WorldWideScience

Sample records for low-cycle fatigue behavior

  1. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  2. Low-cycle fatigue behaviors of pre-hardening Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, Fei [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2017-05-17

    Low-cycle fatigue behaviors of the pre-hardening (PH) and the water-quenching (WQ) Hadfield steel were studied using optical microscopy, transmission electron microscopy, and electron backscatter diffraction technique. The effect of the PH treatment on low-cycle fatigue behavior of the Hadfield steel was analyzed through comparing the cyclic hardening/softening behaviors and the changing regulations of stress amplitude, internal stress, and effective stress at different total strain amplitudes. Results showed obvious differences in fatigue behaviors between the PH (with a cold rolling deformation degree of 40%) and the WQ Hadfield steels. Transient hardening followed by cyclic stability behavior occurred in the PH Hadfield steel under cyclic loading, whereas cyclic softening behavior was barely observed. The fatigue life of the PH Hadfield steel was higher than that of the WQ Hadfield steel at relatively low strain amplitudes, while a contrary result was obtained at relatively high strain amplitudes. At low strain amplitudes, the deformation twins induced in the PH Hadfield steel could enhance the multiplication and slip process of dislocations, which actually improved the deformation uniformity. The long-range motion of dislocations was intensified at high strain amplitudes. However, the dislocation motion was also blocked by twin boundaries. As a result, the interactions between dislocations and deformation twins enhanced, finally causing severe dislocation accumulation. These two effects of deformation twins on dislocation motion eventually resulted in different low-cycle fatigue behaviors of the PH Hadfield steel.

  3. Low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2013-11-01

    Full Text Available Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-Al-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-Al-Mn-Ce alloys were analyzed. The results show that the Mg-Al-Mn-Ce alloys under die-cast (F and aged (T5 states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-Al-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-Al-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.

  4. High-temperature low cycle fatigue behavior of a gray cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  5. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Polák, Jaroslav, E-mail: polak@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Petráš, Roman; Heczko, Milan; Kuběna, Ivo [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Kruml, Tomáš [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); CEITEC, Institute of Physics of Materials Academy of Sciences of the Czech Republic, Žižkova 22, Brno (Czech Republic); Chai, Guocai [Sandvik Materials Technology, SE-811 81 Sandviken (Sweden); Linköping University, Engineering Materials, SE-581 83 Linköping (Sweden)

    2014-10-06

    Austenitic heat resistant Sanicro 25 steel developed for high temperature applications in power generation industry has been subjected to strain controlled low cycle fatigue tests at ambient and at elevated temperature in a wide interval of strain amplitudes. Fatigue hardening/softening curves, cyclic stress–strain curves and fatigue life curves were evaluated at room temperature and at 700 °C. The internal dislocation structures of the material at room and at elevated temperature were studied using transmission electron microscopy. High resolution surface observations and FIB cuts revealed early damage at room temperature in the form of persistent slip bands and at elevated temperature as oxidized grain boundary cracks. Dislocation arrangement study and surface observations were used to identify the cyclic slip localization and to discuss the fatigue softening/hardening behavior and the temperature dependence of the fatigue life.

  6. Low Cycle Fatigue Behavior of Alloy617 Weldment at 850°C

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jeong Jun; Kim, Seon Jin [Pukyong Nat’l Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    Alloy 617 is one of the primary candidate materials to be used in a very high temperature reactor (VHTR) system as an intermediate heat exchanger (IHX). To investigate the low cycle fatigue behavior of Alloy 617 weldments at a high temperature of 850℃, fully reversed strain-controlled fatigue tests were conducted with the total strain values ranging from 0.6~1.5%. The weldment specimens were machined using the weld pads fabricated with a single V-grove configuration by gas tungsten arc welding (GTAW) process. The fatigue life is reduced as the total strain range increases. For all testing conditions, the cyclic stress response behavior of the Alloy 617 weldments exhibited the initial cyclic strain hardening phenomenon during the initial small number of cycles. Furthermore, the overall fatigue cracking and the propagation or cracks showed a transgranular failure mode.

  7. High temperature low cycle fatigue behavior of Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    The cyclic stress-strain response and the low cycle fatigue life behavior of solution treated Ni-base superalloy M963 were studied. Fully reversed strain-controlled tests were performed at temperature range from 700 to 950 deg. C in air at a constant total strain rate. The dislocation characteristics and failed surface observation were evaluated through scanning electron microscopy and transmission electron microscopy, respectively. The alloy exhibited the cyclic hardening, softening, or stable cyclic stress response, which was dependent on the temperature and total strain range. The fracture surface observation revealed that fatigue crack initiation was transgranular and closely related to the total strain range; however, fatigue crack propagation exhibited a strong dependence on testing temperature. The dramatic reduction in fatigue life and intergranular cracking observed at 900 and 950 deg. C were attributed to oxidation

  8. Low-cycle fatigue behavior of HT-9 alloy in a flowing-lithium environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1983-06-01

    Low-cycle fatigue data have been obtained on normalized/tempered or lithium-preexposed HT-9 alloy at 755 K in flowing lithium of controlled purity. The results show that the fatigue life of this material decreases with an increase in nitrogen content in lithium. A reduction in strain rate also decreases the fatigue life in high-nitrogen lithium. However, in the range from approx. 4 x 10 - 4 to 4 x 10 - 2 s - 1 , the strain rate has no effect on fatigue life in lithium containing <200 wppM nitrogen. The fatigue life of the HT-9 alloy in low-nitrogen lithium is significantly greater than the fatigue life of Fe-9Cr-1Mo steel or Type 403 martensitic steel in air. Furthermore, a 4.0-Ms preexposure to low-nitrogen lithium has no influence on fatigue life. The reduction in fatigue life in high-nitrogen lithium is attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show internal corrosion along grain and martensitic lathe boundaries and intergranular fracture. This behavior is not observed in specimens tested in low-nitrogen lithium. Results for a constant-load corrosion test in flowing lithium are also presented

  9. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  10. Low cycle fatigue behavior in a medium-carbon carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-06-01

    In the paper, different morphologies of bainite were obtained through isothermal quenching at 320 °C and 395 °C in a medium-carbon carbide-free bainitic steel. The cyclic deformation mechanism was explored by using low cycle fatigue testing. The volume fraction of retained austenite was measured by X-ray diffraction and the space partitioning of the solute atoms was constructed by three-dimensional atom probe. Results showed that the fatigue life at 320 °C was always higher than that at 395 °C under low and high total strain amplitude. The cyclic softening at the early fatigue stage increased the plastic strain of the sample which was responsible for the reduction of the fatigue life at 395 °C. Strain-induced retained austenite to martensite contributed to initial cyclic hardening, but almost having no effect on the subsequent cyclic stable/softening behaviors. The finer bainitic ferrite sheaves obtained at 320 °C changed the small fatigue crack propagation direction and delayed the crack propagation rate, which was beneficial for the fatigue properties. In addition, the substitutional atoms did not redistribute between the retained austenite and bainitic ferrite before and after cyclic deformation.

  11. Effects of environment on the low-cycle fatigue behavior of Type 304 stainless steel

    International Nuclear Information System (INIS)

    Maiya, P.S.; Burke, W.F.

    1979-12-01

    The low-cycle fatigue behavior of Type 304 stainless steel has been investigated at 593 0 C in a dynamic vacuum of better than 1.3 x 10 -6 Pa (10 -8 torr). The results concerning the effects of strain range, strain rate and tensile hold time on fatigue life are presented and compared with results of similar tests performed in air and sodium environments. Under continuous symmetrical cycling, fatigue life is significantly longer in vacuum than in air; in the low strain range regime, the effect of sodium on fatigue life appears to be similar to that of vacuum. Strain rate (or frequency) strongly influences fatigue life in both air and vacuum. In compressive hold-time tests, the effect of environment on life is similar to that in a continuous-cycling test. However, tensile hold times are nearly as damaging in vacuum as in air. Thus, at least for austenitic stainless steels, the influence of the environment of fatigue life appears to depend on the loading waveshape

  12. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  13. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  14. Influences of overload on low cycle fatigue behaviors of elbow pipe with local wall thinning

    International Nuclear Information System (INIS)

    Sato, Kyohei; Ogino, Kanako; Takahashi, Koji; Ando, Kotoji; Urabe, Yoshio

    2011-01-01

    Low cycle fatigue tests were conducted using 100A elbow pipe specimens with or without local wall thinning. Local wall thinning was machined on the inside of the extrados of test elbows to simulate metal loss due to flow-accelerated corrosion or liquid droplet impingement erosion. Low cycle fatigue tests were carried out under displacement control with an inner pressure of 9 MPa. To simulate seismic events, low cycle fatigue tests were carried out on elbow pipe subjected to cyclic overloads. Regardless of local wall thinning, fatigue life of overload pipe was not so different from that of the non-overload pipe in appearance. Miner's rule can be applied to evaluate fatigue life of the elbow pipes with and without wall thinning, even if overload is applied. (author)

  15. Low cycle fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water

    International Nuclear Information System (INIS)

    Jang, Hun

    2008-02-01

    After low cycle fatigue tests of SA508 Gr.1a low alloy steel in 310 .deg. C deoxygenated water, the fatigue surface and the sectioned area of specimens were observed to understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors. From the fatigue crack morphologies of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and blunt crack tip were observed. So, metal dissolution could be the main cracking mechanism of the material at the strain rate. On the other hand, on the fatigue surface of the specimen tested at strain rates of 0.04 and 0.4 %/s, the brittle cracks and the flat facets, which are the evidence of the hydrogen induced cracking, were observed. Also, the tendency of linkage between the main crack and micro-cracks was observed on the sectioned area. Therefore, the main cracking mechanism at the strain rates of 0.04 and 0.4 %/s could be the hydrogen induced cracking. Additionally, the evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. So, despite of the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in 310 .deg. C deoxygenated water. Additionally, our experimental fatigue life data of SA508 Gr.1a low alloy steel (heat A) showed a consistent difference with statistical model produced in argon national laboratory. So, additional low cycle fatigue tests of other heat SA508 Gr.1a (heat B) and SA508 Gr.3 low alloy steels were performed to investigate the effect of material variability on fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water. In results, the fatigue lives of three low alloy steels were increased following order: SA508 Gr.1a low alloy steel - heat A, SA508 Gr.3 low alloy steel, and SA508 Gr.1a low alloy steel - heat B. From microstructure observation, the fatigue surface of SA508 Gr.1a low alloy

  16. Study on low cycle fatigue behavior of two titanium alloy materials with elevated temperature effects

    International Nuclear Information System (INIS)

    Cai Lixun; Sun Yafang; Wang Li; Huang Shuzhen

    2000-01-01

    A serial of tensional and low cycle fatigue tests for two titanium alloy materials:T42NG and T225NG under room temperature and 350 degree C elevated temperature are carried out. Based on the test results, four monotonic constitutive relationships between stress and strain and four relationships between life Nf and strain amplitude controlled are given. By three ratio λ σ , λ Δσ and λ Nf of the materials related to the elevated temperature, systematical investigations about the influence of the elevated temperature on monotonic tensional intensity, cyclic intensity and fatigue life are performed. According to the important rule opened out that it exists a linearity relationship between the ratio λ Nf and strain amplitude Δε/2, the author present a λ-M-C model for predicting the fatigue life of a exponential material under R= -1 and an elevated temperature. To get the λ-M-C model, the authors give available discussion about the method simplified test and regression. The authors know from test results that T42NG steel has better fatigue and tensional behaviors than those of T225NG steel

  17. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    Science.gov (United States)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  18. Effect of tungsten and tantalum on the low cycle fatigue behavior of reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Vani, E-mail: vani@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mariappan, K.; Nagesha, A.; Prasad Reddy, G.V.; Sandhya, R.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Effect of tungsten and tantalum on low cycle fatigue behavior of RAFM steels. Black-Right-Pointing-Pointer Both alloying elements W and Ta improved fatigue life. Black-Right-Pointing-Pointer Increase in Ta content improved fatigue life more than W. Black-Right-Pointing-Pointer Optimization of W content at 1.4 wt.%. Black-Right-Pointing-Pointer Softening behavior closely related to W and Ta content. - Abstract: Reduced activation ferritic/martensitic (RAFM) steels are candidate materials for the test blanket modules of International Thermonuclear Experimental Reactor (ITER). Several degradation mechanisms such as thermal fatigue, low cycle fatigue, creep fatigue interaction, creep, irradiation hardening, swelling and phase instability associated irradiation embrittlement must be understood in order to estimate the component lifetime and issues concerning the structural integrity of components. The current work focuses on the effect of tungsten and tantalum on the low cycle fatigue (LCF) behavior of RAFM steels. Both alloying elements tungsten and tantalum improved the fatigue life. Influence of Ta on increasing fatigue life was an order of magnitude higher than the influence of W on improving the fatigue life. Based on the present study, the W content was optimized at 1.4 wt.%. Softening behavior of RAFM steels showed a strong dependence on W and Ta content in RAFM steels.

  19. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-01-15

    Highlights: • LCF behavior of the cooling tube and the interlayer of an ITER-like divertor target is studied. • For the cooling tube, LCF failure will not be an issue under an HHF load of up to 18 MW/m{sup 2}. • Plastic strain in the interlayer is concentrated at the free surface edge of the bond interface. • The predicted LCF lifetime of the interlayer may not meet the design requirement. - Abstract: In this work the low cycle fatigue (LCF) behavior of the copper alloy cooling tube and the copper interlayer of an ITER-like divertor target is reported for nine different combinations of loading and cooling conditions relevant to DEMO divertor operation. The LCF lifetime is presented as a function of loading and cooling conditions considered here by means of cyclic plasticity simulation and using LCF data of materials relevant for ITER. The numerical predictions indicate, that fatigue failure will not be an issue for the copper alloy tube under a high heat flux (HHF) load of up to 18 MW/m{sup 2} as long as it preserves its initial strength. In contrast, the copper interlayer exhibits significant plastic dissipation at the free surface edge of the bond interface adjacent to the cooling tube, where the LCF lifetime is predicted to be below 3000 load cycles for HHF loads higher than 15 MW/m{sup 2}. Most of the bulk region of the copper interlayer away from the free surface edge does not experience severe plastic fatigue and hence does not pose any critical concern as the LCF lifetime is predicted to be at least 7000 load cycles. LCF lifetime decreases as HHF load is increased or coolant temperature is decreased.

  20. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  1. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    Science.gov (United States)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  2. The Effects of Hot Bending on the Low Cycle Fatigue Behaviors of 347 SS in PWR Primary Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho-Sub; Hong, Jong-Dae; Lee, Junho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Fatigue damage could be significant for some locations, especially the welds and bends where stress concentration is typically high. As a possible solution, a large radius hot-bending method has been suggested to eliminate some weld joints and all tight bends. However, for the hot-bending process which involves a high temperature thermal cycle, there is a concern about changes in mechanical properties including low cycle fatigue behaviors. In APR1400, Type 347 SS have been used as surge line pipes. Therefore, to verify the applicability of hot-bending on 347 SS surge line pipes, an environmental fatigue test program was initiated. In this paper, the preliminary results of the on-going test program are introduced. Also, the low cycle fatigue behaviors of 347 SS are compared with those of other grade of stainless steels. The effects of hot bending on the low cycle fatigue behavior of 347 SS were quantitatively evaluated. The fatigue life was compared with the estimated values per NUREG 6909 rev. 1. There are no distinct differences between NUREG 6909 and LCF tests. According to fractography and cross section analysis in progress, basically, the reduction of LCF life of 347 SS in PWR water was caused by operation of HIC mechanism. The cyclic stress responses shows that there is no secondary hardening in 330 .deg.C air and PWR water.

  3. Ratcheting and low cycle fatigue behavior of SA333 steel and their life prediction

    International Nuclear Information System (INIS)

    Paul, Surajit Kumar; Sivaprasad, S.; Dhar, S.; Tarafder, S.

    2010-01-01

    Ratcheting and low cycle fatigue (LCF) experiments have been conducted at 25 o C temperature in laboratory environment under different loading conditions. SA333 steel exhibits cyclic hardening throughout its life during LCF. It is found that ratcheting strain increases with both increasing mean stress and stress amplitude. It has also been noticed that plastic strain amplitude and plastic strain energy decrease with increase in mean stress at constant stress amplitude. Ratcheting and LCF life in the range of 10 2 -10 5 cycles have been predicted with the help of a mean stress-based fatigue lifing equation.

  4. Low cycle fatigue of irradiated LMFBR materials

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data

  5. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951

    International Nuclear Information System (INIS)

    Chu Zhaokuang; Yu Jinjiang; Sun Xiaofeng; Guan Hengrong; Hu Zhuangqi

    2008-01-01

    Total strain-controlled low cycle fatigue (LCF) tests were performed at a temperature range from 700 to 900 deg. C in ambient air condition on a directionally solidified Ni-base superalloy DZ951. The fatigue life of DZ951 alloy does not monotonously decrease with increasing temperature, but exhibits a strong dependence on the total strain range. The dislocation characteristics and failed surface observation were evaluated through transmission electron microscopy and scanning electron microscopy. The alloy exhibits cyclic hardening, softening or cyclic stability as a whole, which is dependent on the testing temperature and total strain range. At 700 deg. C, the cyclic plastic deformation process is the main cause of fatigue failure. At 900 deg. C, the failure mostly results from combined fatigue and creep damage under total strain range from 0.6 to 1.2% and the reduction in fatigue life can be taken as the cause of oxidation, creep and cyclic plastic deformation under total strain range of 0.5%

  6. Identification of low cycle fatigue parameters

    Directory of Open Access Journals (Sweden)

    Balda M.

    2009-12-01

    Full Text Available The article describes a new approach to the processing of experimental data coming from low-cycle fatigue (LCF tests. The data may be either tables from the standard tests, or a time series of loading processes and corresponding numbers of cycles to damage. A new method and a program for the evaluation of material parameters governing the material behavior under a low cycle loading have been developed. They exploit a minimization procedure for an appropriate criterion function based on differences of measured and evaluated damages.

  7. Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, S. M. Humayun [Chittagong University of Engineering and Technology, Chittagong (Bangladesh); Yeo, Tae in [University of Ulsan, Ulsan (Korea, Republic of)

    2014-07-15

    The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2X10{sup -3} /s and 2X10{sup -4} /s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300 .deg. C - 500 .deg. C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.

  8. Influence of temperature on a low-cycle fatigue behavior of a ferritic stainless steel

    International Nuclear Information System (INIS)

    Kabir, S. M. Humayun; Yeo, Tae in

    2014-01-01

    The main objective of this study is to reveal the effect of dynamic strain ageing (DSA) on a ferritic stainless steel with detail relation to monotonic and cyclic responses over a wide range of temperatures. For assessing the effect of strain rate on mechanical properties, tensile test results are studied at two different strain rates of 2X10"-"3 /s and 2X10"-"4 /s. Typical responses of this material are compared with other alloy in literatures that exhibits DSA. Serrations in monotonic stress-strain curves and anomalous dependence of tensile properties with temperatures are attributed to the DSA effect. The low cycle fatigue curves exhibit prominent hardening and negative temperature dependence of half-life plastic strain amplitude in temperatures between 300 .deg. C - 500 .deg. C which can be explained by DSA phenomenon. The regime for dependence of marked cyclic hardening lies within the DSA regime of anomalous dependence of flow stress and dynamic strain hardening stress with temperature and negative strain rate sensitivity regime of monotonic response. It is believed that shortened fatigue life observed in the intermediate temperature is mainly due to the adverse effect of DSA. An empirical life prediction model is addressed for as-received material to consider the effect of temperature on fatigue life. The numbers of load reversals obtained from experiment and predicted from fatigue parameter are compared and found to be in good agreement.

  9. Effects of microstructures on low cycle fatigue behavior in Al-Si-Mg cast alloys

    International Nuclear Information System (INIS)

    Han, Sang Won; Kim, Sug Won

    2002-01-01

    Low cycle fatigue tests were carried out using four kinds of Al-7%Si-0.4Mg cast alloys, i.e., two kinds of sand mold casts, permanent mold cast and semi-solid die cast. They were heat-treated in the condition of under aging and over aging to investigate effects of precipitates on fatigue. All tests were conducted under axial plastic strain amplitude control. Stress level of cyclic hardening curves increased sensitively with needle like eutectic Si particle, refine grain size and dendrite arm spacing (DAS). In particular, the refined grain structure of under aged matrix was more effective encourager for cyclic hardening compared with DAS and eutectic Si particle size. After rapid increase in cyclic hardening during several number of cycles, the stress amplitude kept increasing steadily until fracture in under aged alloys strengthened by shearable G.P. zone. On the other hand, over aged alloys strengthened by non-shearable β ' precipitates generated more drastic initial hardening and the stress amplitude reached the saturation state in quite early stage of the fatigue

  10. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    Science.gov (United States)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  11. Effect of weld metal toughness on fracture behavior under ultra-low cycle fatigue loading (earthquake)

    Energy Technology Data Exchange (ETDEWEB)

    Kermajani, M. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghaini, F. Malek, E-mail: Fmalek@modares.ac.ir [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Miresmaeili, R. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Aghakouchak, A.A. [School of Civil Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shadmand, M. [Department of Research and Development, MAPNA Electric and Control (MECO) Company, Karaj (Iran, Islamic Republic of)

    2016-06-21

    Results from 12 ultra-low cycle fatigue tests performed on the weld metals of both toughness and non-toughness rated grades are presented. Fracture resistance under these loadings seemed to be dependent on materials' toughness, displacement amplitude, and stress state triaxiality, while the toughness effect was more highlighted at high stress levels and concentrations. To study the effect of microstructures on these failures, supporting ancillary tests including all-weld tension coupons, Charpy V-notched impact tests, and optical and scanning electron microscope analyses were performed. The favored microstructures appeared to be those which absorbed energy by plastic deformation and, hence, hindered void formation and/or could avoid crack propagation by deflection. Considering the response of the tested materials to cyclic loadings and the requirements of the materials specified in AISC341 Provisions could question the adequacy of these requirements for weld metals. However, the role of microstructural features like inclusions would be the same in both the Charpy impact tests and ultra-low cycle loadings.

  12. Influence of sodium on the low-cycle fatigue behavior of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Smith, D.L.; Zeman, G.J.; Natesan, K.; Kassner, T.F.

    1976-01-01

    Fatigue tests in sodium were conducted to investigate the influence of a high-temperature sodium environment on the low-cycle fatigue behavior of Types 304 and 316 stainless steel. The effects of testing in a sodium environment as well as long-term sodium exposure were investigated. The fatigue tests were conducted at 600 and 700 0 C in sodium of controlled purity, viz., approximately 1 ppM oxygen and 0.4 ppM carbon, at a strain rate of 4 x 10 -3 s -1 . The fatigue life of annealed Type 316 stainless steel is substantially greater in sodium than when tested in air; however, the fatigue life of annealed Type 304 stainless steel is altered much less when tested in sodium. A 1512-h preexposure to sodium had no significant effect on the fatigue life of Type 316 stainless steel tested in sodium. However, a similar exposure substantially increased the fatigue life of Type 304 stainless steel in sodium. 10 fig

  13. Effect of sodium environment on the creep-rupture and low-cycle fatigue behavior of austenitic stainless steels

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, D.K.; Zeman, G.J.; Smith, D.L.; Kassner, T.F.

    1977-01-01

    Austenitic stainless steels used for in-core structural components, piping, valves, and the intermediate heat exchanger in Liquid-Metal Fast-Breeder Reactors (LMFBRs) are subjected to sodium at elevated temperatures and to complex stress conditions. As a result, the materials can undergo compositional and microstructural changes as well as mechanical deformation by creep and cyclic fatigue processes. In the present paper, information is presented on the creep-rupture and low-cycle fatigue behavior of Types 304 and 316 stainless steel in the solution-annealed condition and after long-term exposure to flowing sodium. The nonmetallic impurity-element concentrations in the sodium were controlled at levels similar to those in EBR-II primary sodium. Strain-time relationships developed from the experimental creep data were used to generate isochronous stress-creep strain curves as functions of sodium-exposure time and temperature. The low-cycle fatigue data were used to obtain relationships between plastic strain range and cycles-to-failure based on the Coffin-Manson formalism and a damage-rate approach developed at ANL. An analysis of the cyclic stress-strain behavior of the materials showed that the strain-hardening rates for the sodium-exposed steels were larger than those for the annealed material. However, the sodium-exposed specimens showed significant softening, as evidenced by the lower stress at half the fatigue life. Microstructural information obtained from the different specimens suggests that crack initiation is more difficult in the long-term sodium-exposed specimens when compared with the solution-annealed material. Based on the expected carbon concentrations in LMFBR primary system sodium, moderate carburization of the austenitic stainless steels will not degrade the mechanical properties to a significant extent, and therefore, will not limit the performance of out-of-core components. (author)

  14. Low-cycle fatigue and cyclic deformation behavior of Type 16-8-2 weld metal at elevated temperature

    International Nuclear Information System (INIS)

    Raske, D.T.

    1977-01-01

    The low-cycle fatigue behavior of Type 16-8-2 stainless steel ASA weld metal at 593 0 C was investigated, and the results are compared with existing data for Type 316 stainless steel base metal. Tests were conducted under axial strain control and at a constant axial strain rate of 4 x 10 -3 s -1 for continuous cyclic loadings as well as hold times at peak tensile strain. Uniform-gauge specimens were machined longitudinally from the surface and root areas of 25.4-mm-thick welded plate and tested in the as-welded condition. Results indicate that the low-cycle fatigue resistance of this weld metal is somewhat better than that of the base metal for continuous-cycling conditions and significantly better for tension hold-time tests. This is attributed to the fine duplex delta ferrite-austenite microstructure in the weld metal. The initial monotonic tensile properties and the cyclic stress-strain behavior of this material were also determined. Because the cyclic changes in mechanical properties are strain-history dependent, a unique cyclic stress-strain curve does not exist for this material

  15. Influence of PbBi environment on the low-cycle fatigue behavior of SNS target container materials

    International Nuclear Information System (INIS)

    Kalkhof, D.; Grosse, M.

    2003-01-01

    The low-cycle fatigue (LCF) behavior of the stainless steel 316L and the 10.5Cr-steel Manet-II was investigated at 260 deg. C in air and in stagnant lead-bismuth (PbBi). At low-strain levels, the fatigue lives for 316L in PbBi and air were comparable. At total strain amplitudes of 0.50% and higher a weak influence of PbBi was observed. In contrast to 316L, the results of LCF tests for Manet-II in PbBi showed a significant reduction of lifetime for all applied strain amplitudes. In the worst case the cycle number to crack initiation was reduced by a factor of ∼7 compared with the comparable test in air. For the low-strain amplitude of 0.30%, fatigue tests conducted at a frequency of 0.1 Hz had shorter fatigue lives than at a frequency of 1.0 Hz. For Manet-II the crack propagation in PbBi was much faster than in air, and failure immediate followed the formation of the first macroscopic crack

  16. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Heczko, Milan; Kuběna, Ivo; Kruml, Tomáš; Chai, G.

    2014-01-01

    Roč. 615, OKT (2014), s. 175-182 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Sanicro 25 steel * Cyclic plasticity * Dislocation structure * Fatigue life * Effect of temperature Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.567, year: 2014

  17. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    Science.gov (United States)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  18. Low cycle fatigue behavior of hot-bent 347 stainless steel in a simulated PWR water environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Ho; Seo, Myung Gyu; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Hong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Soon [Central Research InstituteKorea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    The effect of hot bending on the Low cycle fatigue (LCF) behavior of 347 SS was evaluated in Room temperature (RT) air and simulated Pressurized water reactor (PWR) water environments. The LCF life of 347 SS in PWR water was shorter than that in RT air for the as-received and hot-bent conditions. The LCF life of hot-bent 347 SS was relatively longer than that of the as-received condition in both RT air and PWR water. Microstructure analysis indicated development of dislocation structure near niobium carbide particles and increase in dislocation density for the hot-bent 347 SS. Such microstructure acted as barriers to dislocation movement during the LCF test, resulting in minimal hardening for the hot-bent 347 SS in RT air.

  19. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    Science.gov (United States)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  20. Low cycle fatigue behavior of electron beam and friction welded joints of an α-β titanium alloy

    International Nuclear Information System (INIS)

    Mohandas, T.; Varma, V.K.; Banerjee, D.; Kutumbarao, V.V.

    1996-01-01

    Fusion welds in titanium alloys, with intermediate β stabilizing additions, show poor mechanical properties due to large fusion zone grain size coupled with a brittle plate martensitic microstructure and hydrogen induced microporosity. These problems, associated with fusion welding, have been reported to be overcome by friction welding. The alloy used in this study is a Soviet composition (VT9) of the α-β class with the nominal chemical composition Ti-6.5Al-3.3Mo-1.6Zr-0.3 Si (in weight percent), intended to be used as discs and blades in compressor stages of gas turbine engine where low cycle fatigue (LCF) loading is experienced. Electron beam welding of the alloy was largely unsuccessful for the reasons described above. Fatigue properties of such welds had large scatter due to the presence of microporosity. A continuous drive friction welding technique was investigated to overcome this problem These welds showed encouraging results in that microporosity, a problem in the electron beam welding, was not observed and the mechanical properties were at par or better than those of the base metal. This paper deals with the study of stress controlled LCF behavior of friction welds and electron beam welds of the α-β titanium alloy at ambient temperature and the results are compared with those of base metal

  1. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life.

  2. The hold-time effects on the low cycle fatigue behaviors of 316 SS in PWR primary environment

    International Nuclear Information System (INIS)

    Lee, Junho; Hong, Jong-Dae; Seo, Myung-Gyu; Jang, Changheui

    2015-01-01

    The effects of the environments on fatigue life of the structural materials used in nuclear power plants (NPPs) were known to be significant according to the extensive test results. Accordingly, the fatigue analysis procedures and the design fatigue curves were proposed in the ASME Code. However, the implication that the existing ASME design fatigue curves did not sufficiently reflect the effect of the operation conditions of nuclear power plants emerged as an issue to be resolved. One of possible reasons to explain the discrepancy is that the laboratory test conditions do not represent the actual plant transients. Therefore, it is necessary to clarify the effects of light water environments on fatigue life while considering more plant-relevant transient conditions such as hold-time. For this reason, this study will focus on the fatigue life of type 316 stainless steel (SS) in the pressurized water reactor (PWR) environments while incorporating the hold-time during the low cycle fatigue (LCF) test in simulated PWR environments. The objective of this study is to characterize the effects of hold-time on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 SS in 310 .deg. C air and simulated PWR environments. To simulate the heat-up and cool-down transient, sub-peak strain holding during the down-hill of strain amplitude was chosen. Currently, LCF tests with 60 seconds holding are in progress. The 0.4, 0.04%/s strain rate condition test results are presented in this study, which shows somewhat longer fatigue life

  3. Multiaxial Cycle Deformation and Low-Cycle Fatigue Behavior of Mild Carbon Steel and Related Welded-Metal Specimen

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available The low-cycle fatigue experiments of mild carbon Q235B steel and its related welded-metal specimens are performed under uniaxial, in-phase, and 90° out-of-phase loading conditions. Significant additional cyclic hardening for 90° out-of-phase loading conditions is observed for both base metal and its related weldment. Besides, welding process produces extra additional hardening under the same loading conditions compared with the base metal. Multiaxial low-cycle fatigue strength under 90° out-of-phase loading conditions is significantly reduced for both base-metal and welded-metal specimens. The weldment has lower fatigue life than the base metal under the given loading conditions, and the fatigue life reduction of weldment increases with the increasing strain amplitude. The KBM, FS, and MKBM critical plane parameters are evaluated for the fatigue data obtained. The FS and MKBM parameters are found to show better correlation with fatigue lives for both base-metal and welded-metal specimens.

  4. On the cyclic stress-strain behavior and low cycle fatigue of aerospace materials

    Science.gov (United States)

    Burbach, J.

    1972-01-01

    The elastic-plastic deformation behavior under cyclic stress of a number of different engineering materials was experimentally investigated with the aid of high-precision methods of measuring, some of which had been newly developed. Experiments made with a variety of steels, the titanium alloy Ti-A16-V4, a cobalt (tungsten) alloy, the high-temperature material Nimonic 90 and Dural (A1-Cu) are reported. The theory given in an attempt to explain these experiments is aimed at finding general formulas for the cyclic stress-strain behavior materials.

  5. Effect of Stress-Strain Behavior on Low-Cycle Fatigue of Alpha-Beta Titanium Alloys.

    Science.gov (United States)

    1980-11-21

    and strain excursion, such a curve would appear to fit much of the high temperature hold-time data compiled by Krempl and Wundt [21]. Thus, it might...34Mechanische Relaxation von Kupfer-Einkristallen," Phys. Stat. Sol. 3, 111-120. 21. Krempl, E. and Wundt , B. M., (1971), Hold-Time Effects in High- Temperature Low-Cycle Fatigue, ASTM STP 489. 26 Low

  6. Microstructural study of multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Masao Sakane

    2015-07-01

    Full Text Available This paper discusses the relationship between the stress response and the microstructure under tension-torsion multiaxial proportional and nonproportional loadings. Firstly, this paper discusses the material dependency of additional hardening of FCC materials in relation with the stacking fault energy of the materials. The FCC materials studied were Type 304 stainless steel, pure copper, pure nickel, pure aluminum and 6061 aluminum alloy. The material with lower stacking fault energy showed stronger additional hardening, which was discussed in relation with slip morphology and dislocation structures. This paper, next, discusses dislocation structures of Type 304 stainless steel under proportional and nonproportional loadings at high temperature. The relationship between the microstructure and the hardening behavior whether isotropic or anisotropic was discussed. The re-arrangeability of dislocation structure was discussed in loading mode change tests. Microstructures of the steel was discussed in more extensively programmed multiaxial low cycle fatigue tests at room temperature, where three microstructures, dislocation bundle, stacking fault and cells, which were discussed in relation with the stress response. Finally, temperature dependence of the microstructure was discussed under proportional and nonproportional loadings, by comparing the microstructures observed at room and high temperatures.

  7. Strain ratio effects on low-cycle fatigue behavior and deformation microstructure of 2124-T851 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Hong, E-mail: 10928008@zju.edu.cn [Institute for Process Equipment, Zhejiang University, Hangzhou 310027 (China); School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024 (China); Ye, Duyi, E-mail: duyi_ye@zju.edu.cn [Institute for Process Equipment, Zhejiang University, Hangzhou 310027 (China); Chen, Chuanyong [Institute for Process Equipment, Zhejiang University, Hangzhou 310027 (China)

    2014-05-01

    The low-cycle fatigue tests of 2124-T851 aluminum alloy with strain ratios of −1, −0.06, 0.06 and 0.5 were conducted under constant amplitude at room temperature. Microstructural and fractographic examinations of the material after fatigue tests were performed by optical microscopy (OM) and scanning electron microscopy (SEM), respectively. Firstly, the results showed that the material exhibited cyclic softening characteristic as a whole. The degree of softening decreased linearly with the increasing strain amplitude and the decreasing strain ratio. The lower fatigue life and ductility of the material corresponded to the larger strain ratios. Secondly, microstructure observations revealed that the density and length of slip bands increased with the increasing strain ratio at the given strain amplitude, and so did the volume fraction and size of coarse constituents, which were responsible for the reduction of fatigue life and ductility of the material. Finally, the SEM micrographs revealed that multiple crack initiation sites took place on the fracture surfaces at different strain ratios. The reduction of stable crack growth area with the increasing strain ratio was observed. Unstable crack growth region was only observed under R≠−1.

  8. Time-dependent high-temperature low-cycle fatigue behavior of nickel-base heat-resistant alloys for HTGR

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Kondo, Tatsuo

    1988-06-01

    A series of strain controlled low-cycle fatigue tests at 900 deg C in the simulated HTGR helium environment were conducted on Hastelloy X and its modified version, Hastelloy XR in order to examine time-dependent high-temperature low-cycle fatigue behavior. In the tests with the symmetric triangular strain waveform, decreasing the strain rate led to notable reductions in the fatigue life. In the tests with the trapezoidal strain waveform with different holding types, the fatigue life was found to be reduced most effectively in tensile hold-time experiments. Based on the observations of the crack morphology the strain holding in the compressive side was suggested to play the role of suppressing the initiation and the growth of internal cracks or cavities, and to cause crack branching. When the frequency modified fatigue life method and/or the prediction of life by use of the ductility were applied, both the data obtained with the symmetric triangular strain waveform and those with the tensile hold-time experiments lay on the straight line plots. The data, however, obtained with the compressive and/or both hold-time experiments could not be handled satisfactorily by those methods. When the cumulative damage rule was applied, it was found that the reliability of HTGR components was ensured by limiting the creep-fatigue damage fraction within the value of 1. (author)

  9. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G., E-mail: agang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Y. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Lin, Y.C. [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-02-08

    Total strain-controlled low cycle fatigue (LCF) tests of a nickel based superalloy were performed at 650 °C. Various hold times were introduced at the peak tensile strain to investigate the high-temperature creep-fatigue interaction (CFI) effects under the same temperature. A substantial decrease in fatigue life occurred as the total strain amplitude increased. Moreover, tensile strain holding further reduced fatigue life. The saturation phenomenon of holding effect was found when the holding period reached 120 s. Cyclic softening occurred during the LCF and CFI process and it was related to the total strain amplitude and the holding period. The relationship between life-time and total strain amplitude was obtained by combining Basquin equation and Coffin-Manson equation. The surface and fracture section of the fatigued specimens were observed via scanning electronic microscope (SEM) to determine the failure mechanism.

  10. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.

    Science.gov (United States)

    Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J

    2018-04-24

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  11. Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Welded Joints at Room Temperature and 850 .deg. C for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dew, Rando T. [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Min Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Low cycle fatigue (LCF) is an important design consideration for high temperature IHX components. Moreover, some of the components are joined by welding techniques and therefore the welded joints are unavoidable in the construction of mechanical structures. Since Alloy 617 was introduced in early 1970s, many attempts have been made in the past two decades to evaluate the LCF and creep-fatigue behavior in Alloy 617 base metal at room temperature and high temperature. However, little research has focused on the evaluation and characterization of the Alloy 617 welded joints. butt-welded joint specimens was performed at room temperature and 850 .deg. C. Fatigue lives of GTAW welded joint specimens were lower than those of base metal specimens. LCF cracking and failure in welded specimens initiated in the weld metal zone and followed transgranluar dendritic paths for both at RT and 850 .deg. C.

  12. Effect of temperature on low cycle fatigue behavior of annealed Cu-Cr-Zr-Ti alloy in argon atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan Rao, G., E-mail: srgundi@yahoo.co.in [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India); Srinath, J. [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India); Ganesh Sundara Raman, S. [Dept of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India); Sharma, V.M.J.; Narayana Murthy, S.V.S.; Narayanan, P. Ramesh [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India); Tharian, K. Thomas [Materials and Manufacturing Entity, Liquid Propulsion Systems Center, Valiamala, Trivandrum (India); Kumar, P. Ram; Venkita Krishnan, P.V. [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum (India)

    2017-04-24

    Isothermal low cycle fatigue (LCF) properties of Cu-Cr-Zr-Ti alloy were evaluated at different temperatures (300 °C, 450 °C and 600 °C) in high purity argon atmosphere. The cyclic stress response (CSR) was highly dependent on the test temperature. CSR at 300 °C showed primary hardening and secondary hardening at lower strain amplitudes from 0.25% to 0.8% and primary hardening followed by continuous softening at 1.2% strain amplitude. At 450 °C, the alloy exhibited a higher degree of primary hardening followed by saturation of stress. Transmission electron microscopic observations made on the samples tested upto different number of cycles indicate that precipitation of fine Cr precipitates was the main reason for the secondary hardening at 300 °C and extensive primary hardening at 450 °C. Even though precipitation was assisted by mechanical working during cycling, it is observed that the secondary hardening occurred almost at the same time irrespective of the strain amplitude used in the tests. At 450 °C and higher strain amplitudes, precipitates nucleated at the dislocations within a few initial cycles causing pinning of the dislocations thereby increasing the stress response. CSR at 600 °C showed continuous softening without any hardening. It is found that the precipitates nucleated during heating and soaking at the test temperature itself before the start of the strain cycling and coarsening of precipitates as well as loss of coherency with the matrix caused continuous softening at 600 °C. With an increase in test temperature, a reduction in fatigue life is observed and the life reduction is significant at higher strain amplitudes. Microstructural observations and fractographic studies indicated that cracks initiated predominantly at surface and propagated inward. Intergranular cracking was observed at higher strain amplitudes at all temperatures.

  13. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn- xAg-0.7Cu

    Science.gov (United States)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-12-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  14. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Z.; Meng, X.K., E-mail: mengdetiankong10@126.com; Huang, S.; Sheng, J.; Lu, J.Z.; Yang, Z.R.; Su, C.

    2015-09-03

    This study focused on the effects of warm laser peening (WLP) on the fatigue behavior of Ti6Al4V titanium alloy during low-cycle fatigue (LCF) tests. The Ti6Al4V specimens were treated by laser peening at room temperature (RT-LP) and WLP at elevated temperatures from 100 °C to 400 °C. The residual stress relaxation (RSR) tests and LCF tests were conducted subsequently. In addition, the microstructure analysis of fracture surfaces was performed using scanning electron microscope (SEM). Finally, the fracture mechanism of the untreated, RT-LPed and 300 °C-WLPed samples during LCF was revealed. It is found that although the compressive residual stress (CRS) induced by WLP decreases at elevated temperatures, the depth and stability of CRS increase with the increasing treatment temperature, which help to retard the early fatigue crack initiation. Moreover, for the 300 °C-WLPed specimens, the growth rate of effective cracks is decreased and the lengths of crack growth paths are increased by the induced high angle boundaries (HABs) and nano-precipitates. Therefore, specimens treated by WLP at 300 °C are found to have a significantly extended fatigue life when subjected to low-cycle loads. This extended fatigue life is attributed to the great depth and stability of introduced CRS, as well as the enhanced fracture toughness. It can be concluded that 300 °C is the optimal temperature for WLP of Ti6Al4V titanium alloy from the perspective of LCF improvement.

  15. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds

    Directory of Open Access Journals (Sweden)

    Wei Song

    2018-04-01

    Full Text Available The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  16. Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyeong; Myung, NohJun; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2016-12-15

    In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

  17. Low-cycle fatigue behavior of oxygen-free high-conductivity copper at 3000C in high vacuum

    International Nuclear Information System (INIS)

    Liu, K.C.; Loring, C.M. Jr.

    1983-01-01

    In-vacuum fatigue tests were performed on commercially-pure OFHC copper and 35% Au-65% Cu brazing filler metal at 300 0 C. Excessive recrystallization due to exposure in the 1025 0 C brazing temperature cycle was detrimental to the fatigue life of the base metal; cold work was beneficial to the fatigue resistance. Triple-point cracking and grain boundary sliding were the prevailing modes of fatigue failure observed in the full-size specimens. However, a mixed morphology of ductile and cleavage-like fracture was observed on the fracture surface of the subsize specimen in which the grain structure appeared to have undergone a change because of the presence of surface cold work. The braze has superior fatigue resistance, but to exploit the maximum strength, the brazed joint must be devoid of defects such as cavities and cracks

  18. Effect of high pressure hydrogen on low-cycle fatigue

    International Nuclear Information System (INIS)

    Rie, K.T.; Kohler, W.

    1979-01-01

    It has been shown that the fatigue life can be influenced in low-cycle range by high pressure hydrogen while the effect of high pressure hydrogen on high-cycle fatigue will not be as significant. The paper reports the details and the results of the investigations of the effect of high pressure hydrogen on the low-cycle endurance of commercially pure titanium. The results of this study indicate that: 1. The degradation of the fatigue life in low-cycle region for commercially pure titanium under high pressure hydrogen can be described by Nsub(cr)sup(α x Δepsilon)sub(pl)sup(=c) 2. The fatigue life decreases with decreasing strain rate. 3. The fatigue life decreases with increasing hydrogen pressure. It was found that the semilogarithmic plot of the fatigue life versus the hydrogen pressure gives a linear relationship. The Sievert's law does not hold in low-cycle fatigue region. 4. HAC in titanium in low-cycle fatigue region is the result of the disolution of hydrogen at the crack tip and of the strain-induced hybride formation. (orig.) 891 RW/orig. 892 RKD [de

  19. Crack growth prediction for low-cycle fatigue regime

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2017-01-01

    The objective of this study is to show a crack growth prediction procedure for the low-cycle fatigue regime. First, fatigue crack growth tests using Type 316 stainless steel specimens at room temperature were reviewed. It was seen that the crack growth rates correlated well with the equivalent stress intensify factor, which was derived using strain range instead of stress range. Furthermore, the effective equivalent stress intensify factor derived using the effective strain range exhibited excellent correlation with the crack growth rates obtained under various specimen geometries and loading conditions including high and low-cycle regimens. The obtained crack growth rates were also compared with the growth rate prescribed in the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME). The test results agreed with the growth rate of JSME code. Finally, the procedure for predicting the low-cycle fatigue crack growth was shown. Although the JSME code is aimed at predicting fatigue crack growth for the so-called small scale yielding condition (high-cycle fatigue regime), the material constants determined for the high-cycle fatigue regime can be used even for the low-cycle fatigue regime. (author)

  20. Synthesis of low cycle fatigue test results

    International Nuclear Information System (INIS)

    Andrews, R.M.

    1990-01-01

    Axial strain controlled cycle fatigue tests were carried out on type 316 stainless steel parent metal, vacuum and non-vacuum electron beams welds, submerged arc welds and gas shielded metal arc welds. Testing covered total strains in the range 0.6% to 2%, and was at room temperature and 550 0 C. Parent metal and the electron beam welds showed rapid cyclic hardening, while arc welds showed little hardening. The weld metal cyclic stress-strain response was above that obtained for the parent metal, although below data obtained by other workers for similar parent materials. Weld metal endurances were above the ASME N47 continuous cycling design line at both temperatures, and comparable with parent metal data. However, the weld metal data approached the design line at low strain ranges (around 0.5%). Endurances were predicted from crack growth rates estimated from striation spacings, giving acceptable results except for the gas shielded metal arc weldments. (author)

  1. The influence of temperature on low cycle fatigue behavior of prior cold worked 316L stainless steel (II) : life prediction and failure mechanism

    International Nuclear Information System (INIS)

    Hong, Seong Gu; Yoon, Sam Son; Lee, Soon Bok

    2003-01-01

    Tensile and low cycle fatigue tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650 deg. C. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM

  2. Effect of thermal aging on the low cycle fatigue behavior of Z3CN20.09M cast duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weifeng [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xue, Fei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Tian, Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Dunji, E-mail: djyu@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yu, Weiwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Chen, Xu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-10-14

    Nuclear grade Z3CN20.09M cast duplex stainless steel exhibits enhanced cyclic stress response and prolonged low cycle fatigue life at room temperature after thermal aging at 400 °C for up to 6000 h. The threshold strain amplitude for the onset of secondary hardening is shifted to a lower value after thermal aging. Microstructural observations reveal that fatigue cracks tend to initiate from phase boundaries in virgin specimens, but to initiate in the ferrite phase in aged ones. Denser fatigue striations are found on the fracture surface of fatigued specimen subjected to longer thermal aging duration. These observations are explained in the context of thermal aging induced embrittlement of the ferrite phase and deformation induced martensitic phase transformation in the austenite phase.

  3. Multiaxial low cycle fatigue life under non-proportional loading

    International Nuclear Information System (INIS)

    Itoh, Takamoto; Sakane, Masao; Ohsuga, Kazuki

    2013-01-01

    A simple and clear method of evaluating stress and strain ranges under non-proportional multiaxial loading where principal directions of stress and strain are changed during a cycle is needed for assessing multiaxial fatigue. This paper proposes a simple method of determining the principal stress and strain ranges and the severity of non-proportional loading with defining the rotation angles of the maximum principal stress and strain in a three dimensional stress and strain space. This study also discusses properties of multiaxial low cycle fatigue lives for various materials fatigued under non-proportional loadings and shows an applicability of a parameter proposed by author for multiaxial low cycle fatigue life evaluation

  4. Role of butter layer in low-cycle fatigue behavior of modified 9Cr and CrMoV dissimilar rotor welded joint

    International Nuclear Information System (INIS)

    Wu, Qingjun; Lu, Fenggui; Cui, Haichao; Liu, Xia; Wang, Peng; Tang, Xinhua

    2014-01-01

    Highlights: • Modified 9Cr–CrMoV dissimilar turbine rotor was successfully welded by NG-SAW. • LCF properties of both welded joints were approximate at smaller strain amplitude. • Tempered martensite with amounts of carbides in HAZ contributed to weakest zones. • Matched BL determined LCF properties of whole joint for dissimilar welded rotor. - Abstract: The present work aims at studying the role of butter layer (BL) in low-cycle fatigue (LCF) behavior of modified 9Cr steel and CrMoV steel dissimilar welded joint. The significant difference of the chemical composition of base metals (BMs) makes it a challenge to achieve sound welded joint. Therefore, buttering was considered to obtain a transition layer between the dissimilar steels. The LCF tests of two kinds of specimens without and with butter layer were performed applying strain-controlled cyclic load with different axial strain amplitudes. The test results indicated that the number of cycles at higher strain amplitudes of welded joint without butter layer was greatly higher than that of the joint with butter layer, while the fatigue lifetime to crack initiation (2N f ) became closer to each other at low and middle strain amplitudes. The failure was in the tempered heat affected zone (HAZ) at the CrMoV side for specimens without BL, while the fracture occurred at the tempered HAZ in the BL for specimens with BL. The microstructure details of BM, BL, HAZ and weld metals (WMs) were revealed by optical microscopy (OM). It was found that the tempered martensite was major microstructure for welded joint and much more carbides were observed in tempered HAZ than other parts due to the repeated tempering. Microhardness test indicated a softest zone existing tempered HAZ of BL and also there was a softer zone in tempered HAZ at the CrMoV side due to repeated tempering during welding and post weld heat treatment (PWHT). And scanning electron microscopy (SEM) was applied to observe the fractography. It was

  5. Low-cycle compression fatigue of reinforced concrete structures

    NARCIS (Netherlands)

    Stroeven, P.

    2010-01-01

    Paper reports on experiments performed in the low-cycle compression fatigue domain, considering two relatively high upper load levels and several lower ones. Two frequency levels were emphasized, i.e. 17.5 Hz and 0.175 Hz. An overview is given of characteristics of mechanical behaviour and of the

  6. Low cycle fatigue properties of CLAM steel at 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xue [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Huang, Lixin [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yan, Wei; Wang, Wei [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast BT9 5AG (United Kingdom); Shan, Yiyin, E-mail: yyshan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2014-09-08

    China Low Activation Martensitic (CLAM) steel is considered to be the main candidate material for the first wall components of future fusion reactors in China. In this paper, the low cycle fatigue (LCF) behavior of CLAM steel is studied under fully reversed tension–compression loading at 823 K in air. Total strain amplitude was controlled from 0.14% to 1.8% with a constant strain rate of 2.4×10{sup −3} s{sup −1}. The corresponding plastic strain amplitude ranged from 0.023% to 1.613%. The CLAM steel displayed continuous softening to failure at 823 K. The relationship between strain, stress and fatigue life was obtained using the parameters obtained from fatigue tests. The LCF properties of CLAM steel at 823 K followed Coffin–Manson relationship. Furthermore, irregular serration was observed on the stress–strain hysteresis loops of CLAM steel tested with the total strain amplitude of 0.45–1.8%, which was attributed to the dynamic strain aging (DSA) effect. During continuous cyclic deformation, the microstructure and precipitate distribution of CLAM steel changed gradually. Many tempered martensitic laths were decomposed into subgrains, and the size and number of M{sub 23}C{sub 6} carbide and MX carbonitride precipitates decreased with the increase of total strain amplitude. The response cyclic stress promoted the recovery of martensitic lath, while the thermal activation mainly played an important role on the growth of precipitates in CLAM steel at 823 K. In order to have a better understanding of high-temperature LCF behavior, the potential mechanisms controlling stress–strain response, DSA phenomenon and microstructure changes have also been evaluated.

  7. The effect of shot peening on notched low cycle fatigue

    International Nuclear Information System (INIS)

    Soady, K.A.; Mellor, B.G.; Shackleton, J.; Morris, A.; Reed, P.A.S.

    2011-01-01

    Highlights: → Shot peening improves notched component three point bend low cycle fatigue life. → Notch shape does not affect the efficacy of the peening process. → Strain hardening and residual stress effects need separate consideration. → Loading direction residual stresses do not relax under bend load. - Abstract: The improvement in low cycle fatigue life created by shot peening ferritic heat resistant steel was investigated in components of varying geometries based on those found in conventional power station steam turbine blades. It was found that the shape of the component did not affect the efficacy of the shot peening process, which was found to be beneficial even under the high stress amplitude three point bend loads applied. Furthermore, by varying the shot peening process parameters and considering fatigue life it has been shown that the three surface effects of shot peening; roughening, strain hardening and the generation of a compressive residual stress field must be included in remnant life models as physically separate entities. The compressive residual stress field during plane bending low cycle fatigue has been experimentally determined using X-ray diffraction at varying life fractions and found to be retained in a direction parallel to that of loading and to only relax to 80% of its original magnitude in a direction orthogonal to loading. This result, which contributes to the retention of fatigue life improvement in low cycle fatigue conditions, has been discussed in light of the specific stress distribution applied to the components. The ultimate aim of the research is to apply these results in a life assessment methodology which can be used to justify a reduction in the length of scheduled plant overhauls. This will result in significant cost savings for the generating utility.

  8. Effect of grain size on high temperature low-cycle fatigue properties of inconel 617

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1982-01-01

    The effect of grain size on the high temperature low-cycle fatigue behavior and other material strength properties of Inconel 617 was studied at 1 273 K in air. The strain controlled low-cycle fatigue tests were conducted with a symmetrical (FF type) and an asymmetrical (SF type) strain wave forms. The latter wave form was used for the evaluation of creep-fatigue interaction. The main results obtained in this study are as follows: 1) The tensile strength slightly increased with the increase of the grain diameter. On the other hand, the tensile ductility remarkabley decreased with the increase of the grain diameter. 2) The creep rupture life remarkabley increased with the increase of the grain diameter, especially at the lower stress levels. The effect of grain size on creep ductility has not detailed. 3) The low-cycle fatigue life remarkably decreased with the increase of the grain diameter, especially at the lower strain ranges. 4) The creep-fatigue life was less sensitive to the grain diameter than the fatigue life, because the grain size effects on creep and on fatigue were contrary. It is seemed that the creep-fatigue life is determined by the proportion of the creep and fatigue contribution. 5) The fatigue and creep-fatigue test results have good relations with the tensile and creep ductilities at the test temperature. (author)

  9. Low cycle fatigue testing in flowing sodium at elevated temperatures

    International Nuclear Information System (INIS)

    Flagella, P.N.; Kahrs, J.R.

    1976-01-01

    The paper describes equipment developed to obtain low cycle strain-controlled fatigue data in flowing sodium at elevated temperatures. Operation and interaction of the major components of the system are discussed, including the calibration technique using remote strain measurement and control. Confirmation of in-air results using the special technique is demonstrated, with data presented for Type 316 stainless steel tested in high purity flowing sodium at 593 0 C. The fatigue life of the material in sodium is essentially the same as that obtained in air for delta epsilon/sub t/= 1 percent. On the other hand, sodium pre-exposure at 650 0 C for 5000 hours increased the fatigue life in-sodium by a factor of two, and sodium pre-exposure at 718 0 C for 5000 hours increased the fatigue life in-sodium by a factor of three

  10. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium-2.5 wt% niobium and zirconium-1.1 wt% chronium-0.1 wt% iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium-niobium and zirconium-chromium-iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 per cent a cyclic frequency exceeding 0.116 Hz (10 000 cycles/day) would be required to cause fatigue failure of the sheath before its design life is realized. (author)

  11. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium--2.5 wt percent niobium and zirconium--1.1 wt percent chromium--0.1 wt percent iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium--niobium and zirconium--chromium--iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 percent a cyclic frequency exceeding 0.116 Hz (10,000 cycles/ day) would be required to cause fatigue failure of the sheath before its design life is realized

  12. Low cycle fatigue of alloy 718 in cryogenic environment

    International Nuclear Information System (INIS)

    Vergara Aimone, J.

    1989-01-01

    A specially processed Ni-Fe base superalloy 718 has been selected as a structural material for a critical component in ALCATOR C-MOD, the new fusion experimental facility at the Massachusetts Institute of Technology. Draw bars made out of this material will be subjected to large alternating loads while operating at 77 0 K. Monotonic and cyclic mechanical properties were determined in order to evaluate the reactor's maintenance schedule with special emphasis in developing a Low Cycle Fatigue database for this special alloy. Improved monotonic properties over conventionally heat treated alloy 718 were observed. Partial hardening was observed at 77 0 K at 1% of the fatigue life, while softening was observed at room temperature, both relative to their respective monotonic stress strain curves. The fatigue curves were corrected for non-zero mean stress allowing satisfactory safety margin for the expected alternating stress. (author)

  13. Low cycle fatigue studies on a type 304 stainless steel

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Ray, S.K.; Rodriguez, P.

    The effects of temperature and strain rate on the low cycle fatigue behaviour were investigated for an AISI 304 stainless steel under total axial strain control mode at 823 and 923 K. The fatigue life was strongly dependent on cyclic deformation rate for this material at these temperatures, decreasing markedly with decreasing strain rate. The cyclic stress-strain response recorded in the form of hysterisis loops exhibited serrations at low strain rates at 823 and 923 K. Cyclic stress-strain response at 823 K has shown an increase in saturation stress and decrease in plastic strain range whereas there is an increase in plastic strain range without marked variation in saturation stress level at 923 K with decreasing strain rate. It has been observed that there are three simultaneous effects namely environment, creep and cyclic strain ageing which contribute to the observed degradation in fatigue life at low strain rates. At 823 K, where the creep damage as well as environmental damage is relatively small, the fatigue life is considered mainly to be affected by dynamic strain ageing effect which depends on strain rate. At 923 K, on the other hand, the strain rate dependence of fatigue life is considered to be determined by the combination of creep and environmental effects. Deformation and fracture studies have also confirmed that the wedge type crack propagation is accelerated by oxidation effect. (author)

  14. In pile AISI 316L. Low cycle fatigue. Final report

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.; Moons, F.

    1994-12-01

    In pile testing of the effect of neutron irradiation on the fatigue life of the reference material AISI 316L was performed in the framework of the European fusion technology program. The overall programme, carried out at SCK CEN (Mol,Belgium), exists of two instrumented rigs for low cycle fatigue testing, which were consecutively loaded in the BR-2 reactor during periods Jan (94) June (94) and Aug (94)-Dec(94). In each experiment, two identical samples were loaded by means of a pneumatically driven system. The samples were instrumented with thermocouples, strain gages, linear variable displacement transducers, and activation monitors. The experimental conditions are given. Type of fatigue test: load controlled, symmetric, uniaxial, triangular wave shape; stress range: about 580 MPa; sample shape: hourglass, diameter 3.2 mm, radius 12.5 mm; environment: NaK (peritectic); temperature: 250 C; maximum dpa value up to fracture: 1.7. Two of four samples were broken (one in each experiment) after having experienced 17 419 respectively 11 870 stress cycles. These new data points confirm earlier results from pile fatigue tests: irradiation causes no degradation of fatigue life of AISI 316L steel, at least for the parameters corresponding to these experiments

  15. Low cycle fatigue of PM/HIP astroloy

    Energy Technology Data Exchange (ETDEWEB)

    Choe, S.J.; Stoloff, N.S.; Duquette, D.J. (Rensselaer Polytechnic Institute, Troy, NY (USA))

    Low cycle fatigue and creep-fatigue-environment interactions of PM/HIP Astrology were studied at 650 C and 725 C. Total strain range was varied from 1.5% to 2.7% at a frequency of 0.3Hz. Creep-fatigue tests were performed with 2 min. or 5 min. tensile hold times. All tests were run in high purity argon in an attempt to minimize environmental effects. Employing a tensile hold was more damaging than raising temperature by 75 C. Slopes of Coffin-Manson plots were nearly independent of temperature and hold time. Raising temperature from 650 C to 725 C did not change the transgranular (TG) crack propagation mode, whereas employing hold times caused TG+IG propagation. All samples displayed multiple fracture origins associated with inclusions located at the specimen surface; pre-existing pores did not affect fatigue crack initiation. Examination of secondary cracks showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold times.

  16. A structural strain method for low-cycle fatigue evaluation of welded components

    International Nuclear Information System (INIS)

    Dong, P.; Pei, X.; Xing, S.; Kim, M.H.

    2014-01-01

    In this paper, a new structural strain method is presented to extend the early structural stress based master S–N curve method to low cycle fatigue regime in which plastic deformation can be significant while an elastic core is still present. The method is formulated by taking advantage of elastically calculated mesh-insensitive structural stresses based on nodal forces available from finite element solutions. The structural strain definition is consistent with classical plate and shell theory in which a linear through-thickness deformation field is assumed a priori in both elastic or elastic–plastic regimes. With considerations of both yield and equilibrium conditions, the resulting structural strains are analytically solved if assuming elastic and perfectly plastic material behavior. The formulation can be readily extended to strain-hardening materials for which structural strains can be numerically calculated with ease. The method is shown effective in correlating low-cycle fatigue test data of various sources documented in the literature into a single narrow scatter band which is remarkable consistent with the scatter band of the existing master S–N curve adopted ASME B and PV Code since 2007. With this new method, some of the inconsistencies of the pseudo-elastic structural stress procedure in 2007 ASME Div 2 Code can now be eliminated, such as its use of Neuber's rule in approximating structural strain beyond yield. More importantly, both low cycle and high cycle fatigue behaviors can now be treated in a unified manner. The earlier mesh-insensitive structural stress based master S–N curve method can now be viewed as an application of the structural strain method in high cycle regime, in which structural strains are linearly related to traction-based structural stresses according to Hooke's law. In low-cycle regime, the structural strain method characterizes fatigue damage directly in terms of structural strains that satisfy linear through

  17. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  18. Thermoelastoviscoplastic modeling of RAFM steel JLF-1 using tensile and low cycle fatigue experiments

    Energy Technology Data Exchange (ETDEWEB)

    Msolli, S., E-mail: sabeur.msolli@univ-lorraine.fr

    2014-08-01

    In this paper, a modeling of the elastoviscoplastic behavior of a Reduced Activation Ferritic Martensitic (RAFM) steel JLF-1 is presented. The modeling of this material was based on various Low Cycle Fatigue (LCF) and tensile tests performed in air and vacuum using different imposed strain rates and temperature ranges going from ambient temperature to 873 K. The coupled viscoplastic model is coded in FORTRAN program, implemented into the finite elements code ABAQUS and used to predict the thermomechanical behavior of a fatigue specimen made of RAFM steel JLF-1. Good agreements were found between numerical results and experimental data.

  19. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  20. Low cycle thermomechanical fatigue of reactor steels: Microstructural and fractographic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Kasl, Josef; Jandova, Dagmar [Výzkumný a zkušební ústav Plzeň s.r.o., Tylova 1581/46, 316 00 Plzen (Czech Republic); Jóni, Bertalan [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Eötvös Loránd University, Egyetem tér 1-3, Budapest H-1053 (Hungary); Misják, Fanni [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. 29-33, Budapest H-1121 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-07-29

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of a VVER-440 reactor pressure vessel were investigated under fully reversed total strain controlled low cycle fatigue tests. The measurements were carried out in isothermal conditions at 260 °C and with thermal-mechanical conditions in the range 150–270 °C using a GLEEBLE-3800 servo-hydraulic thermal-mechanical simulator. The low cycle fatigue results were evaluated with the Coffin–Manson law, and the parameters of the Ramberg–Osgood stress–strain relation were investigated. Fracture mechanics behavior was observed using scanning electron microscopic analysis of the crack shapes and fracture surfaces. Crack propagation was assessed in relation to the actual crack size and the loading level. Interrupted fatigue tests were also carried out to investigate the kinetics of the fatigue evolution of the materials. Microstructural evaluation of the samples was performed using light, scanning and transmission electron microscopy as well as X-ray diffraction, and measurement of dislocations was completed using TEM and XRD. The course of dislocation density in relation to cumulative usage factor was similar for both steels. However, the nature and distribution of dislocations were different in the individual steels and this resulted in different mechanical behaviors. The nature of the fracture surfaces of both steels appeared similar despite differences in dislocation arrangement. The distances between striation lines initially increased with increasing crack length and then became saturated. The low cycle fatigue behavior investigated can provide a reference for the remaining life assessment and lifetime extension analysis of nuclear power plant components.

  1. Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation

    Directory of Open Access Journals (Sweden)

    Ghazal Moeini

    2017-07-01

    Full Text Available This study aims to simulate the stabilised stress-strain hysteresis loop of dual phase (DP steel using micromechanical modelling. For this purpose, the investigation was conducted both experimentally and numerically. In the experimental part, the microstructure characterisation, monotonic tensile tests and low cycle fatigue tests were performed. In the numerical part, the representative volume element (RVE was employed to study the effect of the DP steel microstructure of the low cycle fatigue behavior of DP steel. A dislocation-density based model was utilised to identify the tensile behavior of ferrite and martensite. Then, by establishing a correlation between the monotonic and cyclic behavior of ferrite and martensite phases, the cyclic deformation properties of single phases were estimated. Accordingly, Chaboche kinematic hardening parameters were identified from the predicted cyclic curve of individual phases in DP steel. Finally, the predicted hysteresis loop from low cycle fatigue modelling was in very good agreement with the experimental one. The stabilised hysteresis loop of DP steel can be successfully predicted using the developed approach.

  2. Low-cycle fatigue-cracking mechanisms in fcc crystalline materials

    Science.gov (United States)

    Zhang, P.; Qu, S.; Duan, Q. Q.; Wu, S. D.; Li, S. X.; Wang, Z. G.; Zhang, Z. F.

    2011-01-01

    The low-cycle fatigue (LCF) cracking behavior in various face-centered-cubic (fcc) crystalline materials, including Cu single crystals, bicrystals and polycrystals, Cu-Al and Cu-Zn alloys, ultrafine-grained (UFG) Al-Cu and Cu-Zn alloys, was systematically investigated and reviewed. In Cu single crystals, fatigue cracking always nucleates along slip bands and deformation bands. The large-angle grain boundary (GB) becomes the preferential site in bicrystals and polycrystals. In addition, fatigue cracking can also nucleate along slip bands and twin boundaries (TBs) in polycrystalline materials. However, shear bands and coarse deformation bands are observed to the preferential sites for fatigue cracking in UFG materials with a large number of GBs. Based on numerous observations on fatigue-cracking behavior, the fatigue-cracking mechanisms along slip bands, GBs, TBs, shear bands and deformation bands were systematically compared and classified into two types, i.e. shear crack and impingement crack. Finally, these fatigue-cracking behaviors are discussed in depth for a better understanding of their physical nature and the transition from intergranular to transgranular cracking in various fcc crystalline materials. These comprehensive results for fatigue damage mechanisms should significantly aid in obtaining the optimum design to further strengthen and toughen metallic materials in practice.

  3. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Shun-Peng Zhu

    2017-06-01

    Full Text Available Combined high and low cycle fatigue (CCF generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF resulting from high frequency vibrations and low cycle fatigue (LCF from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  4. The low cycle fatigue factor in the construction of sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Petrequin, Pierre; Mottot, Michel; Valibus, Louis; Grattier, Georges

    1976-01-01

    The working conditions of fast neutron reactors are such that it is essential to know the resistance of the component steels to low cycle fatigue. The behavior of Z2CND17-13 type austenitic stainless steels and of welds was studied in three laboratories. The steels offer an excellent resistance to low cycle fatigue, in keeping with their good ductility and very strong aptitude for cyclic strain hardening. Increasing the testing temperature from 20 to 600 deg C reduces the resistance to some extent (about an order of magnitude on the number of cycles to failure). Steels possessing improved mechanical properties without loss of ductility show greater fatigue resistance. Welds characterized by an austenitic ferritic structure and a slightly cold-hardened state are less ductile than laminated steels. Their resistance to low cycle fatigue is lower at strong deformations. At high temperature (600 deg C) a reduced test frequency or a pause at each cycle leads to a considerable drop in the number of cycles to failure and the appearance of intergranular cracking [fr

  5. Microstructural characterization of EUROFER 97 during low-cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, M.F., E-mail: giordana@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Alvarez-Armas, I., E-mail: alvarez@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Armas, A., E-mail: armas@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina)

    2012-05-15

    The quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of Generation IV nuclear power plants. The cyclic behaviour of this steel during isothermal plastic strain-controlled tests was investigated at room temperature and at 550 Degree-Sign C. Under low-cycle fatigue test this steel shows, after the first few cycles, a pronounced cyclic softening accompanied by microstructural changes such as the decrease of the free dislocation density inside the subgrain. The rate of softening increases with temperature being very pronounced at temperatures above 500 Degree-Sign C. The evolution of the flow stress during cycling was studied by analyzing the so-called 'back' and 'friction' stresses obtained from the hysteresis loops measured along the entire test. From the analysis of the hysteresis loops and corroborated by electron microscopy observations, it can be concluded that the strong cyclic softening observed is produced by the decrease exhibited by the friction stress. The Taylor coefficient was calculated measuring the evolution of the free dislocation density.

  6. Microstructural characterization of EUROFER 97 during low-cycle fatigue

    International Nuclear Information System (INIS)

    Giordana, M.F.; Alvarez-Armas, I.; Armas, A.

    2012-01-01

    The quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of Generation IV nuclear power plants. The cyclic behaviour of this steel during isothermal plastic strain-controlled tests was investigated at room temperature and at 550 °C. Under low-cycle fatigue test this steel shows, after the first few cycles, a pronounced cyclic softening accompanied by microstructural changes such as the decrease of the free dislocation density inside the subgrain. The rate of softening increases with temperature being very pronounced at temperatures above 500 °C. The evolution of the flow stress during cycling was studied by analyzing the so-called “back” and “friction” stresses obtained from the hysteresis loops measured along the entire test. From the analysis of the hysteresis loops and corroborated by electron microscopy observations, it can be concluded that the strong cyclic softening observed is produced by the decrease exhibited by the friction stress. The Taylor coefficient was calculated measuring the evolution of the free dislocation density.

  7. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Kim, S.W.; Tanigawa, H.; Hirose, T.; Kohyama, A.

    2007-01-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  8. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Kyoto Univ., Graduate School of Energy Science (Japan); Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  9. Effect of Tantalum content on the low cycle fatigue properties of CLAM steel at 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Xiangwei [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Zhao, Yanyun; Wang, Kun [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-01-15

    Highlights: • The fatigue life initially decreased and then increased as the Ta content was increased from 0.027 wt% to 0.18 wt%. • The softening rate had declined with Ta content increased and the reduced softening rate was attributed to the increased number of Ta-rich MX particles. • The grain size and M{sub 23}C{sub 6} were closely associated with the Ta content. • The crack distribution was quite sensitive to the Ta content. - Abstract: The effect of tantalum (Ta) content on the low cycle fatigue (LCF) properties of CLAM steel at 823 K was investigated in this paper. Low cycle fatigue tests were carried out on four ingots of CLAM steel with Ta contents of 0.027 wt%, 0.078 wt%, 0.15 wt% and 0.18 wt%, respectively. The results showed that the fatigue life and softening behavior of CLAM steel were influenced by Ta content. The fatigue life initially decreased and then increased as the Ta content was increased from 0.027 wt% to 0.18 wt%. The softening rate had declined with Ta content increased and the reduced softening rate was attributed to the increased number of Ta-rich MX particles.

  10. Low-cycle fatigue of welded joints: coupled initiation propagation model

    International Nuclear Information System (INIS)

    Madi, Yazid; Recho, Naman; Matheron, Philippe

    2004-01-01

    This paper deals with the low-cycle fatigue (LC) design of welded structures, the aim being the critical analysis of the rule used in the RCC-MR [Design and construction rules for mechanical components of FBR nuclear islands, AFCEN, 1993], for the design and construction of fast breeder reactors. The study takes into account the evolution of the material behavior laws and damage accumulation during the fatigue loading. The adopted model consists of analyzing separately the behavior and the damage evolutions. It allows us to determine the damage ratio corresponding to initiation and propagation of a significant crack in order to determine the life duration. This model suggests the existence of a threshold level of loading, above which micro-cracks initiate. The initiation fatigue life can then be neglected below the threshold level. This work shows also that the RCC-MR rules are valid below this threshold load level

  11. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    International Nuclear Information System (INIS)

    Huang, Zhi Yong; Chaboche, Jean-Louis; Wang, Qing Yuan; Wagner, Danièle; Bathias, Claude

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C

  12. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  13. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    M. Maj

    2013-01-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade.The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting fromthe Manson-Coffin-Morrow relationship.The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidalgraphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also smallvariations in the geometrical parameters of graphite related with its content and morphological features.

  14. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    Maj M.

    2013-03-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade. The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting from the Manson-Coffin-Morrow relationship. The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidal graphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also small variations in the geometrical parameters of graphite related with its content and morphological features.

  15. Tuning Low Cycle Fatigue Properties of Cu-Be-Co-Ni Alloy by Precipitation Design

    Directory of Open Access Journals (Sweden)

    Yanchuan Tang

    2018-06-01

    Full Text Available As material for key parts applied in the aerospace field, the Cu-Be-Co-Ni alloy sustains cyclic plastic deformation in service, resulting in the low cycle fatigue (LCF failure. The LCF behaviors are closely related to the precipitation states of the alloy, but the specific relevance is still unknown. To provide reasonable regulation of the LCF properties for various service conditions, the effect of precipitation states on the LCF behaviors of the alloy was investigated. It is found that the alloy composed fully of non-shearable γ′ precipitates has higher fatigue crack initiation resistance, resulting in a longer fatigue life under LCF process with low total strain amplitude. The alloy with fine shearable γ′I precipitates presents higher fatigue crack propagation resistance, leading to a longer fatigue life under LCF process with high total strain amplitude. The cyclic stress response behavior of the alloy depends on the competition between the kinematic hardening and isotropic softening. The fine shearable γ′I precipitates retard the decrease of effective stress during cyclic loading, causing cyclic hardening of the alloy. The present work would help to design reasonable precipitation states of the alloy for various cyclic loading conditions to guarantee its safety in service.

  16. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  17. Results from low cycle fatigue testing of 316L plate and weld material

    International Nuclear Information System (INIS)

    Kaellstroem, R.; Josefsson, B.; Haag, Y.

    1993-01-01

    Specimens for low cycle fatigue testing from the second heat of the CEC reference 316L plate and from Tungsten Inert Gas (TIG) weld material have been neutron irradiated near room temperature to a displacement dose of approximately 0.3 dpa. The low cycle fatigue testing of both irradiated and unirradiated specimens was performed at 75, 250 and 450 degrees C, and with strain ranges of 0.75, 1.0 and 1.5%. There is no clear effect of the irradiation on low cycle fatigue properties. For the weld material the endurance is shorter than for plate, and the dependences on temperature and strain range are not clear

  18. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    Energy Technology Data Exchange (ETDEWEB)

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  19. Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    Directory of Open Access Journals (Sweden)

    Kulesa Anna

    2016-03-01

    Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

  20. Seismic Capacity Estimation of Steel Piping Elbow under Low-cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of); Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In some cases, this large relative displacement can increase seismic risk of the isolated facility. Especially, a inelastic behavior of crossover piping system to connect base isolated building and fixed base building can caused by a large relative displacement. Therefore, seismic capacity estimation for isolated piping system is needed to increase safety of nuclear power plant under seismic condition. Dynamic behavior analysis of piping system under seismic condition using shake table tests was performed by Touboul et al in 1995. In accordance with their study, plastic behavior could be occurred at pipe elbow under seismic condition. Experimental researches for dynamic behavior of typical piping system in nuclear power plant have been performed for several years by JNES(Japan Nuclear Energy Safety Organization) and NUPEC(Nuclear Power Engineering Corporation). A low cycle ratcheting fatigue test was performed with scaled model of elbow which is a weakest component in piping system by Mizuno et al. In-plane cyclic loading tests under internal pressure condition were performed to evaluate the seismic capacity of the steel piping elbow. Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction. The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased. A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched.

  1. Low Cycle Fatigue of Single Crystal Nickel-based Superalloy DD6 at 1100℃

    Directory of Open Access Journals (Sweden)

    ZHANG Shichao

    2018-02-01

    Full Text Available The total strain-controlled low cycle fatigue(LCF behaviors of a single crystal superalloy DD6 at 1100℃ for R=-1 and 0.05 were investigated. The results of LCF tests indicated that the cyclic hardening/softening behavior of the alloy not only has the relationship with the microstructure of the material, but also the loading status. The mean stress relaxation occurred under asymmetric straining. The rate of mean stress relaxation increased with the increasing of strain amplitude; when R=-1, the alloy shows tension-compression asymmetry behavior. All the LCF data obtain under various ratios were well correlated by three models for lifetime prediction, the precision rates predicted are fallen into the factor of±2 times scatter band.

  2. Low-cycle fatigue of dissimilar friction stir welded aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.I. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Jordon, J.B., E-mail: bjordon@eng.ua.edu [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Allison, P.G. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Rushing, T.; Garcia, L. [Engineering Research and Development Center, Army Corps of Engineers, Vicksburg, MS 39180 (United States)

    2016-01-27

    In this work, experiments were conducted to quantify structure-property relations of low-cycle fatigue behavior of dissimilar friction stir welding (FSW) of AA6061-to-AA7050 high strength aluminum alloys. In addition, a microstructure-sensitive fatigue model is employed to further elucidate cause-effect relationships. Experimental strain-controlled fatigue testing revealed an increase in the cyclic strain hardening and the number-of cycles to failure as the tool rotational speed was increased. At higher applied strain amplitudes (>0.3%), the corresponding stress amplitude increased and the plastic strain amplitude decreased, as the number of cycles increased. However, at 0.2% strain amplitude, the plastic strain decreased until it was almost negligible. Inspection of the hysteresis loops demonstrated that at low strain amplitudes, there was an initial stage of strain hardening that increased until it reached a maximum strain hardening level, afterwards a nearly perfect elastic behavior was observed. Under fully-reversed fatigue loading, all samples failed at the region between the heat-affected and thermomechanically-affected zones. Inspection of the fractured surfaces under scanning electron microscopy revealed that the cracks initiated at either the crown or the root surface of the weld, and from secondary intermetallic particles located near the free surface of the weld. Lastly, a microstructure-sensitive multistage fatigue model was employed to correlate the fatigue life of the dissimilar FSW of AA6061-to-AA7050 considering microstructural features such as grain size, intermetallic particles and mechanical properties.

  3. Modeling the influence of high dose irradiation on the deformation and damage behavior of RAFM steels under low cycle fatigue conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aktaa, J. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research II, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: aktaa@imf.fzk.de; Petersen, C. [Forschungszentrum Karlsruhe GmbH, Institute for Materials Research II, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2009-06-01

    A viscoplastic deformation damage model developed for RAFM steels in the reference un-irradiated state was modified taking into account the irradiation influence. The modification mainly consisted in adding an irradiation hardening variable with an appropriate evolution equation including irradiation dose driven terms as well as inelastic deformation and thermal recovery terms. With this approach, the majority of the material and temperature dependent model parameters are no longer dependent on the irradiation dose and only few parameters need to be determined by applying the model to RAFM steels in the irradiated state. The modified model was then applied to describe the behavior of EUROFER 97 observed in the post irradiation examinations of the irradiation programs ARBOR 1, ARBOR 2 and SPICE. The application results will be presented and discussed in addition.

  4. On low cycle fatigue in metal matrix composites

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø; Tvergaard, Viggo

    2000-01-01

    A numerical cell model analysis is used to study the development of fatigue damage in aluminium reinforced by aligned, short SiC fibres. The material is subjected to cyclic loading with either stress control or strain control, and the matrix material is represented by a cyclic plasticity model......, in which continuum damage mechanics is incorporated to model fatigue damage evolution. This material model uses a superposition of kinematic and isotropic hardening, and is able to account for the Bauschinger effect as well as ratchetting, mean stress relaxation, and cyclic hardening or softening. The cell...... model represents a material with transversely staggered fibres. With focus on low cyclic fatigue, the effect of different fibre aspect ratios, different triaxial stress states, and balanced as well as unbalanced cyclic loading is studied....

  5. Numerical Studies of Low Cycle Fatigue in Forward Extrusion Dies

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    2000-01-01

    of describing the elastic-plastic material behaviour under cyclic loadings is used to study the effects of different pre-stressing concepts on the accumulation of plastic strain and the development of fatigue damage. The results show, that the accumulation of plastic strain in the critical region can......Forward extrusion dies typically fail due to transverse fatigue cracks or wear. Fatigue cracks are initiated in regions where the material is subjected to repeated plastic deformations, e.g. the transition radius in a forward extrusion die, in the present work, a material model capable...... be controlled by means of the pre-stressing system or the geometry of the die insert. (C) 2000 Elsevier Science B.V. All rights reserved....

  6. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  7. Effect of cyclic plastic pre-strain on low cycle fatigue life

    International Nuclear Information System (INIS)

    Kanno, Satoshi; Nakane, Motoki; Yorikawa, Morio; Takagi, Yoshio

    2010-01-01

    In order to evaluate structural integrity of nuclear components subjected large seismic load which produce locally plastic strain, low cycle fatigue life was examined using cyclic plastic pre-strained materials of austenitic steel (SUS316, SUS316L, SUS304TP: JIS (Japanese Industrial Standards)) and ferritic steel (SFVQ1A, STS480, STPT410, SFVC2B, SS400: JIS). It was not found that cyclic plastic pre-strain up to range of 16%, 2.5 times affected on low cycle fatigue life. The validity of existing procedure of fatigue life estimation based on usage factor was confirmed when large seismic load brought nuclear materials cyclic plastic strain. (author)

  8. Low cycle fatigue properties of CLAM steel at 450 °C and 550 °C

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun; Zhai, Xiangwei; Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn

    2016-11-15

    Highlights: • Low cycle fatigue properties of CLAM steel were investigated at 450 °C and 550 °C. • CLAM steel showed the continuous softening up to fail failure under cyclic loading. The degree of softening increased with increasing temperature. • Dislocation density decrease and subgrain coarsening during the test process were the possible reasons for the cyclic softening of the CLAM steel. - Abstract: The low cycle fatigue behavior of China Low Activation Martensitic (CLAM) steel has been studied using a constant strain rate of 8 × 10{sup −3}/s with the strain amplitudes ranging from 0.3% to 0.8% at 450 °C and 550 °C. Cyclic stress response showed a gradual softening until complete failure. The fatigue life decreased with increasing test temperature, and the effect of temperature on fatigue life was more pronounced at lower strain amplitudes. The cyclic deformation behavior at different temperatures has been analyzed according to the hysteresis loop, and the mechanism of cyclic softening was interpreted in view of the changes taking place in dislocation density and lath structures. Evaluation of low cycle fatigue properties of CLAM steel at 450 °C and 550 °C can help in design of the Chinese Test Blanket Module (TBM) for the International Thermonuclear Experimental Reactor (ITER) and a future fusion power plant.

  9. In situ observation of high temperature tensile deformation and low cycle fatigue response in a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xudong, E-mail: lxdong0700@hotmail.com; Du, Jinhui; Deng, Qun

    2013-12-20

    High temperature tension and low cycle fatigue experiments of IN718 alloy have been performed in the electro-hydraulic servo system with scanning electron microscope at 455 °C. Fatigue crack initiation and propagation process are investigated in situ. Results show that the carbide and twin grain are the crack source of the low cycle fatigue of IN718 alloy, and the low cycle fatigue life of the alloy increases with the decrease in grain size.

  10. Comparison of low cycle fatigue of ductile cast irons with different matrix alloyed with nickel

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Tesařová, H.; Beran, Přemysl; Šmíd, Miroslav; Roupcová, Pavla

    2010-01-01

    Roč. 2, č. 1 (2010), s. 2307-2316 E-ISSN 1877-7058. [ Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ferritic ductile cast iron * ADI * nickel alloying * neutron diffraction Subject RIV: JL - Materials Fatigue , Friction Mechanics

  11. Crack propagation under conditions of low cycle fatigue

    International Nuclear Information System (INIS)

    Hellmann, D.

    1988-01-01

    A literature review is given of convenient concepts describing the mechanical behaviour of a cracked body under cyclic loading. Only the range of high growth rates is considered. However, caused by large scale yielding in this range, the application of linear elastic fracture mechanics is no longer possible. Mechanical parameters which control fatigue crack growth are a modified stress intensity factor, the J-integral, the crack tip opening displacement and a suitable strain amplitude. (orig.) With 20 figs [de

  12. Study of crack initiation in low-cycle fatigue of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Mu, P.

    2011-03-01

    The material studied is an austenitic stainless steel, that is widely used in nuclear equipment for its very high corrosion resistance combined to good mechanical properties. Although crack initiation is proved to play an important role in fatigue, its mechanisms have not been fully understood. Some crack initiation criteria based on physical mechanisms of plastic deformation have been defined. However, these criteria are not easy to use and valid, as they need local variables at the grain scale. The present study aims at establishing a crack initiation criterion in low-cycle fatigue, which should be usable under variable amplitude loading conditions. Tension-compression fatigue tests were first carried out to characterize the mechanical behavior of the stainless steel AISI 316L. The mechanical behavior was simulated using a self-consistent model using a crystalline plastic law based on dislocation densities. The evolution of surface damage was observed during a fatigue test using an in situ optical microscopic device. Cracks were analyzed after 2000 cycles and their crystallographic characteristics calculated. As surface grains exhibit larger strain because they are less constraint by neighbor grains, a specific numerical frame is necessary to determine stress state in surface grains. A localization law specific to surface grains under cyclic loading was identified from finite element simulations. The proposed form needs an intergranular accommodation variable, on the pattern of the localization law of Cailletaud-Pilvin. Stress-strain state in surface grains was simulated. Potential indicators for crack initiation were then compared on a same experimental data base. Indicators based on the equivalent plastic strain were found to be suitable indicators of fatigue damage. (author)

  13. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Cooper, R.A.

    1976-01-01

    Results of low cycle fatigue tests on alloy Mar-M-246 and Inconel 713 are presented. Based on the limited data, it was concluded that the Mar-M-246 material had a cyclic life in hydrogen that averaged three times higher than the alloy 713LC material for similar strain ranges. The hydrogen environment reduced life for both materials. The life reduction was more than an order of magnitude for the 713LC material. Porosity content of the cast specimens was as expected and was an important factor governing low cycle fatigue life

  14. Fracture resistance of Zr–Nb alloys under low-cycle fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, S.A.; Rozhnov, A.B. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Gusev, A.Yu. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM), Rogova St. 5a, 123060 Moscow (Russian Federation); Nechaykina, T.A. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Rogachev, S.O., E-mail: csaap@mail.ru [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Zadorozhnyy, M.Yu. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-15

    Highlights: •Low-cycle fatigue tests of Zr–Nb alloys using DMA have been carried out. •The characteristics of low-cycle fatigue of the Zr–Nb alloy at 25/350 °C were determined. •Increasing test temperature up to 350 °C leads to a decrease of fatigue life. •The test temperature doesn’t have an effect on the character of fatigue curves. -- Abstract: Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  15. Low cycle corrosion fatigue properties of F316Ti in simulated LWR primary environment

    International Nuclear Information System (INIS)

    Xu Xuelian; Ding Yaping; Katada, Y.; Sato, S.

    1998-11-01

    Environment effect on fatigue performance of materials used for Pressurized boundary, including fatigue life and crack growth rate, are of importance to nuclear safety. To predict the fatigue life of nuclear materials and to improve the design of nuclear materials, it is necessary to investigated the material fatigue performances in corrosive environment and to get the fatigue data under its environment to be used in. Low cycle corrosion fatigue (CF) performance investigation of domestic F316Ti in simulated BWR and PWR primary environment was carried out. The result shows that the high temperature water environment is one of the most important factors on CF properties. For the same material, the low cycle fatigue life in high temperature air is longer than that in simulated BWR and PWR primary environments. In high temperature water, domestic F316Ti has almost the same low cycle corrosion fatigue performance as F316 (made in Japan). All of the fatigue data are scattered within ASME best-fit curve and ASME design fatigue curve. In high strain range, there is no significant difference of the CF performance for F316Ti in both of BWR and PWR primary environments. With the decrease of strain amplitude, the difference appears gradually. The data is located at the short life side of the fatigue data in simulated BWR primary environment. Titanium is distributed uniformly in F316Ti manufactured in Fushun Steel Factory. Ni, Cr, Mo in this material are located at the high side of the alloy chemical composition range. So, F316Ti has a better CF property in high temperature water

  16. Effect of microstructure on low cycle fatigue properties of ODS steels

    Czech Academy of Sciences Publication Activity Database

    Kuběna, Ivo; Fournier, B.; Kruml, Tomáš

    2012-01-01

    Roč. 424, 1-3 (2012), s. 101-108 ISSN 0022-3115 R&D Projects: GA ČR GA106/09/1954; GA MŠk(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z20410507 Keywords : ODS steels * low cycle fatigue * fusion energy Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.211, year: 2012

  17. Monitoring Low-Cycle Fatigue Material-Degradation by Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    R. Himawan

    2010-08-01

    Full Text Available Any system consisting of structural material often undergoes fatigue, which is caused by dynamic load cycle. As a structural system, nuclear power plant is very likely to have low-cycle fatigue at many of its components. Taking into account the importance of monitoring low-cycle fatigue on structural components to prevent them from getting failure, the authors have conducted a work to monitor material degradation caused by low-cycle fatigue by using ultrasonic method. An alloy of Cu-40Zn was used as a test specimen. Ultrasonic water immersion procedure was employed in this ultrasonic test. The probe used is a focusing type and has frequency as high as 15 MHz. The specimen area tested is in the middle part divided into 14 points × 23 points. The results, which were frequency spectrums, were analyzed using two parameters: frequency spectrum peak intensity and attenuation function gradient. The analysis indicates that peak intensity increases at the beginning of load cycle and then decreases. Meanwhile, gradient of attenuation function is lower at the beginning of fatigue process, and then consistently gets higher. It concludes that low-fatigue material degradation can be monitored by using ultrasonic method.

  18. A low cycle fatigue model for low carbon manganese steel including the effect of dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle [Université Paris Ouest Nanterre La Défense (France); Wang, Qing Yuan; Khan, Muhammad Kashif [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean–Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320, Chatillon (France)

    2016-01-27

    Carbon–manganese steel A48 (French standards) is used in steam generator pipes of the nuclear power plant where it is subjected to the cyclic thermal load. The Dynamic Strain Aging (DSA) influences the mechanical behavior of the steel in low cycle fatigue (LCF) at favorable temperature and strain rate. The peak stress of A48 steel experiences hardening–softening–hardening (HSH) evolution at 200 °C and 0.4% s{sup −1} strain rate in fatigue loading. In this study, isotropic and kinematic hardening rules with DSA effect have been modified. The HSH evolution of cyclic stress associated with cumulative plastic deformation has also been estimated.

  19. Effect of temperature on the rate of fatigue crack propagation in some steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Taira, S.; Fujino, M.; Maruyama, S.

    Temperature dependence of the rate of fatigue crack propagation in steels was examined, and compared with the temperature dependence of tensile ductility. Microcracks initiate and affect the propagation behavior of the main crack at elevated temperatures. Factors found to be elucidated include initiation rate of microcracks, reduction of ductility of the material in the vicinity of the main crack tip, and relaxation of concentrated strain by multi-cracks. It was found that during a strain controlled low cycle fatigue test at 1 cpm, the rate of crack propagation is largest at the blue-brittleness temperature range (200 to 300 0 C) in a low carbon steel. On the other hand, it is largest at above 700 0 C in austenite stainless steels. The temperature dependence of the rate of fatigue crack propagation is opposite to that of tensile ductility. Microcracks formed in the vicinity of the main crack tip were calculated, by considering the strain concentration and strain cycles imposed. Then, the local fracture strain was evaluated. Good correlation was found between the rate of crack propagation and the local fracture strain. (U.S.)

  20. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  1. Low cycle fatigue of Alloy 690 and welds in a simulated PWR primary water environment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jongdae; Cho, Pyungyeon; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cho, Pyungyeon [Khalifa Univ., Abu Dhabi (United Arab Emirates); Kim, Tae Soon; Lee, Yong Sung [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    In this study, environmental fatigue tests for these materials were performed and the new prediction model of fatigue life of Alloy 690 and weld in primary water condition was proposed. To evaluate the fatigue life of Alloy 690 and 52M in a PWR environment, low cycle fatigue tests were performed and revised fatigue life prediction models and environmental factor were proposed. With the revised Fen model for Alloy 690 and 52M, the reliability of the fatigue life prediction has been improved. The reduction of low cycle fatigue life of metallic materials in the primary coolant water environments has been the subject of debate between the utility and regulator since 1980s. It became the significant licensing problem since the issue of RG-1.207 by U. S. NRC. The statistical model for the environmental factor, Fen, specified in RG-1.207 was based on the extensive test results accumulated by the ANL and Japanese national program. Of the materials, the limited fatigue life data of Ni-Cr-Fe alloys were used to develop the Fen for the alloys. Furthermore, test data for Alloy 690 and its weld are limited. Considering that Alloy 690 will be extensively used in the new nuclear power plants, additional effort to validate or improve current Fen model is required.

  2. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  3. Effect of cyclic pre-strain on low cycle fatigue life at middle high temperature

    International Nuclear Information System (INIS)

    Nakane, Motoki; Kanno, Satoshi; Takagi, Yoshio

    2011-01-01

    This study examined the effect of cyclic plastic pre-strain on low cycle fatigue life at middle high temperature to evaluate the structural integrity of the nuclear components introduced plastic strain to the local portion by the large seismic load. The materials selected in this study were austenitic steel (SUS316NG) and ferritic steel (SFVQ1A, STS410: JIS (Japanese Industrial Standards). The low cycle fatigue tests at RT and middle high temperature (300 degrees C) were carried out using cyclic plastic pre-strained materials. The results obtained here show that the damage by the cyclic plastic pre-strain, which is equivalent to usage factor UF=0.2, does not affect the fatigue lives of the materials. In addition, it is confirmed that the estimation based on the usage factor UF can also be useful for the life prediction at 300 degrees C as well as RT. (author)

  4. Preliminary tension effect on low-cycle fatigue of 40Kh13 steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, A.N.

    1984-01-01

    Comparative bending tests of specimens deformed by tension at 65, 18 and 30% in hydrogen and vacuum were accomplished to reveal the effect of preliminary tension on low-cycle fatigue strength of 40Kh13 martensitic steel. It was found that small amounts of preliminary strains induced a considerable decrease in low-cycle durability in vacuum and hydrogen which was connected with developing defects arising at the early stages of plastic deformation. A rather high degree of preliminary tension promoted steel homogenization, hydrogen embrittlement decrease and service behaviour improvement

  5. Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt

    Science.gov (United States)

    Shao, C. W.; Zhang, P.; Zhang, Z. J.; Liu, R.; Zhang, Z. F.

    2017-12-01

    We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.

  6. Life estimation of low-cycle fatigue of pipe elbows. Proposed criteria of low-cycle fatigue life under the multi-axial stress field

    International Nuclear Information System (INIS)

    Ando, Kotoji; Takahashi, Koji; Matsuo, Kazuya; Urabe, Yoshio

    2013-01-01

    Pipe elbows were important parts frequently used in the pipelines of nuclear power, thermal power and chemical plants, and their integrity needed to be assured under seismic loads and thermal stresses considering local wall thinning or complex stress distribution due to special configuration different from straight pipe. This article investigated in details elastic-plastic stress-strain state of pipe elbow using finite element analysis and clarified there existed high bi-axial stress field at side inner surface of pipe elbow axial cracks initiated. Bi-axial stress factor was around 0.6 for sound elbow and up to 0.95 for local wall thinning at crown. Fracture strain of 1.15 was reduced to around 0.15 for bi-axial stress factor from 0.6 to 0.9. Normalized fatigue life for bi-axial stress field (0.6 - 0.8) was largely reduced to around 15, 19 and 10% of fatigue life of uni-axial state dependent on material strength level. Proposed revised universal slopes taking account of multi-axial stress factor could explain qualitatively effects of strain range, internal pressure and ratchet strain (pre-strain) on low-cycle fatigue life of pipe elbow. (T. Tanaka)

  7. Influence of the crystalline orientations on microcrack initiation in low-cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Mu, P. [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, F-59650 Villeneuve d’Ascq (France); CNRS, UMR 8107, UMR 8579 (France); Aubin, V., E-mail: veronique.aubin@ecp.fr [ECP, MSSMat, F-92295 Châtenay-Malabry (France); CNRS, UMR 8107, UMR 8579 (France); Alvarez-Armas, I.; Armas, A. [IFIR, CONICET, Universidad Nacional de Rosario (Argentina)

    2013-06-20

    Present study aims at analyzing the crack initiation in an austenitic stainless steel in low-cycle fatigue. A fatigue test was carried out using a polished specimen. The surface of the specimen was observed in situ during the fatigue test, in order to establish the time of slip activity or crack initiation. After a number of cycles sufficient to initiate small cracks, the test was stopped and the surface observed by scanning electron microscopy. The electron backscattered diffraction technique (EBSD) was used to identify the orientations of surface grains in the central zone of the fatigue specimen. Crack-initiation sites and slip systems associated to the initiated microcracks were identified. The criterion of the maximum Schmid factor explains two-thirds of the cracks initiated in slip systems; however if the favorably oriented slip band with respect to this criterion makes an angle of around 45° to the loading direction, a crack may initiate in another slip system.

  8. Thermal and isothermal low cycle fatigue of MANET I and II

    International Nuclear Information System (INIS)

    Petersen, C.; Schmitt, R.; Garnier, D.

    1996-01-01

    Structural components of a DEMO-blanket are subjected during service to alternating thermal and mechanical stresses as a consequence of the pulsed reactor operation. Of particular concern is the fatigue endurance of martensitic steels like MANET under cyclic strains and stresses produced by these temperature changes. In order to design such structures, operating under combined mechanical and thermal cycling, fatigue life has to be calculated with reasonable accuracy. This paper proposes a description of thermal and isothermal mechanical low-cycle fatigue of MANET I and II steels using a single damage model, including plastic strain, temperature and strain rate as variables. This model presents notable advantages for the designer. As it corresponds to a single and continuous 'fatigue strength surface', it enables a reliable interpolation to be made throughout the studied domain of strains and temperatures, and allows for a reasonable extrapolation out of this domain, provided that no different metallurgical phenomena occur. (orig.)

  9. A simple approximative procedure for taking into account low cycle fatigue loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G; Thomsen, K

    1996-09-01

    In this paper a simple approximative algorithm for taking into account low cycle fatigue loads is presented. Traditionally, the fatigue life consumption of a wind turbine is estimated by considering a number of (independent) load cases and performing a rainflow counting analysis on each of those. These results are then subsequently synthesized into a total load spectrum by performing a weighed sum of the number of individual load case ranges. The fatigue life consumption is thus obtained by applying the Palmgren-Miner rule on the total load spectrum. However, due to the assumption of isolated basic load cases, the above procedure fail to represent the low-frequency contributions related to the transition between those load cases. The procedure to be described in the following aims at taking the fatigue contribution, related to the transitions between the defined load cases, into account in an approximative manner. (au)

  10. Model-experiment dialog in low cycle fatigue of stainless steels

    International Nuclear Information System (INIS)

    Aubin, Veronique

    2008-01-01

    In this HDR report (accreditation to supervise research), the author first proposes a synthesis of her research activities in the study of the mechanical behaviour in low cycle fatigue (cyclic hardening, plasticity surfaces), of modelling of the fatigue mechanical behaviour (phenomenological modelling, modelling with scale change), of progressive deformation (experimental analysis, analysis and simulation of plasticity at the microstructure scale). The second part addresses other activities in the field of research (behaviour and damage characterization of an austenitic-ferritic stainless steel), publication and education supervising, teaching

  11. Low cycle fatigue characteristics of duplex stainless steel with degradation under pure torsional load

    International Nuclear Information System (INIS)

    Kwon, Jae Do; Park, Joong Cheul

    2002-01-01

    Monotonic torsional and pure torsional low cycle fatigue (LCF) test with artificial degradation were performed on duplex stainless steel (CF8M). CF8M is used in pipes and valves in nuclear reactor coolant system. It was aged at 430 degree C for 3600hrs. Through the monotonic and LCF test, it is found that mechanical properties (i.e., yield strength, strain hardening exponent, strength coefficient etc.) increase and fatigue life (N f ) decreases with degradation of material. The relationship between shear strain amplitude (γ α ) and N f was proposed

  12. Low cycle fatigue analysis of a last stage steam turbine blade

    Directory of Open Access Journals (Sweden)

    Měšťánek P.

    2008-11-01

    Full Text Available The present paper deals with the low cycle fatigue analysis of the low pressure (LP steam turbine blade. The blade is cyclically loaded by the centrifugal force because of the repeated startups of the turbine. The goal of the research is to develop a technique to assess fatigue life of the blade and to determine the number of startups to the crack initiation. Two approaches were employed. First approach is based on the elastic finite element analysis. Fictive 'elastic' results are recalculated using Neuber's rule and the equivalent energy method. Triaxial state of stress is reduced using von Mises theory. Strain amplitude is calculated employing the cyclic deformation curve. Second approach is based on elastic-plastic FE analysis. Strain amplitude is determined directly from the FE analysis by reducing the triaxial state of strain. Fatigue life was assessed using uniaxial damage parameters. Both approaches are compared and their applicability is discussed. Factors that can influence the fatigue life are introduced. Experimental low cycle fatigue testing is shortly described.

  13. Effect of microstructure on low cycle fatigue properties of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubena, Ivo, E-mail: kubena@ipm.cz [IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno (Czech Republic); Fournier, Benjamin [CEA/DEN/DANS/DMN/SRMA, Bat. 453, 91191 Gif-sur-Yvette Cedex (France); Kruml, Tomas [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno (Czech Republic)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Three various ODS steels are studied and compared. Black-Right-Pointing-Pointer Low cycle fatigue data at RT, 650 Degree-Sign C and 750 Degree-Sign C are given. Black-Right-Pointing-Pointer Microstructural characterization. Black-Right-Pointing-Pointer Detailed discussion of strengthening mechanisms. - Abstract: Low cycle fatigue properties at room temperature, 650 Degree-Sign C and 750 Degree-Sign C of three high chromium steels (9%Cr ferritic-martensitic and two 14%Cr ferritic steels) strengthened by oxide dispersion were studied and compared. Cyclic softening/hardening curves, cyclic deformation curves, S-N curves and Coffin-Manson curves are presented together with microstructural observations. Differences in cyclic response, stress level and fatigue life are attributed to differences in the matrix microstructure. The oxide particles stabilize the cyclic response, even if cyclic softening is detected for some experimental conditions. The strength of these steels is discussed in terms of strengthening mechanisms such as grain size effect, particle-dislocations interaction and dislocation density. Comparing three different ODS steels offers an opportunity to tests the contribution of individual mechanisms to the cyclic strength. The reduction of fatigue life in one of the ferritic steels is explained by the presence of large grains, facilitating the fatigue crack nucleation and the early growth.

  14. Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch

    Science.gov (United States)

    Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod

    2018-02-01

    Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.

  15. Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures

    International Nuclear Information System (INIS)

    Shi Duoqi; Liu Jinlong; Yang Xiaoguang; Qi Hongyu; Wang Jingke

    2010-01-01

    Research highlights: → This paper has researched creep-fatigue interaction of directionally solidified superalloy DZ125 with different dwell time at high temperature combined with micro-mechanism by experiment. → The results indicated that the life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. - Abstract: The low cycle fatigue (LCF) and creep-fatigue tests have been conducted with directionally solidified nickel-based superalloy DZ125 at 850 and 980 deg. C to study the creep-fatigue interaction behavior of alloy with different dwell time. On the average, the life of creep-fatigue tests are about 70% less than the life of LCF tests under the same strain range at 850 deg. C. The life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. Scanning electron microscope (SEM) analyses of the fracture revealed that the fracture modes were influenced by different way of loading. In case of LCF, the primary fracture mode was transgranular, while in case of creep-fatigue, the primary fracture mode was mixed with transgranular and intergranular. There were also obvious different morphologies of surface crack between LCF and creep-fatigue.

  16. Crack mode and life of Ti-6Al-4V under multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Takamoto Itoh

    2015-10-01

    Full Text Available This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of λ=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. λ is a principal stress ratio and is defined as λ=II/I, where I and II are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at λ=0 is a uniaxial loading test and that at λ=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing λ induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.

  17. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo

    2014-10-01

    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.

  18. Effect of pre-strain history on small crack growth under low cycle fatigue for JIS SFVQ1A steel

    International Nuclear Information System (INIS)

    Hasunuma, Shota; Miyata, Yohei; Sakaue, Kenichi; Ogawa, Takeshi

    2011-01-01

    Low cycle fatigue tests were performed for a low alloy steel, JIS SFVQ1A, used for pressure vessels of nuclear power plants. The effect of pre-strain history on the small crack initiation and growth was investigated in detail using cellulose acetate replicas. Under the tests in which the total strain range, Δε, is constant, surface crack length, 2c, was smaller for the tests with larger Δε due to the different numbers of small crack initiation and coalescence. The pre-strain histories were applied at Δε of 8 or 16% with its fatigue usage factor, UF, of less than 0.2, followed by fatigue loading at Δε=2% until fracture. In these tests, the relationships between 2c and UF agreed with each other unless crack coalescence occurred. The scatter in fatigue life was attributed to the coalescences of small cracks. Fracture mechanics approach was applied to predict the fatigue lives and to characterize the growth behavior of small fatigue cracks. (author)

  19. Simulation and analysis of data for enhancing low cycle fatigue test procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sarajaervi, U.; Cronvall, O. [VTT Technical Research Centre of Finland (Finland)

    2006-04-15

    The simulation and analysis of data for enhancing low cycle fatigue test procedures is discussed in this report. The analysed materials are an austenitic stainless piping steel and an austenitic weld material. This project continues the work performed in 2003 and 2004. The fatigue test data treatment application developed within the project in 2004 for the preparation of the fatigue data has been developed further. Also, more fatigue test data has been analysed with the application than in 2004. In addition to this numerical fatigue simulations were performed with FEM code ABAQUS. With the fatigue test data treatment application one can e.g. both calculate cyclically certain relevant characteristic values, e.g. elastic range, and form a set of certain cyclical parameter values needed as a part of ABAQUS analysis input files. The hardening properties of metals were modelled with both isotropic and kinematic hardening models. The further development of the application included trimming of the analysed data, and consequently trimming of resulting hardening parameters. The need for the trimming arose from the fact that the analysed fatigue test data presents some scatter caused by the limited accuracy of the test equipment and the sampling rate. The hardening parameters obtained from the application analysis results were used in the subsequent ABAQUS analyses, and then the fatigue test data were compared with the ABAQUS simulation results. After finding a procedure to trim result data to get smooth curves for cyclic hardening, hardening and softening could be reproduced in ABAQUS analysis with a reasonable accuracy. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  20. Simulation and analysis of data for enhancing low cycle fatigue test procedures

    International Nuclear Information System (INIS)

    Sarajaervi, U.; Cronvall, O.

    2006-04-01

    The simulation and analysis of data for enhancing low cycle fatigue test procedures is discussed in this report. The analysed materials are an austenitic stainless piping steel and an austenitic weld material. This project continues the work performed in 2003 and 2004. The fatigue test data treatment application developed within the project in 2004 for the preparation of the fatigue data has been developed further. Also, more fatigue test data has been analysed with the application than in 2004. In addition to this numerical fatigue simulations were performed with FEM code ABAQUS. With the fatigue test data treatment application one can e.g. both calculate cyclically certain relevant characteristic values, e.g. elastic range, and form a set of certain cyclical parameter values needed as a part of ABAQUS analysis input files. The hardening properties of metals were modelled with both isotropic and kinematic hardening models. The further development of the application included trimming of the analysed data, and consequently trimming of resulting hardening parameters. The need for the trimming arose from the fact that the analysed fatigue test data presents some scatter caused by the limited accuracy of the test equipment and the sampling rate. The hardening parameters obtained from the application analysis results were used in the subsequent ABAQUS analyses, and then the fatigue test data were compared with the ABAQUS simulation results. After finding a procedure to trim result data to get smooth curves for cyclic hardening, hardening and softening could be reproduced in ABAQUS analysis with a reasonable accuracy. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  1. Low cycle fatigue lifetime of HIP bonded Bi-metallic first wall structures of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hashimoto, Toshiyuki; Kitamura, Kazunori

    1998-10-01

    A HIP bonded bi-metallic panel composed of a dispersion strengthened copper (DSCu) layer and type 316L stainless steel (SS316L) cooling pipes is the reference design of the ITER first wall. To examine the fatigue lifetime of the first wall panel under cyclic mechanical loads, low cycle fatigue tests of HIP bonded bi-metallic specimens made of SS316L and DSCu were conducted with the stress ratio of -1.0 and five nominal strain range conditions ranging from 0.2 to 1.0%. Elasto-plastic analysis has also been conducted to evaluate local strain ranges under the nominal strains applied. Initial cracks were observed at the inner surface of the SS316L cooling pipes for all of the specimens tested, which was confirmed by the elasto-plastic analysis that the maximum strains of the test specimens were developed at the same locations. It was found that the HIP bonded bi-metallic test specimens had a fatigue lifetime longer than that of the SS316L raw material obtained by round bar specimens. Similarly, the fatigue lifetime of the DSCu/SS316L HIP interface was also longer than the round bar test results for the HIP joints. From these results, it has been confirmed that the bi-metallic first wall panel with built-in cooling pipes made by HIP bonding has a sufficient fatigue lifetime in comparison with the raw fatigue data of the materials, which also suggests that the fatigue lifetime evaluation has an adequate margin against fracture if it follows the design fatigue curve based on the material fatigue data. (author)

  2. Low Cycle Fatigue of Composite Materials in Army Structural Applications: A Review of Literature and Recommendations for Research

    National Research Council Canada - National Science Library

    Harik, Vasyl Michael

    2000-01-01

    Low cycle fatigue (LCF) of laminate composite structures used in Army applications is assessed to identify the key physical phenomena occurring during LCF processes and to determine their main characteristics...

  3. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    Science.gov (United States)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  4. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Directory of Open Access Journals (Sweden)

    Spodniak Miroslav

    2017-01-01

    Full Text Available This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  5. Influence of martensitic transformation on the low-cycle fatigue behaviour of 316LN stainless steel at 77 K

    International Nuclear Information System (INIS)

    Botshekan, M.; Degallaix, S.; Desplanques, Y.

    1997-01-01

    Tensile and low-cycle fatigue tests were performed on a 316LN austenitic stainless steel at 300 and 77 K. The tensile and low-cycle fatigue properties were obtained and analysed in terms of influence of temperature on the plastic deformation process, and particularly on the strain-induced martensite formation. The martensite content was measured by a magnetic-at-saturation method. No martensite was detected at 300 K. On the contrary, strain-induced martensite transformation is responsible for the higher tensile elongation at 77 K and for the secondary hardening observed on softening-hardening curves in low-cycle fatigue at 77 K. The induced martensite content in tensile tests is a function of the strain according to Angel's model, and in low-cycle fatigue it is a function of the strain level and of the accumulated plastic strain. (orig.)

  6. Low-cycle fatigue of welded joints of alloy AMg5

    International Nuclear Information System (INIS)

    Modestova, R.V.; Borisenko, V.A.; Parfenova, I.N.; Stepanov, S.V.

    1986-01-01

    The authors study the low-cycle fatigue of welded joints of aluminum alloy AMg5 in order to determine the cyclic strength coefficient of welded seams. Tests were carried out on cylindrical specimens of the parent metal, welded specimens, and models of welded vessels. The average values of mechanical properties of the specimens and the parent metal are shown. It is shown that when designing welded vessels of aluminum alloy AMg5, the permissible amplitudes of conventional compressive stresses are recommended to be determined as the lower of the two values calculated using the equations presented

  7. Low-cycle fatigue of sheet elements with ''soft'' surface layer

    International Nuclear Information System (INIS)

    Luk'yanov, V.F.; Kharchenko, V.Ya.; Berezutskij, V.I.; Ovsyannikov, V.G.

    1978-01-01

    Investigated are regularities of low-cycle fatigue of bimetallic sheet constructions made of chrome-nickel-molybdenum steel, plated with a low-alloyed steel with a reduced yield limit. Static repeated bending tests have been carried out using two-layer samples. The surface layer has been shown to increase resistance to nucleation and propagation of cracks under pulsating load if stresses are not more than 2 times higher than the yield limit. Increase in stresses leads to elastoplastic deformation and reduces durability. The positive effect of the surface layer is advisable to be used when welding-up surface defects and strengthening welded joints of high-strength steels

  8. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  9. Low-cycle fatigue deformation characteristics of Haynes {reg{underscore}sign} HR-120{reg{underscore}sign} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, P.K.; He, Y.H.; Miller, L.; Huang, M.; Brooks, C.R.; Seeley, R.R.; Klarstrom, D.L.

    1999-07-01

    Low-cycle fatigue deformation characteristics of HAYNES HR-120 alloy at room and high temperatures were studied under axial strain control. Test results show that there is a significant effect of test temperature on the low-cycle fatigue behavior of HAYNES HR-120 alloy. It was found that the alloy could cyclically harden at moderately high temperatures (649 C and 871 C), but generally cyclically soften at room temperature (24 C) and high temperature (982 C). However, the variation of the stress amplitude with cycles at the temperatures of 24 C and 982 C depended on the total strain range. The significant cyclic hardening of the alloy occurred at the high total strain ranges of 1.5% and 2.0% during the beginning state of the test at both 24C and 982 C. Microstructural analyses indicated that the cyclic hardening behavior of the alloy at the test temperature of 649 C could be related to the formation of a number of deformation bands. Nevertheless, increasing the test temperature to 871 C, cyclic hardening was attributed to the precipitation of secondary-phase particles. Furthermore, it was also found that the coarsening of secondary-phase particles brought about cyclic softening of the alloy at the high temperature of 982 C. Coffin-Manson equations and Holloman equations were given for HAYNES HR-120 alloy at different temperatures.

  10. Correction for Poisson's effect in an elastic analysis of low cycle fatigue

    International Nuclear Information System (INIS)

    Roche, R.; Moulin, D.

    1984-05-01

    Fatigue behaviour is essentially dependent on the real strain range, but the current practice is the use of elastic analysis. In low cycle fatigue conditions where inelastic strains predominate, elastic analysis never gives the real value of the strain range. In order to use these results some corrections are necessary. One of these corrections is due to the Poisson's effect (the Poisson ratio in inelastic behaviour is higher than in elastic behaviour). In this paper a method of correction of this effect is proposed. It consists in multiplying the results of the elastic analysis by a coefficient called Kν. A method to draw curves giving this coefficient Kν as a function of results of elastic analysis is developped. Only simple analytical computations using the unixial cyclic curve are needed to draw these curves. Examples are given. The proposed method is very convenient and low cost effective [fr

  11. Current state of low-cycle fatigue research based on multiaxial stress intensity and its challenges. Part 1. Focusing on low-cycle fatigue strength evaluation method of elbow piping subjected to in-plane cyclic bending displacement load

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2017-01-01

    The R and D of fatigue strength at multiaxial stress intensity is recognized to become extremely important in the future in terms of the elaboration of low-cycle fatigue evaluation of various structures including piping systems and reflection on those standards. This paper focuses on the evaluation method developed by the author, namely cumulative damage rule in consideration of multiaxial stress intensity, and explains the concept and the results of verification and evaluation. It also discusses the engineering problems of the current low cycle fatigue assessment technology that were clarified in the process of developing low-cycle fatigue assessment method based on multiaxial stress intensity. The conservative lifespan and somewhat more conservative actual lifetime of elbow piping can be estimated by the conventional 'revised universal slope method' and 'advanced revised universal slope method.' However, these are empirical rules, and the theoretical basis is not clear. From 'cumulative damage rule in consideration of multiaxial stress intensity,' the author calculated furthermore 'low cycle fatigue evaluation formula based on cumulative damage rule in consideration of multi-axial stress intensity,' and examined it. As a result, an evaluation formula that can reasonably assume the equivalent thermoplastic strain range could be obtained at half of the repeat count as targeted. Furthermore, at the stage where future high precision FEM analysis can be used, direct low-cycle fatigue life curve can be established. (A.O.)

  12. Low cycle fatigue strength of austenitic stainless steel under large strain regime

    International Nuclear Information System (INIS)

    Sakai, Michiya; Saito, Kiyoshi; Matsuura, Shinichi

    1998-01-01

    In order to establish realistic seismic safety of nuclear power plants, it is necessary to clarify the failure mode of each components and prepare a damage evaluation method. The authors have proposed the damage evaluation method based on the fully numerical approach to evaluate the low cycle fatigue (LCF) failure under seismic loadings. This method has been validated by comparison with the dynamic failure tests of thin elbows which should be the one of the important components of the FBR primary piping system. However, since there exists limited LCF data, fatigue lives under large strain regime have been extrapolated by available fatigue data. In this study, LCF tests have been conducted over a large strain range from 2% to 10% on austenitic stainless steel SUS304. From the results, the regressive LCF curve has been proposed to modify the Wada's best-fit LCF curve under large strain regime. The usage factors calculated by author's numerical approach using proposed LCF curve have been improved to correct the underestimation of the fatigue damage. (author)

  13. Evaluation of notch effects in low cycle fatigue of alloy 718 using critical distances

    Directory of Open Access Journals (Sweden)

    Eriksson Robert

    2018-01-01

    Full Text Available Gas turbine disks contain many notch-like features acting as stress raisers. The fatigue life based on the notch root stress may be overly conservative as the steep stress gradient in front of the notch may give rise to so-called notch support. In the current work, the theory of critical distances was applied to the prediction of the total fatigue life of low cycle fatigued, notched specimens made from alloy 718. The fatigue tests were performed at 450 °C and 550 °C. It was found that, for lives shorter than 5000–10000 cycles, the notched specimens had longer lives than would have been expected based on the notch root strain. For lives longer than 5000–10000 cycles, there were no notch support. The life prediction for notched specimens could be significantly improved by basing the prediction on the strain chosen some distance from the notch (the critical distance. An expression for calculating the critical distance based on the notch root strain was suggested.

  14. Influence of microstructure on low cycle fatigue in some single phase and biphasic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stolarz, J. [Ecole Nationale Superieure des Mines, Centre SMS, URA CNRS 1884, Saint-Etienne (France)

    2004-07-01

    This overview deals with the effects of microstructural parameters in different single phase and biphasic stainless steels on short crack behaviour and on fatigue life in the low cycle regime. The effect of the grain size is investigated in a single phase austenitic stainless steel. Under plastic strain control, the fatigue life increases when the grain size decreases. The results are discussed by analysing the distributions of crack depths as a function of the grain size. The second type of material is a metastable austenitic steel which partially transforms into martensite during LCF at temperatures between -50 C and +120 C. The grain size of the initially single phase austenitic microstructure has a combined influence on the volume fraction of martensite produced during fatigue and on the fatigue life. In this case, the grain size effect is still considerable but totally indirect because all fatigue cracks grow exclusively in the martensite. The cyclic behaviour analysis in biphasic alloys in which two phases undergo plastic deformation during LCF is considerably more complex because the conventional concept of microstructural barriers cannot be applied. The possible damage patterns in a pair of grains with different mechanical properties are discussed on the example of a solution treated and aged superduplex austenitic-ferritic stainless steel (SDSS). The hardening of one phase (ferrite) through ageing at 475 C changes the cyclic behaviour of the initial ''quasi single phase'' microstructure. Consequently, the fatigue life under plastic strain control decreases compared with the solution treated SDSS. The discussion is focussed on LCF damage mechanisms at the microstructure size scale with a particular accent put on the propagation of short cracks in the bulk. All the microstructures exhibit some common features with respect to the behaviour of short cracks. In particular a strong effect of microstructural barriers in the bulk and the

  15. Low cycle fatigue design data for India-specific reduced activation ferritic-martensitic (IN-RAFM) steel

    Energy Technology Data Exchange (ETDEWEB)

    Mariappan, K.; Shankar, Vani, E-mail: vani@igcar.gov.in; Sandhya, R.; Laha, K.

    2016-03-15

    Highlights: • Generation of first set of experimental data related to LCF performance of the commercial heat of IN-RAFM steel. • Analysis of cyclic behavior from the perspective of both design and material characteristics. • Various correction factors to account for various plastic strain accumulations, change in Poisson’s ratio and asymmetry of loadings. • Low cycle fatigue design parameters and correction factor values were comparable with P91 steel as reported in RCC-MR design code. - Abstract: The objective of the present paper is to provide first hand experimental data and analysis on the low cycle fatigue (LCF) performance of a commercial heat of Indian reduced activation ferritic-martensitic (IN-RAFM) steel. Since this material is not yet codified in RCC-MR, cyclic properties were generated for the design of the structural material of the Test Blanket Modules (TBM) made of RAFM steel. Hence, as a part of the material development program, LCF experiments were conducted on IN-RAFM steel obtained in the normalized and tempered condition. Total axial strain controlled experiments were performed in air by employing strain amplitudes ranging from ±0.25 to ±1.0% and at temperatures of 300, 673, 723, 823, and 873 K and a nominal strain rate, 3 × 10{sup −3} s{sup −1}. In the present work, various cyclic parameters that are useful for the design oriented fatigue analysis are derived as per the systematic procedure given in the RCC-MR design code. The physical significance of each design parameter such as elasto-plastic corrections based on Neuber analysis has been explained and correlated with the material behavior such as the cyclic softening nature of the RAFM steel.

  16. High-temperature low-cycle fatigue behaviour of HIP treated and untreated superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel; Čelko, L.

    2016-01-01

    Roč. 54, č. 6 (2016), s. 471-481 ISSN 0023-432X R&D Projects: GA TA ČR(CZ) TA04011525; GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : hot isostatic pressing * high-temperature low cycle fatigue * fatigue life curves * Ni-based superalloy * dislocation structures * planar bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.366, year: 2016

  17. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    Science.gov (United States)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  18. Crack initiation and propagation in welded joints of turbine and boiler steels during low cycle fatigue

    International Nuclear Information System (INIS)

    Lindblom, J.; Sandstroem, R.; Linde, L.; Henderson, P.

    1990-01-01

    Low cycle fatigue (LCF) tests have been performed at 300 and 565 degrees C on welded joints and on microstructures to be found in or near welded joints in a low alloy ferritic steel 0.5 Cr, 0.5 Mo, 0.25 V. The difference in lifetimes between the 300 degrees C and 565 degrees C tests was small comparing the same microstructures and strain ranges, although the stress amplitude was greater at 300 degrees C. Under constant stress conditions the fatigue life depended on the fatigue life of the parent metal but under constant strain conditions the lifetime was governed by that of the bainitic structures. Strain controlled LCF tests have been performed at 750 degrees C on welded joints in the austenitic steel AISI 316 and on different parent and weld metals used in these joints. In continuously cycled samples all cracks were transgranular and initiated at the surface; hold-time samples displayed internally initiated intergranular cracking in the weld metal. Under constant strain conditions the 316 parent and weld metals exhibited similar lifetimes. When considering a constant stress situation the strength of the microsturctures decreased in the following order: Sanicro weld metal, cold deformed parent metal, undeformed parent metal and weld metal (K.A.E.)

  19. Characterization of coatings and the low cycle fatigue behaviour of 316L

    International Nuclear Information System (INIS)

    Groot, P.; Horsten, M.G.; Tjoa, G.L.

    1993-03-01

    In the framework of the European Fusion Technology Programme ECN participates in a NET task PSM-8 'Coatings and Surface Effects on Stainless Steel 316L'. High emissivity coatings were developed for enhanced heat transfer from graphite tiles to a Stainless Steel First Wall. Four candidate materials, Cr 2 O 3 , Black Cr, Al 2 O 3 /TiO 2 and TiC were tested as candidate high emissivity coatings. These coatings were manufactured by atmospheric and vacuum plasma spraying technique and the Black Chromium coatings were manufactured by a galvanic coating technique. The tests included total emissivity measurements and Low Cycle Fatigue (LCF) experiments. The total emissivity of two TiC coatings at 525 K appeared to be 0.62 and 0.64. The total emissivity of the TiC and 5 wt% TiO 2 /Al 2 O 3 coating was about 0.7. (orig.)

  20. Effect of the structure on the low-cycle fatigue behaviour of alloy 800

    International Nuclear Information System (INIS)

    Robert, G.; Mathiot, A.; Regnard, C.; Dessus, J.; Claret, J.

    1982-04-01

    Alloy 800 (grade I) is used for making the steam generators of liquid metal fast breeder reactors. At working temperature (525 0 C) alloy 800 is strengthned by γ' (Ni 3 (Ti,Al)) precipitation which occurs during thermal aging. The mechanical properties of this alloy depend on the parameters which define the γ' precipitation and obviously on the structural characteristics due to the thermomechanical treatments which govern the manufacture of the product. For one cast of alloy 800 this work aims to analyse the influence, on low cycle fatigue behaviour at 550 0 C, of structural and microstructural variations originating either in different elaboration procedures or in γ' precipitation obtained by a thermal aging of 3000h at 550 0 C with or without a preceeding cold working of 10% [fr

  1. Calculation of low-cycle fatigue in accordance with the national standard and strength codes

    Science.gov (United States)

    Kontorovich, T. S.; Radin, Yu. A.

    2017-08-01

    Over the most recent 15 years, the Russian power industry has largely relied on imported equipment manufactured in compliance with foreign standards and procedures. This inevitably necessitates their harmonization with the regulatory documents of the Russian Federation, which include calculations of strength, low cycle fatigue, and assessment of the equipment service life. An important regulatory document providing the engineering foundation for cyclic strength and life assessment for high-load components of the boiler and steamline of a water/steam circuit is RD 10-249-98:2000: Standard Method of Strength Estimation in Stationary Boilers and Steam and Water Piping. In January 2015, the National Standard of the Russian Federation 12952-3:2001 was introduced regulating the issues of design and calculation of the pressure parts of water-tube boilers and auxiliary installations. Thus, there appeared to be two documents simultaneously valid in the same energy field and using different methods for calculating the low-cycle fatigue strength, which leads to different results. In this connection, the current situation can lead to incorrect ideas about the cyclic strength and the service life of high-temperature boiler parts. The article shows that the results of calculations performed in accordance with GOST R 55682.3-2013/EN 12952-3: 2001 are less conservative than the results of the standard RD 10-249-98. Since the calculation of the expected service life of boiler parts should use GOST R 55682.3-2013/EN 12952-3: 2001, it becomes necessary to establish the applicability scope of each of the above documents.

  2. Dynamic strain ageing in Inconel® Alloy 783 under tension and low cycle fatigue

    International Nuclear Information System (INIS)

    Nagesha, A.; Goyal, Sunil; Nandagopal, M.; Parameswaran, P.; Sandhya, R.; Mathew, M.D.; Mannan, Sarwan K.

    2012-01-01

    Highlights: ► Low cycle fatigue (LCF) and tensile tests were performed on Inconel ® Alloy 783. ► A stable cyclic stress response followed by continuous softening was noted under LCF. ► Material exhibited DSA in the temperature range, 573–723 K. ► Occurrence of DSA reduced the extent of cycling softening in LCF. ► Both interstitial and substitutional atoms were found to be responsible for DSA. - Abstract: Low cycle fatigue (LCF) tests were performed on Inconel ® Alloy 783 at a strain rate of 3 × 10 −3 s −1 and a strain amplitude of ±0.6%, employing various temperatures in the range 300–923 K. A continuous reduction in the LCF life was observed with increase in the test temperature. The material generally showed a stable stress response followed by a region of continuous softening up to failure. However, in the temperature range of 573–723 K, the alloy was seen to exhibit dynamic strain ageing (DSA) which was observed to reduce the extent of cyclic softening. With a view to identifying the operative mechanisms responsible for DSA, tensile tests were conducted at temperatures in the range, 473–798 K with strain rates varying from 3 × 10 −5 s −1 to 3 × 10 −3 s −1 . Interaction of dislocations with interstitial (C) and substitutional (Cr) atoms respectively, in the lower and higher temperature regimes was found to be responsible for DSA. Further, the friction stress, as determined using the stabilised stress–strain hysteresis loops, was seen to show a more prominent peak in the DSA range, compared to the maximum tensile stress.

  3. Low-cycle fatigue of heat-resistant alloys in high-temperature gas-cooled reactor helium

    International Nuclear Information System (INIS)

    Tsuji, H.; Kondo, T.

    1984-01-01

    Strain controlled low-cycle fatigue tests were conducted on four nickel-base heat-resistant alloys at 900 0 C in simulated high-temperature gas-cooled reactor (HTGR) environments and high vacuums of about 10 -6 Pa. The observed behaviors of the materials were different and divided into two groups when tests were made in simulated HTGR helium, while all materials behaved similarly in vacuums. The materials that have relatively high ductility and compatibility with impure helium at test temperature showed considerable resistance to the fatigue damage in impure helium. On the other hand, the alloys qualified with their high creep strength were seen to suffer from the adverse effects of impure helium and the trend of intergranular cracking as well. The results were analyzed in terms of their susceptibility to the environmentenhanced fatigue damage by examining the ratios of the performance in impure helium to in vacuum. The materials that showed rather unsatisfactory resistance were considered to be characterized by their limited ductility partly due to their coarse grain structure and susceptibility to intergranular oxidation. Moderate carburization was commonly noted in all materials, particularly at the cracked portions, indicating that carbon intrusion had occurred during the crack growth stage

  4. Study on low-cycle fatigue property of candidate stainless steels for SCWR

    International Nuclear Information System (INIS)

    Chen Le; Tang Rui; Liang Bo; Zhang Qiang; Liu Hong

    2013-01-01

    Low cyclic fatigue property of three austenitic stainless steels (316Ti, 347 and HR3C) as candidate materials for SCWR was investigated at room temperature (RT) and 650℃ under a strain amplitude of ± 0.5%, and fracture morphology of all the samples was observed by scanning electron microscope (SEM). The results showed that, at both temperatures the fatigue life of 347 was best and 316Ti worst. For each material, the area of hysteresis was nearly the same in the two temperatures. The elastic deformation was 0.1% - 0.15% both at RT and 650℃ for the three materials with different fatigue lives, indicating it had no direct connection with fatigue life. There was different cyclic hardening/saturation behavior for each material. The maximum/minimum stress of either HR3C or 347 was quite different at the two temperatures, while of 316Ti was almost the same. The cyclic hardening behavior was more remarkable in 316Ti compared with 347 at 650℃. SEM observation found that the fatigue striation width was only 1.87 μm for 347, but up to 4.67 μm and 3.0 μm for 316Ti and HR3C respectively, which further demonstrated that 347 had the best fatigue property at 650℃. (authors)

  5. Experimental and numerical investigation of strain rate effect on low cycle fatigue behaviour of AA 5754 alloy

    Science.gov (United States)

    Kumar, P.; Singh, A.

    2018-04-01

    The present study deals with evaluation of low cycle fatigue (LCF) behavior of aluminum alloy 5754 (AA 5754) at different strain rates. This alloy has magnesium (Mg) as main alloying element (Al-Mg alloy) which makes this alloy suitable for Marines and Cryogenics applications. The testing procedure and specimen preparation are guided by ASTM E606 standard. The tests are performed at 0.5% strain amplitude with three different strain rates i.e. 0.5×10-3 sec-1, 1×10-3 sec-1 and 2×10-3 sec-1 thus the frequency of tests vary accordingly. The experimental results show that there is significant decrease in the fatigue life with the increase in strain rate. LCF behavior of AA 5754 is also simulated at different strain rates by finite element method. Chaboche kinematic hardening cyclic plasticity model is used for simulating the hardening behavior of the material. Axisymmetric finite element model is created to reduce the computational cost of the simulation. The material coefficients used for “Chaboche Model” are determined by experimentally obtained stabilized hysteresis loop. The results obtained from finite element simulation are compared with those obtained through LCF experiments.

  6. Influence of microstructure of different stainless steels on their low cycle fatigue damage mechanisms

    International Nuclear Information System (INIS)

    Baffie, Natacha

    2002-01-01

    The present study is focused on understanding low cycle fatigue damage mechanisms in three different kind of stainless steels. In all structures, crack propagation is conditioned by microstructural barriers. In single phase austenitic alloys, short cracks initiation and growth are crystallographic. Cracks are arrested by grain and twin boundaries both at surface and in the bulk. Grain size refinement improve the fatigue life at applied Δε p . The second barrier in the bulk is shown to be very efficient because of the important number of misoriented grains. In the metastable austenitic alloy, the martensitic transformation induced by cyclic straining leads to significant modifications of damage mechanisms. The fatigue behaviour has been investigated between -50 deg. C and 120 deg. C. The γ→α' transformation takes place at the surface, in the bulk (except at 120 deg. C) and locally at the crack tip. At all temperatures, the amount of martensite formed and the fatigue life increase as the grain size decreases, even if at the same Δε p , the maximal stresses are considerably higher than in a stable γ. Short cracks growth takes place in transformed regions, γ→α' transformation being assisted by strain concentrations at the crack tip. This mechanism consumes a part of plastic deformation, which would have been available for crack propagation. Such a dynamic barrier can decrease crack propagation rate. The austenite grain size is shown to have a decisive influence both on the amount of martensite formed and on the fatigue resistance through the effect of γ grain boundaries as indirect barriers to the crack propagation. The fatigue life of the 475 deg. C aged α/γ alloy decreases sharply at high applied Δε p compared to the solution annealed one. This behaviour is explained by the modification of short cracks nucleation sites. Indeed, cleavage occurs in the hard and brittle α phase, even if plastic deformation is concentrated in γ phase. Then, easy

  7. Resistance of heat resisting steels and alloys to thermal and mechanical low-cycle fatigue

    International Nuclear Information System (INIS)

    Tulyakov, G.A.

    1980-01-01

    Carried out is a comparative evalUation of resistance of different materials to thermocyclic deformation and fracture on the base of the experimental data on thermal and mechanical low-cycle fatigUe. Considered are peculiarities of thermal fatigue resistance depending on strength and ductility of the material. It is shown, that in the range of the cycle small numbers before the fracture preference is given to the high-ductility cyclically strengthening austenitic steels of 18Cr-10Ni type with slight relation of yield strength to the σsub(0.2)/σsub(B) tensile strength Highly alloyed strength chromium-nickel steels, as well as cyclically destrengthening perlitic and ferritic steels with stronger σsub(0.2)/σsub(B) relation as compared with simple austenitic steels turn to be more long-lived in the range of the cycle great numbers berore fracture. Perlitic steels are stated to have the lowest parameter values of the K crack growth intensity under the similar limiting conditions of the experiment, while steels and alloys with austenite structure-higher values of the K parameter

  8. Challenges in high temperature low cycle fatigue testing of metallic materials

    International Nuclear Information System (INIS)

    Sandhya, R.; Valsan, M.; Bhanu Sankara Rao, K.

    2007-01-01

    The evaluation of the high strain Low Cycle Fatigue properties of structural materials is an involved and complicated procedure requiring skill and diligence from the experimentalist. This presentation describes the various testing methods to evaluate the LCF properties of structural materials, the complexities involved and some solutions to exacting requirements, not covered by the testing procedure standards. The basic components of servo-hydraulic fatigue testing machines is described, as are the calibration and maintenance procedures. Results of LCF tests conducted at the authors' laboratory on AISI 316L(N) stainless steel and Mod.9Cr-1Mo ferritic steel are described. The complications in total strain controlled testing of weld joints is brought out and soft zone development in Mod. 9Cr-1Mo ferritic steel is described. The special requirements for testing in environmental chambers is a challenging task. In-house chambers, designed to carry out testing in dynamic sodium environment is highlighted. These chambers have provision to accommodate extensometers for strain measurements, and also house all the safety instrumentation needed to carry out to mechanical testing in dynamic sodium environment. The variation of LCF results as a function of specimen geometry is examined. The various failure criteria adopted by laboratories in different countries are also touched upon. (author)

  9. Effect of liquid metal embrittlement on low cycle fatigue properties and fatigue crack propagation behavior of a modified 9Cr–1Mo ferritic–martensitic steel in an oxygen-controlled lead–bismuth eutectic environment at 350 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pierre.marmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling, E-mail: Ling.Qin@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Verlinden, Bert, E-mail: Bert.Verlinden@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Wevers, Martine, E-mail: Martine.Wevers@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2014-11-17

    The low cycle fatigue properties of a modified 9Cr–1Mo ferritic–martensitic steel (T91) have been tested in stagnant liquid lead–bismuth eutectic (LBE) with oxygen concentrations ranging from 1.16×10{sup −6} to 6.0×10{sup −10} wt% at 350 °C. The effect of liquid metal embrittlement (LME) on fatigue endurance, fatigue crack propagation modes and secondary cracking has been studied. The results showed that the fatigue lives of T91 steel in a low oxygen concentration LBE were drastically reduced compared to those in vacuum due to the presence of LME. The microstructural observations on the fatigue crack propagation modes revealed that fatigue cracks in LBE mainly propagate across prior-austenite grain boundaries and then cut through martensitic lath boundaries, simultaneously leaving a few plastic flow traces and characteristic brittle features. Intergranular and interlath cracking occurred occasionally and their occurrence depended on the orientation of the boundaries relative to the stress axis. The complexity of the LME-induced fracture features can be attributed to a mixture of the multiple failure modes. No obvious plastic shear strain localization was present around the crack tips when LME occurred. However, using a high resolution electron backscatter diffraction (EBSD) technique, highly localized plastic shear strain was observed in the vicinity of the crack tips in vacuum, manifested by the presence of very fine subgrains along the crack walls. A qualitative mechanism was proposed to account for the LME phenomenon in the T91/LBE system. In addition, the secondary cracking at fatigue striations was different in the presence of LBE compared to vacuum. This phenomenon was elucidated by taking into account the influence of the LME on the fatigue crack propagation rate.

  10. Low-cycle fatigue properties of SUS304 stainless steel in high-temperature sodium

    International Nuclear Information System (INIS)

    Hirano, M.; Komine, R.; Kitao, K.; Nihei, I.; Yoshitoshi, A.

    Low-cycle fatigue tests in sodium and in air have been performed to investigate the influence of a high-temperature sodium environment on the strain-controlled fatigue behaviour for SUS304 stainless steel. The oxygen concentration in sodium was 2.4 ppm at the cold trap temperature of 145 deg. C. Tests in both environments were conducted at 450 deg. C, 550 deg. C and 650 deg. C at a constant strain rate of 1x10 -3 /sec with a fully-reversed triangular waveform and a zero mean strain. The fatigue life of SUS304 stainless steel in sodium at 450 deg. C, 550 deg. C and 650 deg. C was greater than those in air at the same temperature except at higher strain range (>0.8%) at 650 deg. C, and this difference had a tendency to increase as the total strain range decreases. At the higher total strain range at 650 deg. C, there was no marked difference between both environments. As the temperature increased, the fatigue life in sodium and in air decreased, and the Nsub(f sodium)/Nsub(f air) ratio also decreased. Microscopic examination of specimens tested in sodium and in air at 450 deg. C, 550 deg. C and 650 deg. C revealed no difference in the microstructure, but few surface cracks were observed on specimens tested in sodium than in those tested in air. Fractography of specimens tested in air at 450 deg. C, 550 deg. C and 650 deg. C revealed well-defined striations. But, in sodium, striations on specimens tested at 450 deg. C and 550 deg. C showed obscure configuration and it was difficult to find out, whereas, at 650 deg. C in sodium intergranular fracture was observed. The specimens tested in sodium had a longer fatigue life than those tested in air because the latter are subjected to considerable oxidation, while the former are free of such chemical action. Accordingly, it is concluded that crack initiation and propagation are more likely to occur in air than in sodium. (author)

  11. Frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr--Mo steel for fuel cladding, piping, and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging fromm 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature

  12. A frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr-Mo steel for fuel cladding, piping and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging from 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a considerable decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature. (author)

  13. Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Yeol; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Bae, Si Yeon; Chang, Sung Yong; Chang, Sung Ho [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, 760 °C, 870 °C, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and 760 °C; however, tests conducted at 870 °C showed cyclic softening response. Stress relaxation was observed at 870 °C because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

  14. Texture, microstructure, and fractal features of the low-cycle fatigue failure of the metal in pipeline welded joints

    Science.gov (United States)

    Usov, V. V.; Gopkalo, E. E.; Shkatulyak, N. M.; Gopkalo, A. P.; Cherneva, T. S.

    2015-09-01

    Crystallographic texture and fracture features are studied after low-cycle fatigue tests of laboratory specimens cut from the base metal and the characteristic zones of a welded joint in a pipeline after its longterm operation. The fractal dimensions of fracture surfaces are determined. The fractal dimension is shown to increase during the transition from ductile to quasi-brittle fracture, and a relation between the fractal dimension of a fracture surface and the fatigue life of the specimen is found.

  15. The influence of inclusions on the low cycle fatigue properties of reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.H.; Kima, S.W. [Kyoto Univ., Graduate School of Energy Science (Japan); Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic (RAFM) steels, such as F82H, are the primary near-term candidate for the blanket structural material of nuclear fusion reactors. During operation, blanket structural materials will be subjected to cyclic loading caused by start-up and shut-down procedure or plasma disruption. Therefore, investigation of fatigue property is essential to reactor design. It is considered that fatigue properties depend on the material factor such as the inclusion distribution, surface morphology and so on. Especially, many experimental results show that inclusions become the fracture origin in a given volume of material subjected to cyclic stress, and fracture failure is most likely to initiate at the largest inclusion in the volume. Therefore, the prediction of the size of maximum inclusion and its impact on fatigue properties would be essential to the fusion reactor materials development and application. This paper examines the possible relation between fatigue life and inclusion parameters such as size, shape, distribution and composition. The low cycle fatigue behavior of F82H steel at room temperature in air condition under fully reversed push-pull triangular wave was studied using miniaturized hourglass-type specimens with 1.25 mm in diameter. Total strain range is selected from 0.8% to 2.4%, and the strain rate was 0.04%/s. To examine the size and composition of the inclusions, fracture surfaces and crack initiation region were investigated by a scanning electron microscope (SEM) and EDS. The inclusions such as TaO{sub x}, TaO{sub x}- Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3} with the size below 10 {mu}m are observed on specimen surface. The surface observation of the specimen which discontinued testing at 20 and 500 cycle tested at the strain range of 1.4% revealed that fatigue loading induced separation of inclusions from the matrix in initial stage, then micro-crack induced around the inclusions

  16. Prediction of residual life of low-cycle fatigue in austenitic stainless steel based on indentation test

    International Nuclear Information System (INIS)

    Yonezu, Akio; Touda, Yuya; Kim, HakGui; Yoneda, Keishi; Sakihara, Masayuki; Minoshima; Kohji

    2011-01-01

    In this study, a method to predict residual life of low-cycle fatigue in austenitic stainless steel (SUS316NG) was proposed based on indentation test. Low-cycle fatigue tests for SUS316NG were first conducted based on uniaxial tensile-compressive loading under the control of true strain range. Applied strain ranges were varied from about 3 to 12%. Their hysteresis loops of stress and strain were monitored during the fatigue tests. Plastic deformation range in hysteresis loop at each cycle could be roughly expressed by bi-linear hardening rule, whose plastic properties involve yield stress and work-hardening coefficient. The cyclic plastic properties were found to be dependent on the number of cycles and applied strain range, due to work-hardening. We experimentally investigated the empirical relationship between the plastic properties and number of cycles for each applied strain range. It is found that the relationship quantitatively predicts the applied strain range and number of cycles, when the plastic properties, or yield stress and work-hardening coefficient were known. Indentation tests were applied to the samples subjected to low cycle fatigue test, in order to quantitatively determine the plastic properties. The estimated properties were assigned to the proposed relationship, yielding the applied strain range and the cycle numbers. The proposed method was applied to the several stainless steel samples subjected to low cycle fatigue tests, suggesting that their residual lives could be reasonably predicted. Our method is thus useful for predicting the residual life of low-cycle fatigue in austenitic stainless steel. (author)

  17. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Dewa, Rando Tungga [Pukyung National Univ., Busan (Korea, Republic of); Kim, Won Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction.

  18. Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Dewa, Rando Tungga; Kim, Won Gon

    2016-01-01

    This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately 45° to the fatigue loading direction

  19. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degree C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP'd spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  20. Low cycle fatigue of austempered ductile cast iron alloyed with nickel at room and at depressed temperature

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Beran, Přemysl; Šmíd, Miroslav; Roupcová, Pavla; Tesařová, H.

    2009-01-01

    Roč. 16, 3a (2009), s. 1-6 ISSN 1335-0803. [Degradácia konštrukčných materiálov 2009. Tatranská Lomnica, 02.09.2009-04.09.2009] R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ADI with nickel alloying * Neutron diffraction * Fatigue crack initiation * Depressed temperature Subject RIV: JL - Materials Fatigue , Friction Mechanics

  1. A new lease of life for turbine rotors subject to low-cycle fatigue at elevated temperature

    International Nuclear Information System (INIS)

    Coulon, P.A.; Knosp, B.; Saisse, H.

    1989-01-01

    The purpose of the study was to determine the depth of the zone damaged during fatigue crack initiation at the notch root in a Cr Mo V ferritic steel used for the manufacture of steam turbine rotors. Low cycle fatigue tests were conducted at 500 and 550 0 C (932 0 F and 1022 0 F) and the Manson - Coffin curves have been plotted. The results showed firstly that for Na * = 10,000 cycles (Number of cycles for crack initiation Na = 12,500 cycles) the damaged zone in the test-pieces the authors used corresponded to h ≅0.4 mm, and secondly that this zone had the same order of magnitude as the cyclic plastic zone determined according to the mechanical properties of the material studied. Conclusion is clear: if the turbine rotors are remachined over a depth h greater than ≅0.4 mm, their initial low cycle fatigue properties are considered as largely restored

  2. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Steuer, S., E-mail: Susanne.Steuer@ensma.fr [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Villechaise, P. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Pollock, T.M. [Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106-5050 (United States); Cormier, J. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France)

    2015-10-01

    The influence of high thermal gradient processing on the creep and low cycle fatigue properties of the AM1 Ni-based single crystal superalloy has been studied. Isothermal creep (from 750 °C up to 1200 °C) and low cycle fatigue (750 °C and 950 °C) experiments were performed for AM1 alloy solidified with a conventional radiation cooled (Bridgman) and higher thermal gradient liquid-metal cooled (LMC) casting process to produce coarse and finer-scaled dendritic structures, respectively. There was no significant effect of the casting technique on creep properties, due to the very similar microstructures (γ′-size and γ-channel width) established after full heat treatment of both Bridgman and LMC samples. For low cycle fatigue properties, the benefit of the higher gradient LMC process was dependent on the testing temperature. At 750 °C, cracks primarily initiated at pores created by solidification shrinkage in both Bridgman and LMC samples. Samples produced by the LMC technique demonstrated fatigue lives up to 4 times longer, compared to the Bridgman samples, due to refined porosity. At 950 °C the low cycle fatigue properties of the LMC and conventionally solidified material were not distinguishable due to a shift of crack initiation sites from internal pores to oxidized surface layers or near-surface pores. The benefit of the LMC approach was, however, apparent in fatigue at 950 °C when testing in a vacuum environment. Based on these results, a crack initiation model based on the local slip activity close to casting defect is proposed.

  3. Damage assessment of low-cycle fatigue by crack growth prediction. Development of growth prediction model and its application

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Kawakubo, Masahiro

    2012-01-01

    In this study, the fatigue damage was assumed to be equivalent to the crack initiation and its growth, and fatigue life was assessed by predicting the crack growth. First, a low-cycle fatigue test was conducted in air at room temperature under constant cyclic strain range of 1.2%. The crack initiation and change in crack size during the test were examined by replica investigation. It was found that a crack of 41.2 μm length was initiated almost at the beginning of the test. The identified crack growth rate was shown to correlate well with the strain intensity factor, whose physical meaning was discussed in this study. The fatigue life prediction model (equation) under constant strain range was derived by integrating the crack growth equation defined using the strain intensity factor, and the predicted fatigue lives were almost identical to those obtained by low-cycle fatigue tests. The change in crack depth predicted by the equation also agreed well with the experimental results. Based on the crack growth prediction model, it was shown that the crack size would be less than 0.1 mm even when the estimated fatigue damage exceeded the critical value of the design fatigue curve, in which a twenty-fold safety margin was used for the assessment. It was revealed that the effect of component size and surface roughness, which have been investigated empirically by fatigue tests, could be reasonably explained by considering the crack initiation and growth. Furthermore, the environmental effect on the fatigue life was shown to be brought about by the acceleration of crack growth. (author)

  4. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    Science.gov (United States)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  5. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  6. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy

    International Nuclear Information System (INIS)

    Dezecot, Sebastien; Maurel, Vincent; Buffiere, Jean-Yves; Szmytka, Fabien; Koster, Alain

    2017-01-01

    Synchrotron X-ray tomography was used to monitor damage evolution in three dimensions during in situ Low Cycle Fatigue (LCF) tests at high temperature (250 °C) for an industrial material. The studied material is an AlSi7Cu3Mg aluminum alloy (close to ASTM A319) produced by Lost Foam Casting (LFC), a process which generates coarse microstructures but is nevertheless used for engine parts by the automotive industry. The volume analysis (3D images) has shown that cracks are extremely sensitive to microstructural features: coarse pores and hard particles of the eutectic regions are critical regarding respectively the main crack initiation and the crack growth. Finite Elements (FE) simulations, performed on meshes directly generated from 3D volumes and containing only pores, have revealed that mechanical fields also play a major role on the crack behavior. Initiation sites corresponded to areas of maximum inelastic strain while the crack path was globally correlated to high stress triaxiality and inelastic strain fields.

  7. Effect of tensile holds on the deformation behaviour of a nickel base superalloy subjected to low cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Zrnik, J.; Semenak, J.; Wangyao, P.; Vrchovinsky, V.; Hornak, P. [Dept. of Materials Science, Technical Univ. of Kosice, Kosice (Slovakia)

    2002-07-01

    The deformation behaviour of the wrought nickel base superalloy EI698 VD has been investigated in conditions of low cycle fatigue. The tensile hold periods, imposing a constant stress into the fatigue loading, have been introduced at the maximum stress value. The individual hold periods were in the range of 1 minute to 10 hours. The fatigue tests were of tension-tension type defined by a stress ratio R = 0.027 and were conducted at temperature of 650 C. The tests were performed until fracture. The time to failure, the time to failure corresponding to total load at peak amplitude and the number of cycles to failure have been criteria to evaluate the deformation behaviour of the alloy subjected to complex cyclic creep loading. In order to predict lifetime of alloy, regarding the respective types cyclic test, the Kitagawa's modified the linear cumulative damage criterion has been considered. The two regression functions for applied hold period interval were proposed time to calculate the time to failure. The formulae can be used to predict the life of nickel base superalloy considering the specific conditions of low cycle fatigue with tensile hold period introduced at stress amplitude peaks. The failure analysis of fracture surfaces contributed to evaluation of the role of repeatedly reduced stress in damage process. (orig.)

  8. Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

    Science.gov (United States)

    Mu, G. Y.; Mi, X. Z.; Wang, F.

    2018-01-01

    The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.

  9. Low cycle fatigue of the European type 316L reference steel for the NET first wall and blanket

    International Nuclear Information System (INIS)

    Schaaf, B. van der; Hoepen, J. van.

    1992-12-01

    This report gives a comprehensive overview of the experiments performed on Type 316L steel at the Netherlands Energy Research Foundation in Petten. It is observed that the effects of neutron irradiation, resulting in 3-4 dpa and 30-40 appm helium are limited. The strain rate dependence of low cycle fatigue endurance is not negligible for material in the three conditions considered: irradiated, as-received and thermal control condition. All fatigue cracks propagated in a ductile manner in the parameter range were investigated. Both fatigue strain rate effects and crack initiation effects should be taken into account for the NET/ITER design. (author). 24 refs., 18 figs., 13 tabs

  10. Experimental study of microstructure changes due to low cycle fatigue of a steel nanocrystallised by Surface Mechanical Attrition Treatment (SMAT)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z. [ICD, P2MN, LASMIS, University of Technology of Troyes, UMR 6281, CNRS, Troyes (France); Retraint, D., E-mail: delphine.retraint@utt.fr [ICD, P2MN, LASMIS, University of Technology of Troyes, UMR 6281, CNRS, Troyes (France); Baudin, T.; Helbert, A.L.; Brisset, F. [ICMMO, Univ Paris-Sud, Université Paris-Saclay, UMR CNRS 8182, 91405 Orsay Cedex (France); Chemkhi, M.; Zhou, J. [ICD, P2MN, LASMIS, University of Technology of Troyes, UMR 6281, CNRS, Troyes (France); Kanouté, P. [ICD, P2MN, LASMIS, University of Technology of Troyes, UMR 6281, CNRS, Troyes (France); ONERA, The French Aerospace Lab, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex (France)

    2017-02-15

    Electron Backscatter Diffraction technique is used to characterize the microstructure of 316L steel generated by Surface Mechanical Attrition Treatment (SMAT) before and after low cycle fatigue tests. A grain size gradient is generated from the top surface to the interior of the samples after SMAT so that three main regions can be distinguished below the treated surface: (i) the ultra-fine grain area within 5 μm under the top surface with preferably oriented grains, (ii) the intermediate area where the original grains are partially transformed, and (iii) the edge periphery area where the original grains are just mechanically deformed with the presence of plastic slips. Fatigue tests show that cyclic loading does not change the grain orientation spread and does not activate any plastic slip in the ultra-fine grain top surface area induced by SMAT. On the opposite, in the plastically SMAT affected region including the intermediate area and the edge periphery area, new slip systems are activated by low cycle fatigue while the grain orientation spread is increased. These results represent a first very interesting step towards the characterization and understanding of mechanical mechanisms involved during the fatigue of a grain size gradient material. - Highlights: •LCF tests are carried out on specimens processed by SMAT. •EBSD is used to investigate microstructural changes induced by LCF. •A grain size gradient is generated by SMAT from surface to the bulk of the fatigue samples. •New slip systems are activated by LCF and GOS is increased in plastically deformed region. •However, these phenomena are not observed in the top surface ultra-fine grain area.

  11. Experimental study of microstructure changes due to low cycle fatigue of a steel nanocrystallised by Surface Mechanical Attrition Treatment (SMAT)

    International Nuclear Information System (INIS)

    Sun, Z.; Retraint, D.; Baudin, T.; Helbert, A.L.; Brisset, F.; Chemkhi, M.; Zhou, J.; Kanouté, P.

    2017-01-01

    Electron Backscatter Diffraction technique is used to characterize the microstructure of 316L steel generated by Surface Mechanical Attrition Treatment (SMAT) before and after low cycle fatigue tests. A grain size gradient is generated from the top surface to the interior of the samples after SMAT so that three main regions can be distinguished below the treated surface: (i) the ultra-fine grain area within 5 μm under the top surface with preferably oriented grains, (ii) the intermediate area where the original grains are partially transformed, and (iii) the edge periphery area where the original grains are just mechanically deformed with the presence of plastic slips. Fatigue tests show that cyclic loading does not change the grain orientation spread and does not activate any plastic slip in the ultra-fine grain top surface area induced by SMAT. On the opposite, in the plastically SMAT affected region including the intermediate area and the edge periphery area, new slip systems are activated by low cycle fatigue while the grain orientation spread is increased. These results represent a first very interesting step towards the characterization and understanding of mechanical mechanisms involved during the fatigue of a grain size gradient material. - Highlights: •LCF tests are carried out on specimens processed by SMAT. •EBSD is used to investigate microstructural changes induced by LCF. •A grain size gradient is generated by SMAT from surface to the bulk of the fatigue samples. •New slip systems are activated by LCF and GOS is increased in plastically deformed region. •However, these phenomena are not observed in the top surface ultra-fine grain area.

  12. Radiation effects on low cycle fatigue properties of reduced activation ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Hirose, T.; Tanigawa, H.; Ando, M.; Kohyama, A.; Katoh, Y.; Narui, M.

    2002-01-01

    The reduced activation ferritic/martensitic steel, RAFs F82H IEA heat has been fatigue-tested at ambient temperature under diametral strain controlled conditions. In order to evaluate the effects of radiation damage and transmutation damage on fatigue characteristics, post-neutron irradiation and post-helium ion implantation fatigue tests were carried out. Fracture surfaces and fatigue crack initiation on the specimen surface were observed by SEM. Low-temperature irradiation caused an increase in stress amplitude and a reduction in fatigue lifetime corresponding to radiation hardening and loss of ductility. Neutron irradiated samples showed brittle fracture surface, and it was significant for large strain tests. On the other hand, helium implantation caused delay of cyclic softening. However, brittle crack initiation and propagation did not depend on the helium concentration profiles

  13. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  14. Properties of high temperature low cycle fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Kim, D. H.; Han, C. H.; Ryu, W. S.

    2002-01-01

    Tensile and fatigue tests were conducted at R. T. and 300 .deg. C for type 304 and 316 stainless steel. Tensile strength and elongation decreased and fatigue life increased with temperature for both type 304 and 316 stainless steel. Dislocation structures were mixed with cell and planar at R. T. and 300 .deg. C for both type 304 and 316 stainless steel. Strain induced martensite of type 316 stainless steel was less than that of type 304 stainless steel and decreased with temperature. It is considered that strain induced martensite is an important factor to increase fatigue life at 300 .deg. C

  15. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Science.gov (United States)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 °C. Grain growth occurred on 1045 °C HIP CuCrZr, though slightly on 980 °C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 °C. The low cycle fatigue strength of 1045 °C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  16. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Hiroshi, E-mail: nishi.hiroshi88@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Enoeda, Mikio [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  17. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Enoeda, Mikio

    2011-01-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  18. Effect of boron control of environment on corrosion and resistance to low-cycle corrosion fatigue in structural steels

    International Nuclear Information System (INIS)

    Babej, Yu.I.; Zhitkov, V.V.; Zvezdin, Yu.I.; Liskevich, I.Yu.; Nazarov, A.A.

    1982-01-01

    Tests of the specimens on total, contact and crevice corrosion, corrosion cracking and low-cycle fatigue are conducted for determination of corrosion and corrosion-fatigue characteristics in the 15Kh3NMFA, 10N3MFA, 10Kh16N4B, 05Kh13N6M2 structural steels, used in energetics. The environment is subjected to boron control and contacting with atmosphere for simulation of stop and operation modes of the facility. The experiments are carried out in the distilled water with 12g/l H 3 BO 3 and 10 mg/l Cl' at 25, 60, 100 deg C under contacting with atmosphere. It is established, that the pearlitic steels 15Kh3NMFA, 10N3MFA, as well as transition and martensitic 05Kh13N6M2 and 10Kh16N4B steels are highly stable to total, crevice and contact corrosion at the high parameters of aqueous boron-containing medium. Steel resistance to low-cycle fracture decreases slightly under the conditions similar to the operation ones, in the water with 12 g/l H 3 BO 3 . Durability of the pearlitic steels at the simulation of stop conditions decreases more noticeably, crack formation as a rule, initiating from corrosion spots

  19. Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, F.A., E-mail: f4mirza@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Wang, K.; Bhole, S.D.; Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Ni, D.R.; Xiao, B.L. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ma, Z.Y., E-mail: zyma@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-04-20

    The present study was aimed to evaluate the strain-controlled cyclic deformation characteristics and low cycle fatigue (LCF) life of a low (~0.3 wt%) Ce-containing ME20-H112 magnesium alloy. The alloy contained equiaxed grains with ellipsoidal particles containing Mg and Ce (Mg{sub 12}Ce), and exhibited a relatively weak basal texture. Unlike the high rare earth (RE)-containing magnesium alloy, the ME20M-H112 alloy exhibited asymmetrical hysteresis loops somewhat similar to the RE-free extruded Mg alloys due to the presence of twinning-detwinning activities during cyclic deformation. While cyclic stabilization was barely achieved even at the lower strain amplitudes, cyclic softening was the predominant characteristics at most strain amplitudes. The ME20M-H112 alloy showed basically an equivalent fatigue life to that of the RE-free extruded Mg alloys, which could be described by the Coffin-Manson law and Basquin's equation. Fatigue crack was observed to initiate from the near-surface imperfections, and in contrast to the typical fatigue striations, the present alloy showed some shallow dimples along with some fractions of quasi-cleavage features in the crack propagation area.

  20. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  1. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  2. Comparison of low-cycle fatigue data of 2 1/4 % CrMo steels

    International Nuclear Information System (INIS)

    Sanderson, S.J.; Petrequin, P.; Nieuwland, H.C.D.; Breuer, H.J.

    1983-01-01

    Data files have been produced on international strain-controlled fatigue information available for 2 1/4 %CrMo steels. The available data have been considered generally in terms of total strain range vs. cycles to failure (Nsub(f)), tensile stress at Nsub(f)/2 vs. cycles to failure and time to failure vs. cycles to failure. Where possible the continuous cycling data been statistically analysed in terms of the elastic and plastic strain components and cycles to failure to yield best-fit equations over defined temperature (T) regime viz: T 0 C, 427 0 C 0 C and 550 0 C 0 C. Increasing test temperatures result in a progressive decrease in continuous cycling fatigue endurance and sustainable stress range

  3. Experimental study on kinematic hardening of 1Cr18Ni9Ti stainless steel under low cycle fatigue

    International Nuclear Information System (INIS)

    Shao Er; Yang Xianjie; Mao Jianghui; Sun Yafang

    2006-01-01

    To study the effect of the monotonic loading on subsequent cyclic plastic hardening and flow properties of 1Cr18Ni9Ti steel, an experimental study of the low cycle fatigue tests with mean strains for 1Cr18Ni9Ti stainless steel was carried out. An analysis on the evolutions of the yield surface radius and the back stresses under symmetric and asymmetric cyclic strain loading with different strain amplitudes was made. The dependence of the evolutions of the material kinematic hardening and isotropic hardening on the strain amplitude and mean strain was observed. These results provide the experimental foundation for the constitutive model of the material under combined monotonic and cyclic complicated loads. (authors)

  4. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  5. A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2016-07-15

    High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

  6. Low Cycle Mechanical and Fatigue Properties of AlZnMgCu Alloy

    Directory of Open Access Journals (Sweden)

    Pysz S.

    2016-03-01

    Full Text Available The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075 was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.

  7. The role of crystallographic texture on load reversal and low cycle fatigue performance of commercially pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Subhasis; Gurao, N.P., E-mail: npgurao@iitk.ac.in

    2017-04-13

    Microstructural and textural design of hexagonal close packed titanium is of paramount importance for in-service applications comprising of monotonic and cyclic loading. The effect of initial texture on load reversal and low cycle fatigue behaviour of commercially pure titanium was investigated using servohydraulic testing, electron back scatter diffraction (EBSD) and in situ experiments. Uniaxial tensile test on sample A with prismatic texture along the tensile axis showed lower yield strength but higher ductility and twin activity with multiple variants compared to orientation B with basal texture along the tensile axis. Tension-compression load reversal tests show distinct Bauschinger co-efficient for samples A and B at different strain while displacement control cyclic tests yield higher fatigue life for sample B. Higher extent of detwinning in sample B during load reversal in cyclic test releases the backstress and contributes to higher cyclic ductility. In situ EBSD experiments provide evidence of partial reversibility of twinned microstructure in titanium, which explains the formation of thin, small twins during cyclic deformation and rationalizes the difference in monotonic and cyclic ductility. Thus multiple twin variants with intersecting twins contribute to higher strain hardening and ductility in monotonic tension but cyclic life depends on the extent of detwinning.

  8. Comparison of low-cycle fatigue data of 2 1/4%CrMo steels

    International Nuclear Information System (INIS)

    Sanderson, S.J.; Petrequin, P.; Nieuwland, H.C.D.

    Data files have been produced on international strain-controlled fatigue information available for 2 1/4%CrMo steels; data assessment from these files is treated in three categories viz: annealed and isothermally annealed 2 1/4%Cr1%Mo steel; normalised and tempered and quenched and tempered 2 1/4%Cr1%Mo steel; and 2 1/4%CrMo variants. The available data have been considered generally in terms of total strain range vs. cycles to failure (Nsub(f)), tensile stress at Nsub(f)/2 vs. cycles to failure and time to failure vs. cycles to failure. Where possible the continuous cycling data have been statistically analysed in terms of the elastic and plastic strain components and cycles to failure to yield best-fit equations over defined temperature (T) regimes viz: T <= 427 deg. C, 427 deg. C < T <= 550 deg. C. and 550 deg. C < T <= 600 deg. C. The behaviour of the steels within the various classifications is discussed. (author)

  9. Effect of tensile dwell on high-temperature low-cycle fatigue and fracture behaviour of cast superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel

    2017-01-01

    Roč. 185, NOV (2017), s. 92-100 ISSN 0013-7944. [ICMFM 2016 - International Colloquium on Mechanical Fatigue of Metals /18./. Gijón, 05.09.2016-07.09.2016] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : Nickel-based superalloy * High-temperature low-cycle fatigue * Tensile dwell * Fatigue life * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering , reliability analysis Impact factor: 2.151, year: 2016

  10. Low-Cycle Fatigue Behaviour of AISI 18Ni300 Maraging Steel Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Ricardo Branco

    2018-01-01

    Full Text Available Selective laser melting has received a great deal of attention in recent years. Nevertheless, research has been mainly focused on the technical issues and their relationship with the final microstructure and monotonic properties. Fatigue behaviour has rarely been addressed, and the emphasis has been placed on high-cycle regimes. The aim of this paper is, therefore, to study, in a systematic manner, the cyclic plastic behaviour of AISI 18Ni300 maraging steel manufactured by selective laser melting. For this purpose, low-cycle fatigue tests, under fully-reversed strain-controlled conditions, with strain amplitudes ranging from 0.3% to 1.0%, were performed. After testing, fracture surfaces were examined by scanning electron microscopy to identify the main fatigue damage mechanisms. The analysis of results showed a non-Masing material, with a slight strain-softening behaviour, and non-linear response in both the elastic and plastic regimes. In addition, this steel exhibited a very low transition life of about 35 reversals, far below the values of conventional materials with equivalent monotonic mechanical properties, which can be attributed to the combination of high strength and low ductility. The total strain energy density, irrespective of strain amplitude, revealed itself to be a quite stable parameter throughout the lifetime. Finally, the SEM analysis showed for almost all the tested samples cracks initiated from the surface and inner defects which propagated through the rest of the cross section. A ductile/brittle fracture, with a predominance of brittle fracture, was observed in the samples, owing to the presence of defects which make it easier to spread the microcracks.

  11. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K., E-mail: laha@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Saroja, S.; Moitra, A.; Sandhya, R.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Rajendra Kumar, E. [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India)

    2013-08-15

    Effects of tungsten and tantalum contents on impact, tensile, low cycle fatigue and creep properties of Reduced Activation Ferritic–Martensitic (RAFM) steel were studied to develop India-specific RAFM steel. Four heats of the steel have been melted with tungsten and tantalum contents in the ranges 1–2 wt.% and 0.06–0.14 wt.% respectively. Increase in tungsten content increased the ductile-to-brittle transition temperature (DBTT), low cycle fatigue and creep strength of the steel, whereas the tensile strength was not changed significantly. Increase in tantalum content increased the DBTT and low cycle fatigue strength of the steel whereas the tensile and creep strength decreased. Detailed TEM investigations revealed enhanced microstructural stability of the steel against creep exposure on tungsten addition. The RAFM steel having 1.4 wt.% tungsten with 0.06 wt.% tantalum was found to possess optimum combination of impact, tensile, low cycle fatigue and creep properties and is considered for Indian-specific RAFM steel.

  12. Non local approach in crystalline plasticity: study of mechanical behaviour of AISI 316LN stainless steel during low cycle fatigue

    International Nuclear Information System (INIS)

    Schwartz, J.

    2011-01-01

    If fatigue crack initiation is currently quite well understood for pure single crystals, its comprehension and prediction in cases of polycrystal alloys such as AISI 316LN stainless steel remain complicated. Experimentally our study focuses on the characterisation of the mechanical behaviour and on the study at different scales of the phenomenon leading to low cycle fatigue crack initiation in 316LN stainless steel. For straining amplitudes of?e/2 = 0,3 and 0,5%, the cyclic softening observed during testing has been related to the organisation of dislocations in band structures. These bands, formed due to the activation of slip systems having the greatest Schmid's factor, carry the most part of the deformation. Their emergence at free surfaces leads to the formation of intrusions and extrusions which help cracks initiate and spread. Numerically we worked on the mesoscopic scale, proposing a new model of crystalline plasticity. This model integrates geometrically necessary dislocations (GND) directly computed from the lattice curvature. Implemented in the finite element code Abaqus TM and Cast3m TM , it is based on single crystal finite deformations laws proposed by Peirce et al. (1983) and Teodosiu et al. (1993). Extended for polycrystals by Hoc (2001) and Erieau (2003), it has been improved by the introduction of GND (Acharya and Bassani, 2000). The simulations performed on different types of aggregates (2D/3D) have shown that taking GND into account enables:- the prediction of the grain size effect on a macroscopic and on a local scale,- a finer computation of local stress field.The influence of the elasticity and interaction matrices on the values and the evolution of the isotropic and kinematic mean stresses has been shown. The importance of boundary conditions on computed mechanical fields could also be pointed out. (author)

  13. Oxide-assisted crack growth in hold-time low-cycle-fatigue of single-crystal superalloys

    Directory of Open Access Journals (Sweden)

    Suzuki Akane

    2014-01-01

    Full Text Available Compressive hold-time low-cycle fatigue is one of the important damage modes in Ni-based superalloy hot-gas path components. In strain controlled LCF, the compressive hold typically degrades fatigue life significantly due to creep relaxation and the resultant generation of tensile stress upon returning to zero strain. Crack initiation typically occurs on the surface, and therefore, the cracks are covered with layers of oxides. Recent finite element modeling based on experimental observations has indicated that the in-plane compressive stress in the alumina layer formed on the surface of the bond coat assists rumpling and, eventually, leads to initiation of cracks. The stress in the oxide layer continues to assist crack extension by pushing the alumina layer along the crack front during the compressive hold. In-situ measurements of the growth strains of alumina were performed using high energy synchrotron X-rays at Argonne National Lab. Specimens of single-crystal superalloys with and without aluminide coatings were statically pre-oxidized to form a layer of alumina at 1093 and 982 ∘C. For the in-situ synchrotron measurements, the specimens were heated up to the pre-oxidation temperatures with a heater. The alumina layers on both bare and coated specimens show compressive in-plane strains at both temperatures. The oxide strains on the superalloys showed dependency on temperature; on the other hand, the oxide strains in the aluminide coatings were insensitive to temperature. The magnitude of the compressive strains was larger on the superalloys than the ones on the aluminide coatings.

  14. Low-cycle fatigue and damage of an uncoated and coated single crystal nickel-base superalloy SCB

    International Nuclear Information System (INIS)

    Stekovic, S.; Ericsson, T.

    2007-01-01

    This paper presents low-cycle fatigue (LCF) behaviour and damage mechanisms of uncoated and coated specimens of a single crystal nickel-base superalloy SCB tested at 500 C and 900 C. Four coatings were deposited on the base material, an overlay coating AMDRY997, a platinum-modified aluminide diffusion coating RT22 and two innovative coatings called IC1 and IC3 with a NiW diffusion barrier in the interface. AMDRY997 and RT22 were used as reference coatings. The LCF tests were performed at three strain amplitudes, 1.0, 1.2 and 1.4%, with R = -1, in laboratory air and without any dwell time. The LCF life of the specimens is determined by crack initiation and propagation. Crack data are presented for different classes of crack size in the form of crack density, that is, the number of cracks normalised to the investigated interface length. Micrographs of damage of the coatings are also shown. The effect of the coatings on the LCF life of the superalloy was dependent on the test temperature and deposited coating. At 500 C all coatings had a detrimental effect on the LCF life of the superalloy. At 900 C both AMDRY997 and IC1 prolonged the fatigue life of the superalloy by factors ranging between 1.5 and 4 while RT22 and IC3 shortened the life of the coating-substrate system. Specimens coated with RT22 exhibited generally more damage than other tested coatings at 900 C. Most of the cracks observed initiated at the coating surface and a majority were arrested in the interdiffusion zone between the base material and the coating. No topologically close-packed phases were found. Delamination was only found in AMDRY997 at higher strains. Surface roughness or rumpling was found in the overlay coating AMDRY997 with some cracks initiating from the rumples. The failure morphology at 900 C reflected the role of oxidation in the fatigue life, the crack initiation and propagation of the coated specimens. The wake of the cracks grown into the substrate was severely oxidised leading to

  15. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  16. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-01-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life. (paper)

  17. An advanced revised universal slope method for low cycle fatigue evaluation of elbow piping subjected to in-plane cyclic bending displacement

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2015-01-01

    In order to rationalize the low cycle fatigue evaluation of elbow piping subjected to in-plane cyclic bending displacement, an advanced revised universal slope method is proposed. In the proposed method, the coefficient of the first term of the fatigue life equation which resembles Manson's equation is expressed by parameters of the multi-axial degree, the tensile strength and the fracture strength. Also, the coefficient of the second term is expressed by the multi-axial degree, the fracture ductility and the minimum fracture ductility under the maximum multi-axial degree. Here equivalent strain range is used for the fatigue life estimation. The previously carried out pipe elbow test data were reanalyzed using the proposed method. As the result, the experimentally obtained fatigue lives had considerably good coincidences with the predicted fatigue lives by the proposed method. Application of the proposed method is also discussed. (author)

  18. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  19. A study on variations of the low cycle fatigue life of a high pressure turbine nozzle caused by inlet temperature profiles and installation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Aero-propulsion Research Office, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [School of Mechanical and Aerospace Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  20. A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [Pusan National Univ., Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  1. Fatigue behavior of niobium--hydrogen alloys

    International Nuclear Information System (INIS)

    Chung, D.W.; Stoloff, N.S.

    1978-01-01

    The effects of hydrogen on room temperature fatigue behavior of niobium were investigated under both high frequency stress control and low frequency strain control conditions, in air. Hydrogen markedly improved the fatigue life in high frequency tests, while low frequency tests resulted in decreased fatigue life with increasing hydrogen content. Notches in hydrogen-charged alloys reduced high cycle life significantly but had little effect on low cycle tests. Fracture surfaces of annealed niobium mainly exhibited striations, with numerous cracks originating at troughs of striated bands in both stress and strain control tests. The fracture mode for alloys with hydrogen in solution was mixed, with striations interspersed with cleavage facets at high frequencies but generally cleavage steps at low frequencies. For the hydrided alloys, distinctive steps of mixed ductile-brittle appearance were revealed under high frequency conditions, but large cleavage facets only were observed for low frequency tests. The results are discussed in terms of the effects of hydrogen on the cyclic strain hardening rate, as well as on fatigue strength and ductility of niobium

  2. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Miura, N.; Fujioka, T.; Kashima, K. [and others

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  3. Low cycle fatigue of 2.25Cr1Mo steel with tensile and compressed hold loading at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junfeng; Yu, Dunji; Zhao, Zizhen; Zhang, Zhe; Chen, Gang; Chen, Xu, E-mail: xchen@tju.edu.cn

    2016-06-14

    A series of uniaxial strain-controlled fatigue and creep-fatigue tests of the bainitic 2.25Cr1Mo steel forging were performed at 455 °C in air. Three different hold periods (30 s, 120 s, 300 s) were employed at maximum tensile strain and compressive strain under fully reversed strain cycling. Both tensile and compressive holds significantly reduce the fatigue life. Fatigue life with tensile hold is shorter than that with compressive hold. A close relationship is found between the reduction of fatigue life and the amount of stress relaxation. Microstructural examination by scanning electron microscope reveals that strain hold introduces more crack sources, which can be probably ascribed to the intensified oxidation and the peeling-off of oxide layers. A modified plastic strain energy approach considering stress relaxation effect is proposed to predict the creep-fatigue life, and the predicted lives are in superior agreement with the experimental results.

  4. Microscopic analysis of the influence of ratcheting on the evolution of dislocation structures observed in AISI 316L stainless steel during low cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Facheris, G., E-mail: giacomo.facheris@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, Villigen PSI (Switzerland); Pham, M.-S. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); High Temperature Integrity Group, Mechanics for Modelling and Simulation, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dübendorf (Switzerland); Janssens, K.G.F., E-mail: koen.janssens@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, Villigen PSI (Switzerland); Holdsworth, S.R. [High Temperature Integrity Group, Mechanics for Modelling and Simulation, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dübendorf (Switzerland)

    2013-12-10

    When subjected to controlled cyclic deformation, the response of austenitic stainless steel typically involves primary hardening followed by softening, and eventually cyclic stabilization with or without secondary hardening. If a continuously drifting mean strain is superposed to an alternating strain path (i.e. strain controlled ratcheting), the response in terms of mean stress and strain amplitude is significantly different. A series of low cycle fatigue and ratcheting experiments are performed at room temperature on round specimens extracted from a batch of AISI 316L hot rolled plate. The experiments are interrupted at cycle numbers selected to correspond with the different strain controlled cycle response stages. The as-received material and the fatigued specimens are analyzed by means of transmission electron microscopy to characterize the microstructure and its evolution with cyclic loading. The low cycle fatigue experiments, performed to establish a reference point for the zero mean strain loading condition, are in line with observations reported for AISI 316L stainless steel by other authors. The continuously increasing mean strain is found to induce higher dislocation densities in the channels of the evolving microstructure, being responsible for the macroscopically observed additional hardening. The observed polarized dislocation walls at least partially accommodate the continuously drifting mean strain and play a role in the non-zero mean stress response.

  5. Low cycle fatigue behaviour of Ti-6Al-5Zr-0.5Mo-0.25Si alloy at room temperature

    International Nuclear Information System (INIS)

    Nag, Anil Kumar; Praveen, K.V.U.; Singh, Vakil

    2006-01-01

    Low cycle fatigue (LCF) behaviour of the near α titanium alloy, Ti-6Al-5Zr-0.5Mo-0.25Si (LT26A), was investigated in the (α+ β) as well as β treated conditions at room temperature. LCF tests were carried out under total strain controlled mode in the range of Δε t /2: from ± 0.60% to ± 1.40%. The alloy shows cyclic softening in both the conditions. Also it exhibits dual slope Coffin-Manson (C-M) relationship in both the treated conditions. (author)

  6. Statistical investigation of the crack initiation lives of piping structural welded joint in low cycle fatigue test of 240 degree C

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Gao Qing; Cai Lixun

    1999-01-01

    A statistical investigation into the fitting of four possible fatigue assumed distributions (three parameter Weibull, two parameter Weibull, lognormal and extreme maximum value distributions) for the crack initiation lives of piping structural welded joint in low cycle fatigue test of 240 degree C is performed by linear regression and least squares methods. The results reveal that the three parameters Weibull distribution may give misleading results in fatigue reliability analysis because the shape parameter is often less than 1. This means that the failure rate decreases with fatigue cycling which is contrary to the general understanding of the behaviour of welded joint. Reliability analyses may also affected by the slightly nonconservative evaluations in tail regions of this distribution. The other three distributions are slightly poor in the total fit effects, but they can be safety assumed in reliability analyses due to the non-conservative evaluations in tail regions mostly and the consistency with the fatigue physics of the structural behaviour of welded joint in the range of engineering practice. In addition, the extreme maximum value distribution is in good consists with the general physical understanding of the structural behaviour of welded joint

  7. Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe–30Mn–(6−x)Si–xAl TRIP/TWIP alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, Ilya, E-mail: nikulin.i.a@gmail.com [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Belgorod State University, Pobeda 85, Belgorod 308015 (Russian Federation); Sawaguchi, Takahiro [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Tsuzaki, Kaneaki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2013-12-10

    The change in low-cycle fatigue (LCF) properties and deformation microstructure due to the alteration of aluminum and silicon contents was studied in relation with the tensile properties in Fe–30Mn–(6−x)Si–xAl (x=0, 1, 2, 3, 4, 5, 6 wt%) alloys, which are high-Mn austenitic TRIP/TWIP alloys. Austenite to ε-martensite transformation took place during LCF deformation in the TRIP alloys with x≤2 while mechanical twinning was not observed by electron-backscattering diffraction (EBSD) analysis in the TWIP alloys with x>2 after LCF deformation. The fatigue resistance of the alloys was shown to be correlated with the tensile proof strength and the hardening rate. Superior fatigue life of 8×10{sup 3} cycles at a total strain range Δε=2% was found in the Fe–30Mn–4Si–2Al TRIP alloy with a low fraction of ε-martensite, high tensile proof strength and low hardening rate at both tensile and fatigue deformations. On the other hand, a considerable decrease in the fatigue properties was observed in the alloys with decreasing proof strength and increasing hardening rate. Proof strength provided by the solid solution of Al and Si, represents the hampering of plastic deformation, and the hardening rate reflects the strain reversibility affected by the stacking fault energy (SFE) through the rate of austenite to martensite transformation in the TRIP alloys and the substructure formation in the TWIP alloys.

  8. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)], E-mail: Ivan.Nikitin@infineon.com; Besel, M. [Institute of Materials Engineering, University of Kassel, 34125 Kassel, Hessen (Germany)

    2008-09-15

    Mechanical surface treatments such as deep rolling are known to affect the near-surface microstructure and induce, e.g. residual stresses and/or increase the surface hardness. It is well known that, e.g. compressive residual stress states usually increase the lifetime under fatigue loading. The stress relaxation behaviour and the stability of the residual stress during fatigue loading depend on the mechanical surface treatment method. In this paper three different surface treatments are used and their effects on the low cycle fatigue behaviour of austenitic stainless steel (AISI 304) and ferritic-pearlitic steel (SAE 1045) are investigated. X-ray diffraction is applied for the non-destructive evaluation of the stress state and the microstructure. It is found that consecutive deep rolling and annealing as well as high temperature deep rolling produce more stable near-surface stress states than conventional deep rolling at room temperature. The plastic strain amplitudes during fatigue loading are measured and it is shown that they correlate well with the induced residual stress and its relaxation, respectively. Furthermore, Coffin-Manson plots are presented which clearly show the correlation between the plastic strain amplitude and the fatigue lifetime.

  9. Investigation of in-plane biaxial low cycle fatigued austenitic stainless steel AISI 321. II. Neutron diffraction stress analysis at the IBR-2 pulsed nuclear reactor

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Balagurov, A.M.; Sheverev, S.G.; ); Schreiber, J.; Bomas, H.; Korsunsky, A.M.

    2007-01-01

    The in-plane biaxial low cycle fatigued sample of the cruciform geometry from austenitic stainless steel AISI 321 was investigated on the time-of-flight neutron Fourier stress-diffractometer. The lattice parameters in the austenite matrix and the martensite inclusions created during the fatigue cycling as well as the martensite volume fraction were measured along two mutually perpendicular planar axes of the sample of the cruciform geometry by using the strain neutron scanner. The phase total residual strain components were calculated using the stress equilibrium relations. The separation of the residual stresses into macro- and microstresses was performed using the mixture rule. The measurements of the applied load-phase elastic strain responses were carried out on a uniaxial load machine. The strong difference between the phase elastic moduli was found out

  10. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  11. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    International Nuclear Information System (INIS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-01-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of D c = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times. (paper)

  12. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  13. Tensile and low cycle fatigue properties of EUROFER97-steel after 16.3 dpa neutron irradiation at 523, 623 and 723 K

    Energy Technology Data Exchange (ETDEWEB)

    Materna-Morris, E., E-mail: edeltraud.materna-morris@kit.edu; Möslang, A., E-mail: anton.moeslang@kit.edu; Schneider, H.-C., E-mail: hans-christian.schneider@kit.edu

    2013-11-15

    Neutron-irradiated specimens of the reduced-activation tempered martensitic steel EUROFER97 were tested by tensile and low cycle conditions to detect the impact of irradiation on strength and lifetime. The irradiation temperature ranged from 523 to 723 K with an accumulated dose of up to 16.3 dpa. Tensile tests revealed a significant irradiation-induced hardening below 673 K with a peak of ∼430 MPa at 573 K but none was seen at 723 K, as expected. Despite the significant irradiation-induced reduction of uniform elongation, the total elongation is only reduced by about 50% below 673 K. Post-irradiation strain-controlled fatigue tests have been carried out at T{sub irrad} = T{sub test} = 523, 623 and 723 K. Pronounced cyclic softening was observed in all specimens. At 623 and 723 K, neutron irradiation had no effect on fatigue life within the data scatter. A significant lifetime increase has been observed at T{sub irrad} = T{sub test} = 523 K that advances with decreasing stress amplitude Δε (1% → 0.5%) up to a factor of ten. Scanning electron microscopy (SEM) analysis revealed ductile fracture and fatigue striations on the fracture surfaces. After push–pull fatigue testing, transmission electron microscopy (TEM) investigations showed the typical sub-cell formation, even at T{sub irrad} = T{sub test} = 523 K.

  14. Behavior of Steel Branch Connections during Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Sládek A.

    2017-09-01

    Full Text Available Fatigue behavior of the branch connection made of low-alloyed steel with yield stress of 355 MPa during low-cycle bending test is investigated in the article. Numerical prediction of the stress and strain distribution are described and experimentally verified by fatigue test of the branch connection sample. Experimental verification is based on low-cycle bending testing of the steel pipes welded by manual metal arc process and loaded by external force in the appropriate distance. Stresses and displacement of the samples induced by bending moment were measured by unidirectional strain gauges and displacement transducers. Samples were loaded in different testing levels according to required stress for 2.106 cycles. Increase of the stress value was applied until the crack formation and growth was observed. Results showed a high agreement of numerical and experimental results of stress and displacement.

  15. Joined application of a multiaxial critical plane criterion and a strain energy density criterion in low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    Andrea Carpinteri

    2017-07-01

    Full Text Available In the present paper, the multiaxial fatigue life assessment of notched structural components is performed by employing a strain-based multiaxial fatigue criterion. Such a criterion, depending on the critical plane concept, is extended by implementing the control volume concept reated to the Strain Energy Density (SED approach: a material point located at a certain distance from the notch tip is assumed to be the verification point where to perform the above assessment. Such a distance, measured along the notch bisector, is a function of both the biaxiality ratio (defined as the ratio between the applied shear stress amplitude and the normal stress amplitude and the control volume radii under Mode I and Mode III. Once the position of the verification point is determined, the fatigue lifetime is assessed through an equivalent strain amplitude, acting on the critical plane, together with a unique material reference curve (i.e. the Manson-Coffin curve. Some uniaxial and multiaxial fatigue data related to V-notched round bars made of titanium grade 5 alloy (Ti-6Al-4V are examined to validate the present criterion.

  16. Microstructural aspects of crack formation and propagation in the austenitic steel X6CrNiNb18-10 under low cycle fatigue loading

    International Nuclear Information System (INIS)

    Soppa, E.; Kohler, C.; Roos, E.; Schuler, X.

    2012-01-01

    The understanding of the crack initiation mechanisms and crack growth in apparently monolithic materials like X6CrNiNb18-10 stainless steel under cyclic loading requires the explicit analysis of the phenomena underlying fatigue on both atomistic and microscopic levels. The permanent delivery of mechanical energy through cyclic loading evokes changes in the microstructure that can lead to a martensitic transformation. The transformation of a metastable cubic face centered austenite and formation of a cubic body centered α'-martensite under cyclic loading at room temperature was found, both, in the experiment and in molecular dynamics simulations. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∝ 1 μm) differently oriented grains, also in the same parent austenitic grain. By a combination of interrupted low cycle fatigue tests (LCF) and electron backscatter diffraction (EBSD) measurements the martensitic transformation and subsequent fatigue crack formation were observed at the same area in the microstructure at different stages of the specimen lifetime. The EBSD measurements showed the following crack initiation scenarios: Cracks started (a) at the phase boundary between austenite and α'-martensite, (b) inside fully martensitic areas in the matrix, (c) at broken or debonded coarse NbCs. It is obvious that formation of a hard α'-martensite in a ductile and soft austenite and forming two-phase material causes a heterogeneous stress and strain distribution on the microscopic level. α'-martensite enhances locally the stress amplitude whereas in a soft austenite the plastic strain amplitude increases. Strain concentration in the austenite along the phase boundary is connected with a stress increase along the interface and can initiate fatigue crack there. Also at the crack tip, a permanent martensitic transformation occurs, so that the growth of the fatigue cracks at room temperature seems

  17. Microstructural aspects of crack formation and propagation in the austenitic steel X6CrNiNb18-10 under low cycle fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Soppa, E.; Kohler, C.; Roos, E.; Schuler, X. [Stuttgart Univ. (Germany). MPA

    2012-07-01

    The understanding of the crack initiation mechanisms and crack growth in apparently monolithic materials like X6CrNiNb18-10 stainless steel under cyclic loading requires the explicit analysis of the phenomena underlying fatigue on both atomistic and microscopic levels. The permanent delivery of mechanical energy through cyclic loading evokes changes in the microstructure that can lead to a martensitic transformation. The transformation of a metastable cubic face centered austenite and formation of a cubic body centered α'-martensite under cyclic loading at room temperature was found, both, in the experiment and in molecular dynamics simulations. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∝ 1 μm) differently oriented grains, also in the same parent austenitic grain. By a combination of interrupted low cycle fatigue tests (LCF) and electron backscatter diffraction (EBSD) measurements the martensitic transformation and subsequent fatigue crack formation were observed at the same area in the microstructure at different stages of the specimen lifetime. The EBSD measurements showed the following crack initiation scenarios: Cracks started (a) at the phase boundary between austenite and α'-martensite, (b) inside fully martensitic areas in the matrix, (c) at broken or debonded coarse NbCs. It is obvious that formation of a hard α'-martensite in a ductile and soft austenite and forming two-phase material causes a heterogeneous stress and strain distribution on the microscopic level. α'-martensite enhances locally the stress amplitude whereas in a soft austenite the plastic strain amplitude increases. Strain concentration in the austenite along the phase boundary is connected with a stress increase along the interface and can initiate fatigue crack there. Also at the crack tip, a permanent martensitic transformation occurs, so that the growth of the fatigue cracks at room

  18. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    R. Karthigeyan

    2013-01-01

    Full Text Available This paper deals with metal matrix composites (MMCs of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10 basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  19. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    Science.gov (United States)

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  20. Study of Mechanical Features for Low Cycle Fatigue Samples of Metastable Austenitic Steel AISI 321 by Neutron Stress Analysis under Applied Load

    CERN Document Server

    Taran, Yu V; Eifler, D; Nebel, Th; Schreiber, J

    2002-01-01

    The elastoplastic properties of the austenitic matrix and martensitic volume areas induced during cyclic tensile-compressive loading of low carbon metastable austenitic stainless steel were studied in an in situ neutron diffraction stress rig experiment on the ENGIN instrument at the ISIS pulsed neutron facility. Samples prepared from the steel AISI 321 annealed at 1050 ^{\\circ}C and quenched in water were subjected to low-cycle fatigue under total-strain control with an amplitude of 1 % at a frequency of 0.5 Hz. Subsequent applied stress?elastic strain responses of the austenitic and martensitic phases were obtained by Rietveld and Le Bail refinements of the neutron diffraction spectra, and were used to determine the elastic constants of the phases as a function of fatigue level. The results of modified refinements accounting for the elastic anisotropy in polycrystalline materials under load are also presented. The residual strains in the austenitic matrix were determined as a function of fatigue cycling, us...

  1. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Directory of Open Access Journals (Sweden)

    R. Senthilkumar

    2015-01-01

    Full Text Available Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014 alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  2. Generalization of Coffin-Manson relation in connection with the low-cycle fatigue in the temperature range 20-300 o C

    International Nuclear Information System (INIS)

    Radu, V.

    1992-01-01

    The low-cycle fatigue phenomenon in the framework of plastic deformation is studied considering the temperature parameter. The experimental results obtained for the plastic strain Δε p (1-7%), in the temperature range 20-300 o C are examined. The conclusion is that the lifetime, expressed by the number of stress cycles, N f , is given by the relation N f = C exp(-A/T)(Δε p ) β+αΔT , where T is the absolute temperature, Δε p is double of plastic deformation amplitude, and C, A, β, and α are material constants. This relation can be interpreted as being the generalization of a relation, known in literature as the 'Coffin-Manson relation', but which does not include the temperature parameter. The validation of this relation can be done either on the results presented in this paper or an those published in literature. (Author)

  3. Environmental fatigue behaviors of wrought and cast stainless steels in 310degC deoxygenated water

    International Nuclear Information System (INIS)

    Cho, Pyung-Yeon; Jang, Hun; Jang, Changheui; Jeong, Ill-Seok; Lee, Jae-Gon

    2009-01-01

    Environmental fatigue behaviors of wrought type 316LN stainless steel and cast CF8M stainless steel were investigated. Low cycle fatigue tests were performed in a 310degC deoxygenated water environment at a strain rate of 0.04%/s with various strain amplitudes. It was shown that the low cycle fatigue life of CF8M was slightly longer than that of 316LN. To understand the causes of the difference, fracture surface was observed and material factors like microstructure, mechanical properties, and chemical compositions of both materials were analyzed. In a duplex microstructure of CF8M, the fatigue crack growth was affected by barrier role of ferrite phase and acceleration role of microvoids in ferrite phase. Test results indicate that the former is greater than the latter, resulting in slower fatigue crack growth rate, or longer LCF lives in CF8M than in 316LN. (author)

  4. Low cycle fatigue properties of neutron irradiated solid HIP 316L(N). ITER Task T214, NET deliverable GB6 ECN-5

    International Nuclear Information System (INIS)

    Rensman, J.; Van Osch, E.V.; Tjoa, G.L.; Boskeljon, J.; Van Hoepen, J.

    1998-05-01

    The Low Cycle Fatigue (LCF) properties of neutron irradiated Hot Isostatically Pressed (HIP) joints of type 316L(N) stainless steel (heat PM-130) have been measured, as well as the LCF properties of reference 316L(N)-ERHII. Cylindrical LCF test specimens of 3 mm diameter were irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands, simulating the first wall conditions of future fusion reactors by a combination of high displacement damage with proportional amounts of helium. The solid HIP specimens were irradiated up to a target dose level of 5 dpa at a temperature of 550K. The damage levels realised range from 3.0 to 4.4 dpa, with helium contents up to 41 appm. Testing temperature was equal to the irradiation temperature: 550K. The report contains the experimental conditions and summarises the results, which are given in terms of first cycle stress, the peak stress, the number of cycles where the peak stress is reached, the stress at half life and the plastic strain at half life, and the total number of cycles to failure, N f . The main conclusions are that the unirradiated solid-HIP materials has the same LCF properties as unirradiated 316L(N)-ERHII plate material. The neutron irradiation induces both hardening and reduction of fatigue life. The bond does not seem to have any effect on the fatigue properties for the unirradiated solid HIP 316L(N), whereas a combined effect of irradiation and the bond cannot be established. No failures related to debonding of the joint were observed for the tests. 7 refs

  5. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jibo [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wu, Xinqiang, E-mail: xqwu@imr.ac.cn [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En-Hou; Ke, Wei; Wang, Xiang [CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, Haitao [Nuclear and Radiation Safety Center, SEPA, Beijing 100082 (China)

    2017-06-15

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s{sup −1} in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed. - Highlights: •The fatigue lives of 316LN stainless steel decrease with decreasing strain rate. •Fatigue cracks mainly initiated at pits and persistent slip bands. •Dynamic strain aging promoted fatigue cracks initiation in high-temperature water.

  6. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  7. Investigation of endurance limit- and low-cycle fatigue strength of St E 47 and STE 70 in the welded and unwelded state

    International Nuclear Information System (INIS)

    Jaenicke, B.; Helms, R.; Florian, W.; Lipp, H.J.; Seidl, W.; Kaiser, B.

    1979-01-01

    To clarify clear the effect of the welding conditions and the heat treatment, alternating load tests were carried out in the endurance limit- and low-cycle-fatigue strength range on specimens of St E 47 and St E 70. Grounded basic material flat specimens cleared from their rolling skins and welded flat specimens with a butt weld of special quality were used. The welds were produced by the metal arc manual welding method with bar electrodes (low heat introduction) and with the submerged-arc welding method (high heat introduction). Part of the specimens were tempered free from stress after welding. The tests were carried out force-controlled at tension-repeated loading (S=0) and strain controlled at tension-compression alternating loading (S approx. -1). In the range of N = 5 x 10 4 ...1,5 x 10 6 cycles a small effect of the welding (special quality) for St E 47 with subsequence tempering on the endurance limit was proofed, which in comparison with the unwelded basic material (grounded surface) was characterized by broad range at nearly the same endurance limit. For St E 70, a clear decrease of the endurance limit of welded, tempered specimens (special quality) was found as compared with the basic material (grounded surface). (orig./RW) 891 RW/orig.- 892 RKD [de

  8. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  9. Fatigue and fracture behavior of low alloy ferritic forged steels

    International Nuclear Information System (INIS)

    Chaudhry, V.; Sharma, A.K.; Muktibodh, U.C.; Borwankar, Neeraj; Singh, D.K.; Srinivasan, K.N.; Kulkarni, R.G.

    2016-01-01

    Low alloy ferritic steels are widely used in nuclear industry for the construction of pressure vessels. Pressure vessel forged low alloy steels 20MnMoNi55 (modified) have been developed indigenously. Experiments have been carried out to study the Low Cycle Fatigue (LCF) and fracture behavior of these forged steels. Fully reversed strain controlled LCF testing at room temperature and at 350 °C has been carried out at a constant strain rate, and for different axial strain amplitude levels. LCF material behavior has been studied from cyclic stress-strain responses and the strain-life relationships. Fracture behavior of the steel has been studied based on tests carried out for crack growth rate and fracture toughness (J-R curve). Further, responses of fatigue crack growth rate tests have been compared with the rate evaluated from fatigue precracking carried out for fracture toughness (J-R) tests. Fractography of the samples have been carried out to reveal dominant damage mechanisms in crack propagation and fracture. The fatigue and fracture properties of indigenously developed low alloy steel 20MnMoNi55 (modified) steels are comparable with similar class of steels. (author)

  10. A study on the notch effect on the low cycle fatigue of metals in creep-fatigue interacting conditions at elevated temperature

    International Nuclear Information System (INIS)

    Sakane, M.; Oknami, M.

    1983-01-01

    Frequency and hold-time effects on fatigue lives of cylindrical notched specimens of SUS 316 stainless steel were studied at 600 0 C in air. From the tests, the following conclusions were obtained: Neuber's rule, as used in the ASME N-47 Code, predicts very conservatively the life of notched specimens in tests without a hold-time. But it gives a nonconservative estimate for the reduction in the life of the material by the introduction of a hold-time. An empirical formula of a ''frequency-elastic stress concentration factor modified equation'' was obtained by analysing the experimental data. It predicts accurately the life of the notched specimen tested at different frequencies

  11. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  12. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part II: NASA 1.1, Glidcop, and sputtered copper alloys. Contractor report, Mar.--Sep. 1974

    International Nuclear Information System (INIS)

    Conway, J.B.; Stentz, R.H.; Berling, J.T.

    1974-11-01

    Short-term tensile and low-cycle fatigue data are reported for five advance Cu-base alloys: Sputtered Zr--Cu as received, sputtered Zr--Cu heat-treated, Glidcop AL-10, and alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538 0 C using an axial strain rate of 0.002/s to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. Fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatigue life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/s and effect of strain rates of 0.0004 and 0.01/s at 538 0 C were evaluated. Hold-time data are reported for the NASA 1-1B alloy at 538 0 C using 5 minute hold periods in tension only and compression only at two different strain range values. (U.S.)

  13. Hydrogen effect on the fatigue behavior of LBM Inconel 718

    Directory of Open Access Journals (Sweden)

    Puydebois Simon

    2018-01-01

    Full Text Available For several years, Inconel 718 made by Laser Beam Melting (LBM has been used for components of the Ariane propulsion systems manufactured by ArianeGroup. In the aerospace field, many components of space engines are used under hydrogen environment. The risk of hydrogen embrittlement (HE can be therefore a first order problem. Consequently, to improve the HE sensitivity of LBM Inconel 718, a systematic approach needs to be developed to characterize the microstructure at different scales and its interaction with hydrogen. This study addresses the impact of gaseous hydrogen on the material mechanical behavior under fatigue loadings. In a first step, the low cycle fatigue behavior under 300 bar of hydrogen gas has been evaluated with specimen loaded at a constant load ratio of R=0.1 and a frequency of 0.5 Hz. A reduction in the cycle number of fracture is shown. This reduction of fatigue life is a consequence of the impact of hydrogen damage processes. The impact of hydrogen is evaluated at the stages of crack initiation, crack propagation. These results are discussed in relation with the hydrogen embrittlement mechanisms and particularly in terms of hydrogen / plasticity interactions. To achieve this, the fracture surface morphology was first examined using scanning electron microscopy and second samples near the fracture surface were extracted using Focused-Ion Beam machining from regions containing striation. The main result observed is a reduction of the size of dislocation organization in relation with a decrease of the striation distance.

  14. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr–1Mo steel under low cycle fatigue in lead–bismuth eutectic at 160–450 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pmarmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling; Verlinden, Bert; Wevers, Martine [KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2016-01-15

    Low cycle fatigue properties of a 9Cr–1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead–bismuth eutectic (LBE) environment and in vacuum at 160–450 °C. The results show a clear fatigue endurance “trough” in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160–450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  15. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450 °C

    Science.gov (United States)

    Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc

    2016-01-01

    Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  16. Ti–6Al–4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China); Li, Shaolin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Qi, Hongyu, E-mail: qhy@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China)

    2014-03-01

    The effect of microstructural characteristics on the fatigue properties of electron beam-welded joints of forged Ti–6Al–4V and its fracture behavior were investigated. Tensile tests and fatigue tests were conducted at room temperature in air atmosphere. The test data were analyzed in relation to microstructure, high-cycle fatigue properties, low-cycle fatigue properties, and fatigue crack propagation properties. The high-cycle fatigue test results indicated that the fatigue strength of the joint welded via electron beam welding was higher than that of the base metal because the former had a high yield strength and all high-cycle fatigue specimens were fractured in the base metal. Although the joint specimens had a lower low-cycle fatigue life than the base metal, they mainly ruptured at the fusion zone of the joint specimen and their crack initiation mechanism is load-dependent. The fatigue crack propagation test results show that the joint had a slower crack propagation rate than the base metal, which can be attributed to the larger grain in the fusion zone.

  17. The Effect of Material Variability on Fatigue Behaviors of Low Alloy Steels in 310 .deg. C Deoxygenated Water

    International Nuclear Information System (INIS)

    Jang, Hun; Jang, Changheui; Kim, Insup; Cho, Hyunchul

    2008-01-01

    As environmental fatigue damage is one of the main crack initiation mechanisms in nuclear power plants (NPPs), it is most important factor to assess the integrity and safety of NPPs. So, based on extensive researches, argon nation laboratory (ANL) suggested the statistical model to predict fatigue life of low alloy steels (LASs) which are widely used as structural material in NPPs. Also, we reported the environmental fatigue behaviors of SA508 Gr.1a LAS. However, from comparison between our experimental fatigue data and ANL's statistical model, our fatigue life data showed poor agreement with the ANL's statistical model. In this regard, the additional low cycle fatigue (LCF) tests were performed in 310 .deg. C deoxygenated water, and compared with ANL's statistical model to evaluate reliability of the data. And then, the effect of material variability on the fatigue life of LASs was investigated through microstructure analysis

  18. Contribution of the low cycle fatigue on ultra high purity Ni-Cr-Fe alloys and on Ni monocrystals to the understanding of the hydrogen role in stress corrosion cracking for the alloys 600 and 690

    International Nuclear Information System (INIS)

    Renaudot, N.

    1999-06-01

    We discuss the role of hydrogen in cracking of Ni base alloys used for pressurised water reactor (PWR) primary tubes (alloy 600 and 690). Cracking can be explained by a Stress Corrosion Cracking (SCC) phenomenon. For this purpose, Low cycle fatigue (R = - 1) under cathodic charging at room temperature is conducted to study hydrogen effects on propagation of cracks mechanically initiated by the formation of Persistent Slip Bands (PSB). Low cycle fatigue on Ultra High Purity specimens (Ni, alloy 600 and 690) reveals the very important hydrogen effect on crack propagation rate, whatever the Cr content in the Ni base alloy. If Cr seems to have an effect over-hydrogen penetration in specimens (by a protective film formation), it have no beneficial effect when hydrogen have diffused ahead of a crack tip. Propagation rates (transgranular or intergranular) are highly increased, no matter of the absence of impurities like sulphur. Then, in PWR, the difference in the behaviour of alloy 600 and 690 could be due to a slower microcrack propagation rate for alloy 690. Protective films could play an important role in this difference, which is to study. Low cycle fatigue on Ni single crystals oriented for single slip shows, for the first time on bulk specimen, a macroscopic softening which can be explained. by hydrogen-dislocation interactions. Moreover, a simple quantitative model based on these interactions results in the same softening as the one observed experimentally. These results allow to validate experimentally one of the most important steps in the 'Corrosion Enhanced Plasticity (CEP) model', i.e. the softening ahead of a stress corrosion crack tip by hydrogen dislocation interactions. This is of importance because this model can explain cracking in numerous FCC materials-environment couple. (author)

  19. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue.

    Science.gov (United States)

    Ye, Jia; Gao, Yong

    2012-01-01

    Rotary instruments made of a new nickel-titanium (NiTi) alloy (M-Wire) have shown improved cyclic fatigue resistance and mechanical properties compared with those made of conventional superelastic NiTi wires. The objective of this study was to characterize microstructural changes of M-Wire throughout the cyclic fatigue process under controlled strain amplitude. The average fatigue life was calculated from 30 M-Wire samples that were subjected to a strain-controlled (≈ 4%) rotating bend fatigue test at room temperature and rotational speed of 300 rpm. Microstructural evolution of M-Wire has been investigated by different metallurgical characterization techniques, including differential scanning calorimetry, Vickers microhardness, and transmission electron microscopy at 4 different stages (as-received state, 30%, 60%, and 90% of average fatigue life). During rotating bend fatigue test, no statistically significant difference (P > .05) was found on austenite finish temperatures between as-received M-Wire and fatigued samples. However, significant differences (P Wire are expected to have higher strength and wear resistance than similar instruments made of conventional superelastic NiTi wires because of its unique nano-crystalline martensitic microstructure. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Low cycle fatigue behaviour of neutron irradiated copper alloys at 250 and 350 deg. C. (ITER R and D Task no. T213)

    International Nuclear Information System (INIS)

    Singh, B.N.; Stubbins, J.F.; Toft, P.

    2000-03-01

    The fatigue behaviour of a dispersion strengthened and a precipitation hardened copper alloys was investigated with and without irradiation exposure. Fatigue specimens of these alloys were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of ∼2.5 x 10 17 n/m 2 s (E> 1 MeV) to influence levels of 1.0 - 1.5 x 10 24 n/m 2 (E> 1 MeV) at 250 and 350 deg. C. These irradiations were carried out in temperature controlled rigs where the irradiation temperature was monitored and controlled continuously throughout the whole irradiation experiment. Both unirradiated and irradiated specimens were fatigue tested in vacuum at the irradiation temperatures of 250 and 350 deg. C in a strain controlled mode with a loading frequency of 0.5Hz. Post-fatigue microstructures were examined using transmission electron microscopy and the fracture surfaces were investigated using scanning electron microscope. The present investigations demonstrated that the fatigue life decreases with increasing temperature and that the exposure to neutron irradiation causes further degradation in fatigue life at both temperatures. These results are discussed in terms of the observed post-fatigue microstructures and the fracture surface morphology. Finally, the main conclusions and their implications are summarised. (au)

  1. Fatigue life assessment based on crack growth behavior in reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Sato, Yuki; Hasegawa, Akira

    2010-01-01

    Crack growth behavior under low cycle fatigue in reduced activation ferritic/martensitic steel, F82H IEA-heat (Fe-8Cr-2W-0.2V-0.02Ta), was investigated to improve the fatigue life assessment method of fusion reactor structural material. Low cycle fatigue test was carried out at room temperature in air at a total strain range of 0.4-1.5% using an hourglass-type miniature fatigue specimen. The relationship between the surface crack length and life fraction was described using one equation independent of the total strain range. Therefore, the fatigue life and residual life could be estimated using the surface crack length. Moreover, the microcrack initiation life could be estimated using the total strain range if there was a one-to-one correspondence between the total strain range and number of cycles to failure. The crack growth rate could be estimated using the total strain range and surface crack length by introducing the concept of the normalized crack growth rate. (author)

  2. Low-cyclic fatigue behavior of modified 9Cr–1Mo steel at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Guguloth, Krishna; Sivaprasad, S. [CSIR-National Metallurgical laboratory, Material Science and Technology Division, Jamshedpur 831007 (India); Chakrabarti, D. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Tarafder, S. [CSIR-National Metallurgical laboratory, Material Science and Technology Division, Jamshedpur 831007 (India)

    2014-05-01

    The low-cycle fatigue behavior of indigenously developed modified 9Cr–1Mo steel has been evaluated using a constant strain rate (1×10{sup −3} s{sup −1}) at ambient temperature (25 °C) and at elevated temperatures (500–600 °C) over the strain amplitudes varying between ±0.7% and ±1.2%. Cyclic stress response showed a gradual softening regime that ended in a stress plateau until complete failure of the specimens. The estimated fatigue life decreased with the increase in test temperature. The effect of temperature on fatigue life was more pronounced at lower strain amplitudes. The cyclic deformation behavior at different temperatures has been analyzed from hysteresis loop and also in view of the changes taking place in dislocation structure and dislocation–precipitation interaction. Evaluation of low-cycle fatigue properties of modified 9Cr–1Mo steel over a range of test temperature can help in designing components for in-core applications in fast breeder reactors and in super heaters for nuclear power plants.

  3. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    He, P., E-mail: pei.he@kit.edu; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H.J.

    2014-12-15

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal–mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi–ODS steel exhibits a remarkable lifetime extension with a factor of 10–20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 10{sup 14} m{sup −2}, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y–Ti–O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti–ODS steel.

  4. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    International Nuclear Information System (INIS)

    He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H.J.

    2014-01-01

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal–mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi–ODS steel exhibits a remarkable lifetime extension with a factor of 10–20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 10 14 m −2 , independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y–Ti–O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti–ODS steel

  5. Investigation of in-plane biaxial low cycle fatigued austenitic stainless steel AISI 321. I. Mechanical testing on the planar biaxial load machine

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Balagurov, A.M.; Kuznetsov, A.N.; Schreiber, J.; Bomas, H.; Stoeberl, Ch.; Rathjen, P.; Vorster, W.J.J.; Korsunsky, A.M.

    2007-01-01

    During fatigue loading of structural materials such as stainless steel, changes in the microstructure which affect the mechanical and physical properties occur. Experimental simulation of the loading conditions that induce the changes can be performed by mechanical loading, usually in the form of uniaxial tension-compression cycling. However, real machines and structures are subjected to more complex multiaxial stresses. Fatigue and fracture under multiaxial stresses are one of the most important current topics aimed at ensuring improved reliability of industrial components. The first step towards better understanding of this problem is to subject the materials to biaxial loading. The material examined was low austenitic stainless steel AISI 321 H. A set of the four samples of cruciform geometry was subjected to the biaxial tension-compression fatigue cycling with the frequency of 0.5 Hz at the applied load of 10-17 kN. The samples are intended for the neutron diffraction measurements of the residual stresses and the mechanical characterizations on a dedicated stress-diffractometer

  6. Cyclic Deformation and Fatigue Behaviors of Alloy 617 Base Metal and Weldments at 900℃ for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Kim, Byung Tak; Dewa, Rando T.; Hwang, Jeong Jun; Kim, Tae Su [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An analysis of cyclic deformation can contribute to a deeper understanding of the fatigue fracture mechanisms as well as to improvements in the design and application of VHTR system. However, the studies associated with cyclic deformation and low cycle fatigue (LCF) properties of Alloy 617 have focused mainly on the base metal, with little attention given to the weldments. Totemeier studied on high-temperature creep-fatigue of Alloy 617 base metal and weldments. Current research activities at PKNU and KAERI focus on the study of cyclic deformation and LCF behaviors of Alloy 617 base metal (BM) and weldments (WM) specimens were machined from GTAW buttwelded plates at very high-temperature of 900℃. In this work, the cyclic deformation characteristics and fatigue behaviors of Alloy 617 BM and WM are studied and discussed with respect to LCF. In this paper, cyclic deformation and low cycle fatigue behaviors of Alloy 617 base metal and weldments was evaluated using strain-controlled LCF tests at 900℃for 0.6% total strain range. Results of the current experiments can be concluded; The WM specimen has shown a higher cyclic stress response than the BM specimen. The fatigue life of WM specimen was reduced relative to that of BM specimen.

  7. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    International Nuclear Information System (INIS)

    Miao, Guolei; Yang, Xiaoguang; Shi, Duoqi

    2016-01-01

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  8. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guolei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China); Shi, Duoqi, E-mail: shdq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China)

    2016-06-21

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  9. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  10. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  11. Preliminary results of effect of environment on the low cycle fatigue behaviour of type 316 stainless steel and 9% Cr ferritic steel

    International Nuclear Information System (INIS)

    Wood, D.S.; Slattery, G.F.; Wynn, J.; Connaughton, M.D.; Lambert, M.E.

    1976-06-01

    Strain controlled fatigue tests on Type 316 steel at 625 0 C and 9% Cr steel at 525 0 C have been performed in air and in helium containing 200 μ atm H 2 and 1 μ atm H 2 O. In rapid cycling the endurance of Type 316 steel in this helium mixture was found to be about five times longer than in air. When a hold time was introduced into the tension part of the cycle however the endurance in the two environments was found to be virtually identical. Fractomicrographic examinations have been performed which have helped to explain some of these findings which are attributed to differences in oxidation behaviour at the crack tip. In the case of the 90% Cr steel the endurance in the helium mixture was found to be only slightly better than in air. The implications of these results are considered in relation to thermal shock effects on sodium cooled fast reactor components. (author)

  12. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  13. Spot weld arrangement effects on the fatigue behavior of multi-spot welded joints

    International Nuclear Information System (INIS)

    Hassanifard, Soran; Zehsaz, Mohammad; Esmaeili, Firooz

    2011-01-01

    In the present study, the effects of spot weld arrangements in multi-spot welded joints on the fatigue behavior of the joints are studied. Three different four-spot welded joints are considered: one-row four-spot parallel to the loading direction, one-row four-spot perpendicular to the loading direction and two-row four-spot weld specimens. The experimental fatigue test results reveal that the differences between the fatigue lives of three spot welded types in the low cycle regime are more considerable than those in the high cycle regime. However, all kinds of spot weld specimens have similar fatigue strength when approaching a million cycles. A non-linear finite element analysis is performed to obtain the relative stress gradients, effective distances and notch strength reduction factors based on the volumetric approach. The work here shows that the volumetric approach does a very good job in predicting the fatigue life of the multi-spot welded joints

  14. Mechanical behavior and fatigue performance of SMA short fiber reinforced MMC

    Science.gov (United States)

    Al-Matar, Basem Jawad

    The mechanical behavior and performance of Shape Memory Alloy (SMA) short fiber NiTi reinforced Al was experimentally investigated for monotonic and fatigue test Al 6061 NiTi-SiC T6 was superior to unreinforced materials as well as to the reinforced Al T4. Taya three-dimensional model was performed on the monotonic tensile test at room temperature. It showed good agreement with experimental results. In order to utilize the compressive criterion for SMA, the NiTi reinforced Al composite was cooled at -10°C and prestrained at 1.2%. Beyond this limit composite suffered from damage. The net enhancement of SMA effect was around 10 MPa on composite yield stress. Results showed that the elastic constant for the composite did not change with loading and unloading suggesting that the inelastic behavior is plasticity. Further investigation on the inelastic behavior model as damage and/or plasticity by evaluating Poisson's ratio during loading was carried out by Adaptive Image Correlation Technique for Full-Field Strain Measurement. Poisson's ratio increased from around 0.33 to 0.5 demonstrating that it is plasticity that is responsible for the inelastic behavior. Scanning electron microscopy was also used and confirmed model results. The overall damage-behavior was quantified in terms of the post fatigue failure strength for low-cycle fatigue tests. Power law model was best to fit experimental findings.

  15. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    Science.gov (United States)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-06-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  16. Fatigue behavior of partially stabilized zirconia ceramics

    International Nuclear Information System (INIS)

    Ferber, M.K.; Hine, T.

    1986-01-01

    The time-dependent strength variations of two grades of MgO stabilized materials (Mg-PSZ) were measured as a function of temperature and applied stress level. The strength was determined using an interrupted fatigue (I.F.) test in which flexure samples were exposed at temperatures between 500 and 100 0 C for times up to 1008 h. During testing, the applied stress was maintained at a percentage of the short-term strength value measured at the same T. The resulting I.F. data gave evidence of both strengthening and weakening processes. The dominant mechanism at a given temperature was primarily dictated by the stress level. In the present investigation, the fatigue behavior for two grades of Mg-PSZ was evaluated by measuring the time-dependent strength variations as a function of temperature and applied stress level. Changes in microstructure resulting from the high-temperature exposure were determined from subsequent ceramographic, SEM and TEM studies. In addition, x-ray diffraction and dilatometry measurements were used to examine time-dependent variations in the phase assemblage

  17. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    Science.gov (United States)

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  18. Flexural fatigue behavior of steel fiber reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, G.I.; Chai, W.K.; Park, C.W.; Min, I.K.

    1993-01-01

    In this thesis, the fatigue tests are performed on a series of SFRC (steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varing with the steel fiber contents and the steel fiber aspect ratios. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  19. Investigation of thermal fatigue behavior of thermal barrier coating systems

    International Nuclear Information System (INIS)

    Zhu Dongming; Miller, R.A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure under thermal loads that simulate those in diesel engines are investigated. Surface cracks initiate early and grow continuously under thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N* HCF which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 μm/LCF cycle for a pure LCF test to 2.8 μm/LCF cycle for a combined LCF and HCF test at N* HCF about 20 000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that the HCF damage effect increases with heat flux and thus with increasing surface temperature swing, thermal expansion coefficient and elastic modulus of the ceramic coating, as well as with the HCF interacting depth. Good correlation has been found between the analysis and experimental evidence. (orig.)

  20. Fatigue and creep-fatigue in sodium of 316 1 stainless steel

    International Nuclear Information System (INIS)

    Ardellier, A.

    1982-01-01

    Equipment and results obtained on type 316 L stainless stee1 at 450 0 C and 600 0 C with low-cycle fatique and creep fatigue tests are described. Comparison with runs in air on type 316 L stainless steel shows a better low-cycle fatigue behavior in a sodium environment. This beneficial effect can be attributed to the low oxygen content which limits the surface oxidazation

  1. Environmental Fatigue Behaviors of CF8M Stainless Steel in 310 .deg. C Deoxygenated Water - Effects of Hydrogen and Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Cho, Pyungyeon; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kim, Tae Soon [Korea Hydro and Nuclear Power Corporation, Seoul (Korea, Republic of)

    2014-01-15

    The effects of environment and microstructure on low cycle fatigue (LCF) behaviors of CF8M stainless steels containing 11% of ferrites were investigated in a 310 .deg. C deoxygenated water environment. The reduction of LCF life of CF8M in a 310 .deg. C deoxygenated water was smaller than 316LN stainless steels. Based on the microstructure and fatigue surface analyses, it was confirmed that the hydrogen induced cracking contributed to the reduction in LCF life for CF8M as well as for 316LN. However, many secondary cracks were found on the boundaries of ferrite phases in CF8M, which effectively reduced the stress concentration at the crack tip. Because of the reduced stress concentration, the accelerated fatigue crack growth by hydrogen induced cracking was less significant, which resulted in the smaller environmental effects for CF8M than 316LN in a 310 .deg. C deoxygenated water.

  2. Fatigue Fracture Behaviors of Transparent Polycarbonate Materials

    OpenAIRE

    ZHANG Xiao-wen; WU Nan; ZHANG Xuan; MA Li-ting; LI Lei

    2017-01-01

    The effect of the different stress ratios (R) and annealing treatment on the fatigue properties of the transparent polycarbonate (PC) sheet and the mechanism behind were studied, the fatigue crack propagation (FCP) process and mechanism were analyzed. The results show that after annealing, the residual stress of the PC samples decreases obviously and the fatigue properties are greatly improved. This is because the machining process results in tensile stress in the PC samples, eliminating the ...

  3. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  4. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  5. Fatigue Behavior of Modified Asphalt Concrete Pavement

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2016-02-01

    Full Text Available Fatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content, and (changing in the percentage of asphalt content by (0.5% ± from the optimum. The results show that when Silica fumes content was 1%, the fatigue life increases by 17%, and it increases by 46% when Silica fumes content increases to 2%, and that fatigue life increases to 34 % when Silica fumes content increases to 3% as compared with control mixture at (250 μƐ, 20°C and optimum asphalt content. From the results above, we can conclude the optimum Silica fumes content was 2%. When the asphalt content was 4.4%, the fatigue life has increased with the use of silica fumes by (50%, when asphalt content was 5.4%, the additives had led to increasing the fatigue life by (69%, as compared with the conventional asphalt concrete pavement.

  6. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed

  7. Seismic Behavior of Fatigue-Retrofitted Steel Frame Piers

    Directory of Open Access Journals (Sweden)

    Kinoshita K.

    2013-01-01

    Full Text Available Fatigue retrofit works have been conducted on severely fatigue damaged beam-to-column connections of existing steel frame bridge piers in Japan. It is clear that retrofit works provides additional stiffness but the significance on the seismic behavior of steel frame piers is not clear. Since fatigue retrofit works have become prevalent, the effect of fatigue retrofit works on the seismic behavior of steel frame piers need to be understood. The objective of this study is therefore to investigate these effects of the retrofit work, especially installation of bolted splices, which is the most common technique. Elasto-plastic finite element earthquake response analyses were carried out. It is shown that the existence of bolted splices may increase seismic demand on the piers when plastic hinge zone is located on the beam. In addition, longer bolted splices using low yield strength steel are proposed to overcome this problem and are shown to give beneficial effects.

  8. Corrosion fatigue behavior of high strength brass in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A. [Suez Canal Univ., Dept. of Metallurgy and Materials Engineering (Egypt)

    2000-07-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 {alpha}-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  9. Corrosion fatigue behavior of high strength brass in aqueous solutions

    International Nuclear Information System (INIS)

    Hamada, A.S.; Kassem, M.A.; Ramadan, R.M.; El-Zeky, M.A.

    2000-01-01

    Corrosion fatigue behavior of British Standard high strength brass, CZ 127 has been studied in various environments, 3.5%NaC1 solution and 3.5%NaC1 containing 1000ppm ammonia by applying the reverse bending technique, strain-controlled cyclic, at 67 cycles/min. Characteristics of the produced alloy were studied using differential thermal analysis with applying its results in heat treating of the alloy; metallographic examinations; hardness measurements; X-ray; and electrochemical behavior of the unstressed alloy. CZ 127 was fatigued at three different conditions, solution treated, peak aged, and over aged at a fixed strain amplitude, 0.03 5. Solution treated alloy gave the best fatigue properties in all environments tested among the other materials. Results of the alloy studied were compared with that obtained of 70/30 α-brass. Fracture surface of the fatigued alloy was examined using optical microscope and scanning electron microscope equipped with EDX. (author)

  10. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  11. Effect of alumina-silica-zirconia eutectic ceramic thermal barrier coating on the low cycle fatigue behaviour of cast polycrystalline nickel-based superalloy at 900 °C

    Czech Academy of Sciences Publication Activity Database

    Obrtlík, Karel; Čelko, L.; Chráska, Tomáš; Šulák, Ivo; Gejdoš, P.

    2017-01-01

    Roč. 318, MAY (2017), s. 374-381 ISSN 0257-8972. [RIPT - International Meeting on Thermal Spraying /7./. Limoges, 09.12.2015-12.12.2015] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 ; RVO:61389021 Keywords : Thermal barrier coating * Nickel-based superalloy * Plasma spraying * High temperature fatigue * Fatigue life * Cyclic stress-strain curve Subject RIV: JL - Materials Fatigue, Friction Mechanics; JL - Materials Fatigue, Friction Mechanics (UFP-V) OBOR OECD: Audio engineering, reliability analysis; Audio engineering, reliability analysis (UFM-A); Audio engineering, reliability analysis (UFP-V) Impact factor: 2.589, year: 2016

  12. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Yafei Ma

    2017-05-01

    Full Text Available Pitting corrosion is one of the most common forms of localized corrosion. Corrosion pit results in a stress concentration and fatigue cracks usually initiate and propagate from these corrosion pits. Aging structures may fracture when the fatigue crack reaches a critical size. This paper experimentally simulates the effects of pitting morphologies on the static and fatigue behavior of steel bars. Four artificial notch shapes are considered: radial ellipse, axial ellipse, triangle and length-variable triangle. Each shape notch includes six sizes to simulate a variety of pitting corrosion morphologies. The stress-strain curves of steel bars with different notch shape and depth are obtained based on static tensile testing, and the stress concentration coefficients for various conditions are determined. It was determined that the triangular notch has the highest stress concentration coefficient, followed by length-variable triangle, radial ellipse and axial ellipse shaped notches. Subsequently, the effects of notch depth and notch aspect ratios on the fatigue life under three stress levels are investigated by fatigue testing, and the equations for stress range-fatigue life-notch depth are obtained. Several conclusions are drawn based on the proposed study. The established relationships provide an experimental reference for evaluating the fatigue life of concrete bridges.

  13. Mechanical behavior and fatigue in polymeric composites at low temperatures

    International Nuclear Information System (INIS)

    Katz, Y.; Bussiba, A.; Mathias, H.

    1986-01-01

    Advanced fiber reinforced polymeric composite materials are often suggested as structural materials at low temperature. In this study, graphite epoxy and Kevlar-49/epoxy systems were investigated. Fatigue behavior was emphasized after establishing the standard monotonic mechanical properties, including fracture resistance parameters at 77, 190, and 296 K. Tension-tension fatigue crack propagation testing was carried out at nominal constant stress intensity amplitudes using precracked compact tensile specimens. The crack tip damage zone was measured and tracked by an electro-potential device, opening displacement gage, microscopic observation, and acoustic emission activity recording. Fractograhic and metallographic studies were performed with emphasis on fracture morphology and modes, failure processes, and description of sequential events. On the basis of these experimental results, the problem of fatigue resistance, including low temperature effects, is analyzed and discussed. The fundamental concepts of fatigue in composites are assessed, particularly in terms of fracture mechanics methods

  14. Fatigue behavior of RC T-beams

    Directory of Open Access Journals (Sweden)

    Omar A. Farghal

    2014-09-01

    Full Text Available The objective of this research is to study the fatigue performance of reinforced concrete (RC T-beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP composite. Experiments were conducted on RC beams with and without CFRP sheets bonded on their web surfaces and subjected to static and cycling loading. The obtained results showed that the strengthened beams could survive one million cycles of cyclic loading (=50% of maximum static load with no apparent signs of damage (premature failure demonstrating the effectiveness of CFRP strengthening system on extending the fatigue life of structures. Also, for beams having the same geometry, the applied strengthening technique can significantly enhance the cycling load particularly, in case of beams provided with U-jacket sheets. Moreover, although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket sheets approved an acceptable enhancement in the structural ductility.

  15. Fatigue behavior of porous biomaterials manufactured using selective laser melting.

    Science.gov (United States)

    Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A

    2013-12-01

    Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.

  16. The fatigue life and fatigue crack through thickness behavior of a surface cracked plate, 2

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Fujibayashi, Shinpei; Ando, Kotoji; Ogura, Nobukazu.

    1987-01-01

    Most structures have a region where stresses concentrate, and the probability of fatigue crack initiation may be higher than in other parts. Therefore, to improve the reliability of an LBB design, it is necessary to evaluate the growth and through thickness behavior of fatigue cracks in the stress concentration part. In this paper, a fatigue crack growth test at a stress concentration region has been made on 3 % NiCrMo and HT 80 steel. Stress concentration is caused by a fillet on the plate. The main results obtained are as follows : (1) Before cracking through the plate thickness, stress concentration has a remarkable effect on the fatigue crack growth behavior and it flatens the shape of a surface crack. The crack growth behavior can be explained quantatively by using the Newman-Raju equation and the stress resolving method proposed by ASME B and P Code SecXI. (2) The da/dN-ΔK relation obtained in a stress concentration specimen shows good agreement with that obtained in a surface cracked smooth specimen. (3) It is shown that stress concentration caused by a fillet has little effect on the crack growth rate after cracking through the plate thickness. (4) By using the K value based on eq. (1), (2), particular crack growth behavior and the change in crack shape after cracking through thickness can be explained quantatively. (author)

  17. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  18. Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite

    Science.gov (United States)

    2005-01-01

    Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the

  19. The effects of Nitinol phases on corrosion and fatigue behavior

    Science.gov (United States)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  20. Fatigue-crack propagation behavior of Inconel 600

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effects of several parameters upon the fatigue-crack propagation behavior of Inconel 600. The parameters studied included temperature, cyclic frequency, stress ratio, thermal aging, and a limited amount of testing in a liquid sodium environment

  1. Fatigue-crack propagation behavior of Inconel 718

    International Nuclear Information System (INIS)

    James, L.A.

    1975-09-01

    The techniques of linear-elastic fracture mechanics were used to characterize the effect of several variables (temperature, environment, cyclic frequency, stress ratio, and heat-treatment variations) upon the fatigue-crack growth behavior of Inconel 718 base metal and weldments. Relevant crack growth data on this alloy from other laboratories is also presented. (33 fig, 39 references)

  2. Fatigue micro-crack initiation behavior and effect of irradiation damage on it in austenitic stainless steel

    International Nuclear Information System (INIS)

    Nakai, Ryosuke; Sato, Yuki; Nogami, Shuhei; Hasegawa, Akira

    2012-01-01

    The effect of irradiation on slip band formation and growth and micro-crack initiation behavior under low cycle fatigue in SUS316L austenitic stainless steel was investigated using accelerator-based proton irradiation and a low cycle fatigue test at room temperature in air. The micro-crack initiation was observed at slip band, grain boundary, twin boundary, and triple junction regardless of the total strain range and the proton irradiation. In unirradiated specimens, the micro-crack initiation life dropped by 75-90% due to the increase of the plastic strain range. Under the condition the plastic strain range was 0.4%, the micro-crack initiation was observed mainly at the grain boundary. On the other hand, under the condition the plastic strain range was 1.0%, the number fractions of the micro-crack initiation in slip band and twin boundary were increased. In proton-irradiated specimens, the micro-crack initiation life decreased by 50-80% and the micro-crack initiation was observed mainly at slip band and twin boundary. (author)

  3. Contribution of the low cycle fatigue on ultra high purity Ni-Cr-Fe alloys and on Ni monocrystals to the understanding of the hydrogen role in stress corrosion cracking for the alloys 600 and 690; Apport de la fatigue oligocyclique sur alliages Ni-Cr-Fe d'ultra haute purete et sur monocristaux de Ni a la comprehension sous contrainte des alliages 600 et 69O

    Energy Technology Data Exchange (ETDEWEB)

    Renaudot, N

    1999-06-01

    We discuss the role of hydrogen in cracking of Ni base alloys used for pressurised water reactor (PWR) primary tubes (alloy 600 and 690). Cracking can be explained by a Stress Corrosion Cracking (SCC) phenomenon. For this purpose, Low cycle fatigue (R = - 1) under cathodic charging at room temperature is conducted to study hydrogen effects on propagation of cracks mechanically initiated by the formation of Persistent Slip Bands (PSB). Low cycle fatigue on Ultra High Purity specimens (Ni, alloy 600 and 690) reveals the very important hydrogen effect on crack propagation rate, whatever the Cr content in the Ni base alloy. If Cr seems to have an effect over-hydrogen penetration in specimens (by a protective film formation), it have no beneficial effect when hydrogen have diffused ahead of a crack tip. Propagation rates (transgranular or intergranular) are highly increased, no matter of the absence of impurities like sulphur. Then, in PWR, the difference in the behaviour of alloy 600 and 690 could be due to a slower microcrack propagation rate for alloy 690. Protective films could play an important role in this difference, which is to study. Low cycle fatigue on Ni single crystals oriented for single slip shows, for the first time on bulk specimen, a macroscopic softening which can be explained. by hydrogen-dislocation interactions. Moreover, a simple quantitative model based on these interactions results in the same softening as the one observed experimentally. These results allow to validate experimentally one of the most important steps in the 'Corrosion Enhanced Plasticity (CEP) model', i.e. the softening ahead of a stress corrosion crack tip by hydrogen dislocation interactions. This is of importance because this model can explain cracking in numerous FCC materials-environment couple. (author)

  4. Fatigue-crack growth behavior in dissimilar metal weldments

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were used to characterize fatigue-crack propagation behavior in three dissimilar metal weldments at test temperatures of 800 0 F (427 0 C) and 1000 0 F (538 0 C). The weldments studied included Inconel 718/Type 316, all using Inconel 82 as the filler metal. In general, fatigue-crack growth rates in the weldments were equal to, or less than, those observed in the base metals. Crack deviation from the expected path perpendicular to the loading axis was noted in some cases, and is discussed

  5. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  6. Thermal fatigue behavior of US and Russian grades of beryllium

    International Nuclear Information System (INIS)

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-01-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 KW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ''spike'' of 750 degrees C for each pass of the beam. Large thermal stress in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m 2 . Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S-65H, S-200F, S-300F-H, Sr-200, I-400, extruded high purity. HIP'd sperical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe 12 . Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be(SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis

  7. Variable amplitude fatigue crack growth behavior - a short overview

    International Nuclear Information System (INIS)

    Singh, Konjengbam Darunkumar; Parry, Matthew Roger; Sinclair, Ian

    2011-01-01

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented

  8. Variable amplitude fatigue crack growth behavior - a short overview

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol (United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-03-15

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented.

  9. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures

    International Nuclear Information System (INIS)

    Chang, D.I.

    1995-01-01

    Fracture and fatigue tests were performed in order to investigate the fracture and fatigue behavior of steel-fibre-reinforced concrete (SFRC) structures. 33 SFRC beams were used in the fracture and fatigue tests. The relationship between loading, strain and midspan deflection of the beams was observed under the three-point loading system.From the test results, the effects of the fiber content, fiber aspect ratio and notch-to-depth ratio on the concrete fracture and fatigue behavior were studied, and the fatigue strengths of SFRC beams were calculated. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams were also suggested. (orig.)

  10. Corrosion fatigue behaviors of steel wires used in coalmine

    International Nuclear Information System (INIS)

    Wang, Songquan; Zhang, Dekun; Chen, Kai; Xu, Linmin; Ge, Shirong

    2014-01-01

    Highlights: • The CF life of steel wire in acid solution is the shortest. • The fatigue source zone showed dimple morphology when coupled with anode potential. • The area of dimple increases with the increase of the applied anode potential. • The strong cathode potential cannot reduce the CF life of the smooth steel wire. • The hydrogen impacted mainly on the plastic deformation of the wire surface. - Abstract: The corrosion fatigue (CF) behaviors of the mining steel wire in different solutions at different applied polarization potentials were investigated in this paper. The surfaces and fracture morphologies of the steel wire at different applied potentials were observed by scanning electron microscope (SEM). The results showed that the CF life of steel wire in acid solution is the shortest. Moreover, the strong anodic polarization potential greatly reduced the CF life of steel wire, while the strong cathode potential did not reduce the CF life. For the smooth steel wire, the hydrogen impacted mainly on the plastic deformation of the wire surface. There was obvious dimple in the fatigue source zone of the wire when coupled with anode potential, and the area of the dimple increased with the increase of the applied anode potential. Conversely, the fatigue source zone of the fracture was relatively smooth at cathode polarization potential, which indicated that the crack propagation followed the mechanism of hydrogen induced cracking

  11. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  12. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  13. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  14. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  15. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  16. Fatigue crack propagation behavior of stainless steel welds

    Science.gov (United States)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  17. Fatigue behavior of type 316 stainless steel following neutron irradiation inducing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak fusion reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially the first wall and blanket. Type 316 stainless steel in the 20% cold-worked condition has been irradiated in the HFIR in order to introduce helium as well as displacement damage. A miniature hourglass specimen was developed for the reactor irradiations and subsequent fully reversed low cycle fatigue testing. For material irradiated and tested at 430 0 C in vacuum to a damage level of 7 to 15 dpa and containing 200 to 1000 appm He, a reduction in life by a factor of 3 to 10 was observed. An attempt was made to predict irradiated fatigue life by fitting data from irradiated material to a power law equation similar to the universal slopes equation and using ductility ratios from tensile tests to modify the equation for irradiated material

  18. Method and data analysis example of fatigue tests

    International Nuclear Information System (INIS)

    Nogami, Shuhei

    2015-01-01

    In the design and operation of a nuclear fusion reactor, it is important to accurately assess the fatigue life. Fatigue life is evaluated by preparing a database on the relationship between the added stress / strain amplitude and the number of cycles to failure based on the fatigue tests on standard specimens, and by comparing this relationship with the generated stress / strain of the actual constructions. This paper mainly chooses low-cycle fatigue as an object, and explains standard test methods, fatigue limit, life prediction formula and the like. Using reduced-activation ferrite steel F82H as a material, strain controlled low-cycle fatigue test was performed under room temperature atmosphere. From these results, the relationship between strain and the number of cycles to failure was analyzed. It was found that the relationship is asymptotic to the formula of Coffin-Manson Law under high-strain (low-cycle condition), and asymptotic to the formula of Basquin Law under low-strain (high-cycle condition). For F82H to be used for the blanket of a nuclear fusion prototype reactor, the arrangement of fatigue life data up to about 700°C and the establishment of optimal fatigue design curves are urgent tasks. As for fusion reactor structural materials, the evaluation of neutron irradiation effect on fatigue damage behavior and life is indispensable. For this purpose, it is necessary to establish standardized testing techniques when applied to small specimens. (A.O.)

  19. The concept of fatigue fracture toughness in fatigue delamination growth behavior

    NARCIS (Netherlands)

    Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This paper provides a study on mode I fatigue delamination growth in composite laminates using energy principles. Experimental data has been obtained from fatigue tests conducted on Double Cantilever Beam (DCB) specimens at various stress ratios. A concept of fatigue fracture toughness is proposed

  20. Fractal cluster modeling of the fatigue behavior of lead zirconate titanate

    OpenAIRE

    Priya, Shashank; Kim, Hyeoung Woo; Ryu, Jungho; Uchino, Kenji; Viehland, Dwight D.

    2002-01-01

    The fatigue behavior of lead zirconate titanate ceramics (PZT) has been studied under electrical and mechanical drives. Piezoelectric fatigue was studied using a mechanical method. Under ac mechanical drive, hard and soft PZTs showed an increase in the longitudinal piezoelectric constant at short times, reaching a maximum at intermediate times. Systematic investigations were performed to characterize the electrical fatigue behavior. A decrease in the magnitude of the remanent polarization was...

  1. The application of the finite element method for the low-cycle fatigue calculation of the elementsof the pipelines’ fixed support construction for the areas of above-ground routing of the oil pipeline «Zapolyarye — NPS „Pur-Pe“»

    Directory of Open Access Journals (Sweden)

    Surikov Vitaliy Ivanovich

    2014-02-01

    Full Text Available The present article studies the order of performing low-cycle fatigue strength calculation of the elements of the full-scale specimen construction of the fixed support DN 1000 of the above-ground oil pipeline “Zapolyarye — Purpe” during rig-testing. The calculation is performed with the aim of optimizing the quantity of testing and, accordingly, cost cutting for expensive experiments. The order of performing the calculation consists of two stages. At the first stage the calculation is performed by the finite element method of the full-scale specimen construction’s stressed-deformed state in the calculation complex ANSYS. Thearticle describes the main creation stages of the finite element calculation model for the full-scale specimen in ANSYS. The calculation model is developed in accordance with a three-dimensional model of the full-scale specimen, adapted for rig-testing by cyclic loads. The article provides the description of the full-scale specimen construction of the support and loading modes in rig-testing. Cyclic loads are accepted as calculation ones, which influence the support for the 50 years of the oil pipeline operation and simulate the composite impact in the process of the loads’ operation connected to the changes in the pumping pressure, operational bending moment. They also simulate preloading in the case of sagging of the neighboring free support. For the determination of the unobservable for the diagnostic devices defects impact on the reliability of the fixed support and welding joints of the fixed support with the oil pipeline by analogy with the full-scale specimen, artificial defects were embedded in the calculation model. The defects were performed in the form of cuts of the definite form, located in a special way in the spool and welding joints. At the second stage of calculation for low-cycle fatigue strength, the evaluation of the cyclic strength of the full-scale specimen construction’s elements of the

  2. Fatigue behavior of an insulation system for the ITER magnets

    International Nuclear Information System (INIS)

    Prokopec, R.; Humer, K.; Weber, H.W.

    2006-01-01

    The application of glass-fiber reinforced plastics as insulation materials for fusion magnet coils (e.g. the Toroidal Field Coils of ITER) requires the full characterization of their mechanical performance under ITER-relevant conditions. One of the methods of testing material's response under dynamic load is the tension-tension fatigue procedure. This test can be used to simulate the pulsed tokamak-operation of the ITER coils over a lifetime of more than 20 years. Furthermore, it provides information on the maximum tensile or shear stress in the ITER-relevant range of 10 4 -10 5 cycles. In order to simulate the operation conditions of ITER as closely as possible, several fatigue parameters can be set in the test programme, e.g., the minimum-to-peak stress ratio R and the frequency ν of the sinusoidal load function. Further, the fatigue process can be run under load or strain control. All of these parameters may influence the mechanical response of the insulation system under cyclic load. Therefore, it is highly desirable to investigate the influence of test parameter variations on the measured stress-lifetime diagrams. The investigations were performed at 77 K using an industrial glass-fiber reinforced composite impregnated with epoxy resin. For both the load and the strain controlled mode, R-values of 0.3 and 0.5 and a frequency of 10 Hz were chosen. The results showed almost no deviations in the lifetime behavior between the load and the strain controlled mode, up to the ITER specified number of pulses, i.e. 3 x 10 4 cycles. Beyond this point, the residual strength levels were lower by 5-30 % under strain control than under load control. This effect is more pronounced at higher cycle numbers and for lower R-ratios. (author)

  3. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    Science.gov (United States)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  4. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  5. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    Science.gov (United States)

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  6. How driving duration influences drivers' visual behaviors and fatigue ...

    African Journals Online (AJOL)

    unhcc

    Eye fixations express the focus of driver's visual attention on driving, ... driver's attention is attracted by fatigue. The second ... was divided into seven refined categories (see Table 1), ...... driver fatigue in terms of line crossing: a pilot study.

  7. A literature review and inventory of the effects of environment on the fatigue behavior of metals

    Science.gov (United States)

    Hudson, C. M.; Seward, S. K.

    1976-01-01

    The current state of knowledge of the effects of gas environments (at atmospheric pressure and below) on the fatigue behavior of metals is reviewed. Among the topics considered are the mechanisms proposed to explain the differences observed in the fatigue behavior of vacuum- and air-tested specimens, the effects of environment on the surface topography of fatigue cycled specimens, the effect of environment on the various phases of the fatigue phenomenon, the effect of prolonged exposure to vacuum on fatigue life, the variation of fatigue life with decreasing gas pressure, and gas evolution during fatigue cycling. Analysis of the findings of this review indicates that hydrogen embrittlement is primarily responsible for decreased fatigue resistance in humid environments, and that dislocations move more easily during tests in vacuum than during test in air. It was found that fatigue cracks generally initiated and propagated more rapidly in air than in vacuum. Prolonged exposure to vacuum does not adversely affect fatigue resistance. The variation of fatigue life with decreasing gas pressure is sometimes stepped and sometimes continuous.

  8. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    Science.gov (United States)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  9. Fatigue crack closure behavior at high stress ratios

    Science.gov (United States)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  10. Fatigue

    Science.gov (United States)

    ... sleep. Fatigue is a lack of energy and motivation. Drowsiness and apathy (a feeling of not caring ... Call your provider right away if you have any of the following: Confusion or dizziness Blurred vision Little or no urine, or recent ...

  11. Fatigue crack growth resistance and crack closure behavior in two aluminum alloys for aeronautical applications

    Directory of Open Access Journals (Sweden)

    Elenice Maria Rodrigues

    2005-09-01

    Full Text Available Aluminum-lithium alloys are candidate materials for many aerospace applications because of their high specific strength and elastic modulus. These alloys have several unique characteristics such as excellent fatigue crack growth resistance when compared with that of the conventional 2000 and 7000 series alloys. In this study, fatigue crack propagation behavior has been examined in a commercial thin plate of Al-Li-Cu-Mg alloy (8090, with specific emphasis at the fatigue threshold. The results are compared with those of the traditional Al-Cu-Mg alloy (2024. Fatigue crack closure is used to explain the different behavior of the compared alloys.

  12. Heat affected zone and fatigue crack propagation behavior of high performance steel

    International Nuclear Information System (INIS)

    Choi, Sung Won; Kang, Dong Hwan; Kim, Tae Won; Lee, Jong Kwan

    2009-01-01

    The effect of heat affected zone in high performance steel on fatigue crack propagation behavior, which is related to the subsequent microstructure, was investigated. A modified Paris-Erdogan equation was presented for the analysis of fatigue crack propagation behavior corresponding to the heat affected zone conditions. Fatigue crack propagation tests under 0.3 stress ratio and 0.1 load frequency were conducted for both finegrained and coarse-grained heat affected zones, respectively. As shown in the results, much higher crack growth rate occurred in a relatively larger mean grain size material under the same stress intensity range of fatigue crack propagation process for the material.

  13. A study on the fatigue behavior of Steel Fiber Reinforced Concrete structures with initial cracks

    International Nuclear Information System (INIS)

    Chang, Dong-Il; Chai, Won-Kyu; Son, Young-Hyun; Park, Cheol-Woo

    1992-01-01

    Fatigue tests are performed in order to investigate the fatigue behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Thirty SFRC beams are used in this test. The relationships between repeated loading cycle and mid-span deflection of the beams are observed under the three-point loading system. From the test results, the effects of the fiber content and the fiber aspect ratio on the concrete fatigue behavior were studied. According to the regression technique, some empirical formulae for predicting the fatigue strength of SFRC beams are also suggested. (author)

  14. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    SI Tingzhi; LIU Ning; ZHANG Qingan; YOU Xianqing

    2008-01-01

    The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt. % TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (N) on fatigue crack growth (Δα). The mechanical properties and thermal fatigue resistance of TiC/Al2O3 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.

  15. Three-point bending fatigue behavior of WC–Co cemented carbides

    International Nuclear Information System (INIS)

    Li, Anhai; Zhao, Jun; Wang, Dong; Gao, Xinliang; Tang, Hongwei

    2013-01-01

    Highlights: ► Mechanical fatigue tests were conducted on a specific designed jig. ► Three-point bending fatigue behavior of WC–Co cemented carbides was studied. ► Fatigue mechanisms of WC–Co cemented carbides with different WC grain sizes and Co binder contents were revealed. -- Abstract: WC–Co cemented carbides with different WC grain sizes and Co binder contents were sintered and fabricated. The three-point bending specimens with a single edge notch were prepared for tests. In the experiments, the mechanical properties of materials were investigated under static and cyclic loads (20 Hz) in air at room temperature. The fatigue behaviors of the materials under the same applied loading conditions are presented and discussed. Optical microscope and scanning electron microscopy were used to investigate the micro-mechanisms of damage during fatigue, and the results were used to correlate with the mechanical fatigue behavior of WC–Co cemented carbides. Experimental results indicated that the fatigue fracture surfaces exhibited more fracture origins and diversification of crack propagation paths than the static strength fracture surfaces. The fatigue fracture typically originates from inhomogeneities or defects such as micropores or aggregates of WC grains near the notch tip. Moreover, due to the diversity and complexity of the fatigue mechanisms, together with the evolution of the crack tip and the ductile deformation zone, the fatigue properties of WC–Co cemented carbides were largely relevant with the combination of transverse rupture strength and fracture toughness, rather than only one of them. Transverse rupture strength dominated the fatigue behavior of carbides with low Co content, whilst the fatigue behavior of carbides with high Co content was determined by fracture toughness.

  16. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2008-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and variable amplitude fatigue test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner’s rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from...

  17. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  18. Fatigue behavior of Type 316 stainless steel following neutron irradiation inducing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially in the first wall and blanket. There has been limited work on fatigue in irradiated alloys but none on irradiated materials containing significant amounts of irradiation-induced helium. To provide scoping data and to study the effects of irradiation on fatigue behavior, 20%-cold-worked type 316 stainless steel from the MFE reference heat was studied

  19. Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)

    Science.gov (United States)

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2015-01-01

    The static and fatigue bending behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP) has been investigated by four-point bending tests. Fatigue panels and weakened panels (wESCP) with an initial interface defect were manufactured for the fatigue tests. Stress σ vs. number of cycles curves (S-N) were recorded under the different stress...

  20. On the low-cycle fracture of chromium-nickel-molybdenum structural steels in seawater

    International Nuclear Information System (INIS)

    Karpenko, G.V.; Kobzaruk, A.V.; Malyshevskij, V.A.; Shul'te, A.Yu.; Rybin, V.V.; Silaev, I.I.

    1977-01-01

    The processes of low-cycle fracture of the chrome-nickel-molybdenum steels 15KhN5MF, 12KhN4MF and 15KhN3M in air, and in sea water have been investigated by the optical microscopy method, and electron microscopic examination of thin films. Bringing no change in the fracture character, sea water produces a speeding-up effect on the low-cycle fatigue fracture process. During long-time corrosion fatigue testing considerable importance lies with the electrochemical corrosion factor expediting the occurrence of corrosive pits acting as crack-initiation nuclei, fatigue crack attack, accumulation of corrosion products in fatigue cracks, etc

  1. Fatigue behavior of lubricated Ni-Ti endodontic rotary instruments

    Directory of Open Access Journals (Sweden)

    A. Brotzu

    2014-04-01

    Full Text Available The use of Ni-Ti alloys in the practice of endodontic comes from their important properties such as shape memory and superelasticity phenomena, good corrosion resistance and high compatibility with biological tissues. In the last twenty years a great variety of nickel-titanium rotary instruments, with various sections and taper, have been developed and marketed. Although they have many advantages and despite their increasing popularity, a major concern with the use of Ni-Ti rotary instruments is the possibility of unexpected failure in use due to several reasons: novice operator handling, presence manufacturing defects, fatigue etc. Recently, the use of an aqueous gel during experimental tests showed a longer duration of the instruments. The aim of the present work is to contribute to the study of the fracture behavior of these endodontic rotary instruments particularly assessing whether the use of the aqueous lubricant gel can extend their operative life stating its reasons. A finite element model (FEM has been developed to support the experimental results. The results were rather contradictory, also because the Perspex (Poly-methyl methacrylate, PMMA cannot simulate completely the dentin mechanical behavior; however the results highlight some interesting points which are discussed in the paper.

  2. Mechanisms of Recovering Low Cycle Fatigue Damage in Incoloy 901.

    Science.gov (United States)

    1979-01-01

    ZAP. 0665 0374 19A% DATA : 19AE MPS 15 0666 2375 F2e4 JMP .IDF r e667 e376 9 110 LSI ZAP 668 e377 E2?E LOX F,12 ASSURE X- PEG !0SITIVE FOR LSI 0669 0378...NC(MC) 0( 3350 PRIN4T 22,N4TDELTELC(M),DLTPLC(MC,SIGC(MC)o , 03360 A~1~𔃾C..,TP(M.T~4l~lC) -003370 230 22 VORMAT (12, IT1,F6.5,T2,F6.5,T30,F7.2,T42

  3. Effect of shot peening process on fatigue behavior of an alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2011-08-01

    Full Text Available Shot peening is one of the most common surface treatments to improve the fatigue behavior of metallic parts. In this study the effect of shot peening process on the fatigue behavior of an alloyed austempered ductile iron (ADI has been studied. Austempering heat treatment consisted of austenitizing at 875℃ for 90 min followed by austempering at three different temperatures of 320, 365 and 400℃. Rotating-bending fatigue test was carried out on samples after shot peening by 0.4 – 0.6 mm shots. XRD and SEM analysis, micro hardness and roughness tests were carried out to study the fatigue behavior of the samples. Results indicate that the fatigue strengths of samples austempered at 320, 365 and 400℃ are increased by 27.3%, 33.3% and 48.4%, respectively, after shot peening process.

  4. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  5. Statistical evaluation of low cycle loading curves parameters for structural materials by mechanical characteristics

    International Nuclear Information System (INIS)

    Daunys, Mykolas; Sniuolis, Raimondas

    2006-01-01

    About 300 welded joint materials that are used in nuclear power energy were tested under monotonous tension and low cycle loading in Kaunas University of Technology together with St. Peterburg Central Research Institute of Structural Materials in 1970-2000. The main mechanical, low cycle loading and fracture characteristics of base metals, weld metals and some heat-affected zones of welded joints metals were determined during these experiments. Analytical dependences of low cycle fatigue parameters on mechanical characteristics of structural materials were proposed on the basis of a large number of experimental data, obtained by the same methods and testing equipment. When these dependences are used, expensive low cycle fatigue tests may be omitted and it is possible to compute low cycle loading curves parameters and lifetime for structural materials according to the main mechanical characteristics given in technical manuals. Dependences of low cycle loading curves parameters on mechanical characteristics for several groups of structural materials used in Russian nuclear power energy are obtained by statistical methods and proposed in this paper

  6. Effect of temperature upon the fatigue-crack propagation behavior of Inconel X-750

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of precipitation heat-treated Inconel X-750 in an air environment over the range 75-1200 0 F. In general, fatigue-crack growth rates increased with increasing test temperature

  7. Fatigue crack growth and fracture behavior of bainitic rail steels.

    Science.gov (United States)

    2011-09-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  8. Evaluation of Mechanical Properties and Fatigue Behavior of STS 304L due to Plastic Working

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyun-Bo [Yeungnam Univ., Daegu (Korea, Republic of); Kim, Young-Kyun [KOGAS Research Institute, Seoul (Korea, Republic of); Suh, Chang-Min [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2017-07-15

    The purpose of this study is to investigate the influence of the cold reduction rate and an ultrasonic fatigue test (UFT) on the fatigue behaviors of STS 304L. The tensile strength, yield strength, hardness value and fatigue limit in the UFT fatigue test linearly increased as thickness decreased from 1.5 mm to 1.1 mm, as the cold reduction rate of STS 304L increased. As a result of the UFT fatigue test (R = -1) of four specimens, the fatigue limit of the S-N curve formed a knee point in the region of 10{sup 6}, and the 2nd fatigue limit caused by giga cycle fatigue did not appeared. In the case of t = 1.1 mm, the highest fatigue limit was 345 MPa, which was 64.3% higher than the original material (t = 1.5 mm). As a result of the UFT fatigue test of STS 304L, many small surface cracks occurred, grown, coalesced while tearing.

  9. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  10. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S. [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P., E-mail: pentti.karjalainen@oulu.fi [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland)

    2010-08-20

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 10{sup 6} cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  11. A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang-Min [Kyungpook National Univ., DMI Senior Fellow, Daegu (Korea, Republic of); Nahm, Seung-Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Jun-Hyong; Pyun, Young-Sik [Sun Moon Univ., Chunan (Korea, Republic of)

    2016-07-15

    This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of 13 μm. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.

  12. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2009-01-01

    of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests......Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and the fracture mechanics analyses have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude...

  13. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    Science.gov (United States)

    Miner, R. V.; Dreshfield, R. L.

    1980-01-01

    Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.

  14. Self-Regulatory Fatigue, Quality of Life, Health Behaviors, and Coping in Patients with Hematologic Malignancies

    Science.gov (United States)

    Ehlers, Shawna L.; Patten, Christi A.; Gastineau, Dennis A.

    2015-01-01

    Background Self-regulatory fatigue may play an important role in a complex medical illness. Purpose Examine associations between self-regulatory fatigue, quality of life, and health behaviors in patients pre- (N=213) and 1-year post-hematopoietic stem cell transplantation (HSCT; N=140). Associations between self-regulatory fatigue and coping strategies pre-HSCT were also examined. Method Pre- and 1-year post-HSCT data collection. Hierarchical linear regression modeling. Results Higher self-regulatory fatigue pre-HSCT associated with lower overall, physical, social, emotional, and functional quality of life pre- (p’sself-regulatory fatigue pre-HSCT relating to decreased quality of life and health behaviors, and predicting changes in these variables 1-year post-HSCT. PMID:24802991

  15. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  16. The Mechanical Behaviors of Various Dental Implant Materials under Fatigue

    Directory of Open Access Journals (Sweden)

    Fatma Bayata

    2018-01-01

    Full Text Available The selection of materials has a considerable role on long-term stability of implants. The materials having high resistance to fatigue are required for dental implant applications since these implants are subjected to cyclic loads during chewing. This study evaluates the performance of different types of materials (AISI 316L stainless steel, alumina and its porous state, CoCr alloys, yttrium-stabilized zirconia (YSZ, zirconia-toughened alumina (ZTA, and cp Ti with the nanotubular TiO2 surface by finite element analysis (FEA under real cyclic biting loads and researches the optimum material for implant applications. For the analysis, the implant design generated by our group was utilized. The mechanical behavior and the life of the implant under biting loads were estimated based on the material and surface properties. According to the condition based on ISO 14801, the FEA results showed that the equivalent von Mises stress values were in the range of 226.95 MPa and 239.05 MPa. The penetration analysis was also performed, and the calculated penetration of the models onto the bone structure ranged between 0.0037389 mm and 0.013626 mm. L-605 CoCr alloy-assigned implant model showed the least penetration, while cp Ti with the nanotubular TiO2 surface led to the most one. However, the difference was about 0.01 mm, and it may not be evaluated as a distinct difference. As the final numerical evaluation item, the fatigue life was executed, and the results were achieved in the range of 4 × 105 and 1 × 109 cycles. These results indicated that different materials showed good performance for each evaluation component, but considering the overall mechanical performance and the treatment process (implant adsorption by means of surface properties, cp Ti with the nanotubular TiO2 surface material was evaluated as the suitable one, and it may also be implied that it displayed enough performance in the designed dental implant model.

  17. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  18. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rajpurohit, R.S., E-mail: rsrajpurohit.rs.met13@iitbhu.ac.in [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India); Sudhakar Rao, G. [Nuclear Energy and Safety Department, Paul Scherrer Institute, Villigen, CH-5232 (Switzerland); Chattopadhyay, K.; Santhi Srinivas, N.C.; Singh, Vakil [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 (India)

    2016-08-15

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain. - Highlights: • Ratcheting strain accumulation occurred due to asymmetric cyclic loading. • Accumulation of ratcheting strain increased with mean stress and stress amplitude. • Ratcheting strain accumulation decreased with increase in stress rate. • With increase in mean stress and stress amplitude there was reduction in fatigue life. • Fatigue life is improved with increase in stress rate.

  19. Room temperature fatigue behavior of OFHC copper and CuAl25 specimens of two sizes

    DEFF Research Database (Denmark)

    Singhal, A.; Stubbins, J.F.; Singh, B.N.

    1994-01-01

    requiring an understanding of their fatigue behavior.This paper describes the room temperature fatigue behavior of unirradiated OFHC (oxygen-free high-conductivity) copper and CuAl25 (copper strengthened with a 0.25% atom fraction dispersion of alumina). The response of two fatigue specimen sizes to strain......Copper and its alloys are appealing for application in fusion reactor systems for high heat flux components where high thermal conductivities are critical, for instance, in divertor components. The thermal and mechanical loading of such components will be, at least in part, cyclic in nature, thus...

  20. Fatigue behavior of thick composite single lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)

    2012-07-01

    In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)

  1. Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints

    Science.gov (United States)

    Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou

    2018-03-01

    The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.

  2. Experimental study on creep-fatigue interaction behavior of GH4133B superalloy

    International Nuclear Information System (INIS)

    Hu Dianyin; Wang Rongqiao

    2009-01-01

    The creep-fatigue tests have been conducted with nickel-based superalloy GH4133B at 600 deg. C in three cases of type loading to study the creep-fatigue behavior of the alloy and the loading history effect on the creep-fatigue damage. Since the conventional linear cumulative damage rule failed in evaluating the creep-fatigue life based on experimental data, a continuous non-linear model proposed by Mao et al. was employed to describe the creep-fatigue interaction. The creep-fatigue damage in the cases of continuous cyclic creep loading (CF) and prior fatigue followed by creep loading (F + C) was larger than unity and smaller than unity when the type loading was prior creep followed by fatigue loading (C + F). Scanning electron microscope (SEM) analyses of the fracture surface showed that the cracks initiated from the specimen surface and the fracture modes in different loading history were different. The crack mode at CF loading depended on the cyclic period. In the case of F + C loading, the primary fracture mode was transgranular, and in the condition where the type of waveform was C + F, the fracture mode was of mixed transgranular and intergranular type. In addition, the origin of the history effect on creep-fatigue interaction was explained by the SEM observations.

  3. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures.

    Science.gov (United States)

    Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Research on fatigue behavior and residual stress of large-scale cruciform welding joint with groove

    International Nuclear Information System (INIS)

    Zhao, Xiaohui; Liu, Yu; Liu, Yong; Gao, Yuan

    2014-01-01

    Highlights: • The fatigue behavior of the large-scale cruciform welding joint with groove was studied. • The longitudinal residual stress of the large-scale cruciform welding joint was tested by contour method. • The fatigue fracture mechanism of the large-scale cruciform welding joint with groove was analyzed. - Abstract: Fatigue fracture behavior of the 30 mm thick Q460C-Z steel cruciform welded joint with groove was investigated. The fatigue test results indicated that fatigue strength of 30 mm thick Q460C-Z steel cruciform welded joint with groove can reach fatigue level of 80 MPa (FAT80). Fatigue crack source of the failure specimen initiated from weld toe. Meanwhile, the microcrack was also found in the fusion zones of the fatigue failure specimen, which was caused by weld quality and weld metal integrity resulting from the multi-pass welds. Two-dimensional map of the longitudinal residual stress of 30 mm thick Q460C-Z steel cruciform welded joint with groove was obtained by using the contour method. The stress nephogram of Two-dimensional map indicated that longitudinal residual stress in the welding center is the largest

  5. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, A.; Esfahanian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kadkhodapour, J., E-mail: j.kad@srttu.edu [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Stuttgart (Germany); Ziaei-Rad, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1–0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. - Highlights: • Numerical simulation was used to predict fatigue behavior of titanium scaffolds. • Good agreement between numerical and experimental results • S–N curves obeyed the power law. • Fatigue strength of scaffolds was proportional to their Young's modulus. • Failure surface of scaffolds was inclined at an angle of 45° to loading.

  6. The fatigue life and fatigue-crack-through-thickness behavior of a surface-cracked plate, 3

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Matsui, Kentaro; Ando, Kotoji; Ogura, Nobukazu

    1989-01-01

    The LBB (leak-before-break) design is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, LNG carriers and various other structures. In the LBB design, it is necessary to evaluate precisely the lifetime of steel plate. Furthermore, the change in crack shape that occurs during the propagation after through thickness is of paramount importance. For this reason, in a previous report, the authors proposed a simplified evaluation model for the stress intensity factor after cracking through thickness. Using this model, the crack propagation behavior, crack-opening displacement and crack shape change of surface-cracked smooth specimens and surface-cracked specimens with a stress concentration were evaluated quantitatively. The present study was also done to investigate the fatigue crack propagation behavior of surface cracks subjected to combined tensile and bending stress. Estimation of fatigue crack growth was done using the Newman-Raju formula before through thickness, and using formula (7) and (8) after through thickness. Crack length a r at just through thickness increases with increasing a bending stress. Calculated fatigue crack shape showed very good agreement with experimental one. It was also found that particular crack growth behavior and change in crack shape after cracking through thickness can be explained quantitatively using the K value based on Eqs. (7) and (8). (author)

  7. Fatigue Crack Behavior of Stainless Steel 304 by the Addition of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Rizwanulhaque Syed

    2014-01-01

    Full Text Available Fatigue is the main source of almost half of whole mechanical failures. This research investigated the effect on cyclic fatigue behavior of stainless steel 304 (SS304 when including carbon nanotubes (CNTs at the crack tip. The cyclic fatigue tests were conducted on compact tension (CT specimens to establish the relationship between crack growth and the number of cycles (a-N. It is found that the incorporation of a small amount of CNTs increased the fatigue life of the SS304/metal. Micrographs showed that the enhancement in fatigue life is caused by CNTs dense arrangement around the crack tip, entangled with each other, and finer grain size. Smooth bonding at the interface of the CNTs and SS304 grains is also observed.

  8. Effect of Various Heat Treatment Processes on Fatigue Behavior of Tool Steel for Cold Forging Die

    Science.gov (United States)

    Jin, S. U.; Kim, S. S.; Lee, Y. S.; Kwon, Y. N.; Lee, J. H.

    Effects of various heat treatment processes, including "Q/T (quenching and tempering)", "Q/CT/T (Quenching, cryogenic treatment and tempering)", "Q/T (quenching and tempering) + Ti-nitriding" and "Q/CT/T (Cryogenic treatment and tempering) + Ti-nitriding", on S-N fatigue behavior of AISI D2 tool steel were investigated. The optical micrographs and Vicker's hardness values at near surface and core area were examined for each specimen. Uniaxial fatigue tests were performed by using an electro-magnetic resonance fatigue testing machine at a frequency of 80 Hz and an R ratio of -1. The overall resistance to fatigue tends to decrease significantly with Ti-nitriding treatment compared to those for the general Q/T and Q/CT/T specimens. The reduced resistance to fatigue with Ti-nitriding is discussed based on the microstructural and fractographic analyses.

  9. Fatigue behavior of a bolted assembly - a comparison between numerical analysis and experimental analysis

    International Nuclear Information System (INIS)

    Bosser, M.; Vagner, J.

    1987-01-01

    The fatigue behavior of a bolted assembly can be analysed, either by fatigue tests, or by computing the stress variations and using a fatigue curve. This paper presents the fatigue analysis of a stud-bolt and stud-flange of a steam generator manway carried out with the two methods. The experimental analysis is performed for various levels of load, according to the recommandations of the ASME code section III appendix II. The numerical analysis of the stresses is based on the results of a finite element analysis performed with the program SYSTUS. The maximum stresses are obtained in the first bolt threads. In using these stresses, the allowable number of cycles for each level of loading analysed, is obtained from fatigue curves, as defined in appendix I section III of the ASME code. The analysis underlines that, for each level of load the purely numerical approach is highly conservative, compared to the experimental approach. (orig.)

  10. Microstructural Characterization Of Laser Heat Treated AISI 4140 Steel With Improved Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

  11. Analysis of the cyclic behavior and fatigue damage of extruded AA2017 aluminum alloy

    International Nuclear Information System (INIS)

    May, A.; Taleb, L.; Belouchrani, M.A.

    2013-01-01

    The present work is devoted to study the anisotropic behavior of an extruded aluminum alloy under cyclic loading in axial and shear directions. In first, we have studied its elastoplastic behavior through the evolution of stress–strain loops, isotropic and kinematic hardening and we have associated this behavior with the evolution of its elastic adaptation (shakedown). In second, we have studied the behavior of the material in fatigue damage using the evolution of stiffness. Finally, microstructural investigations were performed on fractured surfaces using scanning electron microscope (SEM) in order to understand the evolution of fatigue damage during cyclic loading

  12. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting

    International Nuclear Information System (INIS)

    Liu, Y.J.; Wang, H.L.; Li, S.J.; Wang, S.G.; Wang, W.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Zhang, L.C.

    2017-01-01

    β-type titanium porous structure is a new class of solution for implant because it offers excellent combinations of high strength and low Young's modulus. This work investigated the influence of porosity variation in electron beam melting (EBM)-produced β-type Ti2448 alloy samples on the mechanical properties including super-elastic property, Young's modulus, compressive strength and fatigue properties. The relationship between the misorientation angle of adjacent grains and fatigue crack deflection behaviors was also observed. The super-elastic property is improved as the porosity of samples increases because of increasing tensile/compressive ratio. For the first time, the position of fatigue crack initiation is defined in stress-strain curves based on the variation of the fatigue cyclic loops. The unique manufacturing process of EBM results in the generation of different sizes of grains, and the apparent fatigue crack deflection occurs at the grain boundaries in the columnar grain zone due to substantial misorientation between adjacent grains. Compared with Ti-6Al-4V samples, the Ti2448 porous samples exhibit a higher normalized fatigue strength owing to super-elastic property, greater plastic zone ahead of the fatigue crack tip and the crack deflection behavior. - Highlights: • The super-elastic property is improved with increasing porosity of Ti2448 porous samples. • The position of fatigue crack initiation on the strain curve is defined. • The unique EBM-produced microstructure leads to apparent fatigue crack deflection occurring at columnar grain boundary. • Ti2448 porous samples display only half of the Young's modulus of Ti-6Al-4V porous samples at same fatigue strength level.

  13. Experimental Investigation on Fatigue Behavior of Epoxy Resin under Load and Displacement Controls

    Directory of Open Access Journals (Sweden)

    Mahmood Mehrdad Shokrieh

    2014-12-01

    Full Text Available The mechanical properties of epoxy resin including tensile and flexural modulus, tensile and flexural strength for static conditions are currently studied. The frequency effect as significant parameter at room temperature is investigated and fatigue behavior of the epoxy resin in tension-tension loading conditions for different frequencies of 2, 3 and 5 Hz are obtained. The epoxy resin has been taken under flexural bending fatigue loading and fatigue life is investigated. The results of the experiments show the values of 2.5 and 3 GPa of tensile and flexural modules and 59.98 and 110.02 MPa of tensile and flexural strengths for the resin, respectively. To achieve a linear load-deflection relationship in a three-point bending experiment, a maximum allowable deflection of 5 mm is acquired. The relationship between the frequency and fatigue life shows higher frequency results in lower fatigue life. Loading with frequency of 2 Hz has provided 5.8 times more fatigue life compared with 5 Hz loading. For a tension-tension fatigue loading condition, the variation of tensile module of epoxy resin shows no noticeable change during the fatigue loading condition. This module decreases significantly only in the primary and failure cycles close to the fracture point. In further experiments, fatigue behavior of epoxy resin was tested under flexural bending fatigue loadings with controlled deflection at room temperature. Maximum applied normalized stresses versus the number of cycles to failure curve are illustrated and it can be performed in order to predict the number of cycles to failure for the resin in arbitrary applied normal stresses as well.

  14. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  15. Atomistic origin of size effects in fatigue behavior of metallic glasses

    Science.gov (United States)

    Sha, Zhendong; Wong, Wei Hin; Pei, Qingxiang; Branicio, Paulo Sergio; Liu, Zishun; Wang, Tiejun; Guo, Tianfu; Gao, Huajian

    2017-07-01

    While many experiments and simulations on metallic glasses (MGs) have focused on their tensile ductility under monotonic loading, the fatigue mechanisms of MGs under cyclic loading still remain largely elusive. Here we perform molecular dynamics (MD) and finite element simulations of tension-compression fatigue tests in MGs to elucidate their fatigue mechanisms with focus on the sample size effect. Shear band (SB) thickening is found to be the inherent fatigue mechanism for nanoscale MGs. The difference in fatigue mechanisms between macroscopic and nanoscale MGs originates from whether the SB forms partially or fully through the cross-section of the specimen. Furthermore, a qualitative investigation of the sample size effect suggests that small sample size increases the fatigue life while large sample size promotes cyclic softening and necking. Our observations on the size-dependent fatigue behavior can be rationalized by the Gurson model and the concept of surface tension of the nanovoids. The present study sheds light on the fatigue mechanisms of MGs and can be useful in interpreting previous experimental results.

  16. Fatigue during breast cancer radiotherapy: an initial randomized study of cognitive-behavioral therapy plus hypnosis.

    Science.gov (United States)

    Montgomery, Guy H; Kangas, Maria; David, Daniel; Hallquist, Michael N; Green, Sheryl; Bovbjerg, Dana H; Schnur, Julie B

    2009-05-01

    The study purpose was to test the effectiveness of a psychological intervention combining cognitive-behavioral therapy and hypnosis (CBTH) to treat radiotherapy-related fatigue. Women (n = 42) scheduled for breast cancer radiotherapy were randomly assigned to receive standard medical care (SMC) (n = 20) or a CBTH intervention (n = 22) in addition to SMC. Participants assigned to receive CBTH met individually with a clinical psychologist. CBTH participants received training in hypnosis and CBT. Participants assigned to the SMC control condition did not meet with a study psychologist. Fatigue was measured on a weekly basis by using the fatigue subscale of the Functional Assessment of Chronic Illness Therapy (FACIT) and daily using visual analogue scales. Multilevel modeling indicated that for weekly FACIT fatigue data, there was a significant effect of the CBTH intervention on the rate of change in fatigue (p < .05), such that on average, CBTH participants' fatigue did not increase over the course of treatment, whereas control group participants' fatigue increased linearly. Daily data corroborated the analyses of weekly data. The results suggest that CBTH is an effective means for controlling and potentially preventing fatigue in breast cancer radiotherapy patients.

  17. Tension and fatigue behavior of 316LVM 1x7 multi-strand cables used as implantable electrodes.

    Science.gov (United States)

    Lewandowski, John J; Varadarajan, Ravikumar; Smith, Brian; Tuma, Chris; Shazly, Mostafa; Vatamanu, Luciano O

    2008-07-15

    The mechanical behavior of 316LVM 1x7 cables were evaluated in uniaxial tension, and in cyclic strain-controlled fatigue with the use of a Flex tester operated to provide fully reversed bending fatigue. The magnitude of cyclic strains imparted to each cable tested was controlled via the use of different diameter mandrels. Smaller diameter mandrels produced higher values of cyclic strain and lower fatigue life. Multiple samples were tested and analyzed via scanning electron microscopy. The fatigue results were analyzed via a Coffin-Manson-Basquin approach and compared to fatigue data obtained from the literature where testing was conducted on similar materials, but under rotating bending fatigue conditions.

  18. On the influence of mechanical surface treatments--deep rolling and laser shock peening--on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures

    International Nuclear Information System (INIS)

    Nalla, R.K.; Altenberger, I.; Noster, U.; Liu, G.Y.; Scholtes, B.; Ritchie, R.O.

    2003-01-01

    It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly-stressed metallic components. Deep rolling (DR) is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of DR on the low-cycle fatigue (LCF) and high-cycle fatigue (HCF) behavior of a Ti-6Al-4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near-surface microstructures. Preliminary results on laser shock peened Ti-6Al-4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ∼450 deg. C, i.e. at a homologous temperature of ∼0.4T/T m (where T m is the melting temperature). Based on cyclic deformation and stress/life (S/N) fatigue behavior, together with the X-ray diffraction and in situ transmission electron microscopy (TEM) observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti-6Al-4V at such higher temperatures, despite the almost complete relaxation of the near-surface residual stresses. In the absence of such stresses, it is shown that the near-surface microstructures, which in Ti-6Al-4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment

  19. Tension-Compression Fatigue Behavior of Plain Woven Kenaf/Kevlar Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2016-02-01

    Full Text Available The applications of hybrid natural/synthetic reinforced polymer composites have been rapidly gaining market share in structural applications due to their remarkable characteristics and the fact that most of the components made of these materials are subjected to cyclic loading. Their fatigue properties have received a lot of attention because predicting their behavior is a challenge due to the effects of the synergies between the fibers. The purpose of this work is to characterize the tension, compression, and tensile-compression fatigue behavior of six layers of Kevlar hybridized with one layer of woven kenaf reinforced epoxy, at a 35% weight fraction. Fatigue tests were carried out and loaded cyclically at 60%, 70%, 80%, and 90% of their ultimate compressive stress. The results give a complete description for tensile and compression properties and could be used to predict fatigue-induced failure mechanisms.

  20. Fatigue Behaviors of Materials Processed by Planar Twist Extrusion

    Science.gov (United States)

    Ebrahimi, Mahmoud

    2017-12-01

    Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.

  1. Characterization of uniaxial fatigue behavior of precipitate strengthened Cu-Ni-Si alloy (SICLANIC(TM

    Directory of Open Access Journals (Sweden)

    B. Saadouki

    2018-01-01

    Full Text Available Fatigue tests were conducted on cylindrical bars specimens to understand the fatigue behavior of SICLANIC. Although it displays good resistance in monotonic tension, this material weakens and shows a softening in repeated solicitation. This has been verified through a SEM observation, the Cu-Ni-Si alloy presents transgranular failure by cleavage. The MansonCoffin diagram exhibited the plastic deformation accommodation. The plastic deformation becomes periodic and decreases progressively as the cycle number increases. The approximations of Manson Coffin give fatigue parameters values which are in good agreement with the experience

  2. Fretting fatigue behavior of high-strength steel monostrands under bending load

    DEFF Research Database (Denmark)

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...... along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived...

  3. Thermal-stress fatigue behavior of twenty-six superalloys

    Science.gov (United States)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  4. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.

    Science.gov (United States)

    1984-05-01

    The effects of cyclic frequency, electrochemical potential and bulk solution composition on the kinetics of small corrosion fatigue cracks have not...threshold behavior between cast iron (co = 113 MPa) and maraging steel (co = 1906 MPa), as a function of surface roughness (to simulate crack size) (after...4130 steel the crack size effect on corrosion fatigue, Fig. 2, is predicted in part based on linear superposition of stress corrosion growth rates for

  5. Effect of temperature upon the fatigue-crack propagation behavior of Inconel 625

    International Nuclear Information System (INIS)

    James, L.A.

    1977-03-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of mill-annealed Inconel 625 in an air environment over the range 75 0 - 1200 0 F (24 0 - 649 0 C). In general, fatigue-crack growth rates increased with increasing test temperature. Two different specimen sizes were employed at each test temperature, and no effects of specimen size upon crack growth were noted

  6. Thermo-mechanical response and fatigue behavior of shape memory alloy

    International Nuclear Information System (INIS)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya

    1998-01-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  7. Effects of high mean stress on the high-cycle fatigue behavior of PWA 1480

    International Nuclear Information System (INIS)

    Majumdar, S.; Antolovich, S.; Milligan, W.

    1985-03-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the Space Shuttle Main Engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. This paper describes results obtained in an ongoing program to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material

  8. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  9. Fatigue behavior and failure mechanisms of direct laser deposited Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, Amanda J.; Torries, Brian [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Shamsaei, Nima, E-mail: shamsaei@me.msstate.edu [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Thompson, Scott M. [Department of Mechanical Engineering, Mississippi State University, Box 9552, Mississippi State, MS 39762 (United States); Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States); Seely, Denver W. [Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Box 5405, , Mississippi State, MS 39762 (United States)

    2016-02-08

    In order for additive-manufactured parts to become more widely utilized and trusted in application, it is important to have their mechanical properties well-characterized and certified. The fatigue behavior and failure mechanisms of Ti–6Al–4V specimens fabricated using Laser Engineered Net Shaping (LENS), a Direct Laser Deposition (DLD) additive manufacturing (AM) process, are investigated in this study. A series of fully-reversed strain-controlled fatigue tests is conducted on Ti–6Al–4V specimens manufactured via LENS in their as-built and heat-treated conditions. Scanning Electron Microscopy (SEM) is used to examine the fracture surfaces of fatigue specimens to qualify the failure mechanism, crack initiation sites, and defects such as porosity. Due to the relatively high localized heating and cooling rates experienced during DLD, fabricated parts are observed to possess anisotropic microstructures, and thus, different mechanical properties than those of their traditionally-manufactured wrought counterparts. The fatigue lives of the investigated LENS specimens were found to be shorter than those of wrought specimens, and porosity was found to be the primary contributor to these shorter fatigue lives, with the exception of the heat-treated LENS samples. The presence of pores promotes more unpredictable fatigue behavior, as evidenced by data scatter. Pore shape, size, location, and number were found to impact the fatigue behavior of the as-built and annealed DLD parts. As porosity seems to be the main contributor to the fatigue behavior of DLD parts, it is important to optimize the manufacturing process and design parameters to minimize and control pore generation during the build.

  10. The Effect of Hold Time on Creep-Fatigue in 9Cr-1Mo

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Tae Young; Kim, Dae Whan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Baek, Kyoung Ho [Chungnam National University, Daejeon (Korea, Republic of)

    2009-05-15

    9Cr-1Mo steel is a candidate material for reactor vessel for VHTR. Because 9Cr-1Mo steel has a good mechanical properties and a lower thermal expansion coefficient than austenitic stainless steel. The reactor vessel of VHTR is operated at about 450 .deg. C. At this temperature, fatigue occurs during start-up and cool-down, and creep occurs during normal operation. Creep-fatigue damage by the interaction between fatigue and creep is an important factor that limits VHTR reactor vessel life. In this study, Effect of hold time on low cycle fatigue behavior of 9Cr-1Mo at 600 .deg. C was investigated in air.

  11. The Effect of Hold Time on Creep-Fatigue in 9Cr-1Mo

    International Nuclear Information System (INIS)

    Oh, Tae Young; Kim, Dae Whan; Kim, Yong Wan; Baek, Kyoung Ho

    2009-01-01

    9Cr-1Mo steel is a candidate material for reactor vessel for VHTR. Because 9Cr-1Mo steel has a good mechanical properties and a lower thermal expansion coefficient than austenitic stainless steel. The reactor vessel of VHTR is operated at about 450 .deg. C. At this temperature, fatigue occurs during start-up and cool-down, and creep occurs during normal operation. Creep-fatigue damage by the interaction between fatigue and creep is an important factor that limits VHTR reactor vessel life. In this study, Effect of hold time on low cycle fatigue behavior of 9Cr-1Mo at 600 .deg. C was investigated in air

  12. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Nakano, Shohki; Nomura, Shinichi

    1991-01-01

    Prediction methods of macroscopic and local stress-strain behavior of perforated plates in plastic and creep regime which are proposed by the authors are applied to the inelastic analysis and creep-fatigue life prediction of perforated cylinder subjected to cyclic thermal stress. Stress-strain behavior of perforated cylinder is analyzed by modeling the perforated portion to cylinder with equivalent-solid-plate properties. Creep-fatigue lives at around a hole of perforated plates are predicted by using the local stress-strain behavior and are compared with experimentally observed lives. (author)

  13. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  14. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  15. Effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280

    International Nuclear Information System (INIS)

    James, L.A.

    1976-05-01

    The techniques of linear-elastic fracture mechanics were employed to characterize the effect of temperature upon the fatigue-crack propagation behavior of Hastelloy X-280 in an air environment. Also included in this study are survey tests to determine the effects of thermal aging and stress ratio upon crack growth behavior in this alloy

  16. Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials

    NARCIS (Netherlands)

    Hedayati, R.; Hosseini-Toudeshky, H; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    The mechanical behavior of additively manufactured porous biomaterials has recently received increasing attention. While there is a relatively large body of data available on the static mechanical properties of such biomaterials, their fatigue behavior is not yet well-understood. That is partly

  17. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The effect of processing route on strain-controlled low cycle fatigue (LCF) life of binary ..... the once regarding close control of composition, control and reproduction of ... inverse effect of temperature on fatigue life seen in tests conducted in air.

  18. S-N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low Temperatures

    Science.gov (United States)

    Jung, Dae-Ho; Kwon, Jae-Ki; Woo, Nam-Sub; Kim, Young-Ju; Goto, Masahiro; Kim, Sangshik

    2014-02-01

    In the present study, the S-N fatigue and the fatigue crack propagation (FCP) behaviors of American Petroleum Institute X80 steel were examined in the different locations of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) at 298 K, 223 K, and 193 K (25 °C, -50 °C, and -80 °C). The resistance to S-N fatigue of X80 BM specimen increased greatly with decreasing temperature from 298 K to 193 K (25 °C to -80 °C) and showed a strong dependency on the flow strength (½(yield strength + tensile strength)). The FCP rates of X80 BM specimen were substantially reduced with decreasing temperature from 298 K to 223 K (25 °C to -50 °C) over the entire ∆ K regime, while further reduction in FCP rates was not significant with temperature from 223 K to 193 K (-50 °C to -80 °C). The FCP rates of the X80 BM and the WM specimens were comparable with each other, while the HAZ specimen showed slightly better FCP resistance than the BM and the WM specimens over the entire ∆K regime at 298 K (25 °C). Despite the varying microstructural characteristics of each weld location, the residual stress appeared to be a controlling factor to determine the FCP behavior. The FCP behaviors of high strength X80 steel were discussed based on the microstructural and the fractographic observations.

  19. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: zhfzhang@imr.ac.cn; Wang, Z.G. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, K.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zang, Q.S. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2006-02-25

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr{sub 41.25}Ti{sub 13.75}Ni{sub 10}Cu{sub 12.5}Be{sub 22.5} composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading.

  20. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  1. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    Science.gov (United States)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  2. Epigallocatechin gallate ameliorates chronic fatigue syndrome in mice: behavioral and biochemical evidence.

    Science.gov (United States)

    Sachdeva, Anand Kamal; Kuhad, Anurag; Tiwari, Vinod; Chopra, Kanwaljit

    2009-12-28

    Three decades after the coining of the term chronic fatigue syndrome, the diagnosis of this illness is still symptom based and the aetiology remains elusive. Chronic fatigue syndrome pathogenesis seems to be multifactorial and the possible involvement of immune system is supported. The present study was designed to evaluate the effects of the epigallocatechin gallate in a mouse model of immunologically induced chronic fatigue. On 19th day, after lipopolysaccharide/Brucella abortus administration, the mice showed significant increase in immobility period, post swim fatigue and thermal hyperalgesia. Behavioral deficits were coupled with enhanced oxidative-nitrosative stress as evident by increased lipid peroxidation, nitrite levels and decreased endogenous antioxidant enzymes (superoxide dismutase, reduced glutathione and catalase) and inflammation (increased levels of tumor necrosis factor-alpha and tissue growth factor-beta). Chronic treatment with epigallocatechin gallate restored these behavioral and biochemical alterations in mice. The present study points out towards the beneficial effect of epigallocatechin gallate in the amelioration of chronic fatigue syndrome and thus may provide a new, effective and powerful strategy to treat chronic fatigue syndrome.

  3. Cognitive behavioral therapies and multiple sclerosis fatigue: A review of literature.

    Science.gov (United States)

    Chalah, Moussa A; Ayache, Samar S

    2018-03-30

    Patients with multiple sclerosis (MS) commonly suffer from fatigue, a multidimensional symptom with physical, cognitive and psychosocial components that can drastically alter the quality of life. Despite its debilitating nature, the current treatment options are limited by their modest efficacy and numerous side effects. Cognitive behavioral therapies (CBT) have been applied in MS patients and might be of help in relieving fatigue. This constitutes the main objective of the current review. Computerized databases (Medline/PubMed, Scopus) were consulted till January 2018, and a research was conducted according to PRISMA guidelines in order to identify original research articles published at any time in English and French languages on cognitive behavioral therapies and MS fatigue as a primary outcome. The following key terms were used: ('multiple sclerosis' OR 'MS') AND ('fatigue') AND ('cognitive behavioral therapy' OR 'CBT' OR 'cognitive therapy' OR 'CT' OR 'behavioral therapy' OR 'BT' OR 'psychotherapy'). Fourteen papers matched the above criteria (11 trials, 2 methods and 1 study addressing CBT mechanisms of action). CBT seems to have positive effects on MS fatigue. However, the onset and duration of effects varied across the studies. These data highlight the promising effects of CBT in MS fatigue. Admitting the limited number of studies, more protocols are needed before drawing any conclusion. Future works might benefit from combining CBT with emerging therapies such as non-invasive brain stimulation techniques which also yielded promising results in the setting of MS. This may help in long-term maintenance of fatigue relief. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel

    International Nuclear Information System (INIS)

    Lin, H.Q.; Zhao, Y.G.; Gao, Z.M.; Han, L.G.

    2008-01-01

    The fatigue crack propagating behaviors of cast hot working die (CHWD) steel untreated and treated by an electric current in the intermediate stage of thermal fatigue were investigated in the present study. The circle/elliptical heating affected zone (HAZ) was formed ahead of the notch tip on the fatigued specimens after pulse electric current stimulation. Both SEM observation and X-ray diffraction analysis revealed that pulse electric current stimulation refined grains/subgrains in the HAZs. With the prolonging of discharging duration, the grains/subgrains decreased in size and the dislocation density and microhardness increased gradually. The grain refinement and dislocation density increase played an important role in the material strengthening, which inevitably enhanced the propagation resistance and delayed the propagation of thermal fatigue cracks. Therefore, the pulse electric current stimulation was an effective method to improve the service lifetime of die material

  5. Corrosion fatigue cracking behavior of Inconel 690 (TT) in secondary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Xiao Jun; Chen Luyao; Qiu Shaoyu; Chen Yong; Lin Zhenxia; Fu Zhenghong

    2015-01-01

    Inconel 690 (TT) is one of the key materials for tubes of steam generators for pressurized water reactors, where it is susceptible to corrosion fatigue cracking. In this paper, the corrosion fatigue cracking behavior of Inconel 690 (TT) was investigated under small scale yielding conditions, in the simulated secondary water of pressurized water reactor. It was observed that the fatigue crack growth rate was accelerated by a maximum factor up to 3 in the simulated secondary water, comparing to that in room temperature air. In addition, it was found that the accelerating effect was influenced by out-of-plane cracking of corrosion fatigue cracks and also correlated with stress intensity factor range, maximum stress intensity factor and stress ratio. (authors)

  6. Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatigue for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.

  7. Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Shariati, Mahmoud; Mohammadi, Ehsan; Masoudi Nejad, Reza

    2017-01-01

    Fatigue crack growth in thick-walled pressure vessels is an important factor affecting their fracture. Predicting the path of fatigue crack growth in a pressure vessel is the main issue discussed in fracture mechanics. The objective of this paper is to design a new geometrical specimen in fatigue to define the behavior of semi-elliptical crack growth in thick-walled pressure vessels. In the present work, the importance of the behavior of fatigue crack in test specimen and real conditions in thick-walled pressure vessels is investigated. The results of fatigue loading on the new specimen are compared with the results of fatigue loading in a cylindrical pressure vessel and a standard specimen. Numerical and experimental methods are used to investigate the behavior of fatigue crack growth in the new specimen. For this purpose, a three-dimensional boundary element method is used for fatigue crack growth under stress field. The modified Paris model is used to estimate fatigue crack growth rates. In order to verify the numerical results, fatigue test is carried out on a couple of specimens with a new geometry made of ck45. A comparison between experimental and numerical results has shown good agreement. - Highlights: • This paper provides a new specimen to define the behavior of fatigue crack growth. • We estimate the behavior of fatigue crack growth in specimen and pressure vessel. • A 3D finite element model has been applied to estimate the fatigue life. • We compare the results of fatigue loading for cylindrical vessel and specimens. • Comparison between experimental and numerical results has shown a good agreement.

  8. Fatigue of vanadium--hydrogen alloys

    International Nuclear Information System (INIS)

    Lee, K.S.; Stoloff, N.S.

    1975-01-01

    Hydrogen contents near and above the room temperature solubility limit increase the high cycle fatigue life but decrease low cycle life of polycrystalline vanadium. Changes in endurance limit with hydrides may be a consequence of decreased cyclic strain hardening coefficient, n'. 132 ppM hydrogen in solution has only a slightly beneficial effect on stress controlled fatigue life and essentially no effect on low cycle fatigue life. Unalloyed vanadium exhibits profuse striations, while hydrides produce cleavage cracks in fatigued samples. 10 fig

  9. Fatigue behavior of austenitic steels. Subproject. Mechanism oriented investigation of the fatigue behavior of austenitic steel X6CrNiNb1810 in the HCF and VHCF regime. Final report; Ermuedungsverhalten Austenit. Teilprojekt. Mechanismenorientierte Untersuchung des Ermuedungsverhaltens des austenitischen Stahles X6CrNiNb1810 im HCF- und VHCF-Bereich. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sorich, A.; Smaga, M.; Eifler, D.

    2015-01-23

    In addition to load cycles in the Low Cycle Fatigue (LCF)-regime due to start up and shut down procedures of power plants, in some components additional high-frequency loadings in the High Cycle Fatigue (HCF)- and Very High Cycle Fatigue (VHCF)-regime occur. These loadings are induced e.g. by stresses due to thermal cyclic fluctuations and fluid dynamic processes. Therefore it is necessary to characterize experimentally the cyclic deformation behavior of metastable austenitic steels at operating temperature particularly in the HCF- and VHCF-regime and to develop a nondestructive method to detect fatigue processes. This joint research project was conducted in cooperation between the Institute of Materials Science and Engineering (WKK) of the University of Kaiserslautern and the Fraunhofer-Institute for Non-Destructive Testing (IZFP) in Saarbruecken. WKK was focused on experimental investigations to characterize the cyclic deformation behavior of the metastable austenitic steel in the HCF- and VHCF-range, taking into account cyclic hardening and softening processes and in particular to consider fatigue-induced changes in microstructure. The IZFP has focused on the development and application of a testing concept based on electromagnetic ultrasonic measurements. The isothermal cyclic deformation behavior of the metastable austenitic steel X6CrNiNb1810 (1.4550, AISI 347) at 300 C in the HCF-range is characterized by cyclic softening until specimen failure. At strain amplitudes of 0.10 % ≤ ε{sub a,t} ≤ 0.15 % and the stress amplitude σ{sub a} = 160 MPa cyclic softening is followed by cyclic hardening, which results in a significant increase in life time, up to the limiting number of cycles, which was defined at N{sub I} = 10{sup 7} in HCF-regime. The cyclic hardening is determined by a transformation induced phase formation from face-centered cubic (fcc) austenite to body-centered cubic (bcc) α{sup '}-martensite and/or in hexagonal (hcp) ε-martensite. In

  10. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lassnig, A., E-mail: alice.lassnig@univie.ac.at [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); Pelzer, R. [Infineon Technologies Austria AG, Siemensstrae 2, 9500 Villach (Austria); Gammer, C. [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Khatibi, G. [Vienna University of Technology, Institute of Chemical Technology and Analytics, Getreidemarkt 9, 1060 Wien (Austria)

    2015-10-15

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al{sub 2}Cu, Al{sub 4}Cu{sub 9}) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path.

  11. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    International Nuclear Information System (INIS)

    Lassnig, A.; Pelzer, R.; Gammer, C.; Khatibi, G.

    2015-01-01

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al 2 Cu, Al 4 Cu 9 ) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path

  12. Effect of strain rate and temperature at high strains on fatigue behavior of SAP alloys

    DEFF Research Database (Denmark)

    Blucher, J.T.; Knudsen, Per; Grant, N.J.

    1968-01-01

    Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased with decre......Fatigue behavior of three SAP alloys of two nominal compositions (7 and 13% Al2O3) was studied in terms of strain rate and temperature at high strains; strain rate had no effect on life at 80 F, but had increasingly greater effect with increasing temperature above 500 F; life decreased...

  13. Structural integrity of additive materials: Microstructure, fatigue behavior, and surface processing

    Science.gov (United States)

    Book, Todd A.

    Although Additive Manufacturing (AM) offers numerous performance advantages over existing methods, AM structures are not being utilized for critical aerospace and mechanical applications due to uncertainties in their structural integrity as a result of the microstructural variations and defects arising from the AM process itself. Two of these uncertainties are the observed scatter in tensile strength and fatigue lives of direct metal laser sintering (DMLS) parts. With strain localization a precursor for material failure, this research seeks to explore the impact of microstructural variations in DMLS produced materials on strain localization. The first part of this research explores the role of the microstructure in strain localization of DMLS produced IN718 and Ti6Al4V specimens (as-built and post-processed) through the characterization of the linkage between microstructural variations, and the accumulation of plastic strain during monotonic and low cycle fatigue loading. The second part of this research explores the feasibility for the application of select surface processing techniques in-situ during the DMLS build process to alter the microstructure in AlSi10Mg to reduce strain localization and improve material cohesion. This study is based on utilizing experimental observations through the employment of advanced material characterization techniques such as digital image correlation to illustrate the impacts of DMLS microstructural variation.

  14. Effects of a laser surface processing induced heat-affected zone on the fatigue behavior of AISI 4340 steel

    International Nuclear Information System (INIS)

    McDaniels, R.L.; White, S.A.; Liaw, K.; Chen, L.; McCay, M.H.; Liaw, P.K.

    2008-01-01

    The effects of the heat-affected zone (HAZ) in AISI 4340 steel created by laser-surface alloying (LSA) on high-cycle fatigue behavior have been investigated. This research was performed by producing several lots of laser-processed AISI 4340 steel using different laser processing parameters, and then subjecting the samples to high-cycle fatigue and Knoop microindentation hardness studies. Samples of tested material from each lot were examined using scanning-electron microscopy (SEM) in order to establish the effects of laser processing on the microstructure of the fatigue-tested AISI 4340 steel. When these three techniques, microindentation hardness testing, high-cycle fatigue testing, and SEM, are combined, a mechanistic understanding of the effect of the HAZ on the fatigue behavior of this alloy might be gained. It was found that the HAZ did not appear to have an adverse effect on the high-cycle fatigue behavior of LSA-processed AISI 4340 steel

  15. Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads

    Science.gov (United States)

    Ren, Huai-Hui; Wang, Xi-Shu

    2014-04-01

    This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.

  16. An experimental method to quantify the impact fatigue behavior of rocks

    International Nuclear Information System (INIS)

    Wu, Bangbiao; Xia, Kaiwen; Kanopoulos, Patrick; Luo, Xuedong

    2014-01-01

    Fatigue failure is an important failure mode of engineering materials. The fatigue behavior of both ductile and brittle materials has been under investigation for many years. While the fatigue failure of ductile materials is well established, only a few studies have been carried out on brittle materials. In addition, most fatigue studies on rocks are conducted under quasi-static loading conditions. To address engineering applications involving repeated blasting, this paper proposes a method to quantify the impact fatigue properties of rocks. In this method, a split Hopkinson pressure bar system is adopted to exert impact load on the sample, which is placed in a specially designed steel sleeve to limit the displacement of the sample and thus to enable the recovery of the rock after each impact. The method is then applied to Laurentian granite, which is fine-grained and isotropic material. The results demonstrate that this is a practicable means to conduct impact fatigue tests on rocks and other brittle solids. (paper)

  17. An experimental method to quantify the impact fatigue behavior of rocks

    Science.gov (United States)

    Wu, Bangbiao; Kanopoulos, Patrick; Luo, Xuedong; Xia, Kaiwen

    2014-07-01

    Fatigue failure is an important failure mode of engineering materials. The fatigue behavior of both ductile and brittle materials has been under investigation for many years. While the fatigue failure of ductile materials is well established, only a few studies have been carried out on brittle materials. In addition, most fatigue studies on rocks are conducted under quasi-static loading conditions. To address engineering applications involving repeated blasting, this paper proposes a method to quantify the impact fatigue properties of rocks. In this method, a split Hopkinson pressure bar system is adopted to exert impact load on the sample, which is placed in a specially designed steel sleeve to limit the displacement of the sample and thus to enable the recovery of the rock after each impact. The method is then applied to Laurentian granite, which is fine-grained and isotropic material. The results demonstrate that this is a practicable means to conduct impact fatigue tests on rocks and other brittle solids.

  18. Fatigued and drowsy driving: a survey of attitudes, opinions and behaviors.

    Science.gov (United States)

    Vanlaar, Ward; Simpson, Herb; Mayhew, Dan; Robertson, Robyn

    2008-01-01

    There is evidence suggesting that the problem of fatigued or drowsy driving is an important contributor to road crashes. However, not much is known about public perceptions of the issue. The purpose of this study was to obtain information on attitudes, opinions, and professed practices related to fatigued or drowsy driving. The data were gathered by means of a public opinion poll among a representative sample of 750 Ontario drivers. A majority of drivers (58.6%) admitted that they occasionally drive while fatigued or drowsy. Of greater importance, 14.5% of respondents admitted that they had fallen asleep or "nodded off" while driving during the past year. Nearly 2% were involved in a fatigue or drowsy driving related crash in the past year. Respondents were also asked about measures they take to overcome fatigue or drowsiness. Results indicate that relatively ineffective measures such as opening the window or playing music are the most popular; the most effective preventive measure--taking a rest--is the least popular. The prevalence of the behavior, coupled with the ineffective prevention measures favored by the public suggest there is a need for increasing their level of awareness and knowledge about the problem. Results from this study further emphasize the importance of increasing the fatigued and drowsy driving knowledge base and the need to educate the public about it.

  19. The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites

    International Nuclear Information System (INIS)

    Zhang, W; Picu, R C; Koratkar, N

    2008-01-01

    Fatigue is one of the primary reasons for failure in structural materials. It has been demonstrated that carbon nanotubes can suppress fatigue in polymer composites via crack-bridging and a frictional pull-out mechanism. However, a detailed study of the effects of nanotube dimensions and dispersion on the fatigue behavior of nanocomposites has not been performed. In this work, we show the strong effect of carbon nanotube dimensions (i.e. length, diameter) and dispersion quality on fatigue crack growth suppression in epoxy nanocomposites. We observe that the fatigue crack growth rates can be significantly reduced by (1) reducing the nanotube diameter, (2) increasing the nanotube length and (3) improving the nanotube dispersion. We qualitatively explain these observations by using a fracture mechanics model based on crack-bridging and pull-out of the nanotubes. By optimizing the above parameters (tube length, diameter and dispersion) we demonstrate an over 20-fold reduction in the fatigue crack propagation rate for the nanocomposite epoxy compared to the baseline (unfilled) epoxy

  20. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  1. Deformation and fatigue behavior of hot dip galvanized coatings

    International Nuclear Information System (INIS)

    Camurri, Carlos P.; Benavente, Raul G.; Roa, Isidoro S.; Carrasco, Claudia C.

    2005-01-01

    This paper reports on the results of a study of the effect of static and dynamic stresses on hot dip galvanized coatings on SAE 1020 steel substrates. Galvanizing was performed using baths maintained at 450 deg. C, the zinc containing 0.16% Ti and 0.02% Fe and with Al and Ni in the ranges 0-0.20% and 0-0.30%, respectively. Static three-point bend tests were conducted with applied stresses in the range 428-790 MPa. Dynamic bend-fatigue tests involved stresses in the range 228-578 MPa at a cyclic frequency of 0.25 Hz for up to 700 cycles. The total crack density in the coatings was measured before and after the tests using light optical and electron microscopy. The results showed that the crack density increased as the applied stress increased and crack propagation was promoted perpendicular to the substrate. The number of cycles had no effect on the crack density and propagation at stresses lower than 386 MPa. At higher stresses the number of applied cycles contributed only to crack propagation. It was concluded that the best bath composition for preventing fatigue crack propagation is one that minimized the formation of thinner brittle layers in the galvanized coatings

  2. Phase transformation by fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Jo, Y.S.; Kwun, S.I.

    1988-01-01

    The effect of strain induced martensite on the fatigue behavior of AISI 304 austenitic stainless steel was investigated. During low cycle fatigue, the austenitic stainless steel showed a continuous cyclic hardening until fracture. The extent of cyclic hardening increased with decreasing austenite stability. The austenite stability was controlled by different aging time and temperature, which resulted in different carbide morphologies. The fatigue crack propagation rate near ΔK th varied also with the austenite stability inside the plastic zone at the crack up. Especially, the near-threshold fatigue crack propagation rate of the grain boundary carbide precipitated condition was the lowest. This was considered to be due to the roughness induced closure caused by intergranular facet. A new model for the intergranular facet formation and the fatigue crack propagation of grain boundary carbide precipitated condition was proposed. (Author)

  3. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ma, Qihang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Shang, Lihong [Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5 (Canada); Gao, Ye [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-18

    Creep-fatigue experiments have been conducted in nickel-based superalloy GH720Li at an elevated temperature of 650 °C with a stress ratio of 0.1, based on which, different dwell times at the maximum loading were applied to investigate the effect of dwell time on the creep-fatigue behaviors. The tested specimens were cut from the rim region of an actual turbine disc in the hoop direction. The grain size and precipitates of the GH720Li superalloy were examined through scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. Experimental data shows creep-fatigue lifetime decreases as the dwell time prolongs. Further, different scattering was observed in the creep-fatigue lifetime at different dwell times. Then a probabilistic model based on the applied mechanical work density (AMWD), with a linear heteroscedastic function that evaluates the non-constant deviation in the creep-fatigue lifetime, was formulated to describe the dependence of creep-fatigue lifetime on the dwell time. Finally, the possible microscopic mechanism of the creep-fatigue behavior has been discussed by SEM with EDS on the fracture surfaces.

  4. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  5. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    Science.gov (United States)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  6. NLRP3 inflammasome activation mediates fatigue-like behaviors in mice via neuroinflammation.

    Science.gov (United States)

    Zhang, Ziteng; Ma, Xiujuan; Xia, Zhenna; Chen, Jikuai; Liu, Yangang; Chen, Yongchun; Zhu, Jiangbo; Li, Jinfeng; Yu, Huaiyu; Zong, Ying; Lu, Guocai

    2017-09-01

    Numerous experimental and clinical studies have suggested that the interaction between the immune system and the brain plays an important role in the pathophysiology of chronic fatigue syndrome (CFS). The NLRP3 inflammasome is an important part of the innate immune system. This complex regulates proinflammatory cytokine interleukin-1β (IL-1β) maturation, which triggers different kinds of immune-inflammatory reactions. We employed repeated forced swims to establish a model of CFS in mice. NLRP3 knockout (KO) mice were also used to explore NLRP3 inflammasome activation in the mechanisms of CFS, using the same treatment. After completing repeated swim tests, the mice displayed fatigue-like behaviors, including locomotor activity and reduced fall-off time on the rota-rod test, which was accompanied by significantly higher mature IL-1β level in the prefrontal cortex (PFC) and malondialdehyde (MDA) level in serum. We also found increased NLRP3 protein expression, NLRP3 inflammasome formation and increased mature IL-1β production in the PFC, relative to untreated mice. The NLRP3 KO mice displayed significantly moderated fatigue behaviors along with decreased PFC and serum IL-1β levels under the same treatment. These findings demonstrated the involvement of NLRP3 inflammasome activation in the mechanism of swimming-induced fatigue. Future therapies targeting the NLRP3/IL-1β pathway may have significant potential for fatigue prevention and treatment. Copyright © 2017. Published by Elsevier Ltd.

  7. Randomized Evaluation of Cognitive-Behavioral Therapy and Graded Exercise Therapy for Post-Cancer Fatigue.

    Science.gov (United States)

    Sandler, Carolina X; Goldstein, David; Horsfield, Sarah; Bennett, Barbara K; Friedlander, Michael; Bastick, Patricia A; Lewis, Craig R; Segelov, Eva; Boyle, Frances M; Chin, Melvin T M; Webber, Kate; Barry, Benjamin K; Lloyd, Andrew R

    2017-07-01

    Cancer-related fatigue is prevalent and disabling. When persistent and unexplained, it is termed post-cancer fatigue (PCF). Cognitive behavioral therapy (CBT) and graded exercise therapy (GET) may improve symptoms and functional outcomes. To evaluate the outcomes of a randomized controlled trial, which assigned patients with post-cancer fatigue to education, or 12 weeks of integrated cognitive-behavioral therapy (CBT) and graded exercise therapy (GET). Three months after treatment for breast or colon cancer, eligible patients had clinically significant fatigue, no comorbid medical or psychiatric conditions that explained the fatigue, and no evidence of recurrence. The CBT/GET arm included individually tailored consultations at approximately two weekly intervals. The education arm included a single visit with clinicians describing the principles of CBT/GET and a booklet. The primary outcome was clinically significant improvement in self-reported fatigue (Somatic and Psychological HEalth REport 0-12), designated a priori as greater than one SD of improvement in fatigue score. The secondary outcome was associated improvement in function (role limitation due to physical health problems-36-Item Short Form Health Survey 0-100) comparing baseline, end treatment (12 weeks), and follow-up (24 weeks). There were 46 patients enrolled, including 43 women (94%), with a mean age of 51 years. Fatigue severity improved in all subjects from a mean of 5.2 (±3.1) at baseline to 3.9 (±2.8) at 12 weeks, suggesting a natural history of improvement. Clinically significant improvement was observed in 7 of 22 subjects in the intervention group compared with 2 of 24 in the education group (P < 0.05, χ 2 ). These subjects also had improvement in functional status compared with nonresponders (P < 0.01, t-test). Combined CBT/GET improves fatigue and functional outcomes for a subset of patients with post-cancer fatigue. Further studies to improve the response rate and the magnitude of

  8. Childhood maltreatment and the response to cognitive behavior therapy for chronic fatigue syndrome.

    NARCIS (Netherlands)

    Heins, M.J.; Knoop, H.; Lobbestael, J.; Bleijenberg, G.

    2011-01-01

    Objective: To examine the relationship between a history of childhood maltreatment and the treatment response to cognitive behavior therapy for chronic fatigue syndrome (CFS). Methods: A cohort study in a tertiary care clinic with a referred sample of 216 adult patients meeting the Centers for

  9. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Science.gov (United States)

    Zhao, Jing; Ji, Honghong

    2017-01-01

    The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite. PMID:29286325

  10. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2017-12-01

    Full Text Available The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.

  11. Thermomechanical Fatigue Behavior of a Silicon Carbide Fiber-Reinforced Calcium Aluminosilicate Glass-Ceramic Matrix Composite.

    Science.gov (United States)

    1992-08-01

    Testing of Coated Monocrystalline Superalloys," in Low Cycle Fatigue. ASTM STP 942, Solomon, H.D., Hafford, G.R., Kaisand, L.R., and Keis, B.N. , eds...HOTOL) project is considering the use of CMCs on lower aeroshell panels , air intake leading edges, and the nose cone where temperatures may climb to...Works (Corning, NY). The composite was supplied in 16-ply, unidirectionally reinforced (10116) panels , measuring 152.4 cm x 152.4 cm (6 in x 6 in

  12. Experimental Behavior of Fatigued Single Stiffener PRSEUS Specimens

    Science.gov (United States)

    Jegley, Dawn C.

    2009-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression in fatigue and to failure.

  13. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    International Nuclear Information System (INIS)

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok

    2012-01-01

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  14. Tensile and fatigue behaviors of printed Ag thin films on flexible substrates

    Science.gov (United States)

    Sim, Gi-Dong; Won, Sejeong; Lee, Soon-Bok

    2012-11-01

    Flexible electronics using nanoparticle (NP) printing has been highlighted as a key technology enabling eco-friendly, low-cost, and large-area fabrication. For NP-based printing to be used as a successive alternative to photolithography and vacuum deposition, stretchability and long term reliability must be considered. This paper reports the stretchability and fatigue behavior of 100 nm thick NP-based silver thin films printed on polyethylene-terephthalate substrate and compares it to films deposited by electron-beam evaporation. NP-based films show stretchability and fatigue life comparable to evaporated films with intergranular fracture as the dominant failure mechanism.

  15. Experimental evaluation of the fretting fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2013-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. A method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. The experimental data....... Moreover, the paper provides relevant information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of the monostrand undergoing flexural deformations. The results presented herein are of special interest for the fatigue analysis of modern stay...

  16. Fatigue crack growth behavior and AE signal recognition from a composite patch repaired Ai thein plate

    International Nuclear Information System (INIS)

    Kim, Sung Jin; Kwon, Oh Yang

    2004-01-01

    The fatigue crack growth behavior of a fatigue-cracked and patch-repaired AA2024-T3 plate has been monitored. It was found that the overall crack growth rate was reduced and the crack propagation into the adjacent hole was also retarded. Signals due to crack growth after patch-repair and those due to debonding of the plate-patch interface were discriminated each other by using principal component analysis. The former showed higher center frequency and lower amplitude, whereas the latter showed longer rise time, lower frequency and higher amplitude.

  17. The cyclic fatigue behavior of a Nicalon/SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J. [Univ. of Tennessee, Knoxville, TN (United States); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Cyclic fatigue tests were performed at ambient temperature on a Nicalon/SiC composite to study the effects of fabric orientation on the mechanical behavior. Four-point bend specimens were loaded either parallel or normal to the braided fabric plies. The maximum stresses chosen during the fatigue tests were 60, 70, and 80% of the monotonic strengths, respectively, in both orientations. Specimen failure did not occur in any case even after one million loading cycles. However, it was observed that much of the decrease in the composite modulus occurred in the first few (<10) cycles, and the fabric orientation did not significantly affect the effective modulus or midspan deflection trends.

  18. CYCLIC PLASTIC BEHAVIOR AND FATGIUE LIFE OF AZ91 ALLOY IN AS-CAST AND ULTRAFINE-GRAINED STATE

    Directory of Open Access Journals (Sweden)

    Stanislava Fintová

    2014-06-01

    Full Text Available Fatigue properties of magnesium alloy AZ91 in as-cast and in ultrafine-grained state prepared by equal channel angular pressing were investigated. The fatigue strength in the low-cycle fatigue region was found to be substantially improved by the severe plastic deformation, whereas the improvement in the high-cycle fatigue region is negligible. The cyclic plastic response in both states is qualitatively similar; short initial softening is followed by a long cyclic hardening. The observed fatigue behavior was discussed in terms of specific microstructural features of both states and on the basis of cyclic slip localization and fatigue crack initiation. 

  19. The effect of ion implantation on the fatigue behavior of metals and alloys

    International Nuclear Information System (INIS)

    Chakrabortty, S.B.; Kujore, A.; Legg, K.O.; Starke, E.A.

    1981-01-01

    The effect of ion implantation on the strain and stress controlled fatigue behavior of polycrystalline copper has been investigated. The cyclic stress-strain response, strain-life and stress-life relationships and fatigue crack nucleation behavior have been studied. The results from the non-implanted materials have been compared with those from the implanted materials. Four implant species, one with a positive misfit, one with a negative misfit, one with a zero misfit, and one insoluble under equilibrium conditions have been used. Most of the fatigue tests were performed in laboratory air. Ion implantation changes the surface deformation behavior for both monotonic and cyclic loading with a corresponding change in hardening rate. Larger changes are observed for the cyclic loading. Implantations which lead to a more homogeneous deformation (fine slip) near the surface, improves the resistance to fatigue crack initiation. Surface compressive residual stresses, induced from implanting a positive misfit species, have a major influence on crack initiation in the stress-life regime

  20. Protective effects of antidepressants against chronic fatigue syndrome-induced behavioral changes and biochemical alterations.

    Science.gov (United States)

    Kumar, Anil; Garg, Ruchika

    2009-02-01

    Chronic fatigue syndrome (CFS) is characterized by profound fatigue, which substantially interferes with daily activities. The aim of this study was to explore the protective effects of antidepressants in an animal model of CFS in mice. Male albino mice were forced to swim individually for a period of 6-min session each for 7 days. Imipramine (10 and 20 mg/kg), desipramine (10 and 20 mg/kg) and citalopram (5 and 10 mg/kg) were administered 30 min before forced swimming test on each day. Various behavior tests (immobility time, locomotor activity, anxiety-like behavior by plus maze and mirror chamber) followed by biochemical parameters (lipid peroxidation, reduced glutathione, catalase and nitrite level) were assessed in chronic stressed mice. Chronic forced swimming for 7 days significantly caused increase in immobility period, impairment in locomotor activity, anxiety-like behavior, and oxidative stress (raised lipid peroxidation, nitrite activity and reduced glutathione and catalase activity) as compared with naïve mice (P immobility time, improved locomotor activity and anti-anxiety effect (in both plus maze and mirror chamber test), and attenuated oxidative stress in chronic stressed mice as compared with control (chronic fatigues) (P < 0.05). These results suggested that these drugs have protective effect and could be used in the management of chronic fatigue like conditions.

  1. Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Wongyu; Jeong, Daeho; Sung, Hyokyung; Kim, Sangshik, E-mail: sang@gnu.ac.kr

    2017-02-15

    Tensile and high cycle fatigue behaviors of high-Mn austenitic steels, including 25Mn, 25Mn0.2Al, 25Mn0.5Cu, 24Mn4Cr, 22Mn3Cr and 16Mn2Al specimens, were investigated at 298 and 110 K. Depending on the alloying elements, tensile ductility of high-Mn steels either increased or decreased with decreasing temperature from 298 to 110 K. Reasonable correlation between the tendency for martensitic tranformation, the critical twinning stress and the percent change in tensile elongation suggested that tensile deformation of high-Mn steels was strongly influenced by SFE determining TRIP and TWIP effects. Tensile strength was the most important parameter in determining the resistance to high cycle fatigue of high-Mn steels with an exceptional work hardening capability at room and cryogenic temperatures. The fatigue crack nucleation mechanism in high-Mn steels did not vary with decreasing tempertature, except Cr-added specimens with grain boundary cracking at 298 K and slip band cracking at 110 K. The EBSD (electron backscatter diffraction) analyses suggested that the deformation mechanism under fatigue loading was significantly different from tensile deformation which could be affected by TRIP and TWIP effects. - Highlights: •The resistances to HCF of various high-Mn steels were measured. •The variables affecting tensile and HCF behaviors of high-Mn steels were assessed. •The relationship between tensile and the HCF behaviors of high-Mn steels was established.

  2. Effect of oxide film formation on the fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion

  3. Consideration of the environmental effects on fatigue behavior of austenitic components. Calculation methods and practical application

    International Nuclear Information System (INIS)

    Seichter, Johannes; Reese, Sven H.; Klucke, Dietmar

    2012-01-01

    During the last years environmental effects on the fatigue behavior of nuclear power plant components has worldwide been discussed controversial with respect to the transferability of laboratory data on real components. A publication from Argonne National Laboratory on experimental results concerning environmental effects (air and LWR coolant) on fatigue of austenitic steels included a proposal on calculation methods concerning the lifetime reduction due to environmental effects. This calculation method, i.e. multiplication of the usage factor by a F(en), has been included into the ASME Code, Section III, Division I, as Code Case N-792 (fatigue evaluations including environmental effects). The presented contribution evaluates the practical application of this calculation procedure and demonstrates the determination of the usage factor of an austenitic component under environmental exposure.

  4. The fracture behavior of an Al-Mg-Si alloy during cyclic fatigue

    International Nuclear Information System (INIS)

    Azzam, Diya; Menzemer, Craig C.; Srivatsan, T.S.

    2010-01-01

    In this paper, is presented and discussed the cyclic fracture behavior of the Al-Mg-Si alloy 6063 that is a candidate used in luminaire light poles. The light poles were subject to fatigue deformation. Test sections were taken from the failed region of the light pole and carefully examined in a scanning electron microscope with the objective of rationalizing the macroscopic fracture mode and intrinsic micromechanisms governing fracture under cyclic loading. The fatigue fracture surface of the alloy revealed distinct regions of early microscopic crack growth, stable crack growth and unstable crack growth and overload. An array of fine striations was found covering the regions of early and stable crack growth. Both macroscopic and fine microscopic cracks were found in the region of unstable crack growth. Very few microscopic voids and shallow dimples were evident on the fatigue fracture surface indicative of the limited ductility of the alloy under cyclic loading conditions.

  5. Influence of De-icers on the Corrosion and Fatigue Behavior of 4140 Steel

    Science.gov (United States)

    Dean, William P.; Sanford, Brittain J.; Wright, Matthew R.; Evans, Jeffrey L.

    2012-11-01

    The purpose of this test was to evaluate the effects of calcium magnesium acetate (CMA) and sodium chloride (NaCl)—two common substances used to de-ice roadways—on the corrosion and fatigue behavior of annealed AISI 4140 steel. When CMA-corroded, NaCl-corroded, and as-machined samples were tested using R = 0.1, and f = 20 Hz, it was found that, within the scope of this study, samples corroded in both 3.5% CMA solution and 3.5% NaCl solution exhibited a lower fatigue strength than samples tested in the as-machined, uncorroded condition. For the short lives tested in this study, the difference in the effects of CMA and NaCl is minimal. However, at longer lives it is suspected, based on the trends, that the CMA solution would be less detrimental to the fatigue life.

  6. Fatigue Behavior of 2A12 Aluminum Alloy Under Multiaxial Loading

    Directory of Open Access Journals (Sweden)

    CHEN Ya-jun

    2017-08-01

    Full Text Available The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under multiple variables, and the failure mechanism was investigated by scanning electron microscopy (SEM. The results show that under the loading condition of equivalent stress, the fatigue life decreases with the increase of phase angle. For the phase angle 0°, some special features can be observed in the crack initial zone, such as the tire pattern,fishbone pattern and stalactite pattern. There are secondary cracks and vague fatigue striations in the crack propagation zone; the multiaxial fatigue life decreases with the change of mean stress for tension or torsion. Some white flocculent oxides can be found in the crack initiation zone, and secondary crack as well as shear-type elongated dimples in the instantaneous fracture zone; facing different loading waveforms, the multiaxial life of sine wave is the longest, triangle wave in the second place, and the square wave is the shortest, under the loading condition of equivalent stress, square wave leads to the maximum structural energy dissipation. Under the low and high two step loading, 2A12 shows training effect.

  7. Study on high-cycle fatigue behavior of candidate Fe-Cr-Ni alloys for SCWR

    International Nuclear Information System (INIS)

    Zhao Yuxiang; Liu Guiliang; Tang Rui; Xiong Ru; Qiao Yingjie

    2014-01-01

    In the design for supercritical water reactor (SCWR), the operating temperature, pressure, burn up and irradiation damage are very high, so it seems vital to make correct choice of structural materials in core and obtain their key application behavior which would beneficial the research and development of SCWR. In this paper, the high cycle fatigue (HCF) tests of commerce austenite alloys including 6XN and 825 were conducted under bending and rotating loads at room temperature (RT) as well as at 550 ℃ in air. The experimental data were analyzed and the S-N curves were processed, the fracture morphology was also observed by SEM. The results indicate that the fatigue limited stresses at RT for the 2 Fe-Cr-Ni alloy were in such order of 825 < 6XN, which consistent with the order of their tensile strength. Elevated temperature would accelerate the oxidation of the specimen and therefore the fatigue life would decrease, among them 6XN was more sensitive to high temperature with the larger decreasing tendency which make the fatigue limited stress of the two alloys more closer at 550 ℃. While 825 is more sensitive to the stress cycles. All the two alloys have good resistance to high cycle fatigue when comparing their experimental data with the calculated value from the empirical formula. The fracture morphology presents areas of crack initiation, crack growth and fracture, the fracture area has much dimples. This work can be applied to the conceptional design for SCWR. (authors)

  8. "Well, I'm tired of tryin'!" Organizational citizenship behavior and citizenship fatigue.

    Science.gov (United States)

    Bolino, Mark C; Hsiung, Hsin-Hua; Harvey, Jaron; LePine, Jeffery A

    2015-01-01

    This study seeks to identify workplace conditions that influence the degree to which employees feel worn out, tired, or on edge attributed to engaging in organizational citizenship behavior (OCB) and also how this phenomenon, which we refer to as citizenship fatigue, is associated with future occurrences of OCB. Using data collected from 273 employees and their peers at multiple points in time, we found that the relationship between OCB and citizenship fatigue depends on levels of perceived organizational support, quality of team-member exchange relationships, and pressure to engage in OCB. Specifically, the relationship between OCB and citizenship fatigue is significantly stronger and positive when perceived organizational support is low, and it is significantly stronger and negative when the quality of team-member exchange is high and pressure to engage in OCB is low. Our results also indicate that citizenship fatigue is negatively related to subsequent acts of OCB. Finally, supplemental analyses reveal that the relationship between OCB and citizenship fatigue may vary as a function of the specific facet of OCB. We conclude with a discussion of the key theoretical and practical implications of our findings. (c) 2015 APA, all rights reserved.

  9. High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening

    International Nuclear Information System (INIS)

    Ren, N.F.; Yang, H.M.; Yuan, S.Q.; Wang, Y.; Tang, S.X.; Zheng, L.M.; Ren, X.D.; Dai, F.Z.

    2014-01-01

    Highlights: • The properties of 00C r 12 were improved by laser shock processing. • A deep layer of residual compressive stresses was introduced. • Fatigue life was enhanced about 58% at elevated temperature up to 600 °C. • The pinning effect is the reason of prolonging fatigue life at high temperature. - Abstract: Laser shock peening was carried out to reveal the effects on ASTM: 410L 00C r 12 microstructures and fatigue resistance in the temperature range 25–600 °C. The new conception of pinning effect was proposed to explain the improvements at the high temperature. Residual stress was measured by X-ray diffraction with sin 2 ψ method, a high temperature extensometer was utilized to measure the strain and control the strain signal. The grain and precipitated phase evolutionary process were observed by scanning electron microscopy. These results show that a deep layer of compressive residual stress is developed by laser shock peening, and ultimately the isothermal stress-controlled fatigue behavior is enhanced significantly. The formation of high density dislocation structure and the pinning effect at the high temperature, which induces a stronger surface, lower residual stress relaxation and more stable dislocation arrangement. The results have profound guiding significance for fatigue strengthening mechanism of components at the elevated temperature

  10. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1981-05-01

    The microstructural features that influenced the room and elevated temperature fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination of fatigue fracture surfaces revealed that operative fatigue mechanisms were dependent on microstructure, temperatures and stress intensity factor. All specimens exhibited three basic fracture surface appearances at temperatures up to 538 degrees C: crystallographic faceting at low stress intensity range (ΔK) levels, striation, formation at intermediate values, and dimples coupled with striations in the highest (ΔK) regime. At 649 degrees C, the heat-treated welds exhibited extensive intergranular cracking. Laves and δ particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused on overall acceleration in crack growth rates at intermediate and high ΔK levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material was attributed to compressive residual stresses introduced by the welding process. 19 refs., 16 figs

  11. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Yamauchi, Masafumi; Nomura, Shinichi.

    1992-01-01

    Prediction methods of macroscopic and local stress-strain behaviors of perforated plates in plastic and creep regime are proposed in this paper, and are applied to the creep-fatigue life prediction of perforated plates. Both equivalent-solid-plate properties corresponding to the macroscopic behavior and the stress-strain concentration around a hole were obtained by assuming the analogy between plasticity and creep and also by extending the authors' proposal in creep condition. The perforated plates which were made of Hastelloy XR were subjected to the strain-controlled cyclic test at 950degC in air in order to experimentally obtain the macroscopic behavior such as the cyclic stress-strain curve and creep-fatigue life around a hole. The results obtained are summarized as follows. (1) The macroscopic behavior of perforated plates including cyclic stress-strain behavior and relaxation is predictable by using the proposed method in this paper. (2) The creep-fatigue life around a hole can be predicted by using the proposed method for stress-strain concentration around a hole. (author)

  12. Ibuprofen Ameliorates Fatigue- and Depressive-like Behavior in Tumor-bearing Mice

    Science.gov (United States)

    Norden, Diana M.; McCarthy, Donna O.; Bicer, Sabahattin; Devine, Raymond; Reiser, Peter J.; Godbout, Jonathan P.; Wold, Loren E.

    2015-01-01

    Aims Cancer-related fatigue (CRF) is often accompanied by depressed mood, both of which reduce functional status and quality of life. Research suggests that increased expression of pro-inflammatory cytokines are associated with skeletal muscle wasting and depressive- and fatigue- like behaviors in rodents and cancer patients. We have previously shown that treatment with ibuprofen, a nonsteroidal anti-inflammatory drug, preserved muscle mass in tumor-bearing mice. Therefore, the purpose of the present study was to determine the behavioral effects of ibuprofen in a mouse model of CRF. Main Methods Mice were injected with colon-26 adenocarcinoma cells and treated with ibuprofen (10mg/kg) in the drinking water. Depressive-like behavior was determined using the forced swim test (FST). Fatigue-like behaviors were determined using voluntary wheel running activity (VWRA) and grip strength. The hippocampus, gastrocnemius muscle, and serum were collected for cytokine analysis. Key Findings Tumor-bearing mice showed depressive-like behavior in the FST, which was not observed in mice treated with ibuprofen. VWRA and grip strength declined in tumor-bearing mice, and ibuprofen attenuated this decline. Tumor-bearing mice had decreased gastrocnemius muscle mass and increased expression of IL-6, MAFBx and MuRF mRNA, biomarkers of protein degradation, in the muscle. Expression of IL-1β and IL-6 was also increased in the hippocampus. Treatment with ibuprofen improved muscle mass and reduced cytokine expression in both the muscle and hippocampus of tumor-bearing mice. Significance Ibuprofen treatment reduced skeletal muscle wasting, inflammation in the brain, and fatigue- and depressive-like behavior in tumor-bearing mice. Therefore, ibuprofen warrants evaluation as an adjuvant treatment for CRF. PMID:26498217

  13. The Effects of Cognitive Behavioral Therapy for Postcancer Fatigue on Perceived Cognitive Disabilities and Neuropsychological Test Performance

    NARCIS (Netherlands)

    Goedendorp, Martine M.; Knoop, Hans; Gielissen, Marieke F. M.; Verhagen, Constans A. H. H. V. M.; Bleijenberg, Gijs

    Context. After successful cancer treatment, a substantial number of survivors continue to experience fatigue and related concentration and memory problems. Severe fatigue after cancer treatment can be treated effectively with cognitive behavioral therapy (CBT), but it is unclear whether CBT has an

  14. Influence of dwell times on the thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy

    Czech Academy of Sciences Publication Activity Database

    Guth, S.; Petráš, Roman; Škorík, Viktor; Kruml, Tomáš; Man, Jiří; Lang, K. H.; Polák, Jaroslav

    2015-01-01

    Roč. 80, NOV (2015), s. 426-433 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Nickel base superalloy * Thermomechanical fatigue * Dwell time * Lifetime behavior * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.162, year: 2015

  15. Fatigue cracking of alloy 600 in simulated steam generator crevice environment

    International Nuclear Information System (INIS)

    Ogundele, G.; Lepik, O.

    1998-01-01

    Investigations were carried out to generate fatigue life (S-N) and near-threshold fatigue crack propagation (da/dN) data to determine the environmental influence on fatigue behavior for Alloy 600 in air, deionized water and in simulated Bruce Nuclear Generating Station 'A' crevice environments under appropriate loading conditions. In the low cycle fatigue regime, the simulated crevice environment did not affect the fatigue life of Alloy 600 under the applied loading conditions. The near-threshold fatigue crack growth rates of Alloy 600 in the simulated crevice environment were significantly lower compared to either pure water or air environments and is believed to be the result of higher crack closure in the crevice environment. (author)

  16. The Study on Environmental Fatigue Behavior of Low Alloy Steel and Stainless Steel Pipes Using the Simplified Plant Transients

    International Nuclear Information System (INIS)

    Yoo, One; Song, M. S.; Kim, I. Y.; Park, S. H.; Lee, B. S.

    2010-01-01

    Nuclear components categorized as ASME Code Class 1 shall be evaluated for the fatigue and satisfy the fatigue acceptance criteria, CUF(cumulative usage factor) < 1 in accordance with ASME Code. However, recent studies have shown the fatigue evaluation procedure may not give conservative results when the components operate in the water environment. NRC issued Regulatory Guide 1.207 which enforces the new fatigue evaluation method or Fen(environmental fatigue correction factor) method to nuclear plants to be newly constructed. This paper describes the characteristics of the behavior of low alloy and austenitic stainless steel straight pipe related to environmental fatigue, which are obtained by using the method suggested by Regulatory Guide 1.207 and simplified plant transients

  17. Development, Characterization and Piezoelectric Fatigue Behavior of Lead-Free Perovskite Piezoelectric Ceramics

    Science.gov (United States)

    Patterson, Eric Andrew

    Much recent research has focused on the development lead-free perovskite piezoelectrics as environmentally compatible alternatives to lead zirconate titanate (PZT). Two main categories of lead free perovskite piezoelectric ceramic systems were investigated as potential replacements to lead zirconate titanate (PZT) for actuator devices. First, solid solutions based on Li, Ta, and Sb modified (K0.5Na0.5)NbO3 (KNN) lead-free perovskite systems were created using standard solid state methods. Secondly, Bi-based materials a variety of compositions were explored for (1-x)(Bi 0.5Na0.5)TiO3-xBi(Zn0.5Ti0.5)O 3 (BNT-BZT) and Bi(Zn0.5Ti0.5)O3-(Bi 0.5K0.5)TiO3-(Bi0.5Na0.5)TiO 3 (BZT-BKT-BNT). It was shown that when BNT-BKT is combined with increasing concentrations of Bi(Zn1/2i1/2)O3 (BZT), a transition from normal ferroelectric behavior to a material with large electric field induced strains was observed. The higher BZT containing compositions are characterized by large hysteretic strains(> 0.3%) with no negative strains that might indicate domain switching. This work summarizes and analyzes the fatigue behavior of the new generation of Pb-free piezoelectric materials. In piezoelectric materials, fatigue is observed as a degradation in the electromechanical properties under the application of a bipolar or unipolar cyclic electrical load. In Pb-based materials such as lead zirconate titanate (PZT), fatigue has been studied in great depth for both bulk and thin film applications. In PZT, fatigue can result from microcracking or electrode effects (especially in thin films). Ultimately, however, it is electronic and ionic point defects that are the most influential mechanism. Therefore, this work also analyzes the fatigue characteristics of bulk polycrystalline ceramics of the modified-KNN and BNT-BKT-BZT compositions developed. The defect chemistry that underpins the fatigue behavior will be examined and the results will be compared to the existing body of work on PZT. It will

  18. Fatigue crack growth behavior in equine cortical bone

    Science.gov (United States)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber

  19. Fatigue crack behavior on a Cu-Zn-Al SMA

    Directory of Open Access Journals (Sweden)

    V. Di Cocco

    2014-10-01

    Optical Microscope (LOM observations. Furthermore a fatigue crack propagation and fracture surface scanning electron microscope (SEM observations have been performed in order to evaluate the crack path and the main crack micromechanisms.

  20. Corrosion and Fatigue Behavior of High-Strength Steel Treated with a Zn-Alloy Thermo-diffusion Coating

    Science.gov (United States)

    Mulligan, C. P.; Vigilante, G. N.; Cannon, J. J.

    2017-11-01

    High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of 1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.

  1. Fatigue crack growth behavior of a new single crystal nickel-based superalloy (CMSX-4) at 650 C

    International Nuclear Information System (INIS)

    Sengupta, A.; Putatunda, S.K.

    1994-01-01

    CMSX-4 is a recently developed rhenium containing single crystal nickel-based superalloy. This alloy has potential applications in many critical high-temperature applications such as turbine blades, rotors, nuclear reactors, etc. The fatigue crack growth rate and the fatigue threshold data of this material is extremely important for accurate life prediction, as well as failure safe design, at elevated temperatures. In this paper, the fatigue crack growth behavior of CMSX-4 has been studied at 650 C. The investigation also examined the influence of γ' precipitates (size and distribution) on the near-threshold fatigue crack growth rate and the fatigue threshold. The influence of load ratio on the fatigue crack growth rate and the fatigue threshold was also examined. Detailed fractographic studies were carried out to determine the crack growth mechanism in fatigue in the threshold region. Compact tension specimens were prepared from the single crystal nickel-based superalloy CMSX-4 with [001] orientation as the tensile loading axis direction. These specimens were given three different heat treatments to produce three different γ' precipitate sizes and distributions. Fatigue crack growth behavior of these specimens was studied at 650 C in air. The results of the present investigation indicate that the near-threshold fatigue crack growth rate decreases and that the fatigue threshold increases with an increase in the γ' precipitate size at 650 C. The fatigue threshold decreased linearly with an increase in load ratio. Fractographs at 650 C show a stage 2 type of crack growth along {100} type of crystal planes in the threshold region, and along {111} type of crystal planes in the high ΔK region

  2. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fiber strength.

  3. The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000 degrees C

    International Nuclear Information System (INIS)

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1997-01-01

    Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000 degrees C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fiber strength

  4. Driver sleepiness, fatigue, careless behavior and risk of motor vehicle crash and injury: Population based case and control study

    Directory of Open Access Journals (Sweden)

    Abdulbari Bener

    2017-10-01

    Conclusion: The current study confirmed that drivers with chronic fatigue, acute sleepiness, and careless driver behavior may significantly increases the risk of road crash which can be lead to serious injury.

  5. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  6. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  7. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  8. Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy

    Science.gov (United States)

    Zhang, H.; Guan, Z. W.; Wang, Q. Y.; Liu, Y. J.; Li, J. K.

    2018-05-01

    The effects of microstructure and stress ratio on high cycle fatigue of nickel superalloy Nimonic 80A were investigated. The stress ratios of 0.1, 0.5 and 0.8 were chosen to perform fatigue tests in a frequency of 110 Hz. Cleavage failure was observed, and three competing failure crack initiation modes were discovered by a scanning electron microscope, which were classified as surface without facets, surface with facets and subsurface with facets. With increasing the stress ratio from 0.1 to 0.8, the occurrence probability of surface and subsurface with facets also increased and reached the maximum value at R = 0.5, meanwhile the probability of surface initiation without facets decreased. The effect of microstructure on the fatigue fracture behavior at different stress ratios was also observed and discussed. Based on the Goodman diagram, it was concluded that the fatigue strength of 50% probability of failure at R = 0.1, 0.5 and 0.8 is lower than the modified Goodman line.

  9. Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S. [Tomsk State University, Tomsk, 634050 (Russian Federation); Narikovich, A. S.; Leitsin, V. N. [Immanuel Kant Baltic Federal University, Kaliningrad, 236041 (Russian Federation); Kulkov, S. N., E-mail: kulkov@ispms.ru [Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2016-08-02

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  10. Relationships among the Microstructure, Mechanical Properties, and Fatigue Behavior in Thin Ti6Al4V

    Directory of Open Access Journals (Sweden)

    Y. Fan

    2016-01-01

    Full Text Available The microstructures of Ti6Al4V are complex and strongly affect its mechanical properties and fatigue behavior. This paper investigates the role of microstructure on mechanical and fatigue properties of thin-section Ti6Al4V sheets, with the aim of reviewing the effects of microstructure on fatigue properties where suboptimal microstructures might result following heat treatment of assemblies that may not be suited to further annealing, for example, following laser welding. Samples of Ti6Al4V sheet were subjected to a range of heat treatments, including annealing and water quenching from temperatures ranging from 650°C to 1050°C. Micrographs of these samples were inspected for microstructure, and hardness, 0.2% proof stress, elongation, and fracture strength were measured and attributed back to microstructure. Fractography was used to support the findings from microstructure and mechanical analyses. The strength ranking from high to low for the microstructures of thin Ti6Al4V sheets observed in this study is as follows: acicular α′ martensite, Widmanstätten, bimodal, and equiaxed microstructure. The fatigue strength ranking from high to low is as follows: equiaxed, bimodal, Widmanstätten, and acicular α′ martensite microstructure.

  11. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  12. Damage formation, fatigue behavior and strength properties of ZrO_2-based ceramics

    International Nuclear Information System (INIS)

    Kozulin, A. A.; Kulkov, S. S.; Narikovich, A. S.; Leitsin, V. N.; Kulkov, S. N.

    2016-01-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO_2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10"5 stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  13. Out-of-pile fatigue tests on Zircaloy CANDU sheaths

    International Nuclear Information System (INIS)

    Roth, Maria; Ciocanescu, Marin; Gheorghiu, Constantin; Pitigoi, Vasile; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    The paper outlines the achievements in the nuclear research field of cooperation on Nuclear Fuel performed as part of the collaboration under the Memorandum of Understanding, settled between Atomic Energy of Canada Limited (AECL) and Institute for Nuclear Research (ICN), The sheath behavior was simulated using out-of-pile fatigue tests, in conditions identical with those met during the operation in power cycling of CANDU reactor, except for irradiation. A special test rig, designed and carried-out at ICN ensured the experimental requirements according to the Canadian testing procedure. The description of the experimental setup and monitoring of testing parameters were also done. The fatigue life time, expressed as number of cycles to rupture (N), was measured as a function of the total strain amplitude (e) induced in the Zircaloy-4 sheath samples. Strain-Life time fatigue dependence (e-N) under low cycle fatigue conditions was also verified using the Coffin-Manson correlation. (authors)

  14. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    Science.gov (United States)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue

  15. Investigation of the effect of vacuum environment on the fatigue and fracture behavior of 7075-T6.

    Science.gov (United States)

    Hudson, C. M.

    1972-01-01

    Axial-load fatigue-life, fatigue-crack propagation, and fracture-toughness experiments were conducted on sheet specimens made of 7075-T6 aluminum alloy. These experiments were conducted at air pressures ranging from 101 kN/sq m to 7 micronewtons/sq m to determine the effect of air pressure on fatigue behavior. Analysis of the results from the fatigue-life experiments indicated that for a given stress level, the lower the air pressure was the longer the fatigue life. At a pressure of 7 micronewtons/sq m, fatigue lives were 15 to 30 times longer than at 101 kN/sq m. Analysis of the results from the fatigue-crack-growth experiments indicates that at low values of stress-intensity range, the fatigue-crack-growth rates were approximately twice as high at atmospheric pressure as in vacuum. However, at higher values of stress-intensity range, the fatigue-crack-growth rates were nominally the same in vacuum and at atmospheric pressure.

  16. Effect of corrosion and sandblasting on the high cycle fatigue behavior of reinforcing B500C steel bars

    Directory of Open Access Journals (Sweden)

    Marina C. Vasco

    2017-10-01

    Full Text Available In a series of applications, steel reinforced concrete structures are subjected to fatigue loads during their service life, what in most cases happens in corrosive environments. Surface treatments have been proved to represent proper processes in order to improve both fatigue and corrosion resistances. In this work, the effect of corrosion and sandblasting on the high cycle fatigue behavior reinforcing steel bars is investigated. The investigated material is the reinforcing steel bar of technical class B500C, of nominal diameter of 12 mm. Steel bars specimens were first exposed to corrosion in alternate salt spray environment for 30 and 60 days and subjected to both tensile and fatigue tests. Then, a series of specimens were subjected to common sandblasting, corroded and mechanically tested. Metallographic investigation and corrosion damage evaluation regarding mass loss and martensitic area reduction were performed. Tensile tests were conducted after each corrosion exposure period prior to the fatigue tests. Fatigue tests were performed at a stress ratio, R, of 0.1 and loading frequency of 20 Hz. All fatigue tests series as well as tensile test were also performed for as received steel bars to obtain the reference behavior. The results have shown that sandblasting hardly affects the tensile behavior of the uncorroded material. The effect of sandblasting on the tensile behavior of pre-corroded specimens seems to be also limited. On the other hand, fatigue results indicate an improved fatigue behavior for the sandblasted material after 60 days of corrosion exposure. Martensitic area reductions, mass loss and depth of the pits were significantly smaller for the case of sandblasted materials, which confirms an increased corrosion resistance

  17. Fatigue crack growth behavior of RAFM steel in Paris and threshold regimes at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Babu, M. Nani; Sasikala, G., E-mail: gsasi@igcar.gov.in; Dutt, B. Shashank; Venugopal, S.; Bhaduri, A.K.; Jayakumar, T.

    2014-04-01

    Fatigue crack growth (FCG) behavior of a reduced activation ferritic martensitic (indigenous RAFM) steel has been evaluated at 300, 653 and 823 K in Paris and threshold regimes. The effect of temperature on threshold stress intensity factor range and associated crack closure mechanisms is highlighted. The FCG results were compared with those for EUROFER 97. Further, crack tip effective stress intensity factor ranges (ΔK{sub tip,eff}) have been evaluated by taking crack tip shielding into account in order to examine the effect of temperature on true intrinsic FCG behavior.

  18. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    International Nuclear Information System (INIS)

    Facheris, G.

    2014-01-01

    The improvement of the reliability and of the safety in the design of components belonging to the primary cooling circuit of a light water nuclear reactor is nowadays one of the most important research topics in nuclear industry. One of the most important damage mechanisms leading the crack initiation in this class of components is the low cycle fatigue (LCF) driven by thermal strain fluctuations caused by the complex thermo-mechanical loading conditions typical for the primary circuit (e.g. operating thermal transients, thermal stratification, turbulent mixing of cold and hot water flows, etc.). The cyclic application of the resulting plastic deformation to the steel grades commonly used for the fabrication of piping parts (e.g. austenitic stainless steels) is associated with a continuous evolution of the mechanical response of the material. As an additional complication, the cyclic behavior of stainless steels is influenced by temperature, strain amplitude and cyclic accumulation of inelastic strain (i.e. ratcheting). The accurate prediction of the structural response of components belonging to the primary cooling circuit requires the development of a reliable constitutive model that must be characterized by a reduced complexity to allow its application in an industrial context. In this framework, the main goal of the current dissertation is to formulate, calibrate and implement in a commercial Finite Element code, a constitutive model that is suitable for the stainless stain grade 316L subjected to complex loading conditions. As a first task, a characterization of the mechanical behavior of 316L subjected to uniaxial and multiaxial strain-controlled conditions (including LCF and ratcheting) is carried out performing several tests in the laboratories of the Paul Scherrer Institute (PSI, Villigen, Switzerland) and of Politecnico di Milano (Italy). The uniaxial experiments demonstrate that, prescribing a strain-controlled ratcheting path, a harder material response

  19. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Facheris, G.

    2014-07-01

    The improvement of the reliability and of the safety in the design of components belonging to the primary cooling circuit of a light water nuclear reactor is nowadays one of the most important research topics in nuclear industry. One of the most important damage mechanisms leading the crack initiation in this class of components is the low cycle fatigue (LCF) driven by thermal strain fluctuations caused by the complex thermo-mechanical loading conditions typical for the primary circuit (e.g. operating thermal transients, thermal stratification, turbulent mixing of cold and hot water flows, etc.). The cyclic application of the resulting plastic deformation to the steel grades commonly used for the fabrication of piping parts (e.g. austenitic stainless steels) is associated with a continuous evolution of the mechanical response of the material. As an additional complication, the cyclic behavior of stainless steels is influenced by temperature, strain amplitude and cyclic accumulation of inelastic strain (i.e. ratcheting). The accurate prediction of the structural response of components belonging to the primary cooling circuit requires the development of a reliable constitutive model that must be characterized by a reduced complexity to allow its application in an industrial context. In this framework, the main goal of the current dissertation is to formulate, calibrate and implement in a commercial Finite Element code, a constitutive model that is suitable for the stainless stain grade 316L subjected to complex loading conditions. As a first task, a characterization of the mechanical behavior of 316L subjected to uniaxial and multiaxial strain-controlled conditions (including LCF and ratcheting) is carried out performing several tests in the laboratories of the Paul Scherrer Institute (PSI, Villigen, Switzerland) and of Politecnico di Milano (Italy). The uniaxial experiments demonstrate that, prescribing a strain-controlled ratcheting path, a harder material response

  20. Role of Lactobacillus acidophilus loaded floating beads in chronic fatigue syndrome: behavioral and biochemical evidences.

    Science.gov (United States)

    Singh, P K; Chopra, K; Kuhad, A; Kaur, I P

    2012-04-01

      In recent years the interface between neuropsychiatry and gastroenterology has converged in to a new discipline referred to as enteric neuroscience. Implications of brain-gut communication in the pathogenesis of psychiatric disorders indicate a possible role of suitably packaged/delivered probiotics as newer therapeutic options. In the present study probable role of per-oral administration of free Lactobacillus acidophilus (LAB) and LAB loaded alginate beads in attenuation of the symptoms associated with chronic fatigue syndrome (CFS) were evaluated.   Chronic fatigue syndrome following physical fatigue was induced in rats by forcing them to swim (forced swim test; FST) in water till exhaustion, after weighing them down with 10% their body weight, daily for 28 days. Immobility (I) and postswim fatigue time (PSF) were taken as suitable markers. Free LAB and LAB loaded floating beads (FBs) were administered, from 21 to 28 days.   Immobility and PSF were found to increase considerably in FST rats (665 ± 22 s and 196 ± 6 s) as compared with the naïve (32 ± 7 s and 22 ± 2 s) at 20 days, establishing severe fatigue like behavior. FST control group exhibited significant (P < 0.05) hypertrophy of spleen, hypotrophy of thymus, and increased oxido-nitrosative stress in brain and tumor necrosis factor-α (TNF-α) levels in serum. Treatment with LAB and LAB FBs significantly decreased I and PSF and attenuated (P < 0.05) oxido-nitrosative stress and TNF-α levels. Spleen and thymus were also restored to their original size in this group.   The findings suggest a valuable therapeutic role of LAB especially when incorporated into alginate beads for the treatment of CFS. © 2012 Blackwell Publishing Ltd.

  1. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M.

    2013-01-01

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic ev