#### Sample records for low-density gas jet

1. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

KAUST Repository

El-Amin, Mohamed; Sun, Shuyu; Kanayama, Hiroshi

2010-01-01

In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

2. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

KAUST Repository

El-Amin, Mohamed

2010-12-01

In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

3. Coherence resonance in low-density jets

Science.gov (United States)

Zhu, Yuanhang; Gupta, Vikrant; Li, Larry K. B.

2017-11-01

Coherence resonance is a phenomenon in which the response of a stable nonlinear system to noise exhibits a peak in coherence at an intermediate noise amplitude. We report the first experimental evidence of coherence resonance in a purely hydrodynamic system, a low-density jet whose variants can be found in many natural and engineering systems. This evidence comprises four parts: (i) the jet's response amplitude increases as the Reynolds number approaches the instability boundary under a constant noise amplitude; (ii) as the noise amplitude increases, the amplitude distribution of the jet response first becomes unimodal, then bimodal, and finally unimodal again; (iii) a distinct peak emerges in the coherence factor at an intermediate noise amplitude; and (iv) for a subcritical Hopf bifurcation, the decay rate of the autocorrelation function exhibits a maximum at an intermediate noise amplitude, but for a supercritical Hopf bifurcation, the decay rate decreases monotonically with increasing noise amplitude. It is clear that coherence resonance can provide valuable information about a system's nonlinearity even in the unconditionally stable regime, opening up new possibilities for its use in system identification and flow control. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

4. Direct numerical simulation of axisymmetric laminar low-density jets

Science.gov (United States)

Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro

2017-11-01

The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.

5. Clustering and Symmetry Energy in a Low Density Nuclear Gas

International Nuclear Information System (INIS)

Kowalski, S.; Natowitz, J.B.; Shlomo, S.; Wada, R.; Hagel, K.; Wang, J.; Materna, T.; Chen, Z.; Ma, Y.G.; Qin, L.; Botvina, A.S.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Rizzi, V.; Viesti, G.; Cinausero, M.; Prete, G.; Keutgen, T.; El Masri, Y.; Majka, Z.; Ono, A.

2007-01-01

Temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A= 64 Zn projectiles with 92 Mo and 197 Au target nuclei. The symmetry energies at low density are larger than those obtained in mean field calculations, reflecting the clustering of low density nuclear matter. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation

6. An intermittency route to global instability in low-density jets

Science.gov (United States)

Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.

2017-11-01

Above a critical Reynolds number (Re), a low-density jet can become globally unstable, transitioning from a steady state (i.e. a fixed point) to a self-excited oscillatory state (i.e. a limit cycle) via a Hopf bifurcation. In this experimental study, we show that this transition can sometimes involve intermittency. When Re is just slightly above the critical point, intermittent bursts of high-amplitude periodic oscillations emerge amidst a background of low-amplitude aperiodic fluctuations. As Re increases further, these intermittent bursts persist longer in time until they dominate the overall dynamics, causing the jet to transition fully to a periodic limit cycle. We identify this as Type-II Pomeau-Manneville intermittency by quantifying the statistical distribution of the duration of the aperiodic fluctuations at the onset of intermittency. This study shows that the transition to global instability in low-density jets is not always abrupt but can involve an intermediate state with characteristics of both the initial fixed point and the final limit cycle. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

7. Studies on Impingement Effects of Low Density Jets on Surfaces — Determination of Shear Stress and Normal Pressure

Science.gov (United States)

Sathian, Sarith. P.; Kurian, Job

2005-05-01

This paper presents the results of the Laser Reflection Method (LRM) for the determination of shear stress due to impingement of low-density free jets on flat plate. For thin oil film moving under the action of aerodynamic boundary layer the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope is measured using a position sensing detector (PSD). The thinning rate of oil film is directly measured which is the major advantage of the LRM over LISF method. From the oil film slope history, direct calculation of the shear stress is done using a three-point formula. For the full range of experiment conditions Knudsen numbers varied till the continuum limit of the transition regime. The shear stress values for low-density flows in the transition regime are thus obtained using LRM and the measured values of shear show fair agreement with those obtained by other methods. Results of the normal pressure measurements on a flat plate in low-density jets by using thermistors as pressure sensors are also presented in the paper. The normal pressure profiles obtained show the characteristic features of Newtonian impact theory for hypersonic flows.

8. Fluorocarbon seal replaces metal piston ring in low density gas environment

Science.gov (United States)

Morath, W. D.; Morgan, N. E.

1967-01-01

Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

9. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

International Nuclear Information System (INIS)

Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

2015-01-01

A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

10. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

Science.gov (United States)

Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

2015-04-01

A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

11. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

Energy Technology Data Exchange (ETDEWEB)

Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2015-04-15

A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

12. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

Science.gov (United States)

Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

2015-05-28

A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range.

13. Steady State Simulation of Two-Gas Phase Fluidized Bed Reactors in Series for Producing Linear Low Density Polyethylene

Directory of Open Access Journals (Sweden)

Ali Farhangiyan Kashani

2012-12-01

Full Text Available A linear low density polyethylene (LLDPE production process, including two- fuidized bed reactors in series (FBRS and other process equipment, was completely simulated by Aspen Polymer Plus software. Fluidized bed reactors were considered as continuous stirred tank reactors (CSTR consisted of polymer and gas phases. POLY-SRK and NRTL-RK equations of state were used to describe polymer and non-polymer streams, respectively. In this simulation, a kinetic model, based on a double active site heterogeneous Ziegler-Natta catalyst was used for simulation of LLDPE process consisting of two FBRS. Simulator using this model has the capability to  predict a number of  principal characteristics of LLDPE such as melt fow index (MFI, density, polydispersity index, numerical and weight average molecular weights (Mn,Mw and copolymer molar fraction (SFRAC. The results of the simulation were compared with industrial plant data and a good agreement was observed between the predicted model and plant data. The simulation results show the relative error of about 0.59% for prediction of polymer mass fow and 2.67% and 0.04% for prediction of product MFI and density, respectively.

14. Simulation Of Gas Focused Liquid Jets

OpenAIRE

Zahoor, Rizwan

2018-01-01

The main aim of dissertation is to develop an experimentally verified computational fluid dynamic (CFD) model of micron-sized liquid jet, produced by an injection molded Gas Dynamic Virtual Nozzle (GDVN). In these nozzles, liquid jets are efficiently orientedly transporting mass and momentum. They are produced by intelligently projecting hydrodynamic focusing effect from a high-speed stream of a co-flowing lower density and lower viscosity gas on a stream of liquid from a feeding capillary. L...

15. Effect of Heat Drawing Process on Mechanical Properties of Dry-Jet Wet Spun Fiber of Linear Low Density Polyethylene/Carbon Nanotube Composites

Directory of Open Access Journals (Sweden)

Jong Won Kim

2017-01-01

Full Text Available Polyethylene is one of the most commonly used polymer materials. Even though linear low density polyethylene (LLDPE has better mechanical properties than other kinds of polyethylene, it is not used as a textile material because of its plastic behavior that is easy to break at the die during melt spinning. In this study, LLDPE fibers were successfully produced with a new approach using a dry-jet wet spinning and a heat drawing process. The fibers were filled with carbon nanotubes (CNTs to improve the strength and reduce plastic deformation. The crystallinity, degree of orientation, mechanical properties (strength to yield, strength to break, elongation at break, and initial modulus, electrical conductivity, and thermal properties of LLDPE fibers were studied. The results show that the addition of CNTs improved the tensile strength and the degree of crystallinity. The heat drawing process resulted in a significant increase in the tensile strength and the orientation of the CNTs and polymer chains. In addition, this study demonstrates that the heat drawing process effectively decreases the plastic deformation of LLDPE.

16. Formation of soap bubbles by gas jet

Science.gov (United States)

Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

2017-12-01

Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

17. The gas introduction system of JET

International Nuclear Information System (INIS)

Boschi, A.; Dietz, K.J.; Rebut, P.H.

1984-01-01

The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantities of gases required to feel the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. The lay-out and design of the different components is described and operational experience is presented. (author)

18. The gas introduction system of JET

International Nuclear Information System (INIS)

Boschi, A.; Dietz, K.J.; Rebut, P.H.

1985-01-01

The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantitites of gases required to feed the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. In this paper the lay-out and design of the different components is described and operational experience is presented

19. Impingement jet cooling in gas turbines

CERN Document Server

Amano, R S

2014-01-01

Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

20. Formation of soap bubbles by gas jet

OpenAIRE

Zhou, M. L.; Li, M.; Chen, Z. Y.; Han, J. F.; Liu, D.

2017-01-01

Soap bubbles can be easily generated by varies methods, while their formation process is complicated and still worth study. A model about the bubble formation process was proposed in Phys. Rev. Lett. 116, 077801 recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after repeating these experiments, we found the bubbles could be generated in two velocities ranges which corresponded to laminar and turbulent gas jet respective...

1. Study of two-phase underexpanded jets by gas jet

International Nuclear Information System (INIS)

Uchida, Mitsunori; Someya, Satoshi; Okamoto, Koji

2008-01-01

When a heat exchange in a Fast Breeder Reactor cracks, a sodium-water reaction occurs. When a tube cracks, highly pressurized water or steam escapes into the surrounding liquid sodium and a sodium-water reaction occurs forming the disodium oxide. The disodium oxide caught in the steam jet strikes other tubes in the reactor. The struck disodium oxide can then cause these tubes to crack. The release of steam into the liquid sodium media is a two-phase flow involving underexpansion. In this paper qualitative measurement of the underexpanded gas jet which injected into water was carried our for the purpose of analyzing the behavior of the two-phase flow. (author)

2. Gas-Jet Meniscus Control in Ribbon Growth

Science.gov (United States)

Zoutendyk, J. A.; Vonroos, O.

1983-01-01

Gas jet used to control shape of meniscus and thus to regulate ribbon thickness in vertical silicon-ribbon growth. Gas jet also cools ribbon, increasing maximum possible pull speed for silicon, contact angle of 11 degrees plus or minus 1 degree required for constant thickness ribbon growth. Cooling effect of gas jet increases maximum possible pull speed.

3. Gas Mixtures for Welding with Micro-Jet Cooling

Directory of Open Access Journals (Sweden)

Węgrzyn T.

2015-04-01

Full Text Available Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of various gas mixtures selection for micro-jet cooling.

4. Thin film deposition using rarefied gas jet

Science.gov (United States)

2017-06-01

The rarefied gas jet of aluminium is studied at Mach number Ma = (Uj /√{ kbTj / mg }) in the range .01 PVD) process for the development of the highly oriented pure metallic aluminum thin film with uniform thickness and strong adhesion on the surface of the substrate in the form of ionic plasma, so that the substrate can be protected from corrosion and oxidation and thereby enhance the lifetime and safety, and to introduce the desired surface properties for a given application. Here, H is the characteristic dimension, U_j and T_j are the jet velocity and temperature, n_d is the number density of the jet, m and d are the molecular mass and diameter, and kbis the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn=0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number, which allows scattering collisions to rapidly direct the atoms to the substrate.

5. Effect of Shrouding Gas Temperature on Characteristics of a Supersonic Jet Flow Field with a Shrouding Laval Nozzle Structure

Science.gov (United States)

Liu, Fuhai; Sun, Dongbai; Zhu, Rong; Li, Yilin

2018-05-01

Coherent jet technology was been widely used in the electric arc furnace steelmaking process to protect the kinetic energy of supersonic oxygen jets and achieve a better mixing effect. For this technology, the total temperature distribution of the shrouding jet has a great impact on the velocity of the main oxygen jet. In this article, a supersonic shrouding nozzle using a preheating shrouding jet is proposed to increase the shrouding jet velocity. Both numerical simulation and experimental studies were carried out to analyze its effect on the axial velocity, total temperature and turbulence kinetic energy profiles of the main oxygen jet. Based on these results, it was found that a significant amount of kinetic energy was removed from the main oxygen jet when it passed though the shock wave using a high-temperature shrouding jet, which made the average axial velocity of the coherent jet lower than for a conventional jet in the potential core region. However, the supersonic shrouding nozzle and preheating technology employed for this nozzle design significantly improved the shrouding gas velocity, forming a low-density gas zone at the exit of the main oxygen jet and prolonging the velocity potential core length.

6. Ionization and breakdown of a low-density gas by a low-current nonrelativistic electron beam

International Nuclear Information System (INIS)

Alanakyan, Yu.R.; Shternov, N.P.

1991-01-01

In the present paper the authors study a plasma formed near a steady-state electron beam traveling in an unbounded low-pressure gas. Beam parameters below and at the breakdown threshold are considered, and the threshold beam parameters corresponding to gas breakdown with formation of a beam-plasma discharge are calculated. Theoretical studies of electron beam propagation in an unbounded gas are of interest in connection with rocket-borne atmospheric experiments laboratory investigations, and observations of natural phenomena in the upper atmosphere (aurora borealis and related phenomena)

7. Cryogenic target formation using cold gas jets

International Nuclear Information System (INIS)

Hendricks, C.D.

1980-01-01

A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets, are described. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member

8. Reactive pulsed laser deposition with gas jet

International Nuclear Information System (INIS)

Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

2001-01-01

Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

9. Low Density Supersonic Decelerators

Data.gov (United States)

National Aeronautics and Space Administration — The Low-Density Supersonic Decelerator project will demonstrate the use of inflatable structures and advanced parachutes that operate at supersonic speeds to more...

10. Characteristics of compressed natural gas jet and jet-wall impingement using the Schlieren imaging technique

International Nuclear Information System (INIS)

Ismael, M A; Heikal, M R; Baharom, M B

2013-01-01

An experimental study was performed to investigate the compressed natural gas jet characteristics and jet-wall impingement using the Schlieren imaging technique and image processing. An injector driver was used to drive the natural gas injector and synchronized with camera triggering. A constant-volume optical chamber was designed to facilitate maximum optical access for the study of the jet macroscopic characteristics and jet-wall impingement at different injection pressures and injectors-wall distances. Measurement of the jet tip penetration and cone angle at different conditions are presented in this paper together with temporal presentation of the jet radial travel along the wall.

11. Seasonal Habitat Use by Greater Sage-Grouse (Centrocercus urophasianus) on a Landscape with Low Density Oil and Gas Development.

Science.gov (United States)

Rice, Mindy B; Rossi, Liza G; Apa, Anthony D

2016-01-01

Fragmentation of the sagebrush (Artemisia spp.) ecosystem has led to concern about a variety of sagebrush obligates including the greater sage-grouse (Centrocercus urophasianus). Given the increase of energy development within greater sage-grouse habitats, mapping seasonal habitats in pre-development populations is critical. The North Park population in Colorado is one of the largest and most stable in the state and provides a unique case study for investigating resource selection at a relatively low level of energy development compared to other populations both within and outside the state. We used locations from 117 radio-marked female greater sage-grouse in North Park, Colorado to develop seasonal resource selection models. We then added energy development variables to the base models at both a landscape and local scale to determine if energy variables improved the fit of the seasonal models. The base models for breeding and winter resource selection predicted greater use in large expanses of sagebrush whereas the base summer model predicted greater use along the edge of riparian areas. Energy development variables did not improve the winter or the summer models at either scale of analysis, but distance to oil/gas roads slightly improved model fit at both scales in the breeding season, albeit in opposite ways. At the landscape scale, greater sage-grouse were closer to oil/gas roads whereas they were further from oil/gas roads at the local scale during the breeding season. Although we found limited effects from low level energy development in the breeding season, the scale of analysis can influence the interpretation of effects. The lack of strong effects from energy development may be indicative that energy development at current levels are not impacting greater sage-grouse in North Park. Our baseline seasonal resource selection maps can be used for conservation to help identify ways of minimizing the effects of energy development.

12. Gas Mixtures for Welding with Micro-Jet Cooling

OpenAIRE

Węgrzyn T.

2015-01-01

Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechani...

13. Laser interferometry of radiation driven gas jets

Science.gov (United States)

Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

2017-06-01

In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

14. Noble gas enrichment studies at JET

International Nuclear Information System (INIS)

Groth, M.; Andrew, P.; Fundamenski, W.; Guo, H.Y.; Hillis, D.L.; Hogan, J.T.; Horton, L.D.; Matthews, G.F.; Meigs, A.G.; Morgan, P.M.; Stamp, M.F.; Hellermann, M. von

2001-01-01

Adequate helium exhaust has been achieved in reactor-relevant ELMy H-mode plasmas in JET performed in the MKII AP and MKII GB divertor geometry. The divertor-characteristic quantities of noble gas compression and enrichment have been experimentally inferred from Charge Exchange Recombination Spectroscopy measurements in the core plasma, and from spectroscopic analysis of a Penning gauge discharge in the exhaust gas. The retention of helium was found to be satisfactory for a next-step device, with enrichment factors exceeding 0.1. The helium enrichment decreases with increasing core plasma density, while the neon enrichment has the opposite behaviour. Analytic and numerical analyses of these plasmas using the divertor impurity code package DIVIMP/NIMBUS support the explanation that the enrichment of noble gases depends significantly on the penetration depth of the impurity neutrals with respect to the fuel atoms. Changes of the divertor plasma configuration and divertor geometry have no effect on the enrichment

15. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

International Nuclear Information System (INIS)

Raeder, S.; Bastin, B.; Block, M.; Creemers, P.; Delahaye, P.; Ferrer, R.; Fléchard, X.; Franchoo, S.; Ghys, L.; Gaffney, L.P.; Granados, C.; Heinke, R.; Hijazi, L.

2016-01-01

To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

16. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

Energy Technology Data Exchange (ETDEWEB)

Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

2016-06-01

To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

17. Modeling Coma Gas Jets in Comet Hale-Bopp

Science.gov (United States)

Lederer, S. M.; Campins, H.

2001-01-01

We present an analysis of OH, CN, and C2 jets observed in Comet Hale-Bopp. The relative contributions from and composition of the coma gas sources, and the parameters describing the active areas responsible for the gas jets will be discussed. Additional information is contained in the original extended abstract.

18. Natural gas jet flames. Topical report, January 1994-August 1995

Energy Technology Data Exchange (ETDEWEB)

Atallah, S.; Saxena, S.K.

1995-08-15

Several incidents have been reported where high pressure natural gas transmission pipelines were ruptured and the escaping gas jet ignited. It was desired to estimate the length of the ensuing jet flame. Data on large scale jet fires were collected from accidents investigated by the National Transportation Safety Board, large-scale experiments on natural gas and LPG and from observations made during the Kuwaiti oil well fires. Analytical models which predict the size of jet flames were assembled and each model was evaluated against these data. A theoretical model developed by Kalghatgi at Shell, which most closely predicted the collected data, was selected and programmed for use on a PC. In addition, a simple empirical correlation similar to APIs flare correlation was developed by the authors for application to natural gas jet flames.

19. DSMC simulation of feed jet flow in gas centrifuge

International Nuclear Information System (INIS)

Jiang Dongjun; Zeng Shi

2011-01-01

Feed jet flow acts an important role for the counter-current in gas centrifuge. Direct simulation Monte-Carlo (DSMC) method was adopted to simulate the structure of the radial feed jet model. By setting the proper boundary conditions and the collision model of molecules, the flow distributions of the 2D radial feed jet were acquired under different feed conditions, including the wave structure of feed jet and the profile of the flow parameters. The analyses of the calculation results note the following flow phenomena: Near the radial outflow boundary, the obvious peaks of the flow parameters exist; higher speed of feed gas brings stronger influence on the flow field of the centrifuge; including the density, pressure and velocity of the gas, the distribution of the temperature is affected by the feed jet, at the outflow boundary, temperature to double times of the average value. (authors)

20. Gas jet disruption mitigation studies on Alcator C-Mod

International Nuclear Information System (INIS)

Granetz, R.; Whyte, D.G.; Izzo, V.A.; Biewer, T.; Reinke, M.L.; Terry, J.; Bader, A.; Bakhtiari, M.; Jernigan, T.; Wurden, G.

2006-01-01

Damaging effects of disruptions are a major concern for Alcator C-Mod, ITER and future tokamak reactors. High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the operational requirements of fast response time and reliability, while still being benign to subsequent discharges. Disruption mitigation experiments using an optimized gas jet injection system are being carried out on Alcator C-Mod to study the physics of gas jet penetration into high pressure plasmas, as well as the ability of the gas jet impurities to convert plasma energy into radiation on timescales consistent with C-Mod's fast quench times, and to reduce halo currents given C-Mod's high-current density. The dependence of impurity penetration and effectiveness on noble gas species (He, Ne, Ar, Kr) is also being studied. It is found that the high-pressure neutral gas jet does not penetrate deeply into the C-Mod plasma, and yet prompt core thermal quenches are observed on all gas jet shots. 3D MHD modelling of the disruption physics with NIMROD shows that edge cooling of the plasma triggers fast growing tearing modes which rapidly produce a stochastic region in the core of the plasma and loss of thermal energy. This may explain the apparent effectiveness of the gas jet in C-Mod despite its limited penetration. The higher-Z gases (Ne, Ar, Kr) also proved effective at reducing halo currents and decreasing thermal deposition to the divertor surfaces. In addition, noble gas jet injection proved to be benign for plasma operation with C-Mod's metal (Mo) wall, actually improving the reliability of the startup in the following discharge

1. Study on the wiping gas jet in continuous galvanizing line

Science.gov (United States)

Kweon, Yong-Hun; Kim, Heuy-Dong

2011-09-01

In the continuous hot-dip galvanizing process, the gas-jet wiping is used to control the coating thickness of moving steel strip. The high speed gas-jet discharged from the nozzle slot impinges on the strip, and at this moment, wipes the liquid coating layer dragged by a moving strip. The coating thickness is generally influenced on the flow characteristics of wiping gas-jet such as the impinging pressure distribution, pressure gradient and shear stress distribution on the surface of strip. The flow characteristics of wiping gas-jet mentioned above depends upon considerably both the process operating conditions such as the nozzle pressure, nozzle-to-strip distance and line speed, and the geometry of gas-jet wiping apparatus such as the height of nozzle slot. In the present study, the effect of the geometry of nozzle on the coating thickness is investigated with the help of a computational fluid dynamics method. The height of nozzle slot is varied in the range of 0.6mm to 1.7mm. A finite volume method (FVM) is employed to solve two-dimensional, steady, compressible Navier-Stokes equations. Based upon the results obtained, the effect of the height of nozzle slot in the gas-jet wiping process is discussed in detail. The computational results show that for a given standoff distance between the nozzle to the strip, the effective height of nozzle slot exists in achieving thinner coating thickness.

2. Velocity slip and translational nonequilibrium of ternary gas mixtures in free jet expansions

International Nuclear Information System (INIS)

Cattolica, R.J.; Gallagher, R.J.; Anderson, J.B.; Talbot, L.

1977-05-01

An aerodynamic isotope separation technique based on the velocity slip between gases in a rarefied flow has been proposed. To evaluate the efficiency of this separation technique, the velocity and translational temperature of the individual species in binary and ternary gas mixtures of argon and neon in helium have been studied in a low density hypersonic free jet. The velocity and temperature of the gas were determined from the Doppler shift and broadening of the fluorescence excited by an electron beam. Velocity slip and translational nonequilibrium were observed over a range of source pressures. A separation factor based on the velocity slip and temperatures was also determined. A comparison of the velocity slip, temperatures, and separation factor with the results of a Monte Carlo simulation of the flow field is presented

3. Electrospinning jet behaviors under the constraints of a sheath gas

Directory of Open Access Journals (Sweden)

Yang Zhao

2016-11-01

Full Text Available Increasing the ejection efficiency and uniformity of nanofibers is the key to applications of electrospinning technology. In this work, a novel electrospinning spinneret with a sheath gas passageway is designed. The frictional resistance that stems from the sheath gas provides additional stretching and restriction forces on the jet. The sheath gas also reduces interference and enhances the stability of the charged jet. A bead-on-strain simulation model is built up to determine the constraint effects of the sheath gas. Simulation results show that the sheath gas decreases the motion area and increases the stretching ratio of the liquid jet. The stretching force from the sheath gas decreases the diameter and increases the uniformity of the nanofiber. As the gas pressure increases from 0 kPa to 50 kPa, the critical voltage of the jet ejection decreases from 8.4 kV to 2.5 kV, the diameter of the nanofiber deposition zone decreases from 40 cm to 10 cm, and the diameter of the nanofibers decreases from 557.97 nm to 277.73 nm. The uniformity of nanofibers can be improved significantly using a sheath gas. The sheath gas contributes to the rapid deposition of a uniform nanofibrous membrane and the industrial applications of electrospinning.

4. Structure of strongly underexpanded gas jets submerged in liquids – Application to the wastage of tubes by aggressive jets

Energy Technology Data Exchange (ETDEWEB)

Roger, Francis, E-mail: roger@ensma.fr [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Carreau, Jean-Louis; Gbahoué, Laurent; Hobbes, Philippe [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Allou, Alexandre; Beauchamp, François [CEA, DEN, Cadarache, DTN/STPA/LTRS, 13108 Saint-Paul lez, Durance Cedex (France)

2014-07-01

Highlights: • Underexpanded gas jets submerged in liquids behave similarly to homogeneous gas jets. • The counter rotating vortex pairs of jet produce discrete imprints on the targets. • The shape of hollows made on the targets is explained by the jet structure. • The erosion–corrosion phenomenon well explains the wastage of exchange tubes. - Abstract: Strongly underexpanded gas jets submerged in a liquid at rest behave similarly to underexpanded homogeneous gas jets. The existence of the Taylor-Görtler vortices around the inner zone of the gas jets is demonstrated in free gas jets submerged in water by means of optical probe. In the near field, the same phenomenon produces discrete imprints, approximately distributed in a circle, when underexpanded nitrogen jet submerged in liquid sodium hydroxide and underexpanded water vapour jet submerged in liquid sodium impact onto AU{sub 4}G-T{sub 4} and Incoloy 800{sup ®} alloy targets respectively. For a jet-target couple, the volume of the hollow is satisfactorily related to the strain energy density of the material and the kinetic energy of the gas jet. However, the comparison between volumes of hollows produced by both jets also indicates strong corrosive action of the medium on targets. This allows better understanding of the mechanism of wastage of tubes employed in steam generators integrated in liquid metal fast breeder reactors.

5. Jet formation in shock-heavy gas bubble interaction

Institute of Scientific and Technical Information of China (English)

Zhi-Gang Zhai; Ting Si; Li-Yong Zou; Xi-Sheng Luo

2013-01-01

The influences of the acoustic impedance and shock strength on the jet formation in shock-heavy gas bubble interaction are numerically studied in this work.The process of a shock interacting with a krypton or a SF6 bubble is studied by the numerical method VAS2D.As a validation,the experiments of a SF6 bubble accelerated by a planar shock were performed.The results indicate that,due to the mismatch of acoustic impedance,the way of jet formation in heavy gas bubble with different species is diversified under the same initial condition.With respect to the same bubble,the manner of jet formation is also distinctly different under different shock strengths.The disparities of the acoustic impedance result in different effects of shock focusing in the bubble,and different behaviors of shock wave inside and outside the bubble.The analyses of the wave pattern and the pressure variation indicate that the jet formation is closely associated with the pressure perturbation.Moreover,the analysis of the vorticity deposition,and comparisons of circulation and baroclinic torque show that the baroclinic vorticity also contributes to the jet formation.It is concluded that the pressure perturbation and baroclinic vorticity deposition are the two dominant factors for the jet formation in shock-heavy gas bubble interaction.

6. High resolution 3D gas-jet characterization

International Nuclear Information System (INIS)

Landgraf, Bjoern; Kaluza, Malte C.; Spielmann, Christian; Schnell, Michael; Saevert, Alexander

2011-01-01

We present a tomographic characterization of gas jets employed for high-intensity laser-plasma interaction experiments where the shape can be non-symmetrically. With a Mach-Zehnder interferometer we measured the phase shift for different directions through the neutral density distribution of the gas jet. From the recorded interferograms it is possible to retrieve 3-dimensional neutral density distributions by tomographic reconstruction based on the filtered back projections. We report on criteria for the smallest number of recorded interferograms as well as a comparison with the widely used phase retrieval based on an Abel inversion. As an example for the performance of our approach, we present the characterization of nozzles with rectangular openings or gas jets with shock waves. With our setup we obtained a spatial resolution of less than 60 μm for an Argon density as low as 2 x 10 17 cm -3 .

7. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

Directory of Open Access Journals (Sweden)

2010-01-01

Full Text Available Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive stream and the atmospheric air as the propelled stream. When high pressure motive stream from the engine exhaust is expanded in the nozzle, a low pressure is created at the nozzle exit. Due to this low pressure, atmospheric air is sucked into the expansion chamber of the compressor, where it is mixed and pressurized with the motive stream. The pressure of the mixed stream is further increased in the diverging section of the jet compressor. A percentage volume of the pressurized air mixture is then inducted back into the engine as supercharged air and the balance is let out as exhaust. This process not only saves the mechanical power required for supercharging but also dilutes the constituents of the engine exhaust gas thereby reducing the emission and the noise level generated from the engine exhaust. The geometrical design parameters of the jet compressor were obtained by solving the governing equations using the method of constant rate of momentum change. Using the theoretical design parameters of the jet compressor, a computational fluid dinamics analysis using FLUENT software was made to evaluate the performance of the jet compressor for the application of supercharging an IC engine. This evaluation turned out to be an efficient diagnostic tool for determining performance optimization and design of the jet compressor. A jet compressor was also fabricated for the application of supercharging and its performance was studied.

8. Simulations of overall flow in gas centrifuge considering feed jet

International Nuclear Information System (INIS)

He Liang; Jiang Dongjun; Ying Chuntong

2010-01-01

A coupled method for the numerical solution of the flow in rapidly rotating gas centrifuge was presented. An iteration process of DSMC and CFD was performed to analyze the overall flow in radial direction, in which DSMC was adopted to simulate the rarefied region, and CFD was adopted to the counter-current of gas centrifuge to discrete the model equations. It was applied to simulate the 2D symmetrical flow model considering the rarefied region with the feed jet flow. A series of illustrative numerical examples were given. The flow structures of the feed jet in the rarefied gas flow region were shown. The results suggest that DSMC CFD coupled method is competent to the simulations of overall flow in a gas centrifuge. (authors)

9. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

International Nuclear Information System (INIS)

Chipps, K.A.; Greife, U.; Bardayan, D.W.; Blackmon, J.C.; Kontos, A.; Linhardt, L.E.; Matos, M.; Pain, S.D.; Pittman, S.T.; Sachs, A.; Schatz, H.; Schmitt, K.T.; Smith, M.S.; Thompson, P.

2014-01-01

New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×10 18 atoms/cm 2 of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far

10. Gas jet structure influence on high harmonic generation

OpenAIRE

Grant-Jacob, James; Mills, Benjamin; Butcher, Thomas J.; Chapman, Richard T.; Brocklesby, William S.; Frey, Jeremy G.

2011-01-01

Gas jets used as sources for high harmonic generation (HHG) have a complex three-dimensional density and velocity profile. This paper describes how the profile influences the generation of extreme-UV light. As the position of the laser focus is varied along the jet flow axis, we show that the intensity of the output radiation varies by approximately three times, with the highest flux being observed when the laser is focused into the Mach disc. The work demonstrated here will aid in the optimi...

11. Velocity slip of gas mixtures in free jet expansions

International Nuclear Information System (INIS)

Cattolica, R.J.; Talbot, L.; Coe, D.

1976-11-01

Velocity slip in gas mixtures of argon and helium in axisymmetric free jet expansions has been measured using a grating monochromator together with a computer-controlled Fabry-Perot interferometer to observe the fluorescence excited by an electron beam. The Doppler shift between the fluorescence observed parallel and perpendicular to the centerline of the free jet was used to measure the mean velocity of a particular species along the jet centerline, employing the 4880 A line for argon and the 5016 A line for helium. By alternately tracking the parallel and perpendicular fluorescence, the Doppler shift due to the mean velocity was measured directly with an accuracy of 1 percent. Flow field surveys have been made in the initial acceleration region where the flow becomes hypersonic and in the far field region. The differences between argon and helium mean velocities (velocity slip) are in good agreement with molecular beam data and show a correlation with an inverse Knudsen number

12. LPWA using supersonic gas jet with tailored density profile

Science.gov (United States)

Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

2016-10-01

Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

13. Gamma irradiation effects in low density polyethylene

International Nuclear Information System (INIS)

Ono, Lilian S.; Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Lugao, Ademar B.

2011-01-01

Low density polyethylene (LDPE) is obtained from ethylene gas polymerization, being one of the most commercialized polymers due to its versatility and low cost. It's a semi-crystalline polymer, usually inactive at room temperature, capable to attain temperatures within a 80 deg C - 100 deg C range, without changing its physical-chemical properties. LDPE has more resistance when compared to its equivalent High Density Polyethylene (HDPE). LDPE most common applications consist in manufacturing of laboratory materials, general containers, pipes, plastic bags, etc. Gamma radiation is used on polymers in order to modify mechanical and physical-chemical features according to utility purposes. This work aims to the study of gamma (γ) radiation interaction with low density polyethylene to evaluate changes in its physical-chemical properties. Polymer samples were exposed to 5, 10, 15, 20 and 30kGy doses, at room temperature. Samples characterization employed Thermal Analysis, Melt Flow Index, Infrared Spectroscopy and Swelling tests. (author)

14. Low-frequency observations of Galactic supernova remnants and the distribution of low-density ionized gas in the interstellar medium

International Nuclear Information System (INIS)

Kassim, N.E.

1989-01-01

New long-wavelength observations of Galactic SNRs at 30.9 and 57.5 MHz are used to derive detailed low-frequency radio spectra for 32 SNRs. Of these, about two-thirds show turnovers at low frequencies, implying the presence of a widespread, but inhomogeneous, ionized absorbing medium along the lines of sight. These observations are combined with other low-frequency data to derive free-free optical depths toward 457 SNRs and to constrain the physical properties of the ionized gas responsible for the absorption. These optical depths are consistent with the expected absorbing properties of extended H II region envelopes. 43 refs

15. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

Science.gov (United States)

Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

2016-11-14

We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

16. Maintenance of the JET active gas handling system

International Nuclear Information System (INIS)

Brennan, P.D.; Bell, A.C.; Brown, K.; Cole, C.; Cooper, B.; Gibbons, C.; Harris, M.; Jones, G.; Knipe, S.; Lewis, J.; Manning, C.; Miller, A.; Perevezentsev, A.; Skinner, N.; Stagg, R.; Stead, M.; Thomas, R.; Yorkshades, J.

2003-01-01

The JET active gas handling system (AGHS) has been in operation in conjunction with the JET machine since Spring 1997. The tritium levels within the vessel have remained sufficiently high, 6.2 g at the end of the DTE1 experiment and currently 1.5 g, such that the AGHS has been required to operate continuously to detritiate gases liberated during D-D operations and to maintain discharges to the environment to ALARP. Maintaining the system to ensure continued operation has been a key factor in guaranteeing the continued availability of the essential sub-systems. The operational history of the JET AGHS has been previously documented in a number of papers [R. Laesser, et al. Proc. of the 19th SOFT Conf. 1 (1996) 227; R. Laesser, et al., Fusion Eng. Des. 46 (1999) 307; P.D. Brennan, et al., 18th Symp. on Fusion Eng., 1999]. Operational downtime is minimised through well-engineered sub-systems that use high integrity components. Outage, contamination and operator dosage are minimised through pre-planned and prepared maintenance operations. The reliability of sub-system critical condition fault detection is demonstrated through routine testing of hard-wired alarms and interlocks

17. Flow structure of conical distributed multiple gas jets injected into a water chamber

Energy Technology Data Exchange (ETDEWEB)

Zhao, Jiajun; Yu, Yonggang [Nanjing University of Science and Technology, Nanjing (China)

2017-04-15

Based on an underwater gun firing project, a mock bullet with several holes on the head was designed and experimented to observe the combustion gas injected into a cylindrical water chamber through this mock bullet. The combustion gas jets contain one vertical central jet and 4 to 8 slant lateral jets. A high speed camera system was used to record the expansion of gas jets in the experimental study. In numerical simulations, the Euler two-fluid model and volume of fluid method were adopted to describe the gas-liquid flow. The results show the backflow zone in lateral jet is the main factor influencing the gas-liquid turbulent mixing in downstream. On cross sections, the gas volume fraction increased with time but the growth rate decreased. With a change of nozzle structure, the gas fraction was more affected than the shock structure.

18. Shock-wave proton acceleration from a hydrogen gas jet

Science.gov (United States)

Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

2013-04-01

Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

19. Exploratory investigation of the HIPPO gas-jet target fluid dynamic properties

Energy Technology Data Exchange (ETDEWEB)

Meisel, Zach, E-mail: zmeisel@nd.edu [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shi, Ke; Jemcov, Aleksandar [Hessert Laboratory for Aerospace Research, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Couder, Manoel [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

2016-08-21

In order to optimize the performance of gas-jet targets for future nuclear reaction measurements, a detailed understanding of the dependence of the gas-jet properties on experiment design parameters is required. Common methods of gas-jet characterization rely on measuring the effective thickness using nuclear elastic scattering and energy loss techniques; however, these tests are time intensive and limit the range of design modifications which can be explored to improve the properties of the jet as a nuclear reaction target. Thus, a more rapid jet-characterization method is desired. We performed the first steps towards characterizing the gas-jet density distribution of the HIPPO gas-jet target at the University of Notre Dame's Nuclear Science Laboratory by reproducing results from {sup 20}Ne(α,α){sup 20}Ne elastic scattering measurements with computational fluid dynamics (CFD) simulations performed with the state-of-the-art CFD software ANSYS Fluent. We find a strong sensitivity to experimental design parameters of the gas-jet target, such as the jet nozzle geometry and ambient pressure of the target chamber. We argue that improved predictive power will require moving to three-dimensional simulations and additional benchmarking with experimental data.

20. PIV Measurements in Weakly Buoyant Gas Jet Flames

Science.gov (United States)

Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

2001-01-01

Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

1. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan

Science.gov (United States)

McKee, Kathleen; Fee, David; Yokoo, Akihiko; Matoza, Robin S.; Kim, Keehoon

2017-06-01

The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed ;jet noise;. We aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano's Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7-10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of 79 to 132 m/s. Using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at 160-270 kg/s (14,000-23,000 t/d).

2. Turbulent spark-jet ignition in SI gas fuelled engine

Directory of Open Access Journals (Sweden)

Pielecha Ireneusz

2017-01-01

Full Text Available The article contains a thermodynamic analysis of a new combustion system that allows the combustion of stratified gas mixtures with mean air excess coefficient in the range 1.4-1.8. Spark ignition was used in the pre-chamber that has been mounted in the engine cylinder head and contained a rich mixture out of which a turbulent flow of ignited mixture is ejected. It allows spark-jet ignition and the turbulent combustion of the lean mixture in the main combustion chamber. This resulted in a two-stage combustion system for lean mixtures. The experimental study has been conducted using a single-cylinder test engine with a geometric compression ratio ε = 15.5 adapted for natural gas supply. The tests were performed at engine speed n = 2000 rpm under stationary engine load when the engine operating parameters and toxic compounds emissions have been recorded. Analysis of the results allowed to conclude that the evaluated combustion system offers large flexibility in the initiation of charge ignition through an appropriate control of the fuel quantities supplied into the pre-chamber and into the main combustion chamber. The research concluded with determining the charge ignition criterion for a suitably divided total fuel dose fed to the cylinder.

3. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

Science.gov (United States)

Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

2015-09-01

Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

4. hydrodynamic behavior of particles in a Jet flow of a gas fluidized bed

International Nuclear Information System (INIS)

Mirmomen, L.; Alavi, M.

2005-01-01

Numerous investigations have been devoted towards understanding the hydrodynamics of gas jets in fluidized beds. However, most of them address the problem from macroscopic point of view, which does not reveal the true behavior in the jet region at the single particle level. The present work aims to understand the jet behavior from a more fundamental level, i.e. the individual particle level. A thin rectangular gas fluidized bed, constructed from acrylic glass, with a vertical jet nozzle located at the center of the distributor was used in the work. A high speed camera with a speed up to 10,000 frames per second was used to observe the jet behavior . Analysis of large quantity of images allowed determination of solids flux, solids Velocity and solids concentration in the jet region . The model present in this work has shown better agreement with the experimental data in compare with the previous models presented in the literature

5. Study of mechanoactivation of tungsten-molybdenum containing raw material in gas-jet mill

International Nuclear Information System (INIS)

Agnokov, T.Sh.; Gorobets, L.Zh.; Martynenko, V.P.; Fedorov, Yu.P.; Krakhmaleva, M.T.; Sokolova, L.A.

1988-01-01

Investigation is aimed at intensifying autoclave-soda leaching of tungsten-molybdenum-containing raw material. Connection of reactivity and physicochemical properties of crushed tungsten-molybdenum-containing products under different gas-jet crushing parameters is investigated. Optimal technological indices of hydrometallurgical reprocessing of tungsten-molybdenum-containing raw materials and products processed by gas-jet technique are given. The results obtained point out to perspectiveness of applying gas-jet technique of thermomechanical processing for intensifying and increasing the quality of tungsten- and molybdenum-containing raw materials and products of hydrometallurgical production

6. The JET gas baking plant for DT operation and analysis of tritium permeation and baking gas activation in DTE1

Energy Technology Data Exchange (ETDEWEB)

Pearce, R.J.H.; Andrew, P.; Bryan, S.; Hemmrich, J.L. [JET Joint Undertaking, Abingdon, Oxon (United Kingdom)

1998-07-01

The JET gas baking plant allows the vacuum vessel to be heated for conditioning and plasma operations. The vessel was maintained at 320 deg. C for the JET DT experiments (DTE 1). The design of the plant is outlined with particular reference to the features to provide compatibility with tritium operations. The experience of baking gas activation and tritium permeation into the plant are given, Developmentsto reduce the tritium permeation out of the vessel are considered. (authors)

7. Analysis on discharge process of a plasma-jet triggered gas spark switch

Science.gov (United States)

Weihao, TIE; Cui, MENG; Yuting, ZHANG; Zirang, YAN; Qiaogen, ZHANG

2018-01-01

The plasma-jet triggered gas switch (PJTGS) could operate at a low working coefficient with a low jitter. We observed and analyzed the discharge process of the PJTGS at the lowest working coefficient of 47% with the trigger voltage of 40 kV and the pulse energy of 2 J to evaluate the effect of the plasma jet. The temporal and spatial evolution and the optical emission spectrum of the plasma jet were captured. And the spraying delay time and outlet velocity under different gas pressures were investigated. In addition, the particle in cell with Monte Carlo collision was employed to obtain the particle distribution of the plasma jet varying with time. The results show that, the plasma jet generated by spark discharge is sprayed into a spark gap within tens of nanoseconds, and its outlet velocity could reach 104 m s-1. The plasma jet plays a non-penetrating inducing role in the triggered discharge process of the PJTGS. On the one hand, the plasma jet provides the initial electrons needed by the discharge; on the other hand, a large number of electrons focusing on the head of the plasma jet distort the electric field between the head of the plasma jet and the opposite electrode. Therefore, a fast discharge originated from the plasma jet is induced and quickly bridges two electrodes.

8. Gas jet studies towards an optimization of the IGISOL LIST method

CERN Document Server

Reponen, M; Kurpeta, J; Sonnenschein, V; Pohjalainen, I; Aysto, J; Kessler, T; Piszczek, S; Karvonen, P; Marsh, B

2011-01-01

Gas jets emitted from an ion guide have been studied as a function of nozzle type and gas cell-to-background pressure ratio in order to obtain a low divergent, uniform jet over a distance of several cm. The jet has been probed by imaging the light emitted from excited argon or helium gas atoms. For a simple exit hole or converging-diverging nozzle, the jet diameter was found to be insensitive to the nozzle shape and inlet pressure. Sonic jets with a FWHM below 6 mm were achieved with a background pressure larger than 1 mbar in the expansion chamber. The measurements are supported by the detection of radioactive (219)Rn recoils from an alpha recoil source mounted within the gas cell. A Laval nozzle produced a well-collimated supersonic jet at low background pressures with a FWHM of similar to 6 mm over a distance of 14 cm. Direct Pitot probe measurements, on-axis, revealed a non-uniform pressure distribution in the gas jet of the Laval nozzle, supporting the visual observations. All measurements are motivated ...

9. Measurements of low density, high velocity flow by electron beam fluorescence technique

International Nuclear Information System (INIS)

Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru

1981-01-01

A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)

10. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

International Nuclear Information System (INIS)

Kelly, Seán; Golda, Judith; Schulz-von der Gathen, Volker; Turner, Miles M

2015-01-01

Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration. (paper)

11. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

Science.gov (United States)

Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

2015-11-01

Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

12. Computer simulations of a single-laser double-gas-jet wakefield accelerator concept

Directory of Open Access Journals (Sweden)

R. G. Hemker

2002-04-01

Full Text Available We report in this paper on full scale 2D particle-in-cell simulations investigating laser wakefield acceleration. First we describe our findings of electron beam generation by a laser propagating through a single gas jet. Using realistic parameters which are relevant for the experimental setup in our laboratory we find that the electron beam resulting after the propagation of a 0.8 μm, 50 fs laser through a 1.5 mm gas jet has properties that would make it useful for further acceleration. Our simulations show that the electron beam is generated when the laser exits the gas jet, and the properties of the generated beam, especially its energy, depend only weakly on most properties of the gas jet. We therefore propose to use the first gas jet as a plasma cathode and then use a second gas jet placed immediately behind the first to provide additional acceleration. Our simulations of this proposed setup indicate the feasibility of this idea and also suggest ways to optimize the quality of the resulting beam.

13. 2SD numerical study of feed-jet flow in gas centrifuge

International Nuclear Information System (INIS)

Jiang Dongjun; Zeng Shi

2008-01-01

Computational Fluid Dynamics (CFD) method was adopted to simulate the 2D symmetrical feed-jet flow-field in Iguacu gas centrifuge, in order to study the influence of feed-jet to counter-current. The data acquired from calculation were used to modify the feed boundary condition in counter-current calculation, and the stream lines distribution was got considering the effect o f the feed-jet. Finite volume method and 2-order implicit scheme were adopted to solve Navier-Stokes (N-S) equations in cylinder coordinates to simulate the feed-jet flow. Finite difference method was used to solve centrifuge fluid dynamics equations. The result s indicate that the feed-jet flow affects the countercurrent observably, the results of feed-jet flow simulation can be used to modify the conditions to calculate the counter-current in the real centrifuge. (authors)

14. A time-dependent dusty gas dynamic model of axisymmetric cometary jets

International Nuclear Information System (INIS)

Korosmezey, A.; Gombosi, T.I.

1990-01-01

The present time-dependent, axisymmetric dusty gas dynamical model of inner cometary atmospheres solves the coupled and time-dependent equations of continuity, momentum, and energy for a gas-dust mixture between the surface of the nucleus and 100 km, using an axisymmetric 40 x 40 grid structure. A novel numerical method employing a second-order accurate Godunov-type scheme with dimensional splitting is used to solve the time-dependent pde system. It is established that a subsolar dust spike not predicted by previous calculations is generated by narrow axisymmetric jets, together with a jet cone whose opening angle depends on the jet length. 28 refs

15. Development of Low Density, Flexible Carbon Phenolic Ablators

Science.gov (United States)

Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

2012-01-01

Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

16. Real-Time Tomography of Gas-Jets with a Wollaston Interferometer

Directory of Open Access Journals (Sweden)

2018-03-01

Full Text Available A tomographic gas-density diagnostic using a Single-Beam Wollaston Interferometer able to characterize non-symmetric density distributions in gas jets is presented. A real-time tomographic algorithm is able to reconstruct three-dimensional density distributions. A Maximum Likelihood-Expectation Maximization algorithm, an iterative method with good convergence properties compared to simple back projection, is used. With the use of graphical processing units, real-time computation and high resolution are achieved. Two different gas jets are characterized: a kHz, piezo-driven jet for lower densities and a solenoid valve-based jet producing higher densities. While the first jet is used for free electron laser photon beam characterization, the second jet is used in laser wake field acceleration experiments. In this latter application, well-tailored and non-symmetric density distributions produced by a supersonic shock front generated by a razor blade inserted laterally to the gas flow, which breaks cylindrical symmetry, need to be characterized.

17. Basic studies of a gas-jet-coupled ion source for on-line isotope separation

International Nuclear Information System (INIS)

Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

1980-01-01

A hollow-cathode ion source was used in a gas-jet-coupled configuration to produce ion beams of fission products transported to it from a 252 Cf fission source. Solid aerosols of NaCl and Ag were used effectively as activity carriers in the gas-jet system. Flat-plate skimmers provided an effective coupling of the ion source to the gas jet. Ge(Li) spectrometric measurements of the activity deposited on an ion-beam collector relative to that deposited on a pre-skimmer collector were used to obtain separation efficiencies ranging from 0.1% to > 1% for Sr, Y, Tc, Te, Cs, Ba, Ce, Pr, Nd and Sm. The use of CCl 4 as a support gas resulted in a significant enhancement of the alkaline-earth and rare-earth separation efficiencies

18. Real-time sensing and gas jet mitigation of VDEs on Alcator C-Mod

Science.gov (United States)

Granetz, R. S.; Wolfe, S. M.; Izzo, V. A.; Reinke, M. L.; Terry, J. L.; Hughes, J. W.; Zhurovich, K.; Whyte, D. G.; Bakhtiari, M.; Wurden, G.

2006-10-01

Experiments have been carried out in Alcator C-Mod to test the effectiveness of gas jet disruption mitigation of VDEs with real-time detection and triggering by the C-Mod digital plasma control system (DPCS). The DPCS continuously computes the error in the plasma vertical position from the magnetics diagnostics. When this error exceeds an adjustable preset value, the DPCS triggers the gas jet valve (with a negligible latency time). The high-pressure gas (argon) only takes a few milliseconds to enter the vacuum chamber and begin affecting the plasma, but this is comparable to the VDE timescale on C-Mod. Nevertheless, gas jet injection reduced the halo current, increased the radiated power fraction, and reduced the heating of the divertor compared to unmitigated disruptions, but not quite as well as in earlier mitigation experiments with vertically stable plasmas. Presumably a faster overall response time would be beneficial, and several ways to achieve this will also be discussed.

19. Stopped-flow technique for transit time measurement in a gas jet

International Nuclear Information System (INIS)

Rengan, K.; Lin, J.; Lim, T.; Meyer, R.A.; Harrell, J.

1985-01-01

A 'stopped-flow' technique for the measurement of transit time of reaction products in a gas jet is described. The method involved establishing the gas flow through the jet system when the reactor is operating steadily and allowing the pressure to reach equilibrium values. The gas flow is stopped by means of electrically operated valves. The transit-time measurement is achieved by opening the valves and initiating the multiscanning of total activity simultaneously. The value obtained agrees well with the transit time measured by pulsing the reactor. The 'stopped-flow' technique allows on-line measurement of transit time in any gas jet system where the physical transportation time is the major component of the transit time. This technique is especially useful for systems installed in reactors which do not have pulsing capability. (orig.)

20. Note: Design and investigation of a multichannel plasma-jet triggered gas switch.

Science.gov (United States)

Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong

2014-07-01

We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.

1. Gas jet disruption mitigation studies on Alcator C-Mod and DIII-D

International Nuclear Information System (INIS)

Granetz, R.S.; Hollmann, E.M.; Whyte, D.G.; Izzo, V.A.; Antar, G.Y.; Bader, A.; Bakhtiari, M.; Biewer, T.; Boedo, J.A.; Evans, T.E.; Hutchinson, I.H.; Jernigan, T.C.; Gray, D.S.; Groth, M.; Humphreys, D.A.; Lasnier, C.J.; Moyer, R.A.; Parks, P.B.; Reinke, M.L.; Rudakov, D.L.; Strait, E.J.; Terry, J.L.; Wesley, J.; West, W.P.; Wurden, G.; Yu, J.

2007-01-01

High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the requirements of fast response time and reliability, without degrading subsequent discharges. Previously reported gas jet experiments on DIII-D showed good success at reducing deleterious disruption effects. In this paper, results of recent gas jet disruption mitigation experiments on Alcator C-Mod and DIII-D are reported. Jointly, these experiments have greatly improved the understanding of gas jet dynamics and the processes involved in mitigating disruption effects. In both machines, the sequence of events following gas injection is observed to be quite similar: the jet neutrals stop near the plasma edge, the edge temperature collapses and large MHD modes are quickly destabilized, mixing the hot plasma core with the edge impurity ions and radiating away the plasma thermal energy. High radiated power fractions are achieved, thus reducing the conducted heat loads to the chamber walls and divertor. A significant (2 x or more) reduction in halo current is also observed. Runaway electron generation is small or absent. These similar results in two quite different tokamaks are encouraging for the applicability of this disruption mitigation technique to ITER

2. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

International Nuclear Information System (INIS)

Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

2017-01-01

The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

3. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

Science.gov (United States)

Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

2017-05-01

The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

4. Absolute measurement of alkaline atoms in low density jet

International Nuclear Information System (INIS)

Labbe, J.; Guernigou, J.

1974-01-01

In order to determine the neutral fraction of cesium vapor which is not ionized in the beam issuing from an ion thruster, a particular sensor was developed at ONERA. This probe, the sensibility of which is 6 10 7 atoms sec -1 was used in order to measure the variation of cesium atom flux ejected from a spherical isothermal cavity. Experiments were performed in three flow conditions caracterized by the ratio of the mean free path to the dimension of the orifice or to the diameter of the cavity. Results demonstrate that it is possible in this configuration to obtain an efflux of 5 10 13 atoms sec -1 in accordance to cosine law when the mean free path is about the diameter of the spherical cavity [fr

5. Large-eddy simulation of highly underexpanded transient gas jets

NARCIS (Netherlands)

Vuorinen, V.; Yu, J.; Tirunagari, S.; Kaario, O.; Larmi, M.; Duwig, C.; Boersma, B.J.

2013-01-01

Large-eddy simulations (LES) based on scale-selective implicit filtering are carried out in order to study the effect of nozzle pressure ratios on the characteristics of highly underexpanded jets. Pressure ratios ranging from 4.5 to 8.5 with Reynolds numbers of the order 75?000–140?000 are

6. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

International Nuclear Information System (INIS)

Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

2010-01-01

The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

7. Electric field measurements in a kHz-driven He jet - The influence of the gas flow speed

NARCIS (Netherlands)

Sobota, A.; Guaitella, O.; Sretenović, G.B.; Krstić, I.B.; Kovačević, V.V.; Obrusník, A.; Nguyen, Y.N.; Zajíčková, L.; Obradović, B.M.; Kuraica, M.M.

2016-01-01

This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between

8. Sampling low-density gypsy moth populations

Science.gov (United States)

William E. Wallner; Clive G. Jones; Joseph S. Elkinton; Bruce L. Parker

1991-01-01

The techniques and methodology for sampling gypsy moth, Lymantria dispar L., at low densities, less than 100 egg masses/ha (EM/ha), are compared. Forest managers have constraints of time and cost, and need a useful, simple predictable means to assist them in sampling gypsy moth populations. A comparison of various techniques coupled with results of...

9. [Microbial Processes and Genesis of Methane Gas Jets in the Coastal Areas of the Crimea Peninsula].

Science.gov (United States)

Malakhova, T V; Kanapatskii, T A; Egorov, V N; Malakhova, L V; Artemov, Yu G; Evtushenko, D B; Gulin, S B; Pimenov, N V

2015-01-01

Hydroasoustic techniques were used for detection and mapping of gas jet areas in the coastal regions of the Crimean peninsula. Gas seep areas in the bays Laspi, Khersones, and Kazach'ya were chosen for detailed microbiological investigation. The first type of gas jets, observed in the Laspi Bay, was probably associated with discarge of deep thermogenic methane along the faults. Methane isotopic composition was char- acterized by Δ13C of -35.3 degrees. While elevated rates of aerobic methane oxidation were revealed in the sandy sediments adjacent to the methane release site, no evidence of bacterial mats was found. The second type of gas emission, observed in the Khersones Bay, was accompanied by formation of bacterial biofilms of the "Thiodendron" microbial community type, predominated by filamentous, spirochete-like organisms, in the areas of gas seepage. The isotopic composition of methane was there considerably lower (-60.4 degrees), indicating a considerable contribution of modern microbial methane to the gas bubbles discharged in this bay. Activity of the third type of gas emission, the seeps of the Kazach'ya Bay, probably depended directly on modern microbial processes of organic matter degradation in the upper sediment layers. The rates of sulfate reduction and methanogenesis were 260 and 34 μmol dm(-3) day(-1), respectively. Our results indicate different mechanisms responsible for formation of methane jets in the Laspi Bay and in the coastal areas of the Heracles Peninsula, where the bays Kazach'ya and Khersones are located.

10. Measurement Of Ultrafast Ionisation From Intense Laser Interactions With Gas-Jets

International Nuclear Information System (INIS)

Gizzi, Leonida A.; Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Koester, Petra; Labate, Luca; Tomassini, Paolo; Martin, Philippe; Ceccotti, Tiberio; De Oliveira, Pascal; Monot, Pascal

2006-01-01

Interaction of an intense, ultrashort laser pulse with a gas-jet target is investigated through femtosecond optical interferometry to study the dynamics of ionization of the gas. Experimental results are presented in which the propagation of the pulse in the gas and the consequent plasma formation is followed step by step with high temporal and spatial resolution. We demonstrate that, combining the phase shift with the measurable depletion of fringe visibility associated with the transient change of refractive index in the ionizing region and taking into account probe travel time can provide direct information on gas ionization dynamics

11. Direct injection of high pressure gas : scaling properties of pulsed turbulent jets

NARCIS (Netherlands)

Baert, R.S.G.; Klaassen, A.; Doosje, E.

2010-01-01

Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection

12. Moeller polarimeter for VEPP-3 storage ring based on internal polarized gas jet target

International Nuclear Information System (INIS)

Dyug, M.V.; Grigoriev, A.V.; Kiselev, V.A.; Lazarenko, B.A.; Levichev, E.B.; Mikaiylov, A.I.; Mishnev, S.I.; Nikitin, S.A.; Nikolenko, D.M.; Rachek, I.A.; Shestakov, Yu.V.; Toporkov, D.K.; Zevakov, S.A.; Zhilich, V.N.

2005-01-01

A new method to determine the polarization of an electron beam circulating in a storage ring by a non-destructive way, based on measuring the asymmetry in scattering of beam electrons on electrons of the internal polarized gas jet target, has been developed and tested at the VEPP-3 storage ring

13. Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel

Science.gov (United States)

2017-11-09

The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...

14. CFD Study of Gas Dispersion and Jet Fires in Complex Geometries

DEFF Research Database (Denmark)

Osenbroch, Jørgen

(Hall 1997, McQuaid & Roebuck 1985) and (Sklavonuos & Rigas 2004). The Composite Radiosity Gap radiation model has been implemented in EXSIM. The predicted heat fluxes obtained from horizontally released natural gas jet fires have been compared to experimental findings reported by Johnson et al. (1994...

15. Ballistics considerations for small-caliber, low-density projectiles

International Nuclear Information System (INIS)

Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.

1993-01-01

One major application for single- and two-stage light gas guns is for fueling magnetic fusion confinement devices. Powder guns are not a feasible alternative due to possible plasma contamination by residual powder gases and the eventual requirement of steady-state operation at ∼ 1 Hz, which will dictate a closed gas handling system where propellant gases are recovered, processed and recompressed. Interior ballistic calculations for single-stage light gas guns, both analytical and numerical, are compared to an extensive data base for low density hydrogenic projectiles (pellets). Some innovative range diagnostics are described for determining the size and velocity of these small (several mm) size projectiles. A conceptual design of a closed cycle propellant gas system is presented including tradeoffs between different light propellant gases

16. 3D printing of gas jet nozzles for laser-plasma accelerators

Energy Technology Data Exchange (ETDEWEB)

Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France)

2016-07-15

Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the SALLE JAUNE terawatt laser at Laboratoire d’Optique Appliquée.

17. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

International Nuclear Information System (INIS)

Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.; Alatalo, Katherine

2016-01-01

We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H 2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H 2 emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.

18. Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center

Science.gov (United States)

Scott, Carl D.

2000-01-01

The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.

19. Development of a gas-jet-coupled multitarget system for multitracer production

International Nuclear Information System (INIS)

Haba, H.; Kaji, D.; Kanayama, Y.; Igarashi, K.; Enomoto, S.

2005-01-01

de021741792A new multitracer production system, which consists of a gas-jet-coupled multitarget system for short-lived radioactive tracers and a gas- and water-cooled target system for intense beam irradiations, has been installed on a beam line of the K540-MeV RIKEN Ring Cyclotron. The performance of the gas-jet system was investigated with 50 radionuclides of 18 elements produced in the 135 MeV nucl. -1 - 14 N induced reaction on nat Cu. The gas-jet efficiencies of the nuclides varying from 61 Cu to 24 Na, except for the chlorine isotopes, show a smooth variation as a function of the mass difference between a product and a target. The multitracers on the nat Ag and 197 Au targets were also produced by the 135 MeV nucl. -1 - 14 N beam with the intensity of 0.7 pμA, which was more than seven times the limit of the previous system. (orig.)

20. Heat transfer characteristics around a single heated rod immersed in sodium pool with gas jet injection

International Nuclear Information System (INIS)

Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi

2005-01-01

In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)

1. CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS

International Nuclear Information System (INIS)

Gaspari, M.; Ruszkowski, M.; Sharma, P.

2012-01-01

Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI /t ff ) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments 'rain' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI /t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI /t ff ∼< 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

2. Current-Voltage Characteristics of DC Discharge in Micro Gas Jet Injected into Vacuum Environment

International Nuclear Information System (INIS)

Matra, K; Furuta, H; Hatta, A

2013-01-01

A current-voltage characteristic of direct current (DC) gas discharge operated in a micro gas jet injected into a secondary electron microscope (SEM) chamber is presented. Ar gas was injected through a 30 μm orifice gas nozzle (OGN) and was evacuated by an additional pump to keep the high vacuum environment. Gas discharges were ignited between the OGN as anode and a counter electrode of Si wafer. The discharge was self-pulsating in most of the cases while it was stable at lower pressure, larger gap length, and larger time averaged current. The self-pulsating discharge was oscillated by the RC circuit consisting of a stray capacitor and a large ballast resistor. The real time plots of voltage and current during the pulsating was investigated using a discharge model.

3. Long distance coupling of lower hybrid waves in JET using gas feed

International Nuclear Information System (INIS)

Goniche, M.; Dobbing, J.; Ekedahl, A.

1997-12-01

Coupling experiments, using a gas feed near the Lower Hybrid Current Drive (LHCD) launcher, have been carried out in JET. An improvement in coupling for a given plasma - launcher distance can be obtained when the gas flow is large enough (> 2.5 x 10 21 el./s). During these experiments, modification of the wall recycling was observed and the relation with the observed improvement in coupling is presented. For high gas flow (> 5 x 10 21 el./s), a significant reduction in the suprathermal electron population, as determined by non-thermal electron cyclotron emission and hard X-ray emission, is observed. Visible light imaging of a sector of the divertor indicates that some power might be coupled to the scrape-off layer when the injected gas flux is too high. At low gas flow, the coupling can be improved without affecting the LH power absorption in the plasma core. (author)

4. Interferometric analysis of laboratory photoionized plasmas utilizing supersonic gas jet targets.

Science.gov (United States)

Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.

2018-06-01

Photoionized plasmas are an important component of active galactic nuclei, x-ray binary systems and other astrophysical objects. Laboratory produced photoionized plasmas have mainly been studied at large scale facilities, due to the need for high intensity broadband x-ray flux. Using supersonic gas jets as targets has allowed university scale pulsed power generators to begin similar research. The two main advantages of this approach with supersonic gas jets include: possibility of a closer location to the x-ray source and no attenuation related to material used for containment and or tamping. Due to these factors, this experimental platform creates a laboratory environment that more closely resembles astrophysical environments. This system was developed at the Nevada Terawatt Facility using the 1 MA pulsed power generator Zebra. Neon, argon, and nitrogen supersonic gas jets are produced approximately 7-8mm from the z-pinch axis. The high intensity broadband x-ray flux produced by the collapse of the z-pinch wire array implosion irradiates the gas jet. Cylindrical wire arrays are made with 4 and 8 gold 10µm thick wire. The z-pinch radiates approximately 12-16kj of x-ray energy, with x-ray photons under 1Kev in energy. The photoionized plasma is measured via x-ray absorption spectroscopy and interferometry. A Mach-Zehnder interferometer is used to the measure neutral density of the jet prior to the zebra shot at a wavelength of 266 nm. A dual channel air-wedge shearing interferometer is used to measure electron density of the ionized gas jet during the shot, at wavelengths of 532nm and 266nm. Using a newly developed interferometric analysis tool, average ionization state maps of the plasma can be calculated. Interferometry for nitrogen and argon show an average ionization state in the range of 3-8. Preliminary x-ray absorption spectroscopy collected show neon absorption lines. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.

5. Shock wave calibration of under-expanded natural gas fuel jets

Science.gov (United States)

White, T. R.; Milton, B. E.

2008-10-01

Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

6. System and method for crystalline sheet growth using a cold block and gas jet

Science.gov (United States)

Kellerman, Peter L.; Mackintosh, Brian; Carlson, Frederick M.; Morrell, David; Moradian, Ala; Desai, Nandish; Sun, Dawei; Sinclair, Frank

2018-05-01

A crystallizer for growing a crystalline sheet from a melt may include a cold block having a cold block surface that faces an exposed surface of the melt, the cold block configured to generate a cold block temperature at the cold block surface that is lower than a melt temperature of the melt at the exposed surface. The system may also include a nozzle disposed within the cold block and configured to deliver a gas jet to the exposed surface, wherein the gas jet and the cold block are interoperative to generate a process zone that removes heat from the exposed surface at a first heat removal rate that is greater than a second heat removal rate from the exposed surface in outer regions outside of the process zone.

7. Steady-state and dynamic analysis of a jet engine, gas lubricated shaft seal

Science.gov (United States)

Shapiro, W.; Colsher, R.

1974-01-01

Dynamic response of a gas-lubricated, jet-engine main shaft seal was analytically established as a function of collar misalignment and secondary seal friction. Response was obtained by a forward integration-in-time (time-transient) scheme, which traces a time history of seal motions in all its degrees of freedom. Results were summarized in the form of a seal tracking map which indicated regions of acceptable collar misalignments and secondary seal friction. Methodology, results and interpretations are comprehensively described.

8. Free molecule flow analysis of the interaction of skimming hardware components and background gas with free jets

International Nuclear Information System (INIS)

Raghuraman, P.; Bossel, U.

1974-01-01

Under conditions typical for the extraction of nozzle beams from free jets the rarefied flow pattern in the expansion chamber containing skimming hardware components and background gas is studied using a free molecule solution to the Boltzmann equation

9. High-brightness high-order harmonic generation at 13 nm with a long gas jet

International Nuclear Information System (INIS)

Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee

2002-01-01

The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.

10. Mucosal deformation from an impinging transonic gas jet and the ballistic impact of microparticles

International Nuclear Information System (INIS)

Hardy, M P; Kendall, M A F

2005-01-01

By means of a transonic gas jet, gene guns ballistically deliver microparticle formulations of drugs and vaccines to the outer layers of the skin or mucosal tissue to induce unique physiological responses for the treatment of a range of conditions. Reported high-speed imaging experiments show that the mucosa deforms significantly while subjected to an impinging gas jet from a biolistic device. In this paper, the effect of this tissue surface deformation on microparticle impact conditions is simulated with computational fluid dynamics (CFD) calculations. The microparticles are idealized as spheres of diameters 26.1, 39 and 99 μm and a density of 1050 kg m -3 . Deforming surface calculations of particle impact conditions are compared directly with an immobile surface case. The relative velocity and obliquity of the deforming surface decrease the normal component of particle impact velocity by up to 30% at the outer edge of the impinging gas jet. This is qualitatively consistent with reported particle penetration profiles in the tissue. It is recommended that these effects be considered in biolistic studies requiring quantified particle impact conditions

11. Physical properties of drawn very low density polyethylene films

Energy Technology Data Exchange (ETDEWEB)

Kim, B.S. [Yeungnam University, Kyongsan (Korea, Republic of); Lee, J.Y. [Korea Institute of Footwear and Leather Technology, Pusan (Korea, Republic of)

1998-05-01

Very low density polyethylene (VLDPE) films were prepared by quenching the pressed melt in ice water. The films were drawn with universal testing machine under constant temperature at four different temperatures, 30, 60, 80, and 110 {sup o} C. Thermal, mechanical properties, grossity, and gas permeability of the drawn VLDPE films as a function of draw ratio were investigated to examine their applicability to packaging. The films showed tow melting peaks, i.e., low temperature endotherm (LTE) and high temperature endotherm (HTE). The melting temperatures were increased with the draw ratio and the drawing temperature. The mechanical properties of the VLDPE film drawn at 80 {sup o} C were superior to those drawn at 110 {sup o} C. The grossity and gas permeability of the VLDPE film drawn at 110 {sup o} C were found to be best among the drawn films.

12. Numerical Simulation and Industrial Experimental Research on the Coherent Jet with "CH4 + N2" Mixed Fuel Gas

Science.gov (United States)

Hu, Shaoyan; Zhu, Rong; Dong, Kai; Liu, Runzao

2018-06-01

Coherent jet technology is widely used in the electric arc furnace (EAF) steelmaking process to deliver more energy and momentum into the molten steel bath. Meanwhile, the characteristics of a coherent jet using pure CH4 as the fuel gas have been well investigated in previous studies. To reduce the consumption of CH4, coherent jet technology using "CH4 + N2" mixed fuel gas instead of pure CH4 was proposed and studied in detail by numerical simulation in the present work. The Eddy Dissipation Concept model, which has detailed chemical kinetic mechanisms, was adopted to model the fuel gas combustion reactions. Experimental measurements were carried out to validate the accuracy of the computational model. The present study shows that the jet characteristics of the main oxygen improve along with the increase of the CH4 ratio in fuel gas and with the increase of the flow rate of fuel gas. When the CH4 ratio in the fuel gas is 25 pct, the fuel gas flow rate only has a limited influence on the jet characteristics, unlike the rest of the fuel gas compositions, because a high N2 proportion deteriorates the combustion performance and leads to severe incomplete combustion. Moreover, a false potential core phenomenon was observed and explained in the present study. Based on the average values, the jet length of a coherent jet with 75 pct CH4 can achieve 89.8 pct of that with 100 pct CH4. Finally, an industrial experiment was carried out on a commercial 100t EAF using coherent jet with 75 pct CH4, showing that the average CH4 consumption was reduced from 3.84 to 3.05 Nm3 t-1 under the premise of no obvious changes in the other production indexes.

13. Overview of the performance of the JET active gas handling system during and after DTE1

International Nuclear Information System (INIS)

Laesser, R.; Atkins, G.; Bell, A.

1999-02-01

The JET Active Gas Handling System (AGHS) was designed, built and commissioned to handle safely radioactive tritium gas mixtures, to supply tritium (T 2 ) and deuterium (D 2 ) to the JET torus, to process the exhaust gases with the main purpose to enrich and re-use T 2 and D 2 , to detritiate tritiated impurities and to keep discharges far below the approved daily release limits. In addition, the AGHS had to supply the necessary ventilation air streams during maintenance or repair inside or outside of the AGHS building. During the first Deuterium-Tritium Experiment (DTE1) at JET in 1997 the AGHS fulfilled all these tasks in an excellent manner. No unauthorised or unplanned tritium releases occurred and no operational delays were caused by the AGHS. In fact, this was the first true demonstration that quantities of tritium in the tens of grams range can be processed and recycled safely and efficiently in a large fusion device. At the start of DTE1 20 g of tritium were available on the JET site. About 100 g of tritium were supplied from the AGHS to the users which necessitated the recycling of tritium at least five times. Approximately 220 tritium plasma shots were performed during DTE1. Large amounts of tritium were temporarily trapped in the torus. This overview presents the performance of the whole AGHS during DTE1 as well as general aspects such as the preparation for DTE1; the quantities of gases supplied from the AGHS to the users and pumped back to the AGHS; tritium accountancy; interlock systems; failure of equipment; and gives detailed information of the gas processing in each subsystem of the AGHS. As a consequence of the performance of the AGHS during DTE1 we can state confidently that the AGHS is ready for further Deuterium-Tritium Experiments. (author)

14. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

Science.gov (United States)

Gaspari, M.; Ruszkowski, M.; Sharma, P.

2012-02-01

Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

15. Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG

Science.gov (United States)

Drenik, A.; Alegre, D.; Brezinsek, S.; De Castro, A.; Kruezi, U.; Oberkofler, M.; Panjan, M.; Primc, G.; Reichbauer, T.; Resnik, M.; Rohde, V.; Seibt, M.; Schneider, P. A.; Wauters, T.; Zaplotnik, R.; ASDEX-Upgrade, the; EUROfusion MST1 Teams; contributors, JET

2017-12-01

The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.

16. Mixing characterization of highly underexpanded fluid jets with real gas expansion

Science.gov (United States)

Förster, Felix J.; Baab, Steffen; Steinhausen, Christoph; Lamanna, Grazia; Ewart, Paul; Weigand, Bernhard

2018-03-01

We report a comprehensive speed of sound database for multi-component mixing of underexpanded fuel jets with real gas expansion. The paper presents several reference test cases with well-defined experimental conditions providing quantitative data for validation of computational simulations. Two injectant fluids, fundamentally different with respect to their critical properties, are brought to supercritical state and discharged into cold nitrogen at different pressures. The database features a wide range of nozzle pressure ratios covering the regimes that are generally classified as highly and extremely highly underexpanded jets. Further variation is introduced by investigating different injection temperatures. Measurements are obtained along the centerline at different axial positions. In addition, an adiabatic mixing model based on non-ideal thermodynamic mixture properties is used to extract mixture compositions from the experimental speed of sound data. The concentration data obtained are complemented by existing experimental data and represented by an empirical fit.

17. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

Science.gov (United States)

Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.

2014-11-01

A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

18. Gas stratification break-up by a vertical jet: Simulations using the GOTHIC code

International Nuclear Information System (INIS)

Andreani, Michele; Kapulla, Ralf; Zboray, Robert

2012-01-01

Highlights: ► Simulations of experiments addressing helium stratification break-up with GOTHIC are presented. ► In the tests, the initial helium-rich layer in a large vessel is eroded by a vertical jet. ► A 3-D coarse mesh and various finer 2-D meshes have been used for the simulations. ► In general, the 3-D calculations predict too slow mixing in the vessel. ► A reasonable agreement between calculated and measured gas concentrations requires a fine mesh. - Abstract: The capability assessment of three-dimensional computational tools to predict the erosion and the break-up of stratified conditions that can build-up in a containment through the release of hydrogen during an early phase of a hypothetical severe accident is the focus of intense research worldwide. In conjunction with the OECD SETH-2 project, the GOTHIC code is assessed against experiments in which mass and/or heat sources or sinks cause mixing. This paper reports on simulation results of selected experiments where the initial helium stratification in a vessel is eroded by a vertical jet originating from an injection below the initial density interface. A 3-D coarse mesh, as well as various finer 2-D meshes, is used to simulate the evolution of the helium distribution generated by jets having different initial momentum. In general, the 3-D calculations predict too slow mixing in the vessel and a reasonable agreement between calculated and measured gas concentrations can only be achieved with a sufficiently fine mesh. These results can be explained by comparing the calculated velocity field with that measured using the PIV technique, which also provides valuable insight into the mechanisms of the interaction between the jet and the density interface.

19. Low-Density Lipoproteins Oxidation and Endometriosis

Directory of Open Access Journals (Sweden)

Grzegorz Polak

2013-01-01

Full Text Available The etiopathogenesis of endometriosis still remains unknown. Recent data provide new valuable information concerning the role of oxidative stress in the pathophysiology of the disease. It has been proved that levels of different lipid peroxidation end products are increased in both peritoneal fluid (PF and serum of endometriotic patients. We assessed the concentration of oxidized low-density lipoproteins (oxLDL in PF of 110 women with different stages of endometriosis and 119 women with serous ( or dermoid ( ovarian cysts, as the reference groups. PF oxLDL levels were evaluated by ELISA. We found that concentrations of oxLDL in PF of endometriotic women were significantly higher compared to women with serous but not dermoid ovarian cysts. Interestingly, by analyzing concentrations of oxLDL in women with different stages of the disease, it was noted that they are significantly higher only in the subgroup of patients with stage IV endometriosis as compared to women with ovarian serous cysts. In case of minimal, mild, and moderate disease, PF oxLDL levels were similar to those noted in reference groups. Our results indicate that disrupted oxidative status in the peritoneal cavity of women with endometriosis may play a role in the pathogenesis of advanced stages of the disease.

20. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

International Nuclear Information System (INIS)

Gilchrist, B.E.; Banks, P.M.; Neubert, T.; Williamson, P.R.; Myers, N.B.; Raitt, W.J.; Sasaki, Susumu

1990-01-01

Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode

1. A Study of Vertical Gas Jets in a Bubbling Fluidized Bed

Energy Technology Data Exchange (ETDEWEB)

Ceccio, Steven [Univ. of Michigan, Ann Arbor, MI (United States); Curtis, Jennifer [Univ. of Florida, Gainesville, FL (United States)

2011-04-15

A detailed experimental study of a vertical gas jet impinging a fluidized bed of particles has been conducted with the help of Laser Doppler Velocimetry measurements. Mean and fluctuating velocity profiles of the two phases have been presented and analyzed for different fluidization states of the emulsion. The results of this work would be greatly helpful in understanding the complex two-phase mixing phenomenon that occurs in bubbling beds, such as in coal and biomass gasification, and also in building more fundamental gas-solid Eulerian/Lagrangian models which can be incorporated into existing CFD codes. Relevant simulations to supplement the experimental findings have also been conducted using the Department of Energy's open source code MFIX. The goal of these simulations was two-fold. One was to check the two-dimensional nature of the experimental results. The other was an attempt to improve the existing dense phase Eulerian framework through validation with the experimental results. In particular the sensitivity of existing frictional models in predicting the flow was investigated. The simulation results provide insight on wall-bounded turbulent jets and the effect frictional models have on gas-solid bubbling flows. Additionally, some empirical minimum fluidization correlations were validated for non-spherical particles with the idea of extending the present study to non-spherical particles which are more common in industries.

2. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow

Science.gov (United States)

Li, Peibo; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo

2017-05-01

The gas-liquid interaction process of a liquid jet in supersonic crossflow with a Mach number of 1.94 was investigated numerically using the Eulerian-Lagrangian method. The KH (Kelvin-Helmholtz) breakup model was used to calculate the droplet stripping process, and the secondary breakup process was simulated by the competition of RT (Rayleigh-Taylor) breakup model and TAB (Taylor Analogy Breakup) model. A correction of drag coefficient was proposed by considering the compressible effects and the deformation of droplets. The location and velocity models of child droplets after breakup were improved according to droplet deformation. It was found that the calculated spray features, including spray penetration, droplet size distribution and droplet velocity profile agree reasonably well with the experiment. Numerical results revealed that the streamlines of air flow could intersect with the trajectory of droplets and are deflected towards the near-wall region after they enter into spray zone around the central plane. The analysis of gas-liquid relative velocity and droplet deformation suggested that the breakup of droplets mainly occurs around the front region of the spray where gathered a large number of droplets with different sizes. The liquid trailing phenomenon of jet spray which has been discovered by the previous experiment was successfully captured, and a reasonable explanation was given based on the analysis of gas-liquid interaction process.

3. Thermoluminescence glow curves of irradiated PMMA and low density polyethylene

International Nuclear Information System (INIS)

Matsuda, Koji; Nakase, Yoshiaki; Kumakiri, Yasuhito; Tsuji, Yoshio.

1985-03-01

Light emission from polymers is observed when polymers preirradiated with ionizing radiation at low temperature are heated gradually. The light emission is supposedly resulted from recombination of electrons with active centers produced in polymers or from some other processes involving charge transfer, but no definite explanation has been given at present on the thermoluminescent centers. This report describes our studies on the effects of impurities contained in polymers and pressure of ambient gases on the thermoluminescent glow curve of PMMA and low density polyethylene, which are often used for plastic film dosimeters. In the glow curve of PMMA, only one peak was observed at 110 K in an H 2 or He atmosphere at 760 Torr, but the intensity of the peak decreased with decreasing the H 2 or He gas pressure. At 10 -5 Torr H 2 or He atmosphere the peak disappered, and two sharp peaks appeared in the temperature range from 200 to 250 K. On the other hand, in the glow curve of low density polyethylene, three peaks were observed at 120 K, 180 K and 250 K in the presence of H 2 or He gas at 760 Torr. The effects of pressure of ambient gases and impurities in the polyethylene on these peaks indicate that the peak at 120 K is due to luminescent center produced on the surface or just below the surface of the matrix by collision of excited atoms or molecules of gases with polymer molecules, the peak at 120 K is originated from impurities in the matrix, and the peak at 250 0 K corresponds to luminescent center produced in polyethylene matrix. (author)

4. Analysis of a gas stratification break-up by a vertical jet using the GOTHIC code

International Nuclear Information System (INIS)

Fernández-Cosials, Mikel Kevin; Jimenez, Gonzalo; Lopez-Alonso, Emma

2016-01-01

Highlights: • Study of a light gas distribution with the GOTHIC code based on the OECD/NEA IBE-3. • Sensitivity analysis on turbulence model, discretization scheme and heat transfer. • The jet erosion phenomena is captured properly with a relatively coarse mesh. • Development of a tool to evaluate the influence of each parameter on the simulation. • Several recommendation on modeling a stratification break-up are included. - Abstract: During a severe accident in light water reactor (LWR), hydrogen concentration can overpass the flammability limits locally, so the correct simulation of its behavior during a release is critical. The capability assessment of computational fluid dynamics tools to calculate the hydrogen distribution under different conditions has been the focus of intense research worldwide. In this context, the OECD/NEA conducted an international benchmark exercise (IBE-3), which was focused on the break-up of a stratified layer of a light gas by a vertical jet. The participants performed their simulations before the experiment data was released. When the data was released, it was noticed that a combination of several parameters like the mesh, turbulence model or solver controls were responsible for the broad differences between the participants’ results. To obtain information about how each parameter affects the simulation, a post-test sensitivity analysis has been done by the UPM. In this paper, the IBE-3 experiment simulation with GOTHIC 8.0 is presented along with extensive sensitivity analyses of the relevant parameters. The first objective of the work is to test the capability of GOTHIC 8.0 to simulate properly a gas stratification break-up by a vertical jet with a relatively coarse mesh. The second objective of the paper is to relate each sensitivity parameter with each other and with the experiment through the Parameter Influence Chart, a helpful tool specially designed for this purpose.

5. Analysis of a gas stratification break-up by a vertical jet using the GOTHIC code

Energy Technology Data Exchange (ETDEWEB)

Fernández-Cosials, Mikel Kevin; Jimenez, Gonzalo, E-mail: gonzalo.jimenez@upm.es; Lopez-Alonso, Emma

2016-02-15

Highlights: • Study of a light gas distribution with the GOTHIC code based on the OECD/NEA IBE-3. • Sensitivity analysis on turbulence model, discretization scheme and heat transfer. • The jet erosion phenomena is captured properly with a relatively coarse mesh. • Development of a tool to evaluate the influence of each parameter on the simulation. • Several recommendation on modeling a stratification break-up are included. - Abstract: During a severe accident in light water reactor (LWR), hydrogen concentration can overpass the flammability limits locally, so the correct simulation of its behavior during a release is critical. The capability assessment of computational fluid dynamics tools to calculate the hydrogen distribution under different conditions has been the focus of intense research worldwide. In this context, the OECD/NEA conducted an international benchmark exercise (IBE-3), which was focused on the break-up of a stratified layer of a light gas by a vertical jet. The participants performed their simulations before the experiment data was released. When the data was released, it was noticed that a combination of several parameters like the mesh, turbulence model or solver controls were responsible for the broad differences between the participants’ results. To obtain information about how each parameter affects the simulation, a post-test sensitivity analysis has been done by the UPM. In this paper, the IBE-3 experiment simulation with GOTHIC 8.0 is presented along with extensive sensitivity analyses of the relevant parameters. The first objective of the work is to test the capability of GOTHIC 8.0 to simulate properly a gas stratification break-up by a vertical jet with a relatively coarse mesh. The second objective of the paper is to relate each sensitivity parameter with each other and with the experiment through the Parameter Influence Chart, a helpful tool specially designed for this purpose.

6. Molded ultra-low density microcellular foams

International Nuclear Information System (INIS)

Rand, P.B.; Montoya, O.J.

1986-07-01

Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

7. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

Directory of Open Access Journals (Sweden)

Guanglong Chen

2015-10-01

Full Text Available The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

8. Methodology and results of risk assessment of interconnections within the JET active gas handling system

International Nuclear Information System (INIS)

Ballantyne, P.R.; Bell, A.C.; Konstantellos, A.; Hemmerich, J.L.

1992-01-01

The Joint European Torus (JET) Active Gas Handling System (AGHS) is a complex interconnection of numerous subsystems. While individual subsystems were assessed for their risk of operation, an assessment of the effects of inadvertent interconnections was needed. A systematic method to document the assessment was devised to ease the assessment of complex plant and was applied to the AGHS. The methodology, application to AGHS, the four critical issues and required plant modifications as a result of this assessment are briefly discussed in this paper

9. Spectroscopic analysis of the density and temperature gradients in the laser-heated gas jet

International Nuclear Information System (INIS)

Matthews, D.L.; Lee, R.W.; Auerbach, J.M.

1981-01-01

We have performed an analysis of the x-ray spectra produced by a 1.0TW, lambda/sub L/-0.53μm laser-irradiated gas jet. Plasmas produced by ionization of neon, argon and N 2 + SF 6 gases were included in those measurements. Plasma electron density and temperature gradients were obtained by comparison of measured spectra with those produced by computer modeling. Density gradients were also obtained using laser interferometry. The limitations of this technique for plasma diagnosis will be discussed

10. Plasma and neutral gas jet interactions in the exhaust of a magnetic confinement system

International Nuclear Information System (INIS)

Krueger, W.A.

1990-06-01

A general purpose 2-1/2 dimensional, multifluid, time dependent computer code has been developed. This flexible tool models the dynamic behavior of plasma/neutral gas interactions in the presence of a magnetic field. The simulation has been used to examine the formation of smoke ring structure in the plasma rocket exhaust by injection of an axial jet of neutral gas. Specifically, the code was applied to the special case of attempting to couple the neutral gas momentum to the plasma in such a manner that plasma smoke rings would form, disconnecting the plasma from the magnetic field. For this scenario several cases where run scanning a wide range of neutral gas input parameters. In all the cases it was found that after an initial transient phase, the plasma eroded the neutral gas and after that followed the original magnetic field. From these findings it is concluded that smoke rings do not form with axial injection of neutral gas. Several suggestions for alternative injection schemes are presented

11. Bibliography of Books and Published Reports on Gas Turbines, Jet Propulsion, and Rocket Power Plants, January 1950 through December 1953

Science.gov (United States)

1953-12-01

75. Aeronautics In 1950. Engineer 191,67 and 100. Critical review of gas turbine progress in 1950. Engineer 191, 50. Gas turbines in 1950. Engineer 191...1952) ; Trans. ASME 75,121. A critical review of gas turbine progress, 1952. Engineer 195, 124. Aeronautics in 1952. Engineer 195, 24, 55 and 91...Physical fundamentals of jet propulsion. Forsch. Gebiete Ingenieurw. B19, Forschungaheft 437, p 5. 0. Santangelo, Metodo di calcolo delle

12. Characteristics of a gas-jet transport system for an on-line isotope separator

International Nuclear Information System (INIS)

Kawade, K.; Yamamoto, H.; Amano, H.; Hanada, M.; Katoh, T.; Okano, K.; Kawase, Y.; Fujiwara, I.

1982-01-01

Basic characteristics of a gas-jet transport system for an on-line isotope separator have been investigated using a 252 Cf source and a 235 U fission source. The transport efficiency of fission products through a capillary has been measured to be about 60% for the 235 U fission source. The sweep-out time of fission products through a target chamber and the transit time through a capillary have been measured for He, N 2 and CO 2 gases at several pressures. The measured sweep-out times have been almost equal to the exchange over time of the gas. The transit times have been found to be reasonably predicted by calculations. The transport system has been incorporated into the KUR-ISOL and is used for the study of short-lived nuclei. (orig.)

13. X-ray burst studies with the JENSA gas jet target

Directory of Open Access Journals (Sweden)

2017-01-01

Full Text Available When a neutron star accretes hydrogen and helium from the outer layers of its companion star, thermonuclear burning enables the αp-process as a break out mechanism from the hot CNO cycle. Model calculations predict (α, p reaction rates significantly affect both the light curves and elemental abundances in the burst ashes. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA gas jet target enables the direct measurement of previously inaccessible (α,p reactions with radioactive beams provided by the rare isotope re-accelerator ReA3 at the National Superconducting Cyclotron Laboratory (NSCL, USA. JENSA is going to be the main target for the Recoil Separator for Capture Reactions (SECAR at the Facility for Rare Isotope Beams (FRIB. Commissioning of JENSA and first experiments at Oak Ridge National Laboratory (ORNL showed a highly localized, pure gas target with a density of ∼1019 atoms per square centimeter. Preliminary results are presented from the first direct cross section measurement of the 34Ar(α, p37 K reaction at NSCL.

14. New supersonic gas jet target for low energy nuclear reaction studies

Science.gov (United States)

Favela, F.; Acosta, L.; Andrade, E.; Araujo, V.; Huerta, A.; de Lucio, O. G.; Murillo, G.; Ortiz, M. E.; Policroniades, R.; Santa Rita, P.; Varela, A.; Chávez, E.

2015-12-01

A windowless supersonic gas jet target (SUGAR) has been put in operation recently in Mexico. It is the first target of its kind in the country and the region. New research opportunities become available with this facility through the study of the direct beam-gas interaction: nuclear physics and astrophysics, atomic physics, interaction of radiation with matter and other interdisciplinary applications. A general description of the apparatus and its commissioning is given here. Air, nitrogen and argon jets were produced. Proton and deuteron beams were used to measure key parameters of the system to compare with theoretical estimates. In addition, as a first study case, we present data from the 14N (d ,α )12C reaction, at center of mass energies between 1.9 and 3.0 MeV with an E-Δ E telescope detector at 35°. Excitation functions for several excited states were constructed and an 16O resonance at 22.72 MeV was confirmed.

15. Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds

International Nuclear Information System (INIS)

Guan Donghua; Chen Zhiqing; Huang Chunpeng; Lin Yinghe

2008-01-01

In this study, poly(3-hydroxybutyrate) (PHB)-based scaffolds containing nanosized hydroxyapatite (nHAP) were manufactured by gas-jet/electrospinning. The morphologies of the scaffolds were characterized. The effect of the scaffolds on attachment, proliferation and differentiation of the bone marrow stroma cells (BMSCs) were accessed by using scanning electron microscopy (SEM), methylthiazol tetrazolium (MTT) assay and alkaline phosphatase (ALP) activity. The results show that the gas-jet/electrospun scaffolds possess an extracellular matrix-like topography. In vitro studies describe that the scaffolds have positive effects on attachment, proliferation and differentiation of BMSCs in vitro. It can be concluded that the scaffolds combing the unique structural features generated by gas-jet/electrospinning with functional factors, have the potential to be used in bone tissue engineering

16. Low Density Real Gas Flows About Hypersonic Vehicles.

Science.gov (United States)

1991-11-01

equations with fully-coupled finite rate air chemistry. The development of the HYLDA code was motivated by the difficulty of current wind tunnel...2ps,,.,, - psj = , (3-30) PN. 2pNwa - pNead u Uadj v Vadj w T Wadj bc 2TLMau - TadJ where PS4 -- PSj if noncatalytic wall = calculated if catalytic wall

17. Low density in liver of idiopathic portal hypertension

International Nuclear Information System (INIS)

Ishito, Hiroyuki

1988-01-01

In order to evaluate the diagnostic value of low density in liver on computed tomography (CT), CT scans of 11 patients with idiopathic portal hypertension (IPH) were compared with those from 22 cirrhotic patients, two patients with scarred liver and 16 normal subjects. Low densities on plain CT scans in patients with IPH were distinctly different from those observed in normal liver. Some of the low densities had irregular shape with unclear margin and were scattered near the liver surface, and others had vessel-like structures with unclear margin and extended as far as near the liver surface. Ten of the 11 patients with IPH had low densities mentioned above, while none of the 22 cirrhotic patients had such low densities. The present results suggest that the presence of low densities in liver on plain CT scan is clinically beneficial in diagnosis of IPH. (author)

18. Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling

International Nuclear Information System (INIS)

Schmidt-Bleker, A; Winter, J; Iseni, S; Dünnbier, M; Reuter, S; Weltmann, K-D

2014-01-01

In this work, a simple modelling approach combined with absorption spectroscopy of long living species generated by a cold atmospheric plasma jet yields insight into relevant gas phase chemistry. The reactive species output of the plasma jet is controlled using a shielding gas device. The shielding gas is varied using mixtures of oxygen and nitrogen at various humidity levels. Through the combination of Fourier transform infrared (FTIR) spectroscopy, computational fluid dynamics (CFD) simulations and zero dimensional kinetic modelling of the gas phase chemistry, insight into the underlying reaction mechanisms is gained. While the FTIR measurements yield absolute densities of ozone and nitrogen dioxide in the far field of the jet, the kinetic simulations give additional information on reaction pathways. The simulation is fitted to the experimentally obtained data, using the CFD simulations of the experimental setup to estimate the correct evaluation time for the kinetic simulation. It is shown that the ozone production of the plasma jet continuously rises with the oxygen content in the shielding gas, while it significantly drops as humidity is increased. The production of nitrogen dioxide reaches its maximum at about 30% oxygen content in the shielding gas. The underlying mechanisms are discussed based on the simulation results. (paper)

19. Refractory Coated/Lined Low Density Structures, Phase II

Data.gov (United States)

National Aeronautics and Space Administration — This project addresses the development of refractory coated or lined low density structures applicable for advanced future propulsion system technologies. The...

20. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

Science.gov (United States)

Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

2010-11-01

A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

1. Stabilization of electrohydrodynamic jets by gas discharges and applications to printing

Science.gov (United States)

Korkut, Sibel

From integrated circuits to DNA hybridization micro arrays, many areas of research require flexible and reliable, high resolution surface patterning tools. A new surface patterning technique, electrohydrodynamic printing (EHDP) [1] provides high resolution and speed at the same time, which was not attainable with the existing direct surface patterning techniques. Stability of electrohydrodynamic (EHD) jets determines the accuracy of deployment in EHD printing [1-3]; therefore, understanding non-axisymmetric instability of the jet, which is caused by the surface charges, is crucial to successful operation. In this thesis, fast imaging and image analysis techniques are used to determine non-axisymmetric disturbance growth rates experimentally. Comparison of experimental instability growth rates with the theoretical estimations based on total current reveals a big discrepancy. It is also found that instability growth rates decrease and stability of EHD filaments is enhanced either by decreasing the electrode separation or by changing the surrounding gas. After considering all possible mechanisms, it is concluded that the main reason for stabilization is the increased ionization of the surrounding gas. Gas ionization results in partial neutralization of surface charges on the filament by the oppositely charged ions in the gas phase and stabilizes the jet. A new current balance including the charge transfer through the gas is developed to estimate the charge density left on the filament. Experimental and theoretical instability growth rates agree much better when the estimated charge density is used for the instability growth rate calculations. The second part of the thesis focuses on pattern formation on the surfaces. The final pattern produced with a colloidal suspension by EHDP depends on not only the stability of the jet but also the dynamics of the suspension and the stability of printed lines after the deployment. Rivulet instability, which causes deployed

2. Controlling the Effluent Chemistry of a CAP jet for Biomedical Applications: FTIR Diagnostics and Gas Phase Modeling

Science.gov (United States)

Schmidt-Bleker, Ansgar; Winter, Joern; Iseni, Sylvain; Duennbier, Mario; Barton, Annemarie; Bundscherer, Lena; Wende, Kristian; Masur, Kai; Weltmann, Klaus-Dieter; Reuter, Stephan

2013-09-01

The use of cold atmospheric pressure plasma (CAP) jets with shielding gas devices has proven to be a valuable tool for biomedical applications of plasmas. In order to understand which active components generated by the plasma source trigger desired biological effects, a deeper insight into the species output of CAP jets is necessary. In this work we investigate the effect of different shielding gas compositions using a CAP jet (kinpen) operated with argon. As shielding gas various mixtures of N2 and O2 are used with relative humidity ranging from 0 to 100%. For all conditions the densities of O3, NO2, HNO3, N2O5 and N2O in the far-field of the jet are determined using Fourier-Transformed Infrared Spectroscopy (FTIR). A kinetic model for the neutral species humid air chemistry is fitted to the experimental data. The model yields insight into the processes in the CAP jets effluent. It is used to extrapolate the measured data to 2D density maps for each species depending on the O2/(O2 + N2) ratio and the relative humidity. The 2D maps serve as a basis for the design of further biological and physical experiments. The authors gratefully acknowledge the funding by the German Ministry of Education and Research (BMBF, grant number 03Z2DN11/12).

3. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

International Nuclear Information System (INIS)

Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

2016-01-01

Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

4. Upgrading the JET pellet injector with a two-stage light gas gun prototype and future planning

International Nuclear Information System (INIS)

Kupschus, P.; Sonnenberg, K.; Bailey, W.; Gadeberg, M.; Hardaker, J.; Hedley, L.; Helm, J.; Flory, D.; McCarthy, P.; Nowak, A.; Twynam, P.; Szabo, T.; Watson, M.

1989-01-01

For about two years the Joint European TORUS (JET) has been using a multi-pellet injector jointly built by JET and the Oak Ridge National Laboratory (ORNL). This was and is jointly operated by a JET - US Pellet Team within the Pellet Agreement between JET and the US Department of Energy (US DOE) under the wider umbrella of the EURATOM - US DOE Agreement on collaborative Fusion Research. This injector is composed of the ORNL Launcher, employing three independently firing repetitive (up to 5 s -1 ) pneumatic guns for pellet speeds of up to 1.5 kms -1 , and a JET launcher-torus interface (Pellet Interface) which provides all required services to the launcher and its immediate control system. In particular, it provides the differential pumping to match the high pressures of the gun system to the vacuum pressure and flow requirements of the plasma boundary. The Pellet Interface, in its design from its conception about four years ago, was intended to be equipped with a JET built pellet launcher system employing also high-speed guns at a later date once the ORNL Launcher will have been removed as it is not compatible with the JET requirements for the Active Phase (tritium and remote handling compatibility). As a first step - to learn about the possible plasma physics benefits as well as to gain technical experience concerning the application of advanced gun technology, a JET two-stage light gas gun prototype has been developed and is now being installed in parallel with the ORNL Launcher. This paper reports on the JET pellet injector development program, its motivation and its results to date. It describes briefly the presently operated pellet injector, continues to outline the design of the prototype in more detail and finally sketches the plans for the near future. 8 refs., 11 figs., 1 tab

5. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurisation

DEFF Research Database (Denmark)

Zheng, Yuanjing; Kiil, Søren; Johnsson, Jan Erik

2003-01-01

In the present work, an experimental parameter study was conducted in a pilot-scale jet bubbling reactor for wet flue gas desulphurisation (FGD). The pilot plant is downscaled from a limestone-based, gypsum producing full-scale wet FGD plant. Important process parameters, such as slurry pH, inlet...... flue gas concentration of SO2, reactor temperature, and slurry concentration of Cl- have been varied. The degree of desulphurisation, residual limestone content of the gypsum, liquid phase concentrations, and solids content of the slurry were measured during the experimental series. The SO2 removal...... efficiency increased from 66.1% to 71.5% when the reactor slurry pH was changed from 3.5 to 5.5. Addition of Cl(in the form of CaCl2 . 2H(2)O) to the slurry (25 g Cl-/l) increased the degree of desulphurisation to above 99%, due to the onset of extensive foaming, which substantially increased the gas...

6. The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films

International Nuclear Information System (INIS)

Sun Jie; Qiu Yiping

2015-01-01

Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O 2 gas for different periods of time. The influence of gas type on the plasma-polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O 2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O 2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O 2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of −COO than the comparable He/O 2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O 2 plasma treated ones with other conditions unchanged. (paper)

7. Chemical reactions of fission products with ethylene using the gas jet technique

International Nuclear Information System (INIS)

Contis, E.T.; Rengan, Krish; Griffin, Henry C.

1994-01-01

An understanding of the nature of the chemical reactions taking place between fission products and their carrier gases, and the designing of a fast separation procedure were the purposes of this investigation. Chemical reactions of short-lived (less than one minute half-life) fission products with carrier gases lead to various chemical species which can be separated in the gas phase. The Gas Jet Facility at the Ford Nuclear Reactor was used to study the yields of volatile selenium and bromine fission products of 235 U using a semi-automatic batch solvent extraction technique. Heptane and water were used as organic and inorganic solvents. A carrier gas mixture of ethylene to pre-purified nitrogen (1 : 3) was used to sweep the fission products from the target to the chemistry area for analysis. The results indicated that the volatile selenium products generated by the interaction of selenium fission fragments with ethylene were predominantly organic in nature (84%), possibly organoselenides. The selenium values were used to resolve the fractions of the bromine nuclides, which come from two major sources, viz., directly from fission and from the beta-decay of selenium. The data showed that the fractions of independent bromine fission products in the organic phase were much lower compared to selenium; the bromine values range from 10 to 22% and varied with mass number. Results indicated that the bromine products were inorganic in nature, as possibly hydrogen chloride. ((orig.))

8. Conformational reduction of DOPA in the gas phase studied by laser desorption supersonic jet laser spectroscopy.

Science.gov (United States)

Ishiuchi, Shun-ichi; Mitsuda, Haruhiko; Asakawa, Toshiro; Miyazaki, Mitsuhiko; Fujii, Masaaki

2011-05-07

The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups. This journal is © the Owner Societies 2011

9. An Experimental Observation of Axial Variation of Average Size of Methane Clusters in a Gas Jet

International Nuclear Information System (INIS)

Ji-Feng, Han; Chao-Wen, Yang; Jing-Wei, Miao; Jian-Feng, Lu; Meng, Liu; Xiao-Bing, Luo; Mian-Gong, Shi

2010-01-01

Axial variation of average size of methane clusters in a gas jet produced by supersonic expansion of methane through a cylindrical nozzle of 0.8 mm in diameter is observed using a Rayleigh scattering method. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 16 to 50 bar, and the power is strongly Z dependent varying from 8.4 (Z = 3 mm) to 5.4 (Z = 11 mm), which is much larger than that of the argon cluster. The scattered light intensity versus axial position shows that the position of 5 mm has the maximum signal intensity. The estimation of the average cluster size on axial position Z indicates that the cluster growth process goes forward until the maximum average cluster size is reached at Z = 9 mm, and the average cluster size will decrease gradually for Z > 9 mm

10. Present status of rarefied gas dynamics approach to the structure of a laser-induced evaporating jet

International Nuclear Information System (INIS)

Cercignani, C.

1980-01-01

With reference to the relation between the state of the surface and the measurements downstream in the dynamic laser pulse technique, the problems arising in connection with the study of the structure of a jet evaporating into a vacuum are investigated. Particular attention is paid to the following aspects gas surface interaction, internal degrees of freedom, presence of more than one species, chemical reactions

11. Quartz crystal micro–balance gas sensor with ink–jet printed nano–diamond sensitive layer

Czech Academy of Sciences Publication Activity Database

Kulha, Pavel; Kroutil, J.; Laposa, A.; Procházka, Václav; Husák, M.

2016-01-01

Roč. 67, č. 1 (2016), s. 61-64 ISSN 1335-3632 Institutional support: RVO:68378271 Keywords : gas sensor * QCM * nanodiamond * ink-jet printing Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.483, year: 2016

12. The influence of surface-active agents in gas mixture on the intensity of jet condensation

Science.gov (United States)

Yezhov, YV; Okhotin, VS

2017-11-01

The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

13. Low density molecular cloud in the vicinity of the Pleiades

International Nuclear Information System (INIS)

Federman, S.R.; Wilson, R.F.

1984-01-01

The central region of a small, low density molecular cloud, which lies to the south of the Pleiades cluster, has been studied through the use of molecular line observations. Column densities for CH, OH, 12 CO, and 13 CO are derived from the radio data. The CH and OH data yield a visual extinction through the center of the cloud of about 3 mag. The ratio of the antenna temperatures for the OH main lines is consistent with optically thin emission; therefore, the OH results are a good indication of the total extinction through the optically thin emission; therefore, the OH results are a good indication of the total extinction through the cloud. The analysis of the carbon monoxide data produces a relatively high kinetic temperature of at least 20 K, a low total gas density of approx.300-500 cm -3 , and a column density of approx.4 x 10 17 cm -2 for 12 CO. Thus this small molecular cloud is not typical of the molecular material generally studied in Taurus

14. Dynamics of low density coronal plasma in low current x-pinches

International Nuclear Information System (INIS)

Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

2007-01-01

Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

15. Investigations on the applicability of pure gases in the transport of nuclear reaction products in a gas jet, and the use of this gas jet for radiochemical separation processes

International Nuclear Information System (INIS)

Aumann, D.C.; Presuhn, R.; Weismann, D.

1975-01-01

Earlier investigations on the effectivity of the transport of nuclear reaction products in a gas jet were continued where the transporting properties of ethylene and CO 2 in particular were examined in detail. By means of selected measurements, it is shown what influence the temperature of the gas bottle and that of the pressure releaser has on the transport yield. It is attempted from the results to explain the formation of aerosols in pure gases. The fission fragments of the spontaneous fission of Cf-252 are gamma-spectrometrically measured to determine the yields, or the total yield is determined by simple activity measurements. The determination of the isomeric ratio of Cs 138 m/g is described as an example of the possible application of a gas jet. Furthermore, an experiment for the search of super-heavy elements is suggested. (RB/LH) [de

16. Investigations on the applicability of pure gases in the transport of nuclear reaction products in a gas jet, and the use of this gas jet for radiochemical separation processes

International Nuclear Information System (INIS)

Aumann, D.C.; Presuhn, R.; Weismann, D.

1975-01-01

Earlier investigations on the effectivity of the transport of nuclear reaction products in a gas jet were continued, the transporting properties of ethylene and CO 2 being particularly examined in detail. By means of selected measurements, it is shown what influence the temperature of the gas bottle and that of the pressure releaser has on the transport yield. It is attempted from the results to explain the formation of aerosols in pure gases. The fission fragments of the spontaneous fission of Cf-252 are gamma-spectrometrically measured to determine the yields, or the total yield is determined by simple activity measurements. The determination of the isomeric ratio of Cs 138 m/g is described as an example of the possible application of a gas jet. Furthermore, an experiment for the search of super-heavy elements is suggested. (RB/LH) [de

17. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

Science.gov (United States)

Yambe, Kiyoyuki; Saito, Hidetoshi

2017-12-01

When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

18. Microbial biodegradable potato starch based low density polyethylene

African Journals Online (AJOL)

USER

2010-06-28

Jun 28, 2010 ... Key words: Low density polyethylene, fungi, biodegradable polymer, Pseudomonas aeruginosa. ... particle such as CO2 or water by microorganism's activities. ... package and production of bags, composites and agricultural.

19. Hemodynamics alter arterial low-density lipoprotein metabolism

International Nuclear Information System (INIS)

Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S.

1989-01-01

We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels

20. Metabolism of cholesteryl esters of rat very low density lipoproteins.

Science.gov (United States)

Faergeman, O; Havel, R J

1975-06-01

Rat very low density lipoproteins (d smaller than 1.006), biologically labeled in esterified and free cholesterol, were obtained form serum 6 h after intravenous injection of particulate (3-H) cholesterol. When injected into recipient animals, the esterified cholesterol was cleared form plasma with a half-life of 5 min. After 15 min, 71% of the injected esterified (3-H) cholesterol had been taken up by the liver, where it was rapidly hydrolyzed. After 60 min only 3.3% of the amount injected had been transferred, via lipoproteins of intermediate density, to the low density lipoproteins of plasma (d 1.019-1.063). Both uptake in the liver and transfer to low density lipoproteins occurred without change of distribution of 3-H in the various cholesteryl esters. 3-H appearing in esterified cholesterol of high density lipoproteins (d greater than 1.063) was derived from esterification, presumably by lecithin: cholesterol acyltransferase, of simultaneously injected free (3-H) cholesterol. Content of free (3-H) cholesterol in the very low density lipoproteins used for injection could be reduced substantially by incubation with erythrocytes. This procedure, however, increased the rate of clearance of the lipoproteins after injection into recipient rats. These studies show that hepatic removal is the major catabolic pathway for cholesteryl esters of rat very low density lipoproteins and that transfer to low density lipoproteins occurs to only a minor extent.

1. Loop system for creating jet fuel vapor standards used in the calibration of infrared spectrophotometers and gas chromatographs.

Science.gov (United States)

Reboulet, James; Cunningham, Robert; Gunasekar, Palur G; Chapman, Gail D; Stevens, Sean C

2009-02-01

A whole body inhalation study of mixed jet fuel vapor and its aerosol necessitated the development of a method for preparing vapor only standards from the neat fuel. Jet fuel is a complex mixture of components which partitions between aerosol and vapor when aspirated based on relative volatility of the individual compounds. A method was desired which could separate the vapor portion from the aerosol component to prepare standards for the calibration of infrared spectrophotometers and a head space gas chromatography system. A re-circulating loop system was developed which provided vapor only standards whose composition matched those seen in an exposure system. Comparisons of nominal concentrations in the exposure system to those determined by infrared spectrophotometry were in 92-95% agreement. Comparison of jet fuel vapor concentrations determined by infrared spectrophotometry compared to head space gas chromatography yielded a 93% overall agreement in trial runs. These levels of agreement show the loop system to be a viable method for creating jet fuel vapor standards for calibrating instruments.

2. Search for EC-decayed neutron-deficient actinide isotopes using gas-jet coupled JAERI-ISOL

Energy Technology Data Exchange (ETDEWEB)

Tsukada, Kazuaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

1997-07-01

To study the nuclear properties of unknown neutron deficient actinide isotopes which decay mainly via orbital electron capture (EC), we have developed a composite system consisting of a gas-jet transport apparatus and a thermal ion-source at the JAERI-ISOL. With this system, search for {sup 236}Am produced in the {sup 235}U({sup 6}Li, 5n) reaction has been performed. Pu KX-rays associated with the EC decay of {sup 236}Am are observed at the mass-236 fraction. The half-life of {sup 236}Am is evaluated to be 4.4min. The outline of the gas-jet coupled JAERI-ISOL system and typical performance are given. (author)

3. Gas-phase spectroscopy of synephrine by laser desorption supersonic jet technique.

Science.gov (United States)

Ishiuchi, Shun-ichi; Asakawa, Toshiro; Mitsuda, Haruhiko; Miyazaki, Mitsuhiko; Chakraborty, Shamik; Fujii, Masaaki

2011-09-22

In our previous work, we found that synephrine has six conformers in the gas phase, while adrenaline, which is a catecholamine and has the same side chain as synephrine, has been reported to have only two conformers. To determine the conformational geometries of synephrine, we measured resonance enhanced multiphoton ionization, ultraviolet-ultraviolet hole burning, and infrared dip spectra by utilizing the laser desorption supersonic jet technique. By comparing the observed infrared spectra with theoretical ones, we assigned geometries except for the orientations of the phenolic OH group. Comparison between the determined structures of synephrine and those of 2-methylaminno-1-phenylethanol, which has the same side chain as synephrine but no phenol OH group, leads to the conclusion that the phenolic OH group in synephrine does not affect the conformational flexibility of the side chain. In the case of adrenaline, which is expected to have 12 conformers if there are no interactions between the catecholic OH groups and the side chain, some interactions possibly exist between them because only two conformations are observed. By estimation of the dipole-dipole interaction energy between partial dipole moments of the catecholic OH groups and the side chain, it was concluded that the dipole-dipole interaction stabilizes specific conformers which are actually observed. © 2011 American Chemical Society

4. Laser reflection method for determination of shear stress in low density transitional flows

Science.gov (United States)

Sathian, Sarith P.; Kurian, Job

2006-03-01

The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.

5. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

Energy Technology Data Exchange (ETDEWEB)

Gaeggeler, H W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

1996-11-01

Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

6. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

International Nuclear Information System (INIS)

Gaeggeler, H.W.

1996-01-01

Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs

7. Bilateral anterior thalamic low densities in descending transtentorial herniation

Energy Technology Data Exchange (ETDEWEB)

Nagashima, Chikao; Watanabe, Takao

1985-02-01

Round, well-demarcated, symmetrical low densities in a bilateral thalamus in a case of descending transtentorial herniation due secondarily to acute traumatic left subdural hematoma are reported. An 8-year-old boy, on whom emergency surgery was refused by his parents, showed a marked shift due to the hematoma on admission; this was followed by a low density in the left PCA territory and round, equivocal hypodensities in the anterior thalamus 44 hours post-trauma. The equivocal hypodensities became definite, well-demarcated, round low densities situated symmetrically in the anterior thalamus on the 39th day post-trauma. Akinetic mutism was noted at this time. The symmetrical low densities and the PCA-territory low density persisted as late as the 39th day post-trauma, suggesting infarcts. The downward stretch of the bilateral thalamoperforators, which was effected by a narrowing of the interpeduncular fossa with an approximation of the bilateral perforators, plus a downward shift of the PCA due to descending transtentorial herniation, was assumed to be the mechanism involved. (author).

8. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

International Nuclear Information System (INIS)

Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

2012-01-01

Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

9. Clathrates and beyond: Low-density allotropy in crystalline silicon

Energy Technology Data Exchange (ETDEWEB)

Beekman, Matt [Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407 (United States); Wei, Kaya; Nolas, George S., E-mail: gnolas@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

2016-12-15

In its common, thermodynamically stable state, silicon adopts the same crystal structure as diamond. Although only a few alternative allotropic structures have been discovered and studied over the past six decades, advanced methods for structure prediction have recently suggested a remarkably rich low-density phase space that has only begun to be explored. The electronic properties of these low-density allotropes of silicon, predicted by first-principles calculations, indicate that these materials could offer a pathway to improving performance and reducing cost in a variety of electronic and energy-related applications. In this focus review, we provide an introduction and overview of recent theoretical and experimental results related to low-density allotropes of silicon, highlighting the significant potential these materials may have for technological applications, provided substantial challenges to their experimental preparation can be overcome.

10. Bilateral symmetrical low density areas in the basal ganglia

International Nuclear Information System (INIS)

Ugawa, Yoshikazu; Ihara, Yasuo

1984-01-01

We reported a case with dysarthria and gait disturbance, in which CT revealed symmetrical well-demarcated low density areas in the basal ganglia. The patient was a 43-year-old woman. Her family history and past history were not contributory. She had a little difficulty in speaking at the age of 17. Gait disturbance and micrographia appeared later. Although her expressionless face resembles to that seen in Parkinsonism, rigidity, akinesia and small-stepped gait were not present. The unclassified types of dysarthria and gait disturbance, which characterize the present case, were considered to be a kind of extrapyramidal symptoms, which were distinct from those of Parkinsonism. CT showed well demarcated low density areas predominantly in bilateral putamen. Metrizamide CT failed to show any communication between low density areas and subarachnoid spaces. To date, six cases, which presented similar clinical features and almost same CT findings as our case, were reported. (author)

11. Deformation and dewetting of thin liquid films induced by moving gas jets

NARCIS (Netherlands)

Berendsen, C.W.J.; Zeegers, J.C.H.; Darhuber, A.A.

2013-01-01

We study the deformation of thin liquid films subjected to impinging air-jets that are moving with respect to the substrate. The height profile and shape of the deformed liquid film is evaluated experimentally and numerically for different jet Reynolds numbers and translation speeds, for different

12. Low-density lipoprotein cholesterol and risk of gallstone disease

DEFF Research Database (Denmark)

Stender, Stefan; Frikke-Schmidt, Ruth; Benn, Marianne

2013-01-01

Drugs which reduce plasma low-density lipoprotein cholesterol (LDL-C) may protect against gallstone disease. Whether plasma levels of LDL-C per se predict risk of gallstone disease remains unclear. We tested the hypothesis that elevated LDL-C is a causal risk factor for symptomatic gallstone...

13. Importing low-density ideas to high-density revitalisation

DEFF Research Database (Denmark)

Arnholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

2016-01-01

Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...

14. Increased oxidizability of low-density lipoproteins in hypothyroidism

NARCIS (Netherlands)

Diekman, T.; Demacker, P. N.; Kastelein, J. J.; Stalenhoef, A. F.; Wiersinga, W. M.

1998-01-01

Hypothyroidism leads to an increase of plasma low-density lipoprotein (LDL) cholesterol levels. Oxidation of LDL particles changes their intrinsic properties, thereby enhancing the development of atherosclerosis. T4 has three specific binding sites on apolipoprotein B; furthermore it inhibits LDL

15. Role of oxidized low-density lipoprotein in renal disease

NARCIS (Netherlands)

Heeringa, P; Tervaert, JWC

Accelerated atherosclerosis is often observed in patients with chronic renal failure. In the present review we summarize and discuss the recent literature on the pathogenic role of low-density lipoproteins modified by oxidative processes in atherosclerosis and the possible role in renal diseases.

16. Three-dimensional structure of low-density nuclear matter

International Nuclear Information System (INIS)

Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

2012-01-01

We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

17. Three-dimensional structure of low-density nuclear matter

Energy Technology Data Exchange (ETDEWEB)

Okamoto, Minoru, E-mail: okamoto@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Maruyama, Toshiki, E-mail: maruyama.toshiki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Yabana, Kazuhiro, E-mail: yabana@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Center of Computational Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Tatsumi, Toshitaka, E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

2012-07-09

We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

18. Thermal Cracking of Low Density Polyethylene (LDPE) Waste into ...

African Journals Online (AJOL)

Waste low density polyethylene film (table water sachets) was converted into solid, liquid oil and gaseous products by thermal process in a self- designed stainless steel laboratory reactor. The waste polymer was completely pyrolized within the temperature range of 474 – 520°C and 2hours reaction time. The solid residue ...

19. Plasma probe characteristics in low density hydrogen pulsed plasmas

International Nuclear Information System (INIS)

Astakhov, D I; Lee, C J; Bijkerk, F; Goedheer, W J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V

2015-01-01

Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates. (paper)

20. Human Low Density Lipoprotein as a Vehicle of Atherosclerosis ...

African Journals Online (AJOL)

Low-density lipoproteins have been sufficiently established as an important precursor of atherosclerosis. The actual mechanism is still unclear, and the current technique of using radioisotopes has clinical limitation. However, the current study techniques or methods excellently elucidate the functional aspects of ...

1. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

Science.gov (United States)

Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

2018-05-01

Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

2. Stochastic model of the near-to-injector spray formation assisted by a high-speed coaxial gas jet

Energy Technology Data Exchange (ETDEWEB)

Gorokhovski, M [Laboratoire de Mecanique des Fluides et d' Acoustique, CNRS-Ecole Centrale de Lyon-INSA Lyon-Universite Claude Bernard Lyon 1, 36 Avenue Guy de Collongue, 69131 Ecully Cedex (France); Jouanguy, J [Laboratoire de Mecanique de Lille, Ecole Centrale de Lille, Blvd Paul Langevin, 59655 Villeneuve d' Ascq Cedex (France); Chtab-Desportes, A [CD-adapco, 31 rue Delizy 93698 Pantin Cedex (France)], E-mail: mikhael.gorokhovski@ec-lyon.fr

2009-06-01

The stochastic model of spray formation in the vicinity of the air-blast atomizer has been described and assessed by comparison with measurements. In this model, the 3D configuration of a continuous liquid core is simulated by spatial trajectories of specifically introduced stochastic particles. The stochastic process is based on the assumption that due to a high Weber number, the exiting continuous liquid jet is depleted in the framework of statistical universalities of a cascade fragmentation under scaling symmetry. The parameters of the stochastic process have been determined according to observations from Lasheras's, Hopfinger's and Villermaux's scientific groups. The spray formation model, based on the computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region, is combined with the large-eddy simulation (LES) in the coaxial gas jet. Comparison with measurements reported in the literature for different values of the gas-to-liquid dynamic pressure ratio showed that the model predicts correctly the distribution of liquid in the close-to-injector region, the mean length of the liquid core, the spray angle and the typical size of droplets in the far field of spray.

3. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

Science.gov (United States)

Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

2017-05-01

In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

4. Deuterium to helium plasma-wall change-over experiments in the JET MkII-gas box divertor

International Nuclear Information System (INIS)

Hillis, D.L.; Loarer, T.; Bucalossi, J.; Pospieszczyk, A.; Fundamenski, W.; Matthews, G.; Meigs, A.; Morgan, P.; Phillips, V.; Pitts, R.; Stamp, M.; Hellermann, M. von

2003-01-01

The deuterium and helium dynamics in the plasma and subdivertor regions of JET are compared during a sequence of similar ohmic and ICRH pulses where 100% He gas is injected into the JET vacuum vessel, whose graphite walls were previously saturated with deuterium. After the first six He fueled change-over discharges, only He plasma operation was performed. Following this investigation, the situation is reversed and the change-over from an initially saturated He wall is investigated when only D 2 plasma fuelling is used. The He concentration is measured in the subdivertor with a species selective Penning gauge. Comparison of the time dependence of the divertor concentrations with those at the edge and strike point shows significant differences during the first six discharges. This difference along with a global He particle balance is used to assess the status of the wall saturation over the initial 6-7 He change-over discharges

5. An overview of process instrumentation, protective safety interlocks and alarm system at the JET facilities active gas handling system

International Nuclear Information System (INIS)

Skinner, N.; Brennan, P.; Brown, K.; Gibbons, C.; Jones, G.; Knipe, S.; Manning, C.; Perevezentsev, A.; Stagg, R.; Thomas, R.; Yorkshades, J.

2003-01-01

The Joint European Torus (JET) Facilities Active Gas Handling System (AGHS) comprises ten interconnected processing sub-systems that supply, process and recover tritium from gases used in the JET Machine. Operations require a diverse range of process instrumentation to carry out a multiplicity of monitoring and control tasks and approximately 500 process variables are measured. The different types and application of process instruments are presented with specially adapted or custom-built versions highlighted. Forming part of the Safety Case for tritium operations, a dedicated hardwired interlock and alarm system provides an essential safety function. In the event of failure modes, each hardwired interlock will back-up software interlocks and shutdown areas of plant to a failsafe condition. Design of the interlock and alarm system is outlined and general methodology described. Practical experience gained during plant operations is summarised and the methods employed for routine functional testing of essential instrument systems explained

6. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

Science.gov (United States)

Steyn, Gideon; Vermeulen, Christiaan

2018-05-01

An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

7. Simulating the interaction of jets with the intracluster medium

Science.gov (United States)

Weinberger, Rainer; Ehlert, Kristian; Pfrommer, Christoph; Pakmor, Rüdiger; Springel, Volker

2017-10-01

Jets from supermassive black holes in the centres of galaxy clusters are a potential candidate for moderating gas cooling and subsequent star formation through depositing energy in the intracluster gas. In this work, we simulate the jet-intracluster medium interaction using the moving-mesh magnetohydrodynamics code arepo. Our model injects supersonic, low-density, collimated and magnetized outflows in cluster centres, which are then stopped by the surrounding gas, thermalize and inflate low-density cavities filled with cosmic rays. We perform high-resolution, non-radiative simulations of the lobe creation, expansion and disruption, and find that its dynamical evolution is in qualitative agreement with simulations of idealized low-density cavities that are dominated by a large-scale Rayleigh-Taylor instability. The buoyant rising of the lobe does not create energetically significant small-scale chaotic motion in a volume-filling fashion, but rather a systematic upward motion in the wake of the lobe and a corresponding back-flow antiparallel to it. We find that, overall, 50 per cent of the injected energy ends up in material that is not part of the lobe, and about 25 per cent remains in the inner 100 kpc. We conclude that jet-inflated, buoyantly rising cavities drive systematic gas motions that play an important role in heating the central regions, while mixing of lobe material is subdominant. Encouragingly, the main mechanisms responsible for this energy deposition can be modelled already at resolutions within reach in future, high-resolution cosmological simulations of galaxy clusters.

8. Bibliography of Books and Published Reports on Gas Turbines, Jet Propulsion, and Rocket Power Plants

Science.gov (United States)

1951-06-01

Ink , New York, 1945. W. Ley, Rockets. Viking Press. New York. 1945. LI. S. Zim, Rockets and jets. Harcourt Brace, New York, 1945. Jet propulsion...Hausenblas, Design nomograms for turbine stages. Motortechnische Zeit. 11, 96 (Aug. 1950). S. L. Koutz et al., Effect of beat and power extraction on...Edelman, The pulsating engine-its evolution and future prospects. SAE Quart. Trans. 1, 204 (1947). R. McLarren, Project Squid probes pulsejet. Aviation

9. Effect of gas injection during LH wave coupling at ITER-relevant plasma-wall distances in JET

International Nuclear Information System (INIS)

Ekedahl, A; Goniche, M; Basiuk, V; Delpech, L; Imbeaux, F; Joffrin, E; Loarer, T; Rantamaeki, K; Mailloux, J; Alper, B; Baranov, Y; Beaumont, P; Corrigan, G; Erents, K; Hawkes, N; McDonald, D; Petrzilka, V; Granucci, G; Hobirk, J; Kirov, K

2009-01-01

Good coupling of lower hybrid (LH) waves has been demonstrated in different H-mode scenarios in JET, at high triangularity (δ ∼ 0.4) and at large distance between the last closed flux surface and the LH launcher (up to 15 cm). Local gas injection of D 2 in the region magnetically connected to the LH launcher is used for increasing the local density in the scrape-off layer (SOL). Reciprocating Langmuir probe measurements magnetically connected to the LH launcher indicate that the electron density profile flattens in the far SOL during gas injection and LH power application. Some degradation in normalized H-mode confinement, as given by the H98(y,2)-factor, could be observed at high gas injection rates in these scenarios, but this was rather due to total gas injection and not specifically to the local gas puffing used for LH coupling. Furthermore, experiments carried out in L-mode plasmas in order to evaluate the effect on the LH current drive efficiency, when using local gas injection to improve the coupling, indicate only a small degradation (ΔI LH /I LH ∼ 15%). This effect is largely compensated by the improvement in coupling and thus increase in coupled power when using gas puffing.

10. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

Energy Technology Data Exchange (ETDEWEB)

Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawasaki, Toshiyuki [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

2015-07-28

We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

11. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

Energy Technology Data Exchange (ETDEWEB)

Kellerman, Peter L.; Thronson, Gregory D.

2017-06-14

In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

12. Effects of Turbulence Model on Prediction of Hot-Gas Lateral Jet Interaction in a Supersonic Crossflow

Science.gov (United States)

2015-07-01

about the jet nozzle location (taken as the moment reference point [ MRP ]). Also listed are the resultant force center of pressure and the...turbulent intensity JI jet interaction jet force amplification factor jet moment amplification factor about MRP (0) jet... MRP induced by jet thrust force, N-m (0) moment about missile nose induced by jet thrust force, N-m moment about MRP induced by

13. On the mechanism of charge transport in low density polyethylene

Science.gov (United States)

Upadhyay, Avnish K.; Reddy, C. C.

2017-08-01

Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

14. Quantitative study of the ionization-induced refraction of picosecond laser pulses in gas-jet targets

International Nuclear Information System (INIS)

Mackinnon, A.J.; Borghesi, M.; Iwase, A.; Jones, M.W.; Pert, G.J.; Rae, S.; Burnett, K.; Willi, O.

1996-01-01

A quantitative study of refractive whole beam defocusing and small scale breakup induced by optical ionization of subpicosecond and picosecond, 0.25 and 1 μm, laser pulses in gas-jet targets at densities above 1x10 19 cm -3 has been carried out. A significant reduction of the incident laser intensity was observed due to refraction from ionization-induced density gradients. The level of refraction measured with optical probing correlated well with the fraction of energy transmitted through the plasma. The numerical and analytical models were found to agree well with experimental observations. copyright 1996 The American Physical Society

15. In-flight imaging of transverse gas jets injected into transonic and supersonic crossflows: Design and development. M.S. Thesis, Mar. 1993

Science.gov (United States)

Wang, Kon-Sheng Charles

1994-01-01

The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.

16. Study on the effect of distance between the two nozzle holes on interaction of high pressure combustion-gas jets with liquid

International Nuclear Information System (INIS)

Xue, Xiaochun; Yu, Yonggang; Zhang, Qi

2014-01-01

Highlights: • We design a five-stage cylindrical stepped-wall chamber to study twin combustion-gas jets. • We observe mixing processes of twin combustion-gases and liquid by high speed photographic system. • We discuss the influence of multiple parameters on expansion shape of the Taylor cavities. • The three-dimensional mathematics model is established to simulate the energy release process. • We obtain distribution characteristics of parameters under different nozzle distances. - Abstract: The combustion-gas generator and cylindrical stepped-wall observation chambers with five stages are designed to study the expansion characteristic of twin combustion-gas jets in liquid working medium under high temperature and high pressure. The expansion processes of Taylor cavities formed by combustion-gas jets and the mixing characteristics of gas–liquid are studied by means of high-speed digital camera system. The effects of the distance between the two nozzle holes, injection pressure and nozzle diameter on jet expansion processes are discussed. The experimental results indicate that, the velocity differences exist on the gas–liquid interface during expansion processes of twin combustion-gas jets, and the effect of Taylor–Helmholtz instability is intense, so interfaces between gas and liquid show turbulent folds and randomness. The strong turbulent mixing of gas and liquid leads to release of combustion-gas energy with the temperature decreasing. Moreover, the mixing effectiveness is obviously enhanced on the corners of each step of the cylindrical stepped-wall structure, forming radial expansion phenomenon. The reasonable matching of multi-parameter can restrain the jet instability and make the combustion-gas energy orderly release. Based on the experiments, the three-dimensional unsteady mathematical model of interaction of twin combustion-gas jets and liquid working medium is established to obtain the density, pressure, velocity and temperature

17. The preparation of ZnO based gas-sensing thin films by ink-jet printing method

International Nuclear Information System (INIS)

Shen Wenfeng; Zhao Yan; Zhang Caibei

2005-01-01

An ink-jet printing technique was applied to prepare ZnO based gas-sensing thin films. ZnO inks with appropriate viscosity and surface tension were prepared by sol-gel techniques, and printed onto substrates using a commercial printer. After the drying and heating treatment processes, continuous ZnO films were formed and studied by scanning electron microscopy, X-ray diffraction and by a home-made gas sensitivity measuring system. It was found that the morphology and electrical properties of the films changed significantly with the thickness of the films, which can be adjusted simply by printing on the film with increasing frequency. Highest resistance and sensitivity to acetone vapor were obtained when the film was prepared by printing only once on it. Different dopants with certain concentrations could be added into the films by printing with different dopant inks and printing frequency. All Pd, Ag, and ZrO 2 dopants increased both the resistivity and the sensitivity of the films (180 ppm acetone). This work showed that the ink-jet printing technique was a convenient and low cost method to prepare films with controlled film thickness and dopant concentration

18. Rupture of a high pressure gas or steam pipe in a tunnel: a preliminary investigation of the jet thrust exerted on a tunnel barrier

International Nuclear Information System (INIS)

Baum, M.R.

1988-04-01

On power plant, if a high pressure pipe containing high temperature gas or steam were to rupture, sensitive equipment necessary for safety shutdown of the plant could possibly be incapacitated if exposed to the subsequent high temperature environment. In many plant configurations the high pressure pipework is contained in tunnels where it is possible to construct barriers which isolate one section of the plant from another, thereby restricting the spread of the high temperature fluid/air mixture. This paper describes a preliminary experimental investigation of the magnitude of the thrust likely to be exerted on such barriers by a gas jet issuing from the failed pipe. Measurements of the thrust exerted on a flat plate by normal impingement of a highly underexpanded gas jet are in agreement with a semi-quantitative analysis assuming conservation of the axial momentum of the jet. (author)

19. Performance of Low-Density Parity-Check Coded Modulation

Science.gov (United States)

Hamkins, Jon

2010-01-01

This paper reports the simulated performance of each of the nine accumulate-repeat-4-jagged-accumulate (AR4JA) low-density parity-check (LDPC) codes [3] when used in conjunction with binary phase-shift-keying (BPSK), quadrature PSK (QPSK), 8-PSK, 16-ary amplitude PSK (16- APSK), and 32-APSK.We also report the performance under various mappings of bits to modulation symbols, 16-APSK and 32-APSK ring scalings, log-likelihood ratio (LLR) approximations, and decoder variations. One of the simple and well-performing LLR approximations can be expressed in a general equation that applies to all of the modulation types.

20. Low density lipoprotein sensor based on surface plasmon resonance

International Nuclear Information System (INIS)

Matharu, Zimple; Sumana, G.; Pandey, M.K.; Gupta, Vinay; Malhotra, B.D.

2009-01-01

Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m o /μM.

1. Low density lipoprotein sensor based on surface plasmon resonance

Energy Technology Data Exchange (ETDEWEB)

Matharu, Zimple [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Sumana, G.; Pandey, M.K. [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, New Delhi-110007 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

2009-11-30

Biotinylated heparin has been immobilized onto self-assembled monolayer of 4-aminothiophenol using avidin-biotin specific binding. The modified electrodes have been characterized using surface plasmon resonance technique (SPR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and contact angle (CA) measurements. The interaction of immobilized biotinylated heparin with low density lipoprotein (LDL) has been studied using surface plasmon resonance technique. The biotinylated heparin modified electrode can be used to detect LDL in the range of 20 to 100 mg/dl with the sensitivity of 513.3 m{sup o}/{mu}M.

2. Flow visualization of a low density hypersonic flow field

International Nuclear Information System (INIS)

Masson, B.S.; Jumper, E.J.; Walters, E.; Segalman, T.Y.; Founds, N.D.

1989-01-01

Characteristics of laser induced iodine fluorescence (LIIF) in low density hypersonic flows are being investigated for use as a diagnostic technique. At low pressures, doppler broadening dominates the iodine absorption profile producing a fluorescence signal that is primarily temperature and velocity dependent. From this dependency, a low pressure flow field has the potential to be mapped for its velocity and temperature fields. The theory for relating iodine emission to the velocity and temperature fields of a hypersonic flow is discussed in this paper. Experimental observations are made of a fluorescencing free expansion and qualitatively related to the theory. 7 refs

3. Low-density lipoproteins cause atherosclerotic cardiovascular disease

DEFF Research Database (Denmark)

Ference, Brian A.; Ginsberg, Henry N.; Graham, Ian

2017-01-01

Aims To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). Methods and results We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from...... proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. Conclusion Consistent evidence from...

4. Low density lipoproteins mediated nanoplatforms for cancer targeting

International Nuclear Information System (INIS)

Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant; Jain, Narendra K.

2013-01-01

Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body’s defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature’s method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL–drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier

5. Low density lipoproteins mediated nanoplatforms for cancer targeting

Energy Technology Data Exchange (ETDEWEB)

Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant, E-mail: prashant_pharmacy04@rediffmail.com; Jain, Narendra K., E-mail: jnarendr@yahoo.co.in [Dr. H. S. Gour University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences (India)

2013-09-15

Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body's defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature's method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL-drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier.

6. Low density lipoproteins mediated nanoplatforms for cancer targeting

Science.gov (United States)

Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant; Jain, Narendra K.

2013-09-01

Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body's defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature's method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL-drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier.

7. Effect of non-condensation gas on pressure oscillation of submerged steam jet condensation

International Nuclear Information System (INIS)

Zhao, Quanbin; Cong, Yuelei; Wang, Yingchun; Chen, Weixiong; Chong, Daotong; Yan, Junjie

2016-01-01

Highlights: • Oscillation intensity of steam–air jet increases with rise of water temperature. • Oscillation intensity reduces obviously when air is mixed. • Both first and second dominant frequencies decrease with rise of air mass fraction. • Air has little effect on power of 1st & 2nd frequency bands under low temperature. • The maximum oscillation power occurs under case of A = 1% and T ⩾ 50 °C. - Abstract: The effect of air with low mass fraction on the oscillation intensity and oscillation frequency of a submerged steam jet condensation is investigated under stable condensation region. With air mixing in steam, an obvious dynamic pressure peak appears along the jet direction. The intensity peak increases monotonously with the rise of steam mass flux and water temperature. Peak position moves downstream with the rise of air mass fraction. Moreover, when compared with that of pure steam jet, the oscillation intensity clearly decreases as air is mixed. However, when water temperature is lower than approximately 45 °C, oscillation intensity increases slightly with the rise of air mass fraction, and when water temperature is higher than 55 °C, the oscillation intensity decreases greatly with the rise of air mass fraction. Both the first and second dominant frequencies decrease with rise of air mass fraction. Finally, effect of air mass fractions on the oscillation power of the first and second dominant frequency bands shows similar trends. Under low water temperature, the mixed air has little effect on the oscillation power of both first and second frequency bands. However, when water temperature is high, the oscillation power of both first and second frequency bands appears an obvious peak when air mass fraction is about 1%. With further rise of air mass fraction, the oscillation power decreases gradually.

8. Development of Criteria for Flashback Propensity in Jet Flames for High Hydrogen Content and Natural Gas Type Fuels

Energy Technology Data Exchange (ETDEWEB)

Kalantari, Alireza [Univ. of California, Irvine, CA (United States); Sullivan-Lewis, Elliot [Univ. of California, Irvine, CA (United States); McDonell, Vincent [Univ. of California, Irvine, CA (United States)

2016-10-17

Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. In fact, flashback is a key operability issue associated with low emission combustion of high hydrogen content fuels. Flashback can cause serious damage to the premixer hardware. Hence, design tools to predict flashback propensity are of interest. Such a design tool has been developed based on the data gathered by experimental study to predict boundary layer flashback using non-dimensional parameters. The flashback propensity of a premixed jet flame has been studied experimentally. Boundary layer flashback has been investigated under turbulent flow conditions at elevated pressures and temperatures (i.e. 3 atm to 8 atm and 300 K to 500 K). The data presented in this study are for hydrogen fuel at various Reynolds numbers, which are representative of practical gas turbine premixer conditions and are significantly higher than results currently available in the literature. Three burner heads constructed of different materials (stainless steel, copper, and zirconia ceramic) were used to evaluate the effect of tip temperature, a parameter found previously to be an important factor in triggering flashback. This study characterizes flashback systematically by developing a comprehensive non-dimensional model which takes into account all effective parameters in boundary layer flashback propensity. The model was optimized for new data and captures the behavior of the new results well. Further, comparison of the model with the single existing study of high pressure jet flame flashback also indicates good agreement. The model developed using the high pressure test rig is able to predict flashback tendencies for a commercial gas turbine engine and can thus serve as a

9. Experimental Evidence of Low Density Liquid Water under Decompression

Science.gov (United States)

Shen, G.; Lin, C.; Sinogeikin, S. V.; Smith, J.

2017-12-01

Water is not only the most important substance for life, but also plays important roles in liquid science for its anomalous properties. It has been widely accepted that water's anomalies are not a result of simple thermal fluctuation, but are connected to the formation of various structural aggregates in the hydrogen bonding network. Among several proposed scenarios, one model of fluctuations between two different liquids has gradually gained traction. These two liquids are referred to as a low-density liquid (LDL) and a high-density liquid (HDL) with a coexistence line in the deeply supercooled regime at elevated pressure. The LDL-HDL transition ends with decreasing pressure at a liquid-liquid critical point (LLCP) with its Widom line extending to low pressures. Above the Widom line lies mostly HDL which is favored by entropy, while LDL, mostly lying below the Widom line, is favored by enthalpy in the tetrahedral hydrogen bonding network. The origin of water's anomalies can then be explained by the increase in structural fluctuations, as water is cooled down to deeply supercooled temperatures approaching the Widom line. Because both the LLCP and the LDL-HDL transition line lie in water's "no man's land" between the homogeneous nucleation temperature (TH, 232 K) and the crystallization temperature (TX, 150 K), the success of experiments exploring this region has been limited thus far. Using a rapid decompression technique integrated with in situ x-ray diffraction, we observe that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. The change in crystallization rate with temperature indicates that the LDN is a LDL with its tetrahedrally-coordinated network fully developed and clearly linked to low-density amorphous ices. The observation of the tetrahedral LDL supports the two-liquid model for

10. Low-density silicon thin films for lithium-ion battery anodes

Energy Technology Data Exchange (ETDEWEB)

Demirkan, M.T., E-mail: tmdemirkan@ualr.edu [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Materials Science and Engineering, Gebze Technical University, Kocaeli (Turkey); Trahey, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

2016-02-01

Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm{sup 3} (film porosity ~ 3%) down to 1.64 g/cm{sup 3} (~ 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm{sup 3} suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to ~ 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm{sup 3} (~ 15% porosity) and 1.77 g/cm{sup 3} (~ 24% porosity) got worse resulting in only ~ 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm{sup 3} (~ 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values ~ 650 mAh/g at 100th cycle with coulombic efficiencies of > 98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. - Highlights: • Low density Si thin films were studied as Li-ion battery anodes. • Low density Si films were fabricated by magnetron sputter deposition. • Density of Si films reduced down to as low as ~ 1.64 g/cm{sup 3} with a porosity of ~ 30% • Low density Si films presented superior mechanical properties during cycling.

11. Mechanical Properties of Low Density Alloys at Cryogenic Temperatures

International Nuclear Information System (INIS)

Jiao, X. D.; Liu, H. J.; Li, L. F.; Yang, K.

2006-01-01

Low-density alloys include aluminum alloys, titanium alloys and magnesium alloys. Aluminum alloys and titanium alloys have been widely investigated and used as structural materials for cryogenic applications because of their light weight and good low-temperature mechanical properties.For aerospace applications, persistent efforts are being devoted to reducing weight and improving performance. Magnesium alloys are the lightest structural alloys among those mentioned above. Therefore, it is necessary to pay attention to magnesium alloys and to investigate their behaviors at cryogenic temperatures. In this paper, we have investigated the mechanical properties and microstructures of some magnesium alloys at cryogenic temperatures. Experimental results on both titanium and magnesium alloys are taken into account in considering these materials for space application

12. Elliptic flow from Coulomb interaction and low density elastic scattering

Science.gov (United States)

Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang

2018-04-01

In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.

13. Flow and breakup in extension of low-density polyethylene

DEFF Research Database (Denmark)

Rasmussen, Henrik; Fasano, Andrea

2018-01-01

The breakup during the extension of a low-density polyethylene Lupolen 1840D, as observed experimentally by Burghelea et al. (J Non-Newt Fluid Mech 166:1198–1209 2011), was investigated. This was observed during the extension of an circular cylinder with radius R0 = 4 mm and length L0 = 5mm....... The sample was attached to two flat end plates, separated exponentially in time to extend the samples. A numerical method based on a Lagrangian kinematics description in a continuum mechanical framework was used to calculate the extension of an initially cylindrically shaped sample with and without small...... the error bars as reported experimentally by Burghelea et al. (J Non-Newt Fluid Mech 166:1198–1209 2011). At low extensional rates, the measurements were considerably above the calculated ones. A very small relative suppression in the surface (0.1%) was required to achieve an agreement with all measurements...

14. Low density lipoprotein receptors: preliminary results on 'in vivo' study

International Nuclear Information System (INIS)

Lupattelli, G.; Virgolini, I.; Li, S.R.; Sinzinger, H.

1991-01-01

Plasmatic levels of low density lipoproteins (LDL) are regulated by the receptor pathway and most LDL receptor are located in the liver. A receptor defect due to genetic mutations of the LDL receptor gene is the cause of familial hypercholesterolemia (F.H.), a disease characterized by high cholesterol levels and premature atherosclerosis. Injections of autologous radiolabelled LDL, followed by hepatic scintiscanning, can be used to obtain 'in vivo' quantification of hepatic receptor activity, both in normal and hypercholesterolemic patients. In this study we observe no hepatic increase of radioactivity in patients affected by F.H., confirming the liver receptor defect. Scintigraphy is a non-invasive technique which can be used to diagnose this disease and to monitor the efficiacy of hypolipidemic therapy. (Authors)

15. Statistical mechanics of low-density parity-check codes

Energy Technology Data Exchange (ETDEWEB)

Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 2268502 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)

2004-02-13

We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)

16. Statistical mechanics of low-density parity-check codes

International Nuclear Information System (INIS)

2004-01-01

We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)

17. KEPLER-7b: A TRANSITING PLANET WITH UNUSUALLY LOW DENSITY

International Nuclear Information System (INIS)

Latham, David W.; Buchhave, Lars A.; Furesz, Gabor; Geary, John C.; Borucki, William J.; Koch, David G.; Lissauer, Jack J.; Rowe, Jason F.; Brown, Timothy M.; Basri, Gibor; Batalha, Natalie M.; Caldwell, Douglas A.; Jenkins, Jon M.; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Gilliland, Ronald L.; Howell, Steve B.; Marcy, Geoffrey W.; Monet, David G.

2010-01-01

We report on the discovery and confirmation of Kepler-7b, a transiting planet with unusually low density. The mass is less than half that of Jupiter, M P = 0.43 M J , but the radius is 50% larger, R P = 1.48 R J . The resulting density, ρ P = 0.17 g cm -3 , is the second lowest reported so far for an extrasolar planet. The orbital period is fairly long, P = 4.886 days, and the host star is not much hotter than the Sun, T eff = 6000 K. However, it is more massive and considerably larger than the Sun, M * = 1.35 M sun and R * = 1.84 R sun , and must be near the end of its life on the main sequence.

18. Oxidized low-density lipoprotein in postmenopausal women

DEFF Research Database (Denmark)

Jankowski, Vera; Just, Alexander R; Pfeilschifter, Johannes

2014-01-01

BACKGROUND: Oxidized low-density lipoprotein (oxLDL) leads to atherosclerosis and cardiovascular disease, the most frequent causes of death worldwide. After menopause, lipid and lipoprotein metabolism changes and women are at greater risk of cardiovascular disease compared to fertile women. The aim.......10-0.43). Although intima-media thickness did not differ, postmenopausal women with serous oxLDL had more often atherosclerotic plaques compared to women without oxLDL (6/66 vs. 0/467; P lipoprotein, impaired glucose intolerance, and DBP were independently associated...... with the occurrence of oxLDL. If oxLDL was present, higher high-density lipoprotein and glucose intolerance were associated with higher concentrations of oxLDL. In contrast, higher blood urea concentrations were associated with lower concentrations of oxLDL. CONCLUSION: This study presents the prevalence...

19. Development of gas-jet transport systems for fission products and coupling these with methods for continuous separation of short-lived product nuclides

International Nuclear Information System (INIS)

Stender, E.

1979-01-01

The development of gas-jet transport systems for fission products as well as the coupling of these with continuous separation methods from aqueous solutions (SISAK) and with a mass separator for on-line separation of neutron-rich nuclides are described in this work. Nuclides from the fission of 235 U or other fission materials can be transported using gas-jet systems with thermal neutrons over larger distances (100 m and over). Aerosols (clusters) of either organic (e.g. ethylene) or inorganic nature (e.g. potassium chloride) serve as carrier for the nuclides. The clusters are passed through 1 mm capillaries with a transport gas (nitrogen, helium etc.) under laminar flow conditions. The diameter of the cluster fluctuates between 10 -7 and 10 -6 m. The time required from the production of a nuclide to its detection at the end of a 8 m long capillary tube is 0.8 s for the ethylene/nitrogen and potassium chloride/helium gas-jet systems. By coupling various gas-jet systems with the continuous extraction technique SISAK working with H centrifuges, the elements lanthanum, cerium, praseodymium, zirconium, niobium and technetium can be separated out of the complex fission product mixtures. The on-line technetium chemistry was used with neutron-rich 106 Tc (36 s), 107 Tc (21 s) and 108 Tc (5 s) for γγ(t) measurements. The coupling of a potassium chloride/helium gas jet with a mass separator equiped with a plasma ion source is described. The dependence of the transmission rate of various test parameters is investigated to optimize the system. (orig.) [de

20. Numerical modeling of turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines

Energy Technology Data Exchange (ETDEWEB)

Zhou, Lixing; Zhang, Jian [Qinghua Univ., Beijing (China)

1990-11-01

Two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbofan jet engines are simulated here by a k-epsilon turbulence model and a particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in the presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbofan jet engines. 7 refs.

1. An empirical probability model of detecting species at low densities.

Science.gov (United States)

Delaney, David G; Leung, Brian

2010-06-01

False negatives, not detecting things that are actually present, are an important but understudied problem. False negatives are the result of our inability to perfectly detect species, especially those at low density such as endangered species or newly arriving introduced species. They reduce our ability to interpret presence-absence survey data and make sound management decisions (e.g., rapid response). To reduce the probability of false negatives, we need to compare the efficacy and sensitivity of different sampling approaches and quantify an unbiased estimate of the probability of detection. We conducted field experiments in the intertidal zone of New England and New York to test the sensitivity of two sampling approaches (quadrat vs. total area search, TAS), given different target characteristics (mobile vs. sessile). Using logistic regression we built detection curves for each sampling approach that related the sampling intensity and the density of targets to the probability of detection. The TAS approach reduced the probability of false negatives and detected targets faster than the quadrat approach. Mobility of targets increased the time to detection but did not affect detection success. Finally, we interpreted two years of presence-absence data on the distribution of the Asian shore crab (Hemigrapsus sanguineus) in New England and New York, using our probability model for false negatives. The type of experimental approach in this paper can help to reduce false negatives and increase our ability to detect species at low densities by refining sampling approaches, which can guide conservation strategies and management decisions in various areas of ecology such as conservation biology and invasion ecology.

2. Generation and mid-IR measurement of a gas-phase to predict security parameters of aviation jet fuel.

Science.gov (United States)

Gómez-Carracedo, M P; Andrade, J M; Calviño, M A; Prada, D; Fernández, E; Muniategui, S

2003-07-27

The worldwide use of kerosene as aviation jet fuel makes its safety considerations of most importance not only for aircraft security but for the workers' health (chronic and/or acute exposure). As most kerosene risks come from its vapours, this work focuses on predicting seven characteristics (flash point, freezing point, % of aromatics and four distillation points) which assess its potential hazards. Two experimental devices were implemented in order to, first, generate a kerosene vapour phase and, then, to measure its mid-IR spectrum. All the working conditions required to generate the gas phase were optimised either in a univariate or a multivariate (SIMPLEX) approach. Next, multivariate prediction models were deployed using partial least squares regression and it was found that both the average prediction errors and precision parameters were satisfactory, almost always well below the reference figures.

3. Generation of stable and low-divergence 10-MeV quasimonoenergetic electron bunch using argon gas jet

Directory of Open Access Journals (Sweden)

M. Mori

2009-08-01

Full Text Available The pointing stability and divergence of a quasimonoenergetic electron bunch generated in a self-injected laser-plasma acceleration regime using 4 TW laser is studied. A pointing stability of 2.4 mrad root-mean-square (rms and a beam divergence of 10.6 mrad (rms were obtained using an argon gas-jet target for 50 sequential shots, while these values were degraded by a factor of 3 at the optimum condition using helium. The peak electron energies were 8.5±0.7 and 24.8±3.6  MeV using argon and helium, respectively. The experimental results indicate that the different propagation condition could be generated with the different material, although it is performed with the same irradiation condition.

4. Radiation asymmetries during the thermal quench of massive gas injection disruptions in JET

Czech Academy of Sciences Publication Activity Database

Lehnen, M.; Gerasimov, S.N.; Jachmich, S.; Koslowski, H.R.; Kruezi, U.; Matthews, G.F.; Mlynář, Jan; Reux, C.; de Vries, P.C.

2015-01-01

Roč. 55, č. 12 (2015), s. 123027-123027 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : disruptions * disruption mitigation * heat loads * massive gas injection * radiation asymmetry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015

5. MDCT appearance of the appendix: how does the low-density barium sulfate oral contrast agent affect it?

Science.gov (United States)

Yaghmai, Vahid; Aghaei-Lasboo, Anahita; Brandwein, Warren M; Tochetto, Sandra; Mafi, John N; Miller, Frank H; Nikolaidis, Paul

2011-01-01

We compared the effect of low-density barium sulfate neutral oral contrast agent on the diameter of normal appendix and its luminal content versus that of water on multidetector-row CT. CT scans of 24 patients who had been imaged on two separate occasions for the evaluation of pancreatic pathology, once with water and subsequently with low-density barium sulfate as the neutral oral contrast agent were evaluated (total of 48 scans). Studies were randomized and reviewed in consensus on a workstation in the stack mode by two radiologists blinded to the type of oral contrast. The appendix was measured at baseline and 10 days later to obtain an average diameter. Results of the water and low-density barium sulfate groups were compared using paired t test. Contents of the appendiceal lumen were also noted (gas, fluid, mixed, and collapsed appendix). The average diameter of the appendix for scans obtained with water and low-density barium sulfate was 4.09 ± 0.87 mm (median, 4.22 mm; range, 2.50-5.65 mm) and 4.13 ± 0.93 mm (median, 4 mm, range, 2.2-5.65 mm), respectively. This difference was not statistically significant (P = 0.69). There was no statistically significant difference in the appendiceal content when water or low-density barium sulfate were used as oral contrast (χ (2) = 4.25, P = 0.89). Low-density barium sulfate does not affect appendiceal content or diameter and, therefore, should not adversely affect evaluation of the appendix on multidetector row CT.

6. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

Science.gov (United States)

Marchionna, N. R.

1974-01-01

An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

7. Pulsed X-ray radiography of a gas jet target for laser-matter interaction experiments with the use of a CCD detector

International Nuclear Information System (INIS)

Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; MikoIajczyk, J.; Szczurek, A.; Szczurek, M.; Foeldes, I.B.; Toth, Zs.

2005-01-01

Characterization of gas jet targets has been carried out using pulsed X-ray radiography. A laser-plasma X-ray source was applied for backlighting of the targets to obtain X-ray shadowgraphs registered with a CCD detector. From the shadowgraphs, characteristics of the targets were determined

8. Simplified theory of gas-jet pumps and experimental verification; Theorie simplifiee des trompes a gaz et verification experimentale

Energy Technology Data Exchange (ETDEWEB)

Costes, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

1964-07-01

With a view to using the gas-jet pump in the fuel-study loops of gas reactors, a theory is developed for an unidimensional mixer, applicable to the case of low compression ratios in the induced current. This theory makes it possible to optimize the diameter of the mixer if the pressure-drop coefficient {alpha} of the mixer is known with respect to the induced current. An experimental study has made it possible to define the geometry suitable for such pumps, and to provide a remarkably constant value of {alpha} for the economically advantageous designs; this makes it possible to define simply the geometry of the optimized pump as a function of the geometry of the circuit in use, and independently of the flow-rate conditions. (author) [French] Dans le but d'utiliser la pompe a jet (ou trompe) dans des boucles d'etude de combustible des piles a gaz, on etablit une theorie du melangeur unidimensionnel, applicable dans la cas des faibles rapports de compression dans le courant induit. Cette theorie permet l'optimisation du diametre de melangeur, moyennant la connaissance du coefficient {alpha} de pertes de charge de celui-ci, relativement au courant induit. Une recherche experimentale a permis de preciser la geometrie a adopter dans de telles pompes, et fourni pour {alpha} une valeur remarquablement constante dans les configurations economiquement interessantes, ce qui permet de definir simplement la geometrie de la pompe optimisee en fonction de la geometrie du circuit d'utilisation et independamment des conditions de debit. (auteur)

9. Techniques for tritium recovery from carbon flakes and dust at the JET active gas handling system

International Nuclear Information System (INIS)

Gruenhagen, S.; Perevezentsev, A.; Brennan, P. D.; Camp, P.; Knipe, S.; Miller, A.; Yorkshades, J.

2008-01-01

Detritiation of highly tritium contaminated carbon and metal material used as first wall armour is a key issue for fusion machines like JET and ITER. Re-deposited carbon and hydrogen in the form of flakes and dust can lead to a build-up of the tritium inventory and therefore this material must be removed and processed. The high tritium concentration of the flake and dust material collected from the JET vacuum vessel makes it unsuitable for direct waste disposal without detritiation. A dedicated facility to process the tritiated carbon flake material and recover the tritium has been designed and built. In several test runs active material was successfully processed and de-tritiated in the new facility. Samples containing only carbon and hydrogen isotopes have been completely oxidized without any residue. Samples containing metallic impurities, e.g. beryllium, require longer processing times, adjusted processing parameters and yield an oxide residue. The detritiation factor was 2x10 4 . In order to simulate in-vessel and ex-vessel detritiation techniques, the detritiation of a carbon flake sample by isotopic exchange in a hydrogen atmosphere was investigated. 2.8% of tritium was recovered by this means. (authors)

10. Investigation of the Pulsed Annular Gas Jet for Chemical Reactor Cleaning

Directory of Open Access Journals (Sweden)

Zvegintsev Valery Ivanovich

2012-01-01

Full Text Available The most economical technology for production of titanium dioxide pigment is plasma-chemical syntheses with the heating of the oxygen. The highlight of the given reaction is formation of a solid phase as a result of interactions between two gases, thus brings the formation of particle deposits on the reactor walls, and to disturbing the normal operation of the technological process. For the solving of the task of reactor internal walls cleaning the pulsed gaseous system was suggested and investigated, which throws circular oxygen jet along surfaces through regular intervals. Study of aerodynamic efficiency of the impulse system was carried by numerical modeling and experimentally with the help of a specially created experimental facility. The distribution of the pulsed flow velocity at the exit of cylindrical reactor was measured. The experimental results have shown that used impulse device creates a pulsed jet with high value of the specified flow rate. It allows to get high velocities that are sufficient for the particle deposits destruction and their removal away. Designed pulsed peelings system has shown high efficiency and reliability in functioning that allows us to recommend it for wide spreading in chemical industry.

11. Rarefied gas electro jet (RGEJ) micro-thruster for space propulsion

Science.gov (United States)

Blanco, Ariel; Roy, Subrata

2017-11-01

This article numerically investigates a micro-thruster for small satellites which utilizes plasma actuators to heat and accelerate the flow in a micro-channel with rarefied gas in the slip flow regime. The inlet plenum condition is considered at 1 Torr with flow discharging to near vacuum conditions (consumption and the thrust effectiveness of the thruster are predicted based on these results. The ionized gas is modelled using local mean energy approximation. An electrically induced body force and a thermal heating source are calculated based on the space separated charge distribution and the ion Joule heating, respectively. The rarefied gas flow with these electric force and heating source is modelled using density-based compressible flow equations with slip flow boundary conditions. The results show that a significant improvement of specific impulse can be achieved over highly optimized cold gas thrusters using the same propellant.

12. Jet array impingement flow distributions and heat transfer characteristics. Effects of initial crossflow and nonuniform array geometry. [gas turbine engine component cooling

Science.gov (United States)

Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.

1982-01-01

Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.

13. Rarefied gas electro jet (RGEJ) micro-thruster for space propulsion

International Nuclear Information System (INIS)

Blanco, Ariel; Roy, Subrata

2017-01-01

This article numerically investigates a micro-thruster for small satellites which utilizes plasma actuators to heat and accelerate the flow in a micro-channel with rarefied gas in the slip flow regime. The inlet plenum condition is considered at 1 Torr with flow discharging to near vacuum conditions (<0.05 Torr). The Knudsen numbers at the inlet and exit planes are ∼0.01 and ∼0.1, respectively. Although several studies have been performed in micro-hallow cathode discharges at constant pressure, to our knowledge, an integrated study of the glow discharge physics and resulting fluid flow of a plasma thruster under these low pressure and low Knudsen number conditions is yet to be reported. Numerical simulations of the charge distribution due to gas ionization processes and the resulting rarefied gas flow are performed using an in-house code. The mass flow rate, thrust, specific impulse, power consumption and the thrust effectiveness of the thruster are predicted based on these results. The ionized gas is modelled using local mean energy approximation. An electrically induced body force and a thermal heating source are calculated based on the space separated charge distribution and the ion Joule heating, respectively. The rarefied gas flow with these electric force and heating source is modelled using density-based compressible flow equations with slip flow boundary conditions. The results show that a significant improvement of specific impulse can be achieved over highly optimized cold gas thrusters using the same propellant. (paper)

14. Tracer gas dispersion in ducts-study of a new compact device using arrays of sonic micro jets

Energy Technology Data Exchange (ETDEWEB)

Silva, A.R. [Instituto Nacional de Engenharia e Tecnologia Industrial (INETI), Lisboa (Portugal); Afonso, C.F. [Faculdade de Engenharia, Universidade do Porto Departmento de Mecanica e Gestao Industrial, Porto (Portugal)

2004-07-01

One of the most feasible ways to measure duct airflows is by tracer gas techniques, especially for complex situations when the duct lengths are short as well as their access, which makes extremely difficult or impossible other methods to be implemented. One problem associated with the implementation of tracer gas technique when the ducts lengths are short is due to the impossibility of achieving complete mixing of the tracer with airflow and its sampling. In this work, the development of a new device for the injection of tracer gas in ducts is discussed as well as a new tracer-sampling device. The developed injection device has a compact tubular shape, with magnetic fixation to be easy to apply in duct walls. An array of sonic micro jets in counter current direction, with the possibility of angular movement according to its main axle ensures a complete mixing of the tracer in very short distances. The tracer-sampling device, with a very effective integration function, feeds the sampling system for analysis. Both devices were tested in a wind tunnel of approximately 21 m total length. The tests distances between injection and integration device considered were: X/Dh = 22; X/Dh = 4; X/Dh 2; and X/Dh = 1. For very short distances of X/Dh = 2 and X/Dh = 1, semi-empirical expressions were needed. A good reproducibility of airflow rate values was obtained. These preliminary tests showed that the practical implementation of tracer gas techniques in HVAC systems for measuring airflow rates with a very short mixing distance is possible with the devices developed. (author)

15. DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction

Directory of Open Access Journals (Sweden)

Hossam A. Gabbar

2017-06-01

Full Text Available The exponential increase of plastic production produces 100 million tonnes of waste plastics annually which could be converted into hydrocarbon fuels in a thermal cracking process called pyrolysis. In this research work, a direct current (DC thermal plasma circuit is designed and used for conversion of low density polyethylene (LDPE into diesel oil in a laboratory scale pyrolysis reactor. The experimental setup uses a 270 W DC thermal plasma at operating temperatures in the range of 625 °C to 860 °C for a low density polyethylene (LDPE pyrolysis reaction at pressure = −0.95, temperature = 550 °C with τ = 30 min at a constant heating rate of 7.8 °C/min. The experimental setup consists of a vacuum pump, closed system vessel, direct current (DC plasma circuit, and a k-type thermocouple placed a few millimeters from the reactant sample. The hydrocarbon products are condensed to diesel oil and analyzed using flame ionization detector (FID gas chromatography. The analysis shows 87.5% diesel oil, 1,4-dichlorobenzene (Surr, benzene, ethylbenzene and traces of toluene and xylene. The direct current (DC thermal plasma achieves 56.9 wt. % of diesel range oil (DRO, 37.8 wt. % gaseous products and minimal tar production. The direct current (DC thermal plasma shows reliability, better temperature control, and high thermal performance as well as the ability to work for long operation periods.

16. Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment

Energy Technology Data Exchange (ETDEWEB)

Ishay, Liel [Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Bieder, Ulrich [Commissariat à l’énergie atomique et aux énergies alternatives, Centre de SACLAY DEN/SAC/DANS/DM2S/STMF/LMSF, F-91191 Gif-sur-Yvette (France); Ziskind, Gennady [Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rashkovan, Alex, E-mail: rashbgu@gmail.com [Physics Department, Nuclear Research Center Negev (NRCN), PO Box 9001, Beer-Sheva 84190 (Israel)

2015-10-15

Highlights: • We model stably stratified layer erosion by vertical turbulent round jet. • Separate effect studies are performed as a platform for choosing modeling approach. • A test performed in MISTRA facility, CEA, Saclay is modeled using Fluent and Trio-U codes. • The proposed modeling approach showed good agreement with the MISTRA facility LOWMA-3 test. - Abstract: A number of integral and separate effect experiments were performed in the last two decades for validation of containment computational tools. The main goal of these benchmark experiments was to assess the ability of turbulence models and computational fluid dynamics codes to predict hydrogen concentration distribution and steam condensation rate in a nuclear reactor containment in the course of severe accidents. It appears from the published literature that the predictive capability of the existing computational tools still needs to be improved. This work examines numerically the temporal evolution of helium concentration in the experiment called LOWMA-3, performed in the MISTRA facility of CEA-Saclay, France. In the experiment, helium is used to mimic hydrogen of a real-case accident. The aim of this separate effect experiment, where steam condensation was not involved, is to predict helium concentration field. The conditions of the experiment are such that both the momentum transport and molecular diffusion contributions to the mixing process are of the same order of magnitude (Fr ∼ 1). A commercial CFD code, Fluent, and a CEA in-house code, Trio-U, are used for flow and helium concentration fields temporal evolution prediction in the present study. The preliminary separate effect studies provide guidance to an optimal modeling approach for the LOWMA-3 experiment. Temporal evolution of helium concentration in the stratification layer is shown, and a comparison to the experiment is discussed. It is shown that correct modeling of the round jet flowfield is essential for a reliable

17. Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment

International Nuclear Information System (INIS)

Ishay, Liel; Bieder, Ulrich; Ziskind, Gennady; Rashkovan, Alex

2015-01-01

Highlights: • We model stably stratified layer erosion by vertical turbulent round jet. • Separate effect studies are performed as a platform for choosing modeling approach. • A test performed in MISTRA facility, CEA, Saclay is modeled using Fluent and Trio-U codes. • The proposed modeling approach showed good agreement with the MISTRA facility LOWMA-3 test. - Abstract: A number of integral and separate effect experiments were performed in the last two decades for validation of containment computational tools. The main goal of these benchmark experiments was to assess the ability of turbulence models and computational fluid dynamics codes to predict hydrogen concentration distribution and steam condensation rate in a nuclear reactor containment in the course of severe accidents. It appears from the published literature that the predictive capability of the existing computational tools still needs to be improved. This work examines numerically the temporal evolution of helium concentration in the experiment called LOWMA-3, performed in the MISTRA facility of CEA-Saclay, France. In the experiment, helium is used to mimic hydrogen of a real-case accident. The aim of this separate effect experiment, where steam condensation was not involved, is to predict helium concentration field. The conditions of the experiment are such that both the momentum transport and molecular diffusion contributions to the mixing process are of the same order of magnitude (Fr ∼ 1). A commercial CFD code, Fluent, and a CEA in-house code, Trio-U, are used for flow and helium concentration fields temporal evolution prediction in the present study. The preliminary separate effect studies provide guidance to an optimal modeling approach for the LOWMA-3 experiment. Temporal evolution of helium concentration in the stratification layer is shown, and a comparison to the experiment is discussed. It is shown that correct modeling of the round jet flowfield is essential for a reliable

18. Simulation of a gas jet entering the secondary side of a steam generator during a SGTR sequence: Validation of a FLUENT 6.2 Model

Energy Technology Data Exchange (ETDEWEB)

Lopez del Pra, C. Lopez, E-mail: Claudia.lopez@ciemat.e [Unit of Nuclear Safety Research, CIEMAT, Madrid (Spain); Velasco, F.J.S.; Herranz, L.E. [Unit of Nuclear Safety Research, CIEMAT, Madrid (Spain)

2010-09-15

This paper summarizes the major insights gained as a result of gas jets entering a tube bundle from either a guillotine or a fish-mouth breach of a steam generator tube. This scenario is highly relevant in nuclear safety since it determines the potential retention of radioactive particles during risk-dominant sequences, the so-called Steam Generator Tube Rupture (SGTR) sequences. The scenario has been modeled with the FLUENT 6.2 code and its predictions have been proven to be grid independent and consistent with the experimental data available. The topology of the jets and the influence of the inlet mass flow rate (from 75 to 250 kg/h) have been studied in terms of velocity profiles. The results show that the breach shape heavily determines the jet topology. Both jets initially describe a quasi-parabolic trajectory, which is affected by the presence of the tubes. A guillotine breach generates a jet with azimuthal symmetry, which vanishes for the fish-mouth breach configuration. In this case, jet expands azimuthally in a pseudo-triangular way with a small angle. This fact diminishes the momentum loss across the bundle, so that for the same inlet mass flow rate the fish-mouth jet penetration is higher than the guillotine one. The normalized maximum radial and axial velocities of the jet from the guillotine breach are found to be self-similar with respect to inlet mass flow rate along the tube row position and axial distance to the breach, respectively. However, in absolute terms higher penetrations are found at higher mass flow rates.

19. Large eddy simulations of flow and mixing in jets and swirl flows: application to a gas turbine

Energy Technology Data Exchange (ETDEWEB)

Schluter, J.U.

2000-07-01

Large Eddy Simulations (LES) are an accepted tool in turbulence research. Most LES investigations deal with low Reynolds-number flows and have a high spatial discretization, which results in high computational costs. To make LES applicable to industrial purposes, the possibilities of LES to deliver results with low computational costs on high Reynolds-number flows have to be investigated. As an example, the cold flow through the Siemens V64.3A.HR gas turbine burner shall be examined. It is a gas turbine burner of swirl type, where the fuel is injected on the surface of vanes perpendicular to the main air flow. The flow regime of an industrial gas turbine is governed by several flow phenomena. The most important are the fuel injection in form of a jet in cross flow (JICF) and the swirl flow issuing into a combustion chamber. In order to prove the ability of LES to deal with these flow phenomena, two numerical investigations were made in order to reproduce the results of experimental studies. The first one deals with JICF. It will be shown that the reproduction of three different JICF is possible with LES on meshes with a low number of mesh points. The results are used to investigate the flow physics of the JICF, especially the merging of two adjacent JICFs. The second fundamental investigation deals with swirl flows. Here, the accuracy of an axisymmetric assumption is examined in detail by comparing it to full 3D LES computations and experimental data. Having demonstrated the ability of LES and the flow solver to deal with such complex flows with low computational efforts, the LES approach is used to examine some details of the burner. First, the investigation of the fuel injection on a vane reveals that the vane flow tends to separate. Furthermore the tendency of the fuel jets to merge is shown. Second, the swirl flow in the combustion chamber is computed. For this investigation the vanes are removed from the burner and swirl is imposed as a boundary condition. As

20. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

Energy Technology Data Exchange (ETDEWEB)

Wu, S.; Wang, Z.; Huang, Q.; Tan, X.; Lu, X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ostrikov, K. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia); School of Physics, University of Sydney, Sydney NSW 2006 (Australia); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

2013-02-15

Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

1. Experimental study of a separated jets burner: application to the natural gas-pure oxygen combustion; Etude experimentale du comportement de bruleurs a jets separes: application a la combustion gaz naturel-oxygene pur

Energy Technology Data Exchange (ETDEWEB)

Salentey, L.

2002-04-15

The evolution of pollution standards and the optimisation of furnaces performances require a development of new burner generation and also the improvement of combustion techniques. Actually, the use of oxy-combustion in separated jets burners offers interesting prospects for NO{sub x} emission reduction and on the modularity of flames properties (lift off, flame front topology, flame length). The complex geometry of those burners leads to several problems like the three-dimensional character of the flow, which may sometimes disturb the flame stability as flames are lifted above the burner. This experimental study deals with a simplified version of that kind of burner constituted with a central natural gas jet surrounded by two oxygen jets. Primary, the study of non-reactive jet was planned in order to understand dynamic and mixture phenomena involved between jets and to provide a database useful for the computer code validation. The reactive flow developed in a furnace, which simulates the real conditions, had been characterised. The studies of the dynamic field using Laser Doppler Velocimetry (LDV) and of the turbulent mixture by conditional Laser tomography were supplemented in combustion by the visualisation of the spontaneous emission of radical OH, in the initial and final zone of the oxy-flames, like by the measurement of pollutants like NO{sub x} and soot. The measurements carried out while varying speeds of injection as well as the gap between the jets made possible the highlight of the influence of these parameters upon the stabilisation of the oxy-flames as well as the modification of the topology and the characteristics of the flows. The comparison of the measurements made in non-reactive and reactive flow shows the influence of oxy-combustion on the dynamic and scalar development of the flow for this type of burners. (author)

2. Bilateral symmetrical low density areas in the striatum

International Nuclear Information System (INIS)

Okabe, Ichiro; Shimoizumi, Hideo; Miyao, Masutomo; Kamoshita, Shigehiko

1986-01-01

A 10-year-old boy, who showed low density areas at bilateral striatal portion on brain CT, was reported. Characteristic clinical features were summarized as follows: 1. Onset in childhood (3 years old), 2. gait disturbance, dysarthria, involuntaly movement such as choreoathetosis and dystonia, 3. mild mental retardation (IQ 70), and 4. slowly progressive course over several years. Family history was unremarkable. His parents were not consanguineous. He was well until 3 years old, when he developed gait disturbance. At the age of 4, CT showed hypodensity lesions in the bilateral putamens, and right caudate was involved at 7, followed by bilateral caudate involvements at 10. Laboratory findings including blood lactate, pyruvate, serum copper, ceruloplasmin, aminoacids, urine and CSF catecholamines were within normal limits. TRH and thiamine therapies were ineffective L-dopa was slightly effective in movements, but symptoms were slowly progressive. We reviewed fourteen reported cases which were similar to our case in their onset, symptoms, clinical course and CT findings. Although the etiology was unknown, this case is possibly a new disease entity. (author)

3. Morphology of Burned Ultra-low Density Fiberboards

Directory of Open Access Journals (Sweden)

Min Niu

2015-09-01

Full Text Available The synergistic effect of two fire retardants, a Si-Al compound and chlorinated paraffin, was tested on ultra-low density fiberboards (ULDFs. To further understand the mechanism of fire retardancy, morphologies of unburned and burned ULDFs were studied using a scanning electron microscope with energy dispersive spectroscopy. It was found that as the volume of the burned ULDFs shrank, some crevices appeared. In addition, less fly ash formed on the top of specimens, and more bottom ashes remained in the original framework, with a clear network of structure built by the fibers. Carbon was almost absent in the fly ash; however, the weight ratio of C in the bottom ashes reached the maximum (> 43% of the composition. Oxygen, Al, and Si appeared to have varying weight ratios for different ashes. Oxygen content increased with increasing Si and Al contents. Furthermore, Cl sharply decreased to less than 1% after combustion. Therefore, upon combustion, it was found that almost all of the substances in ULDFs, except for the Si-Al compound, were pyrolyzed to volatile carbon oxides and Cl compounds, especially the fly ash and lightweight C compounds.

4. Low-density carbonized resorcinol-formaldehyde foams

International Nuclear Information System (INIS)

Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

1991-01-01

This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

5. DAQ system for low density plasma parameters measurement

International Nuclear Information System (INIS)

Joshi, Rashmi S.; Gupta, Suryakant B.

2015-01-01

In various cases where low density plasmas (number density ranges from 1E4 to 1E6 cm -3 ) exist for example, basic plasma studies or LEO space environment measurement of plasma parameters becomes very critical. Conventional tip (cylindrical) Langmuir probes often result into unstable measurements in such lower density plasma. Due to larger surface area, a spherical Langmuir probe is used to measure such lower plasma densities. Applying a sweep voltage signal to the probe and measuring current values corresponding to these voltages gives V-I characteristics of plasma which can be plotted on a digital storage oscilloscope. This plot is analyzed for calculating various plasma parameters. The aim of this paper is to measure plasma parameters using a spherical Langmuir probe and indigenously developed DAQ system. DAQ system consists of Keithley source-meter and a host system connected by a GPIB interface. An online plasma parameter diagnostic system is developed for measuring plasma properties for non-thermal plasma in vacuum. An algorithm is developed using LabVIEW platform. V-I characteristics of plasma are plotted with respect to different filament current values and different locations of Langmuir probe with reference to plasma source. V-I characteristics is also plotted for forward and reverse voltage sweep generated programmatically from the source meter. (author)

6. Microwave characteristics of low density flaky magnetic particles

International Nuclear Information System (INIS)

Wenqiang, Zhang; Deyuan, Zhang; Jun, Cai

2013-01-01

Diatomite coated with thin Fe films were obtained by the Chemical Vapor Deposition process. The resultant Fe-coated flaky diatomite particles had low densities (2.7–4.0 g/cm 3 ) and high saturation magnetization (93–157 emu/g). Annealing treatment led to grain growth and an increased saturation magnetization. The high frequency properties of the composites consisting of Fe-coated flaky diatomite particles and wax were investigated. The permittivity and permeability increased with increasing flaky magnetic particles content in the composite and increasing the Fe weight percentage of the particles. The reflection loss of the composite was found dependent on the absorber material thickness, wax:flaky magnetic particles ratios, the Fe content, as well as the annealing treatment. At a thickness of 1 mm, the composite records a minimum reflection loss of −18 dB at 6 GHz. - Highlights: ► We synthesize the flaky magnetic particles with the diatomite as template. ► The flaky magnetic particles coating layers are constituted by α-Fe. ► The flaky magnetic particles have good static magnetic properties. ► The flaky magnetic particles are a kind light weight high performance microwave absorber

7. Ultralow energy ion beam surface modification of low density polyethylene.

Science.gov (United States)

Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

2005-12-01

Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

8. Surface determinants of low density lipoprotein uptake by endothelial cells

International Nuclear Information System (INIS)

Goeroeg, P.; Pearson, J.D.

1984-01-01

The surface sialic acid content of aortic endothelial cells in vitro was substantially lower in sparse cultures than at confluence. Binding of LDL to endothelial cells did not change at different culture densities and was unaffected by brief pretreatment with neuraminidase to partially remove surface sialic acid residues. In contrast, internalisation of LDL declined by a factor of 3 between low density cell cultures and confluent monolayers; neuraminidase pretreatment increased LDL uptake and the effect was most marked (>10-fold) at confluence. Pretreatment with cationised ferritin, which removed most of the surface sialic acid residues as well as glycosaminoglycans, increased LDL internalisation by up to 20-fold, again with most effect on confluent monolayers. Thus LDL uptake is inversely correlated with sialic acid content. We conclude that changes in the surface density of sialic acid (and possibly other charged) residues significantly modulate endothelial LDL uptake, and suggest that focal increases in LDL accumulation during atherogenesis may be related to alterations in endothelial endocytic properties at sites of increased cell turnover or damage. (author)

9. Simulated Tip Rub Testing of Low-Density Metal Foam

Science.gov (United States)

Bowman, Cheryl L.; Jones, Michael G.

2009-01-01

Preliminary acoustic studies have indicated that low-density, open-cell, metal foams may be suitable acoustic liner material for noise suppression in high by-pass engines. Metal foam response under simulated tip rub conditions was studied to assess whether its durability would be sufficient for the foam to serve both as a rub strip above the rotor as well as an acoustic treatment. Samples represented four metal alloys, nominal cell dimensions ranging from 60 to 120 cells per inch (cpi), and relative densities ranging from 3.4 to 10 percent. The resulting rubbed surfaces were relatively smooth and the open cell structure of the foam was not adversely affected. Sample relative density appeared to have significant influence on the forces induced by the rub event. Acoustic responses of various surface preparations were measured using a normal incidence tube. The results of this study indicate that the foam s open-cell structure was retained after rubbing and that the acoustic absorption spectra variation was minimal.

10. Microwave characteristics of low density flaky magnetic particles

Energy Technology Data Exchange (ETDEWEB)

Wenqiang, Zhang, E-mail: zwqzwqzwqzwq@126.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); College of Engineering, China Agricultural University, Beijing 100083 (China); Deyuan, Zhang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Jun, Cai, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China)

2013-04-15

Diatomite coated with thin Fe films were obtained by the Chemical Vapor Deposition process. The resultant Fe-coated flaky diatomite particles had low densities (2.7–4.0 g/cm{sup 3}) and high saturation magnetization (93–157 emu/g). Annealing treatment led to grain growth and an increased saturation magnetization. The high frequency properties of the composites consisting of Fe-coated flaky diatomite particles and wax were investigated. The permittivity and permeability increased with increasing flaky magnetic particles content in the composite and increasing the Fe weight percentage of the particles. The reflection loss of the composite was found dependent on the absorber material thickness, wax:flaky magnetic particles ratios, the Fe content, as well as the annealing treatment. At a thickness of 1 mm, the composite records a minimum reflection loss of −18 dB at 6 GHz. - Highlights: ► We synthesize the flaky magnetic particles with the diatomite as template. ► The flaky magnetic particles coating layers are constituted by α-Fe. ► The flaky magnetic particles have good static magnetic properties. ► The flaky magnetic particles are a kind light weight high performance microwave absorber.

11. The hydrodynamic and radiative properties of low-density foams heated by x-rays

Czech Academy of Sciences Publication Activity Database

Rosmej, O. N.; Suslov, N.; Martsovenko, D.; Vergunova, G.; Borisenko, N.; Orlov, N.; Rienecker, T.; Klír, Daniel; Řezáč, Karel; Orekhov, A.; Borisenko, L.; Krouský, Eduard; Pfeifer, Miroslav; Dudžák, Roman; Maeder, R.; Schaechinger, M.; Schoenlein, A.; Zaehter, S.; Jacoby, J.; Limpouch, J.; Ullschmied, Jiří; Zhidkov, N.

2015-01-01

Roč. 57, č. 9 (2015), č. článku 094001. ISSN 0741-3335 R&D Projects: GA MŠk(CZ) LG13029; GA MŠk LM2010014 Grant - others:FP7(XE) 284464 Program:FP7 Institutional support: RVO:61389021 Keywords : hohlraum * low density polymer aerogel * opacity * Planckian radiation * plasma * x-rays Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015 http://iopscience.iop.org/article/10.1088/0741-3335/57/9/094001;jsessionid=E4079D2364DFCC5CA64FBF3B9F73D180.c2.iopscience.cld.iop.org

12. Low density, variation in sintered density and high nitrogen in uranium dioxide

International Nuclear Information System (INIS)

Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

2000-01-01

Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

13. Nonlinear error-field penetration in low density ohmically heated tokamak plasmas

International Nuclear Information System (INIS)

Fitzpatrick, R

2012-01-01

A theory is developed to predict the error-field penetration threshold in low density, ohmically heated, tokamak plasmas. The novel feature of the theory is that the response of the plasma in the vicinity of the resonant surface to the applied error-field is calculated from nonlinear drift-MHD (magnetohydrodynamical) magnetic island theory, rather than linear layer theory. Error-field penetration, and subsequent locked mode formation, is triggered once the destabilizing effect of the resonant harmonic of the error-field overcomes the stabilizing effect of the ion polarization current (caused by the propagation of the error-field-induced island chain in the local ion fluid frame). The predicted scaling of the error-field penetration threshold with engineering parameters is (b r /B T ) crit ∼n e B T -1.8 R 0 -0.25 , where b r is the resonant harmonic of the vacuum radial error-field at the resonant surface, B T the toroidal magnetic field-strength, n e the electron number density at the resonant surface and R 0 the major radius of the plasma. This scaling—in particular, the linear dependence of the threshold with density—is consistent with experimental observations. When the scaling is used to extrapolate from JET to ITER, the predicted ITER error-field penetration threshold is (b r /B T ) crit ∼ 5 × 10 −5 , which just lies within the expected capabilities of the ITER error-field correction system. (paper)

14. Aggregation and fusion of modified low density lipoprotein.

Science.gov (United States)

Pentikäinen, M O; Lehtonen, E M; Kovanen, P T

1996-12-01

In atherogenesis, low density lipoprotein (LDL, diameter 22 nm) accumulates in the extracellular space of the arterial intima in the form of aggregates of lipid droplets (droplet diameter up to 400 nm). Here we studied the effects of various established in vitro LDL modifications on LDL aggregation and fusion. LDL was subjected to vortexing, oxidation by copper ions, proteolysis by alpha-chymotrypsin, lipolysis by sphingomyelinase, and nonenzymatic glycosylation, and was induced to form adducts with malondialdehyde or complexes with anti-apoB-100 antibodies. To assess the amount of enlarged LDL-derived structures formed (due to aggregation or fusion), we measured the turbidity of solutions containing modified LDL, and quantified the proportion of modified LDL that 1) sedimented at low-speed centrifugation (14,000 g), 2) floated at an increased rate at high-speed centrifugation (rate zonal flotation at 285,000 gmax), 3) were excluded in size-exclusion column chromatography (exclusion limit 40 MDa), or 4) failed to enter into 0.5%. Fast Lane agarose gel during electrophoresis. To detect whether particle fusion had contributed to the formation of the enlarged LDL-derived structures, particle morphology was examined using negative staining and thin-section transmission electron microscopy. We found that 1) aggregation was induced by the formation of LDL-antibody complexes, malondialdehyde treatment, and glycosylation of LDL; 2) fusion of LDL was induced by proteolysis of LDL by alpha-chymotrypsin; and 3) aggregation and fusion of LDL were induced by vortexing, oxidation by copper ions, and lipolysis by sphingomyclinase of LDL. The various modifications of LDL differed in their ability to induce aggregation and fusion.

15. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

International Nuclear Information System (INIS)

Ferrer, R.; Sonnenschein, V.T.; Bastin, B.; Franchoo, S.; Huyse, M.; Kudryavtsev, Yu.; Kron, T.; Lecesne, N.; Moore, I.D.; Osmond, B.; Pauwels, D.; Radulov, D.; Raeder, S.; Rens, L.

2012-01-01

The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63 Cu. A final run under on-line conditions in which the radioactive isotope 59 Cu (T 1/2 = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

16. Effects of N2 gas on preheated laminar LPG jet diffusion flame

International Nuclear Information System (INIS)

Mishra, D.P.; Kumar, P.

2010-01-01

This paper presents an experimental investigation of the inert gas effect on flame length, NO x and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO x emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N 2 for fuel-diluted stream. In contrast, SFLF remains almost constant when N 2 is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO x emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO x emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO x emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO x through Zeldovich mechanism.

17. Effects of N{sub 2} gas on preheated laminar LPG jet diffusion flame

Energy Technology Data Exchange (ETDEWEB)

Mishra, D.P.; Kumar, P. [Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208 016 (India)

2010-11-15

This paper presents an experimental investigation of the inert gas effect on flame length, NO{sub x} and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO{sub x} emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N{sub 2} for fuel-diluted stream. In contrast, SFLF remains almost constant when N{sub 2} is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO{sub x} emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO{sub x} emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO{sub x} emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO{sub x} through Zeldovich mechanism. (author)

18. Combining Ratio Estimation for Low Density Parity Check (LDPC) Coding

Science.gov (United States)

2012-01-01

The Low Density Parity Check (LDPC) Code decoding algorithm make use of a scaled receive signal derived from maximizing the log-likelihood ratio of the received signal. The scaling factor (often called the combining ratio) in an AWGN channel is a ratio between signal amplitude and noise variance. Accurately estimating this ratio has shown as much as 0.6 dB decoding performance gain. This presentation briefly describes three methods for estimating the combining ratio: a Pilot-Guided estimation method, a Blind estimation method, and a Simulation-Based Look-Up table. The Pilot Guided Estimation method has shown that the maximum likelihood estimates of signal amplitude is the mean inner product of the received sequence and the known sequence, the attached synchronization marker (ASM) , and signal variance is the difference of the mean of the squared received sequence and the square of the signal amplitude. This method has the advantage of simplicity at the expense of latency since several frames worth of ASMs. The Blind estimation method s maximum likelihood estimator is the average of the product of the received signal with the hyperbolic tangent of the product combining ratio and the received signal. The root of this equation can be determined by an iterative binary search between 0 and 1 after normalizing the received sequence. This method has the benefit of requiring one frame of data to estimate the combining ratio which is good for faster changing channels compared to the previous method, however it is computationally expensive. The final method uses a look-up table based on prior simulated results to determine signal amplitude and noise variance. In this method the received mean signal strength is controlled to a constant soft decision value. The magnitude of the deviation is averaged over a predetermined number of samples. This value is referenced in a look up table to determine the combining ratio that prior simulation associated with the average magnitude of

19. Modification of low-density lipoprotein by different radioiodination methods

International Nuclear Information System (INIS)

Sobal, G.; Resch, U.; Sinzinger, H.

2004-01-01

Scintigraphic imaging of radiolabeled low-density lipoproteins (LDL) is an interesting tool for the understanding of its role in pathomechanism of atherosclerosis. Metabolism of native LDL shows quite different pattern and kinetics as compared to that of modified LDL which is not mediated by classical LDL-receptor and accumulates in atherosclerotic lesions to form lipid-laden foam cells. Therefore we were interested whether radiolabelling of LDL induces structural modifications. We performed the iodine labeling of LDL for scintigraphic imaging of atherosclerosis by three different methods: chloramine-T (A), iodine monochloride (B) and iodogen (C). The highest radiolabelling yield of 125 I was obtained by the iodogen method (75.44±13.52%) and the lowest (49.01±12.74%) by iodine monochloride. Chloramine T showed a labeling yield of 62.82±6.17%. The stability of the tracer was very high with all the methods, persisting up to 6 h (98.83±1.2% - 91.38±4.7%, 15 min vs 6 h after labeling). For the first time we not only investigated the influence of radiolabelling on relative electrophoretic mobility (REM), but also various oxidation parameters such as baseline dienes (BD), thiobarbituric acid reactive substances (TBARS), endogenous peroxides (POX) and oxidation resistance in the copper-mediated oxidation system (expressed as lag-time) were measured. Furthermore, oxidation- derived fragmentation of the lipoproteins was examined with SDS-PAGE electrophoresis. Data are expressed as % change compared to native LDL before radiolabeling. BD were reduced by 32% using the method (A), but increased by 33% and 47% with the monochloride (B) and iodogen method (C), respectively. The effect on lag-time was comparable for all the three methods, ranging from 25 to 36% reduction in lag-time. TBARS were strongly increased 5-7 fold by all the methods. REM was changed by all three methods. While by methods A and C we have found a moderate increase in REM by 1.75 and 2.0 fold

20. Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage

KAUST Repository

El-Amin, Mohamed

2012-02-01

The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non-Boussinesq buoyant jet in which a low-density gas jet is injected/leak into a high-density ambient. The density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type and the rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment consists of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The top-hat profile assumption is used to obtain the mean centerline velocity, width, density and concentration of the H 2-air horizontal jet in addition to kinematic relations which govern the jet trajectories. A set of ordinary differential equations is obtained and solved numerically using Runge-Kutta method. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained based on Gaussian model. Finally, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained by solving the governing partial differential equations. Additionally, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

Science.gov (United States)

Baird, Benjamin

to two reasons. The elliptical burners have enhanced turbulence generation that lowers their stability when compared to the circular burner. The 4:1 AR elliptical burner had greater stability due to a greater velocity decay rate and wider OH reaction zones particularly in the region between the two jets. The 3:1 AR elliptical and circular burners produced similar carbon monoxide and nitric oxide emission indexes over the range of equivalence ratios of 0.55 to 4.0, for laminar flames. (Abstract shortened by UMI.)

2. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

Science.gov (United States)

Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

1973-01-01

Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

3. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

Energy Technology Data Exchange (ETDEWEB)

Uwe, Greife [Colorado School of Mines, Golden, CO (United States)

2014-08-12

The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

4. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

International Nuclear Information System (INIS)

Uwe, Greife

2014-01-01

The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

5. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

OpenAIRE

Xunmin Ou; Xiaoyu Yan; Xu Zhang; Xiliang Zhang

2013-01-01

A life-cycle analysis (LCA) of greenhouse gas (GHG) emissions and energy use was performed to study bio-jet fuel (BJF) production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM). Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP) from the residual biomass after oil extraction, including fugitive methane (CH 4 ) emissions during the production of biogas and nitrous oxide (N 2 O) ...

6. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.

Science.gov (United States)

Solovev, Alexander A; Mei, Yongfeng; Bermúdez Ureña, Esteban; Huang, Gaoshan; Schmidt, Oliver G

2009-07-01

Strain-engineered microtubes with an inner catalytic surface serve as self-propelled microjet engines with speeds of up to approximately 2 mm s(-1) (approximately 50 body lengths per second). The motion of the microjets is caused by gas bubbles ejecting from one opening of the tube, and the velocity can be well approximated by the product of the bubble radius and the bubble ejection frequency. Trajectories of various different geometries are well visualized by long microbubble tails. If a magnetic layer is integrated into the wall of the microjet engine, we can control and localize the trajectories by applying external rotating magnetic fields. Fluid (i.e., fuel) pumping through the microtubes is revealed and directly clarifies the working principle of the catalytic microjet engines.

7. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

International Nuclear Information System (INIS)

Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

2013-01-01

In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

8. Low density in liver of idiopathic portal hypertension. A computed tomographic observation with possible diagnostic significance

Energy Technology Data Exchange (ETDEWEB)

Ishito, Hiroyuki

1988-01-01

In order to evaluate the diagnostic value of low density in liver on computed tomography (CT), CT scans of 11 patients with idiopathic portal hypertension (IPH) were compared with those from 22 cirrhotic patients, two patients with scarred liver and 16 normal subjects. Low densities on plain CT scans in patients with IPH were distinctly different from those observed in normal liver. Some of the low densities had irregular shape with unclear margin and were scattered near the liver surface, and others had vessel-like structures with unclear margin and extended as far as near the liver surface. Ten of the 11 patients with IPH had low densities mentioned above, while none of the 22 cirrhotic patients had such low densities. The present results suggest that the presence of low densities in liver on plain CT scan is clinically beneficial in diagnosis of IPH.

9. Gas concentration and temperature in acoustically excited Delft turbulent jet flames

Energy Technology Data Exchange (ETDEWEB)

Ana Maura A. Rocha; Joao A. Carvalho Jr.; Pedro T. Lacava [Sao Paulo State University, Guaratingueta (Brazil)

2008-11-15

This paper shows the experimental results for changes in the flame structure when acoustic fields are applied in natural gas Delft turbulent diffusion flames. The acoustic field (pulsating combustion) generates zones of intense mixture of reactants in the flame region, promoting a more complete combustion and, consequently, lower pollutant emissions, increase in convective heat transfer rates, and lower fuel consumption. The results show that the presence of the acoustic field changes drastically the flame structure, mainly in the burner natural frequencies. However, for higher acoustic amplitudes, or acoustic pressures, a hydrogen pilot flame is necessary in order to keep the main flame anchored. In the flame regions where the acoustic field is more intense, premixed flame characteristics were observed. Besides, the pulsating regime modifies the axial and radial combustion structure, which could be verified by the radial distribution of concentrations of O{sub 2}, CO, CO{sub 2}, and NOx, and by the temperature profile. The experiments also presented the reduction of flame length with the increase of acoustic amplitude. 30 refs., 15 figs., 3 tabs.

10. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas

Energy Technology Data Exchange (ETDEWEB)

2009-07-15

Planar laser-induced incandescence (LII) has been used to measure soot volume fraction in a well-characterised, piloted, turbulent non-premixed flame known as the ''Delft Flame III''. Simulated Dutch natural gas was used as the fuel to produce a flame closely matching those in which a wide range of previous investigations, both experimental and modelling, have been performed. The LII method was calibrated using a Santoro-style burner with ethylene as the fuel. Instantaneous and time-averaged data of the axial and radial soot volume fraction distributions of the flame are presented here along with the Probability Density Functions (PDFs) and intermittency. The PDFs were found to be well-characterised by a single exponential distribution function. The distribution of soot was found to be highly intermittent, with intermittency typically exceeding 97%, which increases measurement uncertainty. The instantaneous values of volume fraction are everywhere less than the values in strained laminar flames. This is consistent with the soot being found locally in strained flame sheets that are convected and distorted by the flow. (author)

11. Low-density moderation in the storage of PWR fuel assemblies

International Nuclear Information System (INIS)

Alcorn, F.M.

1987-01-01

The nuclear criticality safety of PWR fuel storage arrays requires that the potential of low-density moderation within the array be considered. The calculated criticality effect of low-density moderation in a typical PWR fuel assembly array is described in this paper. Calculated reactivity due to low-density moderation can vary significantly between physics codes that have been validated for well moderated systems. The availability of appropriate benchmark experiments for low-density moderation is quite limited; attempts to validate against the one set of suitable experiments at low density have been disappointing. Calculations indicate that a typical array may be unacceptable should the array be subjected to interstitial moderation equivalent to 5 % of full density water. Array parameters (such as spacing and size) will dramatically affect the calculated maximum K-eff at low-density moderation. Administrative and engineered control may be necessary to assure maintenance of safety at low-density moderation. Potential sources for low-density moderation are discussed; in general, accidentally achieving degrees of low-density moderation which might lead to a compromise of safety are not credible. (author)

12. Cholesterol transfer from normal and atherogenic low density lipoproteins to Mycoplasma membranes

International Nuclear Information System (INIS)

Mitschelen, J.J.; St Clair, R.W.; Hester, S.H.

1981-01-01

The purpose of this study was to determine whether the free cholesterol of hypercholesterolemic low density lipoprotein from cholesterol-fed nonhuman primates has a greater potential for surface transfer to cell membranes than does the free cholesterol of normal low density lipoprotein. The low density lipoproteins were isolated from normal and hypercholesterolemic rhesus and cynomolgus monkeys, incubated with membranes from Acholeplasma laidlawii, a mycoplasma species devoid of cholesterol in its membranes, and the mass transfer of free cholesterol determined by measuring membrane cholesterol content. Since these membranes neither synthesize nor esterify cholesterol, nor degrade the protein or cholesterol ester moieties of low density lipoprotein, they are an ideal model with which to study differences in the cholesterol transfer potential of low density lipoprotein independent of the uptake of the intact low density lipoprotein particle. These studies indicate that, even though there are marked differences in the cholesterol composition of normal and hypercholesterolemic low density lipoproteins, this does not result in a greater chemical potential for surface transfer of free cholesterol. Consequently, if a difference in the surface transfer of free cholesterol is responsible for the enhanced ability of hypercholesterolemic low density lipoprotein to promote cellular cholesterol accumulation and, perhaps, also atherosclerosis, it must be the result of differences in the interaction to the hypercholesterolemic low density lipoprotein with the more complicated mammalian cell membranes, rather than differences in the chemical potential for cholesterol transfer

13. Low-density lipoprotein apheresis: an evidence-based analysis.

Science.gov (United States)

2007-01-01

To assess the effectiveness and safety of low-density lipoprotein (LDL) apheresis performed with the heparin-induced extracorporeal LDL precipitation (HELP) system for the treatment of patients with refractory homozygous (HMZ) and heterozygous (HTZ) familial hypercholesterolemia (FH). BACKGROUND ON FAMILIAL HYPERCHOLESTEROLEMIA: Familial hypercholesterolemia is a genetic autosomal dominant disorder that is caused by several mutations in the LDL-receptor gene. The reduced number or absence of functional LDL receptors results in impaired hepatic clearance of circulating low-density lipoprotein cholesterol (LDL-C) particles, which results in extremely high levels of LDL-C in the bloodstream. Familial hypercholesterolemia is characterized by excess LDL-C deposits in tendons and arterial walls, early onset of atherosclerotic disease, and premature cardiac death. Familial hypercholesterolemia occurs in both HTZ and HMZ forms. Heterozygous FH is one of the most common monogenic metabolic disorders in the general population, occurring in approximately 1 in 500 individuals. Nevertheless, HTZ FH is largely undiagnosed and an accurate diagnosis occurs in only about 15% of affected patients in Canada. Thus, it is estimated that there are approximately 3,800 diagnosed and 21,680 undiagnosed cases of HTZ FH in Ontario. In HTZ FH patients, half of the LDL receptors do not work properly or are absent, resulting in plasma LDL-C levels 2- to 3-fold higher than normal (range 7-15mmol/L or 300-500mg/dL). Most HTZ FH patients are not diagnosed until middle age when either they or one of their siblings present with symptomatic coronary artery disease (CAD). Without lipid-lowering treatment, 50% of males die before the age of 50 and 25% of females die before the age of 60, from myocardial infarction or sudden death. In contrast to the HTZ form, HMZ FH is rare (occurring in 1 case per million persons) and more severe, with a 6- to 8-fold elevation in plasma LDL-C levels (range 15-25mmol

14. Production and correlation of reactive oxygen and nitrogen species in gas- and liquid-phase generated by helium plasma jets under different pulse widths

Science.gov (United States)

Liu, Zhijie; Zhou, Chunxi; Liu, Dingxin; Xu, Dehui; Xia, Wenjie; Cui, Qingjie; Wang, Bingchuan; Kong, Michael G.

2018-01-01

In this paper, we present the effects of the pulse width (PW) on the plasma jet's discharge characteristics, particularly focusing on the production and correlation of the reactive oxygen and nitrogen species (RONS) in gas- and liquid-phase. It is found that the length of plasma jet plume first increases before the PW of 10 μs, then gradually decreases and finally almost remains unchanged beyond 150 μs. The plasma bullet disappears after the falling edge of the voltage pulse at low PW, while it terminates far ahead of the falling edge of voltage pulse at high PW. This is mainly attributed to accumulation of space charges that lead to weakening of the reduced electric field with an increase of PW from low to high. More important, it is found that the excited reactive species, the positive and negative ions from plasma jet, and the concentrations of NO2- and NO3- in deionized water exposed to plasma jet also display the first increasing and then decreasing change trend with increase of PW, while the concentration of H2O2 in water almost displays the linearly increasing trend. This mainly results from the formation of the H3O+ and HO2-, as well as their ion water clusters that can produce more OH radicals to be converted into H2O2, while the NO2- and NO3- in gas phase can transport into water and exist most stably in water. The water cluster formation at gas-liquid interface is an important key process that can affect the chemical nature and dose of aqueous RONS in water; this is beneficial for understanding how the RONS are formed in liquid-phase.

15. Galaxies in low density regions of the universe

International Nuclear Information System (INIS)

Brosch, N.

1983-01-01

Until recently, no sample of galaxies has been offered for study as being representative of isolated galaxies. However, lately two such samples have been published; one of them is the subject of this study. Both lists of isolated galaxies contain only a few percent of all galaxies considered in the original sources. The study of the isolated galaxies' sample includes optical UBV photometry, infrared photometry, 6-cm radio continuum observations and ultraviolet spectrophotometry. The results provide a database to compare the properties of isolated galaxies to those of nonisolated ones which have probably been modified since their formation by encounters with gas or with other galaxies. A tentative explanation of the detected difference, the apparently enhanced degree of nuclear activity in isolated galaxies is given. (Auth.)

16. Do Low-Density Diets Improve Broiler Breeder Welfare During Rearing and Laying.

NARCIS (Netherlands)

Jong, de I.C.; Enting, H.; Voorst, van A.; Blokhuis, H.J.

2005-01-01

Low-density diets may improve welfare of restricted fed broiler breeders by increasing feed intake time with less frustration of feed intake behavior as a result. Moreover, low-density diets may promote satiety through a more filled gastrointestinal tract, and thus feelings of hunger may be reduced.

17. Scat-detection dogs survey low density moose in New York

Science.gov (United States)

Heidi Kretser; Michale Glennon; Alice Whitelaw; Aimee Hurt; Kristine Pilgrim; Michael Schwartz

2016-01-01

The difficulty of collecting occurrence and population dynamics data in mammalian populations of low density poses challenges for making informed management decisions. We assessed the use of scat-detection dogs to search for fecal pellets in a low density moose (Alces alces) population in the Adirondack Park in New York State, and the success rate of DNA...

18. Modification of low density polyethylene, isostatic polypropylene and their blends by gamma radiation

International Nuclear Information System (INIS)

Santos Rosa, D. dos

1991-01-01

The effects of the gamma radiation (of a 60 Co source), over low density polyethylene, isostatic polypropylene and their blends of low density polyethylene / polypropylene were studied. The structures modifications were attended by infrared spectrometry (IV), differential scanning calorimeter (DSC), strain-strain measurement, density measurement and scanning electron microscope (SEM). (author)

19. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet

Energy Technology Data Exchange (ETDEWEB)

Qaisrani, M. Hasnain; Xian, Yubin, E-mail: yubin.xian@hotmail.com; Li, Congyun; Pei, Xuekai; Ghasemi, Maede; Lu, Xinpei [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

2016-06-15

In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma to propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.

20. Associated vector boson production with b-jets at LHCb and Beam-Gas Vertexing at LHC for beam instrumentation

CERN Document Server

AUTHOR|(INSPIRE)INSPIRE-00287090

This thesis presents the cross-section measurements of associated vector bosons production with bottom quarks jets at 7 and 8 TeV of centre-of-mass energies. The first channel for cross-section measurement is the Z+b-jet with $Z/\\gamma^* \\to \\mu^+\\mu^-$ in proton-proton collisions at $\\sqrt s = \\text {7 TeV}$ using data collected by the LHCb experiment in 2011. The second channel is the $W + b\\overline b$, requiring two b-jets and one lepton. Apart from cross-section measurement this channel is also used to calculate limits of the Higgs boson produced in association with a vector boson and decaying into a pair of bottom or charm quarks. One of the main source of systematic errors in these analyses is the jet energy resolution and correction. Reduction of this error is achieved by performing a calibration of the neutral jet energy component, named neutral recovery, where empirical functions of the ratio between the charged particle energy of the jet and the particle momentum are determined. This method improv...

1. Apple juice inhibits human low density lipoprotein oxidation.

Science.gov (United States)

Pearson, D A; Tan, C H; German, J B; Davis, P A; Gershwin, M E

1999-01-01

Dietary phenolic compounds, ubiquitous in vegetables and fruits and their juices possess antioxidant activity that may have beneficial effects on human health. The phenolic composition of six commercial apple juices, and of the peel (RP), flesh (RF) and whole fresh Red Delicious apples (RW), was determined by high performance liquid chromatography (HPLC), and total phenols were determined by the Folin-Ciocalteau method. HPLC analysis identified and quantified several classes of phenolic compounds: cinnamates, anthocyanins, flavan-3-ols and flavonols. Phloridzin and hydroxy methyl furfural were also identified. The profile of phenolic compounds varied among the juices. The range of concentrations as a percentage of total phenolic concentration was: hydroxy methyl furfural, 4-30%; phloridzin, 22-36%; cinnamates, 25-36%; anthocyanins, n.d.; flavan-3-ols, 8-27%; flavonols, 2-10%. The phenolic profile of the Red Delicious apple extracts differed from those of the juices. The range of concentrations of phenolic classes in fresh apple extracts was: hydroxy methyl furfural, n.d.; phloridzin, 11-17%; cinnamates, 3-27%; anthocyanins, n.d.-42%; flavan-3-ols, 31-54%; flavonols, 1-10%. The ability of compounds in apple juices and extracts from fresh apple to protect LDL was assessed using an in vitro copper catalyzed human LDL oxidation system. The extent of LDL oxidation was determined as hexanal production using static headspace gas chromatography. The apple juices and extracts, tested at 5 microM gallic acid equivalents (GAE), all inhibited LDL oxidation. The inhibition by the juices ranged from 9 to 34%, and inhibition by RF, RW and RP was 21, 34 and 38%, respectively. Regression analyses revealed no significant correlation between antioxidant activity and either total phenolic concentration or any specific class of phenolics. Although the specific components in the apple juices and extracts that contributed to antioxidant activity have yet to be identified, this study

2. Theory of a spheroidal probe in low-density continuum plasmas

International Nuclear Information System (INIS)

Kamitsuma, M.; Teii, S.

1982-01-01

A spheroidal probe theory for a low-density continuum plasma, i.e., one where the electron density is N/sub e/ 8 cm -3 and the gas pressure is P> or approx. =1 Torr has been developed using a spheroidal coordinate system in order to properly take into account the effect of the finite length of the probe. The numerical results of both the electron- and the ion-current characteristics are obtained for various values of R/sub p//lambda/sub D/ ranging from 0 to 1, epsilon = T/sub i//T/sub e/ from 0.1 to 1, and C/sub p/ = L/sub p//2R/sub p/ from 1 to 100, where lambda/sub D/ is the Debye length, R/sub p/ and L/sub p/ are the probe radius and the probe length, T/sub i/ and T/sub e/ are the ion and the electron temperature, respectively. Using these results, new methods to determine the electron temperature and the plasma space potential (consequently, the electron density) by practical measurements are also proposed and discussed

3. Ion temperature profiles in JET

International Nuclear Information System (INIS)

Hellermann, M. von; Mandl, W.; Summers, H.P.; Weisen, H.

1989-01-01

The results presented in this paper have shown some extreme cases of ion temperature profiles illustrating the different operation modes of the JET tokamak. In the three examples of low-density high temperature, high-density moderates and high-density high-confinement plasmas comparable values of a maximum fusion product n d T i τ E in the order of 10 20 keV m -3 sec are achieved. (author) 1 ref., 7 figs

4. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

Science.gov (United States)

Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

2018-05-01

We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(gas inflow rate decreases towards the centre due to convection (\\dot{M}∝ r), and the net accretion rate (including both inflows and outflows) is strongly suppressed by several orders of magnitude from the Bondi accretion rate \\dot{M}_B. The net accretion rate depends on the viscous strength, following \\dot{M}/\\dot{M}_B∝ (α /0.01)^{0.6}. This solution holds for low accretion rates of \\dot{M}_B/\\dot{M}_Edd≲ 10^{-3} having minimal radiation cooling, where \\dot{M}_Edd is the Eddington accretion rate. In a hot plasma at the bottom (r < 10-3 RB), thermal conduction would dominate the convective energy flux. Since suppression of the accretion by convection ceases, the final BH feeding rate is found to be \\dot{M}/\\dot{M}_B˜ 10^{-3}-10-2. This rate is as low as \\dot{M}/\\dot{M}_Edd˜ 10^{-7}-10-6 inferred for SgrA* and the nuclear BHs in M31 and M87, and can explain their low luminosities, without invoking any feedback mechanism.

5. Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders

International Nuclear Information System (INIS)

Mostafaei, Amir; Toman, Jakub; Stevens, Erica L.; Hughes, Eamonn T.; Krimer, Yuval L.; Chmielus, Markus

2017-01-01

In this study, we investigate the effect of powders resulting from different atomization methods on properties of binder jet printed and heat-treated samples. Air-melted gas atomized (GA) and water atomized (WA) nickel-based alloy 625 powders were used to binder jet print samples for a detailed comparative study on microstructural evolution and mechanical properties. GA printed samples achieved higher sintering density (99.2%) than WA samples (95.0%) due to differences in powder morphology and chemistry. Grain sizes of GA and WA samples at their highest density were 89 ± 21 μm and 88 ± 26 μm, respectively. Mechanical tests were conducted on optimally sintered samples and sintered plus aged samples; aging further improved microstructure and mechanical properties. This study shows that microstructural evolution (densification, and carbide, oxide and intermetallic phase formation) is very different for GA and WA binder jet printed and heat-treated samples. This difference in microstructural evolution results in different mechanical properties with the superior sintered and aged GA specimen reaching a hardness of 327 ± 7 HV_0_._1, yield strength of 394 ± 15 MPa, and ultimate tensile strength of 718 ± 14 MPa which are higher than cast alloy 625 values.

6. Regions of low density in the contrast-enhanced pituitary gland: normal and pathologic processes

International Nuclear Information System (INIS)

Chambers, E.F.; Turski, P.A.; LaMasters, D.; Newton, T.H.

1982-01-01

The incidence of low-density regions in the contrast-enhanced pituitary gland and the possible causes of these regions were investigated by a retrospective review of computed tomographic (CT) scans of the head in 50 patients and autopsy specimens of the pituitary in 100 other patients. It was found that focal areas of low density within the contrast enhanced pituitary gland can be caused by various normal and pathologic conditions such as pituitary microadenomas, pars intermedia cysts, foci of metastasis, infarcts, epidermoid cysts, and abscesses. Although most focal low-density regions probably represent pituitary microadenomas, careful clinical correlation is needed to establish a diagnosis

7. Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact on jet engine performance

International Nuclear Information System (INIS)

Lokesh, Kadambari; Sethi, Vishal; Nikolaidis, Theoklis; Goodger, Eric; Nalianda, Devaiah

2015-01-01

Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This study examines the environmental competence of Bio-Synthetic Paraffinic Kerosene (Bio-SPKs) against conventional Jet-A, through development of a life cycle GHG model (ALCEmB – Assessment of Life Cycle Emissions of Biofuels) from “cradle-grave” perspective. This model precisely calculates the life cycle emissions of the advanced biofuels through a multi-disciplinary study entailing hydrocarbon chemistry, thermodynamic behaviour and fuel combustion from engine/aircraft performance, into the life cycle studies, unlike earlier studies. The aim of this study is predict the “cradle-grave” carbon intensity of Camelina SPK, Microalgae SPK and Jatropha SPK through careful estimation and inclusion of combustion based emissions, which contribute ≈70% of overall life cycle emissions (LCE). Numerical modelling and non-linear/dynamic simulation of a twin-shaft turbofan, with an appropriate airframe, was conducted to analyse the impact of alternative fuels on engine/aircraft performance. ALCEmB revealed that Camelina SPK, Microalgae SPK and Jatropha SPK delivered 70%, 58% and 64% LCE savings relative to the reference fuel, Jet-A1. The net energy ratio analysis indicates that current technology for the biofuel processing is energy efficient and technically feasible. An elaborate gas property analysis infers that the Bio-SPKs exhibit improved thermodynamic behaviour in an operational gas turbine engine. This thermodynamic effect has a positive impact on aircraft-level fuel consumption and emissions characteristics demonstrating fuel savings in the range of 3–3.8% and emission savings of 5.8–6.3% (CO 2 ) and 7.1–8.3% (LTO NOx), relative to that of Jet-A. - Highlights: • Bio-SPKs were determined to deliver “Cradle-Grave” GHG savings of 58–70%. • Bio-SPKs exhibited improved thermodynamic behaviour at integrated system level assessment

8. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

Science.gov (United States)

Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

2016-10-01

Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

9. Development of Low Density CaMg-A1-Based Bulk Metallic Glasses (Preprint)

National Research Council Canada - National Science Library

Senkov, O. N; Scott, J. M; Miracle, D. B

2006-01-01

Low density Ca-Mg-Al-based bulk metallic glasses containing additionally Cu and Zn, were produced by a copper mold casting method as wedge-shaped samples with thicknesses varying from 0.5 mm to 10 rom...

10. Response of ecosystem metabolism to low densities of spawning Chinook Salmon

Science.gov (United States)

Joseph R. Benjamin; J. Ryan Bellmore; Grace A. Watson

2016-01-01

Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to salmon runs. We explored whether low densities...

11. Development of antifungal films based on low-density polyethylene and thyme oil for avocado packaging

CSIR Research Space (South Africa)

Kesavan Pillai, Sreejarani

2015-10-01

Full Text Available Trilayer low-density polyethylene (LDPE) films were prepared by incorporating varying concentrations of thyme oil, as the antifungal active additive for avocado packaging. A comprehensive thermal, structural, mechanical, and functional...

12. Study of the interaction of a 10 TW femtosecond laser with a high-density long-scale pulsed gas jet

International Nuclear Information System (INIS)

Monot, P.; D'Oliveira, P.; Hulin, S.; Faenov, A.Ya.; Dobosz, S.; Auguste, T.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu.; Rosmej, F.; Andreev, N.E.; Lefebvre, E.

2001-01-01

A study on the interaction of a 10 TW, 60 fs, Ti-Sapphire laser with a high-density long-scale pulsed nitrogen gas jet is reported. Experimental data on the laser propagation are analyzed with the help of a ray-tracing model. The plasma dynamics is investigated by means of time-resolved shadowgraphy and time-integrated high-resolution x-ray spectroscopy. Shadowgrams show that the plasma does not expand during the first 55 ps, while x-ray spectra exhibit an unusual continuum-like structure attributed to hollow atoms produced by charge exchange process between bare nuclei expelled from the plasma and molecules of the surrounding gas. The interpretation of the results is supported by particle-in-cell simulations. The question of x-ray lasing is also examined using a hydrodynamic code to simulate the long lasting regime of recombination

13. Obtention of scintillography images by low density lipoproteins labelled with technetium 99

International Nuclear Information System (INIS)

Silva, S.; Coelho, I.; Zanardo, E.; Pileggi, F.; Meneguethi, C.; Maranhao, R.C.

1992-01-01

The low density lipoproteins carry the most part of the cholesterol in the blood plasma. These lipoproteins are labelled with technetium-99-m and have been used for obtaining images in nuclear medicine. The introduction of this technique is presented, aiming futures clinical uses. Scintillographic images are obtained 25 minutes and 24 hours after the injection of 3 m Ci of low density lipoproteins - technetium-99 m in rabbits. (C.G.C.)

14. A review of low density porous materials used in laser plasma experiments

Science.gov (United States)

Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

2018-03-01

This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

15. IMPROVING GLOBALlAND30 ARTIFICIAL TYPE EXTRACTION ACCURACY IN LOW-DENSITY RESIDENTS

Directory of Open Access Journals (Sweden)

L. Hou

2016-06-01

Full Text Available GlobalLand 30 is the first 30m resolution land cover product in the world. It covers the area within 80°N and 80°S. There are ten classes including artificial cover, water bodies, woodland, lawn, bare land, cultivated land, wetland, sea area, shrub and snow,. The TM imagery from Landsat is the main data source of GlobalLand 30. In the artificial surface type, one of the omission error happened on low-density residents’ part. In TM images, hash distribution is one of the typical characteristics of the low-density residents, and another one is there are a lot of cultivated lands surrounded the low-density residents. Thus made the low-density residents part being blurred with cultivated land. In order to solve this problem, nighttime light remote sensing image is used as a referenced data, and on the basis of NDBI, we add TM6 to calculate the amount of surface thermal radiation index TR-NDBI (Thermal Radiation Normalized Difference Building Index to achieve the purpose of extracting low-density residents. The result shows that using TR-NDBI and the nighttime light remote sensing image are a feasible and effective method for extracting low-density residents’ areas.

16. Jet observables without jet algorithms

Energy Technology Data Exchange (ETDEWEB)

Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

2014-04-02

We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

17. Safety and durability of low-density polyethylene bags in solar water disinfection applications.

Science.gov (United States)

Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha

2017-08-01

Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.

18. Pellet injectors for JET

International Nuclear Information System (INIS)

Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

1981-09-01

Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

19. Connection experiments with a hollow cathode ion source and a helium gas jet system for on-line isotope separation

International Nuclear Information System (INIS)

Mazumdar, A.K.; Wagner, H.; Walcher, W.; Lund, T.

1976-01-01

A helium jet system was connected to a hollow cathode ion source. Using fission products the efficiencies of the different steps were measured by β-, X-ray and γ-counting while the mass spectrum and the focussing of the extracted ion beam were observed with a small deflecting magnet. Mean transport efficiencies of 50% through the 12 m capillary were obtained and ion source efficiencies in the percent range for several elements. (Auth.)

20. Low density lesion in solid mass on CT: Pathologic change and housfield number

International Nuclear Information System (INIS)

Han, Tae Il; Lim, Joo Won; Ryu, Kyung Nam; Ko, Young Tae; Song, Mi Jin; Lee, Dong Ho; Lee, Ju Hie

1994-01-01

We retrospectively reviewed the pathologic changes and housfield unit of the low density lesion in solid mass on CT. Pathologically proved solid mass was evaluated in regard to the shape and margin of the low density in the mass on the CT scans of 23 patient. The CT number of the low density lesion was correlated with the pathologic changes. Pathologic changes of the low density lesions were; necrosis (n=17), hemorrhage (n=13), cyst (n=4), myxoid degeneration (n=2), hyaline degeneration (n=1), fibrosis (n=1), and mixed cellularity (n=1). In 14 cases, more than 2 pathologic changes were seen. In 11 cases, necrosis was associated with hemorrhage. The CT number ranged from 11.5 to 44.9 Housfield unit(HU) (mean, 25.2 HU). The average CT number was 26.9 HU in hemorrhage and necrosis, 17.2 HU in cystic change, 20.9 HU in myxoid degeneration, 35.7 HU in hyaline de generation, 22.3 HU in fibrosis, and 21.4 HU in mixed cellularity. The hemorrhage and necrosis in 17 cases showed irregular margin, amorphous shape, and showed centrifugal distribution. The cystic change in 4 cases showed well defined margin, round shape, and peripheral location in solid mass. The low density lesions in solid mass on CT represented variable pathologic changes; necrosis, hemorrhage, cyst, myxoid degeneration, hyaline degeneration, fibrosis, and mixed cellularity. Pathologic changes would not be differentiated on the basis of CT number

1. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders

Directory of Open Access Journals (Sweden)

Amir Mostafaei

2017-02-01

Full Text Available Binder jet printing (BJP is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016 [1–3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017 [4].

2. Three cases of acute encephalopathy with low density areas in the occipital lobes on CT

International Nuclear Information System (INIS)

Nakajima, Masako; Nakano, Chizuko; Takakura, Hiroki; Otani, Kyoichi.

1985-01-01

Three female infants with acute encephalopathy (aged from 5 months to 1 year and 8 months) are presented in whom peculiar features were obtained on cranial CT. Disturbances of consciousness and spasm were seen in all patients. Although two patients had been in good health until the onset, the other patient had had nodular sclerosis. Laboratory data showed no evidence of inflammation in the spinal fluid, but increased levels of transaminase and LDH. CT around 7 days after the onset revealed diffuse low density areas. This was noted in the temporal and occipital lobes, mainly resulting from edema. Follow-up CT examinations revealed localized low density areas corresponding to the surface area, being probably attributable to disturbances of the arterial and venous circulations. In two patients with severe disturbances of consciousness, low density areas became more marked with time. (Namekawa, K.)

3. Analysis of compaction shock interactions during DDT of low density HMX

Science.gov (United States)

Rao, Pratap T.; Gonthier, Keith A.

2017-01-01

Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.

4. Experimental hypothyroidism modulates the expression of the low density lipoprotein receptor by the liver

International Nuclear Information System (INIS)

Scarabottolo, Lia; Trezzi, Ermanno; Roma, Paola; Catapano, A.L.

1986-01-01

The effect of exprimental hypothyroidism of the catabolism of plasma lipoproteins and on the expression of low density lipoprotein receptors by the liver was investigated in rats made hypothyroid by surgery. The animals developed mild hypercholesterolemia, mainly due to an increase of plasma low density lipoprotein, while other lipoprotein classes were only marginally affected. Kinetic studies using ( 125 I)LDL indicated that a decreased fractional catabolic rate of the lipoprotein was responsible for this finding in agreement with the in vitro observation of a reduced binding of lipoproteins to liver membranes from hyperthyroid rats and with the demonstrations, by ligand blotting analysis, of a decreasd expression of lipoprotein receptors in liver membranes. These data suggest that hypothyroidism affects lipoprotein distribution also by decreasing the catabolism of low density lipoproteins by the liver (author)

5. Diffusive dynamics during the high-to-low density transition in amorphous ice

Science.gov (United States)

Perakis, Fivos; Amann-Winkel, Katrin; Lehmkühler, Felix; Sprung, Michael; Mariedahl, Daniel; Sellberg, Jonas A.; Pathak, Harshad; Späh, Alexander; Cavalca, Filippo; Schlesinger, Daniel; Ricci, Alessandro; Jain, Avni; Massani, Bernhard; Aubree, Flora; Benmore, Chris J.; Loerting, Thomas; Grübel, Gerhard; Pettersson, Lars G. M.; Nilsson, Anders

2017-08-01

Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

6. Enhanced ozone production in a pulsed dielectric barrier discharge plasma jet with addition of argon to a He-O2 flow gas

Science.gov (United States)

Sands, Brian; Ganguly, Biswa; Scofield, James

2013-09-01

Ozone production in a plasma jet DBD driven with a 20-ns risetime unipolar pulsed voltage can be significantly enhanced using helium as the primary flow gas with an O2 coflow. The overvolted discharge can be sustained with up to a 5% O2 coflow at pulse repetition frequency at 13 kV applied voltage. Ozone production scales with the pulse repetition frequency up to a `turnover frequency'' that depends on the O2 concentration, total gas flow rate, and applied voltage. For example, peak ozone densities >1016 cm-3 were measured with 3% O2 admixture and discharge current and 777 nm O(5 P) emission, but decreased ozone production and is followed by a transition to a filamentary discharge mode. The addition of argon at concentrations >=5% reduces the channel conductivity and shifts the turnover frequency to higher frequencies. This results in increased ozone production for a given applied voltage and gas flow rate. Time-resolved Ar(1s5) and He(23S1) metastable densities were acquired along with discharge current and ozone density measurements to gain insight into the mechanisms of optimum ozone production.

7. Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment

DEFF Research Database (Denmark)

Santos, Catarina I.; Silva, Constança C.; Mussatto, Solange I.

2017-01-01

). Although, the MJSP calculated for all scenarios are higher than those of the fossil jet fuel reference, the significant potential for environmental impacts reduction (in terms of GHG emissions and primary energy use) are encouraging for further research in costs reduction and technology development....... (i.e. co-generation). From the combination of these key features, 81 scenarios are selected and compared. Furthermore, three potential technological improvements were analysed for selected scenarios: i) recovery of acetic acid and furfural (for cases with bagasse pretreatment); ii) production.......e. greenhouse gas (GHG) emissions and non-renewable energy use (NREU)). Among the scenarios considering biomass pretreatment, the lower MJSP are obtained when 1G/2G sugars are upgraded via ethanol fermentation (ETJ) (i.e. SO2 steam explosion: 3409 US $.ton−1, and wet oxidation: 3230 US$.ton−1). Additional...

8. Pulling Results Out of Thin Air: Four Years of Ozone and Greenhouse Gas Measurements by the Alpha Jet Atmospheric Experiment (AJAX)

Science.gov (United States)

Yates, Emma

2015-01-01

The Alpha Jet Atmospheric eXperiment (AJAX) has been measuring atmospheric ozone, carbon dioxide, methane and meteorological parameters from near the surface to 8000 m since January 2011. The main goals are to study photochemical ozone production and the impacts of extreme events on western US air quality, provide data to support satellite observations and aid in the quantification of emission sources e.g. wildfires, urban outflow, diary and oil and gas. The aircraft is based at Moffett Field and flies multiple times a month to sample vertical profiles at selected sites in California and Nevada, providing long-term data records at these sites. AJAX is also uniquely positioned to launch with short notice sampling flights in rapid response to extreme events e.g. the 2013 Yosemite Rim fire. This talk will focus on the impacts of vertical transport on surface air quality, and investigation of emission sources from diaries and wildfires.

9. Galaxies with jet streams

International Nuclear Information System (INIS)

Breuer, R.

1981-01-01

Describes recent research work on supersonic gas flow. Notable examples have been observed in cosmic radio sources, where jet streams of galactic dimensions sometimes occur, apparently as the result of interaction between neighbouring galaxies. The current theory of jet behaviour has been convincingly demonstrated using computer simulation. The surprisingly long-term stability is related to the supersonic velocity, and is analagous to the way in which an Appollo spacecraft re-entering the atmosphere supersonically is protected by the gas from the burning shield. (G.F.F.)

10. Non-inductively driven currents in JET

International Nuclear Information System (INIS)

Challis, C.D.; Cordey, J.G.; Hamnen, H.; Stubberfield, P.M.; Christiansen, J.P.; Lazzaro, E.; Muir, D.G.; Stork, D.; Thompson, E.

1989-01-01

Neutral beam heating data from JET have been analysed in detail to determine what proportion of the current is driven non-inductively. It is found that in low density limiter discharges, currents of the order of 0.5 MA are driven, while in H-mode plasmas currents of the order of 0.7 MA are measured. These measured currents are found to be in reasonable agreement with theoretical predictions based on neoclassical models. In low density plasmas the beam driven current is large while the neoclassical bootstrap current dominates H-mode plasmas. (author). 19 refs, 11 figs

11. Low Density Symmetry Energy Effects and the Neutron Star Crust Properties

International Nuclear Information System (INIS)

Kubis, S.; Alvarez-Castillo, D.E.; Porebska, J.

2010-01-01

The form of the nuclear symmetry energy E s around saturation point density leads to a different crust-core transition point in the neutron star and affects the crust properties. We show that the knowledge of E s close to the saturation point is not sufficient to determine the position of the transition point and the very low density behaviour is required. We also claim that crust properties are strongly influenced by the very high density behaviour of E s , so in order to conclude about the form of low density part of the symmetry energy from astrophysical data one must isolate properly the high density part. (authors)

12. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses

Science.gov (United States)

Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Petrov, G. M.; Safronova, A. S.; Petkov, E. E.; Moschella, J. J.; Shrestha, I.; Cline, W.; Wiewior, P.; Chalyy, O.

2016-11-01

Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 1018-1019W /cm2 heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (107 or 105). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 1018-1019cm-3 . Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

13. Gas mixing under the influence of thermal-dynamic parameters such as buoyancy, jet momentum and fan-induced convection

International Nuclear Information System (INIS)

Chan, C.K.; Jones, S.C.A.

1994-01-01

Various scaling parameters for simulating mixing under the influence of buoyancy, jet momentum, and fan-induced convection were examined. Their significance was assessed by comparing the mixing of helium (a simulant for hydrogen) with air in a large-scale enclosure (1.8 m x 1.8 m x 1.8 m) to the mixing of salt-water with fresh-water in a small-scale enclosure (1/6 the size). The advantage of using the salt-water/freshwater technique is that it allows the characteristic flow regime (either turbulent or laminar flow) in the full-scale containment to be maintained in the reduced scale containment. A smoke technique for flow visualization was used to examine the mixing of the helium with air. For the small-scale salt-water/fresh-water experiment, fluorescent dye was used to provide a means to visualize the mixing process. The mixing behaviour in both sets of experiments were analyzed based on video records and concentration measurements in ten locations. Measurements showed that depending on the recirculation and jet flow rates, the injected salt-water (in small-scale experiments) and helium (in large-scale experiments) can disperse sufficiently quickly to produce an essentially 'well mixed' condition rendering the concentration measurements insensitive to the variation in the Froude or the Grashof Numbers. (author)

14. Jet fragmentation

International Nuclear Information System (INIS)

Saxon, D.H.

1985-10-01

The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

15. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

DEFF Research Database (Denmark)

Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

2014-01-01

Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

16. Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein

NARCIS (Netherlands)

Schalkwijk, C.G.; Vermeer, M.A.; Stehouwer, C.D.A.; Koppele, J. te; Princen, H.M.G.; Hinsbergh, V.W.M. van

1998-01-01

In patients with diabetes, non-enzymatic glycation of low-density lipoprotein (LDL) has been suggested to be involved in the development of atherosclerosis. α-Dicarbonyl compounds were identified as intermediates in the non-enzymatic glycation and increased levels were reported in patients with

17. Genetics, Lifestyle, and Low-Density Lipoprotein Cholesterol in Young and Apparently Healthy Women

NARCIS (Netherlands)

Balder, Jan-Willem; Rimbert, Antoine; Zhang, Xiang; Viel, Martijn; Kanninga, Roan; van Dijk, Freerk; Lansberg, Peter; Sinke, Richard; Kuivenhoven, Jan Albert

2018-01-01

BACKGROUND: Atherosclerosis starts in childhood but low-density lipoprotein cholesterol (LDL-C), a causal risk factor, is mostly studied and dealt with when clinical events have occurred. Women are usually affected later in life than men and are underdiagnosed, undertreated, and understudied in

18. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes

International Nuclear Information System (INIS)

Sabet, Maziyar; Soleimani, Hassan

2014-01-01

Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research

19. Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma

DEFF Research Database (Denmark)

Handberg, Aase; Levin, Klaus; Højlund, Kurt

2006-01-01

BACKGROUND: Macrophage CD36 scavenges oxidized low-density lipoprotein, leading to foam cell formation, and appears to be a key proatherogenic molecule. Increased expression of CD36 has been attributed to hyperglycemia and to defective macrophage insulin signaling in insulin resistance. Premature...

20. THE HI INFRARED LINE SPECTRUM FOR BE STARS WITH LOW-DENSITY DISCS

NARCIS (Netherlands)

ZAAL, PA; WATERS, LBFM; MARLBOROUGH, JM

We present theoretical H alpha and HI infrared recombination line calculations for low-density discs around B stars. Such a disc shows no visible emission in H alpha, while the HI IR recombination lines are in emission. This phenomenon has been found in the spectrum of the B0.2V star, tau Sco and

1. Response of ecosystem metabolism to low densities of spawning Chinook salmon

Science.gov (United States)

Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

2016-01-01

Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to runs. We explored whether low densities (how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

2. A note on asymptotic normality in the thermodynamic limit at low densities

DEFF Research Database (Denmark)

Jensen, J.L.

1991-01-01

We consider a continuous statistical mechanical system with a pair interaction in a region λ tending to infinity. For low densities asymptotic normality of the canonical statistic is proved, both in the grand canonical ensemble and in the canonical ensemble. The results are illustrated through...

3. Modeling of branching density and branching distribution in low-density polyethylene polymerization

NARCIS (Netherlands)

Kim, D.M.; Iedema, P.D.

2008-01-01

Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties

4. A new look at extensional rheology of low-density polyethylene

DEFF Research Database (Denmark)

Huang, Qian; Mangnus, Marc; Alvarez, Nicolas J.

2016-01-01

The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a co...

5. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

NARCIS (Netherlands)

Rianasari, I.; de Jong, Machiel Pieter; Huskens, Jurriaan; van der Wiel, Wilfred Gerard

2013-01-01

We demonstrate the application of the 1,3-dipolar cycloaddition (“click‿ reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining

6. Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level

NARCIS (Netherlands)

Allijn, Iris E.; Leong, Wei; Tang, Jun; Gianella, Anita; Mieszawska, Aneta J.; Fay, Francois; Ma, Ge; Russell, Stewart; Callo, Catherine B.; Gordon, Ronald E.; Korkmaz, Emine; Post, Jan Andries; Zhao, Yiming; Gerritsen, Hans C.; Thran, Axel; Proksa, Roland; Daerr, Heiner; Storm, Gert; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.; Cormode, David P.

2013-01-01

Low-density lipoprotein (LDL) plays a critical role in cholesterol transport and is closely linked to the progression of several diseases. This motivates the development of methods to study LDL behavior from the microscopic to whole-body level. We have developed an approach to efficiently load LDL

7. Oxidized low-density lipoprotein in children with familial hypercholesterolemia and unaffected siblings: effect of pravastatin

NARCIS (Netherlands)

Rodenburg, Jessica; Vissers, Maud N.; Wiegman, Albert; Miller, Elizabeth R.; Ridker, Paul M.; Witztum, Joseph L.; Kastelein, John J. P.; Tsimikas, Sotirios

2006-01-01

OBJECTIVES: To assess the role of oxidized phospholipids (OxPLs) in children with familial hypercholesterolemia (FH) and the effect of pravastatin. BACKGROUND: Oxidized phospholipids are a major component of oxidized low-density lipoprotein (OxLDL) and are bound to lipoprotein (a) [Lp(a)]. The

8. Identifying low density lipoprotein cholesterol associated variants in the Annexin A2 (ANXA2) gene

DEFF Research Database (Denmark)

Fairoozy, Roaa Hani; Cooper, Jackie; White, Jon

2017-01-01

Background and aims: Annexin-A2 (AnxA2) is an endogenous inhibitor of proprotein convertase subtilisin/kexin type-9 (PCSK9). The repeat-one (R1) domain of AnxA2 binds to PCSK9, blocking its ability to promote degradation of low-density lipoprotein cholesterol-receptors (LDL-R) and thereby regulat...

9. Determination of charge carrier mobility in doped low density polyethylene using DC transients

DEFF Research Database (Denmark)

Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens

1989-01-01

Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...

10. Low density lipoprotein : structure, dynamics, and interactions of apoB-100 with lipids

NARCIS (Netherlands)

Murtola, T.; Vuorela, T.A.; Hyvönen, M.T.; Marrink, S.J.; Karttunen, M.E.J.; Vattulainen, I.

2011-01-01

Low-density lipoprotein (LDL) transports cholesterol in the bloodstream and plays an important role in the development of cardiovascular diseases, in particular atherosclerosis. Despite its importance to health, the structure of LDL is not known in detail. This is worrying since the lack of LDL's

11. Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus

Science.gov (United States)

Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) has been associated with a decreased risk of these complications. We evaluated the ut...

12. Interaction of laser radiation with a low-density structured absorber

Czech Academy of Sciences Publication Activity Database

Rozanov, V. B.; Barishpol’tsev, D.V.; Vergunova, G.A.; Demchenko, N. N.; Ivanov, E.M.; Aristova, E.N.; Zmitrenko, N.V.; Limpouch, I.; Ullschmied, Jiří

2016-01-01

Roč. 122, č. 2 (2016), s. 256-276 ISSN 1063-7761 Institutional support: RVO:61389021 Keywords : laser radiation interaction * laser with low-density Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.196, year: 2016

13. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

Science.gov (United States)

Osinski, G. R.; Spray, J. G.

2001-01-01

We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

14. Use of Low-Density DNA Microarrays and Photopolymerization for Genotyping Foodborne-Associated Noroviruses

Science.gov (United States)

Human noroviruses cause up to 21 million cases of foodborne disease in the United States annually and are the most common cause of acute gastroenteritis in industrialized countries. To reduce the burden of foodborne disease associated with viruses, the use of low density DNA microarrays in conjunct...

15. Structure of pulsed plasma jets

International Nuclear Information System (INIS)

Cavolowsky, J.A.

1987-01-01

A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and enhancing combustion. Having shown the ability to ignite lean fuel mixtures, it now offers the potential for real-time control of combustion processes. This study explored the fluid-mechanical and chemical properties of such jets. The fluid-mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. It revealed that plasma jets behave either totally subsonic or embody a supersonic core. The turbulent, thermal evolution of the jet was explored using high-speed-laser schlieren cinematography. By examining plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. These records revealed the production of thermal stratifications in the cavity that could account for the plasma particles in the jet core. After the electrical discharges ceased, the turbulent jet behaved as a self-similar plume. Molecular-beam mass spectrometry was used to determine temperature and species concentration in the jet. Both non-combustible and combustible jets were studied

16. A study of low-density areas, clinical findings, and angiographic findings in patients with cerebral infarction

International Nuclear Information System (INIS)

Saiki, Iwao; Sakai, Yoshiaki; Oikawa, Tadato; Koide, Kohji; Kanaya, Haruyuki.

1978-01-01

55 out of 62 patients with cerebral infarction were investigated in terms of CT scan findings, angiographic findings, and clinical symptoms. The results obtained were as follows: 1) The low-density areas of the CT scan findings were classified into the following four types: large hemispheric or lobular --Type I; wedge-shaped --Type II; small --Type III; and lacunar low-density area. --Type IV. 2) Almost all patients with angiographically occlusive findings showed low-density areas of Type I; however, one patient with ICA occlusion revealed only a lacunar low-density area. 3) The patients with lacunar low-density areas showed an angiographically delayed filling of the angular artery and posterior parietal artery of the middle cerebral artery. 4) The relationship between the types of low-density areas and the clinical conscious disorders was not clear. On the other hand, the patients with Type I low-density areas almost all had motor disturbances, while patients with other types of low-density areas showed only 60 - 70% motor disturbances. 5) In patients with speech disorders, total aphasia cases were found in patients with large hemispheric low-density areas on the left side. Although, motor aphasia cases were seen in patients with various low-density areas on the left inferior frontal and precentral gyri, dysarthria cases were found in the patients with several low-density areas on both sides. 6) The localization of lacunar low-density areas seemed to be near the caudate nucleus on the right side and in the putaminal regions on the left side. The mean and the standard deviation of CT numbers in the lacunar low-density areas showed higher values on the right side than on the left side. (author)

17. Methods of gas purification and effect on the ion composition in an RF atmospheric pressure plasma jet investigated by mass spectrometry

International Nuclear Information System (INIS)

Grosse-Kreul, Simon; Huebner, Simon; Schneider, Simon; Keudell, Achim von; Benedikt, Jan

2016-01-01

The analysis of the ion chemistry of atmospheric pressure plasmas is essential to evaluate ionic reaction pathways during plasma-surface or plasma-analyte interactions. In this contribution, the ion chemistry of a radio-frequency atmospheric pressure plasma jet (μ-APPJ) operated in helium is investigated by mass spectrometry (MS). It is found, that the ion composition is extremely sensitive to impurities such as N 2 , O 2 and H 2 O. Without gas purification, protonated water cluster ions of the form H + (H 2 O) n are dominating downstream the positive ion mass spectrum. However, even after careful feed gas purification to the sub-ppm level using a molecular sieve trap and a liquid nitrogen trap as well as operation of the plasma in a controlled atmosphere, the positive ion mass spectrum is strongly influenced by residual trace gases. The observations support the idea that species with a low ionization energy serve as a major source of electrons in atmospheric pressure helium plasmas. Similarly, the neutral density of atomic nitrogen measured by MS in a He/N 2 mixture is varying up to a factor 3, demonstrating the significant influence of impurities on the neutral species chemistry as well. (orig.)

18. Methods of gas purification and effect on the ion composition in an RF atmospheric pressure plasma jet investigated by mass spectrometry

Energy Technology Data Exchange (ETDEWEB)

Grosse-Kreul, Simon; Huebner, Simon; Schneider, Simon; Keudell, Achim von; Benedikt, Jan [Ruhr-Universitaet Bochum, Institute for Experimental Physics II, Bochum (Germany)

2016-12-15

The analysis of the ion chemistry of atmospheric pressure plasmas is essential to evaluate ionic reaction pathways during plasma-surface or plasma-analyte interactions. In this contribution, the ion chemistry of a radio-frequency atmospheric pressure plasma jet (μ-APPJ) operated in helium is investigated by mass spectrometry (MS). It is found, that the ion composition is extremely sensitive to impurities such as N{sub 2}, O{sub 2} and H{sub 2}O. Without gas purification, protonated water cluster ions of the form H{sup +}(H{sub 2}O){sub n} are dominating downstream the positive ion mass spectrum. However, even after careful feed gas purification to the sub-ppm level using a molecular sieve trap and a liquid nitrogen trap as well as operation of the plasma in a controlled atmosphere, the positive ion mass spectrum is strongly influenced by residual trace gases. The observations support the idea that species with a low ionization energy serve as a major source of electrons in atmospheric pressure helium plasmas. Similarly, the neutral density of atomic nitrogen measured by MS in a He/N{sub 2} mixture is varying up to a factor 3, demonstrating the significant influence of impurities on the neutral species chemistry as well. (orig.)

19. Vortex diode jet

Science.gov (United States)

Houck, Edward D.

1994-01-01

A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

20. Fluorine-18 radiolabeling of low-density lipoproteins: a potential approach for characterization and differentiation of metabolism of native and oxidized low-density lipoproteins in vivo

International Nuclear Information System (INIS)

Pietzsch, Jens; Bergmann, Ralf; Rode, Katrin; Hultsch, Christina; Pawelke, Beate; Wuest, Frank; Hoff, Joerg van den

2004-01-01

Oxidative modification of low-density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Assessing the metabolic fate of oxidized LDL (oxLDL) in vivo with radiotracer techniques is hindered by the lack of suitable sensitive and specific radiolabeling methods. We evaluated an improved methodology based on the radiolabeling of native LDL (nLDL) and oxLDL with the positron emitter fluorine-18 ( 18 F) by conjugation with N-succinimidyl-4-[ 18 F]fluorobenzoate ([ 18 F]SFB). We investigated whether radiolabeling of LDL induces adverse structural modifications. Results suggest that radiolabeling of both nLDL and oxLDL using [ 18 F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively. Thus, radiolabeling of LDL using [ 18 F]SFB could prove to be a promising approach for studying the kinetics of oxLDL in vivo

1. Fluorine-18 radiolabeling of low-density lipoproteins: a potential approach for characterization and differentiation of metabolism of native and oxidized low-density lipoproteins in vivo.

Science.gov (United States)

Pietzsch, Jens; Bergmann, Ralf; Rode, Katrin; Hultsch, Christina; Pawelke, Beate; Wuest, Frank; van den Hoff, Joerg

2004-11-01

Oxidative modification of low-density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Assessing the metabolic fate of oxidized LDL (oxLDL) in vivo with radiotracer techniques is hindered by the lack of suitable sensitive and specific radiolabeling methods. We evaluated an improved methodology based on the radiolabeling of native LDL (nLDL) and oxLDL with the positron emitter fluorine-18 ((18)F) by conjugation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). We investigated whether radiolabeling of LDL induces adverse structural modifications. Results suggest that radiolabeling of both nLDL and oxLDL using [(18)F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively. Thus, radiolabeling of LDL using [(18)F]SFB could prove to be a promising approach for studying the kinetics of oxLDL in vivo.

2. Jet supercooling and molecular jet spectroscopy

International Nuclear Information System (INIS)

Wharton, L.; Levy, D.

1979-01-01

The marriage of the laser and the seeded supersonic jet has generated a family of new optical spectroscopic results. We shall discuss the essential features of the technique and some results. The results will include structural and dynamical views of NO 2 , NaAr, and I 2 -noble gas complexes. The extension of the method to heavier systems is illustrated with free base phthalocyanine

3. Jet target intense neutron source

International Nuclear Information System (INIS)

Meier, K.L.

1977-01-01

A jet target Intense Neutron Source (INS) is being built by the Los Alamos Scientific Laboratory with DOE/MFE funding in order to perform radiation damage experiments on materials to be used in fusion power reactors. The jet target can be either a supersonic or a subsonic jet. Each type has its particular advantages and disadvantages, and either of the jets can be placed inside the spherical blanket converter which will be used to simulate a fusion reactor neutron environment. Preliminary mock-up experiments with a 16-mA, 115 keV, H + ion beam on a nitrogen gas supersonic jet show no serious problems in the beam formation, transport, or jet interaction

4. Global hydromagnetic simulations of a planet embedded in a dead zone: Gap opening, gas accretion, and formation of a protoplanetary jet

Energy Technology Data Exchange (ETDEWEB)

Gressel, O. [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Nelson, R. P. [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ziegler, U., E-mail: oliver.gressel@nordita.org, E-mail: r.p.nelson@qmul.ac.uk, E-mail: neal.j.turner@jpl.nasa.gov, E-mail: uziegler@aip.de [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany)

2013-12-10

We present global hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations with mesh refinement of accreting planets embedded in protoplanetary disks (PPDs). The magnetized disk includes Ohmic resistivity that depends on the overlying mass column, leading to turbulent surface layers and a dead zone near the midplane. The main results are: (1) the accretion flow in the Hill sphere is intrinsically three-dimensional for HD and MHD models. Net inflow toward the planet is dominated by high-latitude flows. A circumplanetary disk (CPD) forms. Its midplane flows outward in a pattern whose details differ between models. (2) The opening of a gap magnetically couples and ignites the dead zone near the planet, leading to stochastic accretion, a quasi-turbulent flow in the Hill sphere, and a CPD whose structure displays high levels of variability. (3) Advection of magnetized gas onto the rotating CPD generates helical fields that launch magnetocentrifugally driven outflows. During one specific epoch, a highly collimated, one-sided jet is observed. (4) The CPD's surface density is ∼30 g cm{sup −2}, small enough for significant ionization and turbulence to develop. (5) The accretion rate onto the planet in the MHD simulation reaches a steady value 8 × 10{sup –3} M {sub ⊕} yr{sup –1} and is similar in the viscous HD runs. Our results suggest that gas accretion onto a forming giant planet within a magnetized PPD with a dead zone allows rapid growth from Saturnian to Jovian masses. As well as being relevant for giant planet formation, these results have important implications for the formation of regular satellites around gas giant planets.

5. Gas and plasma dynamics of RF discharge jet of low pressure in a vacuum chamber with flat electrodes and inside tube, influence of RF discharge on the steel surface parameters

Science.gov (United States)

Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.

2016-06-01

Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.

6. Study on intense relativistic electron beam propagation in a low density collisionless plasma

International Nuclear Information System (INIS)

Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

1982-01-01

The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam

7. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

Science.gov (United States)

Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

2017-12-12

Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.

8. Competing Quantum Hall Phases in the Second Landau Level in Low Density Limit

Energy Technology Data Exchange (ETDEWEB)

Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Serafin, A. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Xia, J. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Liang, Y. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Sullivan, N. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Baldwin, K. W. [Princeton Univ., NJ (United States); West, K. W. [Princeton Univ., NJ (United States); Pfeiffer, L. N. [Princeton Univ., NJ (United States); Tsui, D. C. [Princeton Univ., NJ (United States)

2015-01-01

Up to date, studies of the fractional quantum Hall effect (FQHE) states in the second Landau level have mainly been carried out in the high electron density regime, where the electron mobility is the highest. Only recently, with the advance of high quality low density MBE growth, experiments have been pushed to the low density regime [1], where the electron-electron interactions are strong and the Landau level mixing parameter, defined by κ = e2/εIB/ℏωe, is large. Here, lB = (ℏe/B)1/2 is the magnetic length and ωc = eB/m the cyclotron frequency. All other parameters have their normal meanings. It has been shown that a large Landau level mixing effect strongly affects the electron physics in the second Landau level [2].

9. Breakdown of quasiparticle picture in the low-density limit of the 1D Hubbard model

International Nuclear Information System (INIS)

Qin Shaojin; Qian Tiezheng; Su Zhaobin

1995-03-01

Using the finite-size scaling of results obtained by exact diagonalization, we study the low-density limit of the one-dimensional Hubbard model. Calculating the quasiparticle weight, we demonstrate that for a given particle number N and system size L, there always exists a crossover point U c separating the Fermi-liquid (U c ) and non-Fermi-liquid (U > U c ) regimes (U is the Hubbard repulsion). We find that for a fixed N, U c is inversely proportional to L, keeping U c L/t constant (with t as the hopping integral), as L is large enough. It follows that in the low-density (in fact vanishing density) limit L → ∞, U c → 0, so the system is always in non-Fermi-liquid regime as long as U > 0. We show that our numerical results are consistent with the Bethe ansatz solution. (author). 11 refs, 3 figs

10. Role of strangeness and isospin in low density expansions of hadronic matter

Science.gov (United States)

de Oliveira, Thamirys; Menezes, Débora P.; Pinto, Marcus B.; Gulminelli, Francesca

2018-05-01

We compare relativistic mean-field models with their low density expansion counterparts used to mimic nonrelativistic models by consistently expanding the baryonic scalar density in powers of the baryonic number density up to O (13 /3 ) , which goes two orders beyond the order considered in previous works. We show that, due to the nontrivial density dependence of the Dirac mass, the convergence of the expansion is very slow, and the validity of the nonrelativistic approximation is questionable even at subsaturation densities. In order to analyze the roles played by strangeness and isospin we consider n -Λ and n -p matter separately. Our results indicate that these degrees of freedom play quite different roles in the expansion mechanism and n -Λ matter can be better described by low density expansions than n -p matter in general.

11. Quasi Cyclic Low Density Parity Check Code for High SNR Data Transfer

Directory of Open Access Journals (Sweden)

M. R. Islam

2010-06-01

Full Text Available An improved Quasi Cyclic Low Density Parity Check code (QC-LDPC is proposed to reduce the complexity of the Low Density Parity Check code (LDPC while obtaining the similar performance. The proposed QC-LDPC presents an improved construction at high SNR with circulant sub-matrices. The proposed construction yields a performance gain of about 1 dB at a 0.0003 bit error rate (BER and it is tested on 4 different decoding algorithms. Proposed QC-LDPC is compared with the existing QC-LDPC and the simulation results show that the proposed approach outperforms the existing one at high SNR. Simulations are also performed varying the number of horizontal sub matrices and the results show that the parity check matrix with smaller horizontal concatenation shows better performance.

12. Kinetics of the high- to low-density amorphous water transition

International Nuclear Information System (INIS)

Koza, M M; Schober, H; Fischer, H E; Hansen, T; Fujara, F

2003-01-01

In situ neutron diffraction experiments have been carried out to study the kinetics of the transformation of high-density amorphous (HDA) water into its low-density amorphous state at temperatures 87 K ≤ T ≤ 110 K. It is found that three different stages are comprised in this transformation, namely an annealing process of the high-density matrix followed by a first-order-like transition into a low-density state, which can be further annealed at higher temperatures T ≤ 127 K. The annealing kinetics of the HDA state follows the logarithm of time as found in other systems showing polyamorphism. According to the theory of transformation by nucleation and growth the apparent first-order transition follows an Avrami-Kolmogorov behaviour. An energy barrier ΔE ∼ 33 k Jmol -1 is estimated from the temperature dependence of this transition

13. Nonfasting Triglycerides, Low-Density Lipoprotein Cholesterol, and Heart Failure Risk

DEFF Research Database (Denmark)

Varbo, Anette; Nordestgaard, Børge G

2018-01-01

OBJECTIVE: The prevalence of heart failure is increasing in the aging population, and heart failure is a disease with large morbidity and mortality. There is, therefore, a need for identifying modifiable risk factors for prevention. We tested the hypothesis that high concentrations of nonfasting...... triglycerides and low-density lipoprotein cholesterol are associated with higher risk of heart failure in the general population. APPROACH AND RESULTS: We included 103 860 individuals from the Copenhagen General Population Study and 9694 from the Copenhagen City Heart Study in 2 prospective observational...... association studies. Nonfasting triglycerides and low-density lipoprotein cholesterol were measured at baseline. Individuals were followed for ≤23 years, during which time 3593 were diagnosed with heart failure. Hazard ratios were estimated using Cox proportional hazard regression models. In the Copenhagen...

14. Growth-interruption-induced low-density InAs quantum dots on GaAs

International Nuclear Information System (INIS)

Li, L. H.; Alloing, B.; Chauvin, N.; Fiore, A.; Patriarche, G.

2008-01-01

We investigate the use of growth interruption to obtain low-density InAs quantum dots (QDs) on GaAs. The process was realized by Ostwald-type ripening of a thin InAs layer. It was found that the optical properties of the QDs as a function of growth interruption strongly depend on InAs growth rate. By using this approach, a low density of QDs (4 dots/μm 2 ) with uniform size distribution was achieved. As compared to QDs grown without growth interruption, a larger energy separation between the QD confined levels was observed, suggesting a situation closer to the ideal zero-dimensional system. Combining with an InGaAs capping layer such as In-rich QDs enable 1.3 μm emission at 4 K

15. Simulasi Low Density Parity Check (Ldpc) dengan Standar Dvb-t2

OpenAIRE

Kurniawan, Yusuf; Hafizh, Idham

2014-01-01

Artikel ini berisi implementasi simulasi encoding-decoding yang dilakukanpada suatu sampel data biner acak sesuai dengan standar yang digunakanpada Digital Video Broadcasting – Terrestrial 2nd Generation (DVB-T2),dengan menggunakan MATLAB. Low Density Parity Check (LDPC)digunakan dalam proses encoding-decoding sebagai fitur untuk melakukankoreksi kesalahan pada saat pengiriman data. Modulasi yang digunakandalam simulasi adalah BPSK dengan model kanal AWGN. Dalam simulasitersebut, diperbanding...

16. Stark broadening of the Hα line of hydrogen at low densities: quantal and semiclassical results

International Nuclear Information System (INIS)

Stehle, C.; Feautrier, N.

1984-01-01

Stark profiles of the Hα lines of hydrogen are computed at low densities in the 'impact' theory. By a comparison with quantal results, it is shown that a simple semiclassical perturbational approach with appropriate cutoffs is sufficient to give accurate profiles in the line centre. Neglecting the natural broadening and the fine-structure effects, the authors prove that the electronic broadening is negligible and that the profile has a Lorentzian shape. An analytical expression of the half width is given. (author)

17. Electrons of high perpendicular energy in the low-density regime of Tokamaks

International Nuclear Information System (INIS)

Bornatici, M.; Engelmann, F.

1978-01-01

Effects due to instabilities excited in the low-density regime of tokamaks by runaway electrons via the cyclotron resonance ω+Ω=kV along with the formation of a positive slope in the runaway distribution are considered. Conditions for the production of electrons of high perpendicular energy and their trapping in toroidal field ripples, leading to liner damage, are discussed and found to be rather stringent. Fairly good agreement with the experiments is found

18. Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles

Science.gov (United States)

Seyedehsan Hosseini; Qi Li; Manish Shrivastava; David R. Weise; David R. Cocker; J. Wayne Miller; Heejung S Jung

2014-01-01

Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activitiesâactivities associated with development and care of forestsâdry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (

19. Supersonic flow with shock waves. Monte-Carlo calculations for low density plasma. I

International Nuclear Information System (INIS)

Almenara, E.; Hidalgo, M.; Saviron, J. M.

1980-01-01

This Report gives preliminary information about a Monte Carlo procedure to simulate supersonic flow past a body of a low density plasma in the transition regime. A computer program has been written for a UNIVAC 1108 machine to account for a plasma composed by neutral molecules and positive and negative ions. Different and rather general body geometries can be analyzed. Special attention is played to tho detached shock waves growth In front of the body. (Author) 30 refs

20. Low-density Lipoprotein Improves Motility and Plasma Membrane Integrity of Cryopreserved Canine Epididymal Spermatozoa

OpenAIRE

N. Prapaiwan; T. Tharasanit; S. Punjachaipornpol; D. Yamtang; A. Roongsitthichai; W. Moonarmart; K. Kaeoket; S. Manee-in

2016-01-01

Cryopreservation of caudal epididymal spermatozoa is an effective technique to conserve genetic potentials of superior dogs when it is not possible to collect ejaculated spermatozoa. Although hen egg yolk is commonly supplemented into the semen extender, active substances within the egg yolk which protect sperm against cryoinjury remain to be discovered. Among its compositions, low-density lipoprotein (LDL) has been reported to have a cryoprotective property for sperm cryopreservation. Howeve...

1. Quantum quasi-cyclic low-density parity-check error-correcting codes

International Nuclear Information System (INIS)

Yuan, Li; Gui-Hua, Zeng; Lee, Moon Ho

2009-01-01

In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated. (general)

2. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

OpenAIRE

Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M.

2009-01-01

Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible ...

3. Low density, microcellular, dopable, agar/gelatin foams for pulsed power experiments

Energy Technology Data Exchange (ETDEWEB)

McNamara, W.F. [Orion International Technologies, Inc., Albuquerque, NM (United States); Aubert, J.H. [Sandia National Lab., Albuquerque, NM (United States)

1997-04-01

Low-density, microcellular foams prepared from the natural polymers agar and gelatin have been developed for pulsed-power physics experiments. Numerous experiments were supported with foams having densities at or below 10 mg/cm{sup 3}. For some of the experiments, the agar/gelatin foam was uniformly doped with metallic elements using soluble salts. Depending on the method of preparation, cell sizes were typically below 10 microns and for one process were below 1.0 micron.

4. Convective cell excitation by inertial Alfven waves in a low density plasma

International Nuclear Information System (INIS)

Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Srenflo, L.; Balikhin, M.A.

2005-01-01

The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained [ru

5. Low density lipoprotein uptake by an endothelial-smooth muscle cell bilayer

International Nuclear Information System (INIS)

Alexander, J.J.; Miguel, R.; Graham, D.

1991-01-01

To study the interaction of endothelial and smooth muscle cells, and the means by which such interaction may affect lipid permeability of the arterial wall, cell bilayers were established by use of a transwell culture system. After confluent growth of both cell types had been achieved, iodine 125 bound to low-density lipoprotein (10 ng protein/ml) was added to the media of the upper well. After a 3-hour incubation period, the iodine 125-bound low-density lipoprotein content of the upper and lower media demonstrated an impedance to lipoprotein movement across the endothelial cell monolayer as compared to the bare porous polycarbonate filter of the transwell (p less than 10(-6)). The presence of smooth muscle cells in the bottom well significantly enhanced the permeability of the endothelial cell layer (p less than 10(-60)). This effect remained unchanged over a 9-day time course. Membrane binding and cellular uptake of low-density lipoprotein by endothelial cells was not altered by smooth muscle cells, indicating that this change in permeability could not be easily attributed to changes in receptor-mediated transport or transcytosis. Membrane binding (p less than 0.02) and cellular uptake (p less than 10(-6)) of low-density lipoprotein by smooth muscle cells in the bilayer, when adjusted for counts available in the smooth muscle cell media, were both reduced in the early incubation period as compared to isolated smooth muscle cells. The disproportionate reduction in uptake as compared to binding would suggest that this was not entirely a receptor-dependent process

6. INHIBITION OF HUMAN LOW-DENSITY LIPOPROTEINS OXIDATION BY Hibiscus radiatus CUV. CALYCES EXTRACT

Directory of Open Access Journals (Sweden)

Hernawan Hernawan

2010-06-01

Full Text Available Hibiscus radiatus Cuv calyces extracts rich in polyphenols was screened for their potential to inhibit oxidation of human low-density lipoproteins-cholesterol (LDL-C in vitro. The inhibition of LDL-C oxidation (antioxidant activity was determined by measuring the formation of conjugated dienes and thiobarbituric acid reagent substances (TBARS. LDL-C oxidation was carried out in the presence of H. radiatus Cuv calyces extract (20 and 50 μM. CuSO4 (10 μM was used as the oxidation initiator and  butylated hydroxytoluene (BHT at 50 μM was used as standard antioxidant. The protective effect of H. radiatus Cuv. calyces extract toward human low-density lipoproteins, complex lipid system was  demonstrated by significant increase lag time (> 103 min, diminished of the propagation rate (44 %, and diminution of conjugated dienes formation 59.42 % (50 μM compared to control.   Keywords: antioxidant, conjugated dienes, Hibiscus radiatus Cuv, low-density lipoproteins-cholesterol

7. Effect of phospholipase A treatment of low density lipoproteins on the dextran sulfate--lipoprotein interaction.

Science.gov (United States)

Nishida, T

1968-09-01

The effect of phospholipase A on the interaction of low density lipoproteins of the S(f) 0-10 class with dextran sulfate was studied in phosphate buffer of pH 7.4, ionic strength 0.1, by chemical, spectrophotometric, and centrifugal methods. When low density lipoproteins that had been treated with phospholipase A were substituted for untreated lipoproteins, the amount of insoluble dextran sulfate-lipoprotein complex formed was greatly reduced. Hydrolysis of over 20% of the lecithin and phosphatidyl ethanolamine constituents of the lipoproteins prevented the formation of insoluble complex. However, even the lipoproteins in which almost all the phosphoglycerides were hydrolyzed produced soluble complex, which was converted to insoluble complex upon addition of magnesium sulfate. It is apparent that the lipoproteins altered extensively by treatment with phospholipase A retain many characteristic properties of native low density lipoproteins. Fatty acids, but not lysolecithin, released by the action of phospholipase A interfered with the formation of insoluble complex; this interference was due to association of the fatty acids with the lipoproteins. With increases in the concentration of the associated fatty acids, the amounts of magnesium ion required for the conversion of soluble complex to insoluble complex increased progressively. Charge interaction is evidently of paramount importance in the formation of sulfated polysaccharide-lipoprotein complexes.

8. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

Energy Technology Data Exchange (ETDEWEB)

Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

2016-06-15

Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

9. Membrane receptors for very low density lipoprotein (VLDL) inhibitor of lymphocyte proliferation

International Nuclear Information System (INIS)

Yi, P.I.; Beck, G.; Zucker, S.

1981-01-01

Physiologic concentrations of human plasma very low density lipoproteins inhibit the DNA synthesis of lymphocytes stimulated by allogeneic cells or lectins. In this report reachers have compared the effects of isolated lipoproteins [very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)] and lipoprotein-depleted plasma (LDP) on DNA synthesis by phytohemagglutinin-stimulated human lymphocytes. The relative potency for the inhibition of lymphocyte proliferation was VLDL greater than LDL greater than HDL greater than LDP. Fifty percent inhibition of DNA synthesis was observed at a VLDL protein concentration of 1.5--2.0 microgram/ml. Researchers have further demonstrated the presence of specific receptors for VLDL on human lymphocytes. Native VLDL was more effective than LDL in competing for 125I-VLDL binding sites. Subsequent to binding to lymphocytes, 125I-VLDL was internalized and degraded to acid-soluble products. Based on a Scatchard analysis of VLDL binding at 4 degrees C, the number of VLDL receptors per lymphocyte was estimated at 28,000 +/- 1300. Based on an estimated mean binding affinity for the VLDL receptor complex at half saturation of approximately 8.8 X 10(7) liter/mole, it is estimated that 91% of lymphocyte VLDL receptors are occupied at physiologic VLDL concentrations in blood. Although the immune regulatory role of plasma lipoproteins is uncertain, researchers suggest tha VLDL and LDL-In may maintain circulating blood lymphocytes in a nonproliferative state via their respective cell receptor mechanisms

10. Jet pump assisted artery

Science.gov (United States)

1975-01-01

A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

11. The jet membrane experiment: downstream sampling

International Nuclear Information System (INIS)

Campargue, R.

1976-01-01

This review lecture is devoted to an invasion separation effect through a free jet structure, found in 1966 at Saclay and used as the basis for an initial French patent on the separation of gas molecules of different masses. It operates by the differential penetration of a gas or isotopic mixture into the structure of a free jet

12. Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas

Czech Academy of Sciences Publication Activity Database

Ekedahl, A.; Petržílka, Václav; Baranov, Y.; Biewer, T.M.; Brix, M.; Goniche, M.; Jacquet, P.; Kirov, K.K.; Klepper, C.C.; Mailloux, J.; Mayoral, M.-L.; Nave, M.F.F.; Ongena, J.; Rachlew, E.

2012-01-01

Roč. 54, č. 7 (2012), 074004-074004 ISSN 0741-3335. [IAEA Fusion Energy Conference 2010/23./. Daejeon, 11.10.2010-16.10.2010] R&D Projects: GA ČR GA202/07/0044; GA ČR GAP205/10/2055; GA MŠk(CZ) LG11018 Institutional research plan: CEZ:AV0Z20430508 Keywords : LH wave * plasma * current drive * tokamak * LHCD Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.369, year: 2012 http://iopscience.iop.org/0741-3335/54/7/074004/pdf/0741-3335_54_7_074004.pdf

13. An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels

Energy Technology Data Exchange (ETDEWEB)

Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.; Meyer, Perry A.

2009-05-22

The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonian slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.

14. Development of a He/CdI$_2$ gas-jet system coupled to a surface-ionization type ion-source in JAEA-ISOL: towards determination of the first ionization potential of Lr (Z = 103)

CERN Document Server

Sato, T K; Sato, N; Tsukada, K; Toyoshima, A; Ooe, K; Miyashita, S; Kaneya, Y; Osa, A; Schädel, M; Nagame, Y; Ichikawa, S; Stora, T; Kratz, J V

2015-01-01

We report on development of a gas-jet transport system coupled to a surface ionization ion-source in the JAEA-ISOL (Isotope Separator On-Line) system. As a new aerosol material for the gas-jet system, CdI2, which has a low boiling point of 713 °C, is exploited to prevent deposition of the aerosol material on the surface of the ion-source. An additional filament is newly installed in the previous ion-source to provide uniform heating of an ionizer. The present system is applied to the measurement of absolute efficiencies of various short-lived lanthanide isotopes produced in nuclear reactions.

15. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

Directory of Open Access Journals (Sweden)

Xiliang Zhang

2013-09-01

Full Text Available A life-cycle analysis (LCA of greenhouse gas (GHG emissions and energy use was performed to study bio-jet fuel (BJF production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM. Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP from the residual biomass after oil extraction, including fugitive methane (CH4 emissions during the production of biogas and nitrous oxide (N2O emissions during the use of digestate (solid residue from anaerobic digestion as agricultural fertilizer. Analyses were performed based on examination of process parameters, mass balance conditions, material requirement, energy consumptions and the realities of energy supply and transport in China (i.e., electricity generation and heat supply primarily based on coal, multiple transport modes. Our LCA result of the BJF pathway showed that, compared with the traditional petrochemical pathway, this new pathway will increase the overall fossil energy use and carbon emission by 39% and 70%, respectively, while decrease petroleum consumption by about 84%, based on the same units of energy service. Moreover, the energy conservation and emission reduction benefit of this new pathway may be accomplished by two sets of approaches: wider adoption of low-carbon process fuels and optimization of algae cultivation and harvest, and oil extraction processes.

16. High fusion performance at high T i/T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing

Science.gov (United States)

Kim, Hyun-Tae; Sips, A. C. C.; Romanelli, M.; Challis, C. D.; Rimini, F.; Garzotti, L.; Lerche, E.; Buchanan, J.; Yuan, X.; Kaye, S.; contributors, JET

2018-03-01

This paper presents the transport analysis of high density baseline discharges in the 2016 experimental campaign of the Joint European Torus with the ITER-Like Wall (JET-ILW), where a significant increase in the deuterium-deuterium (D-D) fusion neutron rate (~2.8  ×  1016 s-1) was achieved with stable high neutral beam injection (NBI) powers of up to 28 MW and low gas puffing. Increase in T i exceeding T e were produced for the first time in baseline discharges despite the high electron density; this enabled a significant increase in the thermal fusion reaction rate. As a result, the new achieved record in fusion performance was much higher than the previous record in the same heating power baseline discharges, where T i  =  T e. In addition to the decreases in collisionality and the increases in ion heating fraction in the discharges with high NBI power, T i  >  T e can also be attributed to positive feedback between the high T i/T e ratio and stabilisation of the turbulent heat flux resulting from the ion temperature gradient driven mode. The high T i/T e ratio was correlated with high rotation frequency. Among the discharges with identical beam heating power, higher rotation frequencies were observed when particle fuelling was provided by low gas puffing and pellet injection. This reveals that particle fuelling played a key role for achieving high T i/T e, and the improved fusion performance.

17. Fluorine-18 radiolabeling of low-density lipoproteins: a potential approach for characterization and differentiation of metabolism of native and oxidized low-density lipoproteins in vivo

Energy Technology Data Exchange (ETDEWEB)

Pietzsch, Jens [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Bergmann, Ralf [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Rode, Katrin [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Hultsch, Christina [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Pawelke, Beate [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Wuest, Frank [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany); Hoff, Joerg van den [PET-Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf Dresden, P.O. Box 51 01 19, D-01314 Dresden (Germany)

2004-11-01

Oxidative modification of low-density lipoprotein (LDL) is regarded as a crucial event in atherogenesis. Assessing the metabolic fate of oxidized LDL (oxLDL) in vivo with radiotracer techniques is hindered by the lack of suitable sensitive and specific radiolabeling methods. We evaluated an improved methodology based on the radiolabeling of native LDL (nLDL) and oxLDL with the positron emitter fluorine-18 ({sup 18}F) by conjugation with N-succinimidyl-4-[{sup 18}F]fluorobenzoate ([{sup 18}F]SFB). We investigated whether radiolabeling of LDL induces adverse structural modifications. Results suggest that radiolabeling of both nLDL and oxLDL using [{sup 18}F]SFB causes neither additional oxidative structural modifications of LDL lipids and proteins nor alteration of their biological activity and functionality, respectively. Thus, radiolabeling of LDL using [{sup 18}F]SFB could prove to be a promising approach for studying the kinetics of oxLDL in vivo.

18. Common low-density lipoprotein receptor p.G116S variant has a large effect on plasma low-density lipoprotein cholesterol in circumpolar inuit populations.

Science.gov (United States)

Dubé, Joseph B; Wang, Jian; Cao, Henian; McIntyre, Adam D; Johansen, Christopher T; Hopkins, Scarlett E; Stringer, Randa; Hosseinzadeh, Siyavash; Kennedy, Brooke A; Ban, Matthew R; Young, T Kue; Connelly, Philip W; Dewailly, Eric; Bjerregaard, Peter; Boyer, Bert B; Hegele, Robert A

2015-02-01

Inuit are considered to be vulnerable to cardiovascular disease because their lifestyles are becoming more Westernized. During sequence analysis of Inuit individuals at extremes of lipid traits, we identified 2 nonsynonymous variants in low-density lipoprotein receptor (LDLR), namely p.G116S and p.R730W. Genotyping these variants in 3324 Inuit from Alaska, Canada, and Greenland showed they were common, with allele frequencies 10% to 15%. Only p.G116S was associated with dyslipidemia: the increase in LDL cholesterol was 0.54 mmol/L (20.9 mg/dL) per allele (P=5.6×10(-49)), which was >3× larger than the largest effect sizes seen with other common variants in other populations. Carriers of p.G116S had a 3.02-fold increased risk of hypercholesterolemia (95% confidence interval, 2.34-3.90; P=1.7×10(-17)), but did not have classical familial hypercholesterolemia. In vitro, p.G116S showed 60% reduced ligand-binding activity compared with wild-type receptor. In contrast, p.R730W was associated with neither LDL cholesterol level nor altered in vitro activity. LDLR p.G116S is thus unique: a common dysfunctional variant in Inuit whose large effect on LDL cholesterol may have public health implications. © 2014 American Heart Association, Inc.

19. QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY

Energy Technology Data Exchange (ETDEWEB)

Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Hooper, E. Bickford [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McClenaghan, Joseph; Lin, Zhihong [University of California, Irvine, CA 92697 (United States)

2015-11-10

This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.

20. Traumatic interhemispheric subdural hematoma extending above the tentorium demonstrated as a low-density mass

International Nuclear Information System (INIS)

Katagiri, Kunihiko; Takaki, Tadahiro; Fukushima, Takeo; Tomonaga, Masamichi

1984-01-01

This report presents a case of traumatic interhemispheric subdural hematoma extending above the right tentorium, which showed a low-density mass in the CT scan and which brought up a problem of differential diagnosis from subdural empyema because the patient had a long history of bilateral chronic otitis media. The 47-year-old man fell downstairs while drunk; this accident was followed by an increasing member of incidents of headache and vomiting, and he was admitted on the 15th day after the episode. Upon admission, his mental state was slightly dull; a neurologic examination revealed a mild choked disc and increased DTRs on the left. There was otorrhea and hearing difficulty on the left side, and his blood pressure was slightly elevated (170/110 mmHg). The laboratory data were negative except for an increased blood-sedimentation ratio (50/80 mm) and 1 + CRP. The precontrast CT scan demonstrated a lentiform low-density mass in the posterior part of the interhemispheric fissure extending above the right tentorium, with an unusual mass effect for the volume and a location of this mass. The postcontrast CT scan showed a marked enhancement of the falx and the tentorium around the mass. Furthermore, the pneumatization of the mastoid cells was markedly decreased. An operation was performed following the day of admission; when subdural hematoma was confirmed, it was evacuated and irrigated. The postoperative course was excellent, and the low-density mass had disappeared by the time of a follow-up CT scan 19 days after the operation. (J.P.N.)

1. Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process - Final Technical report

Energy Technology Data Exchange (ETDEWEB)

Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Thamina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

2017-11-03

This Final Technical Report describes the work and accomplishments of the project entitled, “Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process”. The main objective of the project was to raise the Technology Readiness Level (TRL) of the GHGR-CBTL fuel-production technology from TRL 4 to TRL 5 by producing a drop-in synthetic Jet Propellant 8 (JP-8) with a greenhouse-gas footprint less than or equal to petroleum-based JP-8 by utilizing mixtures of coal and biomass as the feedstock. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. While the system was not fabricated and tested, major efforts were expended to design the 1-TPD and a full-scale plant. The system was designed, a Block-Flow Diagram (BFD), a Process-Flow Diagram (PFD), and Piping-and-Instrumentation Diagrams (P&IDs) were produced, a Bill of Materials (BOM) and associated spec sheets were produced, commercially available components were selected and procured, custom components were designed and fabricated, catalysts were developed and screened for performance, and permitting activities were conducted. Optimization tests for JP-8 production using C2 olefin as the feed were performed over a range of temperatures, pressures and WHSVs. Liquid yields of between 63 to 65% with 65% JP-8 fraction (41-42% JP-8 yield) at 50 psig were achieved. Life-Cycle Analysis (LCA) was performed by Argonne National Laboratory (ANL), and a GHGR-CBTL module was added to the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. Based upon the experimental results, the plant design was reconfigured for zero natural-gas imports and minimal electricity imports. The LCA analysis of the reconfigured process utilizing the GREET model showed that if the char from the process was utilized to produce combined heat and power (CHP) then a feed containing 23 wt% biomass and

2. Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme

Energy Technology Data Exchange (ETDEWEB)

Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

2006-06-14

This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

3. Crosstalk eliminating and low-density parity-check codes for photochromic dual-wavelength storage

Science.gov (United States)

Wang, Meicong; Xiong, Jianping; Jian, Jiqi; Jia, Huibo

2005-01-01

Multi-wavelength storage is an approach to increase the memory density with the problem of crosstalk to be deal with. We apply Low Density Parity Check (LDPC) codes as error-correcting codes in photochromic dual-wavelength optical storage based on the investigation of LDPC codes in optical data storage. A proper method is applied to reduce the crosstalk and simulation results show that this operation is useful to improve Bit Error Rate (BER) performance. At the same time we can conclude that LDPC codes outperform RS codes in crosstalk channel.

4. Degradation of low-density polyethylene in the presence of water and deuterium oxide

International Nuclear Information System (INIS)

Sedgwick, R.D.; Al-Sultan, Y.Y.; Abushihada, A.M.

1981-01-01

The degradation of low-density polyethylene in the presence of water as the degradative agent was studied at a temperature of 450 0 C and a pressure greater than 160 atm. The experimental work was conducted in an autoclave of 333-mL capacity. The results indicate the presence of paraffins, olefines, dienes, and aromatics in the degradation products. The occurrence of aromatics in the products demonstrates the importance of this degradation procedure for obtaining these valuable materials. The present work (Part 1) is believed to be the first publication to discuss the production of aromatics from polyethylenes degradation

5. Preliminary characterization in the development of the nano composite low density polyethylene with attapulgite clay

International Nuclear Information System (INIS)

Domingos, Luanda G.; Rego, Jose K.M.A. do; Ito, Edson N.; Acchar, Wilson

2011-01-01

The aim of this study was a preliminary study of the physical, thermal and rheological properties of the materials to be used in the development of nano composite low density polyethylene (LDPE) with Brazilian attapulgite clay (ATP), with and without the use of a compatibilizing agent interfacial, polyethylene grafted with maleic anhydride (PE-g-MAH). The materials were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and torque rheometry. The materials were characterized and potentially could be developed polymeric nano composites with technological applications using attapulgite fibers in the nanometer scale. (author)

6. Transvascular low-density lipoprotein transport in patients with diabetes mellitus (type 2)

DEFF Research Database (Denmark)

Kornerup, Karen; Nordestgaard, Børge Grønne; Feldt-Rasmussen, Bo

2002-01-01

accumulation and, thus, atherosclerosis. METHODS AND RESULTS: We developed an in vivo method for measurement of transvascular transport of low density lipoprotein (LDL) and applied it in 16 patients with maturity-onset diabetes (type 2) and 29 healthy control subjects. Autologous 131I-labeled LDL...... plasma insulin levels in diabetic patients. CONCLUSIONS: Transvascular LDL transport may be increased in patients with type 2 diabetes. This suggests that lipoprotein flux into the arterial wall is increased in people with diabetes, possibly explaining the accelerated development of atherosclerosis....... in patients with diabetes and control subjects, respectively (P2.5%/h and 5.3+/-1.6%/h (P

7. Enzymatic Modification of Plasma Low Density Lipoproteins in Rabbits: A Potential Treatment for Hypercholesterolemia

Science.gov (United States)

Labeque, Regine; Mullon, Claudy J. P.; Ferreira, Joao Paulo M.; Lees, Robert S.; Langer, Robert

1993-04-01

Phospholipase A_2 (EC 3.1.1.4) hydrolyzes certain phospholipids of low density lipoprotein (LDL). Plasma clearance of phospholipase A_2-modified human LDL is up to 17 times faster than that of native human LDL in hypercholesterolemic rabbits. Modification of blood lipoproteins of hypercholesterolemic rabbits was performed by using an extracorporeal circuit containing immobilized phospholipase A_2. After 90-min treatments, nearly 30% decreases in plasma cholesterol concentrations were observed. Erythrocyte, leukocyte, and platelet counts showed no net change after treatment. This technique does not require any fluid replacement or sorbent regeneration and offers a potential approach for lowering serum cholesterol and LDL levels.

8. Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation

Science.gov (United States)

Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie

2009-01-01

In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.

9. Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.

Science.gov (United States)

Djordjevic, Ivan B

2010-05-01

I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.

10. Langmuir-Blodgett films of polyaniline for low density lipoprotein detection

Energy Technology Data Exchange (ETDEWEB)

Matharu, Zimple [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Sumana, G. [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, National Physical Laboratory (CSIR), Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

2010-11-30

Langmuir-Blodgett (LB) films of polyaniline (PANI) were utilized for the fabrication of impedimetric immunosensor for detection of human plasma low density lipoprotein (LDL) by immobilizing anti-apolipoprotein B (AAB) via EDC-NHS coupling. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. AAB/PANI-SA LB immunoelectrodes studied by EIS spectroscopy revealed detection of LDL in the wide range of 0.018 {mu}M (6 mg/dl) to 0.39 {mu}M (130 mg/dl), covering the physiological range in blood, with a sensitivity of 11.25 k{Omega} {mu}M{sup -1}.

11. Langmuir-Blodgett films of polyaniline for low density lipoprotein detection

International Nuclear Information System (INIS)

Matharu, Zimple; Sumana, G.; Gupta, Vinay; Malhotra, B.D.

2010-01-01

Langmuir-Blodgett (LB) films of polyaniline (PANI) were utilized for the fabrication of impedimetric immunosensor for detection of human plasma low density lipoprotein (LDL) by immobilizing anti-apolipoprotein B (AAB) via EDC-NHS coupling. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. AAB/PANI-SA LB immunoelectrodes studied by EIS spectroscopy revealed detection of LDL in the wide range of 0.018 μM (6 mg/dl) to 0.39 μM (130 mg/dl), covering the physiological range in blood, with a sensitivity of 11.25 kΩ μM -1 .

12. Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene

OpenAIRE

2014-01-01

In this study, polymer composites using low-density polyethylene (LDPE) and layered hydroxide salts (LHS) were synthesized. The following compositions of LHS were obtained Zn5(OH)8(An-)2/n.yH2O, where A was varied in order to obtain hydrophilic (A = NO3 -) or hydrophobic (A = DDS- – dodecyl sulfate or DBS- – dodecyl benzene sulfonate). Synthesis was carried out by co-precipitation in alkaline medium and drying, being followed by characterization via Fourier-transform infrared spectroscopy, th...

13. Study of the effect of gamma irradiation on carbon black loaded low-density polyethylene films

International Nuclear Information System (INIS)

Salem, M.A.; Hussein, A.; El-Ahdal, M.A.

2003-01-01

The effect of gamma irradiation on the tensile and physico-chemical properties of low-density polyethylene (LDPE) films loaded with different concentrations of carbon black (C.B) has been studied. The results showed that the behavior of the samples during gamma irradiation is complicated and this may be due to scission and the interaction between oxidation and crosslinking processes. The tensile properties are modified by the presence of carbon black. Film sample containing 7% C.B was found to exhibit a nearly stabilized tensile behavior with radiation dose, which allows to use this formulation in packaging for food sterilization and in preservation of weak cobalt-gamma sources. (author)

14. Optimized Min-Sum Decoding Algorithm for Low Density Parity Check Codes

OpenAIRE

Mohammad Rakibul Islam; Dewan Siam Shafiullah; Muhammad Mostafa Amir Faisal; Imran Rahman

2011-01-01

Low Density Parity Check (LDPC) code approaches Shannon–limit performance for binary field and long code lengths. However, performance of binary LDPC code is degraded when the code word length is small. An optimized min-sum algorithm for LDPC code is proposed in this paper. In this algorithm unlike other decoding methods, an optimization factor has been introduced in both check node and bit node of the Min-sum algorithm. The optimization factor is obtained before decoding program, and the sam...

15. Social Inclusion Predicts Lower Blood Glucose and Low-Density Lipoproteins in Healthy Adults.

Science.gov (United States)

Floyd, Kory; Veksler, Alice E; McEwan, Bree; Hesse, Colin; Boren, Justin P; Dinsmore, Dana R; Pavlich, Corey A

2017-08-01

Loneliness has been shown to have direct effects on one's personal well-being. Specifically, a greater feeling of loneliness is associated with negative mental health outcomes, negative health behaviors, and an increased likelihood of premature mortality. Using the neuroendocrine hypothesis, we expected social inclusion to predict decreases in both blood glucose levels and low-density lipoproteins (LDLs) and increases in high-density lipoproteins (HDLs). Fifty-two healthy adults provided self-report data for social inclusion and blood samples for hematological tests. Results indicated that higher social inclusion predicted lower levels of blood glucose and LDL, but had no effect on HDL. Implications for theory and practice are discussed.

16. Assessment of the Resistance to External Factors of Low-Density Polyethylene Modified with Natural Fillers

Directory of Open Access Journals (Sweden)

Karolina Głogowska

2017-12-01

Full Text Available The study reports the results of investigation of basic processing and thermal properties of low-density polyethylene modified with two types of natural filler: wheat bran and pumpkin seed hulls, their content ranging from 5% to 15% relative to the matrix. In addition, the physical properties of the produced granulates are determined, i.e. the relationship between their density and the applied contents of the tested fillers. Furthermore, the study reports the results concerning the longitudinal shrinkage, abrasion resistance and cold water absorption of injection molded tensile specimens.

17. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets

DEFF Research Database (Denmark)

Carotenuto, G.; De Nicola, S.; Palomba, M.

2012-01-01

The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change...... in the microscopic structure of the polymer. However, on a macroscopic scale, GNPs limit the mobility of the polymer chains, resulting in an increase in stiffness for the final composite. Orientation of GNPs within the LDPE matrix is also an important issue that affects mechanical properties and it has been...

18. Ion cyclotron modes in a low density plasma cavity. Part I: Theory

International Nuclear Information System (INIS)

Sawley, M.L.

1990-12-01

Ion cyclotron modes excited in a low density, cylindrical plasma cavity using an external inductive antenna are investigated theoretically. These modes, which have a long parallel wavelength, exhibit a strong electrostatic character and are only weakly coupled to the antenna fields. It is shown that, despite the low frequency considered, electron dynamics play a dominant role via the effects of both Landau damping and electron inertia. The characteristics of the wavefields associated with these modes, relevant to an experimental investigation, are described. (author) 8 figs., 1 tab., 10 refs

19. A study on bifrontal extracerebral low density areas of CT in infancy

International Nuclear Information System (INIS)

Nagaura, Tomoaki; Sumi, Kiyoomi

1983-01-01

Bifrontal extracerebral low density area (BELD) was observed in 38 (39.6 %) of 96 infants aged 1 to 22 months (a mean of 6.2 months) at a particulary high rate in 2- -- 6-mos.-olds. They consisted of 15/19 cases of infantile spasm/epilepsy, 0/5 of simple febrile convulsion, 7/9 of psychomotor retardation and 0/5 simple premature babies. BELD disappeared by a mean age of 14 months in cases without psychomotor retardation, but its disappearance tended to be delayed in retarded infants. BELD seemed to indicate a type of brain injury, rather than a simple physiologic phenomenon. (Chiba, N)

20. Review of laser produced multi-keV X-ray sources from metallic foils, cylinders with liner, and low density aerogels

Energy Technology Data Exchange (ETDEWEB)

Girard, Frédéric [CEA, DAM, DIF, F-91297 Arpajon (France)

2016-04-15

Experimental results obtained within the last fifteen years on multi-keV X-ray sources irradiated with nanosecond scale pulse duration 3ω laser light at TW power levels by CEA and collaborators are discussed in this review paper. Experiments were carried out on OMEGA and GEKKO XII laser facilities where emitting materials in the 5–10 keV multi-keV energy range are intermediate Z value metals from titanium to germanium. Results focused on conversion efficiency improvement by a factor of 2 when an underdense plasma is created using a laser pre-pulse on a metallic foil, which is then heated by a second laser pulse delayed in time. Metal coated inner surface walls of plastic cylindrical tube ablated by laser beam impacts showed that plasma confinement doubles X-ray emission duration as it gives adequate plasma conditions (electron temperature and density) over a long period of time. Low-density aerogels (doped with metal atoms uniformly distributed throughout their volume or metal oxides) contained in a plastic cylinder have been developed and their results are comparable to gas targets. A hybrid target concept consisting of a thin metal foil placed at the end of a cylinder filled with low density aerogel has emerged as it could collect benefits from pre-exploded thin foils, efficient laser absorption in aerogel, and confinement by cylinder walls. All target geometry performances are relatively close together at a given photon energy and mainly depend on laser irradiation condition optimizations. Results are compared with gas target performances from recent NIF experiments allowing high electron temperatures over large dimension low density plasmas, which are the principal parameters for efficient multi-keV X-ray production.

1. Gas manufacture

Energy Technology Data Exchange (ETDEWEB)

Fell, J W

1915-05-03

Retorts for the distillation of shale or coal for the production of oil or illuminating-gas are heated by gas from a generator or a gas-holder, and a portion of the gas from the flue leading to the heating-flues is forced by a steam jet through a by-pass and is injected into the bottom of the retorts. If the gas to be admitted to the retort is cold, it is first heated.

2. Dose response evaluation of a low-density normoxic polymer gel dosimeter using MRI

Energy Technology Data Exchange (ETDEWEB)

Haraldsson, P [Medical Radiation Physics, Department of Clinical Sciences, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Department of Radiation Physics, Finsen Centre, Copenhagen University Hospital, DK-2100 Copenhagen (Denmark); Karlsson, A [Medical Radiation Physics, Department of Clinical Sciences, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Wieslander, E [Medical Radiation Physics, Department of Clinical Sciences, Lund University Hospital, SE-221 85 Lund (Sweden); Gustavsson, H [Medical Radiation Physics, Department of Clinical Sciences, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Baeck, S A J [Medical Radiation Physics, Department of Clinical Sciences, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden)

2006-02-21

A low-density ({approx}0.6 g cm{sup -3}) normoxic polymer gel, containing the antioxidant tetrakis (hydroxymethyl) phosponium (THP), has been investigated with respect to basic absorbed dose response characteristics. The low density was obtained by mixing the gel with expanded polystyrene spheres. The depth dose data for 6 and 18 MV photons were compared with Monte Carlo calculations. A large volume phantom was irradiated in order to study the 3D dose distribution from a 6 MV field. Evaluation of the gel was carried out using magnetic resonance imaging. An approximately linear response was obtained for 1/T2 versus dose in the dose range of 2 to 8 Gy. A small decrease in the dose response was observed for increasing concentrations of THP. A good agreement between measured and Monte Carlo calculated data was obained, both for test tubes and the larger 3D phantom. It was shown that a normoxic polymer gel with a reduced density could be obtained by adding expanded polystyrene spheres. In order to get reliable results, it is very important to have a uniform distribution of the gel and expanded polystyrene spheres in the phantom volume.

3. Dose response evaluation of a low-density normoxic polymer gel dosimeter using MRI

Science.gov (United States)

Haraldsson, P.; Karlsson, A.; Wieslander, E.; Gustavsson, H.; Bäck, S. Å. J.

2006-02-01

A low-density (~0.6 g cm-3) normoxic polymer gel, containing the antioxidant tetrakis (hydroxymethyl) phosponium (THP), has been investigated with respect to basic absorbed dose response characteristics. The low density was obtained by mixing the gel with expanded polystyrene spheres. The depth dose data for 6 and 18 MV photons were compared with Monte Carlo calculations. A large volume phantom was irradiated in order to study the 3D dose distribution from a 6 MV field. Evaluation of the gel was carried out using magnetic resonance imaging. An approximately linear response was obtained for 1/T2 versus dose in the dose range of 2 to 8 Gy. A small decrease in the dose response was observed for increasing concentrations of THP. A good agreement between measured and Monte Carlo calculated data was obained, both for test tubes and the larger 3D phantom. It was shown that a normoxic polymer gel with a reduced density could be obtained by adding expanded polystyrene spheres. In order to get reliable results, it is very important to have a uniform distribution of the gel and expanded polystyrene spheres in the phantom volume.

4. Uniform electron gases. III. Low-density gases on three-dimensional spheres

Energy Technology Data Exchange (ETDEWEB)

Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au; Loos, Pierre-François, E-mail: pf.loos@anu.edu.au [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)

2015-08-28

By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.

5. Effects of low-density feeding on elk–fetus contact rates on Wyoming feedgrounds

Science.gov (United States)

Creech, Tyler G.; Cross, Paul C.; Scurlock, Brandon M.; Maichak, Eric J.; Rogerson, Jared D.; Henningsen, John C.; Creel, Scott

2012-01-01

High seroprevalance for Brucella abortus among elk on Wyoming feedgrounds suggests that supplemental feeding may influence parasite transmission and disease dynamics by altering the rate at which elk contact infectious materials in their environment. We used proximity loggers and video cameras to estimate rates of elk-to-fetus contact (the primary source of brucellosis transmission) during winter supplemental feeding. We compared contact rates during high-density and low-density (LD) feeding treatments that provided the same total amount of food distributed over different areas. Low-density feeding led to >70% reductions in total number of contacts and number of individuals contacting a fetus. Proximity loggers and video cameras provided similar estimates of elk–fetus contact rates. Elk contacted fetuses and random control points equally, suggesting that elk were not attracted to fetuses but encountered them incidentally while feeding. The modeled relationship between contact rate and disease prevalence is nonlinear and LD feeding may result in large reductions in brucellosis prevalence, but this depends on the amount of transmission that occurs on and off feedgrounds.

6. Electron beam cross-linking of natural rubber/linear-low density polyethylene blends

International Nuclear Information System (INIS)

Ahmad, A.; Mohd, D. H.; Abdullah, I.

2005-01-01

Effects of electron beam irradiation on the mechanical properties and morphological structure of natural rubber/linear-low density polyethylene blend was investigated The natural rubber/linear-low density polyethylene blend was prepared by melt blending in a Haake internal mixer at 140 d ig C , rotor speed of 50 rpm, and in 15 min Liquid natural rubber was incorporated into the blend as a compatibilizer Samples in the form of 1 mm sheets were exposed to 50-300 kGy of electron beam irradiation and analyzed for swelling index and gel content, tensile strength, and surface morphology. The result Indicated that gel content and mechanical properties of the samples increased with radiation dosage. The honey-comb structure of the surface morphology in low dosage irradiated samples slowly transformed into a continuous matrix on increasing radiation dose The variation of mechanical and physical properties was due to Increase in cross-linking density in the rubber and plastic phases and rubber-plastic Interaction on irradiation

7. Protocol for culturing low density pure rat hippocampal neurons supported by mature mixed neuron cultures.

Science.gov (United States)

Yang, Qian; Ke, Yini; Luo, Jianhong; Tang, Yang

2017-02-01

primary hippocampal neuron cultures allow for subcellular morphological dissection, easy access to drug treatment and electrophysiology analysis of individual neurons, and is therefore an ideal model for the study of neuron physiology. While neuron and glia mixed cultures are relatively easy to prepare, pure neurons are particular hard to culture at low densities which are suitable for morphology studies. This may be due to a lack of neurotrophic factors such as brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and Glial cell line-derived neurotrophic factor (GDNF). In this study we used a two step protocol in which neuron-glia mixed cultures were initially prepared for maturation to support the growth of young neurons plated at very low densities. Our protocol showed that neurotrophic support resulted in physiologically functional hippocampal neurons with larger cell body, increased neurite length and decreased branching and complexity compared to cultures prepared using a conventional method. Our protocol provides a novel way to culture highly uniformed hippocampal neurons for acquiring high quality, neuron based data. Copyright © 2016 Elsevier B.V. All rights reserved.

8. Preferential enrichment of large-sized very low density lipoprotein populations with transferred cholesteryl esters

International Nuclear Information System (INIS)

Eisenberg, S.

1985-01-01

The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [ 3 H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [ 3 H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [ 3 H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles

9. DSMC simulation and experimental validation of shock interaction in hypersonic low density flow.

Science.gov (United States)

Xiao, Hong; Shang, Yuhe; Wu, Di

2014-01-01

Direct simulation Monte Carlo (DSMC) of shock interaction in hypersonic low density flow is developed. Three collision molecular models, including hard sphere (HS), variable hard sphere (VHS), and variable soft sphere (VSS), are employed in the DSMC study. The simulations of double-cone and Edney's type IV hypersonic shock interactions in low density flow are performed. Comparisons between DSMC and experimental data are conducted. Investigation of the double-cone hypersonic flow shows that three collision molecular models can predict the trend of pressure coefficient and the Stanton number. HS model shows the best agreement between DSMC simulation and experiment among three collision molecular models. Also, it shows that the agreement between DSMC and experiment is generally good for HS and VHS models in Edney's type IV shock interaction. However, it fails in the VSS model. Both double-cone and Edney's type IV shock interaction simulations show that the DSMC errors depend on the Knudsen number and the models employed for intermolecular interaction. With the increase in the Knudsen number, the DSMC error is decreased. The error is the smallest in HS compared with those in the VHS and VSS models. When the Knudsen number is in the level of 10(-4), the DSMC errors, for pressure coefficient, the Stanton number, and the scale of interaction region, are controlled within 10%.

10. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor

International Nuclear Information System (INIS)

Gurav, Jyoti L.; Rao, A. Venkateswara; Bangi, Uzma K.H.

2009-01-01

In the conventional ambient pressure drying of silica aerogels, tedious repetitive gel washing and solvent exchange steps (∼6 days) are involved. Therefore, in the present studies, we intended to reduce the processing time of TEOS based ambient pressure dried silica aerogels. Solvents such as methanol, hexane and Hexamethyldisilazane (HMDZ) as surface chemical modification agents have been used. To get good quality aerogels in terms of low density, high porosity, high contact angle and low volume shrinkage in less processing time, we varied MeOH/TEOS, HMDZ/TEOS molar ratios, oxalic acid (A) and NH 4 OH (B) concentrations and stirring time from 1 to 27.7, 0.34 to 2.1, 0 to 0.1 M, 0 to 2 M and 15 to 90 min respectively. The transparent and low-density aerogels were obtained for TEOS:MeOH:acidic H 2 O:basic H 2 O:HMDZ molar ratio of 1:16.5:0.81:0.50:0.681 respectively. The thermal stability and hydrophobicity have been confirmed with Thermogravimetric and Differential Thermal (TG-DT) analyses and Fourier Transform Infrared Spectroscopy. Microstructural study was carried out by Scanning Electron Microscopy (SEM)

11. Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering

Science.gov (United States)

Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.

2016-12-01

Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.

12. Acetaldehyde binding increases the catabolism of rat serum low-density lipoproteins

International Nuclear Information System (INIS)

Savolainen, M.J.; Baraona, E.; Lieber, C.S.

1987-01-01

Acetaldehyde was found to form adducts with rat serum lipoproteins. The binding of [ 14 C]acetaldehyde to lipoproteins was studied at low concentrations which are known to exist during ethanol oxidation. The amount of lipoprotein adducts was a linear function of acetaldehyde concentration up to 250 μM. Incubation of rat plasma low-density lipoproteins (LDL) with 200 μM acetaldehyde increased the disappearance rate of the 3 H-label from the cholesterol ester moiety of LDL injected into normal rats. The data show that even low concentrations of acetaldehyde are capable of affecting LDL metabolism. These findings may provide an explanation for the low concentrations of serum LDL in alcoholics. The alcohol-induced hyperlipidemia includes either a lack of increase or a decrease in the low-density lipoprotein (LDL) concentration, but the underlying mechanism is not known. It has been shown previously, that the acetylation of lysine residues of LDL apoprotein (apoB) by acetanhydride leads to rapid uptake of LDL particles by macrophages through a non-LDL receptor pathway. Since acetaldehyde, the first toxic metabolite of ethanol, is a chemically reactive compound capable of binding to proteins, they tested whether acetaldehyde forms adducts with serum lipoproteins and subsequently alters the catabolism of LDL. 19 references, 2 figures, 1 table

13. Laser cutting technology using water jet waveguide

International Nuclear Information System (INIS)

Akiba, Miyuki; Shiihara, Katsunori; Chida, Itaru

2013-01-01

Laser with water jet is examined to cut in-vessel structure. However, it is necessary to increase the break-up length of water jet to cut a thick plate. Therefore, the effects of the water jet parameter (water pressure, assist gas, laser power) on break-up length were investigated. It was found from observation results of water jet that the longest break-up length is about 135mm under condition of water pressure 40 MPa, laser power 30W and helium assist gas 1L/min. (author)

14. Environmental risk assessment of low density polyethylene unit using the method of failure mode and effect analysis

Directory of Open Access Journals (Sweden)

Salati Parinaz

2012-01-01

Full Text Available The ninth olefin plan of Arya Sasol Petrochemical Company (A.S.P.C. is regarded the largest gas Olefin Unit located on Pars Special Economic Energy Zone (P.S.E.E.Z. Considering the importance of the petrochemical unit, its environmental assessment seems necessary to identify and reduce potential hazards. For this purpose, after determining the scope of the study area, identification and measurement of the environmental parameters, environmental risk assessment of the unit was carried out using Environment Failure Mode and Effect Analysis (EFMEA. Using the noted method, sources causing environmental risks were identified, rated and prioritized. Beside, the impacts of the environmental aspects derived from the unit activities as well as their consequences were also analyzed. Furthermore, the identified impacts were prioritized based on Risk Priority Number (RPN and severity level of the consequences imposed on the affected environment. After performing statistical calculations, it was found that the environmental aspects owing the risk priority number higher than 15 have a high level of risk. Results obtained from Low Density Polyethylene Unit revealed that the highest risk belongs to the emergency vent system with risk priority number equal to 48. It is occurred due to imperfect performance of the reactor safety system leading to the emissions of ethylene gas, particles, and radioactive steam as well as air and noise pollutions. Results derived from secondary assessment of the environmental aspects, through difference in calculated RPN and activities risk levels showed that employing modern methods and risk assessment are have remarkably reduced the severity of risk and consequently detracted the damages and losses incurred on the environment.

15. Jet Joint Undertaking. Vol. 2

International Nuclear Information System (INIS)

1989-06-01

The scientific, technical, experimental and theoretical investigations related to JET tokamak are presented. The JET Joint Undertaking, Volume 2, includes papers presented at: the 15th European Conference on controlled fusion and plasma heating, the 15th Symposium on fusion technology, the 12th IAEA Conference on plasma physics and controlled nuclear fusion research, the 8th Topical Meeting on technology of fusion. Moreover, the following topics, concerning JET, are discussed: experience with wall materials, plasma performance, high power ion cyclotron resonance heating, plasma boundary, results and prospects for fusion, preparation for D-T operation, active gas handling system and remote handling equipment

16. Boosted jets

International Nuclear Information System (INIS)

Juknevich, J.

2014-01-01

We present a study of the substructure of jets high transverse momentum at hadron colliders. A template method is introduced to distinguish heavy jets by comparing their energy distributions to the distributions of a set of templates which describe the kinematical information from signal or background. As an application, a search for a boosted Higgs boson decaying into bottom quarks in association with a leptonically decaying W boson is presented as well. (author)

17. Numerical simulation of sand jet in water

Energy Technology Data Exchange (ETDEWEB)

Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

2008-07-01

A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.

18. Emerging Jets

CERN Document Server

Schwaller, Pedro; Weiler, Andreas

2015-01-01

In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

19. Emerging jets

Energy Technology Data Exchange (ETDEWEB)

Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

2015-02-15

In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

20. Emerging jets

International Nuclear Information System (INIS)

Schwaller, Pedro; Stolarski, Daniel

2015-02-01

In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

1. Experimental atheromatous plaque imaging with 99mTc labelled low density lipoproteins in rabbit

International Nuclear Information System (INIS)

Wang Quanshi; Chen Yu; Wu Chunshan; Zhang Yijin; Liu Dexuan

1996-01-01

Atheromatous plaque imaging with 99m Tc labeled low density lipoproteins ( 99m Tc-LDL) were evaluated in rabbits for its clinical prospect. The 99m Tc-LDL atheromatous plaque imaging were performed in 9 rabbit models of atherosclerosis and 4 controls. The imagings were compared with autoradiographic and pathological results. The rabbit models of atherosclerosis by high cholesterol and high fat diet were successful in 100%. The atheromatous plaques well visualized in 8 of 9 rabbit models 24 hours after injection. The site and density of radioactive accumulation was closely correlated in autoradiography also. There was no radioactive spot in 4 controls. 99m Tc-LDL imaging may have a significant value for the diagnosis of atherosclerosis

2. Fullerene-based low-density superhard materials with tunable bandgaps

Science.gov (United States)

Cao, Ai-Hua; Zhao, Wen-Juan; Gan, Li-Hua

2018-06-01

Four carbon allotropes built from tetrahedral symmetrical fullerenes C28 and C40 are predicted to be superhard materials with mass density around that of water, and all of them are porous semiconductors. Both the bandgaps and hardness decrease with increasing ratio of sp2 hybridized carbon atoms. The mechanical and thermodynamic stabilities of C28- and C40-based allotropes at zero pressure are confirmed by a variety of state-of-the-art theoretical calculations. The evolution trend of bandgap found here suggests that one can obtain low-density hard materials with tunable bandgaps by substituting the carbon atom in diamond with different Td-symmetrical non-IPR fullerene Cn.

3. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

Energy Technology Data Exchange (ETDEWEB)

Guzman, Manuel; Giraldo, Diego; Murillo, Edwin, E-mail: edwinalbertomurillo@gmail.com [Universidad de Antioquia, Medellin (Colombia); Universidad Francisco de Paula Santander, San Jose de Cucuta (Colombia)

2017-01-15

n this work, low density polyethylene (LDPE)/plasticised starch (TPS) blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young's modulus and tensile strength) improved ostensibly. The Young' modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior. (author)

4. An FPGA Implementation of (3,6-Regular Low-Density Parity-Check Code Decoder

Directory of Open Access Journals (Sweden)

Tong Zhang

2003-05-01

Full Text Available Because of their excellent error-correcting performance, low-density parity-check (LDPC codes have recently attracted a lot of attention. In this paper, we are interested in the practical LDPC code decoder hardware implementations. The direct fully parallel decoder implementation usually incurs too high hardware complexity for many real applications, thus partly parallel decoder design approaches that can achieve appropriate trade-offs between hardware complexity and decoding throughput are highly desirable. Applying a joint code and decoder design methodology, we develop a high-speed (3,k-regular LDPC code partly parallel decoder architecture based on which we implement a 9216-bit, rate-1/2(3,6-regular LDPC code decoder on Xilinx FPGA device. This partly parallel decoder supports a maximum symbol throughput of 54 Mbps and achieves BER 10Ã¢ÂˆÂ’6 at 2 dB over AWGN channel while performing maximum 18 decoding iterations.

5. Biodistribution parameters and radiation absorbed dose estimates for radiolabeled human low density lipoprotein

International Nuclear Information System (INIS)

Hay, R.V.; Ryan, J.W.; Williams, K.A.; Atcher, R.W.; Brechbiel, M.W.; Gansow, O.A.; Fleming, R.M.; Stark, V.J.; Lathrop, K.A.; Harper, P.V.

1992-01-01

The authors propose a model to generate radiation absorbed dose estimates for radiolabeled low density lipoprotein (LDL), based upon eight studies of LDL biodistribution in three adult human subjects. Autologous plasma LDL was labeled with Tc-99m, I-123, or In-111 and injected intravenously. Biodistribution of each LDL derivative was monitored by quantitative analysis of scintigrams and direct counting of excreta and of serial blood samples. Assuming that transhepatic flux accounts for the majority of LDL clearance from the bloodstream, they obtained values of cumulated activity (A) and of mean dose per unit administered activity (D) for each study. In each case highest D values were calculated for liver, with mean doses of 5 rads estimated at injected activities of 27 mCi, 9 mCi, and 0.9 mCi for Tc-99m-LDL, I-123-LDL, and In-111-LDL, respectively

6. Effect of fiber geometry on macroscale friction of ordered low-density polyethylene nanofiber arrays.

Science.gov (United States)

Lee, Dae Ho; Kim, Yongkwan; Fearing, Ronald S; Maboudian, Roya

2011-09-06

Ordered low-density polyethylene (LDPE) nanofiber arrays are fabricated from silicon nanowire (SiNW) templates synthesized by a simple wet-chemical process based on metal-assisted electroless etching combined with colloidal lithography. The geometrical effect of nanofibrillar structures on their macroscale friction is investigated over a wide range of diameters and lengths under the same fiber density. The optimum geometry for contacting a smooth glass surface is presented with discussions on the compromise between fiber tip-contact area and fiber compliance. A friction design map is developed, which shows that the theoretical optimum design condition agrees well with the LDPE nanofiber geometries exhibiting high measured friction. © 2011 American Chemical Society

7. Low-density carbonized composite foams for direct-drive laser ICF targets

International Nuclear Information System (INIS)

Kong, Fung-Ming.

1989-03-01

The design for a direct-drive, high-gain laser inertial confinement fusion target calls for the use of a low-density, low-atomic-number foam to confine and stabilize liquid deuterium-tritium (DT) in a spherical-shell configuration. Over the past two years, we have successfully developed polystyrene foams (PS) and carbonized resorcinol-formaldehyde foams (CRF) for that purpose. Both candidates are promising materials with unique characteristics. PS has superior mechanical strength and machinability, but its relatively large thermal contraction is a significant disadvantage. CRF has outstanding wettability and dimensional stability in liquid DT; yet it is much more fragile than PS. To combine the strengths of both materials, we have recently developed a polymer composite foam which exceeds PS in mechanical strength, but retains the wettability and dimension stability of CRF. This paper will discuss the preparation, structure, and properties of the polymer composite foams. 5 refs., 1 fig., 1 tab

8. Exposure to long wavelength ultraviolet radiation decreases processing of low density lipoprotein by cultured human fibroblasts

International Nuclear Information System (INIS)

Djavaheri-Mergny, M.; Santus, R.; Mora, L.; Maziere, J.C.; Faculte de Medecine Saint-Antoine, 75 -Paris; Maziere, C.; Auclair, M.; Dubertret, L.

1993-01-01

Exposure of MRC5 human fibroblasts to UVA radiation (365 nm) resulted in a dose-dependent decrease in low density lipoprotein (LDL) uptake and degradation by cells. Following a 25 J/cm 2 irradiation dose, about 45% and 70% reduction in 125 I-LDL uptake and degradation were observed, respectively. Under the same conditions, the 14 C-sucrose uptake was also decreased to about the same extent as LDL uptake. Cell pretreatment with the antioxidants vitamin E and vitamin C did not prevent the UVA-induced fall in LDL degradation. These results point to the possible effects of UVA radiation on receptor-mediated and nonspecific uptake of exogenous molecules. With special regard to the alterations in receptor-mediated processing of exogenous ligands, such a phenomenon could be of importance in UVA-induced skin degenerative processes. (Author)

9. Degradation assessment of natural weathering on low density polyethylene/thermoplastic soya spent powder blends

Science.gov (United States)

Nuradibah, M. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.

2015-07-01

Soya spent powder was blended with low density polyethylene (LDPE) ranging from 5-25 wt%. Glycerol was added to soya spent powder (SSP) for preparation of thermoplastic soya spent powder (TSSP). Then, the blends were exposed to natural weathering for 6 months. The susceptibility of the LDPE/soya spent powder blends based on its tensile, morphological properties and structural changes was measured every three months. The tensile strength of LDPE/TSSP blends after 6 months of weathering was the lowest compared to the other blends whereas LDPE/SSP blends after 6 months of weathering demonstrated the lowest elongation at break (Eb). Large pore can be seen on the surface of 25 wt% of LDPE/SSP blends.

10. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

Directory of Open Access Journals (Sweden)

Manuel Guzmán

Full Text Available Abstract In this work, low density polyethylene (LDPE/plasticized starch (TPS blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young’s modulus and tensile strength improved ostensibly. The Young’ modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior.

11. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy

Science.gov (United States)

Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph

2017-01-01

Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944

12. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein.

Science.gov (United States)

Li, Zhijuan; Cheng, Jianxin; Wang, Liping

2015-10-30

Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. Copyright © 2015. Published by Elsevier Inc.

13. Lipid oxidation in human low-density lipoprotein induced by metmyoglobin/H2O2

DEFF Research Database (Denmark)

Witting, P K; Willhite, C A; Davies, Michael Jonathan

1999-01-01

Metmyoglobin (metMb) and H(2)O(2) can oxidize low-density lipoprotein (LDL) in vitro, and oxidized LDL may be atherogenic. The role of alpha-tocopherol (alpha-TOH) in LDL oxidation by peroxidases such as metMb is unclear. Herein, we show that during metMb/H(2)O(2)-induced oxidation of native LDL...... of CE-O(O)H is dependent on, and correlates with, LDL's alpha-TOH content, yet does not require preformed lipid hydroperoxides or H(2)O(2). This indicates that in native LDL alpha-TOH can act as a phase-transfer agent and alpha-TO(*) as a chain-transfer agent propagating LDL lipid peroxidation via...

14. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction

DEFF Research Database (Denmark)

Abdo, Adrian; Rayner, B.S.; van Reyk, D.M.

2017-01-01

Low-density lipoprotein (LDL) modified by hypochlorous acid (HOCl) produced by myeloperoxidase (MPO) is present in atherosclerotic lesions, where it is implicated in the propagation of inflammation and acceleration of lesion development by multiple pathways, including the induction of endothelial......, although emerging evidence suggests that these particles have distinct biological properties. This is important because elevated plasma SCN- is linked with both the propagation and prevention of atherosclerosis. In this study, we demonstrate that both HOSCN- and HOCl-modified LDL inhibit endothelium......-mediated vasorelaxation ex vivo in rat aortic ring segments. In vitro experiments with human coronary artery endothelial cells show that HOSCN-modified LDL decreases in the production of nitric oxide (NO•) and induces the loss of endothelial nitric oxide synthase (eNOS) activity. This occurs to a similar extent...

15. Accumulation and interaction of hypericin in low-density lipoprotein--a photophysical study.

Science.gov (United States)

Mukherjee, Prasun; Adhikary, Ramkrishna; Halder, Mintu; Petrich, Jacob W; Miskovsky, Pavol

2008-01-01

The accumulation and interaction of hypericin with the biologically important macromolecule, low-density lipoprotein (LDL), is investigated using various steady-state and time-resolved fluorescence measurements. It is concluded that multiple hypericins can penetrate considerably deeply into the LDL molecule. Up to approximately 20 nonaggregated hypericin molecules can enter LDL; but upon increasing the hypericin concentration, the fluorescence lifetime of hypericin decreases drastically, suggesting most likely the self-quenching of aggregated hypericin. There is also evidence of energy transfer from tryptophans of the constituent protein, apoB-100, to hypericin in LDL. The results demonstrate the ability of LDL to solubilize hypericin (a known photosensitizer) in nonaggregated form, which has implications for the construction of drug delivery systems.

16. Transport tensors in perfectly aligned low-density fluids: Self-diffusion and thermal conductivity

International Nuclear Information System (INIS)

Singh, G. S.; Kumar, B.

2001-01-01

The modified Taxman equation for the kinetic theory of low-density fluids composed of rigid aspherical molecules possessing internal degrees of freedom is generalized to obtain the transport tensors in a fluid of aligned molecules. The theory takes care of the shape of the particles exactly but the solution has been obtained only for the case of perfectly aligned hard spheroids within the framework of the first Sonine polynomial approximation. The expressions for the thermal-conductivity components have been obtained for the first time whereas the self-diffusion components obtained here turn out to be exactly the same as those derived by Kumar and Masters [Mol. Phys. >81, 491 (1994)] through the solution of the Lorentz-Boltzmann equation. All our expressions yield correct results in the hard-sphere limit

17. Direct effects of fatty meals and adiposity on oxidised low-density lipoprotein.

Science.gov (United States)

Laguna-Camacho, Antonio; Alonso-Barreto, Arely S; Mendieta-Zerón, Hugo

2015-01-01

High-fat intake and high adiposity contribute to hyperlipaemia. In a hyperlipaemic state, lipoproteins infiltrate arterial wall where they are modified and cause an immune response characteristic of atherosclerosis. A small fraction of modified lipoproteins including oxidised low-density lipoprotein (ox-LDL) returns to circulation. The present study tracked high-fat meals during four weeks as to find effects of sustained frequency change on adiposity and ox-LDL. The findings indicated that changes in frequency of consumption of high-fat eating episodes correlated directly with changes in adiposity and ox-LDL. Hence the number of fatty meals consumed by people with overweight or obesity in few weeks could affect the atherogenic process. Copyright © 2015 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

18. Quantitative orientational characterization if low - density polyethylene blow films by x-ray and birefringence

International Nuclear Information System (INIS)

Taheri Qazvini, N.; Mohammadi, N.; Ghaffarian, R.; Assempour, H.; Haghighatkish, M.

2002-01-01

The effect of two important parameters of film blowing processes, i.e., take-up ration and blow-up ratio, on the overall orientation of low-density blown films have been investigated using birefringence measurements. Furthermore, by combining x-ray diffraction pole figure analysis and birefringence, the White and Spruiell biaxial orientation functions have been determined for aforementioned sample. Within the range of processing condition studied, increasing take-up ratio, increases orientation in both machine and transverse direction. Upon increasing blow-up ratio, orientation in the transverse direction increases and the overall orientation state approaches to equal biaxial one. Characterization of the crystalline regions by pole figure analysis reveals that a and b crystallographic axes preferentially orientate in the film plane and the direction normal to it, respectively. The amorphous regions do not have any preferential orientation

19. Mechanical and morphological study of linear low density polyethylene (LLDPE)/cyperus odoratus (CY) biocomposites

Science.gov (United States)

Faris, N. A.; Noriman, N. Z.; Haron, Adli; Sam, S. T.; Hamzah, R.; Shayfull, Z.; Ghazali, M. F.

2017-09-01

The potential of Cyperus Odoratus (CY) as a filler was studied. The CY, in a powder form, was mixed with Linear Low Density Polyethylene (LLDPE), prior to being fed into a twin screw extruder and subsequently into an injection moulding machine to produce LLDPY/CY biocomposites. The Scanning Electron Microscope (SEM) was utilized and tensile tests were performed on the test specimens to characterize the structure and properties of the composites. The integration of CY powder and LLDPE resulted in an increment of the modulus of elasticity, but a reduction in tensile strength and elongation at break. The morphology characterization of these composites, determined through the SEM, showed poor interfacial adhesion between the filler and the thermoplastic LLDPE matrix.

20. Typical performance of regular low-density parity-check codes over general symmetric channels

International Nuclear Information System (INIS)

2003-01-01

Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models

1. Effect of high density lipoproteins on permeability of rabbit aorta to low density lipoproteins

International Nuclear Information System (INIS)

Klimov, A.N.; Popov, V.A.; Nagornev, V.A.; Pleskov, V.M.

1985-01-01

A study was made on the effect of high density lipoproteins (HDL) on the permeability of rabbit aorta to low density lipoproteins (LDL) after intravenous administration of human HDL and human ( 125 I)LDL to normal and hypercholesterolemic rabbits. Evaluation of radioactivity in plasma and aorta has shown that the administration of a large dose of HDL decreased the aorta permeability rate for ( 125 I)LDL on an average by 19% in normal rabbits, and by 45% in rabbits with moderate hypercholesterolemia. A historadiographic study showed that HDL also decreased the vessel wall permeability to ( 125 I)LDL in normal and particularly in hypercholesterolemic animals. The suggestion was made that HDL at very high molar concentration can hamper LDL transportation through the intact endothelial layer into the intima due to the ability of HDL to compete with LDL in sites of low affinity on the surface of endothelial cells. (author)

2. Characterization of injected linear low density polyethylene (LLDPE) irradiated by gamma-ray

International Nuclear Information System (INIS)

Oliveira, Ana C.F.; Parra, Duclerc F.; Ferreto, Helio F.R.; Lugao, Ademar B.

2013-01-01

The aim of this paper is to investigate of gamma irradiation effects on linear low density polyethylene (LLDPE) injected. Polymers processed by gamma radiation have new physical-chemical and mechanical properties. The ionizing radiation promotes chain scission and creates free radicals which can recombine, providing their annihilation, for crosslinking or branching. The polymer was irradiated with a source of 60 Co at doses of 5, 10, 20, 50 or 100 kGy at about 5 kGy s -1 rate, at room temperature. The changes in molecular structure of LLDPE were evaluated using melt flow index, gel fraction, differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR) and thermogravimetry analysis (TG). The results showed that the properties depend on dose irradiation. (author)

3. Thermal, tensile and rheological properties of low density polyethylene (LDPE) processed irradiated by gamma-ray

International Nuclear Information System (INIS)

Ferreto, Helio F.R.; Oliveira, Ana C.F. de; Parra, Duclerc F.; Lugao, Ademar B.

2013-01-01

The aim of this paper is to investigate structural changes of low density polyethylene (LDPE) modified by ionizing radiation (gamma rays). The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. The samples were prepare in hydraulic press in temperature 180 deg C after was irradiated with gamma source of 60 Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h in inert atmosphere. The changes in molecular structure of LDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere. (author)

4. Field emission properties of low-density carbon nanotubes prepared on anodic aluminum-oxide template

Energy Technology Data Exchange (ETDEWEB)

Jeong, Soo-Hwan [Samsung Advanced Institute of Technology, Suwon (Korea, Republic of); Lee, Kun-Hong [Pohang University of Science and Technology, Pohang (Korea, Republic of)

2004-08-15

Anodic aluminum-oxide (AAO) templates were fabricated by two-step anodizing an Al film. After the Co catalyst had been electrochemically deposited onto the bottom of the AAO template, carbon nanotubes (CNTs) were grown by using catalytic pyrolysis of C{sub 2}H{sub 2} and H{sub 2} at 650 .deg. C. Overgrowth of CNTs with low density on the AAO templates was observed. The field-emission measurements on the samples showed a turn-on field of 2.17 V/mum and a field enhancement factor of 5700. The emission pattern on a phosphor screen was quite homogeneous over the area at a relatively low electric field.

5. Spatially coupled low-density parity-check error correction for holographic data storage

Science.gov (United States)

Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro

2017-09-01

The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.

6. Typical performance of regular low-density parity-check codes over general symmetric channels

Energy Technology Data Exchange (ETDEWEB)

Tanaka, Toshiyuki [Department of Electronics and Information Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397 (Japan); Saad, David [Neural Computing Research Group, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

2003-10-31

Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models.

7. Entanglement-assisted quantum low-density parity-check codes

International Nuclear Information System (INIS)

Fujiwara, Yuichiro; Clark, David; Tonchev, Vladimir D.; Vandendriessche, Peter; De Boeck, Maarten

2010-01-01

This article develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error-correction performance, high rates, and low decoding complexity. The proposed method produces several infinite families of codes with a wide variety of parameters and entanglement requirements. Our framework encompasses the previously known entanglement-assisted quantum LDPC codes having the best error-correction performance and many other codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.

8. Entanglement-assisted quantum quasicyclic low-density parity-check codes

Science.gov (United States)

Hsieh, Min-Hsiu; Brun, Todd A.; Devetak, Igor

2009-03-01

We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasicyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Skor-Steane construction do not need to satisfy the dual-containing property as long as preshared entanglement is available to both sender and receiver. We can use this to avoid the many four cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.

9. Quantum Kronecker sum-product low-density parity-check codes with finite rate

Science.gov (United States)

Kovalev, Alexey A.; Pryadko, Leonid P.

2013-07-01

We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.

10. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

DEFF Research Database (Denmark)

Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter

2005-01-01

One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross-linking on th......One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross......-linking on the rheological behaviour of low density polyethylene was investigated by using a combination of creep test and differential scanning calorimeter (DSC) in isotherm condition. The used peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out at 150,160, and 170 degrees C...

11. Gamma radiation effects on the rheological properties of high and low density polyethylenes

International Nuclear Information System (INIS)

Rangel-Nafaile, C.; Garcia-Rejon, A.; Garcia Leon, A.

1986-01-01

High energy radiation of polymeric materials is a topic of considerable interest from commercial and scientific points of view. Within an inert atmosphere, irradiation of polyethylene yields a crosslinking effect with a consequent improvement in its mechanical properties in comparison to the virgin materials. Additionally, if irradiated specimens are melted and recrystallized, the radiation-induced crosslinking hinders their crystalline growth altering dramatically their flow properties such as the elasticity. This work portrays the effects of the gamma radiation on the rheological properties of high and low density polyethylenes manufactured by PEMEX and analyzes the implications of theoretical results derived from the Acierno's model when it is implemented with the rheological properties of high energy irradiated polyethylenes. (author)

12. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins

DEFF Research Database (Denmark)

Pattison, David I; Hawkins, Clare Louise; Davies, Michael Jonathan

2003-01-01

Oxidation of low-density lipoproteins (LDL) is believed to contribute to the increased uptake of LDL by macrophages, which is an early event in atherosclerosis. Hypochlorous acid (HOCl) has been implicated as one of the major oxidants involved in these processes. In a previous study, the rates...... of reaction of HOCl with the reactive sites in proteins were investigated (Pattison, D. I., and Davies, M. J. (2001) Chem. Res. Toxicol. 14, 1453-1464). The work presented here expands on those studies to determine absolute second-order rate constants for the reactions of HOCl with various lipid components...... nitrogen- and carbon-centered radicals. Subsequent reactions of these species may induce oxidation of the LDL lipid component. In contrast, phosphoryl-choline reacted much more slowly (k Reaction of HOCl with 3-pentenoic acid was used as a model of lipid double bonds...

13. Pregnancy in a Woman with Homozygous Familial Hypercholesterolemia Not on Low-Density Lipoprotein Apheresis

Directory of Open Access Journals (Sweden)

Akl C. Fahed

2012-11-01

Full Text Available Pregnancy in women with homozygous familial hypercholesterolemia (FH has been rarely reported and might pose risks on the mother and her fetus. Although most reported cases remained on low-density lipoprotein (LDL apheresis, there are no clear guidelines regarding the management of this entity. We report the first case of an uncomplicated pregnancy in a 24-year-old homozygous FH woman who was not maintained on LDL apheresis. FH expresses a wide variability in the phenotype, and management of homozygous FH cases who desire to become pregnant should be individualized based on preconceptional assessment with frequent antenatal follow-up. Decisions on management should be made after weighing the risks versus benefits of LDL apheresis.

14. In vitro biological efficacy of boronated low density lipoproteins for NCT

International Nuclear Information System (INIS)

Kahl, S.B.; Pate, D.; Laster, B.H.; Popenoe, E.A.; Fairchild, R.G.

1992-01-01

Low Density Lipoproteins (LDLs) are known to be internalized within the cell by receptor-mediated mechanisms. There is evidence that LDLs may be taken up avidly by tumor cells to provide cholesterol for the synthesis of cell membrane. Thus, the possibility exists that LDLs may provide an ideal vehicle for the transport of boron to tumor cells for Neutron Capture Therapy (NCT). A boronated analog of LDL has recently been synthesized for possible application in NCT. The analog was tested in cell culture for uptake and biological efficacy in the thermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). It was found that boron concentrations ten times higher than that required for NCT were easily obtained, and that uptake data were constant with a receptor mediated binding mechanism. The measured intracellular concentration of ∼240 μg 10 B/g cells is significantly higher than that obtained with any other boron compound previously evaluated for possible clinical application

15. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

International Nuclear Information System (INIS)

2010-01-01

Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

16. Low-density, one-dimensional quantum gases in the presence of a localized attractive potential

International Nuclear Information System (INIS)

Goold, J; O'Donoghue, D; Busch, Th

2008-01-01

We investigate low-density, quantum-degenerate gases in the presence of a localized attractive potential in the centre of a one-dimensional harmonic trap. The attractive potential is modelled using a parameterized δ-function, allowing us to determine all single-particle eigenfunctions analytically. From these we calculate the ground-state many-body properties for a system of spin-polarized fermions and, using the Bose-Fermi mapping theorem, extend the results to strongly interacting bosonic systems. We discuss the single-particle densities, the pair-correlation functions, the reduced single-particle density matrices and the momentum distributions as a function of the particle number and strength of the attractive point potential. As an important experimental observable, we place special emphasis on spatial coherence properties of such samples.

17. Low-density, high-strength intermetallic matrix composites by XD (trademark) synthesis

Science.gov (United States)

Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.

1991-01-01

A feasibility study was conducted to evaluate the potential of particulate composites based on low-density, L1(sub 2) trialuminide matrices for high-temperature applications. The compounds evaluated included Al22Fe3Ti8 (as a multiphase matrix), Al67Ti25Cr8, and Al66Ti25Mn9. The reinforcement consisted of TiB2 particulates. The TiB2 composites were processed by ingot and powder metallurgy techniques. Microstructural characterization and mechanical testing were performed in the hot-pressed and hot-isostatic-pressed condition. The casting were sectioned and isothermally forged into pancakes. All the materials were tested in compression as a function of temperature, and at high temperatures as a function of strain rate. The test results are discussed.

18. The Positronium Radiative Combination Spectrum: Calculation in the Limit of Thermal Positrons and Low Densities

Science.gov (United States)

Wallyn, P.; Mahoney, W. A.; Durouchoux, Ph.; Chapuis, C.

1996-01-01

We calculate the intensities of the positronium de-excitation lines for two processes: (1) the radiative combination of free thermal electrons and positrons for transitions with principal quantum number n less than 20, and (2) charge exchange between free positrons and hydrogen and helium atoms, restricting our evaluation to the Lyman-alpha line. We consider a low-density medium modeled by the case A assumption of Baker & Menzel and use the "nL method" of Pengelly to calculate the absolute intensities. We also evaluate the positronium fine and hyperfine intensities and show that these transitions are in all cases much weaker than positronium de-excitation lines in the same wavelength range. We also extrapolate our positronium de-excitation intensities to the submillimeter, millimeter, and centimeter wavelengths. Our results favor the search of infrared transitions of positronium lines for point sources when the visual extinction A, is greater than approx. 5.

19. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets

International Nuclear Information System (INIS)

Carotenuto, G; Palomba, M; De Nicola, S; Pullini, D; Horsewell, A; Hansen, T W; Nicolais, L

2012-01-01

The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change in the microscopic structure of the polymer. However, on a macroscopic scale, GNPs limit the mobility of the polymer chains, resulting in an increase in stiffness for the final composite. Orientation of GNPs within the LDPE matrix is also an important issue that affects mechanical properties and it has been evaluated by testing nanocomposites made by different manufacturing techniques (compression moulding and blown extrusion). The comparison between the experimental data and the Halpin–Tsai model shows that the orientation of GNPs due to the extrusion process leads to values of tensile modulus higher than that obtained with the randomly oriented disposition resulting from the compression moulding technique. (paper)

20. Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality

Science.gov (United States)

Requejo, B. A.; Pajarito, B. B.

2017-05-01

Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.

1. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

Science.gov (United States)

2010-12-01

Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

2. Theoretical prediction of low-density hexagonal ZnO hollow structures

Energy Technology Data Exchange (ETDEWEB)

Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Huan, Tran Doan [Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136 (United States); Thao, Nguyen Thi [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam); Tuan, Le Manh [Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam)

2016-10-14

Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.

3. Low density lipoprotein levels linkage with the periodontal status patients of coronary heart disease

Science.gov (United States)

2017-02-01

Studies found an association between periodontitis and coronary heart disease (CHD), but relationship between periodontal status CHD patients with LDL (Low Density Lipoprotein) levels, as risk factors for atherosclerosis, has not been studied. Objective: To analyze relationship between LDL and periodontal status CHD. Methods: Periodontal status of 60 CHD, 40 controls were examined (PBI, PPD, CAL) and their blood was taken to assess levels of LDL. Result: Found significant differences LDL (p=0.005), correlation between LDL with PPD (p=0.003) and CAL CHD (p=0.013), and PPD (p=0.001), CAL (p=0.008) non-CHD, but no significant correlation between LDL with PBI CAD (p=0.689) and PBI non-CHD (p=0.320). Conclusion: There is a correlation between the LDL levels with periodontal status.

4. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

Energy Technology Data Exchange (ETDEWEB)

Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

1991-12-01

The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

5. Effect of low density H-mode operation on edge and divertor plasma parameters

International Nuclear Information System (INIS)

Maingi, R.; Mioduszewski, P.K.; Cuthbertson, J.W.

1994-07-01

We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation

6. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

DEFF Research Database (Denmark)

Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

2012-01-01

) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface....... Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence......Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively...

7. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

International Nuclear Information System (INIS)

Guzman, Manuel; Giraldo, Diego; Murillo, Edwin

2017-01-01

n this work, low density polyethylene (LDPE)/plasticised starch (TPS) blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young's modulus and tensile strength) improved ostensibly. The Young' modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior. (author)

8. Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene

Directory of Open Access Journals (Sweden)

Fabiane Oliveira Farias

2014-12-01

Full Text Available The main objective of this study was to characterise the cassava bagasse and to evaluate its addition in composites. Two cassava bagasse samples were characterised using physicochemical, thermal and microscopic techniques, and by obtaining their spectra in the mid-infrared region and analysing them by using x-ray diffraction. Utilising sorption isotherms, it was possible to establish the acceptable conditions of temperature and relative humidity for the storage of the cassava bagasse. The incorporation of cassava bagasse in a low-density polyethylene (LDP matrix was positive, increasing the elasticity modulus values from 131.90 for LDP to 186.2 for 70% LDP with 30% SP bagasse. These results were encouraging because cassava bagasse could serve as a structural reinforcement, as well as having environmental advantages for its application in packaging, construction and automotive parts.

9. Tourism territories in low density areas: The case of Naturtejo geopark in Portugal

Directory of Open Access Journals (Sweden)

George Manuel de Almeida Ramos

2016-06-01

Full Text Available This paper aims to supply some elements regarding tourism territories’ building in low density areas, and to corroborate the creation of a specific tourism territory (the Naturtejo Geopark by the role carried out by a new territorial actor – Naturtejo, EIM (a Portuguese geopark´s management firm - allowing tourism activities within a territorial scope different from the traditional territorial units’ partition. The methodology applied is based on literature review and a specific case study used to show the creation of a new tourism territory. The results achieved suggest that concerted action in this new tourism territory has been producing positive effects from the supply-side point of view.

10. Low density lipoprotein: structure, dynamics, and interactions of apoB-100 with lipids

DEFF Research Database (Denmark)

Murtola, T.; Vuorela, T. A.; Hyvonen, M. T.

2011-01-01

's structural information makes it more difficult to understand its function. In this work, we have combined experimental and theoretical data to construct LDL models comprised of the apoB-100 protein wrapped around a lipid droplet of about 20 nm in size. The models are considered by near-atomistic multi......-microsecond simulations to unravel structural as well as dynamical properties of LDL, with particular attention paid to lipids and their interactions with the protein. We find that the distribution and the ordering of the lipids in the LDL particle are rather complex. The previously proposed 2- and 3- layer models turn......Low-density lipoprotein (LDL) transports cholesterol in the bloodstream and plays an important role in the development of cardiovascular diseases, in particular atherosclerosis. Despite its importance to health, the structure of LDL is not known in detail. This is worrying since the lack of LDL...

11. Effect of Aspergillus versicolor strain JASS1 on low density polyethylene degradation

Science.gov (United States)

Gajendiran, A.; Subramani, S.; Abraham, J.

2017-11-01

Low density polyethylene (LDPE) waste disposal remains one of the major environmental concerns faced by the world today. In past decades, major focus has been given to enhance the biodegradation of LDPE by microbial species. In this present study, Aspergillus versicolor with the ability to degrade LDPE was isolated from municipal landfill area using enrichment technique. Based on 18S rRNA gene sequencing confirmed its identity as Aspergillus versicolor. The biodegradation study was carried out for 90 d in M1 medium. The degradation behaviour of LDPE films by Aspergillus versicolor strain JASS1 were confirmed by weight loss, CO2 evolution, Scanning electron microscopy (SEM) analysis, Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) technique. From current investigation, it can be concluded that our isolated strain JASS1 had the potential to degrade LDPE films and it can be useful in solving the problem caused by polyethylene in the environment.

12. Cryogenic mechanical properties of low density superplastically formable Al-Li alloys

Science.gov (United States)

Verzasconi, S. L.; Morris, J. W., Jr.

1989-01-01

The aerospace industry is considering the use of low density, superplastically formable (SPF) materials, such as Al-Li alloys in cryogenic tankage. SPF modifications of alloys 8090, 2090, and 2090+In were tested for strength and Kahn tear toughness. The results were compared to those of similar tests of 2219-T87, an alloy currently used in cryogenic tankage, and 2090-T81, a recently studied Al-Li alloy with exceptional cryogenic properties (1-9). With decreasing temperature, all materials showed an increase in strength, while most materials showed an increase in elongation and decrease in Kahn toughness. The indium addition to 2090 increased alloy strength, but did not improve the strength-toughness combination. The fracture mode was predominantly intergranular along small, recrystallized grains, with some transgranular fracture, some ductile rupture, and some delamination on large, unrecrystallized grains.

13. Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemical Properties for Treatment of intracranial Aneurysms

Energy Technology Data Exchange (ETDEWEB)

Singhal, Pooja [Texas A & M Univ., College Station, TX (United States)

2013-12-01

Shape memory polymers (SMPs) are a rapidly emerging class of smart materials that can be stored in a deformed temporary shape, and can actively return to their original shape upon application of an external stimulus such as heat, pH or light. This behavior is particularly advantageous for minimally invasive biomedical applications comprising embolic/regenerative scaffolds, as it enables a transcatheter delivery of the device to the target site. The focus of this work was to exploit this shape memory behavior of polyurethanes, and develop an efficient embolic SMP foam device for the treatment of intracranial aneurysms.In summary, this work reports a novel family of ultra low density polymer foams which can be delivered via a minimally invasive surgery to the aneurysm site, actuated in a controlled manner to efficiently embolize the aneurysm while promoting physiological fluid/blood flow through the reticulated/open porous structure, and eventually biodegrade leading to complete healing of the vasculature.

14. Radiochemical and immunohistochemical detection of low density lipoprotein surface binding by lymphocytes

International Nuclear Information System (INIS)

Melzner, I.; Hambitzer, R.; Haferkamp, O.

1983-01-01

Human peripheral blood lymphocytes bind and take up low density lipoprotein (LDL) by receptor-mediated endocytosis. The binding of LDL was determiend by incubation with 125 I-LDL and an immunohistochemical assay. By both techniques a diminished rate of binding was found when cells were freshly isolated from the blood, but increased 5 to 10 fold when lymphocytes were incubated in lipoprotein-deficient medium for 72 hours. In addition, it was shown immunohistochemically that only few ceels showed an LDL-dependent fluorescent labelling: approximately 5 to 10 % of the freshly isolated lymphocytes and 40 to 50 % of the cells incubated for 72 hours under lipoprotein-free conditions. The present data indicate that not only the high affinity LDL receptor described by Goldstein and Braun may be involved in the uptake of cholesterol by lymphocytes, but also other binding sites, which may have immunological function in some lymphocyte subpopulations. (author)

15. Linear low density polyethylene (LLDPE) and lamellar zirconium phosphate (Zr P) composites: morphology and mechanical properties

International Nuclear Information System (INIS)

Silva, Daniela F.; Mandes, Luis C.; Lino, Adan S.

2011-01-01

Composites of linear low density polyethylene (LLDPE) and zirconium phosphate (ZrP) were prepared by extrusion in the molten state, containing 2 (w%) of the lamellar filler. The filler was previously synthesized by direct precipitation method and characterized. After processing, the composite and the pure virgin polymer were molded by compression in order to obtain films of 1 mm thick which were characterized by X-ray diffraction at high angle (WAXD), stress-strain mechanical analysis and scanning electron microscopy (SEM). The WAXD and SEM analysis showed that there was no intercalation of LLDPE in zirconium phosphate, possibly due to the fact that the layers do not have spacing enough to allow the intercalation of polymer chains in the galleries of the filler and thus allow the exfoliation. (author)

16. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

Science.gov (United States)

Colombo, P.; Kalb, P.D.

1984-06-05

In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

17. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein

Science.gov (United States)

Arai, Hirofumi; Berlett, Barbara S.; Chock, P. Boon; Stadtman, Earl R.

2005-07-01

Oxidation of low-density lipoprotein (LDL) may play an important role in atherosclerosis. We studied the effects of bicarbonate/CO2 and phosphate buffer systems on metal ion-catalyzed oxidation of LDL to malondialdehyde (MDA) and to protein carbonyl and MetO derivatives. Our results revealed that LDL oxidation in mixtures containing free iron or heme derivatives was much greater in bicarbonate/CO2 compared with phosphate buffer. However, when copper was substituted for iron in these mixtures, the rate of LDL oxidation in both buffers was similar. Iron-catalyzed oxidation of LDL was highly sensitive to inhibition by phosphate. Presence of 0.3-0.5 mM phosphate, characteristic of human serum, led to 30-40% inhibition of LDL oxidation in bicarbonate/CO2 buffer. Iron-catalyzed oxidation of LDL to MDA in phosphate buffer was inhibited by increasing concentrations of albumin (10-200 μM), whereas MDA formation in bicarbonate/CO2 buffer was stimulated by 10-50 μM albumin but inhibited by higher concentrations. However, albumin stimulated the oxidation of LDL proteins to carbonyl derivatives at all concentrations examined in both buffers. Conversion of LDL to MDA in bicarbonate/CO2 buffer was greatly stimulated by ADP, ATP, and EDTA but only when EDTA was added at a concentration equal to that of iron. At higher than stoichiometric concentrations, EDTA prevented oxidation of LDL. Results of these studies suggest that interactions between bicarbonate and iron or heme derivatives leads to complexes with redox potentials that favor the generation of reactive oxygen species and/or to the generation of highly reactive CO2 anion or bicarbonate radical that facilitates LDL oxidation. Freely available online through the PNAS open access option.Abbreviations: LDL, low-density lipoprotein; MDA, malondialdehyde; MetO, methionine sulfoxide.

18. Serum oxidized low density lipoprotein levels in preeclamptic and normotensive pregnants.

Science.gov (United States)

Kozan, A; Yildirmak, S Turkmen; Mihmanli, V; Ayabakan, H; Cicek, Y G; Kalaslioglu, V; Doean, S; Cebeci, H Cerci

2015-01-01

BACKGROUNDS/AIM: The aim of the study was to determine serum lipids and oxidized low density lipoprotein (ox-LDL) levels in preeclamptic pregnants and compare with those of normotensives. Ox-LDL levels were determined by enzyme linked immunosorbent assay (ELISA); total cholesterol, hight density lipoprotein (HDL)-cholesterol and triglyceride levels were measured by enzymatic colorimetric assay in 26 normotensive and 27 preeclamptic pregnants. LDL and very low density lipoprotein (VLDL) cholesterol was calculated by Friedwald formula. Serum levels of Ox-LDL (U/L), total-cholesterol (mg/dL), HDL-cholesterol (mg/dL), LDL-cholesterol (mg/dL), triglyceride (mg/dL), and VLDL-cholesterol (mg/dL) in normotensive and preeclamptic pregnants were found as 130±60 and 133±69; 248±49 and 248±81; 67±14 and 61±16; 147±61 and 135±59; 207±76 and 256±87; 41±15 and 50±17, respectively. Mean values of Ox-LDL and other lipid parameters were higher than the upper limits of their reference ranges in both of groups. However no significant differences were found in Ox-LDL, total, HDL and LDL-cholesterol levels between two groups. However, the levels of triglyceride and VLDL-cholesterol were significantly higher in preeclampsia group. The present results suggest that the levels of serum Ox-LDL and other lipid parameters rise as a result of pregnancy rather than as a result of preeclampsia.

19. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

International Nuclear Information System (INIS)

Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

2008-01-01

Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

20. Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles.

Science.gov (United States)

Hosseini, Seyedehsan; Shrivastava, Manish; Qi, Li; Weise, David R; Cocker, David R; Miller, John W; Jung, Heejung S

2014-06-01

Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activities--activities associated with development and care of forests--dry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (Arctostaphylos sp.) wood containing 0, 0.25, and 2.5% LDPE by mass were burned. Gaseous and particulate emissions were sampled in real time during the entire flaming, mixed combustion phase--when the flaming and smoldering phases are present at the same time--and during a portion of the smoldering phase. Analysis of variance was used to test significance of modified combustion efficiency (MCE)--the ratio of concentrations of fire-integrated excess CO2 to CO2 plus CO--and LDPE content on measured individual compounds. MCE ranged between 0.983 and 0.993, indicating that combustion was primarily flaming; MCE was seldom significant as a covariate. Of the 195 compounds identified in the smoke emissions, only the emission factor (EF) of 3M-octane showed an increase with increasing LDPE content. Inclusion of LDPE had an effect on EFs of pyrene and fluoranthene, but no statistical evidence of a linear trend was found. Particulate emission factors showed a marginally significant linear relationship with MCE (0.05 burned. In general, combustion of wet piles results in lower MCEs and consequently higher levels of emissions. Current air quality regulations permit the use of burning to dispose of silvicultural piles; however, inclusion of low-density polyethyelene (LDPE) plastic in silvicultural piles can result in a designation of the pile as waste. Waste burning is not permitted in many areas, and there is also concern that inclusion of LDPE leads to toxic air emissions.

1. Nutritional Correlates of Koala Persistence in a Low-Density Population

Science.gov (United States)

Stalenberg, Eleanor; Wallis, Ian R.; Cunningham, Ross B.; Allen, Chris; Foley, William J.

2014-01-01

It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence. PMID:25470599

2. Nutritional correlates of koala persistence in a low-density population.

Directory of Open Access Journals (Sweden)

Eleanor Stalenberg

Full Text Available It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.

3. Accumulation of native and methylated low density lipoproteins by healing rabbit arterial wall

International Nuclear Information System (INIS)

Fischman, A.J.; Lees, A.M.; Lees, R.S.; Barlai-Kovach, M.; Strauss, H.W.

1987-01-01

To determine whether healing arterial wall accumulation of low density lipoproteins (LDL) is mediated by the high affinity LDL receptor, normocholesterolemic rabbits were injected with 125 I-LDL, /sup 99m/Tc-LDL, or the reductively methylated analogs of these compounds ( 125 I-MeLDL, /sup 99m/Tc-MeLDL), 1 month after balloon catheter deendothelialization of the abdominal aorta. If the mechanism of accumulation requires interaction with the LDL receptor, reductively methylated lipoproteins which do not bind to the receptor should not accumulate in healing arterial wall. Twenty-four hours after injection of labelled lipoproteins, each animal was injected with Evans blue dye, in order to distinguish reendothelialized from deendothelialized aorta. One hour after dye injection, the aorta was fixed, removed, divided into abdominal (ballooned) and thoracic (unballooned) regions and counted. For all lipoprotein preparations, there were three to four times as many counts in the abdominal as in the thoracic aorta. En face autoradiographs were made of the aortas that had been exposed to 125 I-labelled lipoproteins. In the autoradiographs, the areas of the lowest activity corresponded to the centers of healing endothelial islands. The most intense radioactivity for both lipoproteins occurred in the region of the leading edge of the endothelial islands where active endothelial regeneration was in progress. The overall distribution of native and MeLDL accumulation was the same. The results suggest that low density lipoproteins are accumulated in areas of active endothelial regeneration by a mechanism that does not involve the high affinity LDL receptor

4. Formation of Bipolar Lobes by Jets

Science.gov (United States)

Soker, Noam

2002-04-01

I conduct an analytical study of the interaction of jets, or a collimated fast wind (CFW), with a previously blown asymptotic giant branch (AGB) slow wind. Such jets (or CFWs) are supposedly formed when a compact companion, a main-sequence star, or a white dwarf accretes mass from the AGB star, forms an accretion disk, and blows two jets. This type of flow, which I think shapes bipolar planetary nebulae (PNs), requires three-dimensional gasdynamical simulations, which are limited in the parameter space they can cover. By imposing several simplifying assumptions, I derive simple expressions which reproduce some basic properties of lobes in bipolar PNs and which can be used to guide future numerical simulations. I quantitatively apply the results to two proto-PNs. I show that the jet interaction with the slow wind can form lobes which are narrow close to, and far away from, the central binary system, and which are wider somewhere in between. Jets that are recollimated and have constant cross section can form cylindrical lobes with constant diameter, as observed in several bipolar PNs. Close to their source, jets blown by main-sequence companions are radiative; only further out they become adiabatic, i.e., they form high-temperature, low-density bubbles that inflate the lobes.

5. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

Energy Technology Data Exchange (ETDEWEB)

Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Ruzybayev, Inci; Shah, S. Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark, NJ (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. mercy; Halim, Ahmad Sukari [School of Medical Sciences, Health Campus Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

2014-07-01

Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O{sub 2}), air and argon-oxygen (Ar + O{sub 2}) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O{sub 2} plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

6. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

International Nuclear Information System (INIS)

Pandiyaraj, K. Navaneetha; Deshmukh, R.R.; Ruzybayev, Inci; Shah, S. Ismat; Su, Pi-Guey; Halleluyah, Jr. mercy; Halim, Ahmad Sukari

2014-01-01

Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O 2 ), air and argon-oxygen (Ar + O 2 ) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O 2 plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

7. NASA Jet Noise Research

Science.gov (United States)

Henderson, Brenda

2016-01-01

The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

8. AGN feedback compared: jets versus radiation

Science.gov (United States)

Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

2018-06-01

Feedback by active galactic nuclei (AGNs) is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM (interstellar medium) interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGNs of 1043 and 1046 erg s-1, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarefies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20 {per cent} in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01-0.1 M⊙ yr-1, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGNs modulate their own duty cycle in a feedback/feeding cycle.

9. AGN Feedback Compared: Jets versus Radiation

Science.gov (United States)

Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

2018-03-01

Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of 1043 and 1046 erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20% in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01 - 0.1 M⊙/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.

10. Free jet as an object of nonequilibrium processes investigation

International Nuclear Information System (INIS)

Rebrov, A.K.

1985-01-01

The investigation of energy exchange in jets is of particular interest not only because of statement of physical problems on the dynamics of relaxation processes; technological application of expansion of a uniform gas and heterogeneous media into vacuum are variable. They are such as jet vacuum pumps, gas fans, gaseous accelerators of heavy molecules and clusters, gas dynamical sources of various vehicles, jet technological devices, gas dynamical lasers, etc. The improvement of these techniques will require the development of analytical and numerical methods for jets with a minimum limitation of physical content

11. Relationship between low-density lipoprotein cholesterol and severe acute pancreatitis (“the lipid paradox”

Directory of Open Access Journals (Sweden)

Hong W

2018-05-01

Full Text Available Wandong Hong,1,* Vincent Zimmer,2,3,* Simon Stock,4,* Maddalena Zippi,5 Jones AQ Omoshoro-Jones,6 Mengtao Zhou71Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 2Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; 3Department of Medicine, Marienhausklinik St Josef Kohlhof, Neunkirchen, Germany; 4Department of Surgery, World Mate Emergency Hospital, Battambang, Cambodia; 5Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy; 6Department of Surgery, Chris Hani-Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa; 7Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China*These authors contributed equally to this workBackground and aim: The aim of this study was to investigate the association between low-density lipoprotein cholesterol (LDL-C and the development of severe acute pancreatitis (SAP.Patients and methods: A total of 674 patients with acute pancreatitis were enrolled. Nonlinearity in the relationship between LDL-C and SAP was assessed by restricted cubic spline analysis. Univariable and multivariable regression analyses were used to identify independent risk factors of SAP.Results: The restricted cubic spline analysis suggested a nonlinear association between high-density lipoprotein cholesterol (HDL-C, LDL-C and triglyceride levels and incidence of SAP. The incidence of SAP in patients with low LDL-C (<90 mg/dL, moderate LDL-C (90–150 mg/dL and high LDL-C (>150 mg/dL levels was 15.1%, 3.7% and 9.8%, respectively. Multivariable analysis confirmed that low LDL-C levels (odds ratio [OR] 3.05; 95% confidence interval [CI] 1.35–6.90, high LDL-C levels (OR 4.42; 95% CI 1.41–13.87 and low HDL-C levels (OR 6.90; 95% CI 2.61–18.23 but

12. Oxidized low-density lipoprotein in children with familial hypercholesterolemia and unaffected siblings: effect of pravastatin.

Science.gov (United States)

Rodenburg, Jessica; Vissers, Maud N; Wiegman, Albert; Miller, Elizabeth R; Ridker, Paul M; Witztum, Joseph L; Kastelein, John J P; Tsimikas, Sotirios

2006-05-02

To assess the role of oxidized phospholipids (OxPLs) in children with familial hypercholesterolemia (FH) and the effect of pravastatin. Oxidized phospholipids are a major component of oxidized low-density lipoprotein (OxLDL) and are bound to lipoprotein (a) [Lp(a)]. The significance of OxPL markers in children is unknown. Children with FH were randomized to placebo (n = 88) or pravastatin (n = 90) after instruction on American Heart Association step II diet. Unaffected siblings (n = 78) served as controls. The OxPL content on apolipoprotein B-100 (apoB) detected by antibody E06 (OxPL/apoB ratio), immunoglobulin (Ig)G and IgM immune complexes per apoB (IC/apoB) and on all apoB particles (total apoB-IC = IC/apoB multiplied by plasma apoB levels), autoantibodies to malondialdehyde (MDA)-low-density lipoprotein (LDL), Lp(a), and apoB levels were measured at baseline and after two years of treatment. Compared with unaffected siblings, children with FH had significantly lower levels of OxPL/apoB but higher levels of IgG and IgM total apoB-IC and IgM MDA-LDL autoantibodies. From baseline to two-year follow-up, compared with placebo pravastatin treatment resulted in a greater mean percentage change in apoB (-18.7% vs. 0.3%; p = 0.001), total IgG apoB-IC (-31.9% vs. -12.2%; p vs. 13.2%; p = 0.001). Interestingly, pravastatin also resulted in higher OxPL/apoB (48.7% vs. 29.3%; p = 0.028) and Lp(a) levels (21.9% vs. 10.7%; p = 0.044). Compared with unaffected siblings, children with FH are characterized by elevated levels of apoB-IC and IgM MDA-LDL autoantibodies. Compared with placebo, pravastatin led to a greater reduction in apoB-IC but also to a greater increase in OxPL/apoB and Lp(a), which may represent a novel mechanism of mobilization and clearance of OxPL.

13. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods

International Nuclear Information System (INIS)

Kleinschmidt, R.; Watson, D.

2016-01-01

Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km 2 ), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h −1 (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. - Highlights: • A baseline terrestrial air kerma map of Queensland, Australia was developed using geochemical data from a major drainage catchment ultra-low density sampling program

14. RF compensation of single Langmuir probe in low density helicon plasma

Energy Technology Data Exchange (ETDEWEB)

Ghosh, Soumen, E-mail: soumen@ipr.res.in; Chattopadhyay, Prabal K.; Ghosh, Joydeep; Bora, Dhiraj

2016-11-15

Highlights: • Appropriate density and temperature measurement with Langmuir probe in RF Eenvironment. • Necessity of large auxiliary electrode for RF compensation at low densities (∼10{sup 16} m{sup −3}). • Measured two temperature electrons in low pressure helicon antenna produced RF plasma. • Tail electrons are localized only at off-axis in our cylindrical plasma system. - Abstract: Interpretations of Single Langmuir probe measurements in electrode-less radio frequency (RF) plasmas are noteworthy tricky and require adequate compensation of RF. Conventional RF compensation technique is limited only at high density (>10{sup 17} m{sup −3}) RF plasmas. RF compensation of single Langmuir probe at low density RF plasmas (∼10{sup 16} m{sup −3}) is presented in this paper. In RF driven plasmas, where the RF voltage is high (∼50 V) and density is in the range (∼10{sup 16} m{sup −3}), the primary RF compensation condition (Z{sub ck} > >Z{sub sh}) is very difficult to fulfill, because of high sheath impedance (Z{sub sh}) at 13.56 MHz and the construction limitation of a self-resonant tiny chock (Z{sub ck}) with very high impedance. Introducing a large auxiliary electrode (A{sub x}), (A{sub x} >>> A{sub p}), close to the small Langmuir probe (A{sub p}) tip, connected in parallel with probe via a coupling capacitor (C{sub cp}), significantly reduces the effective sheath impedance (Z{sub sh}) and allows probe bias to follow the RF oscillation. Dimensional requirements of the auxiliary electrode and the role of suitable coupling capacitor are discussed in this paper. Observations show proper compensation leads to estimation of more positive floating potentials and lower electron temperatures compared to uncompensated probe. The electron energy probability function (EEPF) is also obtained by double differentiating the collected current with respect to the applied bias voltage using an active analog circuit.

15. Application of low density from pig in subsea satellite well flow line; Utilizacao de pig-espuma de baixa densidade em linhas de producao de pocos-satelites submersos

Energy Technology Data Exchange (ETDEWEB)

Lima, Paulo Cesar Ribeiro; Couto, Nilton Castro; Souza, Robson Oliveira [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Divisao de Explotacao

1995-01-01

This work describes a new concept of pigging using low density form to prevent/removal of wax in subsea satellite well flowline. The methodology of wax control is world pioneer. The pigs are sent through a 2.5 in lift gas line, and through a wet x-mas tree, not designed to be pigged, and back through the flowline. (author) 2 refs., 1 fig.

16. Gas

International Nuclear Information System (INIS)

1996-01-01

The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

17. The creation of a new tourist destination in low density areas: the Boticas case

Directory of Open Access Journals (Sweden)

Hélder Lopes

2016-06-01

Full Text Available The goal of this paper is to contribute to identify a set of resources and tourism products, which can enhance the development and sustainability of tourism in the low density municipality of Boticas, located in the north-east of Portugal. Therefore, this paper tries to: i produce a first analysis of the tourism potential of the municipality of Boticas; and ii identify different perceptions of different stakeholders regarding the tourism potential of Boticas. To this end, the content analysis of semi-structured interviews conducted in 2014 to local and regional social and political stakeholders were used. Likewise, in 2015 two focus groups were conducted with main local stakeholders. The results highlight three main facts: first, there are unexplored tourism resources with potential to attract certain niches of tourist demand; second, the region has been investing in the diversification of its supply of leisure and recreational activities, as well as available tourism equipment; and third, the region is facing serious difficulties in creating a local and regional stakeholder network in order to provide an integrated promotion of tourism. We conclude by identifying few policyrecommendations on development issues for the municipality of Boticas or other rural areas presenting similar constraints.

18. Social Sustainability Issues and Older Adults’ Dependence on Automobiles in Low-Density Environments

Directory of Open Access Journals (Sweden)

Hitomi Nakanishi

2015-06-01

Full Text Available An implicit assumption underlying government strategies to achieve a more sustainable urban transportation system is that all automobile users will be encouraged or persuaded to use more “green” transportation: public transportation, walking and cycling. Little consideration has been given as to how sustainable transportation policies and programmess might impact on different age groups in society, including those retired or semi-retired, despite the fact that an unprecedented number of older drivers will be on the highways in the next few decades. There is limited literature on the contextual factors behind their continued reliance on automobiles, their actual driving behavior (e.g., route choice and time of day to drive framed within the context of social sustainability. This paper introduces the elements of transportation and social sustainability then conducts a comprehensive international literature review focusing on older drivers, their travel choices and associated social sustainability issues. It describes a case study, low-density city and presents empirical evidence, from two surveys conducted in Canberra, Australia. The paper concludes with future research directions that address these issues associated with sustainable transportation.

19. Cryoprotection effectiveness of low concentrations of natural and lyophilized LDL (low density lipoproteins on canine spermatozoa

Directory of Open Access Journals (Sweden)

M.M. Neves

2014-06-01

Full Text Available The aim of this study was to evaluate the use of low concentrations of natural and lyophilized low density lipoprotein (LDL from hen's egg yolk for cryopreservation of canine semen. Different ammonium sulphate concentrations were tested to extract LDL from egg yolk. The yolk was centrifuged, and LDL was isolated using 10, 20, 40, 45, or 50% ammonium sulphate solution (ASS. The LDL-rich floating fraction was collected for chemical characterization. Dry matter content was lowest (P<0.05 in the LDL extracted with the 50% ASS. The purification of LDL increased in association with increasing ammonium sulphate concentrations. SDS-PAGE showed that the 50% ASS solution yielded a purer fraction of LDL from egg yolk. For semen cryopreservation, TRIS extender was used replacing 20% egg yolk (control by natural or lyophilized LDL using 1, 2, and 3% (w/v. Semen was centrifuged (755Xg for 7 min, diluted with one of the extenders, packed into 0.5mL straws (100x106 sperm/mL, and placed in a programmable cryopreservation machine. Thawed semen (37°C/ 30s was analyzed for sperm motility, morphology, and by the hypoosmotic and epifluorescence tests (CFDA/ PI. Natural LDL extracted with 50% ASS was as effective as whole egg yolk to preserve canine frozen sperm when using low concentrations. The lyophilized LDL, mainly in the two higher concentrations tested (2 and 3%, was unsuitable to maintain the effectiveness of the LDL cryoprotective effect on dog sperm.

20. Targeting low-density lipoprotein receptors with protein-only nanoparticles

Energy Technology Data Exchange (ETDEWEB)

Xu, Zhikun [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Céspedes, María Virtudes [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Unzueta, Ugutz [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Álamo, Patricia [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pesarrodona, Mireia [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Mangues, Ramón [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vázquez, Esther; Villaverde, Antonio, E-mail: antoni.villaverde@uab.cat; Ferrer-Miralles, Neus, E-mail: neus.ferrer@uab.cat [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain)

2015-03-15

Low-density lipoprotein receptors (LDLR) are appealing cell surface targets in drug delivery, as they are expressed in the blood–brain barrier (BBB) endothelium and are able to mediate transcytosis of functionalized drugs for molecular therapies of the central nervous system (CNS). On the other hand, brain-targeted drug delivery is currently limited, among others, by the poor availability of biocompatible vehicles, as most of the nanoparticles under development as drug carriers pose severe toxicity issues. In this context, protein nanoparticles offer functional versatility, easy and cost-effective bioproduction, and full biocompatibility. In this study, we have designed and characterized several chimerical proteins containing different LDLR ligands, regarding their ability to bind and internalize target cells and to self-organize as viral mimetic nanoparticles of about 18 nm in diameter. While the self-assembling of LDLR-binding proteins as nanoparticles positively influences cell penetration in vitro, the nanoparticulate architecture might be not favoring BBB crossing in vivo. These findings are discussed in the context of the use of nanostructured materials as vehicles for the systemic treatment of CNS diseases.