector (FID gas chromatography. The analysis shows 87.5% diesel oil, 1,4-dichlorobenzene (Surr, benzene, ethylbenzene and traces of toluene and xylene. The direct current (DC thermal plasma achieves 56.9 wt. % of diesel range oil (DRO, 37.8 wt. % gaseous products and minimal tar production. The direct current (DC thermal plasma shows reliability, better temperature control, and high thermal performance as well as the ability to work for long operation periods.

  10. Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering

    Science.gov (United States)

    Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.

    2016-12-01

    Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.

  11. Acetaldehyde binding increases the catabolism of rat serum low-density lipoproteins

    International Nuclear Information System (INIS)

    Savolainen, M.J.; Baraona, E.; Lieber, C.S.

    1987-01-01

    Acetaldehyde was found to form adducts with rat serum lipoproteins. The binding of [ 14 C]acetaldehyde to lipoproteins was studied at low concentrations which are known to exist during ethanol oxidation. The amount of lipoprotein adducts was a linear function of acetaldehyde concentration up to 250 μM. Incubation of rat plasma low-density lipoproteins (LDL) with 200 μM acetaldehyde increased the disappearance rate of the 3 H-label from the cholesterol ester moiety of LDL injected into normal rats. The data show that even low concentrations of acetaldehyde are capable of affecting LDL metabolism. These findings may provide an explanation for the low concentrations of serum LDL in alcoholics. The alcohol-induced hyperlipidemia includes either a lack of increase or a decrease in the low-density lipoprotein (LDL) concentration, but the underlying mechanism is not known. It has been shown previously, that the acetylation of lysine residues of LDL apoprotein (apoB) by acetanhydride leads to rapid uptake of LDL particles by macrophages through a non-LDL receptor pathway. Since acetaldehyde, the first toxic metabolite of ethanol, is a chemically reactive compound capable of binding to proteins, they tested whether acetaldehyde forms adducts with serum lipoproteins and subsequently alters the catabolism of LDL. 19 references, 2 figures, 1 table

  12. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    Science.gov (United States)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  13. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  14. Inverse estimation of heat flux and temperature on nozzle throat-insert inner contour

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tsung-Chien [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Ta-Hsi, Tao-Yuan 33509 (China); Liu, Chiun-Chien [Chung Shan Institute of Science and Technology, Lung-Tan, Tao-Yuan 32526 (China)

    2008-07-01

    During the missile flight, the jet flow with high temperature comes from the heat flux of propellant burning. An enormous heat flux from the nozzle throat-insert inner contour conducted into the nozzle shell will degrade the material strength of nozzle shell and reduce the nozzle thrust efficiency. In this paper, an on-line inverse method based on the input estimation method combined with the finite-element scheme is proposed to inversely estimate the unknown heat flux on the nozzle throat-insert inner contour and the inner wall temperature by applying the temperature measurements of the nozzle throat-insert. The finite-element scheme can easily define the irregularly shaped boundary. The superior capability of the proposed method is demonstrated in two major time-varying estimation cases. The computational results show that the proposed method has good estimation performance and highly facilitates the practical implementation. An effective analytical method can be offered to increase the operation reliability and thermal-resistance layer design in the solid rocket motor. (author)

  15. Applicability of fan spray nozzles to stripping insoluble gases from viscous liquids

    International Nuclear Information System (INIS)

    Tseng, H.H.; Johnson, E.F.

    1983-08-01

    Fan spray nozzle stripping appears to be a practical technique for separating dilute volatile solutes from nonvolatile solvents. In particular this technique can be used to strip molecular tritium and tritium fluoride at extremely small concentration (in the parts per million range) from molten salts used as blanket materials in a fusion reactor. Under adjusted operating conditions of the fan spray as it leaves the nozzle, a high percentage of the theoretically maximum achievable stripping would take place from the expanding sheet of the fan spray as it leaves the nozzle and before it breaks up. Although the only available experimental data are for aqueous solutions, a new theoretical analysis of the fan spray sheet demonstrates the applicability of this technique to nonaqueous liquids. The equation derived from this analysis relates the theoretically achievable mass transfer efficiency to the properties of the liquid flowing through the fan spray nozzle and to the operating conditions of the nozzle. Any fluid with viscosity higher than or equal to that of water would be expected to follow this equation as long as a fan-shaped sheet is formed under the operating conditions of the nozzle

  16. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  17. Recognition of Porphyromonas gingivalis gingipain epitopes by natural IgM binding to malondialdehyde modified low-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    S Pauliina Turunen

    Full Text Available OBJECTIVE: Increased risk for atherosclerosis is associated with infectious diseases including periodontitis. Natural IgM antibodies recognize pathogen-associated molecular patterns on bacteria, and oxidized lipid and protein epitopes on low-density lipoprotein (LDL and apoptotic cells. We aimed to identify epitopes on periodontal pathogen Porphyromonas gingivalis recognized by natural IgM binding to malondialdehyde (MDA modified LDL. METHODS AND RESULTS: Mouse monoclonal IgM (MDmAb specific for MDA-LDL recognized epitopes on P. gingivalis on flow cytometry and chemiluminescence immunoassays. Immunization of C57BL/6 mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and apoptotic cells. Immunization of LDLR(-/- mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and diminished aortic lipid deposition. On Western blot MDmAb bound to P. gingivalis fragments identified as arginine-specific gingipain (Rgp by mass spectrometry. Recombinant domains of Rgp produced in E. coli were devoid of phosphocholine epitopes but contained epitopes recognized by MDmAb and human serum IgM. Serum IgM levels to P. gingivalis were associated with anti-MDA-LDL levels in humans. CONCLUSION: Gingipain of P. gingivalis is recognized by natural IgM and shares molecular identity with epitopes on MDA-LDL. These findings suggest a role for natural antibodies in the pathogenesis of two related inflammatory diseases, atherosclerosis and periodontitis.

  18. Single Low-Density Lipoprotein Apheresis Does Not Improve Vascular Endothelial Function in Chronically Treated Hypercholesterolemic Patients

    Directory of Open Access Journals (Sweden)

    Kevin D. Ballard

    2016-01-01

    Full Text Available Objective. To investigate vascular endothelial function (VEF responses to a single low-density lipoprotein (LDL apheresis session in hypercholesterolemic patients undergoing chronic treatment. Methods. We measured brachial artery flow-mediated dilation (FMD, plasma lipids, vitamin E (α- and γ-tocopherol, markers of oxidative/nitrative stress (malondialdehyde (MDA and nitro-γ-tocopherol (NGT, and regulators of NO metabolism (arginine (ARG and asymmetric dimethylarginine (ADMA prior to (Pre and immediately following (Post LDL apheresis and at 1, 3, 7, and 14 d Post in 5 hypercholesterolemic patients (52 ± 11 y. Results. Relative to Pre, total cholesterol (7.8±1.5 mmol/L and LDL-cholesterol (6.2±1.2 mmol/L were 61% and 70% lower (P<0.01, respectively, at Post and returned to Pre levels at 14 d. Brachial FMD responses (6.9 ± 3.6% and plasma MDA, ARG, and ADMA concentrations were unaffected by LDL apheresis. Plasma α-tocopherol, γ-tocopherol, and NGT concentrations were 52–69% lower at Post (P<0.01, and α-tocopherol remained 36% lower at 1 d whereas NGT remained 41% lower at d 3. Conclusions. Acute cholesterol reduction by LDL apheresis does not alter VEF, oxidative stress, or NO homeostasis in patients treated chronically for hypercholesterolemia.

  19. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  20. Determine spray droplets on water sensitive paper (WSP) for low pressure deflector nozzle using image J

    Science.gov (United States)

    Sies, M. F.; Madzlan, N. F.; Asmuin, N.; Sadikin, A.; Zakaria, H.

    2017-09-01

    In this study, determine of spray droplets size (SMD) using water sensitive paper (WSP) at low fluid pressure with deflector nozzle or tangential flow nozzle model Delavan AL75 and New Design Nozzle with two different type of swirl (ND2.5 A1.0 & ND2.5 B1.0). These three deflected flat sprays have used at different liquid mixing ratio. These liquid mixture ratios are pure water, 10% of lime juice + 90% of water (L10W90) and 30% of lime juice + 70% of water (L30W70). WSP is used to collect the spray droplets from nozzles. The operational liquid pressure of each nozzle is 3 bar, while air operational pressures are 3 bar and 6 bar. Then, the WSP were scanned using scanner then it was analyzed using ImageJ software. ImageJ can be used for determining the diameter of droplets size on the WSP. As the results from an experiment, the AL75 nozzle recorded the lowest Sauter mean diameter which is 193.69μm at 6 bar of pressurized air while ND2.5 A1.0 recorded the highest Sauter mean diameter which is 353.61µm at 3 bar of pressurized air. Summary from the experiment shows that the higher of droplet size is because of the lower air pressure (3 Bar). Then, increasing of liquid viscosity also increase the SMD. The orifice diameter for New Design nozzle (ND-2.5) is smaller than AL75, which are 2.5mm and 2.8mm respectively. The different nozzle design also gives effect the SMD. WSP is an alternative method to determine SMD for spray droplets with the low cost if compared to Phase Doppler Anemometry (PDA).

  1. CFD Based Erosion Modelling of Abrasive Waterjet Nozzle using Discrete Phase Method

    International Nuclear Information System (INIS)

    Kamarudin, Naqib Hakim; Prasada Rao, A K; Azhari, Azmir

    2016-01-01

    In Abrasive Waterjet (AWJ) machining, the nozzle is the most critical component that influences the performance, precision and economy. Exposure to a high speed jet and abrasives makes it susceptible to wear erosion which requires for frequent replacement. The present works attempts to simulate the erosion of the nozzle wall using computational fluid dynamics. The erosion rate of the nozzle was simulated under different operating conditions. The simulation was carried out in several steps which is flow modelling, particle tracking and erosion rate calculation. Discrete Phase Method (DPM) and K-ε turbulence model was used for the simulation. Result shows that different operating conditions affect the erosion rate as well as the flow interaction of water, air and abrasives. The simulation results correlates well with past work. (paper)

  2. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    Science.gov (United States)

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  3. Numerical modelling of the jet nozzle enrichment process

    International Nuclear Information System (INIS)

    Vercelli, P.

    1983-01-01

    A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author) [pt

  4. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  5. Aerospike Nozzle for Rotating Detonation Engine Application

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a graduate MS research thesis on improving the efficiency of rotating detonation engines by using aerospike nozzle technologies. A rotating...

  6. Experimental atheromatous plaque imaging with 99mTc labelled low density lipoproteins in rabbit

    International Nuclear Information System (INIS)

    Wang Quanshi; Chen Yu; Wu Chunshan; Zhang Yijin; Liu Dexuan

    1996-01-01

    Atheromatous plaque imaging with 99m Tc labeled low density lipoproteins ( 99m Tc-LDL) were evaluated in rabbits for its clinical prospect. The 99m Tc-LDL atheromatous plaque imaging were performed in 9 rabbit models of atherosclerosis and 4 controls. The imagings were compared with autoradiographic and pathological results. The rabbit models of atherosclerosis by high cholesterol and high fat diet were successful in 100%. The atheromatous plaques well visualized in 8 of 9 rabbit models 24 hours after injection. The site and density of radioactive accumulation was closely correlated in autoradiography also. There was no radioactive spot in 4 controls. 99m Tc-LDL imaging may have a significant value for the diagnosis of atherosclerosis

  7. Fullerene-based low-density superhard materials with tunable bandgaps

    Science.gov (United States)

    Cao, Ai-Hua; Zhao, Wen-Juan; Gan, Li-Hua

    2018-06-01

    Four carbon allotropes built from tetrahedral symmetrical fullerenes C28 and C40 are predicted to be superhard materials with mass density around that of water, and all of them are porous semiconductors. Both the bandgaps and hardness decrease with increasing ratio of sp2 hybridized carbon atoms. The mechanical and thermodynamic stabilities of C28- and C40-based allotropes at zero pressure are confirmed by a variety of state-of-the-art theoretical calculations. The evolution trend of bandgap found here suggests that one can obtain low-density hard materials with tunable bandgaps by substituting the carbon atom in diamond with different Td-symmetrical non-IPR fullerene Cn.

  8. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Manuel; Giraldo, Diego; Murillo, Edwin, E-mail: edwinalbertomurillo@gmail.com [Universidad de Antioquia, Medellin (Colombia); Universidad Francisco de Paula Santander, San Jose de Cucuta (Colombia)

    2017-01-15

    n this work, low density polyethylene (LDPE)/plasticised starch (TPS) blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young's modulus and tensile strength) improved ostensibly. The Young' modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior. (author)

  9. An FPGA Implementation of (3,6-Regular Low-Density Parity-Check Code Decoder

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2003-05-01

    Full Text Available Because of their excellent error-correcting performance, low-density parity-check (LDPC codes have recently attracted a lot of attention. In this paper, we are interested in the practical LDPC code decoder hardware implementations. The direct fully parallel decoder implementation usually incurs too high hardware complexity for many real applications, thus partly parallel decoder design approaches that can achieve appropriate trade-offs between hardware complexity and decoding throughput are highly desirable. Applying a joint code and decoder design methodology, we develop a high-speed (3,k-regular LDPC code partly parallel decoder architecture based on which we implement a 9216-bit, rate-1/2(3,6-regular LDPC code decoder on Xilinx FPGA device. This partly parallel decoder supports a maximum symbol throughput of 54 Mbps and achieves BER 10−6 at 2 dB over AWGN channel while performing maximum 18 decoding iterations.

  10. Biodistribution parameters and radiation absorbed dose estimates for radiolabeled human low density lipoprotein

    International Nuclear Information System (INIS)

    Hay, R.V.; Ryan, J.W.; Williams, K.A.; Atcher, R.W.; Brechbiel, M.W.; Gansow, O.A.; Fleming, R.M.; Stark, V.J.; Lathrop, K.A.; Harper, P.V.

    1992-01-01

    The authors propose a model to generate radiation absorbed dose estimates for radiolabeled low density lipoprotein (LDL), based upon eight studies of LDL biodistribution in three adult human subjects. Autologous plasma LDL was labeled with Tc-99m, I-123, or In-111 and injected intravenously. Biodistribution of each LDL derivative was monitored by quantitative analysis of scintigrams and direct counting of excreta and of serial blood samples. Assuming that transhepatic flux accounts for the majority of LDL clearance from the bloodstream, they obtained values of cumulated activity (A) and of mean dose per unit administered activity (D) for each study. In each case highest D values were calculated for liver, with mean doses of 5 rads estimated at injected activities of 27 mCi, 9 mCi, and 0.9 mCi for Tc-99m-LDL, I-123-LDL, and In-111-LDL, respectively

  11. Effect of fiber geometry on macroscale friction of ordered low-density polyethylene nanofiber arrays.

    Science.gov (United States)

    Lee, Dae Ho; Kim, Yongkwan; Fearing, Ronald S; Maboudian, Roya

    2011-09-06

    Ordered low-density polyethylene (LDPE) nanofiber arrays are fabricated from silicon nanowire (SiNW) templates synthesized by a simple wet-chemical process based on metal-assisted electroless etching combined with colloidal lithography. The geometrical effect of nanofibrillar structures on their macroscale friction is investigated over a wide range of diameters and lengths under the same fiber density. The optimum geometry for contacting a smooth glass surface is presented with discussions on the compromise between fiber tip-contact area and fiber compliance. A friction design map is developed, which shows that the theoretical optimum design condition agrees well with the LDPE nanofiber geometries exhibiting high measured friction. © 2011 American Chemical Society

  12. Low-density carbonized composite foams for direct-drive laser ICF targets

    International Nuclear Information System (INIS)

    Kong, Fung-Ming.

    1989-03-01

    The design for a direct-drive, high-gain laser inertial confinement fusion target calls for the use of a low-density, low-atomic-number foam to confine and stabilize liquid deuterium-tritium (DT) in a spherical-shell configuration. Over the past two years, we have successfully developed polystyrene foams (PS) and carbonized resorcinol-formaldehyde foams (CRF) for that purpose. Both candidates are promising materials with unique characteristics. PS has superior mechanical strength and machinability, but its relatively large thermal contraction is a significant disadvantage. CRF has outstanding wettability and dimensional stability in liquid DT; yet it is much more fragile than PS. To combine the strengths of both materials, we have recently developed a polymer composite foam which exceeds PS in mechanical strength, but retains the wettability and dimension stability of CRF. This paper will discuss the preparation, structure, and properties of the polymer composite foams. 5 refs., 1 fig., 1 tab

  13. Exposure to long wavelength ultraviolet radiation decreases processing of low density lipoprotein by cultured human fibroblasts

    International Nuclear Information System (INIS)

    Djavaheri-Mergny, M.; Santus, R.; Mora, L.; Maziere, J.C.; Faculte de Medecine Saint-Antoine, 75 -Paris; Maziere, C.; Auclair, M.; Dubertret, L.

    1993-01-01

    Exposure of MRC5 human fibroblasts to UVA radiation (365 nm) resulted in a dose-dependent decrease in low density lipoprotein (LDL) uptake and degradation by cells. Following a 25 J/cm 2 irradiation dose, about 45% and 70% reduction in 125 I-LDL uptake and degradation were observed, respectively. Under the same conditions, the 14 C-sucrose uptake was also decreased to about the same extent as LDL uptake. Cell pretreatment with the antioxidants vitamin E and vitamin C did not prevent the UVA-induced fall in LDL degradation. These results point to the possible effects of UVA radiation on receptor-mediated and nonspecific uptake of exogenous molecules. With special regard to the alterations in receptor-mediated processing of exogenous ligands, such a phenomenon could be of importance in UVA-induced skin degenerative processes. (Author)

  14. Degradation assessment of natural weathering on low density polyethylene/thermoplastic soya spent powder blends

    Science.gov (United States)

    Nuradibah, M. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.

    2015-07-01

    Soya spent powder was blended with low density polyethylene (LDPE) ranging from 5-25 wt%. Glycerol was added to soya spent powder (SSP) for preparation of thermoplastic soya spent powder (TSSP). Then, the blends were exposed to natural weathering for 6 months. The susceptibility of the LDPE/soya spent powder blends based on its tensile, morphological properties and structural changes was measured every three months. The tensile strength of LDPE/TSSP blends after 6 months of weathering was the lowest compared to the other blends whereas LDPE/SSP blends after 6 months of weathering demonstrated the lowest elongation at break (Eb). Large pore can be seen on the surface of 25 wt% of LDPE/SSP blends.

  15. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Manuel Guzmán

    Full Text Available Abstract In this work, low density polyethylene (LDPE/plasticized starch (TPS blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young’s modulus and tensile strength improved ostensibly. The Young’ modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior.

  16. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy

    Science.gov (United States)

    Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph

    2017-01-01

    Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944

  17. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein.

    Science.gov (United States)

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. Copyright © 2015. Published by Elsevier Inc.

  18. Lipid oxidation in human low-density lipoprotein induced by metmyoglobin/H2O2

    DEFF Research Database (Denmark)

    Witting, P K; Willhite, C A; Davies, Michael Jonathan

    1999-01-01

    Metmyoglobin (metMb) and H(2)O(2) can oxidize low-density lipoprotein (LDL) in vitro, and oxidized LDL may be atherogenic. The role of alpha-tocopherol (alpha-TOH) in LDL oxidation by peroxidases such as metMb is unclear. Herein, we show that during metMb/H(2)O(2)-induced oxidation of native LDL...... of CE-O(O)H is dependent on, and correlates with, LDL's alpha-TOH content, yet does not require preformed lipid hydroperoxides or H(2)O(2). This indicates that in native LDL alpha-TOH can act as a phase-transfer agent and alpha-TO(*) as a chain-transfer agent propagating LDL lipid peroxidation via...

  19. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction

    DEFF Research Database (Denmark)

    Abdo, Adrian; Rayner, B.S.; van Reyk, D.M.

    2017-01-01

    Low-density lipoprotein (LDL) modified by hypochlorous acid (HOCl) produced by myeloperoxidase (MPO) is present in atherosclerotic lesions, where it is implicated in the propagation of inflammation and acceleration of lesion development by multiple pathways, including the induction of endothelial......, although emerging evidence suggests that these particles have distinct biological properties. This is important because elevated plasma SCN- is linked with both the propagation and prevention of atherosclerosis. In this study, we demonstrate that both HOSCN- and HOCl-modified LDL inhibit endothelium......-mediated vasorelaxation ex vivo in rat aortic ring segments. In vitro experiments with human coronary artery endothelial cells show that HOSCN-modified LDL decreases in the production of nitric oxide (NO•) and induces the loss of endothelial nitric oxide synthase (eNOS) activity. This occurs to a similar extent...

  20. Accumulation and interaction of hypericin in low-density lipoprotein--a photophysical study.

    Science.gov (United States)

    Mukherjee, Prasun; Adhikary, Ramkrishna; Halder, Mintu; Petrich, Jacob W; Miskovsky, Pavol

    2008-01-01

    The accumulation and interaction of hypericin with the biologically important macromolecule, low-density lipoprotein (LDL), is investigated using various steady-state and time-resolved fluorescence measurements. It is concluded that multiple hypericins can penetrate considerably deeply into the LDL molecule. Up to approximately 20 nonaggregated hypericin molecules can enter LDL; but upon increasing the hypericin concentration, the fluorescence lifetime of hypericin decreases drastically, suggesting most likely the self-quenching of aggregated hypericin. There is also evidence of energy transfer from tryptophans of the constituent protein, apoB-100, to hypericin in LDL. The results demonstrate the ability of LDL to solubilize hypericin (a known photosensitizer) in nonaggregated form, which has implications for the construction of drug delivery systems.