WorldWideScience

Sample records for low-current h2 discharges

  1. Investigation of high-current low pressure quasistationary volume discharge in cross-field ExH

    International Nuclear Information System (INIS)

    Bashutin, O.A.; Vovchenko, E.D.; Kirnev, G.S.

    1995-01-01

    Different types of high current discharge permitted to create large volume of high density homogeneous plasma are widely used in modern technique. Such discharges are applied as plasma emitters of charged particles and also in various technologies for sputtering, implantation and etching of materials. The results of a plasma electron density dynamics investigation of low pressure quasistationary volume discharge in cross-field E x H is described in this paper. The discharge was created in a quadrupole magnetic system with special form electrodes and has following characteristics current up to 1,8 kA, voltage on the interval 80-120 V, existence time up to 1,5 ms. The discharge conserves diffusive character of plasma and cathode layer on all current range. On a first research stage plasma parameters of discharge were determined by means of Langmuir probe, that could been used in central discharge region only, where magnetic field was equal to zero. An obtained plasma density was reached 1,5*10 15 cm -3 with electron temperature T e =10 eV. The research of discharge plasma in regions with magnetic field had required to use interferometric measurement technique

  2. Measurement of the C2H2 destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    International Nuclear Information System (INIS)

    Rousseau, A; Guaitella, O; Gatilova, L; Hannemann, M; Roepcke, J

    2007-01-01

    The kinetics of destruction of C 2 H 2 is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm -1 ) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C 2 H 2 concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C 2 H 2 depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C 2 H 2 is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO 2 photocatalyst on the C 2 H 2 oxidation rate is reported

  3. Measurement of the C{sub 2}H{sub 2} destruction kinetics by infrared laser absorption spectroscopy in a pulsed low pressure dc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Guaitella, O [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Gatilova, L [LPTP, Ecole Polytechnique, CNRS, Route de Saclay, 91 128 Palaiseau Cedex (France); Hannemann, M [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany); Roepcke, J [INP-Greifswald, Friedrich-Ludwig-Jahn-Str. 19, 17489 Greifswald (Germany)

    2007-04-07

    The kinetics of destruction of C{sub 2}H{sub 2} is investigated in a low pressure pulsed dc discharge in dry air. Tuneable diode laser absorption spectroscopy in the mid-infrared region (1350 cm{sup -1}) has been used to measure the influence of (i) the pulse duration (ii) the pulse repetition rate and (iii) the pulse current on the C{sub 2}H{sub 2} concentration in situ the discharge tube. First, it is shown that in the plasma region under flow conditions the time averaged concentration of C{sub 2}H{sub 2} depends only on the time averaged discharge current. Second, time resolved measurements have been performed in a closed reactor, i.e. under static conditions. A simple kinetic modelling of the pulsed discharge leads to a good agreement with the experimental results and shows that the oxidation rate of C{sub 2}H{sub 2} is mainly controlled by the time averaged concentration of O atoms. Finally, the influence of porous TiO{sub 2} photocatalyst on the C{sub 2}H{sub 2} oxidation rate is reported.

  4. CO2 Dissociation by Low Current Gliding Discharge in the Reverse Vortex Flow

    Science.gov (United States)

    Gutsol, Alexander

    2012-10-01

    If performed with high energy efficiency, plasma-chemical dissociation of carbon dioxide can be a way of converting and storing energy when there is an excess of electric energy, for example generated by solar elements of wind turbines. CO2 dissociation with efficiency of up to 90% was reported earlier for low pressure microwave discharge in supersonic flow. A new plasma-chemical system uses a low current gliding discharge in the reverse vortex flow of plasma gas. The system is a development of the Gliding Arc in Tornado reactor. The system was used to study dissociation of CO2 in wide ranges of the following experimental parameters: reactor pressure (15-150 kPa), discharge current (50-500 mA), gas flow rate (3-30 liters per minute), and electrode gap length (1-10 cm). Additionally, the effect of thermal energy recuperation on CO2 dissociation efficiency was tested. Plasma chemical efficiency of CO2 dissociation is very low (about 3%) in a short discharge at low pressures (about 15 kPa) when it is defined by electronic excitation. The highest efficiency (above 40%) was reached at pressures 50-70 kPa in a long discharge with thermal energy recuperation. It means that the process is controlled by thermal dissociation with subsequent effective quenching. Plasma chemical efficiency was determined from the data of chromatographic analysis and oscilloscope electric power integration, and also was checked calorimetrically by the thermal balance of the system.

  5. A current driven capacitively coupled chlorine discharge

    International Nuclear Information System (INIS)

    Huang, Shuo; Gudmundsson, J T

    2014-01-01

    The effect of driving current, driving frequency and secondary electrons on capacitively coupled chlorine discharge is systematically investigated using a hybrid approach consisting of a particle-in-cell/Monte Carlo simulation and a volume-averaged global model. The driving current is varied from 20 to 80 A m −2 , the driving frequency is varied from 13.56 to 60 MHz and the secondary electron emission coefficient is varied from 0.0 to 0.4. Key plasma parameters including electron energy probability function, electron heating rate, ion energy and angular distributions are explored and their variations with control parameters are analyzed and compared with other discharges. Furthermore, we extend our study to dual-frequency (DF) capacitively coupled chlorine discharge by adding a low-frequency current source and explore the effect of the low-frequency source on the discharge. The low-frequency current density is increased from 0 to 4 A m −2 . The flux of Cl 2 + ions to the surface increases only slightly while the average energy of Cl 2 + ions to the surface increases almost linearly with increasing low-frequency current, which shows possible independent control of the flux and energy of Cl 2 + ions by varying the low-frequency current in a DF capacitively coupled chlorine discharge. However, the increase in the flux of Cl + ions with increasing low-frequency current, which is mainly due to the increased dissociation fraction of the background gas caused by extra power supplied by the low-frequency source, is undesirable. (paper)

  6. Complementary low energy ion scattering and X-ray photoelectron spectroscopy characterization of polystyrene submitted to N{sub 2}/H{sub 2} glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, F., E-mail: bonatto02@yahoo.com.br [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Rovani, S. [Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Kaufmann, I.R.; Soares, G.V. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Baumvol, I.J.R. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Krug, C. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil)

    2012-02-15

    Low energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS) were used to access the elemental composition and chemical bonding characteristics of polystyrene (PS) surfaces sequentially treated by corona and glow discharge (plasma) processing in N{sub 2}/H{sub 2} ambient. The latter has shown activity as suppressor of pathogenic Staphylococcus epidermidis biofilms. LEIS indicated that oxygen from the corona discharge process is progressively replaced by nitrogen at the PS surface. XPS shows C=N and N-C=O chemical groups as significant inhibitors of bacterial adhesion, suggesting application in medical devices.

  7. Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps.

    Science.gov (United States)

    Xia, Lan-Yan; Gu, Ding-Hong; Tan, Jing; Dong, Wen-Bo; Hou, Hui-Qi

    2008-04-01

    The photolysis of simulating low concentration of hydrogen sulfide malodorous gas was studied under UV irradiation emitted by self-made microwave discharge electrodeless lamps (i.e. microwave UV electrodeless mercury lamp (185/253.7 nm) and iodine lamp (178.3/180.1/183/184.4/187.6/206.2 nm)). Experiments results showed that the removal efficiency (eta H2S) of hydrogen sulfide was decreased with increasing initial H2S concentration and increased slightly with gas residence time; H2S removal efficiency was decreased dramatically with enlarged pipe diameter. Under the experimental conditions with pipe diameter of 36 mm, gas flow rate of 0.42 standard l s(-1), eta H2S was 52% with initial H2S concentration of 19.5 mg m(-3) by microwave mercury lamp, the absolute removal amount (ARA) was 4.30 microg s(-1), and energy yield (EY) was 77.3 mg kW h(-1); eta H2S was 56% with initial H2S concentration of 18.9 mg m(-3) by microwave iodine lamp, the ARA was 4.48 microg s(-1), and the EY was 80.5mg kW h(-1). The main photolysis product was confirmed to be SO4(2-) with IC.

  8. Photolysis of low concentration H2S under UV/VUV irradiation emitted from high frequency discharge electrodeless lamps.

    Science.gov (United States)

    Xu, Jianhui; Li, Chaolin; Liu, Peng; He, Di; Wang, Jianfeng; Zhang, Qian

    2014-08-01

    The photolysis of low concentration of H2S malodorous gas was studied under UV irradiation emitted by self-made high frequency discharge electrodeless lamp with atomic mercury lines at 185/253.7nm. Experiments results showed that the removal efficiency (ηH2S) of H2S was decreased with increasing initial H2S concentration and increased slightly with gas residence time. ηH2S was increased dramatically with relative humidity from<5% to 43% while the concentration of oxygen in gas environments affected the removal of H2S. The mechanisms for direct and indirect photolysis (generation of ozone) were illustrated by the experimental results on photolysis of H2S under argon environments and ozonation of H2S under air environments, respectively. The overall ηH2S by photolysis is higher than the combination of ηH2S by direct photolysis and ozonation, suggesting that hydroxyl radical-mediated indirect photolysis played an important role during photolysis processes. The main photolysis product was confirmed to be SO4(2-) with ion chromatograph. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Investigation on the mode of AC discharge in H2O affected by temperature

    Science.gov (United States)

    Siyuan, DONG; Shaomeng, GUO; Dan, WEN; Xiaoliang, TANG; Gao, QIU

    2018-04-01

    In this paper, some experimental equipment has been set up for kHz frequency AC liquid phase discharge, and the temperature of the deionized water was regulated during discharge. The electrical characteristics and spectra of liquid phase H2O discharge have been investigated. Two discharge modes, high temperature and low temperature, were both found. The results show that there are two mechanisms in liquid phase discharge: the field ionization mechanism and the breakdown mechanism of bubbles, and these two mechanisms are always developed simultaneously; the temperature is the key factor determining the discharge type. At high temperature, the breakdown of bubbles is the main discharge mechanism, and the field ionization mechanism occurs mainly at low temperature.

  10. Nanosecond pulsed discharges in N2 and N2/H2O mixtures

    NARCIS (Netherlands)

    Joosten, R.M.; Verreycken, T.; Veldhuizen, van E.M.; Bruggeman, P.J.

    2011-01-01

    Nanosecond pulsed discharges in N2 and N2/H2O at atmospheric pressure between two pin-shaped electrodes are studied. The evolution of the discharge is investigated with time-resolved imaging and optical emission spectroscopy. The discharge consists of three phases, the ignition (mainly molecular

  11. Studies of low current back-discharge in point-plane geometry with dielectric layer

    International Nuclear Information System (INIS)

    Jaworek, A.; Rajch, E.; Czech, T.; Lackowski, M

    2005-01-01

    The paper presents results of spectroscopic investigations of back-discharge generated in the point-plane electrode geometry in air at atmospheric pressure, with the plane covered with fly ash layer. Four forms of the discharges were studied: onset streamers, glow, breakdown streamers and low-current back-arc discharge. Both polarities of the active discharge electrode, positive and negative, were tested. The back discharge is a type of DC electrical discharge, which take place when the passive plane electrode is covered with a dielectric layer. The layer can be made of solid material or a packed bed of dust or powder of low conductivity. The charge produced due to ionisation processes in the vicinity of the active point electrode is accumulated on the dielectric surface, and generates high electric field through this layer. When critical electric field through the layer is attained an electrical breakdown of the layer take place. The point of breakdown becomes a new source of ions of polarity opposite to those generated by the active electrode. The dielectric layer on the passive electrode causes that gaseous discharges such as breakdown streamers or arc start at lower voltages than they could in the case of normal corona discharge. The visual forms of the discharge were recorded and correlated with the current-voltage characteristics and optical emission spectra. Emission spectra of the discharge were measured in the light wavelength range of 200 to 600 nm to get information about excitation and ionisation processes. The light spectra were analysed by monochromator SPM-2 Karl-Zeiss-Jena with diffraction grating of 1302 grooves/mm and photomultiplier R375 (Hamamatsu) and signal preamplifier unit C7319 (Hamamatsu). The spectral analysis showed that the nitrogen molecular bands were dominant, but the emission of negative ions from the dielectric layer material were also detected. The most noticeable light emission in the range from 280 to 490 nm due to second

  12. Simulation of convection-stabilized low-current glow and arc discharges in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Naidis, G V

    2007-01-01

    A two-dimensional model of stationary convection-stabilized low-current glow and arc discharge columns in atmospheric-pressure air is developed which accounts for deviation of the plasma state from the local thermodynamic equilibrium (LTE). In addition to equations of energy, continuity and momentum (analogous to those used in LTE arc models), the non-LTE model includes balance equations for plasma species and for the vibrational energy of nitrogen molecules. The kinetic scheme is used which was developed recently for the simulation of low-current wall-stabilized discharges in air. Results of calculation of discharge parameters over a wide current range are presented. It is shown that the non-equilibrium effects are substantial at currents lower than ∼ 100 mA. The calculated plasma parameters agree with available experimental data

  13. Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas

    Science.gov (United States)

    Barni, Ruggero; Riccardi, Claudia

    2018-04-01

    We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30-50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.

  14. Reversed-field-pinch and ultra-low-q discharges in REPUTE-2

    International Nuclear Information System (INIS)

    Inoue, N.; Yoshida, Z.; Kamada, Y.; Saito, M.; Miyamoto, K.

    1987-01-01

    Ultra-low q (ULQ) and very-low q (VLQ) discharge experiments have been done using the REPUTE-1 RFP. It was found that in these q regime, the plasma density and beta are fairly high, and the confinement property is less sensitive to the error field compared to the RFP. However, since the temperature of the REPUTE-1 discharge is limited in low value because of the small plasma current due to the small toroidal field, its magnetic Reynolds number is too small to simulate the reactor plasma behavior. The radiation barrier has not been overcome yet, and consequently the energy confinement time is very short. In order to improve these aspects of the REPUTE-1 experiment, the REPUTE-2 is designed to produce higher toroidal field of 2T. The toroidal field increases slowly to the final value as in the case of the ramp-up mode of the RFP operation. The first stage of the REPUTE-2 project will be devoted to study the confinement physics of RFP, ULQ, and VLQ. In the second stage, innovation of these configurations, such as resistive shell RFP, neutral beam current drive, and higher current density, is planned. 8 refs., 1 fig., 2 tabs

  15. H-mode pedestal characteristics in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Burrell, K.H.; Groebner, R.J.

    1998-09-01

    Characteristics of the H-mode pedestal are studied in Type 1 ELM discharges with ITER cross-sectional shape and aspect ratio. The scaling of the width of the edge step gradient region, δ, which is most consistent with the data is with the normalized edge pressure, (β POL PED ) 0.4 . Fits of δ to a function of temperature, such as ρ POL , are ruled out in divertor pumping experiments. The edge pressure gradient is found to scale as would be expected from infinite n ballooning mode theory; however, the value of the pressure gradient exceeds the calculated first stable limit by more than a factor of 2 in some discharges. This high edge pressure gradient is consistent with access to the second stable regime for ideal ballooning for surfaces near the edge. In lower q discharges, including discharges at the ITER value of q, edge second stability requires significant edge current density. Transport simulations give edge bootstrap current of sufficient magnitude to open second stable access in these discharges. Ideal kink analysis using current density profiles including edge bootstrap current indicate that before the ELM these discharges may be unstable to low n, edge localized modes

  16. Current-Induced Membrane Discharge

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; van Soestbergen, M.; Mani, A.

    2012-01-01

    . Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H+ ions, and OH- ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal...... neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge'' (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length...

  17. Investigations of low qa discharges in the SINP tokamak

    Indian Academy of Sciences (India)

    Low edge safety factor discharges including very low (1 < < 2) and ultra low (0 < < 1) have been obtained in the SINP tokamak. It has been observed that accessibility of these discharges depends crucially on the fast rate of plasma current rise. Several interesting results in terms of different time scales like ...

  18. Production mechanism of negative pionlike particles in H2 gas discharge plasma

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1996-04-01

    Negative pionlike and muonlike particles are produced by an electron bunch and a positive ion bunch which are generated controllably from an electron beam and a gas. Physical characteristics of the negative pionlike particles are the same with those of negative pionlike particles extracted from the H 2 gas discharge. Thus, the production mechanism in the H 2 gas discharge is deduced. (author)

  19. Modeling of Pulsed Direct-Current Glow Discharge

    International Nuclear Information System (INIS)

    Du Mu; Zheng Yaru; Fan Yujia; Zhang Nan; Liu Chengsen; Wang Dezhen

    2010-01-01

    A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic calculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results.

  20. Self-consistent model for pulsed direct-current N2 glow discharge

    International Nuclear Information System (INIS)

    Liu Chengsen

    2005-01-01

    A self-consistent analysis of a pulsed direct-current (DC) N 2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment. (authors)

  1. OH kinetic in high-pressure plasmas of atmospheric gases containing C2H6 studied by absolute measurement of the radical density in a pulsed homogeneous discharge

    International Nuclear Information System (INIS)

    Magne, L; Pasquiers, S; Gadonna, K; Jeanney, P; Blin-Simiand, N; Jorand, F; Postel, C

    2009-01-01

    The absolute value of the hydroxyl radical was measured in the afterglow of an homogeneous photo-triggered discharge generated in N 2 /O 2 /H 2 O/C 2 H 6 mixtures, using a UV absorption diagnostic synchronized with the discharge current pulse. Measurements show that OH is efficiently produced even in the absence of water vapour in the mixture, and that the radical production is closely linked to the degradation kinetic of the hydrocarbon. Experimental results for dry mixtures, both for OH and for the removal of ethane in the discharge volume, are compared with predictions of a self-consistent 0D discharge and the kinetic model. It appears that the oxidation reaction of the ethane molecule by O( 3 P) atoms plays a minor role. Dissociation of the hydrocarbon through quenching collisions of the nitrogen metastable states are of great importance for a low oxygen concentration value. Also, the oxidation of ethane by O( 1 D) cannot be neglected at high oxygen concentration. The most probable exit channel for N 2 states quenching collisions by ethane is the production of ethene and hydrogen molecules. Afterwards C 2 H 4 should be dissociated to produce H and H 2 . As previously suggested from the study of the OH density time evolution in relative value, the recombination of H and O atoms appears as a main process for the production of OH in transient low temperature plasmas generated in atmospheric gases at high pressure. Another important reaction is the reduction of the HO 2 radical by O, this radical coming from the addition of H on the oxygen molecule. H atoms come from numerous kinetic processes, amongst which is the dissociation of ethene.

  2. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    Science.gov (United States)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  3. On transition from diffuse mode to the constricted one with high-current cathode spot in overvoltage open discharge in D2

    Science.gov (United States)

    Akishev, Yu S.; Karalnik, V. B.; Medvedev, M. A.; Petryakov, A. V.; Trushkin, N. I.; Shafikov, A. G.

    2017-11-01

    So called “open discharges” in a narrow gap between the solid cathode and grid anode are widely used for generation of the pulsed high-current electron beams with energy up to 100 keV. The need to get high-energy e-beams leads to the necessity in using of strong overvoltage of the short gas gap with the reduced electric field of the order of 105 Td or higher. The discharge under strong overvoltage is unstable and tends to transit into high-current regime with low voltage. In the case of the open discharge in D2 at low pressure (about 0.5-2 Torr) and powered by stepwise voltage with amplitude up to 25 kV we revealed that this discharge exhibits two diffuse regimes which follow one by one and finally transits into the constricted mode with formation of high-current spots on the cathode. The physical properties of these gas discharge regimes have been explored in detail with the usage of the fast multi-frame camera synchronized with the current and voltage of discharge. Our findings promote more insight into physics of the overvoltage open discharge generating the e-beams with energy up to 25 keV.

  4. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  5. Characteristics of the First H-mode Discharges in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Menard, J.E.; Mueller, D.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Maqueda, R.J.; Ono, M.; Paoletti, F.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.; Synakowski, E.J.

    2001-01-01

    We report observations of the first low-to-high (L-H) confinement mode transitions in the National Spherical Torus Experiment (NSTX). The H-mode energy confinement time increased over reference L-mode discharges transiently by 100-300%, as high as ∼150 ms. This confinement time is ∼1.8-2.3 times higher than predicted by a multi-machine ELM-free H-mode scaling. This achievement extends the H-mode window of fusion devices down to a record low aspect ratio (R/a) ∼ 1.3, challenging both confinement and L-H power thresholds scalings based on conventional aspect ratio tokamaks

  6. Magnetic Fluctuations during plasma current rise of divertor discharge in JT-60

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Kikuchi, Mitsuru; Hosogane, Nobuyuki; Tsuji, Syunji; Hayashi, Kazuo.

    1986-03-01

    During a current rise phase in the JT-60 divertor discharge, a series of magnetic fluctuations which do not rotate poloidally (phase-locking) is observed. They cause a cooling of plasma periphery and an enhancement of H α emission in the divertor chamber. A significant increase in β P + 1 i /2 with minor disruptions during the phase-locked magnetic fluctuation suggests a relaxation of the current profile in the current rise phase of the divertor discharge. (author)

  7. Investigation of lower hybrid current drive during H-mode in EAST tokamak

    International Nuclear Information System (INIS)

    Li Miao-Hui; Ding Bo-Jiang; Kong Er-Hua; Zhang Lei; Zhang Xin-Jun; Qian Jin-Ping; Yan Ning; Han Xiao-Feng; Shan Jia-Fang; Liu Fu-Kun; Wang Mao; Xu Han-Dong; Wan Bao-Nian

    2011-01-01

    H-mode discharges with lower hybrid current drive (LHCD) alone are achieved in EAST divertor plasma over a wide parameter range. These H-mode discharges are characterized by a sudden drop in D α emission and a spontaneous rise in main plasma density. Good lower hybrid (LH) coupling during H-mode is obtained by putting the plasma close to the antenna and by injecting D 2 gas from a pipe near the grill mouse. The analysis of lower hybrid current drive properties shows that the LH deposition profile shifts off axis during H-mode, and current drive (CD) efficiency decreases due to the increase in density. Modeling results of H-mode discharges with a general ray tracing code GENRAY are reported. (physics of gases, plasmas, and electric discharges)

  8. Experiments on toroidal inductively coupled alternating-current gas discharges

    International Nuclear Information System (INIS)

    Lok, J.

    1976-01-01

    This report is on an experimental study of a toroidal, inductively coupled a.c. gas discharge sustained at pressures roughly between one tenth of a Torr and some tens of Torrs. After breakdown is obtained at low pressure, additional gas is let in. The energy is inductively coupled into the electrodeless discharge by means of an iron core transformer of which the toroidal plasma column is the secondary winding. The power dissipated in the plasma is between 80 and 260 kW and is delivered by a motor-generator system at a frequency of 8 kHz for times up to 2 seconds. A toroidal magnetic field of 0.5 T maximum can be supplied in a short pulse. Five different gases (hydrogen, deuterium, helium, argon, and nitrogen) are used. The pressure range in which the discharges are sustained is specified, and the dynamic current-voltage characteristics are given for different pressures. Some typical streak pictures with simultaneously obtained recordings of the time behaviour of the discharge current and of the loop voltage are presented for the initial phase - at low pressure - of the discharge. The shape and the position of fully developed discharges at various pressures are discussed on the basis of photographic observations. The temperature of hydrogen plasmas is derived both from the electrical conductivity and from the emission of line radiation. The values of the temperature obtained in these ways differ in magnitude and in time behaviour. A possible explanation of the discrepancy can be obtained in terms of expansion and contraction of electron density and temperature profiles during a period of the discharge current, if it is taken into account that the main part of the light emission always originates from the outer colder regions of the plasma. In a somewhat different pressure regime, this picture is confirmed by microwave measurements

  9. Spectroscopic diagnostics and modeling of Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition

    International Nuclear Information System (INIS)

    Lombardi, G.; Hassouni, K.; Benedic, F.; Mohasseb, F.; Roepcke, J.; Gicquel, A.

    2004-01-01

    In this paper Ar/H 2 /CH 4 microwave discharges used for nanocrystalline diamond chemical vapor deposition in a bell-jar cavity reactor were characterized by both experimental and modeling investigations. Discharges containing 1% CH 4 and H 2 percentages ranging between 2% and 7% were analyzed as a function of the input microwave power under a pressure of 200 mbar. Emission spectroscopy and broadband absorption spectroscopy were carried out in the UV-visible spectral range in order to estimate the gas temperature and the C 2 density within the plasma. Infrared tunable diode laser absorption spectroscopy was achieved in order to measure the mole fractions of carbon-containing species such as CH 4 , C 2 H 2 , and C 2 H 6 . A thermochemical model was developed and used in order to estimate the discharge composition, the gas temperature, and the average electron energy in the frame of a quasihomogeneous plasma assumption. Experiments and calculations yielded consistent results with respect to plasma temperature and composition. A relatively high gas temperature ranging between 3000 and 4000 K is found for the investigated discharge conditions. The C 2 density estimated from both experiments and modeling are quite high compared with what is generally reported in the literature for the same kind of plasma system. It ranges between 10 13 and 10 14 cm -3 in the investigated power range. Infrared absorption measurements and model predictions indicate quite low densities of methane and acetylene, while the atomic carbon density calculated by the model ranges between 10 13 and 10 15 cm -3 . The methane and hydrogen introduced in the feed gas are subject to a strong dissociation, which results in a surprisingly high H-atom population with mole fraction ranging between 0.04 and 0.16. Result analysis shows that the power coupling efficiency would range between 70% and 90%, which may at least explain the relatively high values obtained, as compared with those reported in the

  10. Characterization and modelling of low-pressure rf discharges at 2-500 MHz for miniature alkali vapour dielectric barrier discharge lamps

    International Nuclear Information System (INIS)

    Venkatraman, Vinu; Shea, Herbert; Pétremand, Yves; Rooij, Nico de

    2012-01-01

    Low-pressure dielectric barrier discharge (DBD) alkali vapour lamps are of particular interest for portable atomic clocks because they (1) could enable low-power operation, (2) generate the precise required wavelength, (3) are planar simplifying chip-level integration and (4) use external electrodes, which increases the lifetime. Given the stringent requirements on lamps for atomic clocks, it is important to identify the parameters that can be optimized to meet these performance requirements (size, power consumption, stability, reliability). We report on the electrical and optical characteristics of dielectric barrier plasma discharges observed in two configurations: (1) in a vacuum chamber over a wide low-pressure range (2-100 mbar) for three different buffer gases (He, Ar, N 2 ) driven at different frequencies between 2 and 500 MHz and (2) on microfabricated hermetically sealed Rb vapour cells filled with 30 and 70 mbar of Ar. We discuss the optimum conditions for a low-power and stable operation of a Rb vapour DBD lamp, aimed at chip-scale atomic clocks. We also present the electrical modelling of the discharge parameters to understand the power distribution mechanisms and the input power to discharge power coupling efficiency.

  11. Nanoparticle formation in H2O/N-2 and H2O/Ar mixtures under irradiation by 20 MeV protons and positive corona discharge

    DEFF Research Database (Denmark)

    Imanaka, M.; Tomita, S.; Kanda, S.

    2010-01-01

    To investigate the contribution of ions to gas nucleation, we have performed experiments on the formation of water droplets in H2O/N-2 and H2O/Ar gas mixtures by irradiation with a 20 MeV proton beam and by positive corona discharge. The size of the formed nanoparticles was measured using...

  12. Study on the hydrogen negative ion in low pressure discharges

    International Nuclear Information System (INIS)

    Bruneteau, A.M.

    1983-07-01

    A new use of negative hydrogen ions is the production of intense fast neutral atom beams useful in plasma heating in thermonuclear heating. That is one of the reasons that started this study. The density of negative hydrogen ions in diffusion, and multipole-type low pressure (10 -3 - 10-2 Torr) discharges is deduced from the various formation and destruction processes of the species present in these discharges. The H - ions are essentially produced by dissociative attachment to vibrationally excited molecules and destroyed by processes the relative importance of which is discussed as a function of the discharge parameters. The experimental study of the density of the H - ions, measured by photodetachment, as a function of these parameters, coroborates the theoretical model [fr

  13. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    Science.gov (United States)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  14. Excess heat production in Pd/D during periodic pulse discharge current in various conditions

    International Nuclear Information System (INIS)

    Karabut, A.B.

    2006-01-01

    Experimental date from low-energy nuclear reactions (LENR) in condensed media are presented. The nuclear reactions products were found in solid cathode media used in glow discharge. Apparently, the nuclear reactions were initiated when bombarding the cathode surface by plasma ions with the energy of 1.0 - 2.0 keV. Excess heat from a high current glow discharge reaction in D 2 , Xe, and Kr using cathodes already charged with preliminary deuterium-charged Pd and Ti cathode samples are given. Excess heat up to 10-15 W and efficiency up to 130% were recorded under the experiments for Pd cathode samples in D 2 discharge. Excess heat up to 5 W and efficiency up to 150% were recorded for Pd cathodes that were charged with deuterium before the run, in Xe and Kr discharges. At the same time excess heat was not observed for pure Pd cathode samples in Xe and Kr discharges. The formation of impurity nuclides ( 7 Li, 13 C, 15 N, 20 Ne, 29 Si, 44 Ca, 48 Ca, 56 Fe, 57 Fe, 59 Co, 64 Zn, 66 Zn, 75 As, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 112 Cd, 114 Cd and 115 In) with 'the efficiency up to 10 13 at./s was recorded. The isotopic ratios of these new nuclides were quite different from the natural ratios. Soft X-ray radiation from the solid-state cathode with the intensity up to 0.01 Gy/s was recorded in experiments with discharges in H 2 , D 2 , Ar, Xe, and Kr. The X-ray radiation was observed in bursts of up to 10 6 photons, with up to 10 5 bursts per second while the discharge was formed and within 100 ms after turning off the discharge current. The results of the X-ray radiation registration showed that the excited energy levels have a lifetime up to 100 ms or more, and the energy of 1.2 - 2.5 keV. A possible mechanism for producing excess heat and nuclear transmutation reactions in the solid medium with the excited energy levels is considered

  15. INFLUENCE OF VACUUM ARC PLASMA EVAPORATOR CATHODE GEOMETRY OF ON VALUE OF ADMISSIBLE ARC DISCHARGE CURRENT

    Directory of Open Access Journals (Sweden)

    I. A. Ivanou

    2015-01-01

    Full Text Available An analysis of main design parameters that determine a level of droplet formation intensity at the generating stage of plasma flow has been given in the paper. The paper considers the most widely used designs of water cooled consumable cathodes. Ti or Ti–Si and Fe–Cr alloys have been taken as a material for cathodes. The following calculated data: average ionic charge Zi for titanium plasma +1.6; for «titanium–silicon plasma» +1.2, an electronic discharge 1.6022 ⋅ 10–19 C, an ion velocity vi = 2 ⋅ 104 m/s, an effective volt energy equivalent of heat flow diverted in the cathode Uк = 12 V, temperature of erosion cathode surface Тп = 550 К; temperature of the cooled cathode surface То = 350 К have been accepted in order to determine dependence of a maximum admissible arc discharge current on cathode height. The calculations have been carried out for various values of the cathode heights hк (from 0.02 to 0.05 m. Diameter of a target cathode is equal to 0.08 m for a majority of technological plasma devices, therefore, the area of the erosion surface is S = 0.005 m2.A thickness selection for a consumable target cathode part in the vacuum arc plasma source has been justified in the paper. The thickness ensures formation of minimum drop phase in the plasma flow during arc cathode material evaporation. It has been shown that a maximum admissible current of an arc discharge is practically equal to the minimum current of stable arcing when thickness of the consumable cathode part is equal to 0.05 m. The admissible discharge current can be rather significant and ensure high productivity during coating process with formation of relatively low amount of droplet phase in the coating at small values of hк.

  16. Heat-equilibrium low-temperature plasma decay in synthesis of ammonia via transient components N2H6

    International Nuclear Information System (INIS)

    Cao Guobin; Song Youqun; Chen Qing; Zhou Qiulan; Cao Yun; Wang Chunhe

    2001-01-01

    The author introduced a new method of heat-equilibrium low-temperature plasma in ammonia synthesis and a technique of continuous real-time inlet sampling mass-spectrometry to detect the reaction channel and step of the decay of transient component N 2 H 6 into ammonia. The experimental results indicated that in the process of ammonia synthesis by discharge of N 2 and H 2 mixture, the transient component N 2 H 6 is a necessary step

  17. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Chamorro, J. C.; Cejas, E.; Kelly, H.

    2015-01-01

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm 2 , both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium

  18. Inverted end-Hall-type low-energy high-current gaseous ion source

    International Nuclear Information System (INIS)

    Oks, E. M.; Vizir, A. V.; Shandrikov, M. V.; Yushkov, G. Yu.; Grishin, D. M.; Anders, A.; Baldwin, D. A.

    2008-01-01

    A novel approach to low-energy, high-current, gaseous ion beam generation was explored and an ion source based on this technique has been developed. The source utilizes a dc high-current (up to 20 A) gaseous discharge with electron injection into the region of ion generation. Compared to the conventional end-Hall ion source, the locations of the discharge anode and cathode are inverted: the cathode is placed inside the source and the anode outside, and correspondingly, the discharge current is in the opposite direction. The discharge operates in a diverging axial magnetic field, similar to the end-Hall source. Electron generation and injection is accomplished by using an additional arc discharge with a ''cold'' (filamentless) hollow cathode. Low plasma contamination is achieved by using a low discharge voltage (avoidance of sputtering), as well as by a special geometric configuration of the emitter discharge electrodes, thereby filtering (removing) the erosion products stemming from the emitter cathode. The device produces a dc ion flow with energy below 20 eV and current up to 2.5 A onto a collector of 500 cm 2 at 25 cm from the source edge, at a pressure ≥0.02 Pa and gas flow rate ≥14 SCCM. The ion energy spread is 2 to 3 eV (rms). The source is characterized by high reliability, low maintenance, and long lifetime. The beam contains less than 0.1% of metallic ions. The specific electric energy consumption is 400 eV per ion registered at the collector. The source operates with noble gases, nitrogen, oxygen, and hydrocarbons. Utilizing biasing, it can be used for plasma sputtering, etching, and other ion technologies

  19. Low pH Springs - A Natural Laboratory for Ocean Acidification

    Science.gov (United States)

    Derse, E.; Rebolledo-Vieyra, M.; Potts, D. C.; Paytan, A.

    2009-12-01

    Recent increases in atmospheric carbon dioxide of 40% above pre-industrial levels has resulted in rising aqueous CO2 concentrations that lower the pH of the oceans. Currently, the surface ocean has an average pH between 8.1 and 8.2: it is estimated that over the next 100 years this value will decrease by ~0.4 pH units. Previous studies have highlighted the negative impacts that changes in pH (and the resulting CaCO3 saturation state) have on marine organisms; however, to date, very little is known about the long-term impacts of ocean acidification on ecosystems as a whole. The Yucatán Peninsula of Quintana Roo, Mexico, represents an ecosystem where naturally low pH groundwater (7.25-8.07) has been discharging offshore at highly localized points (called ojos) since the last deglaciation. We present preliminary chemical and biological data on a selection of ojos from lagoon sites in Puerto Morelos, Mexico. We address the potential long-term implications of low pH waters on marine ecosystems.

  20. Real-time control for long ohmic alternate current discharges

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.; Gomes, Rui B.

    2014-01-01

    Highlights: • 40 Alternate plasma current (AC) semi-cycles without loss of ionization, more than 1 s of operation. • AC discharges automatic control: feedback loops, time-windows control strategy, goal oriented time-windows and exception handling. • Energy deposition and Carbon radiation evolution during the AC discharges. - Abstract: The ISTTOK tokamak has a long tradition on alternate plasma current (AC) discharges, but the old control system was limiting and lacked full system integration. In order to improve the AC discharges performance the ISTTOK fast control system was updated. This control system developed on site based on the Advanced Telecommunications Computing Architecture (ATCA) standard now integrates the information gathered by all the tokamak real-time diagnostics to produce an accurate observation of the plasma parameters. The real-time actuators were also integrated, allowing a Multiple Input Multiple Output (MIMO) control environment with several synchronization strategies available. The control system software was developed in C++ on top of a Linux system with the Multi-threaded Application Real-Time executor (MARTe) Framework to synchronize the real-time code execution under a 100μs control cycle. In addition, to simplify the discharge programming, a visual Human–Machine Interface (HMI) was also developed using the BaseLib2 libraries included in the MARTe Framework. This paper presents the ISTTOK control system and the optimizations that extended the AC current discharges duration to more than 1 s, corresponding to 40 semi-cycles without apparent degradation of the plasma parameters. This upgrade allows ISTTOK to be used as a low-cost material testing facility with long time exposures to nuclear fusion relevant plasmas, comparable (in duration) with medium size tokamaks

  1. Real-time control for long ohmic alternate current discharges

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.; Gomes, Rui B.

    2014-05-15

    Highlights: • 40 Alternate plasma current (AC) semi-cycles without loss of ionization, more than 1 s of operation. • AC discharges automatic control: feedback loops, time-windows control strategy, goal oriented time-windows and exception handling. • Energy deposition and Carbon radiation evolution during the AC discharges. - Abstract: The ISTTOK tokamak has a long tradition on alternate plasma current (AC) discharges, but the old control system was limiting and lacked full system integration. In order to improve the AC discharges performance the ISTTOK fast control system was updated. This control system developed on site based on the Advanced Telecommunications Computing Architecture (ATCA) standard now integrates the information gathered by all the tokamak real-time diagnostics to produce an accurate observation of the plasma parameters. The real-time actuators were also integrated, allowing a Multiple Input Multiple Output (MIMO) control environment with several synchronization strategies available. The control system software was developed in C++ on top of a Linux system with the Multi-threaded Application Real-Time executor (MARTe) Framework to synchronize the real-time code execution under a 100μs control cycle. In addition, to simplify the discharge programming, a visual Human–Machine Interface (HMI) was also developed using the BaseLib2 libraries included in the MARTe Framework. This paper presents the ISTTOK control system and the optimizations that extended the AC current discharges duration to more than 1 s, corresponding to 40 semi-cycles without apparent degradation of the plasma parameters. This upgrade allows ISTTOK to be used as a low-cost material testing facility with long time exposures to nuclear fusion relevant plasmas, comparable (in duration) with medium size tokamaks.

  2. H2O2 INDUCES DELAYED HYPEREXCITABILITY IN NUCLEUS TRACTUS SOLITARII NEURONS

    Science.gov (United States)

    Ostrowski, Tim D.; Hasser, Eileen M.; Heesch, Cheryl M.; Kline, David D.

    2014-01-01

    Hydrogen peroxide (H2O2) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H2O2 is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H2O2 modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10 – 500 μM H2O2. However, 500 μM H2O2 modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance, hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H2O2 increased conductance of barium-sensitive potassium currents, and block of these currents ablated H2O2-induced changes in RMP, input resistance and AP discharge. Following washout of H2O2 AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H2O2 exposure. H2O2 effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H2O2 initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes. PMID:24397952

  3. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharge: Part II. Model

    International Nuclear Information System (INIS)

    Gielen, John W A M; Groot, Simon de; Dijk, Jan van; Mullen, Joost J A M van der

    2004-01-01

    In a previous paper we had presented experimental results on mercury segregation due to cataphoresis in direct current operated low-pressure argon-mercury gas discharges. In this paper, we present our model to describe cataphoretic segregation in argon (or another noble gas)-mercury discharges. The model is based on the balance equations for mass and momentum and includes electrophoresis effects of electrons on mercury. Good agreement is found between the experimental results and model calculations. The model confirms our experimental observation that the mercury vapour pressure gradient depends on the local mercury vapour pressure. Furthermore, the model predicts the reversal of the direction of the transport of mercury under certain conditions (the phenomenon known as retrograde cataphoresis)

  4. Study of a new direct current atmospheric pressure glow discharge in helium

    Energy Technology Data Exchange (ETDEWEB)

    Gielniak, B. [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fiedler, T. [Johannes Gutenberg-University Mainz, Institute for Inorganic and Analytical Chemistry, Duesbergweg 10-14, 55128 Mainz (Germany); Broekaert, J.A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2011-01-15

    In this study a new DC-APGD operated in He was developed and characterized. The discharge is operated at 0.9 kV and about 25-35 mA and at a gas flow of 100 ml/min. The source was spectroscopically studied and parameters such as the rotational temperature (T{sub rot}), the excitation temperature (T{sub exc}), the ionization temperature (T{sub ion}) and the electron number density (n{sub e}) were determined. The current-voltage characteristic of the source was studied as well. At optimized conditions the discharge operates in the normal region of the current-voltage characteristic. Rotational and excitation temperatures determined with the use of OH band and Fe I lines as thermometric species were of the order of about 900-1200 and 4500-5500 K, respectively. This indicates that despite of the atmospheric pressure, the discharge is not in LTE. Spatially resolved temperature measurements were performed with axial as well as radial resolution and showed relatively flat profiles. Axially resolved emission intensity profiles for several species such as H, N{sub 2}, N{sub 2}{sup +}, OH, He and Hg were determined. It also was found that H{sub 2} introduced into the He by electrolysis of acid solutions such as in ECHG considerably increases the spectroscopically measured gas temperatures but decreases the analyte line intensities, as shown for Hg.

  5. Study of a new direct current atmospheric pressure glow discharge in helium

    International Nuclear Information System (INIS)

    Gielniak, B.; Fiedler, T.; Broekaert, J.A.C.

    2011-01-01

    In this study a new DC-APGD operated in He was developed and characterized. The discharge is operated at 0.9 kV and about 25-35 mA and at a gas flow of 100 ml/min. The source was spectroscopically studied and parameters such as the rotational temperature (T rot ), the excitation temperature (T exc ), the ionization temperature (T ion ) and the electron number density (n e ) were determined. The current-voltage characteristic of the source was studied as well. At optimized conditions the discharge operates in the normal region of the current-voltage characteristic. Rotational and excitation temperatures determined with the use of OH band and Fe I lines as thermometric species were of the order of about 900-1200 and 4500-5500 K, respectively. This indicates that despite of the atmospheric pressure, the discharge is not in LTE. Spatially resolved temperature measurements were performed with axial as well as radial resolution and showed relatively flat profiles. Axially resolved emission intensity profiles for several species such as H, N 2 , N 2 + , OH, He and Hg were determined. It also was found that H 2 introduced into the He by electrolysis of acid solutions such as in ECHG considerably increases the spectroscopically measured gas temperatures but decreases the analyte line intensities, as shown for Hg.

  6. Analysis of the different zones of glow discharge of ethyl alcohol (C2H6O)

    International Nuclear Information System (INIS)

    Torres, C; Reyes, P G; Mulia, J; Castillo, F; Martínez, H

    2014-01-01

    The aim of this work is to explore the emission spectroscopy of ethyl alcohol in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region C 6 H 5 (483.02 nm), CHO (519.56 nm) and H 2 (560.47 nm), in the positive column CO 2 + (315.52 y 337.00 nm), O + (357.48 nm), CH + (380.61 nm) and CO + (399.73 nm); in the cathode region we observed O + (391.19 nm), CHOCHO (428.00 nm), CO + (471.12 nm) and H 2 (656.52 nm). C 6 H 5 , CHO y H 2 species occurring in all regions analyzed varying the glow discharge emission intensity.

  7. The cathode-fall of low-pressure hydrogen discharges: Absolute spectral emission and model

    Energy Technology Data Exchange (ETDEWEB)

    Jelenkovic, B. M. [JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309-0440 (United States); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zenum Belgrade (Serbia); Phelps, A. V. [JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309-0440 (United States)

    2011-10-15

    Absolute excitation probabilities from very low to moderate-current hydrogen discharges in parallel-plane geometry are measured and used to test models. Relative emission data are obtained for the H{sub {alpha}} line, the H{sub 2} (a{sup 3}{Sigma}{yields}b{sup 3}{Pi}) near-UV continuum, and the H{sub 2} (G{sup 1}{Sigma}{yields}B{sup 1}{Pi}{sub u}{sup +}) band at pressures of 0.5 and 2 Torr, a 1.05 cm gap, and voltages from 300 to 900 V. Electron behavior is traced using the first negative (A{sup 2}{Sigma}{sub g}{yields} X{sup 2}{Pi}{sub u}, {nu}'' = 0 {yields}{nu}' = 0) band of N{sub 2}{sup +} by adding 2% N{sub 2}. Relative measurements of H{sub {alpha}}, H{sub 2} near-UV, and N{sub 2} 1st negative emission are placed on a absolute scale by normalization to published measurements and Boltzmann calculations of electron excitation. Emission probabilities calculated using a multi-beam kinetics model for the electrons, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, H{sup -}, H, and H{sub 2} are compared with the calibrated experiments. Fast H atoms are calculated to produce H{sub {alpha}} excitation that is comparable with that of electrons. The calculated emission intensities for H{sub {alpha}} and H{sub 2} near-UV continuum are within a factor of three of the absolute measurements for a range of 5000:1 in current and 4:1 in hydrogen pressure. Calculations at 2 Torr show that most of the space charge electric field responsible for the cathode fall is produced by H{sub 3}{sup +} ions.

  8. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, K; Acar, S; Salamov, B G [Physics Department, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2011-08-15

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H{sub 2} is more stable than in air. The breakdown voltages are measured for H{sub 2} and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  9. Dependence of helium transport on plasma current and ELM frequency in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Finkenthal, D.F.; West, W.P.; Burrell, K.H.; Seraydarian, R.P.

    1993-05-01

    The removal of helium (He) ash from the plasma core with high efficiency to prevent dilution of the D-T fuel mixture is of utmost importance for future fusion devices, such as the International Thermonuclear Experimental Reactor (ITER). A variety of measurements in L-mode conditions have shown that the intrinsic level of helium transport from the core to the edge may be sufficient to prevent sufficient dilution (i.e., τ He /τ E < 5). Preliminary measurements in biased-induced, limited H-mode discharges in TEXTOR suggest that the intrinsic helium transport properties may not be as favorable. If this trend is shown also in diverted H-mode plasmas, then scenarios based on ELMing H-modes would be less desirable. To further establish the database on helium transport in H-mode conditions, recent studies on the DIII-D tokamak have focused on determining helium transport properties in H-mode conditions and the dependence of these properties on plasma current and ELM frequency

  10. Excess heat production in Pd/D during periodic pulse discharge current in various conditions

    Energy Technology Data Exchange (ETDEWEB)

    Karabut, A.B. [FSUE ' LUCH' , 24 Zheleznodorozhnaya St., Podolsk, Moscow Region 142100 (Russian Federation)

    2006-07-01

    Experimental date from low-energy nuclear reactions (LENR) in condensed media are presented. The nuclear reactions products were found in solid cathode media used in glow discharge. Apparently, the nuclear reactions were initiated when bombarding the cathode surface by plasma ions with the energy of 1.0 - 2.0 keV. Excess heat from a high current glow discharge reaction in D{sub 2}, Xe, and Kr using cathodes already charged with preliminary deuterium-charged Pd and Ti cathode samples are given. Excess heat up to 10-15 W and efficiency up to 130% were recorded under the experiments for Pd cathode samples in D{sub 2} discharge. Excess heat up to 5 W and efficiency up to 150% were recorded for Pd cathodes that were charged with deuterium before the run, in Xe and Kr discharges. At the same time excess heat was not observed for pure Pd cathode samples in Xe and Kr discharges. The formation of impurity nuclides ({sup 7}Li, {sup 13}C, {sup 15}N, {sup 20}Ne, {sup 29}Si, {sup 44}Ca, {sup 48}Ca, {sup 56}Fe, {sup 57}Fe, {sup 59}Co, {sup 64}Zn, {sup 66}Zn, {sup 75}As, {sup 107}Ag, {sup 109}Ag, {sup 110}Cd, {sup 111}Cd, {sup 112}Cd, {sup 114}Cd and {sup 115}In) with 'the efficiency up to 10{sup 13} at./s was recorded. The isotopic ratios of these new nuclides were quite different from the natural ratios. Soft X-ray radiation from the solid-state cathode with the intensity up to 0.01 Gy/s was recorded in experiments with discharges in H{sub 2}, D{sub 2}, Ar, Xe, and Kr. The X-ray radiation was observed in bursts of up to 10{sup 6} photons, with up to 10{sup 5} bursts per second while the discharge was formed and within 100 ms after turning off the discharge current. The results of the X-ray radiation registration showed that the excited energy levels have a lifetime up to 100 ms or more, and the energy of 1.2 - 2.5 keV. A possible mechanism for producing excess heat and nuclear transmutation reactions in the solid medium with the excited energy levels is considered.

  11. An emerging understanding of H-mode discharges in tokamaks

    International Nuclear Information System (INIS)

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the υ E → = (E x B)/B 2 flow velocity. These results are qualitatively consistent with theories which predict suppression of fluctuations by shear or curvature in υE. The required υE flow is generated very rapidly when the magnitude of the heating power or of an externally imposed radial current exceed threshold values and several theoretical models have been developed to explain the observed changes in the υE flow. After the transition occurs, the altered boundary conditions enable the development of improved confinement in the plasma interior on a confinement time scale. The resulting H-mode discharge has typically twice the confinement of L-mode discharges and regimes of further improved confinement have been obtained in some H-mode scenarios

  12. Discharge current characteristics as an 'electrical method' for glow discharge plasma diagnosis

    International Nuclear Information System (INIS)

    Toma, M.; Paraschivescu, Alina; Morminches, Anisoara

    2001-01-01

    In its simplest form, the glow discharge can be established by passing an electric current through gas between two electrodes. The gas and the electrodes are contained in an insulating envelope. In many technological applications, and not only, the plasma devices are often treated like a black box. There is a series of external parameters or control variables which can be adjusted to obtain a desired effect, namely, the operating voltage, gas pressure, gas nature, gas flow rate, magnetic field strength and magnetic field configuration, electric field geometry, interelectrode distance, and cathode characteristics. The discharge current can be controlled by each of the above control variables. The core idea of this work is the following: a lot of information about the phenomena from the discharge volume, at electrodes or at the discharge bounding wall surface, can be obtained knowing how the change of one of the control parameters influences the discharge current. The following regimes were analyzed: dark discharges (background ionization, saturation regime, Townsend regime, corona regime), glow discharge (the normal and abnormal discharge) and arc discharge (glow to arc transition, non-thermal arcs, thermal arcs). It was concluded that the nonlinearity in the shape of the discharge current characteristics as a function of an external control parameter, can be correlated with the elementary processes and the dynamics of different space charge structures generated in plasma devices. (authors)

  13. Combined effect of electrode gap and radio frequency on power deposition and film growth kinetics in SiH4/H2 discharges

    International Nuclear Information System (INIS)

    Amanatides, E.; Mataras, D.; Rapakoulias, D.E.

    2002-01-01

    The combined effect of the variation of the interelectrode gap (1.3-2.5 cm) and radio frequency (13.56-50 MHz) on the properties of highly diluted silane in hydrogen discharges used for the deposition of microcrystalline silicon thin films is presented. The investigation included electrical and optical discharge measurements as well as the in situ determination of the film growth rate. In the lower frequencies regime, the increase of the interelectrode gap for the same applied voltage results in higher current flows and higher total power dissipation. On the other hand, at 50 MHz the variation of the interelectrode space has only a slight effect on the total power dissipation, due to the low excitation voltage. However, at all frequencies, the increase of the interelectrode space results in a drop of the power dissipation per discharge volume. This is related to the less effective energy transfer to the electrons that is due to the enhancement of the bulk relative to the sheath ohmic heating. The variation of the relative importance of the electron heating modes is reflected in the discharge radical production efficiency and the film growth rate

  14. Gas phase hydrogen peroxide production in atmospheric pressure glow discharges operating in He - H2O

    NARCIS (Netherlands)

    Vasko, C.A.; Veldhuizen, van E.M.; Bruggeman, P.J.

    2013-01-01

    The gas phase production of hydrogen peroxide (H2O2) in a RF atmospheric pressure glow discharge with helium and water vapour has been investigated as a function of the gas flow. It is shown that the production of H2O2 is through the recombination of two OH radicals in a three body collision and the

  15. Current scaling for the radiative characteristics of a micropinch discharge

    International Nuclear Information System (INIS)

    Dogov, A.N.

    2005-01-01

    The absolute vacuum UV and soft X-ray (hν > 100 eV) yield from a micropinch discharge of plasma is measured. The current scaling in the range of 30-250 kA is found for a number of the discharge parameters: the vacuum UV and soft X-ray yield, electron temperature, effective temperature of suprathermal electrons and energy of bremsstrahlung emission from thermal electrons. The experimental data are in a good agreement with the calculated data [ru

  16. H-ADCP discharge monitoring of a large tropical river

    NARCIS (Netherlands)

    Hidayat, H.; Sassi, M.G.; Vermeulen, B.

    2012-01-01

    River flow can be continuously monitored through velocity measurements with an acoustic Doppler current profiler, deployed horizontally at a river bank (H-ADCP). This approach was adopted to obtain continuous discharge estimates at two cross-sections in the River Mahakam, i.e. at an upstream station

  17. Simulation of charged and excited particle transport in the low-current discharge in argon-mercury mixture

    International Nuclear Information System (INIS)

    Bondarenko, G G; Fisher, M R; Kristya, V I

    2012-01-01

    Simulation of the electron, ion and metastable excited atom transport in the argon-mercury mixture low-current discharge is fulfilled. Distributions of the particle densities along the discharge gap under different mixture temperatures are obtained and it is demonstrated that the principal mechanism of mercury ion generation is the Penning ionization of mercury atoms by argon metastables, which contribution grows sharply with the mixture temperature due to mercury density increase. Calculations show that the mercury and argon ion flow densities near the cathode are of the same order already under the relative mercury content of about 10 −4 corresponding at the argon pressure 10 3 Pa to the mixture temperature 30 C. Therefore, at the room temperature the electrodes of mercury illuminating lamps at the stage of their ignition are sputtered predominantly by mercury ions.

  18. Relations among pH, sulfate, and metals concentrations in anthracite and bituminous coal-mine discharges, Pennsylvania

    Science.gov (United States)

    Cravotta, III, Charles A.

    2006-01-01

    Water-quality data for discharges from 140 abandoned mines in the Bituminous and Anthracite Coalfields of Pennsylvania illustrate relations among pH, sulfate, and dissolved metal concentrations. The pH for the 140 samples ranged from 2.7 to 7.3, with two modes at pH 2.5 to 4 (acidic) and 6 to 7 (near neutral). Generally, flow rates were smaller and solute concentrations were greater for low-pH samples; flow rates increased with pH. Although the pH distribution was similar for the bituminous and anthracite subsets, the bituminous discharges had smaller median flow rates, greater concentrations of sulfate, iron, and aluminum, and smaller concentrations of barium and lead than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by alkaline ground water; (2) solubility control of aluminum, iron, manganese, barium, and lead by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous sulfate-complex formation. The formation of AlSO4+ and AlHSO4+2 complexes adds to the total dissolved aluminum concentration at pH of equilibrium with aluminum hydroxide or hydroxysulfate minerals and can account for 10 to 20 times greater concentrations of dissolved aluminum in bituminous discharges compared to anthracite discharges at similar pH. Sulfate complexation also can account for 10 to 30 times greater concentrations of dissolved ferric iron concentrations at equilibrium with ferrihydrite (Fe(OH)3) and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3 to 5. In contrast, lower barium and lead concentrations in bituminous than anthracite discharges indicates elevated sulfate concentration could decrease mobility of these metals by the formation of insoluble minerals such as barite (BaSO4) or anglesite (PbSO4). Most samples were saturated with barite, but none were saturated with anglesite. Hence, lead concentrations could be controlled by coprecipitation with

  19. Low-temperature H2-4He and H2-3He targets for operation on an electron beam

    International Nuclear Information System (INIS)

    Gol'dshtejn, V.A.; Lubyanyj, V.V.

    1981-01-01

    Structures and basic characteristics of H 2 - 4 He and H 2 - 3 He low temperature targets are given. Technique of 3 He target filling is described. Initial target cooling up to liquid 4 He temperature and its filling up take near approximately 1 h, at that 4 He flow rate equals 15 l. Repeated filling up of 4 He takes 20 min, and target filling up with 3 He - 10-15 min. Good thermal insulation of a cryostat and targets permits the 4 He target to be operated with an electron beam of a mean current of up to 0.5 μA without filling up 4 He for 70 h. At that flow rate of liquid 4 He amounts to 0.2 l/h, and liquid hydrogen - 0.04 l/h. It is concluded that H 2 - 4 He and H 2 - 3 He targets are reliable and simple in operation and permit to work with accelerated particle beams of intensity corresponding to power release >= 0.5 W without corrections for density change [ru

  20. The low-current low-temperature plasma generators

    International Nuclear Information System (INIS)

    Dautov, G.Yu.

    2000-01-01

    In this article, the results of low-current gas-discharge plasma generator investigations carried out by a group of scientists from the Kazan' Aviation Institute are presented. When considered necessary, the results are compared with the data obtained by other authors. The basic configurations and theoretical calculation peculiarities of plasma generators are described. The electrical, thermal and energy characteristics of discharges in gas flows, as well as summarised empirical formulae and experimental data necessary for calculations and design of plasma devices are presented. (author)

  1. Neutralization of an ion beam from the end-Hall ion source by a plasma electron source based on a discharge in crossed E × H fields

    Science.gov (United States)

    Dostanko, A. P.; Golosov, D. A.

    2009-10-01

    The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the

  2. Kinetic model of a Ne-H2 Penning Recombination Laser operating in the hollow cathode discharge

    International Nuclear Information System (INIS)

    Pramatarov, P.M.; Stefanova, M.S.; Petrov, G.M.

    1995-01-01

    The Penning Recombination Laser (PRL) requires the presence of both a recombination plasma populating the upper laser level (ULL) and a gas component efficiently depopulating the lower laser level (LLL) by Penning reactions. Such requirements are met in the negative glow plasma of a pulsed high voltage Ne-H 2 discharge with a helical hollow cathode. High rates of ionizations followed by recombinations are reached due to the beam component of non-Maxwellian electrons of 1-2 keV energy present in the tail of the electron energy distribution function. The H 2 , on the one hand plays the role of Penning component and on the other hand effectively cools the electrons by rotational and vibrational levels excitation. The latter contributes to the effectiveness of the recombination processes. A kinetic model of the physical processes determining the inversion population on the NeI(2p 1 -1s 2 ) transition (the 585.3 nm line) in a Ne-H 2 PRL operating in a high voltage hollow cathode discharge at intermediate pressures is proposed. About 60 plasma-chemical reactions are considered in the model. These include: two-electron recombination of Ne + ; dissociative recombination of Ne 2 + , NeH + and H 2 + ; ion-ion recombination of Ne + and H - ; Ne and H 2 direct ionization by fast electrons; Ne stepwise ionization; Penning ionization; Ne excitation by fast electrons; Ne stepwise excitation and de-excitation; radiative transitions; electron mixing between Ne excited states; H 2 rotational and vibrational levels excitation; H 2 dissociative attachment; elastic electron collisions with H 2 and Ne. The rate constants for the reactions are either taken from the literature or calculated in this work

  3. Electrostatic Discharge Current Linear Approach and Circuit Design Method

    Directory of Open Access Journals (Sweden)

    Pavlos K. Katsivelis

    2010-11-01

    Full Text Available The Electrostatic Discharge phenomenon is a great threat to all electronic devices and ICs. An electric charge passing rapidly from a charged body to another can seriously harm the last one. However, there is a lack in a linear mathematical approach which will make it possible to design a circuit capable of producing such a sophisticated current waveform. The commonly accepted Electrostatic Discharge current waveform is the one set by the IEC 61000-4-2. However, the over-simplified circuit included in the same standard is incapable of producing such a waveform. Treating the Electrostatic Discharge current waveform of the IEC 61000-4-2 as reference, an approximation method, based on Prony’s method, is developed and applied in order to obtain a linear system’s response. Considering a known input, a method to design a circuit, able to generate this ESD current waveform in presented. The circuit synthesis assumes ideal active elements. A simulation is carried out using the PSpice software.

  4. Primordial Synthesis of Amines and Amino Acids in a 1958 Miller H2S-Rich Spark Discharge Experiment

    Science.gov (United States)

    Parker, Eric T.; Cleaves, Henderson J.; Dworkin, Jason P.; Glavin, Daniel P.; Callahan, Michael; Aubrey, Andrew; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H2S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H2S, CH4, NH3, and CO2. A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordia! environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H2S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H2S may have played an important role in prebiotic reactions in early solar system environments.

  5. Experimental study of ultra-low q discharges in the linear Extrap L1 device

    International Nuclear Information System (INIS)

    Brunsell, P.; Karlsson, Per.

    1991-01-01

    Linear pinch discharges with combined octupole and longitudinal magnetic fields are experimentally studied in the Extrap L1 device. Plasma currents are around I p =10 kA, plasma temperautres are up to T e =50 eV and plasma densities are of the order of n=5x10 21 m -3 . The plasma equilibria are in the ultra-low q (ULQ) regime corresponding to operation with plasma currents in excess of the Kruskal-Shafranov stability limit (q less than 1). The plasma current exhibits the typical time behaviour seen in toroidal ULQ experiments; the unstable setting up phase and the step-wise decay with current levels corresponding to q-values in windows between rational values. Longitudinal plasma current generated by radial plasma diffusion is seen, with amplitudes up to 30% of the externally driven current during the initial phase of the discharge. The effect of the octupole magnetic field on the ULQ confinement is investigated. The plasma temperature increases by more than a factor of two, for the optimum octupole rod current (I v =I p ), compared to the case without octupole field. A plasma current limitation for stable operation corresponding to q bigger than 1/2 is observed, excepts for low axial magnetic field strength. In the low axial field regime, the octupole field alone provides sufficient stabilization for operation with q less than 1/2. Plasma density and temperature both increase linearly with applied axial magnetic field. The density shows a strong, approximately exponential, dependence on discharge voltage. (au)

  6. High performance experiments in JT-60U reversed shear discharges

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ishida, S.

    2001-01-01

    The operation of JT-60U reversed shear discharges has been extended to a high plasma current, low-q regime keeping a large radius of the internal transport barrier (ITB) and the record value of equivalent fusion multiplication factor in JT-60U, Q DT eq =1.25, has been achieved at 2.6 MA. Operational schemes to reach the low-q regime with good reproducibility have been developed. The reduction of Z eff was obtained in the newly installed W-shaped pumped divertor. The beta limit in the low-q min regime, which limited the performance of L-mode edge discharges, has been improved in H-mode edge discharges with a broader pressure profile, which was obtained by power flow control with ITB degradation. Sustainment of ITB and improved confinement for 5.5 seconds has been demonstrated in an ELMy H reversed shear discharge. (author)

  7. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Evans, T E [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Doyle, E J [University of California, Los Angeles, California (United States); Fenstermacher, M E [Lawrence Livermore National Laboratory, Livermore, California (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Moyer, R A [University of California, San Diego, California (United States); Osborne, T H; Schaffer, M J; Snyder, P B [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Thomas, P R [CEA Cadarache EURATOM Association, Cadarache (France); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Boedo, J A [University of California, San Diego, California (United States); Garofalo, A M [Columbia University, New York, New York (United States); Gohil, P; Jackson, G L; La Haye, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Lasnier, C J [Lawrence Livermore National Laboratory, Livermore, California (United States); Reimerdes, H [Columbia University, New York, New York (United States); Rhodes, T L [University of California, Los Angeles, California (United States); Scoville, J T [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Wang, G [University of California, Los Angeles, California (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, New Mexico (United States); Zeng, L [University of California, Los Angeles, California (United States)

    2005-12-15

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport.

  8. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    International Nuclear Information System (INIS)

    Burrell, K H; Evans, T E; Doyle, E J; Fenstermacher, M E; Groebner, R J; Leonard, A W; Moyer, R A; Osborne, T H; Schaffer, M J; Snyder, P B; Thomas, P R; West, W P; Boedo, J A; Garofalo, A M; Gohil, P; Jackson, G L; La Haye, R J; Lasnier, C J; Reimerdes, H; Rhodes, T L; Scoville, J T; Solomon, W M; Thomas, D M; Wang, G; Watkins, J G; Zeng, L

    2005-01-01

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport

  9. Two-dimensional simulations of multi-hollow VHF SiH4/H2 plasma

    Directory of Open Access Journals (Sweden)

    Li-Wen Su

    2018-02-01

    Full Text Available A triode multi-hollow VHF SiH4/H2 plasma (60 MHz was examined at a pressure of 20 Pa by two-dimensional simulations using the fluid model. In this study, we considered the effect of the rate constant of reaction, SiH3 + SiH3→SiH2 + SiH4, on the plasma characteristics. A typical VHF plasma of a high-electron density with a low-electron temperature was obtained between two discharge electrodes. Spatial profiles of SiH3+, SiH2+, SiH3- and SiH3 densities were similar to that of the electron density while the electron temperature had a maximum value near the two discharge electrodes. It was found that the SiH3 radical density did not decrease rapidly near the substrate and the electron temperature was lower than 1 eV, suggesting that the triode multi-hollow plasma source can provide high quality amorphous silicon with a high deposition rate.

  10. Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics

    Science.gov (United States)

    Sohbatzadeh, F.; Soltani, H.

    2018-04-01

    The results of time-dependent one-dimensional modelling of a dielectric barrier discharge (DBD) in a nitrogen-oxygen-water vapor mixture at atmospheric pressure are presented. The voltage-current characteristics curves and the production of active species are studied. The discharge is driven by a sinusoidal alternating high voltage-power supply at 30 kV with frequency of 27 kHz. The electrodes and the dielectric are assumed to be copper and quartz, respectively. The current discharge consists of an electrical breakdown that occurs in each half-period. A detailed description of the electron attachment and detachment processes, surface charge accumulation, charged species recombination, conversion of negative and positive ions, ion production and losses, excitations and dissociations of molecules are taken into account. Time-dependent one-dimensional electron density, electric field, electric potential, electron temperature, densities of reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as: O, O-, O+, {O}2^{ - } , {O}2^{ + } , O3, {N}, {N}2^{ + } , N2s and {N}2^{ - } are simulated versus time across the gas gap. The results of this work could be used in plasma-based pollutant degradation devices.

  11. Demonstration of high performance negative central magnetic shear discharges on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rice, B.W.; Burrell, K.H.; Lao, L.L.

    1996-01-01

    Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total non- inductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [f φ ∼ 30-60 kHz] and ion temperature [T i (0) ∼ 15-22 keV] profiles are observed. In high power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H ≡ τ E /τ ITER-89P ∼ 2.5 with an L-mode edge, and H ∼ 3.3 in an Edge Localized Mode (ELM)-free H-mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in L- mode leads to high disruptivity with Β N ≡ Β T /(I/aB) ≤ 2.3, while broader pressure profiles in H- mode gives low disruptivity with Β N ≤ 4.2

  12. High-current magnetron discharge with magnetic insulation of anode

    International Nuclear Information System (INIS)

    Bizyukov, A.A.; Sereda, K.N.; Sleptsov, V.V.

    2008-01-01

    In magnetron discharge at currents higher then critical which magnitude is in the range of 15...30 A the transition from glow discharge in transverse magnetic field to arc discharge occurs. In the present time the problem of arc blowout is solved at the expense of pulse and HF power supply applying. In this paper the alternative method of limiting current of magnetron discharge increasing at the expense of increasing of discharge gap resistance by means of additional anode layer transverse magnetic field and arc current interruption by sectioning of current collector of anode surface is carrying out

  13. Coherent edge fluctuation measurements in H-mode discharges on JFT-2M

    International Nuclear Information System (INIS)

    Nagashima, Y; Shinohara, K; Hoshino, K; Ejiri, A; Tsuzuki, K; Ido, T; Uehara, K; Kawashima, H; Kamiya, K; Ogawa, H; Yamada, T; Shiraiwa, S; Ohara, S; Takase, Y; Asakura, N; Oyama, N; Fujita, T; Ide, S; Takenaga, H; Kusama, Y; Miura, Y

    2004-01-01

    Results of coherent edge fluctuation measurements using three diagnostics (a reciprocating Langmuir probe, a two channel O-mode reflectometer, and fast magnetic probes) in H-mode discharges on JFT-2M are presented. In discharges in which a high recycling steady (HRS) H-mode phase is obtained through a transient phase with slightly enhanced D α intensity, two types of coherent fluctuations are observed. The higher frequency mode (around 300 kHz) is the high frequency mode (HFM) observed in the HRS H-mode (Kamiya K et al 2003 9th IAEA Tech. Meeting H-mode Workshop Topic B-14). The lower frequency mode has a frequency of around 80 kHz. The HFM is detected by a Langmuir probe over a wide region in the SOL, as well as by the reflectometer and magnetic probes. However, the HFM is not detected by the higher frequency (38 GHz) channel of the reflectometer after the HRS transition, suggesting that the HFM is not located deeply inside the plasma. The 80 kHz mode is detected by both channels of the reflectometer and by a Langmuir probe, but not by magnetic probes, suggesting that it is an electrostatic mode. In contrast to the HFM, the 80 kHz mode is detected by the Langmuir probe only near the separatrix during the transient phase, which leads to either the HRS phase or the ELMy phase, and is similar to the fluctuations reported in Shinohara K et al (1998 J. Plasma Fusion Res. 74 607)

  14. Baking of tandem accelerator tube by low voltage arc discharge

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1982-01-01

    In designing the accelerating tube for a static tandem accelerator in Kyushu University, the basic policy was as described below: individual unit composing the accelerating tube should fully withstand the electric field of 2 MV/m, and electric discharge must not be propagated from one unit to the adjacent unit when these are assembled to the accelerating tube. The accelerating tube units are each 25 cm in length, and both high and low energy sides are composed of 20 units, respectively. Although about 10 -9 Torr vacuum was obtained at the both ends of the accelerating tube by baking the tube at 300 to 350 deg C with electric heaters wound outside the tube in the conventional method, vast outgas was generated, which decreased vacuum by two or three figures if breakdown occurred through the intermediary of outgas. As a method of positively outgassing and cleaning the electrodes inside the accelerating tube, it was attempted to directly bake all the electrodes in the accelerating tube by causing strong arc discharge flowing H 2 gas in the tube. As a result of considering the conditions for this method, the low voltage arc discharge was employed using oxide cathodes. Thus, after implementing 10A arc discharge for several hours, the voltage was able to be raised to 10 MV almost immediately after the vacuum recovery, and further, after another conditioning for several hours, it was successful to raise voltage up to 11 MV. (Wakatsuki, Y.)

  15. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  16. Enhanced performance on high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Cotrell, G.; Corti, S.; Christiansen, J.P.; Hellsten, T.; Jacquinot, J.; Lallia, P.; Lomas, P.; O'Rourke, J.; Taroni, A.; Tibone, F.; Start, D.F.H.

    1989-01-01

    The performance of high current discharges can be increased by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Sawtooth-free periods have been obtained resulting in the enhanced discharge performance. High T e (0) 9 - 10.5 keV with peaked profiles T e (0)/ e > = 3 - 4 were obtained giving values of n e (0)T e (0) up to 6x10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A 60 % enhancement in D-D reaction rate from 2nd harmonic deuterium (2ω CD ) heating appears to be present. In all current rise (CR) discharges radiation amounts to 25-50 % of total power. (author) 4 refs., 6 figs

  17. Status of the Brookhaven National Laboratory (BNL) toroidal volume H- source

    International Nuclear Information System (INIS)

    Alessi, J.G.; Prelec, K.

    1990-01-01

    A volume H - source having a toroidal discharge chamber and conical filter field has been developed. Parametric studies of this source have been in progress for two years. Extraction apertures from 0.5 cm 2 to 1.87 cm 2 have been tried, and an H - current of up to 48 mA has been extracted. The electron-to-H - current ratio in the extracted beam can be as low as 10 for ∼ 25 mA beam was 0.44πmm mrad. When operating with deuterium, the D - output wads 50--60% of the H - current under the same discharge conditions. The addition of cesium to the discharge increased the H - output and decreased the electron current so that at 30 mA of H - , one obtained an electron-to-H - ratio of 1. Using a two gap extractor, with a dipole field in the intermediate electrode, approximately 80% of the extracted electrons could be removed from the primary beam

  18. The free recovery of a short duration, high current discharge

    International Nuclear Information System (INIS)

    Piejak, R.

    1984-01-01

    The hold-off voltage between stainless steel electrodes has been measured as a function of time after an initial discharge. The hold-off voltage is the highest voltage that the gap will withstand without appreciable current flow. A high current (600-1200 amp), short duration (170 nsec) discharge was initiated between Rogowski profile electrodes. After a pre-determined time delay, a second pulse was applied to the discharge gap. The hold-off voltage as a function to time was determined up to the Paschen breakdown voltage. Background gas pressure between 30 and 100 torr and electrode separation of 2mm and 4mm were employed. UV preionization was introduced in some tests to create various discharge modes (glow/arc). The findings indicate significantly higher recovery rates in air than in N 2 , presumably due to attachment processes. In addition, the presence of pre-breakdown UV was found to influence the discharge mode, thus affecting the recovery rate of the gap. Hold-off voltage curves for the previously mentioned gases, background pressures and electrode spacing will be presented along with open shutter photographs of the various discharge modes

  19. Observations of nonlinear behaviour in a low-pressure discharge column

    International Nuclear Information System (INIS)

    Cartier, S.L.; Merlino, R.L.

    1984-01-01

    Sudden and abrupt jumps in the plasma density and discharge current of low-pressure magnetized argon and helium plasmas are observed. These jumps are found to depend on the discharge bias voltage, the neutral gas pressure, and the magnetic field strength and occur with a substantial hysteresis in those parameters. These jumps are accompanied by the onset of intense and coherent low-frequency plasma oscillations. In addition, under certain conditions, the radial density profile of the plasma is found to be significantly different following a jump. Some possibly related plasma instabilities are discussed

  20. Advanced electrical current measurements of microdischarges: evidence of sub-critical pulses and ion currents in barrier discharge in air

    Science.gov (United States)

    Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš

    2018-04-01

    Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.

  1. Synthesis of SiOC:H nanoparticles by electrical discharge in hexamethyldisilazane and water

    KAUST Repository

    Hamdan, Ahmad

    2017-07-25

    Nanoparticles have unique properties and are useful in many applications. Efficient synthesis of high yields of nanoparticles remains a challenge. Here, we synthesized SiOC:H, a low-dielectric-constant material, by electrical discharge at the interface of hexamethyldisilazane and water. The nanoparticle production rate of our technique was ∼17 mg per minute. We used Fourier transform infrared spectroscopy, scanning and transmission electron microscopy, and X-ray photoemission spectroscopy to characterize the synthesized material. Heating the nanoparticles to 500 °C for 2h released hydrogen from CHx groups and evaporated volatile compounds. Our method to produce high yields of low-dielectric-constant nanoparticles for microelectronic applications is promising.

  2. Synthesis of SiOC:H nanoparticles by electrical discharge in hexamethyldisilazane and water

    KAUST Repository

    Hamdan, Ahmad; Abdul Halim, Rasha; Anjum, Dalaver H.; Cha, Min

    2017-01-01

    Nanoparticles have unique properties and are useful in many applications. Efficient synthesis of high yields of nanoparticles remains a challenge. Here, we synthesized SiOC:H, a low-dielectric-constant material, by electrical discharge at the interface of hexamethyldisilazane and water. The nanoparticle production rate of our technique was ∼17 mg per minute. We used Fourier transform infrared spectroscopy, scanning and transmission electron microscopy, and X-ray photoemission spectroscopy to characterize the synthesized material. Heating the nanoparticles to 500 °C for 2h released hydrogen from CHx groups and evaporated volatile compounds. Our method to produce high yields of low-dielectric-constant nanoparticles for microelectronic applications is promising.

  3. Properties of films and p-i-n photo-transformed structures on the basis of a-Si:H and its alloys, received in glow discharge of a constant current

    International Nuclear Information System (INIS)

    Tauasarov, K.

    1997-01-01

    The work devoted to investigation and control of structural, optical and photoelectric properties of films of amorphous hydrogenated silicon and its alloys, deposited in glow discharge of a constant current were done, creation of photo transformed p-i-n structures investigation its photoelectric characteristics. The main results and conclusions: A new method of deposition in glow discharge of a constant current qualitative doping and un doping a-Si:H layer and p-i-n structures on the basis of amorphous hydrogenated silicon was developed. For reception of amorphous p + and n - films for first time synthesised and applied mono-silborina and mono-silphosfin, containing pointed Si-B and Si-P linkages. New layered linear - organized structure in the films a-Si:H (T=200 deg C) was found out with distance between layers 7,5 A-o. Degree of crystallinity from combinational spectrum was determined. Concentration of films and connection between a hydrogen and silicon was determined from a IR-spectrum. It was shown that introduction of vary zone p + layer from a-Si x C 1-x :H into photo transformed p-i-n structure on the basis of a-Si:H results to decreasing of recombination losses in the area of p-i hetero boundary, and as result a photosensitive in the short-wave area of a spectrum increased. Best p-i-n structures in condition of natural illumination had following parameters: density of current of short circuit I sc =12,9 m A/cm 2 , voltage in single course U lm =0,85 V, factor of Ff.=0,55 filling and h=7% efficiency. (author)

  4. The effect of discharge chamber geometry on the characteristics of low-pressure RF capacitive discharges

    Energy Technology Data Exchange (ETDEWEB)

    Lisovskiy, V.A. [Ecole Polytech, Lab Phys and Technol Plasmas, F-91128 Palaiseau, (France); Booth, J.P. [Lam Res Corp, Fremont, CA 94538 (United States); Landry, K. [Unaxis, F-38100 Grenoble, (France); Douai, D. [CEA Cadarache, Dept Rech Fus Controlee, EURATOM Assoc, F-13108 St Paul Les Durance, (France); Cassagne, V. [Riber, F-95873 Bezons, (France); Yegorenkov, V.D. [Kharkov Natl Univ, Dept Phys, UA-61077 Kharkov, (Ukraine)

    2007-07-01

    We report the measured extinction curves and current voltage characteristics (CVCs) in several gases of RF capacitive discharges excited at 13.56 MHz in chambers of three different geometries: 1) parallel plates surrounded by a dielectric cylinder ('symmetric parallel plate'); 2) parallel plates surrounded by a metallic cylinder ('asymmetric confined'); and 3) parallel plates inside a much larger metallic chamber ('asymmetric unconfined'), similar to the gaseous electronics conference reference cell. The extinction curves and the CVCs show differences between the symmetric, asymmetric confined, and asymmetric unconfined chamber configurations. In particular, the discharges exist over a much broader range of RF voltages and gas pressures for the asymmetric unconfined chamber. For symmetric and asymmetric confined discharges, the extinction curves are close to each other in the regions near the minima and at lower pressure, but at higher pressure, the extinction curve of the asymmetric confined discharge runs at a lower voltage than the one for the discharge in a symmetric chamber. In the particular cases of an 'asymmetric unconfined chamber' discharge or 'asymmetric confined' one, the RF discharge experiences the transition from a 'weak-current' mode to a 'strong-current' one at lower RF voltages than is the case for a 'symmetric parallel-plate' discharge. (authors)

  5. High density low-q discharges with D-shaped plasmas in Doublet III

    International Nuclear Information System (INIS)

    Nagami, Masayuki; Yoshida, Hidetoshi; Shinya, Kichiro; Yokomizo, Hideaki; Shimada, Michiya; Ioki, Kimihiro; Izumi, Shigeru; Kitsunezaki, Masao; Jahns, G.

    1981-07-01

    The maximum plasma current in Doublet III is found to be limited by disruptions when the limiter safety factor is approximately 2. However, due to the strong toroidal and shaping field effect on rotational transform at the outer plasma edge associated with a D-shape formation having a vertical elongation of 1.5, the safety factor q sub(a) * estimated from simple geometric considerations for D-shaped plasmas corresponds to values as low as 1.5. These discharges operate stably with considerably higher plasma current than most reactor design studies assume. These low-q discharges show excellent plasma performance: very flat spatial electron temperature progiles, high density operation with anti n sub(e)R/B sub(T) up to 7.8, and good energy confinement producing a volume average β of up to 1% with ohmic heating only. This operational regime appears to be applicable to future high β tokamaks with D-shaped cross section. (author)

  6. Sterilization and decontamination of medical instruments by low-pressure plasma discharges: application of Ar/O2/N2 ternary mixture

    International Nuclear Information System (INIS)

    Kylian, O; Rossi, F

    2009-01-01

    A low-pressure inductively coupled plasma discharge sustained in an argon-oxygen-nitrogen ternary mixture is studied in order to evaluate its properties in terms of sterilization and decontamination of surfaces of medical instruments. It is demonstrated by direct comparison with discharges operated in oxygen-nitrogen and oxygen-argon mixtures that application of an Ar/O 2 /N 2 mixture offers the possibility to combine advantageous properties of the binary mixtures, namely, the capability of an O 2 /N 2 plasma to emit intense UV radiation needed for effective inactivation of bacterial spores together with high removal rates of biological substances from Ar/O 2 discharge. Moreover, optimal conditions for both effects are obtained at a similar ternary discharge mixture composition, which is of much interest for real applications, since it offers a highly effective process desired for the safety of medical instruments.

  7. Spectroscopic measurement of H(1S) and H2(v double-prime,J double-prime) in an H- ion source plasma

    International Nuclear Information System (INIS)

    Stutzin, G.C.

    1990-08-01

    Low pressure H 2 discharges have been used for some time as sources of H - ions. These discharges contain many different species of particles which interact with each other and with the walls of the discharge chamber. Models exist that predict the populations of the various species for given macroscopic discharge parameters. However, many of the cross sections and wall catalyzation coefficients are unknown or somewhat uncertain. Therefore, it is of interest to measure the populations of as many of these species as possible, in order to determine the validity of the models. These models predict that H - is created predominantly by the two-step process of vibrational excitation of hydrogen molecules followed by dissociative attachment of slow electrons to these vibrationally-excited hydrogen molecules. Many different collisional processes must be included in the models to explain the dependence of the various populations upon macroscopic parameters. This work presents results of spectroscopic measurements of the density and translational temperature of hydrogen atoms and of specific rotationally- and vibrationally-excited states of electronic ground-state H 2 , in a discharge optimized for H - production, as well as conventional measurements of the various charged species within the plasma. The spectroscopic measurements are performed directly by narrowband, single-photon absorption in the vacuum ultraviolet

  8. High-current discharge channel contraction in high density gas

    International Nuclear Information System (INIS)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  9. Radio frequency glow discharge source with integrated voltage and current probes used for evaluation of discharge parameters

    International Nuclear Information System (INIS)

    Wilken, L.; Hoffmann, V.; Wetzig, K.

    2006-01-01

    A radio frequency (rf) Grimm-type glow discharge source for the chemical analysis of solid samples, with integrated voltage and current probes, was developed. All elements of a plasma equivalent circuit are determined from the measured current-voltage characteristics. The procedure is based on the independent evaluation of the ion current and electron current region. The physical meaning of the parameters is investigated by comparisons with measurements from dc glow discharges. We found that the reduced rf current of the powered electrode is comparable to the reduced current in dc discharges. A formula is developed that corrects the reduced current due to gas heating. The sheath thickness at the powered rf electrode is evaluated and is between 75 and 1100 μm. The voltage of the bulk plasma is in the range 2-15 V, and the resistance is between 30 and 400 Ω. The bulk plasma consumes about 3% of the total power, and the reduced voltage is comparable to the reduced electrical field in the positive column of direct current discharges. The sheath voltage at the grounded electrode is in the range 25-100 V, the capacities are between 10 and 400 pF, and the resistances are in the range 100 Ω-5000 Ω. We also found invariants for the evaluated sheath parameters

  10. Characterization of transient discharges under atmospheric-pressure conditions applying nitrogen photoemission and current measurements

    International Nuclear Information System (INIS)

    Keller, Sandra; Rajasekaran, Priyadarshini; Bibinov, Nikita; Awakowicz, Peter

    2012-01-01

    The plasma parameters such as electron distribution function and electron density of three atmospheric-pressure transient discharges namely filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of an argon plasma coagulation (APC) system are determined. A combination of numerical simulation as well as diagnostic methods including current measurement and optical emission spectroscopy (OES) based on nitrogen emissions is used. The applied methods supplement each other and resolve problems, which arise when these methods are used individually. Nitrogen is used as a sensor gas and is admixed in low amount to argon for characterizing the APC discharge. Both direct and stepwise electron-impact excitation of nitrogen emissions are included in the plasma-chemical model applied for characterization of these transient discharges using OES where ambiguity arises in the determination of plasma parameters under specific discharge conditions. It is shown that the measured current solves this problem by providing additional information useful for the determination of discharge-specific plasma parameters. (paper)

  11. Determination of gas temperature and C2 absolute density in Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition from the C2 Mulliken system

    International Nuclear Information System (INIS)

    Lombardi, G; Benedic, F; Mohasseb, F; Hassouni, K; Gicquel, A

    2004-01-01

    The spectroscopic characterization of Ar/H 2 /CH 4 discharges suitable for the synthesis of nanocrystalline diamond using the microwave plasma assisted chemical vapour deposition process is reported. The experiments are realized in a moderate-pressure bell jar reactor, where discharges are ignited using a microwave cavity coupling system. The concentration of CH 4 is maintained at 1% and the coupled set of hydrogen concentration/microwave power (MWP) ranges from 2%/500 W to 7%/800 W at a pressure of 200 mbar. Emission spectroscopy and broadband absorption spectroscopy studies are carried out on the C 2 (D I SIGMA + u -CHI I SIGMA + g ) Mulliken system and the C 2 (d 3 Π g -a 3 Π u ) Swan system in order to determine the gas temperature and the C 2 absolute density within the plasma. For this purpose, and since the Swan system is quite well-known, much importance is devoted to the achievement of a detailed simulation of the Mulliken system, which allows the determination of both the rotational temperature and the density of the CHI I SIGMA + g ground state, as well as the rotational temperature of the D I SIGMA + u state, from experimental data. All the experimental values are compared to those predicted by a thermochemical model developed to describe Ar/H 2 /CH 4 microwave discharges under quasi-homogeneous plasma assumption. This comparison shows a reasonable agreement between the values measured from the C 2 Mulliken system, those measured from the C 2 Swan system and that calculated from plasma modelling, especially at low hydrogen concentration/MWP. These consistent results show that the use of the Mulliken system leads to fairly good estimates of the gas temperature and of the C 2 absolute density. The relatively high gas temperatures found for the conditions investigated, typically between 3000 K and 4000 K, are attributed to the low thermal conductivity of argon that may limit thermal losses to the substrate surface and reactor wall. The measured C 2

  12. Electrical probe measurements in low and high pressure discharges

    International Nuclear Information System (INIS)

    Andersson, D.

    1976-11-01

    The construction of an apparatus for automatic determination of electron distributions is described, whereafter measurements of electron energy distributions before and after a stationary plasma sheath in a low pressure mercury discharge are presented. The sheath appears at a constriction of the discharge tube. The measurements have been made with a spheric probe, using the second-derivative method, and the results show that the energy distribution on the anode side of the sheath is a sum of a thermal population and an accelerated distribution. Near the sheath the accelerated electrons suffice to carry the discharge current, but far from it the current must be carried by an anisotropy in the thermal part of the distribution function. A comparison is made with calculated distributions. The cross-sections for electron-neutral and Coulomb collisions are not sufficient to account for the damping of the accelerated population, suggesting the presence of a plasma instability. In order to study the distribution function of the axial velocity component, preliminary measurements of the first derivative of the current to a plane probe have been made. Such measurements yield information about the anisotropy and the current transport, and may perhaps shed some light on the phenomenon of current limitation. Some measurements on a TIG welding arc are also described. (Auth.)

  13. Solid density, low temperature plasma formation in a capillary discharge

    International Nuclear Information System (INIS)

    Kania, D.R.; Jones, L.A.; Maestas, M.D.; Shepherd, R.L.

    1987-01-01

    This work discusses the ability of the authors to produce solid density, low temperature plasmas in polyurethane capillary discharges. The initial capillary diameter is 20 μm. The plasma is produced by discharging a one Ohm parallel plate waterline and Marx generator system through the capillary. A peak current of 340 kA in 300 ns heats the inner wall of the capillary, and the plasma expands into the surrounding material. The authors studied the evolution of the discharge using current and voltage probes, axial and radial streak photography, axial x-ray diode array and schlieren photography, and have estimated the peak temperature of the discharge to be approximately 10 eV and the density to be near 10/sup 23/cm/sup -3/. This indicates that the plasma may approach the strongly coupled regime. They discuss their interpretation of the data and compare their results with theoretical models of the plasma dynamics

  14. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    Science.gov (United States)

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO2 laser preionised by a surface corona discharge

    International Nuclear Information System (INIS)

    Aram, M; Shabanzadeh, M; Mansori, F; Behjat, A

    2007-01-01

    The design of a TEA CO 2 laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO 2 molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines. (lasers)

  16. Reticular V2O5·0.6H2O Xerogel as Cathode for Rechargeable Potassium Ion Batteries.

    Science.gov (United States)

    Tian, Bingbing; Tang, Wei; Su, Chenliang; Li, Ying

    2018-01-10

    Potassium ion batteries (KIBs), because of their low price, may exhibit advantages over lithium ion batteries as potential candidates for large-scale energy storage systems. However, owing to the large ionic radii of K-ions, it is challenging to find a suitable intercalation host for KIBs and thus the rechargeable KIB electrode materials are still largely unexplored. In this work, a reticular V 2 O 5 ·0.6H 2 O xerogel was synthesized via a hydrothermal process as a cathode material for rechargeable KIBs. Compared with the orthorhombic crystalline V 2 O 5 , the hydrated vanadium pentoxide (V 2 O 5 ·0.6H 2 O) exhibits the ability of accommodating larger alkali metal ions of K + because of the enlarged layer space by hosting structural H 2 O molecules in the interlayer. By intercalation of H 2 O into the V 2 O 5 layers, its potassium electrochemical activity is significantly improved. It exhibits an initial discharge capacity of ∼224.4 mA h g -1 and a discharge capacity of ∼103.5 mA h g -1 even after 500 discharge/charge cycles at a current density of 50 mA g -1 , which is much higher than that of the V 2 O 5 electrode without structural water. Meanwhile, X-ray diffraction and X-ray photoelectron spectroscopy combined with energy dispersive spectroscopy techniques are carried out to investigate the potassiation/depotassiation process of the V 2 O 5 ·0.6H 2 O electrodes, which confirmed the potassium intercalation storage mechanisms of this hydrated material. The results demonstrate that the interlayer-spacing-enlarged V 2 O 5 ·0.6H 2 O is a promising cathode candidate for KIBs.

  17. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    International Nuclear Information System (INIS)

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-01-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N 2 -Ar and O 2 -Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N 2 -Ar and O 2 -Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N 2 -Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O 2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O 2 -Ar discharges, the dissociation fraction of O 2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  18. Glow discharge-deposited amorphous silicon films for low-cost solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grabmaier, J G; Plaettner, R D; Stetter, W [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorien

    1980-01-01

    Due to their high absorption constant, glow discharge-deposited amorphous silicon (a-Si) films are of great interest for low-cost solar cells. Using SiH/sub 4/ and SiX/sub 4//H/sub 2/ (X = Cl or F) gas mixtures in an inductively or capacitively excited reactor, a-Si films with thicknesses up to several micrometers were deposited on substrates of glass, silica and silicon. The optical and electrical properties of the films were determined by measuring the IR absorption spectra, dark conductivity, photoconductivity, and photoluminescence. Hydrogen, chlorine, or fluorine were incorporated in the films in order to passivate dangling bonds in the amorphous network.

  19. Initial operation of the CW 8X H- ion source discharge

    International Nuclear Information System (INIS)

    Smith, H.V. Jr.; Allison, P.; Geisik, C.; Schmitt, D.R.; Schneider, J.D.; Stelzer, J.E.

    1993-01-01

    A pulsed 8Χ source was built and the H - beam current, emittance, and power efficiency were measured. These results were promising, so a cooled, dc version designed for operation at arc power levels up to 30 kW was built. Testing of the CW 8Χ source discharge is underway. The design dc power loading on the cathode surface is 900 W/cm 2 , considerably higher than achieved in any pervious Penning surface-plasma source (SPS). Thus, the electrode surfaces are cooled with pressurized, hot water. We describe the source and present the initial operating experience and arc test results

  20. Initial operation of the CW 8X H- ion source discharge

    International Nuclear Information System (INIS)

    Smith, H.V. Jr.; Allison, P.; Geisik, C.; Schmitt, D.R.; Schneider, J.D.; Stelzer, J.E.

    1993-01-01

    A pulsed 8X source was built and the H - beam current, emittance, and power efficiency were measured. These results were promising, so a cooled, dc version designed for operation at arc power levels up to 30 kW was built. Testing of the CW 8X source discharge is underway. The design dc power loading on the cathode surface is 900 W/cm 2 , considerably higher than achieved in any previous Penning surface-plasma source (SPS). Thus, the electrode surfaces are cooled with pressurized, hot water. The authors describe the source and present the initial operating experience and arc test results

  1. Generation and transportation of low-energy, high-current electron beams

    International Nuclear Information System (INIS)

    Ozur, G.E.; Proskurovskij, D.I.; Nazarov, D.S.

    1996-01-01

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm 2 , which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs

  2. Enhanced performance of high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Christiansen, J.P.

    1989-01-01

    The performance of high current discharges can be improved by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Long sawtooth-free periods have been obtained which result in a transiently-enhanced discharge performance. High T c (0) = 9-10.5 keV with peaked profile T e (0)/ e > = 3-4 were obtained giving values of N e (0)T e (0) up to 6 x 10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A best value of n Dd (0)T i (0)τ E = 1.65 x 10 20 (m -3 keV s) was achieved. Local transport simulation shows that the electron and ion thermal diffusivities do not differ substantially in the two cases of current-rise (CR) and flat-top (FT) heating, the performance of the central plasma region being enhanced, in the case of current-rise, entirely by the elimination of the sawtooth instability. The maximum D-D reaction rate is enhanced by a factor of 2 compared to the flat-top value. An appreciable part of the reaction rate is attributed to 2nd harmonic deuterium (2ω CD ) heating. In all current-rise discharges radiation amounts to 25-50% of total power and Ζ eff remains roughly constant. (author)

  3. Observation of magnetohydrodynamics instabilities in ion Bernstein wave and lower-hybrid-current driving synergetic discharges on HT-7 tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Luo Jiarong; Shen Biao; Zhao Junyu; Hu Liqun; Zhu Yubao; Xu Guosheng; Asif, M.; Gao Xiang; Wan Baonian

    2004-01-01

    The normalized performance indicated by the product of β N H 89 >2 was achieved by a combination of the lower hybrid current driving (LHCD) and the ion Bernstein wave (IBW) heating in the HT-7 tokamak. More than 80% of the plasma current was sustained by the LHCD and the bootstrap current. Large edge pressure gradients were observed. The magnetohydrodynamic (MHD) instabilities were often driven to terminate the discharge or reduce the discharge performance, when the IBW resonant layer was near the rational surface. The resonant layer of the safety factor q=2 is located at 0.6 a with a=27 cm being the minor radius. The width of magnetic island (the poloidal mode number m=2) was about 2 cm. The plasma energy was reduced quickly by 30% by MHD instabilities. The behaviour of MHD instabilities is reported. A large sawtooth activity (m=1) was observed before inducing MHD (m=2)

  4. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes

    KAUST Repository

    Ahmed, Bilal

    2016-03-08

    Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as compared to as-prepared MXenes. For instance, after 50 charge/discharge cycles, specific discharge capacities of 389 mA h g−1, 337 mA h g−1 and 297 mA h g−1 were obtained for H2O2 treated MXene at current densities of 100 mA g−1, 500 mA g−1 and 1000 mA g−1, respectively. In addition, when tested at a very high current density, such as 5000 mA g−1, the H2O2 treated MXene showed a specific capacity of 150 mA h g−1 and excellent rate capability. These results clearly demonstrate that H2O2 treatment of Ti2C MXene improves MXene properties in energy storage applications, such as Li ion batteries or capacitors.

  5. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes

    KAUST Repository

    Ahmed, Bilal; Anjum, Dalaver H.; Hedhili, Mohamed N.; Gogotsi, Yury; Alshareef, Husam N.

    2016-01-01

    Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as compared to as-prepared MXenes. For instance, after 50 charge/discharge cycles, specific discharge capacities of 389 mA h g−1, 337 mA h g−1 and 297 mA h g−1 were obtained for H2O2 treated MXene at current densities of 100 mA g−1, 500 mA g−1 and 1000 mA g−1, respectively. In addition, when tested at a very high current density, such as 5000 mA g−1, the H2O2 treated MXene showed a specific capacity of 150 mA h g−1 and excellent rate capability. These results clearly demonstrate that H2O2 treatment of Ti2C MXene improves MXene properties in energy storage applications, such as Li ion batteries or capacitors.

  6. Measuring gluconeogenesis using a low dose of 2H2O: advantage of isotope fractionation during gas chromatography.

    Science.gov (United States)

    Katanik, Jill; McCabe, Brendan J; Brunengraber, Daniel Z; Chandramouli, Visvanathan; Nishiyama, Fumie J; Anderson, Vernon E; Previs, Stephen F

    2003-05-01

    The contribution of gluconeogenesis to glucose production can be measured by enriching body water with (2)H(2)O to approximately 0.5% (2)H and determining the ratio of (2)H that is bound to carbon-5 vs. carbon-2 of blood glucose. This labeling ratio can be measured using gas chromatography-mass spectrometry after the corresponding glucose carbons are converted to formaldehyde and then to hexamethylenetetramine (HMT). We present a technique for integrating ion chromatograms that allows one to use only 0.05% (2)H in body water (i.e., 10 times less than the current dose). This technique takes advantage of the difference in gas chromatographic retention times of naturally labeled HMT and [(2)H]HMT. We discuss the advantage(s) of using a low dose of (2)H(2)O to quantify the contribution of gluconeogenesis.

  7. LASERS: Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO2 laser preionised by a surface corona discharge

    Science.gov (United States)

    Aram, M.; Behjat, A.; Shabanzadeh, M.; Mansori, F.

    2007-01-01

    The design of a TEA CO2 laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO2 molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines.

  8. High current density toroidal pinch discharges with weak toroidal fields

    International Nuclear Information System (INIS)

    Brunsell, P.; Brzozowski, J.; Drake, J.R.; Hellblom, G.; Kaellne, E.; Mazur, S.; Nordlund, P.

    1990-01-01

    Toroidal discharges in the ultralow q regime (ULQ) have been studied in the rebuilt Extrap TI device. ULQ discharges are sustained for pulse lengths exceeding 1 ms, which corresponds to more than 10 resistiv shell times. Values for the safety factor at the vacuum vessel wall are between rational values: 1/(n+1) -2 . The magnetic fluctuation level increases during the transition between rational values of q(a). For very low values of q(a), the loop voltage increases and the toroidal field development in the discharge exhibits the characteristic behaviour of the setting-up phase of a field reversed pinch. (author) 1 ref., 2 figs., 1 tab

  9. Low-n magnetohydrodynamic edge instabilities in quiescent H-mode plasmas with a safety-factor plateau

    International Nuclear Information System (INIS)

    Zheng, L.J.; Kotschenreuther, M.T.; Valanju, P.

    2013-01-01

    Low-n magnetohydrodynamic (MHD) modes in the quiescent high confinement mode (H-mode) pedestal are investigated in this paper. Here, n is the toroidal mode number. The low collisionality regime is considered, so that a safety-factor plateau arises in the pedestal region because of the strong bootstrap current. The JET-like (Joint European Torus) equilibria of quiescent H-mode discharges are generated numerically using the VMEC code. The stability of this type of equilibria is analysed using the AEGIS code, with subsonic rotation effects taken into account. The current investigation extends the previous studies of n = 1 modes to n = 2 and 3 modes. The numerical results show that the MHD instabilities in this type of equilibria have characteristic features of the infernal mode. We find that this type of mode tends to prevail when the safety-factor value in the shear-free region is slightly larger than an integer. In this case the frequencies (ω n ) of modes with toroidal mode number n roughly follow the rule ω n ∼ −nΩ p , where Ω p is the local rotation frequency where the infernal harmonic prevails. Since the infernal mode tends to develop near the pedestal top, where pressure driving is strong but magnetic shear stabilization is weak, this local rotation frequency tends to be close to the pedestal top value. These typical mode features bear close resemblance to the edge harmonic oscillations (or outer modes) at the quiescent H-mode discharges observed experimentally. (paper)

  10. Simulation and optical spectroscopy of a DC discharge in a CH4/H2/N2 mixture during deposition of nanostructured carbon films

    Science.gov (United States)

    Mironovich, K. V.; Mankelevich, Yu. A.; Voloshin, D. G.; Dagesyan, S. A.; Krivchenko, V. A.

    2017-08-01

    Two-dimensional numerical simulations of a dc discharge in a CH4/H2/N2 mixture in the regime of deposition of nanostructured carbon films are carried out with account of the cathode electron beam effects. The distributions of the gas temperature and species number densities are calculated, and the main plasmachemical kinetic processes governing the distribution of methyl radicals above the substrate are analyzed. It is shown that the number density of methyl radicals above the substrate is several orders of magnitude higher than the number densities of other hydrocarbon radicals, which indicates that the former play a dominant role in the growth of nanostructured carbon films. The model is verified by comparing the measured optical emission profiles of the H( n ≡ 3), C 2 * , CH*, and CN* species and the calculated number densities of excited species, as well as the measured and calculated values of the discharge voltage and heat fluxes onto the electrodes and reactor walls. The key role of ion-electron recombination and dissociative excitation of H2, C2H2, CH4, and HCN molecules in the generation of emitting species (first of all, in the cold regions adjacent to the electrodes) is revealed.

  11. Generation and transportation of low-energy, high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ozur, G E; Proskurovskij, D I; Nazarov, D S [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of High Current Electronics

    1997-12-31

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm{sup 2}, which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs.

  12. An investigation of the effect of some gaseous admixtures on the ionization currents in the air in the discharge chambers of the proportional counter type

    International Nuclear Information System (INIS)

    Berdowska, E.; Zastawny, A.

    1981-01-01

    Voltage-current characteristics of the ionization discharge in chambers of the proportional counter filled with air with admixtures of CO, CO 2 , CH 4 and H 2 O have been investigated. It was found that in the transition region between dependent and self-maintained discharge the characteristics change sufficiently for detection of the presence of those admixtures in the air. (author)

  13. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    Science.gov (United States)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non

  14. Research in Water Permeability of Poly(ethylene) Terephthalate Track Membranes Modified by Polymerization of Dimethylaniline under the Action of Direct Current Discharge

    CERN Document Server

    Kravets, L I; Drachev, A I

    2004-01-01

    The properties of poly(ethylene) terephthalate track membranes modified by polymerization of dimethylaniline in a discharge of direct current are investigated. The influence of conditions of plasma treatment on the basic characteristics of the membranes (pore size, wettability, surface charge, water permeability) is studied. It is shown that under the action of discharge, a polymeric layer is formed on the membrane surface that can swell in solutions with low pH values. It has been found that the degree of the swelling stipulated by the conformation transfer of macromolecules of the deposited polymeric layer depends upon the size of relative magnification of the mass of the membrane during its plasma treatment. It is also shown that the obtained membranes can reversibly react to changing the pH of solution and applied pressure.

  15. The formation of metallic plasmas in transient capillary discharges at high current

    International Nuclear Information System (INIS)

    Wyndham, E S; Favre, M; Aliaga-Rossel, R

    2006-01-01

    We report observations of the formation of a metallic plasma in a high aspect ratio z-pinch confined within a ceramic capillary. A series of experiments on different capillary geometries was undertaken in which titanium metal rings were used to promote the formation of a titanium plasma through preferential ablation. In an initial vacuum a titanium seed plasma is formed in the hollow cathode (HC) volume by a low energy laser spark. This pre-ionizing plasma is assisted in its expansion into the z-pinch volume by the electron beams generated by a pre-ionizing discharge in the capillary, due to the HC effect. Further intense e-beam activity occurs on applying the main driver current to the capillary electrodes before the discharge impedance abruptly drops to give rise to an ensuing high current z-pinch. A segmented titanium ring structure within the capillary promotes metal ablation. The discharges are performed in tubes of 60 to 110 mm length and 3 and 5 mm effective internal diameter. The main discharge current is provided from a small pulsed power switched coaxial line, at up to 150 kA. The generator may be configured to deliver two different rates of current rise and this is found to have a significant effect on the plasma dynamics. The plasma properties are obtained from observations of the axial x-ray emission. The diagnostics used are filtered Si diodes, filtered time-resolved multi-pinhole camera images and the time resolved soft x-ray spectrum from 3 to 20 nm. While a single species metal plasma is not obtained, a very significant proportion of Ti is achieved in the higher rate of current rise configuration. The fraction of Ti diminishes for the longest length discharges and for the larger diameter tube diameter, as does the observed z-pinch uniformity. There is a weak dependance of the electron temperature with tube geometry, but the plasma density falls substantially in the longer discharges. This coincides with diminished effectiveness of the transient HC

  16. Sterilization and decontamination of medical instruments by low-pressure plasma discharges: application of Ar/O{sub 2}/N{sub 2} ternary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kylian, O [Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague 8, 180 00 (Czech Republic); Rossi, F, E-mail: francois.rossi@jrc.i [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E Fermi 2749, 21027 Ispra (Vatican City State, Holy See) (Italy)

    2009-04-21

    A low-pressure inductively coupled plasma discharge sustained in an argon-oxygen-nitrogen ternary mixture is studied in order to evaluate its properties in terms of sterilization and decontamination of surfaces of medical instruments. It is demonstrated by direct comparison with discharges operated in oxygen-nitrogen and oxygen-argon mixtures that application of an Ar/O{sub 2}/N{sub 2} mixture offers the possibility to combine advantageous properties of the binary mixtures, namely, the capability of an O{sub 2}/N{sub 2} plasma to emit intense UV radiation needed for effective inactivation of bacterial spores together with high removal rates of biological substances from Ar/O{sub 2} discharge. Moreover, optimal conditions for both effects are obtained at a similar ternary discharge mixture composition, which is of much interest for real applications, since it offers a highly effective process desired for the safety of medical instruments.

  17. Spectroscopic measurement of H(1S) and H sub 2 (v double prime ,J double prime ) in an H sup minus ion source plasma

    Energy Technology Data Exchange (ETDEWEB)

    Stutzin, G.C.

    1990-08-01

    Low pressure H{sub 2} discharges have been used for some time as sources of H{sup {minus}} ions. These discharges contain many different species of particles which interact with each other and with the walls of the discharge chamber. Models exist that predict the populations of the various species for given macroscopic discharge parameters. However, many of the cross sections and wall catalyzation coefficients are unknown or somewhat uncertain. Therefore, it is of interest to measure the populations of as many of these species as possible, in order to determine the validity of the models. These models predict that H{sup {minus}} is created predominantly by the two-step process of vibrational excitation of hydrogen molecules followed by dissociative attachment of slow electrons to these vibrationally-excited hydrogen molecules. Many different collisional processes must be included in the models to explain the dependence of the various populations upon macroscopic parameters. This work presents results of spectroscopic measurements of the density and translational temperature of hydrogen atoms and of specific rotationally- and vibrationally-excited states of electronic ground-state H{sub 2}, in a discharge optimized for H{sup {minus}} production, as well as conventional measurements of the various charged species within the plasma. The spectroscopic measurements are performed directly by narrowband, single-photon absorption in the vacuum ultraviolet.

  18. Experimental study of unipolar arcs in a low pressure mercury discharge

    International Nuclear Information System (INIS)

    Johnson, C.T.

    1979-01-01

    An experimental study of unipolar arcs was conducted in a low pressure mercury discharge inductively heated with RF. The results were found to be consistent with the concept of a sheath mechanism for driving the unipolar arcs. Floating double-probe measurements of the unipolar arc plasma parameters yielded electron temperatures of approx. 2 eV and electron number densities of approx. 1 x 10 11 cm -3 assuming quasi-neutral plasma conditions. The variation of the unipolar arc current with: (1) the RF power input; and (2) the metal surface area exposed to the plasma verified the predicted dependence of the arc current on the plasma parameters and the metal surface area. Finally, alternative mechanisms for sustaining the observed arcs by high frequency rectification were ruled out on the basis of the recorded current waveforms of the unipolar arcs

  19. Discharge source coupled to a deceleration unit for anion beam generation: Application to H{sub 2}{sup −} photodetachment

    Energy Technology Data Exchange (ETDEWEB)

    Rudnev, V.; Ureña, A. González [Unidad de Láseres y Haces Moleculares, Instituto Pluridisciplinar, Universidad Complutense, Juan XXIII-1, Madrid 28040 (Spain)

    2013-12-15

    A cathode discharge source coupled to a deceleration unit for anion beam generation is described. The discharge source, made of stainless steel or duralumin electrodes and Macor insulators, is attached to the exit nozzle valve plate at one end, and to an Einzel lens to the other end. Subsequently, a cylindrical retardation unit is attached to the Einzel lens to decelerate the ions in order to optimize the laser beam interaction time required for spectroscopic investigations. The compact device is able to produce beam intensities of the order of 2 × 10{sup 12} anions/cm{sup 2} s and 20 μrad of angular divergence with kinetic energies ranging from 30 to 120 eV. Using distinct gas mixtures for the supersonic expansion together with a linear time-of-flight spectrometer, anions of great relevance in molecular astrophysics like, for example, H{sub 2}{sup −}, C{sub 3}H{sup −}, C{sub 2}{sup −}, C{sub 2}H{sup −}, HCN{sub 2}{sup −}, CO{sub 2}{sup −}, CO{sub 2}H{sup −}, C{sub 4}{sup −}, C{sub 4}H{sup −}, C{sub 5}H{sub 4}{sup −}, C{sub 5}H{sub 6}{sup −}, C{sub 7}N{sup −}, and C{sub 10}N{sup −} were produced. Finally, in order to demonstrate the capability of the experimental technique the photodetachment cross-section of the metastable H{sub 2}{sup −}, predominantly in the (v = 0, J = 26) state, was measured following laser excitation at λ{sub exc}= 565 nm obtaining a value of σ{sub ph}= 0.04 Å. To the best of our knowledge, it is the first time that this anion cross-section has been measured.

  20. High-Performance Na-O2 Batteries Enabled by Oriented NaO2 Nanowires as Discharge Products.

    Science.gov (United States)

    Khajehbashi, S Mohammad B; Xu, Lin; Zhang, Guobin; Tan, Shuangshuang; Zhao, Yan; Wang, Lai-Sen; Li, Jiantao; Luo, Wen; Peng, Dong-Liang; Mai, Liqiang

    2018-06-13

    Na-O 2 batteries are emerging rechargeable batteries due to their high theoretical energy density and abundant resources, but they suffer from sluggish kinetics due to the formation of large-size discharge products with cubic or irregular particle shapes. Here, we report the unique growth of discharge products of NaO 2 nanowires inside Na-O 2 batteries that significantly boosts the performance of Na-O 2 batteries. For this purpose, a high-spin Co 3 O 4 electrocatalyst was synthesized via the high-temperature oxidation of pure cobalt nanoparticles in an external magnetic field. The discharge products of NaO 2 nanowires are 10-20 nm in diameter and ∼10 μm in length, characteristics that provide facile pathways for electron and ion transfer. With these nanowires, Na-O 2 batteries have surpassed 400 cycles with a fixed capacity of 1000 mA h g -1 , an ultra-low over-potential of ∼60 mV during charging, and near-zero over-potential during discharging. This strategy not only provides a unique way to control the morphology of discharge products to achieve high-performance Na-O 2 batteries but also opens up the opportunity to explore growing nanowires in novel conditions.

  1. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  2. Kinetics of NO formation and decay in nanosecond pulse discharges in Air, H2-Air, and C2H4-Air mixtures

    International Nuclear Information System (INIS)

    Burnette, David; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R

    2016-01-01

    Time-resolved, absolute NO and N atom number densities are measured by NO Laser Induced Fluorescence (LIF) and N Two-Photon Absorption LIF in a diffuse plasma filament, nanosecond pulse discharge in dry air, hydrogen-air, and ethylene-air mixtures at 40 Torr, over a wide range of equivalence ratios. The results are compared with kinetic modeling calculations incorporating pulsed discharge dynamics, kinetics of vibrationally and electronically excited states of nitrogen, plasma chemical reactions, and radial transport. The results show that in air afterglow, NO decay occurs primarily by the reaction with N atoms, NO  +  N  →  N 2   +  O. In the presence of hydrogen, this reaction is mitigated by reaction of N atoms with OH, N  +  OH  →  NO  +  H, resulting in significant reduction of N atom number density in the afterglow, additional NO production, and considerably higher NO number densities. In fuel-lean ethylene-air mixtures, a similar trend (i.e. N atom concentration reduction and NO number density increase) is observed, although [NO] increase on ms time scale is not as pronounced as in H 2 -air mixtures. In near-stoichiometric and fuel-lean ethylene-air mixtures, when N atom number density was below detection limit, NO concentration was measured to be lower than in air plasma. These results suggest that NO kinetics in hydrocarbon-air plasmas is more complex compared to air and hydrogen-air plasmas, additional NO reaction pathways may well be possible, and their analysis requires further kinetic modeling calculations. (paper)

  3. Is this an arc or a glow discharge?

    International Nuclear Information System (INIS)

    Puchkarev, V.F.; Bochkarev, M.B.

    1994-01-01

    A well known criterion for distinguishing an arc discharge from a glow discharge is a low voltage drop (10--30 V) and a high current density that varies from a few tens to 10 6 A/cm 2 depending on arc type. The high current density is an attribute of arcs with cathode spots. The authors report here a study of the mechanism of emission in cathode spot arc where they realized a spotless discharge with a low voltage drop (30--50 V) and a high mean current density (10 4 --10 6 A/cm 2 ). The discharge was initiated between a broad cathode and point anode. The cathode was a smooth tungsten sphere electrode of about 100 μm in diameter. The point anode was made of various materials (Mo, Cu, Cd) with initial radius 1 μm. Before the experiment the cathode was cleaned by heating at 2,000 K at high vacuum (10 -8 Torr). The discharge was initiated by self-breakdown when electrodes under the voltage 200--500 V were brought to close proximity with each other. The cathode-anode spacing d at the moment of breakdown was estimated to be < 1 μm. The discharge current was varied within 1--3 A by changing the applied voltage and impedance of coaxial cable generator. The discharge burned during 100--1,000 ns. After the single discharge the cathode and anode were examined with a scanning electron microscope. The cathode surface exposed to the discharge was smooth, i.e. no erosion pits similar to arc craters were found on the cathode surface. The anode was shortened after discharge by 5--50 μm depending on current, material and cone angle. A high current density and low voltage drop implies that this is an arc discharge, while the cold cathode and the absence f cathode spot trace are pertinent to a dense glow discharge. The mechanism of emission involving secondary electron emission is to be discussed

  4. Current Trends in Discharge Disposition and Post-discharge Care After Total Joint Arthroplasty.

    Science.gov (United States)

    Tarity, T David; Swall, Marion M

    2017-09-01

    The purpose of this manuscript is to review published literature over the last 5 years to assess recent trends and influencing factors regarding discharge disposition and post-discharge care following total joint arthroplasty. We evaluated instruments proposed to predict a patient's discharge disposition and summarize reports investigating the safety in sending more patients home by reviewing complications and readmission rates. Current literature supports decreased length of hospital stay and increased discharge to home with cost savings and stable readmission rates. Surgeons with defined clinical pathways and those who shape patient expectations may more effectively control costs than those without defined pathways. Further research is needed analyzing best practices in care coordination, managing patient expectations, and cost-effective analysis of home discharge while at the same time ensuring patient outcomes are optimized following total joint arthroplasty.

  5. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    Science.gov (United States)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  6. Comparative studies of high-frequency and direct current molecular gas discharges

    International Nuclear Information System (INIS)

    Goichman, V.H.; Goldfarb, V.M.; Tendler, M.B.

    1975-01-01

    Electron gas parameters, gas temperatures, ionization and thermal instability are found to be markedly different in direct current glow discharges from capactive electrodless high frequency discharge even when equal net power input is provided. It is reasonable to expect that the combined discharge containing both types of discharges mentioned above may be expected to improve significantly both the steady-state and transient characteristics of the plasma. The characteristics of different discharges in air, nitrogen air-CO 2 -He mixture have been compared. Because of the lack of the direct electrical methods for measurements of the hf plasma, exphasis in this investigation has been laid on both theoretical) based on the analytical expression for electron energy distribution function received previously and experimental spectroscopic evaluations of the plasma parameters. (Auth.)

  7. Treatment of hospital laundry wastewater by UV/H2O2 process.

    Science.gov (United States)

    Zotesso, Jaqueline Pirão; Cossich, Eneida Sala; Janeiro, Vanderly; Tavares, Célia Regina Granhen

    2017-03-01

    Hospitals consume a large volume of water to carry out their activities and, hence, generate a large volume of effluent that is commonly discharged into the local sewage system without any treatment. Among the various sectors of healthcare facilities, the laundry is responsible for the majority of water consumption and generates a highly complex effluent. Although several advanced oxidation processes (AOPs) are currently under investigation on the degradation of a variety of contaminants, few of them are based on real wastewater samples. In this paper, the UV/H 2 O 2 AOP was evaluated on the treatment of a hospital laundry wastewater, after the application of a physicochemical pretreatment composed of coagulation-flocculation and anthracite filtration. For the UV/H 2 O 2 process, a photoreactor equipped with a low-pressure UV-C lamp was used and the effects of initial pH and [H 2 O 2 ]/chemical oxygen demand (COD) ratio on COD removal were investigated through a randomized factorial block design that considered the batches of effluent as blocks. The results indicated that the initial pH had no significant effect on the COD removal, and the process was favored by the increase in [H 2 O 2 ]/COD ratio. Color and turbidity were satisfactorily reduced after the application of the physicochemical pretreatment, and COD was completely removed by the UV/H 2 O 2 process under suitable conditions. The results of this study show that the UV/H 2 O 2 AOP is a promising candidate for hospital laundry wastewater treatment and should be explored to enable wastewater reuse in the washing process.

  8. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    Science.gov (United States)

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  9. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharge: Part I. Experimental

    NARCIS (Netherlands)

    Gielen, J.W.A.M.; de Groot, S.; Dijk, van J.; Mullen, van der J.J.A.M.

    2004-01-01

    Due to cataphoresis, axial segregation of mercury will occur when the gas discharge of a fluorescent lamp is operated by means of a direct current. A consequence of this is a non-uniform axial luminance distribution along the lamp. To determine the degree of axial mercury segregation experimentally,

  10. Global Particle Balance Measurements in DIII-D H-mode Discharges

    International Nuclear Information System (INIS)

    Unterberg, Ezekial A.; Allen, S.L.; Brooks, N.; Evans, T.E.; Leonard, A.W.; McLean, A.; Watkins, J.G.; Whyte, D.G.

    2011-01-01

    Experiments are performed on the DIII-D tokamak to determine the retention rate in an all graphite first-wall tokamak. A time-dependent particle balance analysis shows a majority of the fuel retention occurs during the initial Ohmic and L-mode phase of discharges, with peak fuel retention rates typically similar to 2 x 10(21) D/s. The retention rate can be zero within the experimental uncertainties (<3 x 10(20) D/s) during the later stationary phase of the discharge. In general, the retention inventory can decrease in the stationary phase by similar to 20-30% from the initial start-up phase of the discharge. Particle inventories determined as a function of time in the discharge, using a 'dynamic' particle balance analysis, agree with more accurate particle inventories directly measured after the discharge, termed 'static' particle balance. Similarly, low stationary retention rates are found in discharges with heating from neutral-beams, which injects particles, and from electron cyclotron waves, which does not inject particles. Detailed analysis of the static and dynamic balance methods provide an estimate of the DIII-D global co-deposition rate of <= 0.6-1.2 x 10(20) D/s. Dynamic particle balance is also performed on discharges with resonant magnetic perturbation ELM suppression and shows no additional retention during the ELM-suppressed phase of the discharge.

  11. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  12. Faraday space in a high-frequency γ discharge and the influence of pressure on the normal current density effect of an α discharge and the nature of the α-γ transition

    International Nuclear Information System (INIS)

    Raizer, Yu.P.; Shneider, M.N.

    1992-01-01

    The essential differences between high-frequency capacative discharges at intermediate and low pressures are considered. A theory is developed for the negative emission region and the Faraday dark space in a γ discharge. It is based on the kinetic equation for electrons in the highly nonuniform field of an electrode sheath, which is solved in the forward-backward approximation. If a uniform positive column is formed in the middle of the gap of a γ discharge of average pressure which is not too short, then at low pressures the hf plasma acts as the equivalent of the negative emission or Faraday space of a glow discharge with a typical weak field and low electron temperature. A region of reversed average field also appears, which is characteristic of a glow discharge. The question of the normal current density effect in an α discharge is discussed. This effect is observed at average pressures. At low pressures the effect disappears, and even weak current covers the entire electrode; the pressures at which this occurs and the reasons for it are demonstrated. The nature of the α-γ transition, which takes place discontinuously at average pressures but continuously at lower pressures, is discussed. The reason for this behavior is discussed and the pressure at which the discontinuous mechanism changes into continuous is estimated

  13. Characteristics of edge localized mode in JFT-2M H-mode

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi; Funahashi, Akimasa; Goldston, R.J.

    1989-03-01

    Characteristics of edge localized mode (ELM/ERP) during H-mode plasma of JFT-2M were investigated. It was found that ELM/ERP is mainly a density fluctuation phenomena in the edge, and electron temperature in the edge except just near the separatrix is not very much perturbed. Several experimental conditions to controll ELM/ERP are, plasma density, plasma ion species, heating power, and plasma current ramping. ELM/ERPs found in low density deuterium discharge are suppressed by raising the density. ELM/ERPs are pronounced in hydrogen plasma compared with deuterium plasma. ELM/ERPs seen in hydrogen plasma or in near marginal H-mode conditions are suppressed by increasing the heating power. ELM/ERPs are found to be suppressed by plasma current ramp down, whereas they are enhanced by current ramp up. MHD aspect of ELM/ERP was investigated. No clear MHD features of ELM/ERP were found. However, reversal of mode rotation seen imediately after ELM/ERP suggests the temporal return to L-mode during the ELM/ERP event. (author)

  14. Measurements of current penetration during PDX discharge start-up

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Goldston, R.J.; Kaita, R.; Cavallo, A.; Grek, B.; Johnson, D.; McCune, D.C.; McGuire, K.; White, R.B.

    1984-11-01

    The current penetration phase of PDX discharges is examined. The Fast Ion Diagnostic Experiment has been used to measure the temporal evolution of the central q (r/a < 0.4), and to show the effect of magnetic perturbations on fast ions. During plasma current penetration, a series of magnetic perturbations was observed in the plasma. If the current was rising rapidly, the perturbations were accompanied by increases in β/sub theta/ + l/sub i//2 and decreases in the loop voltage, suggesting a rapid penetration of the plasma current. When the plasma current was rising slowly, a series of minor disruptions occurred. These were accompanied by decreases in β/sub theta/ + l/sub i//2 and the loop voltage, and increases in the plasma current. During this phase, current penetration may be enhanced by the change in the resistivity profile which accompanies the disruption

  15. Hybrid HVDC (H2VDC System Using Current and Voltage Source Converters

    Directory of Open Access Journals (Sweden)

    José Rafael Lebre

    2018-05-01

    Full Text Available This paper presents an analysis of a new high voltage DC (HVDC transmission system, which is based on current and voltage source converters (CSC and VSC in the same circuit. This proposed topology is composed of one CSC (rectifier and one or more VSCs (inverters connected through an overhead transmission line in a multiterminal configuration. The main purpose of this Hybrid HVDC (H2VDC, as it was designed, is putting together the best benefits of both types of converters in the same circuit: no commutation failure and system’s black start capability in the VSC side, high power converter capability and low cost at the rectifier side, etc. A monopole of the H2VDC system with one CSC and two VSCs—here, the VSC is the Modular Multilevel Converter (MMC considered with full-bridge submodules—in multiterminal configuration is studied. The study includes theoretical analyses, development of the CSC and VSCs control philosophies and simulations. The H2VDC system’s behavior is analyzed by computational simulations considering steady-state operation and short-circuit conditions at the AC and DC side. The obtained results and conclusions show a promising system for very high-power multiterminal HVDC transmission.

  16. Ion source of discharge type

    Energy Technology Data Exchange (ETDEWEB)

    Enchevich, I.B. [TRIUMF, Cyclotron Div., Vancouver, British Columbia (Canada); Korenev, S.A. [JINR, Hihg Energy Physics Lab., Dubna, Moscow (Russian Federation)

    1992-07-01

    A new scheme of ion source based on a dielectric surface sliding discharge is described. The conditions to form this type of discharge are analyzed and experimental results are shown. The main parameters of this ion source are: accelerating voltage U = 1/20kV; continuous extracted ion beam; current density j = 0.01/0.5 A/cm{sup 2}; ions of Cl, F, C, H; residual gas pressure P = 10{sup -6} Torr. A magnetic system is used to separate the different types of ions. The dielectric material in the discharge circuit (anode plasma emitter) defines the type of ions. The emission characteristics of plasma emitter and the discharge parameters are presented. The ion current yield satisfies the Child-Langmuir law. (author)

  17. Ion source of discharge type

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Korenev, S.A.

    1992-07-01

    A new scheme of ion source based on a dielectric surface sliding discharge is described. The conditions to form this type of discharge are analyzed and experimental results are shown. The main parameters of this ion source are: accelerating voltage U = 1/20kV; continuous extracted ion beam; current density j = 0.01/0.5 A/cm 2 ; ions of Cl, F, C, H; residual gas pressure P = 10 -6 Torr. A magnetic system is used to separate the different types of ions. The dielectric material in the discharge circuit (anode plasma emitter) defines the type of ions. The emission characteristics of plasma emitter and the discharge parameters are presented. The ion current yield satisfies the Child-Langmuir law. (author)

  18. Control of hydrocarbon radicals and film deposition by using an RF Whistler wave discharge

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Shoji, Tatsuo; Kadota, Kiyoshi.

    1991-10-01

    Production of hydrocarbon radicals is controlled by using an RF Whistler wave discharge in a low pressure region (∼0.1 Pa). Plasma density of 10 10 - 10 13 cm -3 , electron temperature of 2-20 eV is obtained for the discharge of admixture of Ar and small content of source gases (CH 4 , C 2 H 2 , CO). Spectroscopic measurement indicates that densities of CH and H radicals and deposition rate of amorphous carbon:H film increase with electron density, electron temperature and source gas pressure. The etching effect of H atoms influences on the deposition rate and a high deposition rate (90 μm/hr for CO/Ar discharge) is obtained even in a low neutral pressure discharge. (author)

  19. Low-Frequency Noise in Layered ReS2 Field Effect Transistors on HfO2 and Its Application for pH Sensing.

    Science.gov (United States)

    Liao, Wugang; Wei, Wei; Tong, Yu; Chim, Wai Kin; Zhu, Chunxiang

    2018-02-28

    Layered rhenium disulfide (ReS 2 ) field effect transistors (FETs), with thickness ranging from few to dozens of layers, are demonstrated on 20 nm thick HfO 2 /Si substrates. A small threshold voltage of -0.25 V, high on/off current ratio of up to ∼10 7 , small subthreshold swing of 116 mV/dec, and electron carrier mobility of 6.02 cm 2 /V·s are obtained for the two-layer ReS 2 FETs. Low-frequency noise characteristics in ReS 2 FETs are analyzed for the first time, and it is found that the carrier number fluctuation mechanism well describes the flicker (1/f) noise of ReS 2 FETs with different thicknesses. pH sensing using a two-layer ReS 2 FET with HfO 2 as a sensing oxide is then demonstrated with a voltage sensitivity of 54.8 mV/pH and a current sensitivity of 126. The noise characteristics of the ReS 2 FET-based pH sensors are also examined, and a corresponding detection limit of 0.0132 pH is obtained. Our studies suggest the high potential of ReS 2 for future low-power nanoelectronics and biosensor applications.

  20. High-pressure condition of SiH{sub 4}+Ar+H{sub 2} plasma for deposition of hydrogenated nanocrystalline silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, A.; Kumar, Sushil; Dixit, P.N.; Gope, Jhuma; Rauthan, C.M.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Hashmi, S.A. [Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India)

    2008-10-15

    The characteristics of 13.56-MHz discharged SiH{sub 4}+Ar+H{sub 2} plasma at high pressure (2-8 Torr), used for the deposition of hydrogenated nanocrystalline silicon (nc-Si:H) films in a capacitively coupled symmetric PECVD system, has been investigated. Plasma parameters such as average electron density, sheath field and bulk field are extracted from equivalent circuit model of the plasma using outputs (current, voltage and phase) of RF V-I probe under different pressure conditions. The conditions of growth in terms of plasma parameters are correlated with properties of the hydrogenated nanocrystalline silicon films characterized by Raman, AFM and dc conductivity. The film deposited at 4 Torr of pressure, where relatively low sheath/bulk field ratio is observed, exhibits high crystallinity and conductivity. The crystalline volume fraction of the films estimated from the Raman spectra is found to vary from 23% to 79%, and the trend of variation is similar to the RF real plasma impedance data. (author)

  1. Expansion of a nitrogen discharge by sound

    International Nuclear Information System (INIS)

    Antinyan, M.A.; Galechyan, G.A.; Tavakalyan, L.B.

    1992-01-01

    When the background pressure and the discharge current in a gas discharge are raised the plasma column is tightened up into a filament. Then the discharge occupies a region of the discharge tube whose transverse dimensions are substantially less than those of the tube. This contraction phenomenon in discharges restricts the range of parameters used in various devices to the range of relatively low discharge currents and low gas pressures. This contraction interferes with creating high-power gas lasers, since it acts destructively on the lasing process. In order to suppress filamentation of discharges the working gas has been pumped through the system at high speed, with considerable success. The turbulent mixing in the stream plays an important role in creating an uncontracted discharge at high pressures. The purpose of the present work is to study the possibility of undoing the contraction of a nitrogen discharge, which is one of the main components in the operation of a CO 2 laser, by introducing an intense sound wave in the discharge tube. Discharge contraction and the effect of a sound wave propagating along the plasma column have been investigated experimentally in nitrogen by studying the current-voltage characteristics of a contracted discharge. 6 refs., 3 figs

  2. Non-inductively driven currents in JET

    International Nuclear Information System (INIS)

    Challis, C.D.; Cordey, J.G.; Hamnen, H.; Stubberfield, P.M.; Christiansen, J.P.; Lazzaro, E.; Muir, D.G.; Stork, D.; Thompson, E.

    1989-01-01

    Neutral beam heating data from JET have been analysed in detail to determine what proportion of the current is driven non-inductively. It is found that in low density limiter discharges, currents of the order of 0.5 MA are driven, while in H-mode plasmas currents of the order of 0.7 MA are measured. These measured currents are found to be in reasonable agreement with theoretical predictions based on neoclassical models. In low density plasmas the beam driven current is large while the neoclassical bootstrap current dominates H-mode plasmas. (author). 19 refs, 11 figs

  3. Measurement of electron- and ion beam energies and currents in a plasma focus discharge

    International Nuclear Information System (INIS)

    Yamamoto, Toshikazu; Kondoh, Yoshiomi; Shimoda, Katsuji; Hirano, Katsumi

    1982-01-01

    Measurements of energetic particle beams in a plsma focus with a Mather type device are presented. Rogowski coils are used for time-resolved measurement, and solid-state nuclear track detectors for time-integrated measurement of the beams. In the upstream direction with respect to the discharge current, only the electron beam with the maximum current of several kA was detected, which was approximately one percent of the discharge current. The electron energies of the beam were spread from 0.1 to 1 MeV. In the downstream direction, two successive emissions of ions were observed. The first emission had an extremely high energy of the order of some MeV and a low beam current of less than 10 A. The second emission, the main part of the ion beam, with energies of 100 - 800 keV, followed the first one with a time lag of several tens of nanoseconds, and the beam current reached several tens of amperes. (author)

  4. Process Performances of 2 ns Pulsed Discharge Plasma

    Science.gov (United States)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  5. Design and experiment of high-current low-pressure plasma-cathode e-gun

    International Nuclear Information System (INIS)

    Xie Wenkai; Li Xiaoyun; Wang Bin; Meng Lin; Yan Yang; Gao Xinyan

    2006-01-01

    The preliminary design of a new high-power low pressure plasma-cathode e-gun is presented. Based on the hollow cathode effect and low-pressure glow discharge empirical formulas, the hollow cathode, the accelerating gap, and the working gas pressure region are given. The general experimental device of the low-pressure plasma cathode electron-gun generating high current density e-beam source is shown. Experiments has been done in continuous filled-in gases and gases-puff condition, and the discharging current of 150-200 A, the width of 60 μs and the collector current of 30-80 A, the width of 60 μs are obtained. The results show that the new plasma cathode e-gun can take the place of material cathode e-gun, especially in plasma filled microwave tubes. (authors)

  6. Observation of a very high electron current extraction mode in a hollow cathode discharge

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1993-01-01

    Earlier results by Hershcovitch, Kovarik, and Prelec in J. Appl. Phys. 67, 671 (1990) proved that, in a low-pressure operating mode, hollow cathode discharges can have a two-component electron population, one of which is that of ''fast'' electrons having an energy corresponding to the cathode potential and a thermal spread of about 0.13 eV, which could form a basis for an excellent electron gun. Investigations of extracted electron currents in this low pressure mode indicate the existence of a narrow pressure range characterized by very high electron current extraction

  7. Electron Bernstein wave current drive in the start-up phase of a tokamak discharge

    International Nuclear Information System (INIS)

    Montes, A.; Ludwig, G.O.

    1986-04-01

    Current drive by electron Bernstein waves in the start-up phase of tokamak discharges is studied. A general analytical expression is derived for the figure of merit J/Pd associated with these waves. This is coupled with a ray tracing code, allowing the calculation of the total current generated per unit of incident power in realistic tokamak conditions. The resuts show that the electron Bernstein waves can drive substantial currents even at very low electron temperatures. (Author) [pt

  8. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  9. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Science.gov (United States)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  10. H-mode pedestal characteristics, ELMs, and energy confinement in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-12-01

    The H-mode confinement enhancement factor, H, is found to be strongly correlated with the height of the edge pressure pedestal in ITER shape discharges. In discharges with Type I ELMs the pedestal pressure is set by the maximum pressure gradient before the ELM and the width of the H-mode transport barrier. The pressure gradient before Type I ELMs is found to scale as would be expected for a stability limit set by ideal ballooning modes, but with values significantly in excess of that predicted by stability code calculations. The width of the H-mode transport barrier is found to scale equally well with pedestal P(POL)(2/3) or B(POL)(1/2). The improved H value in high B(POL) discharges may be due to a larger edge pressure gradient and wider H-mode transport barrier consistent with their higher edge ballooning mode limit. Deuterium puffing is found to reduce H consistent with the smaller pedestal pressure which results from the reduced barrier width and critical pressure gradient. Type I ELM energy loss is found to be proportional to the change in the pedestal energy

  11. Characterization of the large area plane-symmetric low-pressure DC glow discharge

    Science.gov (United States)

    Avtaeva, S.; Gorokhovsky, V.; Myers, S.; Robertson, S.; Shunko, E.; Zembower, Z.

    2016-10-01

    Electron density and temperature as well as nitrogen dissociation degree in the low-pressure (10-50 mTorr) large area plane-symmetric DC glow discharge in Ar-N2 mixtures are studied by probes and spectral methods. Electron density measured by a hairpin probe is in good agreement with that derived from the intensity ratio of the N2 2nd positive system bands IC, 1 - 3/IC, 0 - 2 and from the intensity ratio of argon ions and atom lines IArII/IArI, while Langmuir probe data provides slightly higher values of electron density. Electron density in the low-pressure DC glow discharge varies with the discharge conditions in the limits of 108-1010 cm- 3. The concept of electron temperature can be used in low-pressure glow discharges with reservations. The intensity ratio of (0-0) vibrational bands of N2 1st negative and 2nd positive systems I391.4/I337.1 exhibits the electron temperature of 1.5-2.5 eV when argon fraction in the mixture is higher than nitrogen fraction and this ratio quickly increases with nitrogen fraction up to 10 eV in pure nitrogen. The electron temperature calculated from Langmuir probe I-V characteristics assuming a Maxwellian EEDF, gives Te 0.3-0.4 eV. In-depth analysis of the EEDF using the second derivative of Langmuir probe I-V characteristics shows that in a low-pressure glow discharge the EEDF is non-Maxwellian. The EEDF has two populations of electrons: the main background non-Maxwellian population of ;cold; electrons with the mean electron energy of 0.3-0.4 eV and the small Maxwellian population of ;hot; electrons with the mean electron energy of 1.0-2.5 eV. Estimations show that with electron temperature lower than 1 eV the rate of the direct electron impact ionization of N2 is low and the main mechanism of N2 ionization becomes most likely Penning and associative ionization. In this case, assumptions of the intensity ratio IN2+, 391/IN2, 337 method are violated. In the glow discharge, N2 dissociation degree reaches about 7% with the argon

  12. Simultaneous measurement of ignition energy and current signature for brush discharges

    International Nuclear Information System (INIS)

    Fast, Lars; Andersson, Birgitta; Smallwood, Jeremy; Holdstock, Paul; Paasi, Jaakko

    2011-01-01

    Accurate prediction of the probability of ignition arising from charged insulators is a crucial element of risk assessment in process industry. Incendiary brush discharges can occur when a large or grounded conductor approaches a charged insulator in the presence of a flammable atmosphere. This paper describes ignition tests based on an IEC standard method and simultaneously recorded temporal distribution of current released in the discharges, using a discharge probe integrated with the ignition probe. Ignition and non-ignition results are compared with peak discharge current and charge transferred in the discharge. No clear ignition threshold was found for either of these parameters. No major differences were found between igniting and non-igniting waveforms.

  13. ECH power deposition at 3rd harmonic in high elongation TCV discharges sustained by 2nd harmonic current profile broadening

    International Nuclear Information System (INIS)

    Pochelon, A. . E-mail : Antoine.Pochelon@epfl.ch; Arnoux, G.; Camenen, Y.

    2003-01-01

    This paper summarises the present effort aimed at developing high elongation heated discharges and testing their confinement properties at normalised currents for which the highest ideal MHD β-limits are predicted. 2nd harmonic (X2) far off-axis ECH/CD is used to stabilise the plasma vertically at high elongation by broadening the current profile in stationary conditions (during the current flat top and over several current diffusion times). Current broadening is maximal for a power deposition in a narrow region (∼a/5), for a finite toroidal injection angle and for high plasma density using upper lateral launchers to minimise refraction. In these discharges which are twice X2 overdense in the centre, 3rd harmonic (X3) is injected from a top launcher to deposit power in the centre and increase the central pressure, simultaneously with far off-axis X2. Using modulated X3, full absorption is measured by the diamagnetic probe. Absorption higher than calculated by thermal ray tracing is occasionally found, indicating absorption on the electron bulk as well as in the suprathermal electron population sometimes with a hollow deposition profile. The high sensitivity of the power coupling to the beam angle stresses the need for developing a mirror feedback scheme to increase the coupling efficiency in transient heating scenarios. (author)

  14. Internal barrier discharges in JET and their sensitivity to edge conditions

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    2001-01-01

    Experiments in JET have concentrated on steady state discharges with internal transport barriers. The internal transport barriers are formed during the current rise phase of the discharge with low magnetic shear in the centre and with high additional heating power. In order to achieve stability against disruptions at high pressure peaking, typical for ITB discharges, the pressure profile can be broadened with a H-mode transport barrier at the edge of the plasma. However, the strong increase in edge pressure during an ELM free H-mode weakens the internal transport barrier due to a reduction of the rotational shear and pressure gradient at the ITB location. In addition, type I ELM activity, associated with a high edge pedestal pressure, leads to a collapse of the ITB with the input powers available in JET. The best ITB discharges are obtained with input power control to reduce to core pressure, and with the edge of the plasma controlled by argon gas dosing. These discharges achieve steady conditions for several energy confinement times with H97 confinement enhancement factors of 1.2-1.6 at line average densities around 30%-40% of the Greenwald density. This is at much lower density (typically factor 2 to 3) compared to standard H-mode discharges in JET. Increasing the density, using additional deuterium gas dosing or shallow pellet fueling has not been successful so far. A possible route to higher densities should maintain the type III ELM's towards high edge density, giving scope for future experiments in JET. (author)

  15. Infrared laser spectroscopy of H2 and D2 Rydberg states. II. Diode laser spectra and assignment of 5g--4f, 6h--5g, and 8i--6h systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Guest, M.A.; Stickland, R.J.

    1990-01-01

    Infrared diode laser absorption spectra of portions of the 5g--4f, 6h--5g, and 8i--6h Rydberg bands of H 2 and D 2 have been measured at Doppler limited resolution in low pressure A. C. discharges. The spectra, arising from L uncoupled states of H 2 and D 2 , are assigned using an ab initio polarization model supported by intensity calculations. Details of the different implementations of this polarization model are given in the preceding paper. The most useful was the single channel vibrationally extended (1)/(2) V 6 model which became progressively better at higher n (and L). Results of multichannel calculations for a selected set of transitions are also reported

  16. Particle control in DIII-D with helium glow discharge conditioning

    International Nuclear Information System (INIS)

    Jackson, G.L.; Taylor, T.S.; Taylor, P.L.

    1990-01-01

    Helium glow discharge conditioning of DIII-D is routinely used before every tokamak discharge to desorb hydrogen from the graphite tiles, which are the plasma facing surfaces for the floor, inner wall and top of the vessel. In addition to reducing hydrogen fuelling of the plasma by the graphite surfaces, helium glow discharges are also effective in removing low-Z impurities, primarily in the form of carbon monoxide and hydrocarbons, and this has permitted higher current divertor operation and more rapid recovery from tokamak disruptions. Since the implementation of repetitive helium glow wall conditioning, the parameter space in which tokamak discharges in DIII-D can be obtained has been expanded to include the first observations of limiter H-mode confinement, the Ohmic H-mode with periods of up to 150 ms that are free of edge localized modes, more reliable low q operation with volume averaged beta of up to 9.3%, improved control over locked modes and plasma discharges at lower electron density. (author). 37 refs, 12 figs, 1 tab

  17. Vortex depinning as a nonequilibrium phase transition phenomenon: Scaling of current-voltage curves near the low and the high critical-current states in 2 H -Nb S2 single crystals

    Science.gov (United States)

    Bag, Biplab; Sivananda, Dibya J.; Mandal, Pabitra; Banerjee, S. S.; Sood, A. K.; Grover, A. K.

    2018-04-01

    The vortex depinning phenomenon in single crystals of 2 H -Nb S2 superconductors is used as a prototype for investigating properties of the nonequilibrium (NEQ) depinning phase transition. The 2 H -Nb S2 is a unique system as it exhibits two distinct depinning thresholds, viz., a lower critical current Icl and a higher one Ich. While Icl is related to depinning of a conventional, static (pinned) vortex state, the state with Ich is achieved via a negative differential resistance (NDR) transition where the velocity abruptly drops. Using a generalized finite-temperature scaling ansatz, we study the scaling of current (I)-voltage (V) curves measured across Icl and Ich. Our analysis shows that for I >Icl , the moving vortex state exhibits Arrhenius-like thermally activated flow behavior. This feature persists up to a current value where an inflexion in the IV curves is encountered. While past measurements have often reported similar inflexion, our analysis shows that the inflexion is a signature of a NEQ phase transformation from a thermally activated moving vortex phase to a free flowing phase. Beyond this inflection in IV, a large vortex velocity flow regime is encountered in the 2 H -Nb S2 system, wherein the Bardeen-Stephen flux flow limit is crossed. In this regime the NDR transition is encountered, leading to the high Ich state. The IV curves above Ich we show do not obey the generalized finite-temperature scaling ansatz (as obeyed near Icl). Instead, they scale according to the Fisher's scaling form [Fisher, Phys. Rev. B 31, 1396 (1985), 10.1103/PhysRevB.31.1396] where we show thermal fluctuations do not affect the vortex flow, unlike that found for depinning near Icl.

  18. Investigations of low qa discharges in the SINP tokamak

    Indian Academy of Sciences (India)

    Low edge safety factor discharges including very low qa (1 qa ... From fluctuation analysis of the external magnetic probe data it has been found that MHD ... To investigate the internal details of these discharges, an internal magnetic probe ...

  19. Measurement of H and H2 populations in-situ in a low-temperature plasma by vacuum-ultraviolet laser-absorption spectroscopy

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Young, A.T.; Stutzin, G.C.; Stearns, J.W.; Doebele, H.G.; Leung, K.N.; Kunkel, W.B.

    1988-12-01

    A new technique, vacuum-ultraviolet laser-absorption spectroscopy, has been developed to quantitatively determine the absolute density of H and H 2 within a plasma. The technique is particularly well suited to measurement in a plasma, where high charged particle and photon background complicate other methods of detection. The high selectivity and sensitivity of the technique allows for the measurement of the rotational-vibrational state distribution of H 2 as well as the translational temperature of the atoms and molecules. The technique has been used to study both pulsed and continuous H/sup /minus// ion-source plasma discharges. H 2 state distributions in a multicusp ''volume'' H/sup /minus// ion- source plasma show a high degree of internal excitation, with levels up to v = 5 and J = 8 being observed. The method is applicable for a very wide range of plasma conditions. Emission measurements from excited states of H are also reported. 17 refs., 9 figs

  20. High performance electrodes for low pressure H{sub 2}-air PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Besse, S; Bronoel, G; Fauvarque, J F [Laboratoires SORAPEC (France)

    1998-12-31

    Proton exchange membrane fuel cells (PEMFCs) were first developed for space applications in the 1960s. Currently, they are being manufactured for terrestrial portable power applications. One of the challenges is to develop a low pressure H{sub 2}/Air PEMFC in order to minimize the cathodic mass transport overpotentials. The hydrogen oxidation reaction is considered to be sufficiently rapid. Hydrogen transport limitations are very low even at high current densities. The different applications considered for hydrogen/air PEMFC need to work at atmospheric pressure. An optimization of the structure of the oxygen electrode and the membrane electrode assembly (MEA) are essential in order to decrease mass transport limitations and to obtain good water management even at low pressures. Efforts have been made to produce electrodes and MEA for PEMFC with low platinum loading. The electrode structure was developed to ensure a good diffusion of reactants and an effective charge collection. It has also been optimized for low pressure restrictions. It was concluded that high performances can be achieved even at low pressures by improving the electrode gas diffusion layer (PTFE content) and by improving the catalyst. 12 refs., 7 figs.

  1. Scaling of ELM and H-mode pedestal characteristics in ITER shape discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-07-01

    The authors have shown a correlation between the H-mode pressure pedestal height and the energy confinement enhancement in ITER shape discharges on DIII-D which is consistent with the behavior of H in different ELM classes. The width of the steep gradient region was found to equally well fit the scalings δ/R ∝ (ρ POL /R) 2/3 and δ/R ∝ (β POL PED /R) 1/2 . The normalized pressure gradient α MHD was found to be relatively constant just before a type I ELM. An estimate of T PED for ITER gave 1 to 5 keV. They also estimate ΔE ELM ≅ 26 MJ for ITER. They identified a distinct class of type III ELM at low density which may play a role in setting H at powers near the H-mode threshold power

  2. Gas and plasma dynamics of RF discharge jet of low pressure in a vacuum chamber with flat electrodes and inside tube, influence of RF discharge on the steel surface parameters

    Science.gov (United States)

    Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.

    2016-06-01

    Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.

  3. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Microelectrode-assisted low-voltage atmospheric pressure glow discharge in air

    Science.gov (United States)

    Liu, Wenzheng; Zhao, Shuai; Niu, Jiangqi; Chai, Maolin

    2017-09-01

    During the process of discharge, appropriately changing the paths corresponding to electric field lines and the field strength distribution along these paths, as well as increasing the number of initial electrons, can effectively enhance the uniformity of discharge and inhibit the formation of filamentary discharge. A method is proposed that uses a microelectrode to initiate the macroscopic discharge phenomenon. An asymmetric structure was designed comprising a single electrode of carbon fiber; this electrode structure is of helical-contact type. Benefitting from the special electric field distribution and the microdischarge process, a three-dimensional atmospheric pressure glow discharge was achieved in air, characterized by low discharge voltage, low energy consumption, good diffusion performance, and less ozone generation. The plasma studied is uniform and stable with good diffusion characteristics and low levels of contaminants and hence has potential applications in the field of air purification.

  5. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin, E-mail: wangxx@tsinghua.edu.cn [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  6. Infrared gas phase study on plasma-polymer interactions in high-current diffuse dielectric barrier discharge

    NARCIS (Netherlands)

    Liu, Y.; Welzel, S.; Starostin, S. A.; van de Sanden, M. C. M.; Engeln, R.; de Vries, H. W.

    2017-01-01

    A roll-to-roll high-current diffuse dielectric barrier discharge at atmospheric pressure was operated in air and Ar/N2/O2 gas mixtures. The exhaust gas from the discharge was studied using a high-resolution Fourier-transform infrared spectrometer in the range from 3000 to 750?cm-1 to unravel the

  7. Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels

    Science.gov (United States)

    Mills, R.; Lotoski, J.; Lu, Y.

    2017-09-01

    EUV continuum radiation (10-30 nm) arising only from very low energy pulsed pinch gas discharges comprising some hydrogen was first observed at BlackLight Power, Inc. and reproduced at the Harvard Center for Astrophysics (CfA). The source was determined to be due to the transition of H to the lower-energy hydrogen or hydrino state H(1/4) whose emission matches that observed wherein alternative sources were eliminated. The identity of the catalyst that accepts 3 · 27.2 eV from the H to cause the H to H(1/4) transition was determined to HOH versus 3H. The mechanism was elucidated using different oxide-coated electrodes that were selective in forming HOH versus plasma forming metal atoms as well as from the intensity profile that was a mismatch for the multi-body reaction required during 3H catalysis. The HOH catalyst was further shown to give EUV radiation of the same nature by igniting a solid fuel comprising a source of H and HOH catalyst by passing a low voltage, high current through the fuel to produce explosive plasma. No chemical reaction can release such high-energy light. No high field existed to form highly ionized ions that could give radiation in this EUV region that persisted even without power input. This plasma source serves as strong evidence for the existence of the transition of H to hydrino H(1/4) by HOH as the catalyst and a corresponding new power source wherein initial extraordinarily brilliant light-emitting prototypes are already producing photovoltaic generated electrical power. The hydrino product of a catalyst reaction of atomic hydrogen was analyzed by multiple spectroscopic techniques. Moreover, the mH catalyst was identified to be active in astronomical sources such as the Sun, stars and interstellar medium wherein the characteristics of hydrino match those of the dark matter of the Universe.

  8. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    Science.gov (United States)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  9. Particle transport analysis in lower hybrid current drive discharges of JT-60U

    International Nuclear Information System (INIS)

    Nagashima, K.; Ide, S.; Naito, O.

    1996-01-01

    Particle transport is modified in lower hybrid current drive discharges of JT-60U. The density profile becomes broad during the lower hybrid wave injection and the profile change depends on the injected wave spectrum. Particle transport coefficients (diffusion coefficient and profile peaking factor) were evaluated using gas-puff modulation experiments. The diffusion coefficient in the current drive discharges is about three times larger than in the ohmic discharges. The profile peaking factor decreases in the current drive discharges and the evaluated values are consistent with the measured density profiles. (author)

  10. Initiation of long, free-standing z discharges by CO2 laser gas heating

    Science.gov (United States)

    Niemann, C.; Tauschwitz, A.; Penache, D.; Neff, S.; Knobloch, R.; Birkner, R.; Presura, R.; Hoffmann, D. H. H.; Yu, S. S.; Sharp, W. M.

    2002-01-01

    High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore, they are considered an interesting solution for final focus and beam transport in a heavy ion beam fusion reactor. At the Gesellschaft für Schwerionenforschung accelerator facility, 50 cm long, free-standing discharge channels were created in a 60 cm diameter metallic chamber. Discharges with currents of 45 kA in 2 to 25 mbar ammonia (NH3) gas are initiated by a CO2 laser pulse along the channel axis before the capacitor bank is triggered. Resonant absorption of the laser, tuned to the v2 vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. The influence of an electric prepulse on the high current discharge was investigated. This article describes the laser-gas interaction and the discharge initiation mechanism. We found that channels are magnetohydrodynamic stable up to currents of 45 kA, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a one-dimensional Lagrangian fluid code (CYCLOPS) and is identified as the dominant initiation mechanism of the discharge.

  11. Experiments on Ion-Ion Plasmas From Discharges

    Science.gov (United States)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  12. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharges: Part I. Experimental

    International Nuclear Information System (INIS)

    Gielen, John W A M; Groot, Simon de; Mullen, Joost J A M van der

    2004-01-01

    Due to cataphoresis, axial segregation of mercury will occur when the gas discharge of a fluorescent lamp is operated by means of a direct current. A consequence of this is a non-uniform axial luminance distribution along the lamp. To determine the degree of axial mercury segregation experimentally, axial luminance distributions have been measured which are converted into axial mercury vapour pressure distributions by an appropriate calibration method. The mercury segregation has been investigated for variations in lamp tube radius (3.6-4.8 mm), argon buffer gas pressure (200-600 Pa) and lamp current (100-250 mA) at mercury vapour pressures set at the anode in the range from 0.2 to 9.0 Pa. From the experiments it has been concluded that the mercury vapour pressure gradient at any axial position for a certain lamp tube diameter, argon pressure and lamp current depends on the local mercury vapour pressure. This observation is in contrast to assumptions made in earlier modelling publications in which one mercury vapour pressure gradient is used for all axial positions. By applying a full factorial design, an empirical relation of the mercury segregation is found for any set of parameters inside the investigated parameter ranges

  13. Yield of H2O2 in Gas-Liquid Phase with Pulsed DBD

    Science.gov (United States)

    Jiang, Song; Wen, Yiyong; Liu, Kefu

    2014-01-01

    Electric discharge in water can generate a large number of oxidants such as ozone, hydrogen peroxide and hydroxyl radicals. In this paper, a non-thermal plasma processing system was established by means of pulsed dielectric barrier discharge in gas-liquid phase. The electrodes of discharge reactor were staggered. The yield of H2O2 was enhanced after discharge. The effects of discharge time, discharge voltage, frequency, initial pH value, and feed gas were investigated. The concentration of hydrogen peroxide and ozone was measured after discharge. The experimental results were fully analyzed. The chemical reaction equations in water were given as much as possible. At last, the water containing Rhodamine B was tested in this system. The degradation rate came to 94.22% in 30 min.

  14. Ni/La2O3 catalyst containing low content platinum-rhodium for the dehydrogenation of N2HH2O at room temperature

    Science.gov (United States)

    O, Song-Il; Yan, Jun-Min; Wang, Hong-Li; Wang, Zhi-Li; Jiang, Qing

    2014-09-01

    Ni/La2O3 nanocatalyst with Pt and Rh content as low as 5 mol%, respectively, is successfully synthesized by a facile co-reduction method in the presence of hexadecyl trimethyl ammonium chloride aqueous solution under ambient atmosphere. Interestingly, the resulted Ni/La2O3 catalyst with low cost exhibits excellent catalytic activity to dehydrogenation of hydrous hydrazine (N2HH2O), producing hydrogen with 100% selectivity at room temperature (298 K), which represents a promising step toward the practical application for N2HH2O system on fuel cells.

  15. V-I curves and plasma parameters in a high density DC glow discharge generated by a current-source

    International Nuclear Information System (INIS)

    Granda-Gutierrez, E E; Lopez-Callejas, R; Piedad-Beneitez, A de la; BenItez-Read, J S; Pacheco-Sotelo, J O; Pena-Eguiluz, R; A, R Valencia; Mercado-Cabrera, A; Barocio, S R

    2008-01-01

    Nitrogen DC glow discharges, conducted in a cylindrical geometry, have been characterized using a new current-source able to provide 10 -3 - 3 A for the sustainment of the discharge, instead of a conventional voltage-source. The V-I characteristic curves obtained from these discharges were found to fit the general form i(v) = A(p)v k(p) , whereby the plasma itself can be modeled as a voltage-controlled current-source. We conclude that the fitting parameters A and k, which mainly depend on the gas pressure p, are strongly related to the plasma characteristics, so much so that they can indicate the pressure interval in which the maximum plasma density is located, with values in the order of 10 16 m -3 at reduced discharge potential (300-600 V) and low working pressure (10 -1 - 10 1 Pa)

  16. Relaxation of atomic state multipoles by radiation re-absorption: Neon 2p2 atoms in a discharge plasma

    International Nuclear Information System (INIS)

    Nimura, M.; Imagawa, T.; Hasuo, M.; Fujimoto, T.

    2005-01-01

    In a positive column of a glow discharge in the magnetic field of 36.4G, a linearly polarized laser pulse or a circularly polarized laser pulse has produced polarized neon atoms (alignment or orientation) in the 2p 2 (Paschen notation) level from the 1s 3 level. The subsequent fluorescence to the 1s 2 level was observed with its polarized components resolved. Depopulation, disorientation and disalignment rates of the 2p 2 atom were measured and their discharge current dependences were examined for a discharge current from 0.4 to 2.0mA. The degrees of radiation re-absorption, or the optical thickness, of the transition lines from the 2p 2 level to the 1s 2 -1s 5 levels were measured as functions of the discharge current. A Monte Carlo simulation was performed by which the depopulation, disorientation and disalignment rates by the radiation re-absorption for these transitions were determined. The calculated rates were compared with the observed ones and found to reproduce the their discharge current dependences. D'Yankonov and Perel's analytical expression for these rates was quantified from comparison with the Monte Carlo results

  17. Corona discharge experiments in admixtures of N2 and CH4: a laboratory simulation of Titan's atmosphere

    International Nuclear Information System (INIS)

    Horvath, G; Skalny, J D; Klas, M; Zahoran, M; Mason, N J; Vladoiu, R; Manole, M

    2009-01-01

    A positive corona discharge fed by a N 2 : CH 4 mixture (98 : 2) at atmospheric pressure and ambient temperature has been studied as a laboratory mimic of the chemical processes occurring in the atmosphere of Titan, Saturn's largest moon. In situ measurements of UV and IR transmission spectra within the discharge have shown that the main chemical product is C 2 H 2 , produced by dissociation of CH 4 , with small but significant traces of ethane and HCN, all species that have been detected in Titan's atmosphere. A small amount (0.2%) of CH 4 was decomposed after 12 min of treatment requiring an average energy of 2.7 kWh g -1 . After 14 min the discharge was terminated due to the formation of a solid yellow deposit on the central wire electrode. Such a deposit is similar to that observed in other discharges and is believed to be an analogue of the aerosol and dust observed in Titan's atmosphere and is composed of chemical species commonly known as 'tholins'. We have also explored the electrical properties of the discharge. The admixture of methane into nitrogen caused an increase in the onset voltage of the discharge and consequently led to a reduction in the measured discharge current.

  18. Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage

    Science.gov (United States)

    Yuanxiang, ZHOU; Zhongliu, ZHOU; Ling, ZHANG; Yunxiao, ZHANG; Yajun, MO; Jiantao, SUN

    2018-05-01

    For the partial discharge test of electrical equipment with large capacitance, the use of low-frequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.

  19. Study on pulsed-discharge devices with high current rising rate for point spot short-wavelength source in dense plasma observations

    International Nuclear Information System (INIS)

    Tachinami, Fumitaka; Anzai, Nobuyuki; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2014-01-01

    A pulsed-power generator with high current rise based on a pulse-forming-network was studied toward generating intense point-spot X-ray source. To obtain the high rate of current rise, we have designed the compact discharge device with low circuit inductance. The results indicate that the inductance of the compact discharge device was dominated by a gap switch inductance. To reduce the gap switch inductance and operation voltage, the feasible gap switch inductance in the vacuum chamber has been estimated by the circuit simulation. The gap switch inductance can be reduced by the lower pressure operation. It means that the designed discharge device achieves the rate of current rise of 10 12 A/s

  20. Current situation of H9N2 subtype avian influenza in China.

    Science.gov (United States)

    Gu, Min; Xu, Lijun; Wang, Xiaoquan; Liu, Xiufan

    2017-09-15

    In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.

  1. Long sustainment of quasi-steady-state high βp H mode discharges in JT-60U

    International Nuclear Information System (INIS)

    Isayama, A.; Kamada, Y.; Ozeki, T.; Ide, S.; Fujita, T.; Oikawa, T.; Suzuki, T.; Neyatani, Y.; Isei, N.; Hamamatsu, K.; Ikeda, Y.; Takahashi, K.; Kajiwara, K.

    2001-01-01

    Quasi-steady-state high β p H mode discharges performed by suppressing neoclassical tearing modes (NTMs) are described. Two operational scenarios have been developed for long sustainment of the high β p H mode discharge: NTM suppression by profile optimization, and NTM stabilization by local electron cyclotron current drive (ECCD)/electron cyclotron heating (ECH) at the magnetic island. Through optimization of pressure and safety factor profiles, a high β p H mode plasma with H 89PL = 2.8, HH y,2 = 1.4, β p ∼ 2.0 and β N ∼ 2.5 has been sustained for 1.3 s at small values of collisionality ν e* and ion Larmor radius ρ i* without destabilizing the NTMs. Characteristics of the NTMs destabilized in the region with central safety factor above unity are investigated. The relation between the beta value at the mode onset β N on and that at the mode disappearance β N off can be described as β N off /β N on =0.05-0.4, which shows the existence of hysteresis. The value of β N /ρ i* at the onset of an m/n = 3/2 NTM has a collisionality dependence, which is empirically given by β N /ρ i* ∝ ν e* 0.36 . However, the profile effects such as the relative shapes of pressure and safety factor profiles are equally important. The onset condition seems to be affected by the strength of the pressure gradient at the mode rational surface. Stabilization of the NTM by local ECCD/ECH at the magnetic island has been attempted. A 3/2 NTM has been completely stabilized by EC wave injection of 1.6 MW. (author)

  2. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa

    Directory of Open Access Journals (Sweden)

    A.C. Guzha

    2018-02-01

    New hydrological insights: Forest cover loss is accompanied by increased stream discharges and surface runoff. No significant difference in stream discharge is observed between bamboo and pine plantation catchments, and between cultivated and tea plantation catchments. Trend analyses show that despite forest cover loss, 63% of the watersheds show non-significant changes in annual discharges while 31% show increasing trends. Half of the watersheds show non-significant trends in wet season flows and low flows while 35% reveal decreasing trends in low flows. Modeling studies estimate that forest cover loss increases annual discharges and surface runoff by 16 ± 5.5% and 45 ± 14%, respectively. Peak flows increased by a mean of 10 ± 2.8% while low flows decreased by a mean of 7 ± 5.3%. Increased forest cover decreases annual discharges and surface runoff by 13 ± 1.9% and 25 ± 5%, respectively. Weak correlations between forest cover and runoff (r = 0.42, p < 0.05, mean discharge (r = 0.63, p < 0.05 and peak discharge (r = 0.67, p < 0.05 indicate that forest cover alone is not an accurate predictor of hydrological fluxes in East African catchments. The variability in these results supports the need for long-term field monitoring to better understand catchment responses and to improve the calibration of currently used simulation models.

  3. The Design of Operational Amplifier for Low Voltage and Low Current Sound Energy Harvesting System

    Science.gov (United States)

    Fang, Liew Hui; Rahim, Rosemizi Bin Abd; Isa, Muzamir; Idris Syed Hassan, Syed; Ismail, Baharuddin Bin

    2018-03-01

    The objective of this paper is to design a combination of an operational amplifier (op-amp) with a rectifier used in an alternate current (ac) to direct current (dc) power conversion. The op-amp was designed to specifically work at low voltage and low current for a sound energy harvesting system. The goal of the op-amp design with adjustable gain was to control output voltage based on the objectives of the experiment conducted. The op-amp was designed for minimum power dissipation performance, with the means of increasing the output current when receiving a large amount of load. The harvesting circuits which designed further improved the power output efficiency by shortening the fully charged time needed by a supercapacitor bank. It can fulfil the long-time power demands for low power device. Typically, a small amount of energy sources were converted to electricity and stored in the supercapacitor bank, which was built by 10 pieces of capacitors with 0.22 F each, arranged in parallel connection. The highest capacitance was chosen based on the characteristic that have the longest discharging time to support the applications of a supercapacitor bank. Testing results show that the op-amp can boost the low input ac voltage (∼3.89 V) to high output dc voltage (5.0 V) with output current of 30 mA and stored the electrical energy in a big supercapacitor bank having a total of 2.2 F, effectively. The measured results agree well with the calculated results.

  4. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael J. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States); Go, David B., E-mail: dgo@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States); Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556 (United States)

    2015-12-28

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  5. Two-dimensional kinetic analysis on the ionization waves in a low current discharge

    International Nuclear Information System (INIS)

    Yamazaki, Tsutomu; Fujii, Masaharu; Noda, Shozou; Miura, Kousuke; Imazu, Shingo.

    1982-01-01

    In the research on the ionization waves produced in the positive column in a low pressure discharge, theoretical analyses have been made since long ago using mainly the fluid theory. However, the experimental properties that cannot be explained with the fluid theory have been found lately. For example, it has been shown experimentally that the product of longitudinal electric field E and the wavelength lambda of ionization waves becomes some specific values depending on the kinds of gas as one of the characteristics of the ionization waves produced in the positive column plasma in rare gas glow discharge, but these specific values of E-lambda cannot be explained with the fluid theory. In this paper, the perturbation component of electron energy distribution function accompanying ionization waves was derived from a two-dimensional Boltzmann equation which takes the radial non-uniformity into account, to consider the E-lambda values of ionization waves from the relative equation between electron density and the perturbation component of an electric field. The following results were obtained. The relative equation between electron density and the perturbation component of an electric field, which cannot be derived from the fluid theory, was able to be obtained; the values of E-lambda product agreed with the experimental results better than one-dimensional analysis; The steeper the shape of radial potential distribution, the more likely the resonance occurrence and the larger the E-lambda product; and so forth. (Wakatsuki, Y.)

  6. Cold cathode arc model in mercury discharges

    International Nuclear Information System (INIS)

    Li, Y.M.; Byszewski, W.W.; Budinger, A.B.

    1990-01-01

    Voltage/current characteristics measured during the starting of metal halide lamps indicate a low voltage discharge when condensates (mainly mercury) are localized on the electrodes. In this case, even with a cold cathode which does not emit electrons, the current is very high and voltage across the lamp drops to about 15 to 20 V. This type of discharge is similar to the cold cathode mercury vapor arc found in mercury pool rectifiers. The cathode sheath in the mercury vapor arc is characterized by very small cathode spot size, on the order of 10 -c cm 2 , very high current density of about 10 6 A/cm 2 and very low cathode fall of approximately 10 volts. The discharge is modified and generalized to describe the cathode phenomena in the cold cathode mercury vapor arc. The sensitivity of calculated discharge parameters with respect to such modifications were examined. Results show that the cathode fall voltage remains fairly constant (7-8 volts) with large fractional variations of metastable mercury atoms bombarding the cathode. This result compares very well with experimental waveforms when anode fall and plasma voltage approximations are incorporated

  7. Lipid oxidation in human low-density lipoprotein induced by metmyoglobin/H2O2

    DEFF Research Database (Denmark)

    Witting, P K; Willhite, C A; Davies, Michael Jonathan

    1999-01-01

    Metmyoglobin (metMb) and H(2)O(2) can oxidize low-density lipoprotein (LDL) in vitro, and oxidized LDL may be atherogenic. The role of alpha-tocopherol (alpha-TOH) in LDL oxidation by peroxidases such as metMb is unclear. Herein, we show that during metMb/H(2)O(2)-induced oxidation of native LDL...... of CE-O(O)H is dependent on, and correlates with, LDL's alpha-TOH content, yet does not require preformed lipid hydroperoxides or H(2)O(2). This indicates that in native LDL alpha-TOH can act as a phase-transfer agent and alpha-TO(*) as a chain-transfer agent propagating LDL lipid peroxidation via...

  8. Transport modeling of L- and H-mode discharges with LHCD on EAST

    Science.gov (United States)

    Li, M. H.; Ding, B. J.; Imbeaux, F.; Decker, J.; Zhang, X. J.; Kong, E. H.; Zhang, L.; Wei, W.; Shan, J. F.; Liu, F. K.; Wang, M.; Xu, H. D.; Yang, Y.; Peysson, Y.; Basiuk, V.; Artaud, J.-F.; Yuynh, P.; Wan, B. N.

    2013-04-01

    High-confinement (H-mode) discharges with lower hybrid current drive (LHCD) as the only heating source are obtained on EAST. In this paper, an empirical transport model of mixed Bohm/gyro-Bohm for electron and ion heat transport was first calibrated against a database of 3 L-mode shots on EAST. The electron and ion temperature profiles are well reproduced in the predictive modeling with the calibrated model coupled to the suite of codes CRONOS. CRONOS calculations with experimental profiles are also performed for electron power balance analysis. In addition, the time evolutions of LHCD are calculated by the C3PO/LUKE code involving current diffusion, and the results are compared with experimental observations.

  9. Experimental studies of the formation of cluster ions formed by corona discharge in an atmosphere containing SO2, NH3, and H2O

    DEFF Research Database (Denmark)

    Hvelplund, Preben; Pedersen, Jens Olaf Pepke; Støchkel, Kristian

    2013-01-01

    Abstract We report on studies of ion-induced nucleation in a corona discharge taking place in an atmosphere containing SO2, NH3, and H2O at standard temperature and pressure. Positive ions such as H3O+(H2O)n, NH4+(H2O)n, and H+(H2SO4)(H2O)n and negative ions such as HSO5-(H2O)n, SO4-(H2O)n, HSO4-(H......5-, which has been observed in many studies, in our experiments is contaminated by O2-(HNO3)(H2O) ions, and this may also have been the case in other experiments. Finally an ion with m/z = 232 (where m is the cluster mass in amu and z is the charge state), capable of attaching H2O...

  10. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    International Nuclear Information System (INIS)

    Kraloua, B.; Hennad, A.

    2008-01-01

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  11. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    Science.gov (United States)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  12. HbA1c, fasting and 2 h plasma glucose in current, ex- and never-smokers

    DEFF Research Database (Denmark)

    Soulimane, Soraya; Simon, Dominique; Herman, William H

    2014-01-01

    AIMS/HYPOTHESIS: The relationships between smoking and glycaemic variables have not been well explored. We compared HbA1c, fasting plasma glucose (FPG) and 2 h plasma glucose (2H-PG) in current, ex- and never-smokers. METHODS: This meta-analysis used individual data from 16,886 men and 18,539 women......, there was no significant difference between current and never-smokers (-0.004 mmol/l [-0.03, 0.02]) but FPG was higher in ex-smokers (0.12 mmol/l [0.09, 0.14]). In comparison with never-smokers, 2H-PG was lower (-0.44 mmol/l [-0.52, -0.37]) in current smokers, with no difference for ex-smokers (0.02 mmol/l [-0.06, 0...... as screened by 2H-PG, in comparison with never-smokers. CONCLUSION/INTERPRETATION: Across this heterogeneous group of studies, current smokers had a higher HbA1c and lower 2H-PG than never-smokers. This will affect the chances of smokers being diagnosed with diabetes....

  13. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    Science.gov (United States)

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  14. Experimental Study of Current Discharge Behavior and Hard X-ray Anisotropy by APF Plasma Focus Device

    Science.gov (United States)

    Habibi, M.; Amrollahi, R.; Attaran, M.

    2009-03-01

    Amirkabir (APF) is a new Mather-type plasma focus device (16 kV, 36 μf, and 115 nH). In this work we present some experimental results as variation of discharge current signal respect to applied voltage at the optimum pressure, focusing time of plasma versus gas pressure, and variations of current discharge with different insulator sleeve dimensions. As we prospected optimum pressure tending to increase as we tried to higher voltage levels. The time taken by the current sheath to lift-off the insulator surface and therefore quality of pinched plasma depends on the length of the insulator sleeve. The results show that the insulator diameter can influence on pinch quality. Behavior of hard X-ray (HXR) signals with the pressure and also anisotropy of HXR investigated by the use of two scintillation detectors. The distribution of HXR intensity shows a large anisotropy with a maximum intensity between 22.5° and 45° and also between -22.5° and -67.5°.

  15. Self-deformation in a direct current driven helium jet micro discharge

    International Nuclear Information System (INIS)

    Xu, S. F.; Zhong, X. X.

    2016-01-01

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode

  16. Self-deformation in a direct current driven helium jet micro discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks and Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-01-15

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode.

  17. Self-deformation in a direct current driven helium jet micro discharge

    Science.gov (United States)

    Xu, S. F.; Zhong, X. X.

    2016-01-01

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode.

  18. Current-Voltage Characteristics of DC Discharge in Micro Gas Jet Injected into Vacuum Environment

    International Nuclear Information System (INIS)

    Matra, K; Furuta, H; Hatta, A

    2013-01-01

    A current-voltage characteristic of direct current (DC) gas discharge operated in a micro gas jet injected into a secondary electron microscope (SEM) chamber is presented. Ar gas was injected through a 30 μm orifice gas nozzle (OGN) and was evacuated by an additional pump to keep the high vacuum environment. Gas discharges were ignited between the OGN as anode and a counter electrode of Si wafer. The discharge was self-pulsating in most of the cases while it was stable at lower pressure, larger gap length, and larger time averaged current. The self-pulsating discharge was oscillated by the RC circuit consisting of a stray capacitor and a large ballast resistor. The real time plots of voltage and current during the pulsating was investigated using a discharge model.

  19. Analysis of eddy current losses during discharging period in a 600 kJ SMES

    International Nuclear Information System (INIS)

    Park, M.J.; Kwak, S.Y.; Lee, S.Y.; Kim, W.S.; Lee, J.K.; Park, C.; Choi, K.; Bae, J.H.; Kim, S.H.; Sim, K.D.; Seong, K.C.; Jung, H.K.; Hahn, S.

    2008-01-01

    The operation of the SMES system can be divided into three modes such as charging, operating and discharging. During the charging and the discharging modes, a magnetic field variation due to the current increase and decrease generate eddy current losses in the SMES system. The eddy current loss in discharging mode is the major factor to be considered because the operating time in the mode is fixed, whereas the charging mode has the arbitrary operating time which is not fixed. In this paper, we present the analysis results of the eddy current losses which are generated in the 600 kJ class HTS SMES system during the discharging mode

  20. Gain measurements in CO2 CW low pressure lasers

    International Nuclear Information System (INIS)

    Rodrigues, N.A.S.; Chanes Junior, J.B.; Jayaram, K.

    1983-01-01

    A series of gain measurements in low pressure CO 2 CW laser were performed in order to study the behaviour of a CO 2 laser ampliflier as a function of pressure and discharge current. A theoretical model, based on rate equations is also presented to describe the laser behaviour and the experimental procedure adopted. (C.L.B.) [pt

  1. Properties of the positive column of a glow discharge in flowing hydrogen

    International Nuclear Information System (INIS)

    Brunet, H.; Rocca Serra, J.; Mabru, M.

    1981-01-01

    Results of a theoretical model for predicting the effects of gas flow on the properties of the positive column in a glow discharge are presented. A cylindrical discharge at low pressure ( 2 molecules and H atoms produced by the discharge are calculated. Comparison with available experimental data is made

  2. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  3. STATIONARY HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    LUCE, TC; WADE, MR; FERRON, JR; HYATT, AW; KELLMAN, AG; KINSEY, JE; LAHAYE, RJ; LASNIER, CJ; MURAKAMI, M; POLITZER, PA; SCOVILLE, JT

    2002-01-01

    A271 STATIONARY HIGH-PERFORMANCE DISCHARGES IN THE DII-D TOKAMAK. Discharges which can satisfy the high gain goals of burning plasma experiments have been demonstrated in the DIII-D tokamak under stationary conditions at relatively low plasma current (q 95 > 4). A figure of merit for fusion gain (β N H 89 /q 95 2 ) has been maintained at values corresponding to | = 10 operation in a burning plasma for > 6 s or 36τ E and 2τ R . The key element is the relaxation of the current profile to a stationary state with q min > 1. In the absence of sawteeth and fishbones, stable operation has been achieved up to the estimated no-wall β limit. Feedback control of the energy content and particle inventory allow reproducible, stationary operation. The particle inventory is controlled by gas fueling and active pumping; the wall plays only a small role in the particle balance. The reduced current lessens significantly the potential for structural damage in the event of a major disruption. In addition, the pulse length capability is greatly increased, which is essential for a technology testing phase of a burning plasma experiment where fluence (duty cycle) is important

  4. Dissociative phototionization cross sections of H2, SO2 and H2O

    International Nuclear Information System (INIS)

    Chung, Y.

    1989-01-01

    The partial photoionization cross sections of H 2 , SO 2 , and H 2 O were calculated from the measured photoionization branching ratios and the known total photoionization cross sections. The branching ratios were measured with a time-of-flight mass spectrometer and synchrotron radiation. The branching ratios Of H 2 , SO 2 , and H 2 O were measured for 100 ∼ 410, 150 ∼ 380 and 120 ∼ 720 angstrom. The author also measured the photoionization yield Of SO 2 from 520 to 665 angstrom using a double ion chamber and a glow discharge light source. The principle of a time-of-flight mass spectrometer is explained. New calculations were made to see how the design of the mass spectrometer, applied voltage, and kinetic energy of the ions affect the overall performance of the mass spectrometer. Several useful techniques that we used at the synchrotron for wavelength calibration and higher order suppression are also discussed

  5. Long pulse high performance discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Luce, T.C.; Wade, M.R.; Politzer, P.A.

    2001-01-01

    Significant progress in obtaining high performance discharges lasting many energy confinement times in the DIII-D tokamak has been realized in recent experimental campaigns. Normalized performance ∼10 has been sustained for more than 5τ E with q min >1.5. (The normalized performance is measured by the product β N H 89 , indicating the proximity to the conventional β limits and energy confinement quality, respectively.) These H mode discharges have an ELMing edge and β min >1. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility. Measurement of the current density and loop voltage profiles indicate that ∼75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half-radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and β control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H mode discharges with β N H 89 ∼ 7 for up to 6.3 s or ∼34τ E . These discharges appear to have stationary current profiles with q min ∼1.05, in agreement with the current profile relaxation time ∼1.8 s. (author)

  6. Methane Conversion to C2 Hydrocarbons by Abnormal Glow Discharge at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Dai Wei; Yu Hui; Chen Qi; Yin Yongxiang; Dai Xiaoyan

    2005-01-01

    Methane conversion to C 2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%, where the coke increases gradually along with the increase of CH 4 /H 2 from 2: 8 to 9: 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH 4 /H 2 2: 8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge. A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C 2 hydrocarbon products. Therefore, the deposition of coke is restrained

  7. Megawatt low-temperature DC plasma generator with divergent channels of gas-discharge tract

    Science.gov (United States)

    Gadzhiev, M. Kh.; Isakaev, E. Kh.; Tyuftyaev, A. S.; Yusupov, D. I.; Sargsyan, M. A.

    2017-04-01

    We have developed and studied a new effective megawatt double-unit generator of low-temperature argon plasma, which belongs to the class of dc plasmatrons and comprises the cathode and anode units with divergent gas-discharge channels. The generator has an efficiency of about 80-85% and ensures a long working life at operating currents up to 4000 A.

  8. End points in discharge cleaning on TFTR [Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Mueller, D.; Dylla, H.F.; Bell, M.G.

    1989-07-01

    It has been found necessary to perform a series of first-wall conditioning steps prior to successful high power plasma operation in the Tokamak Fusion Test Reactor (TFTR). This series begins with glow discharge cleaning (GDC) and is followed by pulse discharge cleaning (PDC). During machine conditioning, the production of impurities is monitored by a Residual Gas Analyzer (RGA). PDC is made in two distinct modes: Taylor discharge cleaning (TDC), where the plasma current is kept low (15--50 kA) and of short duration (50 ms) by means of a relatively high prefill pressure and aggressive PDC, where lower prefill pressure and higher toroidal field result in higher current (200--400 kA) limited by disruptions at q(a) approx 3 at approx 250 ms. At a constant repetition rate of 12 discharges/minute, the production rate of H 2 O, CO, or other impurities has been found to be an unreliable measure of progress in cleaning. However, the ability to produce aggressive PDC with substantial limiter heating, but without the production of x-rays from runaway electrons, is an indication that TDC is no longer necessary after approx 10 5 pulses. During aggressive PDC, the uncooled limiters are heated by the plasma from the bakeout temperature of 150 degree C to about 250 degree C over a period of three to eight hours. This limiter heating is important to enhance the rate at which H 2 O is removed from the graphite limiter. 14 refs., 3 figs., 1 tab

  9. End points in discharge cleaning on TFTR (Tokamak Fusion Test Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.; Dylla, H.F.; Bell, M.G.; Blanchard, W.R.; Bush, C.E.; Gettelfinger, G.; Hawryluk, R.J.; Hill, K.W.; Janos, A.C.; Jobes, F.C.

    1989-07-01

    It has been found necessary to perform a series of first-wall conditioning steps prior to successful high power plasma operation in the Tokamak Fusion Test Reactor (TFTR). This series begins with glow discharge cleaning (GDC) and is followed by pulse discharge cleaning (PDC). During machine conditioning, the production of impurities is monitored by a Residual Gas Analyzer (RGA). PDC is made in two distinct modes: Taylor discharge cleaning (TDC), where the plasma current is kept low (15--50 kA) and of short duration (50 ms) by means of a relatively high prefill pressure and aggressive PDC, where lower prefill pressure and higher toroidal field result in higher current (200--400 kA) limited by disruptions at q(a) /approx/ 3 at /approx/ 250 ms. At a constant repetition rate of 12 discharges/minute, the production rate of H/sub 2/O, CO, or other impurities has been found to be an unreliable measure of progress in cleaning. However, the ability to produce aggressive PDC with substantial limiter heating, but without the production of x-rays from runaway electrons, is an indication that TDC is no longer necessary after /approx/ 10/sup 5/ pulses. During aggressive PDC, the uncooled limiters are heated by the plasma from the bakeout temperature of 150/degree/C to about 250/degree/C over a period of three to eight hours. This limiter heating is important to enhance the rate at which H/sub 2/O is removed from the graphite limiter. 14 refs., 3 figs., 1 tab.

  10. Low-Temperature Oxidation of H2/CH4/C2H6/Ethanol/DME: Experiments and Modelling at High Pressures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2015-01-01

    The main aim of this work was to measure the oxidation characteristics of H2, CH4, C2H6, DME,and ethanol at high pressures (20—100 bar) and low to intermediate temperatures (450—900K) in a laminar flow reactor. Furthermore, a detailed chemical kinetic model was sought to address the oxidation of ...

  11. Stability of alternating current discharges between water drops on insulation surfaces

    International Nuclear Information System (INIS)

    Rowland, S M; Lin, F C

    2006-01-01

    Discharges between water drops are important in the ageing of hydrophobic outdoor insulators. They may also be important in the processes leading up to flashover of these insulators in high pollution conditions. This paper considers discharges between drops when a limited alternating current is available, as experienced by an ageing insulator in service. A phenomenon is identified in which the length of a discharge between two drops is reduced through a particular type of distortion of the drops. This is visually characterized as a liquid protrusion from each of a pair of water drops along the insulator surface. This process is distinct from vibration of the drops, general distortion of their shape and the very fast emission of jet streams seen in very high fields. The process depends upon the discharge current, the resistivity of the moisture and the hydrophobicity of the insulation surface

  12. Estimation of parameters for the electrostatic discharge current equation with real human discharge events reference using genetic algorithms

    International Nuclear Information System (INIS)

    Katsivelis, P S; Gonos, I F; Stathopulos, I A

    2010-01-01

    Thorough study of the electrostatic discharge (ESD) current equation shows that it may be different from the equation proposed in the IEC 61000-4-2 Standard. This problem is dealt with in this paper. Using a 2.5 GHz digital oscilloscope and a 50 Ω Pellegrini target as the measuring system, and a dc power supply to provide a charging voltage of 2 kVdc, a series of measurements were performed, so real human-to-metal ESD current waveforms were recorded. Treating the average waveform as a reference, a genetic algorithm (GA) was applied to the equation of the IEC 61000-4-2 Standard for the ESD current, in order to achieve its best fitting to the data set. Four different error norms were used for the GA applications. The best result of the applications of each of them was saved and compared to the others. Thus, a very satisfactory modification of the Standard's equation is presented, which is closer to the real ESD current waveform

  13. Negative Ions in low pressure discharges

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Vender, D.; Haverlag, M.; Kroesen, G.M.W.; Hoog, de F.J.

    1995-01-01

    Several aspects of negative ions in low pressure discharges are treated. The elementary processes, in which negative ions are produced and destroyed, are summarized. The influence of negative ions on plasma operation is analyzed in terms of transport equations. It is shown that diffusion, electric

  14. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    Energy Technology Data Exchange (ETDEWEB)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Buenos Aires, Argentina and Instituto de Física del Plasma (INFIP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires - UBA, C1428EHA, Buenos Aires (Argentina)

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  15. Characteristics of H-mode-like discharges and ELM activities in the presence of {iota}/2{pi} = 1 surface at the ergodic layer in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Morisaki, T [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Tanaka, K [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Masuzaki, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Goto, M [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Sakakibara, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Michael, C [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Narihara, K [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Ohdachi, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Sakamoto, R [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Sanin, A [Budker Institute of Nuclear Physics, 630090, Novosibirsk (Russian Federation); Toi, K [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Tokuzawa, T [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Vyacheslavov, L N [Budker Institute of Nuclear Physics, 630090, Novosibirsk (Russian Federation); Watanabe, K Y [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

    2006-05-15

    Magnetic configurations of LHD are characterized by the presence of chaotic magnetic field, the so-called ergodic layer, surrounding the core plasma. H-mode-like discharges have been obtained at an outwardly shifted configuration of R{sub ax} = 4.00 m with a thick ergodic layer, where the {iota}/2{pi} = 1 position is located in the middle of the ergodic layer. A clear density rise and a reduction of magnetic fluctuation were observed. ELM-like H{alpha} bursts also appeared with a radial propagation of density bursts. These H-mode-like discharges can be triggered by changing P{sub NBI}(<12 MW) from three beams to two beams in a density range (4-8) x 10{sup 13} cm{sup -3}. The ELM-like bursts vanished with a small change of the edge rotational transform. A precise profile measurement of the edge density bursts confirmed that ELM-like bursts occur at the {iota}/2{pi} = 1 position.

  16. Direct-current converter for gas-discharge lamps

    Science.gov (United States)

    Lutus, P.

    1980-01-01

    Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

  17. Time resolved diagnostics and kinetic modelling of a modulated hollow cathode discharge of NO2

    International Nuclear Information System (INIS)

    Castillo, M; Herrero, V J; Mendez, I; Tanarro, I

    2004-01-01

    The transients associated with the ignition and the extinction of the cold plasma produced in a low frequency, square-wave modulated, hollow cathode discharge of nitrogen dioxide are characterized by time resolved emission spectroscopy, mass spectrometry and electrical probes. The temporal evolution of the concentrations of neutral species created or destroyed in the NO 2 discharges are compared with the predictions of a simple kinetic model previously developed for discharges of other nitrogen oxides (N 2 O and NO). The physical conditions of pressure, gas flow rate, modulation frequency and electrical current in the NO 2 plasma were selected in order to highlight the time-dependent behaviour of some of the stable species formed in the discharge, especially the nitrogen oxide products, whose concentrations show transient maxima. The usefulness of the analysis of the transient results is emphasized as a means to evaluate the relevance of the different elementary processes and as a key to estimate the values of some of the rate constants critical to the modelling. This work is dedicated to the memory of Professor Jose Campos

  18. Optimization of hydrogen uptake in Ag-CNTs electrodes with charge-discharge cyclic currents

    International Nuclear Information System (INIS)

    Khoshnevisan, B.; Behpour, M.; Kaveh, D.

    2009-01-01

    Electrochemical storage of hydrogen in Ag-CNTs (silver and carbon nanotubes) electrodes has been studied by potentiostat/galvanostat method. Foamed silver has been employed as a mattress for the CNTs and it caused better connections between CNTs and the silver. Therefore the enhancements in the hydrogen storage capacities have been justified. Acidic and thermal methods have been used for purifying the CNTs and the outputs have been characterized by XRD and Raman spectroscopy. It has been observed that in cyclic charge and discharge (C and D) procedures the amount of stored hydrogen in the electrodes (the discharge capacity) is very sensitive to the cyclic regulated currents and it is shown that the optimum value is about 326 mA h/g at 9 mA. This optimization can be attributed to two competitive phenomena: (i) re-alignment of the CNTs, and (ii) oxidation of the electrode's surface.

  19. Simulation of DIII-D Flat q Discharges

    International Nuclear Information System (INIS)

    Kessel, C.E.; Garofalo, A.; Terpstra, T.

    2004-01-01

    The Advanced Tokamak plasma configuration has significant potential for the economical production of fusion power. Research on various tokamak experiments are pursuing these plasmas to establish high β, high bootstrap current fraction, 100% noninductive current, and good energy confinement, in a quasi-stationary state. One candidate is the flat q discharge produced in DIII-D, where the safety factor varies from 2.0 on axis, to slightly below 2.0 at the minimum, and then rises to about 3.5 at the 95% surface. This plasma is prototypical of those studied for power plants in the ARIES tokamak studies. The plasma is produced by ramping up the plasma current and ramping down the toroidal field throughout the discharge. The plasma current reaches 1.65 MA, and the toroidal field goes from 2.25 to 1.6 T. The q min remains high and at large radius, ρ ∼ 0.6. The plasma establishes an internal transport barrier in the ion channel, and transitions to H-mode. The free-boundary Tokamak Simulation Code (TSC) is being used to model the discharge and project the impact of changes in the plasma current, toroidal field, and injected power programming

  20. Cross sections for Scattering and Mobility of OH- and H3 O+ ions in H2 O

    Science.gov (United States)

    Petrovic, Zoran; Stojanovic, Vladimir; Maric, Dragana; Jovanovic, Jasmina

    2016-05-01

    Modelling of plasmas in liquids and in biological and medical applications requires data for scattering of all charged and energetic particles in water vapour. We present swarm parameters for OH- and H3 O+, as representatives of principal negative and positive ions at low pressures in an attempt to provide the data that are not yet available. We applied Denpoh-Nanbu procedure to calculate cross section sets for collisions of OH- and H3 O+ ions with H2 O molecule. Swarm parameters for OH- and H3 O+ ions in H2 O are calculated by using a well tested Monte Carlo code for a range of E / N(E -electric field, N-gas density) at temperature T = 295 K, in the low pressure limit. Non-conservative processes were shown to strongly influence the transport properties even for OH- ions above the average energy of 0.2 eV(E / N >200 Td). The data are valid for low pressure water vapour or small amounts in mixtures. They will provide a basis for calculating properties of ion-water molecule clusters that are most commonly found at higher pressures and for modelling of discharges in liquids. Acknowledgment to Ministry of Education, Science and Technology of Serbia.

  1. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    International Nuclear Information System (INIS)

    Mashovets, N.S.; Pastukh, I.M.; Voloshko, S.M.

    2017-01-01

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm 2 . The above material shows the promise of the technology of low

  2. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    Energy Technology Data Exchange (ETDEWEB)

    Mashovets, N.S., E-mail: mashovets@rambler.ru [Khmelnickiy National University (Ukraine); Pastukh, I.M., E-mail: pastim@mail.ru [Khmelnickiy National University (Ukraine); Voloshko, S.M. [Khmelnickiy National University (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute” (Ukraine)

    2017-01-15

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm{sup 2}. The above material shows the promise of the technology of low

  3. Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel

    Directory of Open Access Journals (Sweden)

    Toshifumi Yokoyama

    2018-01-01

    Full Text Available Abstract: We developed a low parasitic light sensitivity (PLS and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE. 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e−/s at 60 °C.

  4. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    Directory of Open Access Journals (Sweden)

    Valery A. Tutyk

    2013-01-01

    Full Text Available The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum gas-discharge electron gun is revealed. It causes an avalanche increase of electron beam current and burning of plasma-beam discharge in the whole space of the vacuum chamber volume and generation of electromagnetic radiation is revealed. Achieved results will be used for implementation of various vacuum technologies in the medium of reaction gas and generated electromagnetic radiation.

  5. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    International Nuclear Information System (INIS)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D; Kylian, O

    2009-01-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O 2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  6. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E. Fermi 2749, 21027 Ispra (Vatican City State, Holy See) (Italy); Kylian, O [Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)], E-mail: francois.rossi@jrc.ec.europa.eu

    2009-11-15

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O{sub 2} mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  7. H-mode-like discharge under the presence of 1/1 rational surface at ergodic layer in LHD

    International Nuclear Information System (INIS)

    Morita, Shigeru; Morisaki, Tomohiro; Tanaka, Kenji

    2004-01-01

    H-mode-like discharge was found in LHD with a full B t field of 2.5T at an outwardly shifted configuration of R ax = 4.00 m where the m/n = 1/1 rational surface is located at the ergodic layer. The H-mode-like discharge was triggered by changing the P NBI from 9MW to 5 MW in a density range of 4-8 x 10 13 cm -3 , followed by a clear density rise, ELM-like H α bursts, and a reduction of magnetic fluctuation. These H-mode-like features vanished with a small radial movement of the 1/1 surface. (author)

  8. Discharge estimation from H-ADCP measurements in a tidal river subject to sidewall effects and a mobile bed

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.; Hidayat, H.

    2011-01-01

    Horizontal acoustic Doppler current profilers (H-ADCPs) can be employed to estimate river discharge based on water level measurements and flow velocity array data across a river transect. A new method is presented that accounts for the dip in velocity near the water surface, which is caused by

  9. Ion clusters, REB, and current sheath characteristics in focused discharges

    International Nuclear Information System (INIS)

    Bortolotti, A.; Brzosko, J.; DeChiara, P.; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Zeng, D.

    1990-01-01

    Small fluctuations in the current sheath characteristics (peak current density, FWHM of leading sheath, control parameters of sheath internal structure) are linked to wide fluctuations of ion and ion cluster emission from the pinch. Magnetic probe data are used for correlating variations of current sheath parameters with particle emission intensity, Z/M composition, particle energy spectrum. The emission of ion and ion clusters at 90 degrees from the axis of a plasma focus discharge is monitored simultaneously with the 0 degrees emission. The particle energy spectrum is analyzed with a Thomson (parabola) spectrometer (time resolution ∼ 1 nanosec). The cross-sectional structure of the REB at 180 degrees along the discharge axis is monitored via the deposition of collective-field accelerated ions on a target in the REB direction. Etched tracks of ion and ion clusters are in all cases recorded on CR-39 plates. Sharp peaks of the D + -ion spectrum at 90 degrees are found for E > 200 keV/unit charge in all focused discharges. These peaks are due to ion crossing of the azimuthal magnetic field of the pinch region, in a predominant ion cluster structure

  10. Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis

    International Nuclear Information System (INIS)

    Allagui, Anis; Abdelkareem, Mohammad Ali; Rojas, Andrea Espinel; Bonny, Talal; Elwakil, Ahmed S.

    2016-01-01

    In the standard two-electrode configuration employed in electrolytic process, when the control dc voltage is brought to a critical value, the system undergoes a transition from conventional electrolysis to contact glow discharge electrolysis (CGDE), which has also been referred to as liquid-submerged micro-plasma, glow discharge plasma electrolysis, electrode effect, electrolytic plasma, etc. The light-emitting process is associated with the development of an irregular and erratic current time-series which has been arbitrarily labelled as “random,” and thus dissuaded further research in this direction. Here, we examine the current time-series signals measured in cathodic CGDE configuration in a concentrated KOH solution at different dc bias voltages greater than the critical voltage. We show that the signals are, in fact, not random according to the NIST SP. 800-22 test suite definition. We also demonstrate that post-processing low-pass filtered sequences requires less time than the native as-measured sequences, suggesting a superposition of low frequency chaotic fluctuations and high frequency behaviors (which may be produced by more than one possible source of entropy). Using an array of nonlinear time-series analyses for dynamical systems, i.e., the computation of largest Lyapunov exponents and correlation dimensions, and re-construction of phase portraits, we found that low-pass filtered datasets undergo a transition from quasi-periodic to chaotic to quasi-hyper-chaotic behavior, and back again to chaos when the voltage controlling-parameter is increased. The high frequency part of the signals is discussed in terms of highly nonlinear turbulent motion developed around the working electrode.

  11. A self-discharge model of Lithium-Sulfur batteries based on direct shuttle current measurement

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    . A simple but comprehensive mathematical model of the Li-S battery cell self-discharge based on the shuttle current was developed and is presented. The shuttle current values for the model parameterization were obtained from the direct shuttle current measurements. Furthermore, the battery cell depth......-of-discharge values were recomputed in order to account for the influence of the self-discharge and provide a higher accuracy of the model. Finally, the derived model was successfully validated against laboratory experiments at various conditions....

  12. Studies of improved electron confinement in low density L-mode National Spherical Torus Experiment discharges

    International Nuclear Information System (INIS)

    Stutman, D.; Finkenthal, M.; Tritz, K.; Redi, M. H.; Kaye, S. M.; Bell, M. G.; Bell, R. E.; LeBlanc, B. P.; Hill, K. W.; Medley, S. S.; Menard, J. E.; Rewoldt, G.; Wang, W. X.; Synakowski, E. J.; Levinton, F.; Kubota, S.; Bourdelle, C.; Dorland, W.; The NSTX Team

    2006-01-01

    Electron transport is rapid in most National Spherical Torus Experiment, M. Ono et al., Nucl. Fusion 40, 557 (2000) beam heated plasmas. A regime of improved electron confinement is nevertheless observed in low density L-mode (''low-confinement'') discharges heated by early beam injection. Experiments were performed in this regime to study the role of the current profile on thermal transport. Variations in the magnetic shear profile were produced by changing the current ramp rate and onset of neutral beam heating. An increased electron temperature gradient and local minimum in the electron thermal diffusivity were observed at early times in plasmas with the fastest current ramp and earliest beam injection. In addition, an increased ion temperature gradient associated with a region of reduced ion transport is observed at slightly larger radii. Ultrasoft x-ray measurements of double-tearing magnetohydrodynamic activity, together with current diffusion calculations, point to the existence of negative magnetic shear in the core of these plasmas. Discharges with slower current ramp and delayed beam onset, which are estimated to have more monotonic q-profiles, do not exhibit regions of reduced transport. The results are discussed in the light of the initial linear microstability assessment of these plasmas, which suggests that the growth rate of all instabilities, including microtearing modes, can be reduced by negative or low magnetic shear in the temperature gradient region. Several puzzles arising from the present experiments are also highlighted

  13. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

    2003-01-01

    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  14. Conversion from carbon dioxide to organic materials by RF impulse discharges with hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, G.; Kano, M.; Iizuka, S. [Tohoku Univ., Sendai (Japan). Dept. of Electrical Engineering

    2010-07-01

    Carbon dioxide (CO{sub 2}) is among the most serious greenhouse gases emitted from the burning of fossil fuels. The objective of this study was to investigate the fundamental process of reducing CO{sub 2} to generate beneficial and reusable organic materials like methane (CH{sub 4}) and alcohol (CH{sub 3}OH) by using RF impulse discharges in a low gas pressure regime. A low-pressure glow discharge was used to investigate the fundamental processes without catalysts. The discharge took place inside a glass tube by changing the discharge parameters such as voltage, gas flow rate and gas residence time, where the CO{sub 2} was reduced by hydrogen (H{sub 2}). Fourier transform infrared spectroscopy (FTIR) was used to analyze the gas species. Several organic materials were observed, including methane and methanol. The study focused primarily on the reduction of CO{sub 2} by using only H{sub 2}. Carbon monoxide (CO) was clearly a major product from CO{sub 2}, but CH{sub 4} was the most dominant organic species in this experiment. The density of CH{sub 4} increased with the discharge power, and eventually its volume ratio was about 20 percent among the gas species containing carbon via decomposition of CO{sub 2}. This ratio was dependent on the mixing ratio of CO{sub 2} and H{sub 2}. It was concluded that the total pressure is an important factor for efficient production. CH{sub 3}OH formation was observed, but its concentration was low in comparison to CH{sub 4}. 5 refs., 6 figs.

  15. First results on fast wave current drive in advanced tokamak discharges in DIII-D

    International Nuclear Information System (INIS)

    Prater, R.; Cary, W.P.; Baity, F.W.

    1995-07-01

    Initial experiments have been performed on the DIII-D tokamak on coupling, direct electron heating, and current drive by fast waves in advanced tokamak discharges. These experiments showed efficient central heating and current drive in agreement with theory in magnitude and profile. Extrapolating these results to temperature characteristic of a power plant (25 keV) gives current drive efficiency of about 0.3 MA/m 2

  16. Long-pulse high-performance discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Luce, T.C.; Wade, M.R.; Politzer, P.A.

    2001-01-01

    Significant progress in obtaining high performance discharges for many energy confinement times in the DIII-D tokamak has been realized since the previous IAEA meeting. In relation to previous discharges, normalized performance ∼10 has been sustained for >5τ E with q min >1.5. (The normalized performance is measured by the product β N H 89 indicating the proximity to the conventional β limits and energy confinement quality, respectively.) These H-mode discharges have an ELMing edge and β≤5%. The limit to increasing β is a resistive wall mode, rather than the tearing modes previously observed. Confinement remains good despite the increase in q. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility in the next two years. Measurement of the current density and loop voltage profiles indicate ∼75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and β control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H-mode discharges with β N H 89 ∼7 for up to 6.3 s or ∼34 τ E . These discharges appear to be in resistive equilibrium with q min ∼1.05, in agreement with the current profile relaxation time of 1.8 s. (author)

  17. LONG-PULSE, HIGH-PERFORMANCE DISCHARGES IN THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    T.C. LUCE; M.R. WADE; P.A. POLITZER; S.L. ALLEN; M E. AUSTIN; D.R. BAKER; B.D. BRAY; D.P. BRENNAN; K.H. BURRELL; T.A. CASPER; M.S. CHU; J.D. De BOO; E.J. DOYLE; J.R. FERRON; A.M. GAROFALO; P.GOHIL; I.A. GORELOV; C.M. GREENFIELD; R.J. GROEBNER; W.W. HEIBRINK; C.-L. HSIEH; A.W. HYATT; R.JAYAKUMAR; J.E.KINSEY; R.J. LA HAYE; L.L. LAO; C.J. LASNIER; E.A. LAZARUS; A.W. LEONARD; Y.R. LIN-LIU; J. LOHR; M.A. MAKOWSKI; M. MURAKAMI; C.C. PETTY; R.I. PINSKER; R. PRATER; C.L. RETTIG; T.L. RHODES; B.W. RICE; E.J. STRAIT; T.S. TAYLOR; D.M. THOMAS; A.D. TURNBULL; J.G. WATKINS; W.P.WEST; K.-L. WONG

    2000-01-01

    Significant progress in obtaining high performance discharges for many energy confinement times in the DIII-D tokamak has been realized since the previous IAEA meeting. In relation to previous discharges, normalized performance ∼10 has been sustained for >5 τ E with q min >1.5. (The normalized performance is measured by the product β N H 89 indicating the proximity to the conventional β limits and energy confinement quality, respectively.) These H-mode discharges have an ELMing edge and β ∼(le) 5%. The limit to increasing β is a resistive wall mode, rather than the tearing modes previously observed. Confinement remains good despite the increase in q. The global parameters were chosen to optimize the potential for fully non-inductive current sustainment at high performance, which is a key program goal for the DIII-D facility in the next two years. Measurement of the current density and loop voltage profiles indicate ∼75% of the current in the present discharges is sustained non-inductively. The remaining ohmic current is localized near the half radius. The electron cyclotron heating system is being upgraded to replace this remaining current with ECCD. Density and β control, which are essential for operating advanced tokamak discharges, were demonstrated in ELMing H-mode discharges with β N H 89 ∼ 7 for up to 6.3 s or ∼ 34 τ E . These discharges appear to be in resistive equilibrium with q min ∼ 1.05, in agreement with the current profile relaxation time of 1.8 s

  18. Combustion of methane-oxygen and methane-oxygen-CFC mixtures initiated by a high-current slipping surface discharge

    International Nuclear Information System (INIS)

    Kossyi, I.A.; Silakov, V.P.; Tarasova, N.M.

    2001-01-01

    Results are presented from experimental studies of the destruction of chlorofluorocarbon (CF 2 Cl 2 ) molecules in a methane-oxygen (air) gas mixture whose combustion is initiated by a high-current slipping surface discharge. It is found that a three-component CH 4 + O 2 (air)+ CF 2 Cl 2 gas mixture (even with a considerable amount of the third component) demonstrates properties of explosive combustion involving chain reactions that are typical of two-component CH 4 + O 2 mixtures. Experiments show the high degree of destruction (almost complete decomposition) of chlorofluorocarbons contained in the mixture during one combustion event. The combustion dynamics is studied. It is shown that the combustion initiated by a slipping surface discharge has a number of characteristic features that make it impossible to identify the combustion dynamics with the formation of a combustion or detonation wave. The features of the effects observed can be related to intense UV radiation produced by a pulsed high-current surface discharge

  19. Emission of hydrogen sulfide (H2S) at a waterfall in a sewer: study of main factors affecting H2S emission and modeling approaches.

    Science.gov (United States)

    Jung, Daniel; Hatrait, Laetitia; Gouello, Julien; Ponthieux, Arnaud; Parez, Vincent; Renner, Christophe

    2017-11-01

    Hydrogen sulfide (H 2 S) represents one of the main odorant gases emitted from sewer networks. A mathematical model can be a fast and low-cost tool for estimating its emission. This study investigates two approaches to modeling H 2 S gas transfer at a waterfall in a discharge manhole. The first approach is based on an adaptation of oxygen models for H 2 S emission at a waterfall and the second consists of a new model. An experimental set-up and a statistical data analysis allowed the main factors affecting H 2 S emission to be studied. A new model of the emission kinetics was developed using linear regression and taking into account H 2 S liquid concentration, waterfall height and fluid velocity at the outlet pipe of a rising main. Its prediction interval was estimated by the residual standard deviation (15.6%) up to a rate of 2.3 g H 2h -1 . Finally, data coming from four sampling campaigns on sewer networks were used to perform simulations and compare predictions of all developed models.

  20. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Asunta, O; Kurki-Suonio, T; Tala, T; Sipilae, S; Salomaa, R [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom)], E-mail: Otto.Asunta@tkk.fi

    2008-12-15

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger ({approx}16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  1. Internal transport barrier discharges in JET and their sensitivity to edge conditions

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    2001-01-01

    Experiments in JET have concentrated on steady state discharges with internal transport barriers (ITBs). The ITBs are formed during the current rise phase of the discharge with low magnetic shear (=r/q(dq/dr)) in the centre and with high additional heating power. In order to achieve stability against disruptions at high pressure peaking, which is typical for ITB discharges, the pressure profile can be broadened with an H mode transport barrier at the edge of the plasma. However, the strong increase in edge pressure during an ELM free H mode weakens the ITB owing to a reduction of the rotational shear and pressure gradient at the ITB location. In addition, type I ELM activity during the H mode phase leads to a collapse of the ITB with the input powers available in JET (up to 28 MW). The best ITB discharges are obtained with input power control to reduce the core pressure, and with the edge pressure of the plasma controlled by argon gas dosing. These discharges achieve steady conditions for several energy confinement times (τ E ) with H97 confinement enhancement factors (τ E /τ E,ITER97scaling ) of 1.2-1.6 at line averaged densities of around 30-40% of the Greenwald density. Increasing the density by using additional deuterium gas dosing or shallow pellet fuelling leads to a weakening of the ITB. In order to sustain ITBs at higher densities, type III ELMs should be maintained at the plasma edge, giving scope for future experiments in JET. (author)

  2. Discharge-current characteristics in UV-preionized Kr/He, F2/He gas-mixtures and KrF excimer laser gas. Shigaisen yobi denri Kr/He, F2/He kongo kitai hoden oyobi KrF laser reiki hoden no denryu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, N.; Kawakami, H.; Yukimura, K. (Doshisha University, Kyoto (Japan))

    1992-08-15

    In order to study effects of Kr and F2 on discharge characteristics of KrF excimer laser gas, gap phenomena in Kr/He and F2/He gas-mixtures were observed and discharge current (I[sub d]) was measured. In the range where Kr concentration was over 10% in Kr/He gas, in which production of filamentation as well as glow discharge started, discontinuous change in I[sub d] in the second or third half cycle was observed. According to the results of experiments and model analyses, it was considered that the discontinuity of the current showed the transition point to filamentation. When F2 concentration was in the range between 0.1 and 0.3% in F2/He mixture gas, filamentation and arc with glow were observed. Sine-waveform I[sub d] ended in the first half cycle, and began to flow again after cessation or had almost constant current due to arc and others. When F2 was over 0.4%, only are discharge was observed. It was thus found that F2 has a large effect on discharge characteristics of KrF laser gas. 18 refs., 9 figs.

  3. Low Current Surface Flashover for Initiation of Electric Propulsion Devices

    Science.gov (United States)

    Dary, Omar G.

    There has been a recent increase in interest in miniaturization of propulsion systems for satellites. These systems are needed to propel micro- and nano-satellites, where platforms are much smaller than conventional satellites and require smaller levels of thrust. Micro-propulsion systems for these satellites are in their infancy and they must manage with smaller power systems and smaller propellant volumes. Electric propulsion systems operating on various types of electric discharges are typically used for these needs. One of the central components of such electrical micropropulsion systems are ignitor subsystems, which are required for creation the breakdown and initiation of the main discharge. Ignitors have to provide reliable ignition for entire lifetime of the micropropulsion system. Electric breakdown in vacuum usually require high voltage potentials of hundreds of kilovolts per mm to induce breakdown. The breakdown voltage can be significantly decreased (down to several kVs per mm) if dielectric surface flashover is utilized. However, classical dielectric surface flashover operates at large electric current (100s of Amperes) and associated with overheating and damage of the electrodes/dielectric assembly after several flashover events. The central idea of this work was to eliminate the damage to the flashover electrode assembly by limiting the flashover currents to low values in milliampere range (Low Current Surface Flashover -LCSF) and utilize LCSF system as an ignition source for the main discharge on the micropropulsion system. The main objective of this research was to create a robust LCSF ignition system, capable producing a large number of surface flashover triggering events without significant damage to the LCSF electrode assembly. The thesis aims to characterize the plasma plume created at LCSF, study electrodes ablation and identify conditions required for robust triggering of main discharge utilized on micro-propulsion system. Conditioning of a

  4. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge

    International Nuclear Information System (INIS)

    Kondo, Shuji; Nanbu, Kenichi

    2001-01-01

    An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap

  5. Simulations of enhanced reversed shear TFTR discharges with lower hybrid current drive

    International Nuclear Information System (INIS)

    Kesner, J.; Bateman, G.

    1996-01-01

    The BALDUR based BBK code permits predictive simulations of time-dependent tokamak discharges and has the capability to include neutral beam heating, pellet injection, bootstrap currents and lower hybrid current drive. BALDUR contains a theory based multi-regime transport model and previous work has shown excellent agreement with both L-mode and supershot TFTR discharges. These simulations reveal that core transport is dominated by η i and trapped electron modes and the outer region by resistive ballooning. We simulate enhanced reverse shear discharges by beginning with a supershot simulation with a reversed shear profile. Similarly to the TFTR experiments the reversed shear profile is obtained through the programming of the current during startup and the freezing in of these profiles by subsequent heating. At the time of transition into the enhanced confinement regime we turn off the η i and trapped-electron mode transport. We examine the further modification of the plasma current profile that can be obtained with the application of lower hybrid current drive. The results of these simulations will be discussed

  6. Runaway electron studies with hard x-ray and microwave diagnostics in the FT-2 lower hybrid current drive discharges

    Science.gov (United States)

    Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Pandya, S. P.; Plyusnin, V. V.; Altukhov, A. B.; Kouprienko, D. V.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.

    2018-01-01

    Studies of the super-thermal and runaway electron behavior in ohmic and lower hybrid current drive FT-2 tokamak plasmas have been carried out using information obtained from measurements of hard x-ray spectra and non-thermal microwave radiation intensity at the frequency of 10 GHz and in the range of (53 ÷ 78) GHz. A gamma-ray spectrometer based on a scintillation detector with a LaBr3(Ce) crystal was used, which provides measurements at counting rates up to 107 s-1. Reconstruction of the energy distribution of RE interacting with the poloidal limiter of the tokamak chamber was made with application of the DeGaSum code. Super-thermal electrons accelerated up to 2 MeV by the LH waves at the high-frequency pumping of the plasma with low density ≤ft ~ 2  ×  1013 cm-3 and then up to 7 MeV by vortex electric field have been found. Experimental analysis of the runaway electron beam generation and evolution of their energy distribution in the FT-2 plasmas is presented in the article and compared with the numerical calculation of the maximum energy gained by runaway electrons for given plasma parameters. In addition, possible mechanisms for limiting the maximum energy gained by the runaway electrons are also calculated and described for a FT-2 plasma discharge.

  7. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    Science.gov (United States)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  8. Fast ion confinement during high power tangential neutral beam injection into low plasma current discharges on the ISX-B tokamak

    International Nuclear Information System (INIS)

    Carnevali, A.; Scott, S.D.; Neilson, H.; Galloway, M.; Stevens, P.; Thomas, C.E.

    1988-01-01

    The beam ion thermalization process during tangential neutral beam injection in the ISX-B tokamak is investigated. The classical model is tested in co- and counter-injected discharges at low plasma current, a regime where large orbit width excursions enhance the importance of the loss regions. To test the model, experimental charge exchange spectra are compared with the predictions of an orbit following Monte Carlo code. Measurements of beam-plasma neutron emission and measured decay rates of the emission following beam turnoff provide additional information. Good agreement is found between theory and experiment. Furthermore, beam additivity experiments show that, globally, the confinement of beam ions remains classical, independently of the injected beam power. However, some experimental evidence suggests that the fast ion density in the plasma core did not increase with beam power in a way consistent with classical processes. (author). 35 refs, 17 figs, 3 tabs

  9. Subtype-specific, bi-component inhibition of SK channels by low internal pH

    DEFF Research Database (Denmark)

    Peitersen, Torben; Jespersen, Thomas; Jorgensen, Nanna K

    2006-01-01

    The effects of low intracellular pH (pH(i) 6.4) on cloned small-conductance Ca2+-activated K+ channel currents of all three subtypes (SK1, SK2, and SK3) were investigated in HEK293 cells using the patch-clamp technique. In 400 nM internal Ca2+ [Ca2+]i, all subtypes were inhibited by pH(i) 6...

  10. The role of MHD instabilities in the improved H-mode scenario

    International Nuclear Information System (INIS)

    Flaws, Asher

    2009-01-01

    Recently a regime of tokamak operation has been discovered, dubbed the improved H-mode scenario, which simultaneously achieves increased energy confinement and stability with respect to standard H-mode discharges. It has been suggested that magnetohydrodynamic (MHD) instabilities play some role in establishing this regime. In this thesis MHD instabilities were identified, characterised, and catalogued into a database of improved H-mode discharges in order to statistically examine their behaviour. The onset conditions of MHD instabilities were compared to existing models based on previous H-mode studies. Slight differences were found, most notably a reduced β N onset threshold for the frequently interrupted regime for neoclassical tearing modes (NTM). This reduced threshold is due to the relatively low magnetic shear of the improved H-mode regime. This study also provided a first-time estimate for the seed island size of spontaneous onset NTMs, a phenomenon characteristic of the improved H-mode scenario. Energy confinement investigations found that, although the NTM impact on confinement follows the same model applicable to other operating regimes, the improved H-mode regime acts to mitigate the impact of NTMs by limiting the saturated island sizes for NTMs with toroidal mode number n ≥ 2. Surprisingly, although a significant loss in energy confinement is observed during the sawtooth envelope, it has been found that discharges containing fishbones and low frequency sawteeth achieve higher energy confinement than those without. This suggests that fishbone and sawtooth reconnection may indeed play a role in establishing the high confinement regime. It was found that the time evolution of the central magnetic shear consistently locks in the presence of sawtooth and fishbone reconnection. Presumably this is due to the periodic redistribution of the central plasma current, an effect which is believed to help establish and maintain the characteristic current profile

  11. The role of MHD instabilities in the improved H-mode scenario

    Energy Technology Data Exchange (ETDEWEB)

    Flaws, Asher

    2009-02-16

    Recently a regime of tokamak operation has been discovered, dubbed the improved H-mode scenario, which simultaneously achieves increased energy confinement and stability with respect to standard H-mode discharges. It has been suggested that magnetohydrodynamic (MHD) instabilities play some role in establishing this regime. In this thesis MHD instabilities were identified, characterised, and catalogued into a database of improved H-mode discharges in order to statistically examine their behaviour. The onset conditions of MHD instabilities were compared to existing models based on previous H-mode studies. Slight differences were found, most notably a reduced {beta}{sub N} onset threshold for the frequently interrupted regime for neoclassical tearing modes (NTM). This reduced threshold is due to the relatively low magnetic shear of the improved H-mode regime. This study also provided a first-time estimate for the seed island size of spontaneous onset NTMs, a phenomenon characteristic of the improved H-mode scenario. Energy confinement investigations found that, although the NTM impact on confinement follows the same model applicable to other operating regimes, the improved H-mode regime acts to mitigate the impact of NTMs by limiting the saturated island sizes for NTMs with toroidal mode number n {>=} 2. Surprisingly, although a significant loss in energy confinement is observed during the sawtooth envelope, it has been found that discharges containing fishbones and low frequency sawteeth achieve higher energy confinement than those without. This suggests that fishbone and sawtooth reconnection may indeed play a role in establishing the high confinement regime. It was found that the time evolution of the central magnetic shear consistently locks in the presence of sawtooth and fishbone reconnection. Presumably this is due to the periodic redistribution of the central plasma current, an effect which is believed to help establish and maintain the characteristic current

  12. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    Science.gov (United States)

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  13. Relaxation of the vibrational distribution function in N2 time varying discharges

    International Nuclear Information System (INIS)

    Capitelli, M.; Gorse, C.; Ricard, A.

    1981-01-01

    Relaxation of the electron and vibrational distribution functions have been calculated in function of residence time in nitrogen electrical discharges and post-discharges. In the discharge the vibrational temperature get bigger with the residence time for t -2 s. In the post-discharge the vibrational distribution is evolving in such a manner that the high levels are overpopulated as the low vibrational level population is dropping

  14. 2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges

    International Nuclear Information System (INIS)

    Kawamura, E; Lichtenberg, A J; Lieberman, M A; Marakhtanov, A M

    2016-01-01

    A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths. (paper)

  15. Electrochemical behavior of heavily cycled nickel electrodes in Ni/H2 cells containing electrolytes of various KOH concentrations

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1989-01-01

    A study has been made of charge and discharge voltage changes with cycling of Ni/H2 cells containing electrolytes of various KOH concentrations. A study has also been made of electrochemical behavior of the nickel electrodes from the cycled Ni/H2 cells as a function of overcharge amounts. Discharge voltages depressed gradually with cycling for cells having high KOH concentrations (31 to 36 percent), but the voltages increased for those having low KOH concentrations (21 to 26 percent). To determine if there was a crystallographic change of the active material due to cycling, electrochemical behavior of nickel electrodes was studied in an electrolyte flooded cell containing either 31 or 26 percent KOH electrolyte as a function of the amount of overcharge. The changes in discharge voltage appear to indicate crystal structure changes of active material from gamma-phase to beta-phase in low KOH concentrations, and vice versa in high KOH concentration.

  16. Chaos in gas discharges

    International Nuclear Information System (INIS)

    Piel, A.

    1993-01-01

    Many gas discharges exhibit natural oscillations which undergo a transition from regular to chaotic behavior by changing an experimental parameter or by applying external modulation. Besides several isolated investigations, two classes of discharge phenomena have been studied in more detail: ionization waves in medium pressure discharges and potential relaxation oscillations in filament cathode discharges at very low pressure. The latter phenomenon will be discussed by comparing experimental results from different discharge arrangements with particle-in-cell simulations and with a model based on the van-der-Pol equation. The filament cathode discharge has two stable modes of operation: the low current anode-glow-mode and the high current temperature-limited-mode, which form the hysteresis curve in the I(U) characteristics. Close to the hysteresis point of the AGM periodic relaxation oscillations occur. The authors demonstrate that the AGM can be understood by ion production in the anode layer, stopping of ions by charge exchange, and trapping in the virtual cathode around the filament. The relaxation oscillations consist of a slow filling phase and a rapid phase that invokes formation of an unstable double-layer, current-spiking, and ion depletion from the cathodic plasma. The relaxation oscillations can be mode-locked by external modulation. Inside a mode-locked state, a period doubling cascade is observed at high modulation degree

  17. H_{2} adsorption on multiwalled carbon nanotubes at low temperatures and low pressures

    Directory of Open Access Journals (Sweden)

    F. Xu

    2008-11-01

    Full Text Available We present an experimental study on H_{2} adsorption on multiwalled carbon nanotubes (MWCNTs at low temperatures (12–30 K and low pressures (2×10^{-5}  Torr using the temperature programmed desorption technique. Our results show that the molecular hydrogen uptake increases nearly exponentially from 6×10^{-9}  wt. % at 24.5 K to 2×10^{-7}  wt. % at 12.5 K and that the desorption kinetics is of the first order. Comparative measurements indicate that MWCNTs have an adsorption capacity about two orders higher than that of activated carbon (charcoal making them a possible candidate as hydrogen cryosorber for eventual applications in accelerators and synchrotrons.

  18. Tokamak fluidlike equations, with applications to turbulence and transport in H mode discharges

    International Nuclear Information System (INIS)

    Kim, Y.B.; Biglari, H.; Carreras, B.A.; Diamond, P.H.; Groebner, R.J.; Kwon, O.J.; Spong, D.A.; Callen, J.D.; Chang, Z.; Hollenberg, J.B.; Sundaram, A.K.; Terry, P.W.; Wang, J.F.

    1990-01-01

    Significant progress has been made in developing tokamak fluidlike equations which are valid in all collisionality regimes in toroidal devices, and their applications to turbulence and transport in tokamaks. The areas highlighted in this paper include: the rigorous derivation of tokamak fluidlike equations via a generalized Chapman-Enskog procedure in various collisionality regimes and on various time scales; their application to collisionless and collisional drift wave models in a sheared slab geometry; applications to neoclassical drift wave turbulence; i.e. neoclassical ion-temperature-gradient-driven turbulence and neoclassical electron-drift-wave turbulence; applications to neoclassical bootstrap-current-driven turbulence; numerical simulation of nonlinear bootstrap-current-driven turbulence and tearing mode turbulence; transport in Hot-Ion H mode discharges. 20 refs., 3 figs

  19. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.; Kovalsky, S. S.; Lopatin, I. V.; Schanin, P. M.; Yakovlev, V. V. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)

    2017-01-15

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{sup 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.

  20. Plasma discharge in N2 + CH4 at low pressures - Experimental results and applications to Titan

    Science.gov (United States)

    Thompson, W. Reid; Henry, Todd J.; Schwartz, Joel M.; Khare, B. N.; Sagan, Carl

    1991-01-01

    Results are reported from laboratory continuous-flow plasma-discharge experiments designed to simulate the formation of hydrocarbons and nitriles from N2 and CH4 in the atmosphere of Titan. Gas-chromatography and mass-spectrometry data were obtained in experiments lasting up to 100 h at temperature 295 K and pressure 17 or 0.24 mbar, modeling (1) cosmic-ray-induced processes in the Titan troposphere and (2) processes related to stratospheric aurorae excited by energetic electrons and ions from the Saturn magnetosphere, respectively. The results are presented in extensive tables and graphs, and the 0.24-mbar yields are incorporated into an eddy-mixing model to give stratospheric column abundances and mole fractions in good agreement with Voyager IRIS observations.

  1. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J. J.; van der Meiden, H. J.; Morgan, T. W.; D.C. Schram,; De Temmerman, G.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 mu F) is parallel-coupled to the current regulated power supply. The current is transiently increased from

  2. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J.J.; Meiden, van der H.J.; Morgan, T.W.; Schram, D.C.; De Temmerman, G.C.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 µF) is parallel-coupled to the current regulated power supply. The current is transiently increased from its

  3. Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel †

    Science.gov (United States)

    Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf

    2018-01-01

    We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e−/s at 60 °C. PMID:29370146

  4. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    Science.gov (United States)

    Marinov, D.; Guaitella, O.; Booth, J. P.; Rousseau, A.

    2013-01-01

    Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  5. Direct observation of ozone formation on SiO2 surfaces in O2 discharges

    International Nuclear Information System (INIS)

    Marinov, D; Guaitella, O; Booth, J P; Rousseau, A

    2013-01-01

    Ozone production is studied in a pulsed O 2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O 3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O 2 pressure and is favoured by the presence of OH groups and adsorbed H 2 O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.

  6. Air-supplied pinhole discharge in aqueous solution for the inactivation of Escherichia coli

    Science.gov (United States)

    Suganuma, Ryota; Yasuoka, Koichi

    2018-04-01

    An air-supplied pinhole discharge in aqueous solution has been developed to provide a short-lived and odorless bactericide to replace current conventional disinfectants such as O3, ClO-, HClO, and ClO2. The pinhole discharge that was initiated inside a water bubble generated hydrogen peroxide (H2O2) and nitrous acid (HNO2) simultaneously. The concentrations of H2O2, HNO2, and HNO3 were 16.3, 13.9, and 17.4 mg/L, respectively when flow rates of NaCl solution and air were 72 and 12.5 mL/min, respectively. The pH value of the solution was 3.87, and HO2 radicals were generated from the reaction of H2O2 with HNO2. The efficacy of sterilization of discharge-treated water was evaluated by changing the acetic solutions. A 4-orders-of-magnitude decrease in Escherichia coli survival rate was observed after treatment with a sodium citrate solution of pH 3.2 for 60 s.

  7. H- source developments

    International Nuclear Information System (INIS)

    Allison, P.W.

    1978-01-01

    The design and operation of a Penning discharge, cold cathode, surface plasma H - ion source are described. A high current density, about 2 A/cm 2 , is extracted from the source by putting about 20 keV across the 2 to 2 1 / 2 mm gap

  8. Hybrid simulation of electron energy distributions and plasma characteristics in pulsed RF CCP sustained in Ar and SiH4/Ar discharges

    Science.gov (United States)

    Wang, Xi-Feng; Jia, Wen-Zhu; Song, Yuan-Hong; Zhang, Ying-Ying; Dai, Zhong-Ling; Wang, You-Nian

    2017-11-01

    Pulsed-discharge plasmas offer great advantages in deposition of silicon-based films due to the fact that they can suppress cluster agglomeration, moderate the energy of bombarding ions, and prolong the species' diffusion time on the substrate. In this work, a one-dimensional fluid/Monte-Carlo hybrid model is applied to study pulse modulated radio-frequency (RF) plasmas sustained in capacitively coupled Ar and SiH4/Ar discharges. First, the electron energy distributions in pulsed Ar and SiH4/Ar plasmas have been investigated and compared under identical discharge-circuit conditions. The electron energy distribution function (EEDF) in Ar discharge exhibits a familiar bi-Maxwellian shape during the power-on phase of the pulse, while a more complex (resembling a multi-Maxwellian) distribution with extra inflection points at lower energies is observed in the case of the SiH4/Ar mixture. These features become more prominent with the increasing fraction of SiH4 in the gas mixture. The difference in the shape of the EEDF (which is pronounced inside the plasma but not in the RF sheath where electron heating occurs) is mainly attributed to the electron-impact excitations of SiH4. During the power-off phase of the pulse, the EEDFs in both Ar and SiH4/Ar discharges evolve into bi-Maxwellian shapes, with shrinking high energy tails. Furthermore, the parameter of ion species in the case of SiH4/Ar discharge is strongly modulated by pulsing. For positive ions, such as SiH3+ and Si2H4+ , the particle fluxes overshoot at the beginning of the power-on interval. Meanwhile, for negative ions such as SiH2- and SiH3- , density profiles observed between the electrodes are saddle-shaped due to the repulsion by the self-bias electric field as it builds up. During the power-off phase, the wall fluxes of SiH2- and SiH3- gradually increase, leading to a significant decrease in the net surface charge density on the driven electrode. Compared with ions, the density of SiH3 is poorly modulated

  9. How do low-birthweight neonates fare 2 years after discharge from a low-technology neonatal care unit in a rural district hospital in Burundi?

    Science.gov (United States)

    van den Boogaard, W; Zuniga, I; Manzi, M; Van den Bergh, R; Lefevre, A; Nanan-N'zeth, K; Duchenne, B; Etienne, W; Juma, N; Ndelema, B; Zachariah, R; Reid, A

    2017-04-01

    As neonatal care is being scaled up in economically poor settings, there is a need to know more on post-hospital discharge and longer-term outcomes. Of particular interest are mortality, prevalence of developmental impairments and malnutrition, all known to be worse in low-birthweight neonates (LBW, Rural Burundi between January and December 2012. Of 146 LBW neonates, 23% could not be traced and 4% had died. Of the remaining 107 children (median age = 27 months), at least one developmental impairment was found in 27%, with 8% having at least five impairments. Main impairments included delays in motor development (17%) and in learning and speech (12%). Compared to LBW children (n = 100), very-low-birthweight (VLBW, <1500 g, n = 7) children had a significantly higher risk of impairments (intellectual - P = 0.001), needing constant supervision and creating a household burden (P = 0.009). Of all children (n-107), 18% were acutely malnourished, with a 3½ times higher risk in VLBWs (P = 0.02). Reassuringly, most children were thriving 2 years after discharge. However, malnutrition was prevalent and one in three manifested developmental impairments (particularly VLBWs) echoing the need for support programmes. A considerable proportion of children could not be traced, and this emphasises the need for follow-up systems post-discharge. © 2017 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  10. Critical evaluation of analytical models for stochastic heating in dual-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2013-01-01

    Dual-frequency capacitive discharges are widespread in the semiconductor industry and are used, for example, in etching of semiconductor materials to manufacture microchips. In low-pressure dual radio-frequency capacitive discharges, stochastic heating is an important phenomenon. Recent theoretical work on this problem using several different approaches has produced results that are broadly in agreement insofar as scaling with the discharge parameters is concerned, but there remains some disagreement in detail concerning the absolute size of the effect for the case of dual-frequency capacitive discharges. In this work, we investigate the dependence of stochastic heating on various discharge parameters with the help of particle-in-cell (PIC) simulation. The dual-frequency analytical models are in fair agreement with PIC results for values of the low-frequency current density amplitude J lf (or dimensionless control parameter H lf ∼ 5) typical of many modern experiments. However, for higher values of J lf (or higher H lf ), new physical phenomena (like field reversal, reflection of ions, etc) appear and the simulation results deviate from existing dual-frequency analytical models. On the other hand, for lower J lf (or lower H lf ) again the simulation results deviate from analytical models. So this research work produces a relatively extensive set of simulation data that may be used to validate theories over a wide range of parameters. (paper)

  11. ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES

    International Nuclear Information System (INIS)

    WOLF, NS; PETRIE, TW; PORTER, GD; ROGNLIEN, TD; GROEBNER, RJ; MAKOWSKI, MA

    2002-01-01

    OAK A271 ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES. The 2-D fluid code UEDGE was used to analyze DIII-D experiments to determine the role of neutrals in core fueling, core impurities, and also the H-mode pedestal structure. The authors compared the effects of divertor closure on the fueling rate and impurity density of high-triangularity, H-mode plasmas. UEDGE simulations indicate that the decrease in both deuterium core fueling (∼ 15%-20%) and core carbon density (∼ 15%-30%) with the closed divertor compared to the open divertor configuration is due to greater divertor screening of neutrals. They also compared UEDGE results with a simple analytic model of the H-mode pedestal structure. The model predicts both the width and gradient of the transport barrier in n e as a function of the pedestal density. The more sophisticated UEDGE simulations of H-mode discharges corroborate the simple analytic model, which is consistent with the hypothesis that fueling processes play a role in H-mode transport barrier formation

  12. Direct current microhollow cathode discharges on silicon devices operating in argon and helium

    Science.gov (United States)

    Michaud, R.; Felix, V.; Stolz, A.; Aubry, O.; Lefaucheux, P.; Dzikowski, S.; Schulz-von der Gathen, V.; Overzet, L. J.; Dussart, R.

    2018-02-01

    Microhollow cathode discharges have been produced on silicon platforms using processes usually used for MEMS fabrication. Microreactors consist of 100 or 150 μm-diameter cavities made from Ni and SiO2 film layers deposited on a silicon substrate. They were studied in the direct current operating mode in two different geometries: planar and cavity configuration. Currents in the order of 1 mA could be injected in microdischarges operating in different gases such as argon and helium at a working pressure between 130 and 1000 mbar. When silicon was used as a cathode, the microdischarge operation was very unstable in both geometry configurations. Strong current spikes were produced and the microreactor lifetime was quite short. We evidenced the fast formation of blisters at the silicon surface which are responsible for the production of these high current pulses. EDX analysis showed that these blisters are filled with argon and indicate that an implantation mechanism is at the origin of this surface modification. Reversing the polarity of the microdischarge makes the discharge operate stably without current spikes, but the discharge appearance is quite different from the one obtained in direct polarity with the silicon cathode. By coating the silicon cathode with a 500 nm-thick nickel layer, the microdischarge becomes very stable with a much longer lifetime. No current spikes are observed and the cathode surface remains quite smooth compared to the one obtained without coating. Finally, arrays of 76 and 576 microdischarges were successfully ignited and studied in argon. At a working pressure of 130 mbar, all microdischarges are simultaneously ignited whereas they ignite one by one at higher pressure.

  13. Experimental and modelling investigations of a dielectric barrier discharge in low-pressure argon

    International Nuclear Information System (INIS)

    Wagenaars, E; Brandenburg, R; Brok, W J M; Bowden, M D; Wagner, H-E

    2006-01-01

    The discharge behaviour of a dielectric barrier discharge (DBD) in low-pressure argon gas was investigated by experiments and modelling. The electrical characteristics and light emission dynamics of the discharge were measured and compared with the results of a two-dimensional fluid model. Our investigations showed that the discharge consisted of a single, diffuse discharge per voltage half-cycle. The breakdown phase of the low-pressure DBD (LPDBD) was investigated to be similar to the ignition phase of a low-pressure glow discharge without dielectrics, described by Townsend breakdown theory. The stable discharge phase of the LPDBD also showed a plasma structure with features similar to those of a classical glow discharge. The presence of the dielectric in the discharge gap led to the discharge quenching and thus the decay of the plasma. Additionally, the argon metastable density was monitored by measuring light emission from nitrogen impurities. A metastable density of about 5 x 10 17 m -3 was present during the entire voltage cycle, with only a small (∼10%) increase during the discharge. Finally, a reduction of the applied voltage to the minimum required to sustain the discharge led to a further reduction of the role of the dielectric. The discharge was no longer quenched by the dielectrics only but also by a reduction of the applied voltage

  14. Supercapacitor performance evaluation in replacing battery based on charging and discharging current characteristics

    Science.gov (United States)

    Sani, A.; Siahaan, S.; Mubarakah, N.; Suherman

    2018-02-01

    Supercapacitor is a new device of energy storage, which has much difference between ordinary capacitors and batteries. Supercapacitor have higher capacitance and energy density than regular capacitors. The supercapacitor also has a fast charging time, as well as a long life. To be used as a battery replacement please note the internal parameters of the battery to be replaced. In this paper conducted a simulation study to utilize supercapacitor as a replacement battery. The internal parameters of the battery and the supercapacitor are obtained based on the characteristics of charging and discharging current using a predefined equivalent circuit model. The battery to be replaced is a 12-volt lead-acid type, 6.5 Ah which is used on motorcycles with 6A charging and discharging currents. Super capacitor replacement capacitor is a capacity of 1600F, 2.7V which is connected in series as many as 6 pieces with 16.2 volt terminal voltage and charging current 12A. To obtain the same supercapacitor characteristic as the battery characteristic to be replaced, modification of its internal parameters is made. The results show that the super-capacitor can replace the battery function for 1000 seconds.

  15. Spectroscopic measurements of an H- ion source discharge

    International Nuclear Information System (INIS)

    Keller, R.; Smith, H.V. Jr.

    1985-01-01

    Spectral emission lines from an H - Penning surface-plasma source (SPS), the 4X source, are examined in the visible and near ultraviolet. Electron distribution temperatures are deduced from integral line-strength measurements. These temperatures are surprisingly low, about 0.5 eV. Electron density values of about 1.5 x 10 14 cm -3 and H-atom energies between 2 and 2.6 eV are determined from the measured Balmer-line profiles. Assuming the H - energy is identical to the H-atom energy, an emittance limit of 0.006 π x cm x mrad is deduced for this source with a 5.4-mm aperture

  16. HIGH PERFORMANCE STATIONARY DISCHARGES IN THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    Luce, T.C.; Wade, M.R.; Ferron, J.R.; Politzer, P.A.; Hyatt, A.W.; Sips, A.C.C.; Murakami, M.

    2003-01-01

    Recent experiments in the DIII-D tokamak [J.L. Luxon, Nucl. Fusion 42,614 (2002)] have demonstrated high β with good confinement quality under stationary conditions. Two classes of stationary discharges are observed--low q 95 discharges with sawteeth and higher q 95 without sawteeth. The discharges are deemed stationary when the plasma conditions are maintained for times greater than the current profile relaxation time. In both cases the normalized fusion performance (β N H 89P /q 95 2 ) reaches or exceeds the value of this parameter projected for Q fus = 10 in the International Thermonuclear Experimental Reactor (ITER) design [R. Aymar, et al., Plasma Phys. Control. Fusion 44, 519 (2002)]. The presence of sawteeth reduces the maximum achievable normalized β, while confinement quality (confinement time relative to scalings) is largely independent of q 95 . Even with the reduced β limit, the normalized fusion performance maximizes at the lowest q 95 . Projections to burning plasma conditions are discussed, including the methodology of the projection and the key physics issues which still require investigation

  17. Comparison of discharges with core transport barriers on DIII-D and JET

    International Nuclear Information System (INIS)

    Luce, T.C.; Alper, B.; Challis, C.D.

    1997-07-01

    The basic phenomenology of discharges with core transport barriers is the same for DIII-D and JET. The limitations on performance in both cases are well described by MHD stability calculations. Since the discharge behavior of the two machines is so similar, it seems reasonable to apply a simple parameterization of fusion performance which describes well the best performance discharges on DIII-D. The highest fusion performance shot on JET has Q DD = 3.1 10 -3 at 3.2 MA. Scaling from the highest Q DD DIII-D single-null discharge would predict Q DD = 4.2 10 -3 for JET. Raising the plasma current to 4.0 MA would increase the projection to 6.6 10 -3 . Realization of such performance would require significant effort to develop lower q plasmas with an H-mode edge. Because the performance is so closely tied to the current profile, this class of discharges also shows significant potential for steady state if current profile control can be demonstrated

  18. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    Science.gov (United States)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  19. Insights into reactive scattering of Pu + H2 at low energies

    Science.gov (United States)

    Gao, Cong-Zhang; Wu, Yong; Liu, Ling; Wang, Pei; Wang, Jian-Guo

    2017-08-01

    The corrosion of metal interfaces, due to continuous exposure to gaseous hydrogen atmosphere, significantly limits the applications of plutonium-based nuclear materials in the related fields. In this work, we simplify the situations by considering the fundamental reactions of Pu atom with a single H2 molecule, and investigate from a theoretical perspective collision dynamics of Pu + H2 at low energies (0.2 \\text{eV}\\text{--}13 \\text{eV}) based on ab initio potential energy surfaces. Trajectory calculation analysis shows that three main channels, the formation of the PuH2, the PuH fragment, and the fragmentation, exhibit different energy-dependent cross sections, from which we observed that the PuH2 formation is non-threshold reaction, whereas the other two channels are featured by pronounced threshold effects, which is in consistent with experimental observations. In addition, we find that three-body effects can play a decisive role in the reactions since the simplified Morse potential energy surfaces can even yield spurious results in some situations.

  20. Acid fractionation for low level liquid waste cleanup and recycle

    International Nuclear Information System (INIS)

    Gombert, D. II; McIntyre, C.V.; Mizia, R.E.; Schindler, R.E.

    1990-01-01

    At the Idaho Chemical Processing Plant, low level liquid wastes containing small amounts of radionuclides are concentrated via a thermosyphon evaporator for calcination with high level waste, and the evaporator condensates are discharged with other plant wastewater to a percolation pond. Although all existing discharge guidelines are currently met, work has been done to reduce all waste water discharges to an absolute minimum. In this regard, a 15-tray acid fractionation column will be used to distill the mildly acidic evaporator condensates into concentrated nitric acid for recycle in the plant. The innocuous overheads from the fractionator having a pH greater than 2, are superheated and HEPA filtered for atmospheric discharge. Nonvolatile radionuclides are below detection limits. Recycle of the acid not only displaces fresh reagent, but reduces nitrate burden to the environment, and completely eliminates routine discharge of low level liquid wastes to the environment

  1. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    Science.gov (United States)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  2. Mode transition of power dissipation and plasma parameters in an asymmetric capacitive discharge

    International Nuclear Information System (INIS)

    Lee, Soo-Jin; Lee, Hyo-Chang; Bang, Jin-young; Oh, Seung-Ju; Chung, Chin-Wook

    2013-01-01

    Electrical characteristics and plasma parameters were experimentally investigated in asymmetric capacitively coupled plasma with various argon gas pressures. At a low discharge current region, the transferred power to the plasma was proportional to the current, while the transferred power increased proportionally to square of the current at a high discharge current region. The mode transition of power dissipation occurred at the lower discharge current region with the high gas pressure. At the low radio-frequency power or low discharge current, the plasma density increased linearly with the discharge current, while at the high power or high discharge current, the rate of an increase in the plasma density depended on the gas pressures. A transition of the discharge resistance was also found when the mode transition of the power dissipation occurred. These changes in the electrical characteristics and the plasma parameters were mainly caused by the power dissipation mode transition from the plasma bulk to the sheath in the capacitive discharge with the asymmetric electrode, which has extremely high self-bias voltages. - Highlights: • Mode transition of the power dissipation in an asymmetrical capacitive discharge • Evolution of the discharge power, electrode voltage, and discharge impedance • Electron temperature and plasma density on the power dissipation mode transition

  3. Facile synthesis technology of Li_3V_2(PO_4)_3/C adding H_2O_2 in ball mill process

    International Nuclear Information System (INIS)

    Min, Xiujuan; Mu, Deying; Li, Ruhong; Dai, Changsong

    2016-01-01

    Highlights: • Sintering time of Li_3V_2(PO_4)_3 reduced to 6 hours by adding hydrogen peroxide. • Electrochemical performance of Li_3V_2(PO_4)_3 was improved by reducing sintering time. • The Li_3V_2(PO_4)_3 production process was simplified during material synthesis stage. - Abstract: Li_3V_2(PO_4)_3/C has stable structure, high theory specific capacity and good safety performance, therefore it has become the research focus of lithium-ion batteries in recent years. The facile synthesis technology of Li_3V_2(PO_4)_3/C was characterized by adding different amounts of H_2O_2. Structure and morphology characteristics were examined by XRD, TG, Raman Spectroscopy, XPS and SEM. Electrochemical performance was investigated by constant current charging and discharging test. The results revealed that the Li_3V_2(PO_4)_3/C electrochemical performance of adding 15 mL H_2O_2 was better after sintering during 6 h. At the charge cut-off voltage of 4.3 V, the first discharge capacity at 0.2 C rate reached 127 mAh g"−"1. Because of adding H_2O_2 in the ball-mill dispersant, the vanadium pentoxide formed the wet sol. The molecular-leveled mixture increased the homogeneity of raw materials. Therefore, the addition of H_2O_2 shortened the sintering time and significantly improved the electrochemical performance of Li_3V_2(PO_4)_3/C.

  4. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve.

    Science.gov (United States)

    Dean, Jesse C; Clair-Auger, Joanna M; Lagerquist, Olle; Collins, David F

    2014-01-01

    Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with "time-locked" discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in "physiological" recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.

  5. Research on High Current Pulse Discharges at IPP ASci CR

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Štraus, Jaroslav; Frolov, Oleksandr; Martínková, M.

    2006-01-01

    Roč. 56, suppl. B (2006), s. 259-266 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA ČR GA202/06/1324; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Pulsed high current capillary discharge * amplified spontaneous emission * soft X-ray laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  6. H2S-mediated thermal and photochemical methane activation.

    Science.gov (United States)

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V

    2013-12-02

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Experimental Investigation of Pulsed Nanosecond Streamer Discharges for CO2 Reforming

    Science.gov (United States)

    Pachuilo, Michael; Levko, Dima; Raja, Laxminarayan; Varghese, Philip

    2016-09-01

    Rapid global industrialization has led to an increase in atmospheric greenhouse gases, specifically carbon dioxide levels. Plasmas present a great potential for efficient reforming of greenhouse gases. There are several plasma discharges which have been reported for reforming process: dielectric barrier discharges (DBD), microwave discharges, and glide-arcs. Microwave discharges have CO2 conversion energy efficiency of up to 40% at atmospheric conditions, while glide-arcs have 43% and DBD 2-10%. In our study, we analyze a single nanosecond pulsed cathode directed streamer discharge in CO2 at atmospheric pressure and temperature. We have conducted time resolved imaging with spectral bandpass filters of a streamer discharge with an applied negative polarity pulse. The image sequences have been correlated to the applied voltage and current pulses. From the spectral filters we can determine where spatially and temporally excited species are formed. In this talk we report on spectroscopic studies of the discharge and estimate plasma properties such as temperature and density of excited species and electrons. Furthermore, we report on the effects of pulse polarity as well as anodic streamer discharges on the CO2 conversion efficiency. Finally, we will focus on the effects of vibrational excitation on carbon dioxide reforming efficiency for streamer discharges. Our experimental results will be compared with an accompanying plasma computational model studies.

  8. An online low energy gaseous ion source

    International Nuclear Information System (INIS)

    Jin Shuoxue; Guo Liping; Peng Guoliang; Zhang Jiaolong; Yang Zheng; Li Ming; Liu Chuansheng; Ju Xin; Liu Shi

    2010-01-01

    The accumulation of helium and/or hydrogen in nuclear materials may cause performance deterioration of the materials. In order to provide a unique tool to investigate the He-and/or H-caused problems, such as interaction of helium with hydrogen and defects, formation of gas bubbles and its evolution, and the related effects, we designed a low energy (≤ 20 keV) cold cathode Penning ion source, which will be interfaced to a 200 kV transmission electron microscope (TEM), for monitoring continuously the evolution of micro-structure during the He + or H + ion implantation. Studies on discharge voltage-current characteristics of the ion source, and extraction and focusing of the ion beam were performed. The ion source works stably with 15-60 mA of the discharge current.Under the gas pressure of 5 x 10 -3 Pa and 1.5 x 10 -2 Pa, the discharge voltage are about 380 V and 320 V, respectively. The extracted ion current under lower gas pressure is greater than that under higher gas pressure, and it increases with the discharge current and extraction voltage. The ion lens consisting of three equal-diameter metal cylinder focus the ion beam effectively, so that the beam density at the 150 cm away from the lens exit increases by a over one order of magnitude. For ion beams of around 10 keV, the measured beam density is about 200 nA · cm -2 , which is applicable for ion implantation and in situ TEM observation for many kinds of nuclear materials. (authors)

  9. Effect of high energy electrons on H{sup −} production and destruction in a high current DC negative ion source for cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Onai, M., E-mail: onai@ppl.appi.keio.ac.jp; Fujita, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Etoh, H.; Aoki, Y. [Sumitomo Heavy Industries, Ltd., Tokyo 141-6025 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Mattei, S.; Lettry, J. [CERN Rte de Meyrin, 1200 Geneva (Switzerland)

    2016-02-15

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H{sup −} production. The modelling results reasonably explains the dependence of the H{sup −} extraction current on the arc-discharge power in the experiments.

  10. A new method for decontamination of radioactive waste using low-pressure arc discharge

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Furukawa, Shizue; Adachi, Kazuo; Amakawa, Tadashi; Kanbe, Hiromi

    2006-01-01

    In this paper, the decontamination features of the low-pressure arc-discharge method for radioactive waste generated in the operation and maintenance of nuclear power plants were examined. The low-pressure arc-discharge method was applied to type 304 stainless-steel, type 316L stainless-steel, alloy 600 and carbon-steel covered with radioactive corrosion products. Approximately, 80% of the radioactivity build up on stainless-steels could be removed by the low-pressure arc discharge

  11. H/sub 2/S-removal processes for low-Btu coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. S.

    1979-01-01

    Process descriptions are provided for seven methods of removing H/sub 2/S from a low-Btu coal-derived gas. The processes include MDEA, Benfield, Selexol, Sulfinol, Stretford, MERC Iron Oxide, and Molecular Sieve. Each of these processes was selected as representing a particular category of gas treating (e.g., physical solvent systems). The open literature contains over 50 processes for H/sub 2/S removal, of which 35 were briefly characterized in the literature survey. Using a technical evaluation of these 35 processes, 21 were eliminated as unsuitable for the required application. The remaining 14 processes represent six categories of gas treating. A seventh category, low-temperature solid sorption, was subsequently added. The processes were qualitatively compared within their respective categories to select a representative process in each of the seven categories.

  12. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    Science.gov (United States)

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Studies of energy transport in Jet H-modes

    International Nuclear Information System (INIS)

    Keilhacker, M.; Balet, B.; Cordey, J.; Gottardi, N.; Muir, D.; Thomsen, K.; Watkins, M.

    1989-01-01

    The local heat transport properties in the interior of ohmic, L- and H-phases of 2MA discharges, are determined. Time dependent energy balance code, TRANSP, and timeslice code, QFLUX are used. The global confinement properties of higher current discharges (≤ 3.8MA) are analyzed. The results indicate that during the L-phase of JET single null X-point discharges, the total heat transport coefficient in the plasma decreases to a level close to the ohmic value. Moreover, confinement during the H-phase continues to improve with current (up to 3.8MA), but degrades with increasing neutral beam power

  14. A novel flattop current regulated energy discharge type pulsed power supply and magnet yielding 4.4 kGauss-meter for 6 milliseconds

    International Nuclear Information System (INIS)

    Visser, A.T.

    1989-07-01

    Most energy discharge power supplies obtain their bursts of power from the energy stored in charged capacitors when it is suddenly released into a load. This note describes the design of a similar small 800 Joules energy discharge type power supply and magnet. The magnet gap is 2 in.x2 in.x25-1/2 in. long and produces about 4.4 kGauss-meters at a rate of 12 pulses per minute. Each pulse is current regulated at the top for a duration of 6 msec. and varies less than 0.6% of set value. Current regulation at flattop is obtained by switching a resistor in and out of the discharge circuit with an IGBT at a rate of about 5 kHz. Most energy discharge systems produce half sine wave pulses, and current regulation is obtained by controlling the charge voltage at the energy storage capacitor, resulting only in a controlled peak current value of the half sine wave pulse. The current value at the top changes substantially during 6 msec. depending on the operating frequency

  15. Confinement studies of neutral beam heated discharges in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M.; Arunasalam, V.; Bell, J.D.; Stauffer, F.; Bell, M.G.; Bitte, M.; Blanchard, W.R.; Boody, F.; Britz, N.

    1985-11-01

    The TFTR tokamak has reached its original machine design specifications (I/sub p/ = 2.5 MA and B/sub T/ = 5.2T). Recently, the D/sup 0/ neutral beam heating power has been increased to 6.3 MW. By operating at low plasma current (I/sub p/ approx. = 0.8 MA) and low density anti n/sub e/ approx. = 1 x 10/sup 19/m/sup -3/), high ion temperatures (9 +- keV) and rotation speeds (7 x 10/sup 5/ m/s) have been achieved during injection. At the opposite extreme, pellet injection into high current plasmas has been used to increase the line-average density to 8 x 10/sup 19/m/sup -3/ and the central density to 1.6 x 10/sup 20/m/sup -3// This wide range of operating conditions has enabled us to conduct scaling studies of the global energy confinement time in both ohmically and beam heated discharges as well as more detailed transport studies of the profile dependence. In ohmic discharges, the energy confinement time is observed to scale linearly with density only up to anti n/sub e/ approx. 4.5 x 10/sup 19/m/sup -3/ and then to increase more gradually, achieving a maximum value of approx. 0.45 s. In beam heated discharges, the energy confinement time is observed to decrease with beam power and to increase with plasma current. With P/sub b/ = 5.6 MW, anti n/sub e/ = 4.7 x 10/sup 19/m/sup -3/, I/sub p/ = 2.2 MA and B/sub T = 4.7T, the gross energy confinement time is 0.22 s and T/sub i/(0) = 4.8 keV. Despite shallow penetration of D/sup 0/ beams (at the beam energy less than or equal to 80 keV with low species yield), tau/sub E/(a) values are as large as those for H/sup 0/ injection, but central confinement times are substantially greater. This is a consequence of the insensitivity of the temperature and safety factor profile shapes to the heating profile. The radial variation of tau/sub E/ is even more pronounced with D/sup 0/ injection into high density pellet-injected plasmas. 25 refs.

  16. Kinetics of oxidation of H2 and reduction of H2O in Ni-YSZ based solid oxide cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2012-01-01

    Reduction of H2O and oxidation of H2 was studied in a Ni-YSZ electrode supported Solid Oxide Cells produced at DTU Energy conversion (former Risø DTU). Polarisation (i-V) and electrochemical impedance spectroscopic characterisation show that the kinetics for reduction of H 2O is slower compared...... to oxidation of H2. The kinetic differences cannot be explained by the reaction mechanisms which are similar in the two cases but are rather an effect of the thermodynamics. The preliminary analysis performed in this study show that the slow kinetic for reduction is partly related to the endothermic nature...... of the reaction, cooling the active electrode, thereby leading to slower kinetics at low current densities. Likewise, the increased kinetic for oxidation was found to be related to the exothermic nature of the reaction, heating the active electrode, and thereby leading to faster kinetics. At higher current...

  17. Transport-driven scrape-off layer flows and the x-point dependence of the L-H power threshold in Alcator C-Moda)

    Science.gov (United States)

    LaBombard, B.; Rice, J. E.; Hubbard, A. E.; Hughes, J. W.; Greenwald, M.; Granetz, R. S.; Irby, J. H.; Lin, Y.; Lipschultz, B.; Marmar, E. S.; Marr, K.; Mossessian, D.; Parker, R.; Rowan, W.; Smick, N.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S. J.

    2005-05-01

    Factor of ˜2 higher power thresholds for low- to high-confinement mode transitions (L-H) with unfavorable x-point topologies in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are linked to flow boundary conditions imposed by the scrape-off layer (SOL). Ballooning-like transport drives flow along magnetic field lines from low- to high-field regions with toroidal direction dependent on upper/lower x-point balance; the toroidal rotation of the confined plasma responds, exhibiting a strong counter-current rotation when B ×∇B points away from the x point. Increased auxiliary heating power (rf, no momentum input) leads to an L-H transition at approximately twice the edge electron pressure gradient when B ×∇B points away. As gradients rise prior to the transition, toroidal rotation ramps toward the co-current direction; the H mode is seen when the counter-current rotation imposed by the SOL flow becomes compensated. Remarkably, L-H thresholds in lower-limited discharges are identical to lower x-point discharges; SOL flows are also found similar, suggesting a connection.

  18. Surface reactions during low-k etching using H2/N2 plasma

    International Nuclear Information System (INIS)

    Fukasawa, Masanaga; Tatsumi, Tetsuya; Oshima, Keiji; Nagahata, Kazunori; Uchida, Saburo; Takashima, Seigo; Hori, Masaru; Kamide, Yukihiro

    2008-01-01

    We investigated the relationship between the hard mask faceting that occurs during organic low-k etching and the ion energy distribution function of a capacitively coupled plasma reactor. We minimized the hard mask faceting by precisely controlling the ion energy. This precise control was obtained by selecting the optimum bottom frequency and bias power. We measured the amount of damage done to a SiOCH film exposed to H 2 /N 2 plasma in order to find the H 2 /N 2 ratio at which the plasma caused the least damage. The amount of moisture uptake by the damaged SiOCH film is the dominant factor controlling the dielectric constant increase (Δk). To suppress Δk, the incident ion species and ion energies have to be precisely controlled. This reduces the number of adsorption sites in the bulk SiOCH and maintains the hydrophobic surface that suppresses water permeation during air exposure

  19. The evolution of discharge current and channel radius in cloud-to-ground lightning return stroke process

    Science.gov (United States)

    Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan

    2017-09-01

    The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.

  20. LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent

    Science.gov (United States)

    Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra

    2016-01-01

    Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.

  1. H2S mediated thermal and photochemical methane activation

    Science.gov (United States)

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  2. [Automatic adjustment control system for DC glow discharge plasma source].

    Science.gov (United States)

    Wan, Zhen-zhen; Wang, Yong-qing; Li, Xiao-jia; Wang, Hai-zhou; Shi, Ning

    2011-03-01

    There are three important parameters in the DC glow discharge process, the discharge current, discharge voltage and argon pressure in discharge source. These parameters influence each other during glow discharge process. This paper presents an automatic control system for DC glow discharge plasma source. This system collects and controls discharge voltage automatically by adjusting discharge source pressure while the discharge current is constant in the glow discharge process. The design concept, circuit principle and control program of this automatic control system are described. The accuracy is improved by this automatic control system with the method of reducing the complex operations and manual control errors. This system enhances the control accuracy of glow discharge voltage, and reduces the time to reach discharge voltage stability. The glow discharge voltage stability test results with automatic control system are provided as well, the accuracy with automatic control system is better than 1% FS which is improved from 4% FS by manual control. Time to reach discharge voltage stability has been shortened to within 30 s by automatic control from more than 90 s by manual control. Standard samples like middle-low alloy steel and tin bronze have been tested by this automatic control system. The concentration analysis precision has been significantly improved. The RSDs of all the test result are better than 3.5%. In middle-low alloy steel standard sample, the RSD range of concentration test result of Ti, Co and Mn elements is reduced from 3.0%-4.3% by manual control to 1.7%-2.4% by automatic control, and that for S and Mo is also reduced from 5.2%-5.9% to 3.3%-3.5%. In tin bronze standard sample, the RSD range of Sn, Zn and Al elements is reduced from 2.6%-4.4% to 1.0%-2.4%, and that for Si, Ni and Fe is reduced from 6.6%-13.9% to 2.6%-3.5%. The test data is also shown in this paper.

  3. Use of stream water pH and specific conductance measurements to identify ground water discharges of fly ash leachate

    International Nuclear Information System (INIS)

    Price, R.M.

    1992-01-01

    Low pH and high specific conductance are typical chemical characteristics of coal fly ash leachate. Measurements of these parameters in streams adjacent to a fly ash facility were used to identify areas of ground water discharge into the streams. In-situ specific conductance and pH were determined at approximately 50 surface water stations from on-site and off-site streams. The results of the in-situ determinations were used to select twelve surface water stations for more detailed chemical analyses. The chemical character of the stream water affected by ground water discharges was similar to the water quality of sedimentation ponds which received drainage from the fly ash embankment. The results indicated that in-situ measurements of indicator parameters such as pH and specific conductance can be used as a screening method for identifying surface water quality impacts at fly ash facilities

  4. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Maya, Jakob

    1987-01-01

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.

  5. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  6. Early Discharge in Low-Risk Patients Hospitalized for Acute Coronary Syndromes: Feasibility, Safety and Reasons for Prolonged Length of Stay.

    Directory of Open Access Journals (Sweden)

    Marie-Eva Laurencet

    Full Text Available Length of hospital stay (LHS is an indicator of clinical effectiveness. Early hospital discharge (≤72 hours is recommended in patients with acute coronary syndromes (ACS at low risk of complications, but reasons for prolonged LHS poorly reported.We collected data of ACS patients hospitalized at the Geneva University Hospitals from 1st July 2013 to 30th June 2015 and used the Zwolle index score to identify patients at low risk (≤ 3 points. We assessed the proportion of eligible patients who were successfully discharged within 72 hours and the reasons for prolonged LHS. Outcomes were defined as adherence to recommended therapies, major adverse events at 30 days and patients' satisfaction using a Likert-scale patient-reported questionnaire.Among 370 patients with ACS, 255 (68.9% were at low-risk of complications but only 128 (50.2%were eligible for early discharge, because of other clinical reasons for prolonged LHS (e.g. staged coronary revascularization, cardiac monitoring in 127 patients (49.8%. Of the latter, only 45 (35.2% benefitted from an early discharge. Reasons for delay in discharge in the remaining 83 patients (51.2% were mainly due to delays in additional investigations, titration of medical therapy, admission or discharge during weekends. In the early discharge group, at 30 days, only one patient (2.2% had an adverse event (minor bleeding, 97% of patients were satisfied by the medical care.Early discharge was successfully achieved in one third of eligible ACS patients at low risk of complications and appeared sufficiently safe while being overall appreciated by the patients.

  7. Early Discharge in Low-Risk Patients Hospitalized for Acute Coronary Syndromes: Feasibility, Safety and Reasons for Prolonged Length of Stay.

    Science.gov (United States)

    Laurencet, Marie-Eva; Girardin, François; Rigamonti, Fabio; Bevand, Anne; Meyer, Philippe; Carballo, David; Roffi, Marco; Noble, Stéphane; Mach, François; Gencer, Baris

    2016-01-01

    Length of hospital stay (LHS) is an indicator of clinical effectiveness. Early hospital discharge (≤72 hours) is recommended in patients with acute coronary syndromes (ACS) at low risk of complications, but reasons for prolonged LHS poorly reported. We collected data of ACS patients hospitalized at the Geneva University Hospitals from 1st July 2013 to 30th June 2015 and used the Zwolle index score to identify patients at low risk (≤ 3 points). We assessed the proportion of eligible patients who were successfully discharged within 72 hours and the reasons for prolonged LHS. Outcomes were defined as adherence to recommended therapies, major adverse events at 30 days and patients' satisfaction using a Likert-scale patient-reported questionnaire. Among 370 patients with ACS, 255 (68.9%) were at low-risk of complications but only 128 (50.2%)were eligible for early discharge, because of other clinical reasons for prolonged LHS (e.g. staged coronary revascularization, cardiac monitoring) in 127 patients (49.8%). Of the latter, only 45 (35.2%) benefitted from an early discharge. Reasons for delay in discharge in the remaining 83 patients (51.2%) were mainly due to delays in additional investigations, titration of medical therapy, admission or discharge during weekends. In the early discharge group, at 30 days, only one patient (2.2%) had an adverse event (minor bleeding), 97% of patients were satisfied by the medical care. Early discharge was successfully achieved in one third of eligible ACS patients at low risk of complications and appeared sufficiently safe while being overall appreciated by the patients.

  8. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Couëdel, L., E-mail: lenaic.couedel@univ-amu.fr; Kumar, K. Kishor; Arnas, C. [Laboratoire de Physique des Interactions Ioniques et Moléculaires, CNRS, Aix-Marseille Université, 13397 Marseille (France)

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter.

  9. Influence of current and temperature on discharge characteristics of electrochemical nickel−cadmium system

    Directory of Open Access Journals (Sweden)

    Todorović Andreja

    2010-01-01

    Full Text Available The paper elaborates determination of characteristic values in the discharging process of non-hermetic nickel-cadmium galvanic battery with nominal voltage Un = 60 V and nominal capacity qn = C5 = 190 Ah and its dependence from current and temperature. Study has been performed with the set of experimental metering of voltages, electromotive force, current from discharge time range and electromotive force in steady state regime before and after battery charging. Electromotive force characteristics are obtained by using the Nernst’s equation, while the least square method was used to determine the average values of internal electrical resistivity, power losses and efficiency level. These results were used in the approximate exponential functions to determine the range dependence of the efficiency level from the internal electrical resistance of discharge current in reliance from the temperature range. Obtained results show that, in accordance to the given voltage variation of 10% Un, this type of battery holds maximal full load current of one hour capacity at the temperature of 25°C and maximal full load current of two hours capacity at the temperature of −30°C. The methodology used in the case study covers determination of the electromotive force in time range based on the metered results of values during complete battery fullness and emptiness with prior determination of equilibrium constants of galvanic battery reaction through method suggested by the author of this paper. Further process, using the electromotive force values obtained through the aforementioned process, the metered current, and approximate polynomial function of the nominal discharge voltage characteristic determines range of battery internal electric resistance from time, followed by the selection of discharge cases with average values for: voltage, electromotive force, internal electrical resistance, available and utilized power, power losses, and battery efficiency

  10. Analysing bifurcations encountered in numerical modelling of current transfer to cathodes of dc glow and arc discharges

    International Nuclear Information System (INIS)

    Almeida, P G C; Benilov, M S; Cunha, M D; Faria, M J

    2009-01-01

    Bifurcations and/or their consequences are frequently encountered in numerical modelling of current transfer to cathodes of gas discharges, also in apparently simple situations, and a failure to recognize and properly analyse a bifurcation may create difficulties in the modelling and hinder the understanding of numerical results and the underlying physics. This work is concerned with analysis of bifurcations that have been encountered in the modelling of steady-state current transfer to cathodes of glow and arc discharges. All basic types of steady-state bifurcations (fold, transcritical, pitchfork) have been identified and analysed. The analysis provides explanations to many results obtained in numerical modelling. In particular, it is shown that dramatic changes in patterns of current transfer to cathodes of both glow and arc discharges, described by numerical modelling, occur through perturbed transcritical bifurcations of first- and second-order contact. The analysis elucidates the reason why the mode of glow discharge associated with the falling section of the current-voltage characteristic in the solution of von Engel and Steenbeck seems not to appear in 2D numerical modelling and the subnormal and normal modes appear instead. A similar effect has been identified in numerical modelling of arc cathodes and explained.

  11. Proof of shock-excited H2 in low-ionization structure of PNe

    International Nuclear Information System (INIS)

    Akras, Stavros; Gonçalves, Denise R.; Ramos-Larios, Gerardo

    2016-01-01

    We report the detection of near-IR H 2 line emission from the low-ionization structures (LISs) in planetary nebulae. The deepest, high-angular resolution H 2 1-0 S(1) at 2.122 μm, and H 2 2-1 S(1) at 2.248 μm images of K 4-47 and NGC 7662, obtained using NIRI@Gemini-North, are presented here. K 4-47 reveals a remarkable high-collimated bipolar structure, with the H 2 emission emanating from the walls of the outflows and a pair of knots at the tips of these outflows. The H 2 1-0 S(1)/2-1 S(1) line ratio is ∼⃒7-8 which indicates shock interaction due to both the lateral expansion of the gas and the high-velocity knots. The strongest line, H 2 v=1-0 S(1), is also detected in several LISs located at the periphery of the outer shell of the elliptical PN NGC 7662, whereas only four knots are detected in the H 2 v = 2-1 S(1) line. These knots have H 2 v = 1-0 S(1)/v = 2-1 S(1) values between 3 and 5. These data confirm the presence of molecular gas in both highly (K 4-47) and slowly moving LISs (NGC 7662). The H 2 emission in K 4-47 is powered by shocks, whereas in NGC 7662 is due to photo-ionization by the central star. Moreover, a likely correlation is found between the H 2 v = 1-0 S(1)/H 2 v = 2-1 S(1) and [N II]/Hα line ratios. (paper)

  12. Landau Damping and Anomalous Skin Effect in Low-pressure Gas Discharges: Self-consistent Treatment of Collisionless Heating

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.

    2004-01-01

    In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This system was applied to the calculation of collisionless heating in capacitively and inductively coupled plasmas. In particular, the importance of accounting for the nonuniform plasma density profile for computing the current density profile and the EEDF is demonstrated. The enhancement of collisionless heating due to the bounce resonance between the electron motion in the potential well and the external radio-frequency electric field is investigated. It is shown that a nonlinear and self-consistent treatment is necessary for the correct description of collisionless heating

  13. Electrochemical improvement of low-temperature petroleum cokes by chemical oxidation with H2O2 for their use as anodes in lithium ion batteries

    International Nuclear Information System (INIS)

    Concheso, A.; Santamaria, R.; Menendez, R.; Jimenez-Mateos, J.M.; Alcantara, R.; Lavela, P.; Tirado, J.L.

    2006-01-01

    The electrochemical performance of non-graphitized petroleum cokes has been improved by mild oxidation using hydrogen peroxide, a procedure used for the first time in these materials. For this purpose, various carbonisation temperatures and H 2 O 2 treatments were tested. For low sulfur content cokes, the aqueous oxidative treatment significantly increases the capacity values above 372 mAh/g during the first cycles. In contrast, cokes with a sulfur content of ca. 5%, did not shown a real improvement. The former results have been interpreted in terms of an effective oxidation of the particles surface, which removes unorganized carbon, where lithium can be irreversibly trapped. Moreover, a stable and less resistive passivating layer grows during the first discharge of lithium, as revealed by impedance spectroscopy. Therefore, chemical procedures, as mild oxidation, open an interesting field of research for the improvement of disordered carbons as anode materials in lithium ion batteries

  14. Corona discharge experiments in admixtures of N{sub 2} and CH{sub 4}: a laboratory simulation of Titan's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, G; Skalny, J D; Klas, M; Zahoran, M [Department of Experimental Physics, Comenius University, Mlynska dolina F-2, 842 48 Bratislava (Slovakia); Mason, N J [Department of Physics and Astronomy, The Open University, Walton Hall, MK7 6AA, Milton Keynes (United Kingdom); Vladoiu, R; Manole, M [Ovidius University Constanta, B - dul Mamaia 124, 900527 Constanta (Romania)], E-mail: horeszka@gmail.com

    2009-08-15

    A positive corona discharge fed by a N{sub 2} : CH{sub 4} mixture (98 : 2) at atmospheric pressure and ambient temperature has been studied as a laboratory mimic of the chemical processes occurring in the atmosphere of Titan, Saturn's largest moon. In situ measurements of UV and IR transmission spectra within the discharge have shown that the main chemical product is C{sub 2}H{sub 2}, produced by dissociation of CH{sub 4}, with small but significant traces of ethane and HCN, all species that have been detected in Titan's atmosphere. A small amount (0.2%) of CH{sub 4} was decomposed after 12 min of treatment requiring an average energy of 2.7 kWh g{sup -1}. After 14 min the discharge was terminated due to the formation of a solid yellow deposit on the central wire electrode. Such a deposit is similar to that observed in other discharges and is believed to be an analogue of the aerosol and dust observed in Titan's atmosphere and is composed of chemical species commonly known as 'tholins'. We have also explored the electrical properties of the discharge. The admixture of methane into nitrogen caused an increase in the onset voltage of the discharge and consequently led to a reduction in the measured discharge current.

  15. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    International Nuclear Information System (INIS)

    Vasina, P; Hytkova, T; Elias, M

    2009-01-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  16. Seasonal formation of ikaite (caco 3 · 6h 2o) in saline spring discharge at Expedition Fiord, Canadian High Arctic: Assessing conditional constraints for natural crystal growth

    Science.gov (United States)

    Omelon, Christopher R.; Pollard, Wayne H.; Marion, Giles M.

    2001-05-01

    - Spring discharge at Expedition Fiord (Pollard et al., 1999) on Axel Heiberg Island in the Canadian High Arctic produces a variety of travertine forms in addition to a diverse collection of mineral precipitates. This paper focuses on clusters of thermally unstable crystals believed to be the mineral ikaite (CaCO 3 · 6H 2O) growing seasonally along two spring outflows at Colour Peak. This form of calcium carbonate mineral occurs along small sections of discharge outflow as white euhedral crystals up to 0.5 cm in length. Difficulty in sampling, storage and transport of the samples for analysis has hampered attempts to confirm the presence of ikaite by X-ray diffraction. However, various field observations and the remarkable instability of these crystals at normal ambient temperatures strengthens our argument. This paper provides a description of these particular CaCO 3 · 6H 2O crystals and their environmental surroundings, and attempts to determine the validity of ikaite precipitation at this site by theoretical geochemical modeling: these results are compared with other reported observations of ikaite to both understand their occurrence and help delineate their geochemical characteristics. It is believed that the restrictive combination of spring water chemistry and long periods of low temperatures characteristic of arctic climates are necessary for ikaite growth at this site. The fact that ikaite is not forming at a second group of saline springs 11 km away allows us to more specifically outline conditions controlling its presence.

  17. Transport modelling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Kinsey, J.E.; Imbeaux, F.; Staebler, G.M.; Budny, R.; Bourdelle, C.; Fukuyama, A.; Garbet, X.; Tala, T.; Parail, V.

    2005-01-01

    Predictive transport modelling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and advanced tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. E x B shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET and AUG tokamaks. GLF23 transport modelling and gyrokinetic stability analysis indicate that E x B shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of E x B shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveal some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and E x B shear stabilization can dominate parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent E x B shear quenching of the turbulent

  18. Transport modeling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Kinsey, J.; Imbeaux, F.; Bourdelle, C.; Garbet, X.; Staebler, G.; Budny, R.; Fukuyama, A.; Tala, T.; Parail, V.

    2005-01-01

    Predictive transport modeling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and Advanced Tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. ExB shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET, and AUG tokamaks. GLF23 transport modeling and gyrokinetic stability analysis indicates that ExB shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of ExB shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveals some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and ExB shear stabilization can win out over parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent ExB shear quenching of the turbulent

  19. Oncogenic transformation in C3H10T1/2 cells by low-energy neutrons.

    Science.gov (United States)

    Miller, R C; Marino, S A; Napoli, J; Shah, H; Hall, E J; Geard, C R; Brenner, D J

    2000-03-01

    Occupational exposure to neutrons typically includes significant doses of low-energy neutrons, with energies below 100 keV. In addition, the normal-tissue dose from boron neutron capture therapy will largely be from low-energy neutrons. Microdosimetric theory predicts decreasing biological effectiveness for neutrons with energies below about 350 keV compared with that for higher-energy neutrons; based on such considerations, and limited biological data, the current radiation weighting factor (quality factor) for neutrons with energies from 10 keV to 100 keV is less than that for higher-energy neutrons. By contrast, some reports have suggested that the biological effectiveness of low-energy neutrons is similar to that of fast neutrons. The purpose of the current work is to assess the relative biological effectiveness of low-energy neutrons for an endpoint of relevance to carcinogenesis: in vitro oncogenic transformation. Oncogenic transformation induction frequencies were determined for C3H10T1/2 cells exposed to two low-energy neutron beams, respectively, with dose-averaged energies of 40 and 70 keV, and the results were compared with those for higher-energy neutrons and X-rays. These results for oncogenic transformation provide evidence for a significant decrease in biological effectiveness for 40 keV neutrons compared with 350 keV neutrons. The 70 keV neutrons were intermediate in effectiveness between the 70 and 350 keV beams. A decrease in biological effectiveness for low-energy neutrons is in agreement with most (but not all) earlier biological studies, as well as microdosimetric considerations. The results for oncogenic transformation were consistent with the currently recommended decreased values for low-energy neutron radiation weighting factors compared with fast neutrons.

  20. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong

    2016-06-23

    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  1. Influence of Li conditioning on Lower Hybrid Current Drive efficiency in H-mode and L- mode plasmas on EAST

    Directory of Open Access Journals (Sweden)

    Goniche Marc

    2017-01-01

    Full Text Available The lower hybrid current drive efficiency on the EAST tokamak is estimated on a large database of low loop voltage discharges (VL of these discharges, can account for the high efficiency according to the expected scaling with Zeff and . Modelling with a ray-tracing code coupled to a Fokker-Planck solver supports this result, assuming that the fast electron transport is reduced in the zero loop voltage discharge with high efficiency.

  2. Radial Distribution of the Nanosecond Dielectric Barrier Discharge Current in Atmospheric-Pressure Air

    Science.gov (United States)

    Malashin, M. V.; Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.

    2018-01-01

    Experimental results on the radial distribution of the nanosecond dielectric barrier discharge (DBD) current in flat millimeter air gaps under atmospheric pressure and natural humidity of 40-60% at a voltage rise rate at the electrodes of 250 V/ns are presented. The time delay of the appearance of discharge currents was observed to increase from the center to the periphery of the air gap at discharge gap heights above 3 mm, which correlated with the appearance of constricted channels against the background of the volume DBD plasma. Based on the criterion of the avalanche-streamer transition, it is found out that the development of a nanosecond DBD in air gaps of 1-3 mm occurs by the streamer mechanism.

  3. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    Science.gov (United States)

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-02-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%-27%.

  4. Effects of H2O2 under low- and high-aeration-level conditions on growth and catalase activity in Exiguobacterium oxidotolerans T-2-2T.

    Science.gov (United States)

    Takebe, Fumihiko; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2007-12-01

    The effects of H2O2 under low- and high-aeration-level conditions on growth and catalase activity in Exiguobacterium oxidotolerans T-2-2T were investigated. Continuous addition of 5-200 mM H2O2 to the culture medium from the mid-exponential growth phase enhanced the growth of the strain under the low-aeration-level condition, whereas the addition of 5-50 mM H2O2 decreased intracellular specific catalase activity and extracellular total catalases activity. The detection of extracellular catalase by the cells and the decrease in intracellular specific catalase activity and extracellular total catalase activity under the high-aeration-level condition account for the stimulation of growth by the introduced H2O2 and the decrease in catalase activities induced by O(2) from H2O2 in the medium. On the other hand, the addition of H2O2 to the medium prior to the initiation of growth inhibited the growth but increased the specific activity of intracellular catalase in the stationary growth phase. Strain T-2-2T grew when 10 mM H2O2 was added to the medium prior to growth. However, the growth was completely inhibited by the catalase inhibitor 3-amino-1,2,4-triazole (3-AT). The continuous addition of H2O2 at an appropriate concentration from prior to the initiation of growth to the stationary growth phase under the low-aeration-level condition resulted in higher intracellular specific catalase activity and cell growth rate than single H2O2 addition prior to growth.

  5. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve

    Directory of Open Access Journals (Sweden)

    Jesse eDean

    2014-12-01

    Full Text Available Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s, below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC voluntary contractions. Higher frequencies recruited more units (n=3/25 at 10 Hz; n=25/25 at 100 Hz at shorter latencies (19.4±9.4 s at 10 Hz; 4.1±4.0 s at 100 Hz than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz was lower than during 30 Hz (8.6 Hz and 40 Hz (8.4 Hz stimulation. Discharge was largely asynchronous from the stimulus pulses with time-locked discharge occurring at an H-reflex latency with only a 24% probability. Motor units discharged after the stimulation ended in 89% of trials, although at a lower rate (5.8 Hz than during the stimulation (7.9 Hz. This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in physiological recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.

  6. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    Science.gov (United States)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  7. Self-Consistent System of Equations for a Kinetic Description of the Low-Pressure Discharges Accounting for the Nonlocal and Collisionless Electron Dynamics

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg

    2003-01-01

    In low-pressure discharges, when the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially non-local. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the non-local conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, non-uniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the non-uniform plasma density profile on both the current density profile and the EEDF is demonstrated

  8. Activation of H2O2-induced VSOR Cl- currents in HTC cells require phospholipase Cgamma1 phosphorylation and Ca2+ mobilisation

    DEFF Research Database (Denmark)

    Varela, Diego; Simon, Felipe; Olivero, Pablo

    2007-01-01

    )R) blocker 2-APB. In line with these results, manoeuvres that prevented PLCgamma1 activation and/or [Ca(2+)](i) rise, abolished H(2)O(2)-induced VSOR Cl(-) currents. Furthermore, in cells that overexpress a phosphorylation-defective dominant mutant of PLCgamma1, H(2)O(2) did not induce activation......Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels participate in several physiological processes such as regulatory volume decrease, cell cycle regulation, proliferation and apoptosis. Recent evidence points to a significant role of hydrogen peroxide (H(2)O(2)) in VSOR Cl(-) channel...... activation. The aim of this study was to determine the signalling pathways responsible for H(2)O(2)-induced VSOR Cl(-) channel activation. In rat hepatoma (HTC) cells, H(2)O(2) elicited a transient increase in tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) that was blocked by PP2, a Src...

  9. Fueling Requirements for Steady State high butane current fraction discharges

    International Nuclear Information System (INIS)

    R.Raman

    2003-01-01

    The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs

  10. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors.

    Science.gov (United States)

    Castro, Bruno; Clerice, Guilherme; Ramos, Caio; Andreoli, André; Baptista, Fabricio; Campos, Fernando; Ulson, José

    2016-08-10

    Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.

  11. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Bruno Castro

    2016-08-01

    Full Text Available Power transformers are crucial in an electric power system. Failures in transformers can affect the quality and cause interruptions in the power supply. Partial discharges are a phenomenon that can cause failures in the transformers if not properly monitored. Typically, the monitoring requires high-cost corrective maintenance or even interruptions of the power system. Therefore, the development of online non-invasive monitoring systems to detect partial discharges in power transformers has great relevance since it can reduce significant maintenance costs. Although commercial acoustic emission sensors have been used to monitor partial discharges in power transformers, they still represent a significant cost. In order to overcome this drawback, this paper presents a study of the feasibility of low-cost piezoelectric sensors to identify partial discharges in mineral insulating oil of power transformers. The analysis of the feasibility of the proposed low-cost sensor is performed by its comparison with a commercial acoustic emission sensor commonly used to detect partial discharges. The comparison between the responses in the time and frequency domain of both sensors was carried out and the experimental results indicate that the proposed piezoelectric sensors have great potential in the detection of acoustic waves generated by partial discharges in insulation oil, contributing for the popularization of this noninvasive technique.

  12. Fabrication of TiO2/Carbon Photocatalyst using Submerged DC Arc Discharged in Ethanol/Acetic Acid Medium

    Science.gov (United States)

    Saraswati, T. E.; Nandika, A. O.; Andhika, I. F.; Patiha; Purnawan, C.; Wahyuningsih, S.; Rahardjo, S. B.

    2017-05-01

    This study aimed to fabricate a modified photocatalyst of TiO2/C to enhance its performance. The fabrication was achieved using the submerged direct current (DC) arc-discharge method employing two graphite electrodes, one of which was filled with a mixture of carbon powder, TiO2, and binder, in ethanol with acetic acid added in various concentrations. The arc-discharge method was conducted by flowing a current of 10-20 A (~20 V). X-ray diffraction (XRD) patterns showed significant placements of the main peak characteristics of TiO2, C graphite, and titanium carbide. The surface analysis using Fourier transform infrared spectroscopy (FTIR) revealed that fabricated TiO2/C nanoparticles had stretching vibrations of Ti-O, C-H, C═O, C-O, O-H and C═C in the regions of 450-550 cm-1, 2900-2880 cm-1, 1690-1760 cm-1, 1050-1300 cm-1, 3400-3700 cm-1 and ~1600 cm-1, respectively. In addition, the study investigated the photocatalysts of unmodified and modified TiO2/C for photodegradation of methylene blue (MB) dye solution under mercury lamp irradiation. The effectiveness of the degradation was defined by the decrease in 60-minute absorbance under a UV-Vis spectrophotometer. Modified TiO2/C proved to be significantly more efficient in reducing dye concentrations, reaching ~70%. It indicated that the oxygen-containing functional groups have been successfully attached to the surface of the nanoparticles and played a role in enhancing photocatalytic activity.

  13. Power supply improvements for ballasts-low pressure mercury/argon discharge lamp for water purification

    Science.gov (United States)

    Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.

    2017-02-01

    The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.

  14. Achieving high fusion reactivity in high poloidal beta discharges in TFTR

    International Nuclear Information System (INIS)

    Manuel, M.E.; Navratil, G.A.; Sabbagh, S.A.; Batha, S.; Bell, M.G.; Bell, R.; Budny, R.V.; Bush, C.E.; Cavallo, A.; Chance, M.S.; Cheng, C.Z.; Efthimion, P.C.; Fredrickson, E.D.; Fu, G.Y.; Hawryluk, R.J.; Janos, A.C.; Jassby, D.L.; Levinton, F.; Mikkelsen, D.R.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.K.; Ramsey, A.T.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Wieland, R.M.; Yamada, M.; Zarnstorff, M.C.: Zweben, S.; Kesner, J.; Marmar, E.; Snipes, J.; Terry, J.

    1993-04-01

    High poloidal beta discharges have been produced in TFTR that achieved high fusion reactivities at low plasma currents. By rapidly decreasing the plasma current just prior to high-power neutral beam injection, relatively peaked current profiles were created having high l i > 2, high Troyon-normalized beta, βN > 3, and high poloidal beta. β p ≥ 0.7 R/a. The global energy confinement time after the current ramp was comparable to supershots, and the combination of improved MHD stability and good confinement produced a new high εβ p high Q DD operating mode for TFTR. Without steady-state current profile control, as the pulse lengths of high βp discharges were extended, l i decreased, and the improved stability produced immediately after by the current ramp deteriorated. In four second, high εβ p discharges, the current profile broadened under the influence of bootstrap and beam-drive currents. When the calculated voltage throughout the plasma nearly vanished, MHD instabilities were observed with β N as low as 1.4. Ideal MHD stability calculations showed this lower beta limit to be consistent with theoretical expectations

  15. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    OpenAIRE

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-01-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substa...

  16. High CO2 triggers preferential root growth of Arabidopsis thaliana via two distinct systems under low pH and low N stresses.

    Science.gov (United States)

    Hachiya, Takushi; Sugiura, Daisuke; Kojima, Mikiko; Sato, Shigeru; Yanagisawa, Shuichi; Sakakibara, Hitoshi; Terashima, Ichiro; Noguchi, Ko

    2014-02-01

    Biomass allocation between shoots and roots is an important strategy used by plants to optimize growth in various environments. Root to shoot mass ratios typically increase in response to high CO2, a trend particularly evident under abiotic stress. We investigated this preferential root growth (PRG) in Arabidopsis thaliana plants cultivated under low pH/high CO2 or low nitrogen (N)/high CO2 conditions. Previous studies have suggested that changes in plant hormone, carbon (C) and N status may be related to PRG. We therefore examined the mechanisms underlying PRG by genetically modifying cytokinin (CK) levels, C and N status, and sugar signaling, performing sugar application experiments and determining primary metabolites, plant hormones and expression of related genes. Both low pH/high CO2 and low N/high CO2 stresses induced increases in lateral root (LR) number and led to high C/N ratios; however, under low pH/high CO2 conditions, large quantities of C were accumulated, whereas under low N/high CO2 conditions, N was severely depleted. Analyses of a CK-deficient mutant and a starchless mutant, in conjunction with sugar application experiments, revealed that these stresses induce PRG via different mechanisms. Metabolite and hormone profile analysis indicated that under low pH/high CO2 conditions, excess C accumulation may enhance LR number through the dual actions of increased auxin and decreased CKs.

  17. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  18. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  19. Absorption spectroscopic studies of carbon dioxide conversion in a low pressure glow discharge using tunable infrared diode lasers

    International Nuclear Information System (INIS)

    Hempel, F; Roepcke, J; Miethke, F; Wagner, H-E

    2002-01-01

    The time and spatial dependence of the chemical conversion of CO 2 to CO were studied in a closed glow discharge reactor (p = 50 Pa, I = 2-30 mA) consisting of a small plasma zone and an extended stationary afterglow. Tunable infrared diode laser absorption spectroscopy has been applied to determine the absolute ground state concentrations of CO and CO 2 . After a certain discharge time an equilibrium of the concentrations of both species could be observed. The spatial dependence of the equilibrium CO concentration in the afterglow was found to be varying less than 10%. The feed gas was converted to CO more predominantly between 43% and 60% with increasing discharge current, forming so-called quasi-equilibrium states of the stable reaction products. The formation time of the stable gas composition also decreased with the current. For currents higher than 10 mA the conversion rate of CO 2 to CO was estimated to be 1.2x10 13 molecules J -1 . Based on the experimental results, a plasma chemical modelling has been established

  20. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    Science.gov (United States)

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.

  1. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    Science.gov (United States)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  2. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    International Nuclear Information System (INIS)

    Kaneko, T.; Baba, K.; Hatakeyama, R.

    2009-01-01

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  3. High rate performance of LiMn2O4 cathodes for lithium ion batteries synthesized by low temperature oxygen plasma assisted sol–gel process

    International Nuclear Information System (INIS)

    Chen, C.-L.; Chiu, K.-F.; Chen, Y.-R.; Chen, C.C.; Lin, H.C.; Chiang, H.Y.

    2013-01-01

    Nano-crystalline LiMn 2 O 4 thin films have been synthesized by the sol–gel process at low temperature (623 K). The low temperature prepared films are treated by a direct current pulsed oxygen plasma, and tested as cathodes for lithium batteries. The plasma treated films are able to sustain charge–discharge cycles under significant high current density of up to 5.4 A/g corresponding to 45 C for battery operation. The capacity ratio for discharging at 1.2 A/g and 0.024 A/g is over 65%, indicating low internal resistance, which meets the requirement of fast charge and discharge for electric vehicles. The stable high current density performances can be attributed to the formation of a dense surface morphology that is induced by the plasma irradiation. The formation of the surface morphology results in the more uniform current distribution on the film surface, which decreases the interface charge transfer resistances as measured by the electrochemical impedance spectra. - Highlights: • A low temperature process has been used to synthesize LiMn 2 O 4 thin films. • Plasma treatment can reduce the interface charge transfer resistances for LiMn 2 O 4 . • LiMn 2 O 4 cathodes treated by plasma treatment can deliver high rate capability

  4. Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge

    Science.gov (United States)

    Wang, Xifeng; Song, Yuanhong; Zhao, Shuxia; Dai, Zhongling; Wang, Younian

    2016-04-01

    A one-dimensional fluid/Monte-Carlo (MC) hybrid model is developed to describe capacitively coupled SiH4/Ar discharge, in which the lower electrode is applied by a RF source and pulse modulated by a square-wave, to investigate the modulation effects of the pulse duty cycle on the discharge mechanism. An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase. Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species, such as electrons, ions, and radicals. The simulation results show that, the electron energy distribution f(ɛ) is modulated evidently within a pulse cycle, with its tail extending to higher energies during the power-on period, while shrinking back promptly in the afterglow period. Thus, the rate coefficients could be controlled during the discharge, resulting in modulation of the species composition on the substrate compared with continuous excitation. Meanwhile, more negative ions, like SiH-3 and SiH-2, may escape to the electrodes owing to the collapse of ambipolar electric fields, which is beneficial to films deposition. Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components. supported by National Natural Science Foundation of China (No. 11275038)

  5. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    Science.gov (United States)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  6. Transport and performance in DIII-D discharges with weak or negative central magnetic shear

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Schissel, D.P.; Stallard, B.W.

    1996-12-01

    Discharges exhibiting the highest plasma energy and fusion reactivity yet realized in the DIII-D tokamak have been produced by combining the benefits of a hollow or weakly sheared central current profile with a high confinement (H-mode) edge. In these discharges, low power neutral beam injection heats the electrons during the initial current ramp, and open-quotes freezes inclose quotes a hollow or flat central current profile. When the neutral beam power is increased, formation of a region of reduced transport and highly peaked profiles in the core often results. Shortly before these plasmas would otherwise disrupt, a transition is triggered from the low (L-mode) to high (H-mode) confinement regimes, thereby broadening the pressure profile and avoiding the disruption. These plasmas continue to evolve until the high performance phase is terminated nondisruptively at much higher β T (ratio of plasma pressure to toroidal magnetic field pressure) than would be attainable with peaked profiles and an L-mode edge. Transport analysis indicates that in this phase, the ion diffusivity is equivalent to that predicted by Chang-Hinton neoclassical theory over the entire plasma volume. This result is consistent with suppression of turbulence by locally enhanced E x B flow shear, and is supported by observations of reduced fluctuations in the plasma. Calculations of performance in these discharges extrapolated to a deuterium-tritium fuel mixture indicates that such plasmas could produce a DT fusion gain Q DT = 0.32

  7. Advanced Low-Cost O2/H2 Engines for the SSTO Application

    Science.gov (United States)

    Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.

    1994-01-01

    The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.

  8. On the critical current of ionisation waves in gas discharges

    International Nuclear Information System (INIS)

    Sato, M.

    1982-01-01

    Measurement methods for determining the critical current of ionisation waves in gas discharge tubes are examined in detail. The conventional visual method which finds the current at which the waves disappear is erroneous since the criterion, 'observable', depends on the observing conditions. In the rigorous method it is defined as a current at which the linear growth rate of waves is zero. For the measured upper critical (Pupp) current of argon gas, close agreement is found between the results of other workers and those of the present author over a wide range of pressure-radius product 0.3 approximately equal to 60 Torr cm. (author)

  9. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.

    Science.gov (United States)

    Xu, Wen-Tao; Peng, Hong-Jie; Huang, Jia-Qi; Zhao, Chen-Zi; Cheng, Xin-Bing; Zhang, Qiang

    2015-09-07

    The self-discharge of a lithium-sulfur cell decreases the shelf-life of the battery and is one of the bottlenecks that hinders its practical applications. New insights into both the internal chemical reactions in a lithium-sulfur system and effective routes to retard self-discharge for highly stable batteries are crucial for the design of lithium-sulfur cells. Herein, a lithium-sulfur cell with a carbon nanotube/sulfur cathode and lithium-metal anode in lithium bis(trifluoromethanesulfonyl)imide/1,3-dioxolane/dimethyl ether electrolyte was selected as the model system to investigate the self-discharge behavior. Both lithium anode passivation and polysulfide anion diffusion suppression strategies are applied to reduce self-discharge of the lithium-sulfur cell. When the lithium-metal anode is protected by a high density passivation layer induced by LiNO3 , a very low shuttle constant of 0.017 h(-1) is achieved. The diffusion of the polysulfides is retarded by an ion-selective separator, and the shuttle constants decreased. The cell with LiNO3 additive maintained a discharge capacity of 97 % (961 mAh g(-1) ) of the initial capacity after 120 days at open circuit, which was around three times higher than the routine cell (32 % of initial capacity, corresponding to 320 mAh g(-1) ). It is expected that lithium-sulfur batteries with ultralow self-discharge rates may be fabricated through a combination of anode passivation and polysulfide shuttle control, as well as optimization of the lithium-sulfur cell configuration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mitigation of current quench by runaway electrons in LHCD discharges in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Lu, H.W.; Hu, L.Q.; Lin, S.Y.; Zhong, G.Q.

    2009-01-01

    Production of runaway electrons during a major disruption has been observed in HT-7 Tokamak. The runaway current plateaus, which can carry part of the pre-disruptive current, are observed in lower-hybrid current drive (LHCD) limiter discharges. It is found that the runaway current can mitigate the disruptions effectively. Detailed observations are presented on the runaway electrons generated following disruptions in the HT-7 tokamak with carbon limited discharges. The results indicate that the magnetic oscillations play an important role in the activity of runaway electrons in disruption. (author)

  11. Deuteron breakup in the 2H(e,e'p) reaction at low momentum transfer and close to threshold

    International Nuclear Information System (INIS)

    Neumann-Cosel, P. von; Richter, A.; Schrieder, G.; Shevchenko, A.; Stiller, A.; Arenhoevel, H.

    2002-04-01

    Deuteron breakup has been studied in a 2 H(e, e'p) coincidence experiment at low momentum transfer and for energies close to threshold. The longitudinal-plus-transverse (L + T) and longitudinal-transverse interference (LT) cross sections are deduced. Nonrelativistic calculations based on the Bonn potential and including leading order relativistic contributions, meson exchange currents and isobar configurations describe the (L + T) data well. Surprisingly large deviations of 30 to 45% are observed for the LT contribution. (orig.)

  12. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column...

  13. Cathode voltage and discharge current oscillations in HiPIMS

    Czech Academy of Sciences Publication Activity Database

    Klein, P.; Hnilica, J.; Hubička, Zdeněk; Čada, Martin; Šlapanská, M.; Zemánek, M.; Vašina, P.

    2017-01-01

    Roč. 26, č. 5 (2017), s. 1-12, č. článku 055015. ISSN 0963-0252 R&D Projects: GA ČR(CZ) GA15-00863S Institutional support: RVO:68378271 Keywords : HiPIMS * voltage and current oscillations * spokes Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.302, year: 2016

  14. Stability of negative central magnetic shear discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Strait, E.J.; Chu, M.S.; Ferron, J.R.

    1996-12-01

    Discharges with negative central magnetic shear (NCS) hold the promise of enhanced fusion performance in advanced tokamaks. However, stability to long wavelength magnetohydrodynamic modes is needed to take advantage of the improved confinement found in NCS discharges. The stability limits seen in DIII-D experiments depend on the pressure and current density profiles and are in good agreement with stability calculations. Discharges with a strongly peaked pressure profile reach a disruptive limit at low beta, β N = β (I/aB) -1 ≤ 2.5 (% m T/MA), caused by an n = 1 ideal internal kink mode or a global resistive instability close to the ideal stability limit. Discharges with a broad pressure profile reach a soft beta limit at significantly higher beta, β N = 4 to 5, usually caused by instabilities with n > 1 and usually driven near the edge of the plasma. With broad pressure profiles, the experimental stability limit is independent of the magnitude of negative shear but improves with the internal inductance, corresponding to lower current density near the edge of the plasma. Understanding of the stability limits in NCS discharges has led to record DIII-D fusion performance in discharges with a broad pressure profile and low edge current density

  15. Ionization of H2O molecules through second order collisions in an argon-filled flow ionization chamber

    International Nuclear Information System (INIS)

    Leonhardt, J.

    1976-01-01

    In an argon-filled ionization chamber with a constant radionuclide radiation source, the ionization of H 2 O through second order collisions with 3sub(p) 2 states of argon excited by field-accelerated electrons is considered within the range of discharge caused by external potentials under atmospheric pressure. It is found that the logarithm of the change of ionization current is proportional to power 3/2 of the electric field strength. Possible formation mechanisms are discussed. Most probable is the ionization of H 2 O through collision with Ar 2 argon dimers originating from excited metastable atoms as a result of triple collision. The production cross section for H 2 O + has been estimated to be sigmasub(H 2 O) approximately 5x10 -15 . (author)

  16. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    Science.gov (United States)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  17. Child-Langmuir law for cathode sheath of glow discharge in CO2

    International Nuclear Information System (INIS)

    Lisovskiy, V.A.; Krol, H.H.; Osmayev, R.O.; Yegorenkov, V.D.

    2016-01-01

    This work is devoted to the determination of the law that may be applicable to the description of the cathode sheath in CO 2 . To this end three versions of the Child-Langmuir law have been considered - a collision free one (for the ions moving through a cathode sheath without collisions with gas molecules) as well as two collision- related versions - one for a constant mean free path of positive ions and one for a constant mobility of positive ions. The current-voltage characteristics and the cathode sheath thickness of the glow discharge in CO 2 have been simultaneously measured in the pressure range from 0.05 to 1 Torr and with the discharge current values up to 80 mA. In the whole range of the discharge conditions we have studied the cathode sheath characteristics are found to obey correctly only to the Child-Langmuir law version with a constant ion mobility.

  18. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu

    2013-02-01

    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.

  19. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    Science.gov (United States)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  20. Evolution of the Turbulence Radial Wavenumber Spectrum near the L-H Transition in NSTX Ohmic Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, S.; Peebles, W.A., E-mail: skubota@ucla.edu [UCLA, Los Angeles (United States); Bush, C. E.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge (United States); Zweben, S. J.; Bell, R.; Crocker, N.; Diallo, A.; Kaye, S.; LeBlanc, B. P.; Park, J. K.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton University, Princeton (United States); Maqueda, R. J. [Nova Photonics, Princeton (United States); Raman, R. [University of Washington, Seattle (United States)

    2012-09-15

    Full text: The measurement of radially extended meso-scale structures such as zonal flows and streamers, as well as the underlying microinstabilities driving them, is critical for understanding turbulence-driven transport in plasma devices. In particular, the shape and evolution of the radial wavenumber spectrum indicate details of the nonlinear spectral energy transfer, the spreading of turbulence, as well as the formation of transport barriers. In the National Spherical Torus Experiment (NSTX), the FMCW backscattering diagnostic is used to probe the turbulence radial wavenumber spectrum (k{sub r} = 0 - 22 cm-1 ) across the outboard minor radius near the L- to H-mode transition in Ohmic discharges. During the L-mode phase, a broad spectral component (k{sub r} {approx} 2 - 10 cm{sup -1} ) extends over a significant portion of the edge-core from R = 120 to 155 cm ({rho} = 0.4 - 0.95). At the L-H transition, turbulence is quenched across the measurable k{sub r} range at the ETB location, where the radial correlation length drops from {approx} 1.5 - 0.5 cm. The k{sub r} spectrum away from the ETB location is modified on a time scale of tens of microseconds, indicating that nonlocal turbulence dynamics are playing a strong role. Close to the L-H transition, oscillations in the density gradient and edge turbulence quenching become highly correlated. These oscillations are also present in Ohmic discharges without an L-H transition, but are far less frequent. Similar behavior is also seen near the L-H transition in NB-heated discharges. (author)

  1. Comparing sulfur and oxygen isotope variability of sulfate in the Mississippi River during high and low discharge from 2009-2011

    Science.gov (United States)

    Killingsworth, B.; Kohl, I. E.; Bao, H.

    2011-12-01

    S and O isotope compositions of ocean and river sulfate, SO42-, reflect Earth surface processes and can thus be used to understand the Earth's dynamic past. It has been estimated that riverine SO42- is 22% evaporite (SO42-riv-evap), 11% oxidative weathering (SO42-riv-ow), and 54% atmospheric and agricultural pollution [1]. Two parameters are poorly constrained: 1) the ratio of SO42-riv-evap to SO42-riv-ow, and 2) the extent of human influence on SO42- flux. Furthermore, for isotopic modeling, natural riverine SO42- O and S isotope compositions, δ18OSO4-riv and δ34SSO4-riv, have large measured ranges (e.g. δ18OSO4-riv from -2% to +7% [2]) that are based on limited empirical data with variable and unconstrained influence from human activities. In the lower Mississippi River Basin (MRB) we have sampled river water SO42- biweekly since 2009. Our isotope dataset is used in conjunction with US Geological Survey and US Army Corps of Engineers SO42- concentration and river discharge data. In comparison to MRB low discharge periods, the periods of annual high water discharge are characterized by 1) a doubling in water discharge 2) a concomitant high MRB SO42- flux (>1100 kg/s) 3) an average SO42- concentration at 85% of the low discharge concentrations and 4) a more constrained variability of SO42- isotope composition. The δ18OSO4-riv ranges from +3.2% to +5.5% at high discharge and from +2.6% to +8.8% at low discharge. The δ34SSO4-riv ranges from -4.3% to -0.4 at high discharge and from -6.3% to -0.2% at low discharge. Atmospheric SO42- is estimated from 2009 National Atmospheric Deposition Program maps to contribute only ~10% of total MRB SO42-. We conclude that during annual high discharge a large river basin such as the MRB is less sensitive to variable sub-basin input and that average MRB SO42- isotope composition is best represented by a δ18OSO4-riv value of ~+4.0% and δ34SSO4-riv value of ~-3.0%. MRB SO42- concentration during high discharge is diluted less

  2. Low-Frequency Pulsed Current Versus Kilohertz-Frequency Alternating Current: A Scoping Literature Review.

    Science.gov (United States)

    Vaz, Marco Aurélio; Frasson, Viviane Bortoluzzi

    2018-04-01

    To compare the effectiveness of low-frequency pulsed current versus kilohertz-frequency alternating current in terms of evoked force, discomfort level, current intensity, and muscle fatigability; to discuss the physiological mechanisms of each neuromuscular electrical stimulation type; and to determine if kilohertz-frequency alternating current is better than low-frequency pulsed current for clinical treatment. Articles were obtained from PubMed, Scopus, Cochrane Central Register of Controlled Trials, CINAHL, MEDLINE, and SPORTSDiscus databases using the terms Russian current or kilohertz current or alternating current or pulsed current or Aussie current and torque or discomfort or fatigue or current intensity, and through citation tracking up to July 2017. Two independent reviewers selected studies comparing the use of the 2 neuromuscular electrical stimulation currents. Studies describing maximal current intensity tolerated and the main effects of the 2 different current types on discomfort, muscle force, and fatigability were independently reviewed. Data were systematized according to (1) methodology; (2) electrical current characteristics; and (3) outcomes on discomfort level, evoked force, current intensity, and muscle fatigability. The search revealed 15 articles comparing the 2 current types. Kilohertz-frequency alternated current generated equal or less force, similar discomfort, similar current intensity for maximal tolerated neuromuscular electrical stimulation, and more fatigue compared with low-frequency pulsed current. Similar submaximal levels of evoked force revealed higher discomfort and current intensity for kilohertz-frequency alternated current compared with low-frequency pulsed current. Available evidence does not support the idea that kilohertz-frequency alternated current is better than low-frequency pulsed current for strength training and rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier

  3. Investigation of the Direct Charge Transfer in Low Energy D2+ + H Collisions using Merged-Beams Technique

    Science.gov (United States)

    Romano, S. L.; Guillen, C. I.; Andrianarijaona, V. M.; Havener, C. C.

    2011-10-01

    The hydrogen - hydrogen (deuterium) molecular ion is the most fundamental ion-molecule two-electron system. Charge transfer (CT) for H2+ on H, which is one of the possible reaction paths for the (H-H2)+ system, is of special interest because of its contribution to H2 formation in the early universe, its exoergicity, and rich collision dynamics. Due to technical difficulty in making an atomic H target, the direct experimental investigations of CT for H2+ on H are sparse and generally limited to higher collision energies. The measurements of the absolute cross section of different CT paths for H2+ on H over a large range of collision energy are needed to benchmark theoretical calculations, especially the ones at low energies. The rate coefficient of CT at low energy is not known but may be comparable to other reaction rate coefficients in cold plasmas with H, H+, H2+, and H3+ as constituents. For instance, CT for H2+ on H and the following H3+ formation reaction H2+ + H2H + H3+ are clearly rate interdependent although it was always assumed that every ionization of H2 will lead to the formation of H3+. CT proceeds through dynamically coupled electronic, vibrational and rotational degrees of freedom. One can depict three paths, electronic CT, CT with nuclear substitution, and CT with dissociation. Electronic CT and CT with nuclear substitution in the H2+ on H collisions are not distinguishable by any quantum theory. Here we use the isotopic system (D2+ - H) to measure without ambiguity the electronic CT cross section by observing the H+ products. Using the ion-atom merged-beam apparatus at Oak Ridge National Laboratory, the absolute direct CT cross sections for D2+ + H from keV/u to meV/u collision energies have been measured. The molecular ions are extracted from an Electron-Cyclotron Resonance (ECR) ion source with a vibrational state distribution which is most likely determined by Frank-Condon transitions between ground state D2 and D2+. A ground-state H beam

  4. Time and spatially resolved LIF of OH in a plasma filament in atmospheric pressure He-H2O

    International Nuclear Information System (INIS)

    Verreycken, T; Van der Horst, R M; Baede, A H F M; Van Veldhuizen, E M; Bruggeman, P J

    2012-01-01

    The production of OH in a nanosecond pulsed filamentary discharge generated in pin-pin geometry in a He-H 2 O mixture is studied by time and spatially resolved laser-induced fluorescence. Apart from the OH density the gas temperature and the electron density are also measured. Depending on the applied voltage the discharge is in a different mode. The maximum electron densities in the low- (1.3 kV) and high-density (5 kV) modes are 2 × 10 21 m -3 and 7 × 10 22 m -3 , respectively. The gas temperature in both modes does not exceed 600 K. In the low-density mode the maximum OH density is at the centre of the discharge filament, while in the high-density mode the largest OH density is observed on the edge of the discharge. A chemical model is used to obtain an estimate of the absolute OH density. The chemical model also shows that charge exchange and dissociative recombination can explain the production of OH in the case of the high-density mode. (paper)

  5. Extracellular Signal-Regulated Kinase 5 is Required for Low-Concentration H2O2-Induced Angiogenesis of Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Jiang, Shan; Zhang, Dongxin; Huang, Hong; Lei, Yonghong; Han, Yan; Han, Weidong

    2017-01-01

    Background . The aim of this study was to assess the effects of low concentrations of H 2 O 2 on angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro and explore the underlying mechanisms. Methods . HUVECs were cultured and stimulated with different concentrations of H 2 O 2 . Flow cytometric analysis was used to select an optimal concentration of H 2 O 2 for the following experiments. Cell proliferation, migration, and tubule formation were evaluated by Cell Counting Kit-8 (CCK-8) assays, scratch wound assays, and Matrigel tubule formation assays, respectively. For gain and loss of function studies, constitutively active MEK5 (CA-MEK5) and ERK5 shRNA lentiviruses were used to activate or knock down extracellular signal-regulated kinase 5 (ERK5). Results . We found that low concentrations of H 2 O 2 promoted HUVECs proliferation, migration, and tubule formation. ERK5 in HUVECs was significantly activated by H 2 O 2 . Enhanced ERK5 activity significantly amplified the proangiogenic effects of H 2 O 2 ; in contrast, ERK5 knock-down abrogated the effects of H 2 O 2 . Conclusions . Our results confirmed that low concentrations of H 2 O 2 promoted HUVECs angiogenesis in vitro, and ERK5 is an essential mediator of this process. Therefore, ERK5 may be a potential therapeutic target for promoting angiogenesis and improving graft survival.

  6. Global energy confinement in JT-60 neutral beam heated L-mode discharges

    International Nuclear Information System (INIS)

    Naito, O.; Hosogane, N.; Tsuji, S.; Ushigusa, K.; Yoshida, H.

    1990-01-01

    The global energy confinement characteristics of neutral beam heated JT-60 discharges are presented. There is a difference in the dependence of the energy confinement time on the plasma current between limiter and divertor discharges. For limiter discharges, the energy confinement increases with plasma current up to 3.2 MA, whereas for divertor discharges this improvement saturates when the safety factor drops below 3, independent of the location of the X-point. The JT-60 L-mode results indicate that the deterioration in energy confinement for q < 3, which is also found in H-mode regimes of other devices, may be a universal characteristic of divertor discharges. Regarding the scaling with plasma size, it is shown that the global/incremental confinement time increases with plasma minor radius. For sufficiently large plasmas, however, the global/incremental confinement time is no longer a function of minor radius. (author). 13 refs, 14 figs

  7. Determination of plasma spot current and arc discharge plasma current on the system of plasma cathode electron sources using Rogowski coil technique

    International Nuclear Information System (INIS)

    Wirjoadi; Bambang Siswanto; Lely Susita RM; Agus Purwadi; Sudjatmoko

    2015-01-01

    It has been done the function test experiments of ignitor electrode system and the plasma generator electrode system to determine the current spot plasma and arc discharge plasma current with Rogowski coil technique. Ignitor electrode system that gets power supply from IDPS system can generate the plasma spot current of 11.68 ampere to the pulse width of about 33 μs, this value is greater than the design probably because of electronic components used in the IDPS system was not as planned. For the plasma generator electrode system that gets power from ADPS system capable of producing an arc discharge plasma current around 103.15 amperes with a pulse width of about 96 μs, and this value as planned. Based on the value of the arc discharge plasma current can be determined plasma electron density, which is about 10.12 10"1"9 electrons/m"3, and with this electron density value, an ignitor electrode system and a plasma generator system is quite good if used as a plasma cathode electron source system. (author)

  8. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    Science.gov (United States)

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.

  9. Direct current magnetron sputtered ZrB{sub 2} thin films on 4H-SiC(0001) and Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Tengdelius, Lina, E-mail: lina.tengdelius@liu.se [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Samuelsson, Mattias [Impact Coatings AB, Westmansgatan 29, SE-582 16 Linköping (Sweden); Jensen, Jens; Lu, Jun; Hultman, Lars; Forsberg, Urban; Janzén, Erik; Högberg, Hans [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2014-01-01

    ZrB{sub 2} thin films have been synthesized using direct current magnetron sputtering from a ZrB{sub 2} compound target onto 4H-SiC(0001) and Si(100) substrates kept at different temperatures (no heating, 400 °C, and 550 °C), and substrate bias voltage (− 20 V to − 80 V). Time-of-flight energy elastic recoil detection analysis shows that all the films are near stoichiometric and have a low degree of contaminants, with O being the most abundant (< 1 at.%). The films are crystalline, and their crystallographic orientation changes from 0001 to a more random orientation with increased deposition temperature. X-ray diffraction pole figures and selected area electron diffraction patterns of the films deposited without heating reveal a fiber-texture growth. Four point probe measurements show typical resistivity values of the films ranging from ∼ 95 to 200 μΩ cm, decreasing with increased growth temperature and substrate bias. - Highlights: • ZrB{sub 2} films have been deposited on 4H-SiC(0001) and Si(100). • Film composition correlates well to that of the target. • Level of contamination in the films is low. • Film resistivity values range from ∼ 95 to 200 μΩ cm.

  10. Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model

    Science.gov (United States)

    Turi, Giuliana; Alexander, Michael; Lovenduski, Nicole S.; Capotondi, Antonietta; Scott, James; Stock, Charles; Dunne, John; John, Jasmin; Jacox, Michael

    2018-02-01

    Coastal upwelling systems, such as the California Current System (CalCS), naturally experience a wide range of O2 concentrations and pH values due to the seasonality of upwelling. Nonetheless, changes in the El Niño-Southern Oscillation (ENSO) have been shown to measurably affect the biogeochemical and physical properties of coastal upwelling regions. In this study, we use a novel, high-resolution global climate model (GFDL-ESM2.6) to investigate the influence of warm and cold ENSO events on variations in the O2 concentration and the pH of the CalCS coastal waters. An assessment of the CalCS response to six El Niño and seven La Niña events in ESM2.6 reveals significant variations in the response between events. However, these variations overlay a consistent physical and biogeochemical (O2 and pH) response in the composite mean. Focusing on the mean response, our results demonstrate that O2 and pH are affected rather differently in the euphotic zone above ˜ 100 m. The strongest O2 response reaches up to several hundreds of kilometers offshore, whereas the pH signal occurs only within a ˜ 100 km wide band along the coast. By splitting the changes in O2 and pH into individual physical and biogeochemical components that are affected by ENSO variability, we found that O2 variability in the surface ocean is primarily driven by changes in surface temperature that affect the O2 solubility. In contrast, surface pH changes are predominantly driven by changes in dissolved inorganic carbon (DIC), which in turn is affected by upwelling, explaining the confined nature of the pH signal close to the coast. Below ˜ 100 m, we find conditions with anomalously low O2 and pH, and by extension also anomalously low aragonite saturation, during La Niña. This result is consistent with findings from previous studies and highlights the stress that the CalCS ecosystem could periodically undergo in addition to impacts due to climate change.

  11. Simulation of electron thermal transport in H-mode discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-01-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  12. Low level radioactive waste management and discharge policies in Turkey

    International Nuclear Information System (INIS)

    Oezdemir, T.; Oezdemir, C.; Uslu, I.

    2005-01-01

    The legal infrastructure in Turkey for the management of low-level radioactive waste covers the liquid, solid and gaseous wastes. Management of these radioactive wastes is briefly described in this paper. Moreover, delay and decay tank systems that are used to collect and store the low level radioactive wastes as a part of low-level radioactive effluent discharge policy are introduced. (author)

  13. Low-Frequency Raman Modes of 2H-TaSe2 in the Charge Density Wave Phase

    Science.gov (United States)

    Chowdhury, Sugata; Simpson, J.; Einstein, T. L.; Hight Walker, A. R.; Theoretical Collaboration

    With changes in temperatures, tantalum diselenide (2H-TaSe2) , a layered, transition metal chalcogenides (TMD) exhibits unique super-lattice structures. The metallic ground state changes to an incommensurate charge density wave (CDW) state at 122?K followed by a commensurate CDW state at 90?K, and eventually a superconducting state 0.14 K. These phase transitions are driven by strong electron-phonon coupling and favored by the particular form of the Fermi surface of these systems. Here we theoretically studied the structural origin of low-frequency Raman modes of bulk 2H-TaSe2\\ in the CDW phases. Our calculations reveal that changes observed in the Raman modes are associated with the thermal expansion in the basal plane of 2H-TaSe2. The Grüneisen parameters of these two Raman modes increase in the CDW phases. Changes in the lattice parameter ``a'' are large compared to ``c'' which induces strain along the a-axis. We compared our results with experimental data which show low-frequency Raman phonon modes are very sensitive to temperature and are not observed in the metallic room-temperature state. In addition, we found that cation displacement is more than anion in CDW phase. Our results may shed more light on exact nature of the CDW instability and optical properties in this system.

  14. Control of the UV flux of a XeCl dielectric barrier discharge excilamp through its current variation

    Energy Technology Data Exchange (ETDEWEB)

    Piquet, H; Bhosle, S; Diez, R; Cousineau, M; Djibrillah, M; Le Thanh, D; Dagang, A N; Zissis, G

    2012-02-28

    The efficiency of the electrical power transfer to the gas mixture of a XeCl dielectric barrier discharge (DBD) exciplex lamp is analysed. An equivalent circuit model of the DBD is considered. It is shown that the excilamp power can be controlled by applying current to the lamp. This highly desired property is ensured by means of a specific power supply topology, whose concepts and design are discussed. The experimental prototype of a current-mode converter operating in the pulsed regime at pulse repetition rate of 50 kHz is presented and its capability to control the amount of energy transferred during each current pulse is demonstrated. The capability of this power supply to maintain specific operating conditions for the DBD lamp, with a very stable behaviour (even at a very low current, in the regime of a single discharge channel), is illustrated. The experimental results of a combined use of this converter and a XeCl excilamp are presented. The influence of the supply parameters on the 308-nm XeCl excilamp is analysed. The shape of the UV pulse of the lamp is experimentally shown to be similar to that of the current, which actually flows into the gas mixture. The UV radiation power is demonstrated to be tightly correlated to the current injected into the gas and controlled by the available degrees of freedom offered by the power supply. The measured UV output characteristics and performance of the system are discussed. Time resolved UV imaging of a XeCl DBD excilamp is used to analyse the mechanisms involved in the production of exciplexes at various power supply regimes. It is shown that a pulsed voltage source leads to formation of short high intensity UV peaks, while current pulses lead to formation of sustained discharge filaments. Based on the results of modelling of the above-mentioned operation conditions, the two power supply regimes are compared and analysed from the point of view of the UV power and radiative control.

  15. The impact of low pH, low aragonite saturation state on calcifying corals: an in-situ study of ocean acidification from the "ojos" of Puerto Morelos, Mexico

    Science.gov (United States)

    Crook, E. D.; Paytan, A.; Potts, D. C.; Hernandez Terrones, L.; Rebolledo-Vieyra, M.

    2010-12-01

    Recent increases in atmospheric carbon dioxide have resulted in rising aqueous CO2 concentrations that lower the pH of the oceans (Caldeira and Wickett 2003, 2005, Doney et al., 2009). It is estimated that over the next 100 years, the pH of the surface oceans will decrease by ~0.4 pH units (Orr et al., 2005), which is expected to hinder the calcifying capabilities of numerous marine organisms. Previous field work (Hall-Spencer et al., 2008) indicates that ocean acidification will negatively impact calcifying species; however, to date, very little is known about the long-term impacts of ocean acidification from the in-situ study of coral reef ecosystems. The Yucatán Peninsula of Quintana Roo, Mexico, represents an ecosystem where naturally low pH groundwater (7.14-8.07) has been discharging offshore at highly localized points (called ojos) for millennia. We present preliminary chemical and biological data on a selection of ojos from lagoon sites in Puerto Morelos, Mexico. Our findings indicate a decrease in species richness and size with proximity to the low pH waters. We address the potential long-term implications of low pH, low aragonite saturation state on coral reef ecosystems.

  16. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  17. Comprehensive Evaluation of the Properties of Nanocrystalline Diamond Coatings Grown Using CVD with E/H Field Glow Discharge Stabilization

    Directory of Open Access Journals (Sweden)

    Iu. Nasieka

    2015-01-01

    Full Text Available The nanocrystalline diamond films (coatings were prepared using the plasma enhanced chemical vapor deposition (PECVD technique. In this method, direct current (DC glow discharge in the crossed E/H fields was used to activate the gas phase. The diamond coatings were deposited from the working gas mixture CH4/H2 with addition of nitrogen in various concentrations. It was ascertained that addition of N2 to the working gas mixture leads to reduction in the sizes of diamond grains as well as to the substantial decrease in the resistivity of the studied films. The electrophysical data are in good agreement with the changes induced by varying the N2 content in the Raman scattering spectra. The increase in the N2 concentration causes significant lowering of the crystalline diamond related peak and increase in the intensity of the peaks related to the sp2-bonded carbon. These changes in the spectra indicate significant disordering of the structure of prepared films and its uniformity in the nanodiamond film volume. With the great possibility, it is associated with a decrease in the sizes of diamond crystalline grains and tendency of NCD film to amorphization.

  18. Studies of thermal energy confinement scaling in PDX plasmas: D0 → H+ limiter discharges

    International Nuclear Information System (INIS)

    Kaye, S.M.; Goldston, R.J.; Bell, M.

    1984-06-01

    Experiments were performed on the PDX tokamak to study plasma heating and β scaling with higher power, near-perpendicular neutral beam injection. The data taken during these experiments were analyzed using a time-dependent data interpretation code (TRANSP) to study the transport and thermal confinement scaling over a wide range of plasma parameters. This study focuses on results from experiments with D 0 injection into H + plasmas using graphite rail limiters, a = 40 to 44 cm, R = 143 cm, I/sub p/ = 200 to 480 kA, B/sub T/ = 0.7 to 2.2 T, and typically anti n/sub e/ = 2.5 to 4.2 x 10 13 cm -3 . The results of this study indicate that for both ohmic and neutral beam heated discharges the energy flow out of the plasma is dominated by anomalous electron losses, attributed to electron thermal conduction. The ion conduction losses are well described to electron thermal conduction. The ion conduction losses are well described by neoclassical theory; however, the total ion loss influences the power balance significantly only at high toroidal fields and high plasma currents

  19. An experimental investigation of the reflection of low energy electrons from surfaces of 2H-MoS2

    International Nuclear Information System (INIS)

    Komolov, S.A.; Chadderton, L.T.

    1978-01-01

    Experiments are described in which a new technique - total current spectroscopy (TCS) - has been used to investigate the energy dependence of the reflection of low energy electrons from clean surfaces of the naturally occuring mineral molybdenite (2H-MoS 2 ). A theory involving both elastic and inelastic scattering of electrons is applied to a band structure calculated for molybdenite by Mattheiss. With relatively few approximations the results of numerical calculations for a TCS spectrum from molybdenite agree surprisingly well with experiment. It is suggested that TCS will prove to be a convenient and sensitive tool for the probing of energy structures in other solid surfaces. For the transition metal dichalcogenide series it should be possible to observe systematic changes in TCS spectra associated with changes in band structure, and subsequently to predict details in the density of states distributions using iterative computer procedures. (Auth.)

  20. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  1. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  2. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    Science.gov (United States)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  3. Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats

    Science.gov (United States)

    Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.

    2012-01-01

    This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.

  4. Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition

    Science.gov (United States)

    Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi

    2018-04-01

    Experiments are performed using dry and humid air to clarify the effects of water vapour on the characteristics of surface dielectric barrier discharge (SDBD) and investigate its impact on the performance of the SDBD for decomposition of gaseous naphthalene in air stream. The current characteristics, including the discharge and the capacitive currents, are deeply analyzed and the discharge mechanism is explored. The results confirmed that the humidity affected the microdischarge distribution without affecting the discharge mode. Interestingly, it is found that the water vapour had a significant influence on the capacitance of the reactor due to its deposition on the discharge electrode and the dielectric, which, in turn, affects the power loss in the dielectric and the total power consumed in the reactor. Thus, the factor of the humidity effect on the power loss in the dielectric should be considered in addition to its effect on the attachment coefficient. Additionally, there was an optimum level of the humidity for the decomposition of naphthalene in the SDBD, and its value depended on the gas composition, where the maximum naphthalene decomposition efficiency in O2/H2O is achieved at the humidity level ˜10%, which was lower than that obtained in air/H2O (˜28%). The results also revealed that the role of the humidity in the decomposition efficiency was not significant in the humidified O2 at high power level. This was attributed to the significant increase in oxygen-derived species (such as O atoms and O3) at high power, which was enough to overcome the negative effects of the humidity.

  5. Laser induced fluorescence in nanosecond repetitively pulsed discharges for CO2 conversion

    Science.gov (United States)

    Martini, L. M.; Gatti, N.; Dilecce, G.; Scotoni, M.; Tosi, P.

    2018-01-01

    A CO2 nanosecond repetitively pulsed discharge (NRP) is a harsh environment for laser induced fluorescence (LIF) diagnostics. The difficulties arise from it being a strongly collisional system in which the gas composition, pressure and temperature, have quick and strong variations. The relevant diagnostic problems are described and illustrated through the application of LIF to the measurement of the OH radical in three different discharge configurations, with gas mixtures containing CO2 + H2O. These range from a dielectric barrier NRP with He buffer gas, a less hostile case in which absolute OH density measurement is possible, to an NRP in CO2+H2O, where the full set of drawbacks is at work. In the last case, the OH density measurement is not possible with laser pulses and detector time resolution in the ns time scale. Nevertheless, it is shown that with a proper knowledge of the collisional rate constants involved in the LIF process, a collisional energy transfer-LIF methodology is still applicable to deduce the gas composition from the analysis of LIF spectra.

  6. Preliminary design of HL-2A discharge control system

    International Nuclear Information System (INIS)

    Jiang Chao; Song Xianming; Li Qiang

    2001-01-01

    HL-2A Discharge Control System consists of one or more VXI work stations so as to compose an all digital control system. The DCS are used to measure and control the poloidal coils, the main tasks of the poloidal coils are exploding, keeping and controlling the current of plasma. These coils explode plasma and keep it in the determined position

  7. Fischer-Tropsch Performance of an SiO2-Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Fu Tingjun; Huang Chengdu; Lv Jing; Li Zhenhua

    2014-01-01

    A silica-supported cobalt catalyst was prepared by hydrogen dielectric-barrier discharge (H 2 -DBD) plasma. Compared to thermal hydrogen reduction, H 2 -DBD plasma treatment can not only fully decompose the cobalt precursor but also partially reduce the cobalt oxides at lower temperature and with less time. The effect of the discharge atmosphere on the property of the plasma-prepared catalyst and the Fischer-Tropsch synthesis activity was studied. The results indicate that H 2 -DBD plasma treatment is a promising alternative for preparing Co/SiO 2 catalysts from the viewpoint of energy savings and efficiency

  8. Development of high current low energy H+ ion source

    International Nuclear Information System (INIS)

    Forrester, A.T.; Crow, J.T.; Goebel, D.M.

    1978-01-01

    The ultimate goal of this work is the development of an ion source suitable for double charge exchange of D + ions to D - ions in cesium or other vapor. Since the fraction of the D + which changes to D - may be as high as 0.35 in the energy below one keV, the process appears very favorable. What is desired is a source of several hundred cm 2 area, with a D + current density greater than, say 0.2A/cm 2 . Small angular spread is essential with up to about 0.1 radian being acceptable. A simple approach to this problem appears to be through fine mesh extraction electrodes. In this system a single grid facing the ion source plasma constitutes the entire extraction electrode system. If the potential difference between the grid and the source plasma is large compared to the ion energy at the plasma boundary, then the distance s 0 is just the Child-Langmuir distance corresponding to the ion current density J and the potential difference V 0 between the plasma and the grid

  9. The Influence of CO2 on Genioglossus Muscle After-Discharge Following Arousal From Sleep.

    Science.gov (United States)

    Cori, Jennifer M; Rochford, Peter D; O'Donoghue, Fergal J; Trinder, John; Jordan, Amy S

    2017-11-01

    Ventilatory after-discharge (sustained elevation of ventilation following stimulus removal) occurs during sleep but not when hypocapnia is present. Genioglossus after-discharge also occurs during sleep, but CO2 effects have not been assessed. The relevance is that postarousal after-discharge may protect against upper airway collapse. This study aimed to determine whether arousal elicits genioglossus after-discharge that persists into sleep, and whether it is influenced by CO2. Twenty-four healthy individuals (6 female) slept with a nasal mask and ventilator. Sleep (EEG, EOG, EMG), ventilation (pneumotachograph), end-tidal CO2 (PETCO2), and intramuscular genioglossus EMG were monitored. NREM eucapnia was determined during 5 minutes on continuous positive airway pressure (4 cmH2O). Inspiratory pressure support was increased until PETCO2 was ≥2 mm Hg below NREM eucapnia. Supplemental CO2 was added to reproduce normocapnia, without changing ventilator settings. Arousals were induced by auditory tones and genioglossus EMG compared during steady-state hypocapnia and normocapnia. Eleven participants (4 female) provided data. Prearousal PETCO2 was less (p sleep. For tonic activity, after-discharge lasted four breaths irrespective of CO2 condition. For peak activity, after-discharge lasted one breath during hypocapnia and 6 breaths during normocapnia. However, when peak activity following the return to sleep was compared between CO2 conditions no individual breath differences were observed. Postarousal genioglossal after-discharge may protect against upper airway collapse during sleep. Steady-state CO2 levels minimally influence postarousal genioglossus after-discharge. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. Preparative Separation of Six Rhynchophylla Alkaloids from Uncaria macrophylla Wall by pH-Zone Refining Counter-Current Chromatography

    OpenAIRE

    Zhang, Qinghai; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Luo, Aiqin

    2013-01-01

    pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w) in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether–ethyl acetate–isopropanol–water (2:6:3:9, v/v), adding 10 mM triethylamine ...

  11. Disruption characteristics in PDX with limiter and divertor discharges

    International Nuclear Information System (INIS)

    Couture, P.; McGuire, K.

    1986-09-01

    A comparison has been made between the characteristics of disruptions with limiter and divertor configurations in PDX. A large data base on disruptions has been collected over four years of machine operation, and a total of 15,000 discharges are contained in the data file. It was found that divertor discharges have less disruptions during ramp up and flattop of the plasma current. However, for divertor discharges a large number of fast, low current disruptions take place during the current ramp down. These disruptions are probably caused by the deformation of the plasma shape

  12. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    Science.gov (United States)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  13. The effect of axial ion parameters on the properties of glow discharge polymer in T2B/H2 plasma

    Science.gov (United States)

    Ai, Xing; He, Xiao-Shan; Huang, Jing-Lin; He, Zhi-Bing; Du, Kai; Chen, Guo

    2018-03-01

    Glow discharge polymer (GDP) films were fabricated using plasma-enhanced chemical vapor deposition. The main purpose of this work was to explore the correlations of plasma parameters with the surface morphology and chemical structure of GDP films. The intensities of main positive ions and ion energy as functions of axial distances in T2B/H2 plasma were diagnosed using energy-resolved mass spectrometry. The surface morphology and chemical structure were characterized as functions of axial distances using a scanning electron microscope and Fourier transform infrared spectroscopy, respectively. As the axial distance increases, both the intensities of positive ions and high energy ions decreases, and dissociation weakens while polymerization enhances. This leads to the weakening of the cross-linking structure of GDP films and the formation of dome defects on films. Additionally, high energy ions could introduce a strong etching effect to form etching pits. Therefore, an axial distance of about 20 mm was found to be the optimal plasma parameter to prepare the defect-free GDP films. These results could help one to find the optimal plasma parameters for GDP film deposition.

  14. Low Cost High-H2 Syngas Production for Power and Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S. James [Gas Technology Inst., Des Plaines, IL (United States)

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the results are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful

  15. Low-pressure glow discharges with oscillating electrons in different electrode systems

    International Nuclear Information System (INIS)

    Bersenev, V.V.; Gavriolv, N.V.; Nikulin, S.P.

    1995-01-01

    One of the main applications of low - pressure glow discharges is the development on their basis of charged - particle beam sources. The use of glow discharges with oscillating electrons, which can operate stably in the voltage and pressure range to the left of the left branch of Pashen's curve, shows promise, because the decrease in critical pressure p 0 , below which the discharge operation becomes impossible, in the discharge system of a source promotes an increase in the electrical strength of its accelerating system. This, in its turn, makes possible the expansion of the operation range of accelerating voltages. This experimental investigation of glow discharges in such well - known systems with oscillating electrons, as Hollow Cathode (HC), Penning's System (PS) and Inverse Magnetron (IM), is aimed at revealing the system operating at the lowest pressure. Besides, both common features and peculiarities of discharge operation in these systems are discussed. Though there is an extensive amount of published information covering all the specified discharges, the carrying out of such investigation is justified, since a comparative analysis of results obtained by different authors is hampered by various conditions of their experiments

  16. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    International Nuclear Information System (INIS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5 eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study

  17. Catalytical conversion from ortho-H2 to para-H2

    International Nuclear Information System (INIS)

    Corat, E.J.

    1984-01-01

    The classical theory of ortho to para-H 2 conversion is discussed, considering the catalytical action of an inhomogeneous magnetic field on a surface with magnetic particles. In particular, the use of charcoal as a catalyst at low temperatures (77 0 K) is considered and some results are presented. The development of a sensor for the determination of para-H 2 concentration in H 2 gas is studied. Experimental results with this sensor are also shown. (Author) [pt

  18. Measuring discharge with acoustic Doppler current profilers from a moving boat

    Science.gov (United States)

    Mueller, David S.; Wagner, Chad R.; Rehmel, Michael S.; Oberg, Kevin A.; Rainville, Francois

    2013-01-01

    The use of acoustic Doppler current profilers (ADCPs) from a moving boat is now a commonly used method for measuring streamflow. The technology and methods for making ADCP-based discharge measurements are different from the technology and methods used to make traditional discharge measurements with mechanical meters. Although the ADCP is a valuable tool for measuring streamflow, it is only accurate when used with appropriate techniques. This report presents guidance on the use of ADCPs for measuring streamflow; this guidance is based on the experience of U.S. Geological Survey employees and published reports, papers, and memorandums of the U.S. Geological Survey. The guidance is presented in a logical progression, from predeployment planning, to field data collection, and finally to post processing of the collected data. Acoustic Doppler technology and the instruments currently (2013) available also are discussed to highlight the advantages and limitations of the technology. More in-depth, technical explanations of how an ADCP measures streamflow and what to do when measuring in moving-bed conditions are presented in the appendixes. ADCP users need to know the proper procedures for measuring discharge from a moving boat and why those procedures are required, so that when the user encounters unusual field conditions, the procedures can be adapted without sacrificing the accuracy of the streamflow-measurement data.

  19. SUBMILLIMETER-WAVE ROTATIONAL SPECTROSCOPY OF H2F+

    International Nuclear Information System (INIS)

    Fujimori, R.; Kawaguchi, K.; Amano, T.

    2011-01-01

    Five pure rotational transitions of H 2 F + generated by a discharge in an HF/H 2 /Ar mixture were observed in the range 473-774 GHz with a backward-wave oscillator based submillimeter-wave spectrometer. A simultaneous analysis of the rotational lines with 120 combination differences for the ground state derived from the infrared spectra was carried out to determine the precise molecular constants for the ground state. The rotational transition frequencies that lie below 2 THz were calculated, together with their estimated uncertainties, to facilitate future astronomical identifications. The chemistry for H 2 F + formation in interstellar space is discussed in comparison with a case for recently detected H 2 Cl + .

  20. Van der Waals bond in dimers: H2Ne, H2Ar, H2Kr

    International Nuclear Information System (INIS)

    Waaijer, M.

    1981-01-01

    The H 2 -inert gas dimers H 2 X, and particularly H 2 Ne, H 2 Ar and H 2 Kr, form the subject of this thesis and are loosely bound van der Waals complexes, which is reflected in the low number of bound states and the small anisotropic interaction. The H 2 X dimers studied are formed in a supersonic nozzle expansion, in which the internal energy is converted into the macroscopic flow energy, establishing an internal temperature drop to 3 K, which favours dimer formation. Because of this cooling the H 2 X dimers relax to the lowest rotational states. The hyperfine transitions have been measured using magnetic beam resonance and yield information about the isotropic as well as the anisotropic intermolecular potential in the range between the classical turning points and in the adjacent part of the repulsive branch. The sensitivity of the method is very high and slight changes in the intermolecular potential cause significant effects. The analysis of the measured hyperfine transitions incorporates all interacting states of the molecule, bound as well as unbound (continuum) states. For H 2 Ne, which is the best studied H 2 -inert gas system from the experimental point of view, the author succeeded in establishing an intermolecular potential, that provides a solid ground for comparison with future ab initio calculations. (Auth.)

  1. Oxygen Vacancies and Stacking Faults Introduced by Low-Temperature Reduction Improve the Electrochemical Properties of Li2MnO3 Nanobelts as Lithium-Ion Battery Cathodes.

    Science.gov (United States)

    Sun, Ya; Cong, Hengjiang; Zan, Ling; Zhang, Youxiang

    2017-11-08

    Among the Li-rich layered oxides Li 2 MnO 3 has significant theoretical capacity as a cathode material for Li-ion batteries. Pristine Li 2 MnO 3 generally has to be electrochemically activated in the first charge-discharge cycle which causes very low Coulombic efficiency and thus deteriorates its electrochemical properties. In this work, we show that low-temperature reduction can produce a large amount of structural defects such as oxygen vacancies, stacking faults, and orthorhombic LiMnO 2 in Li 2 MnO 3 . The Rietveld refinement analysis shows that, after a reduction reaction with stearic acid at 340 °C for 8 h, pristine Li 2 MnO 3 changes into a Li 2 MnO 3 -LiMnO 2 (0.71/0.29) composite, and the monoclinic Li 2 MnO 3 changes from Li 2.04 Mn 0.96 O 3 in the pristine Li 2 MnO 3 (P-Li 2 MnO 3 ) to Li 2.1 Mn 0.9 O 2.79 in the reduced Li 2 MnO 3 (R-Li 2 MnO 3 ), indicating the production of a large amount of oxygen vacancies in the R-Li 2 MnO 3 . High-resolution transmission electron microscope images show that a high density of stacking faults is also introduced by the low-temperature reduction. When measured as a cathode material for Li-ion batteries, R-Li 2 MnO 3 shows much better electrochemical properties than P-Li 2 MnO 3 . For example, when charged-discharged galvanostatically at 20 mA·g -1 in a voltage window of 2.0-4.8 V, R-Li 2 MnO 3 has Coulombic efficiency of 77.1% in the first charge-discharge cycle, with discharge capacities of 213.8 and 200.5 mA·h·g -1 in the 20th and 30th cycles, respectively. In contrast, under the same charge-discharge conditions, P-Li 2 MnO 3 has Coulombic efficiency of 33.6% in the first charge-discharge cycle, with small discharge capacities of 80.5 and 69.8 mA·h·g -1 in the 20th and 30th cycles, respectively. These materials characterizations, and electrochemical measurements show that low-temperature reduction is one of the effective ways to enhance the performances of Li 2 MnO 3 as a cathode material for Li-ion batteries.

  2. H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures.

    Science.gov (United States)

    Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming

    2018-02-15

    Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity

  3. Study of a pulsed discharge in nitrogen: the N2 laser

    Energy Technology Data Exchange (ETDEWEB)

    Spyrou, N

    1979-01-01

    The characteristics of the pulsed nitrogen discharge and the power supply circuit of an N2 laser operating in the UV are investigated. Following a review of the characteristics of molecular lasers in general and the N2 laser in particular, a theoretical model based on a simultaneous description of the electric circuit and the discharge is developed to explain such laser characteristics as current evolution and electron density and temperature and to allow the calculation of laser energy levels. The theoretical model is found to be in agreement with experimental results, and optimal conditions for the operation of the experimental laser are obtained.

  4. Discharge cleaning for a tokamak

    International Nuclear Information System (INIS)

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  5. Formation of palladium hydrides in low temperature Ar/H_2-plasma

    International Nuclear Information System (INIS)

    Wulff, H.; Quaas, M.; Deutsch, H.; Ahrens, H.; Fröhlich, M.; Helm, C.A.

    2015-01-01

    20 nm thick Pd coatings deposited on Si substrates with 800 nm SiO_2 and 1 nm Cr buffer layers were treated in a 2.45 GHz microwave plasma source at 700 W plasma power and 40 Pa working pressure without substrate heating. For obtaining information on the effect of energy influx due to ion energy on the palladium films the substrate potential was varied from U_s_u_b = 0 V to − 150 V at constant gas flow corresponding to mean ion energies E_i from 0.22 eV ∙ cm"−"2 ∙ s"−"1 to 1.28 eV ∙ cm"−"2 ∙ s"−"1. In contrast to high pressure reactions with metallic Pd, under plasma exposure we do not observe solid solutions over a wide range of hydrogen concentration. The hydrogen incorporation in Pd films takes place discontinuously. At 0 V substrate voltage palladium hydride is formed in two steps to PdH_0_._1_4 and PdH_0_._5_7. At − 50 V substrate voltage PdH_0_._5_7 is formed directly. However, substrate voltages of − 100 V and − 150 V cause shrinking of the unit cell. We postulate the formation of two fcc vacancy palladium hydride clusters PdH_V_a_c(I) and PdH_V_a_c(II). Under longtime plasma exposure the fcc PdH_V_a_c(II) phase forms cubic PdH_1_._3_3. The fcc PdH_0_._5_7 phase decomposes at temperatures > 300 °C to form metallic fcc Pd. The hydrogen removal causes a decrease of lattice defects. In situ high temperature diffractometry measurements also confirm the existence of PdH_V_a_c(II) as a palladium hydride phase. Stoichiometric relationship between cubic PdH_1_._3_3 and fcc PdH_V_a_c(II) becomes evident from XR measurements and structure considerations. We assume both phases have the chemical composition Pd_3H_4. Up to 700 °C we observe phase transformation between both the fcc PdH_V_a_c(II) and cubic PdH_1_._3_3 phases. These phase transformations could be explained analog to a Bain distortion by displacive solid state structural changes. - Highlights: • Thin Pd films were treated under low pressure conditions by an Ar/H_2-plasma. • The

  6. Synthesis of Copper Sulfide Nanoparticles Using Biogenic H2S Produced by a Low-pH Sulfidogenic Bioreactor

    Directory of Open Access Journals (Sweden)

    Camila Colipai

    2018-01-01

    Full Text Available The application of acidophilic sulfate-reducing bacteria (SRB for the treatment of acidic mine water has been recently developed to integrate mine water remediation and selective biomineralization. The use of biogenic hydrogen sulfide (H2S produced from the dissimilatory reduction of sulfate to fabricate valuable products such as metallic sulfide nanoparticles has potential applications in green chemistry. Here we report on the operation of a low-pH sulfidogenic bioreactor, inoculated with an anaerobic sediment obtained from an acid river in northern Chile, to recover copper via the production of copper sulfide nanoparticles using biogenic H2S. The laboratory-scale system was operated as a continuous flow mode for up to 100 days and the bioreactor pH was maintained by the automatic addition of a pH 2.2 influent liquor to compensate for protons consumed by biosulfidogenesis. The “clean” copper sulfide nanoparticles, produced in a two-step process using bacterially generated sulfide, were examined using transmission electron microscopy, dynamic light scattering, energy dispersive (X-ray spectroscopy and UV-Vis spectroscopy. The results demonstrated a uniform nanoparticle size distribution with an average diameter of less than 50 nm. Overall, we demonstrated the production of biogenic H2S using a system designed for the treatment of acid mine water that holds potential for large-scale abiotic synthesis of copper sulfide nanoparticles.

  7. Clarification of Solvent Effects on Discharge Products in Li-O2 Batteries through a Titration Method.

    Science.gov (United States)

    Lee, Young Joo; Kwak, Won-Jin; Sun, Yang-Kook; Lee, Yun Jung

    2018-01-10

    As a substitute for the current lithium-ion batteries, rechargeable lithium oxygen batteries have attracted much attention because of their theoretically high energy density, but many challenges continue to exist. For the development of these batteries, understanding and controlling the main discharge product Li 2 O 2 (lithium peroxide) are of paramount importance. Here, we comparatively analyzed the amount of Li 2 O 2 in the cathodes discharged at various discharge capacities and current densities in dimethyl sulfoxide (DMSO) and tetraethylene glycol dimethyl ether (TEGDME) solvents. The precise assessment entailed revisiting and revising the UV-vis titration analysis. The amount of Li 2 O 2 electrochemically formed in DMSO was less than that formed in TEGDME at the same capacity and even at a much higher full discharge capacity in DMSO than in TEGDME. On the basis of our analytical experimental results, this unexpected result was ascribed to the presence of soluble LiO 2 -like intermediates that remained in the DMSO solvent and the chemical transformation of Li 2 O 2 to LiOH, both of which originated from the inherent properties of the DMSO solvent.

  8. HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery

    Science.gov (United States)

    He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei

    2017-11-01

    In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.

  9. Quantum mechanical study of the proton exchange in the ortho-para H2 conversion reaction at low temperature.

    Science.gov (United States)

    Honvault, P; Jorfi, M; González-Lezana, T; Faure, A; Pagani, L

    2011-11-14

    Ortho-para H(2) conversion reactions mediated by the exchange of a H(+) proton have been investigated at very low energy for the first time by means of a time independent quantum mechanical (TIQM) approach. State-to-state probabilities and cross sections for H(+) + H(2) (v = 0, j = 0,1) processes have been calculated for a collision energy, E(c), ranging between 10(-6) eV and 0.1 eV. Differential cross sections (DCSs) for H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) for very low energies only start to develop a proper global minimum around the sideways scattering direction (θ≈ 90°) at E(c) = 10(-3) eV. Rate coefficients, a crucial information required for astrophysical models, are provided between 10 K and 100 K. The relaxation ortho-para process j = 1 → j' = 0 is found to be more efficient than the j = 0 → j' = 1 conversion at low temperatures, in line with the extremely small ratio between the ortho and para species of molecular hydrogen predicted at the temperature of interstellar cold molecular clouds. The results obtained by means of a statistical quantum mechanical (SQM) model, which has previously proved to provide an adequate description of the dynamics of the title reactions at a higher collision energy regime, have been compared with the TIQM results. A reasonable good agreement has been found with the only exception of the DCSs for the H(+) + H(2) (v = 0, j = 1) → H(+) + H(2) (v' = 0, j' = 0) process at very low energy. SQM cross sections are also slightly below the quantum results. Estimates for the rate coefficients, in good accord with the TIQM values, are a clear improvement with respect to pioneering statistical studies on the reaction.

  10. Formation of H- ions via vibrational excited molecules produced from recombinative wall desorption of H atoms in a low-pressure H/sub 2/ positive column

    NARCIS (Netherlands)

    Amorim, J.; Loureiro, J.; Schram, D.C.

    2001-01-01

    Recombinative wall desorption of hydrogen atoms in a low-pressure hydrogen positive column leading to formation of H/sub 2/ (X/sup 1/ Sigma /sub g//sup +/, v) molecules in optimum levels for H/sup -/ production by dissociative attachment is investigated. We employed a kinetic model that solves the

  11. Programmable, very low noise current source

    Science.gov (United States)

    Scandurra, G.; Cannatà, G.; Giusi, G.; Ciofi, C.

    2014-12-01

    We propose a new approach for the realization of very low noise programmable current sources mainly intended for application in the field of low frequency noise measurements. The design is based on a low noise Junction Field Effect Transistor (JFET) acting as a high impedance current source and programmability is obtained by resorting to a low noise, programmable floating voltage source that allows to set the sourced current at the desired value. The floating voltage source is obtained by exploiting the properties of a standard photovoltaic MOSFET driver. Proper filtering and a control network employing super-capacitors allow to reduce the low frequency output noise to that due to the low noise JFET down to frequencies as low as 100 mHz while allowing, at the same time, to set the desired current by means of a standard DA converter with an accuracy better than 1%. A prototype of the system capable of supplying currents from a few hundreds of μA up to a few mA demonstrates the effectiveness of the approach we propose. When delivering a DC current of about 2 mA, the power spectral density of the current fluctuations at the output is found to be less than 25 pA/√Hz at 100 mHz and less than 6 pA/√Hz for f > 1 Hz, resulting in an RMS noise in the bandwidth from 0.1 to 10 Hz of less than 14 pA.

  12. Ozone kinetics in low-pressure discharges

    Science.gov (United States)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  13. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 - venting sediments (Milos Island, Greece).

    Science.gov (United States)

    Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.

  14. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    Science.gov (United States)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  15. Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp

    International Nuclear Information System (INIS)

    Sande, M.J. van de; Mullen, J.J.A.M. van der

    2002-01-01

    Excitation and light production processes in gas discharge lamps are the result of inelastic collisions between atoms and free electrons in the plasma. Therefore, knowledge of the electron density n e and temperature T e is essential for a proper understanding of such plasmas. In this paper, an experimental system for laser Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp and measurements of n e and T e in this lamp are presented. The experimental system is suitable for low electron temperatures (down to below 0.2 eV) and employs a triple grating spectrograph for a high stray light rejection, or equivalently a low stray light redistribution (R eff approximately 7x10 -9 nm -1 at 0.5 nm from the laser wavelength). The electron density detection limit of the system is n e approximately 10 16 m -3 . The modifications to the lamp that were necessary for the measurements are described, and results are presented and compared to previous work and trends expected from the electron particle and energy balances. The electron density and temperature are about n e approximately 10 19 m -3 and T e approximately 1 eV in the most active part of the plasma; the exact values depend on the argon filling pressure, the mercury pressure and the position in the lamp. (author)

  16. Low-potential sensitive H2O2 detection based on composite micro tubular Te adsorbed on platinum electrode.

    Science.gov (United States)

    Guascito, M R; Chirizzi, D; Malitesta, C; Mazzotta, E; M Siciliano; Siciliano, T; Tepore, A; Turco, A

    2011-04-15

    In this work a new original amperometric sensor for H(2)O(2) detection based on a Pt electrode modified with Te-microtubes was developed. Te-microtubes, synthesized by the simple thermal evaporation of Te powder, have a tubular structure with a hexagonal cross-section and are open ended. Modified electrode was prepared by direct drop casting of the mixture of Te-microtubes dispersed in ethanol on Pt surface. The spectroscopic characterization of synthesized Te-microtubes and Pt/Te-microtubes modified electrodes was performed by scanning electron microscopy (SEM), energy-dispersive X-rays microanalysis (EDX), X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS). Moreover a complete electrochemical characterization of the new composite material Pt/Te-microtubes was performed by cyclic voltammetry (CV) and cronoamperometry (CA) in phosphate buffer solution (PBS) at pH 7. Electrochemical experiments showed that the presence of Te-microtubes on modified electrode was responsible for an increment of both cathodic and anodic currents in presence of H(2)O(2) with respect to bare Pt. Specifically, data collected from amperometric experiments at -150 mV vs. SCE in batch and -200 mV vs. SCE in flow injection analysis (FIA) experiments show a remarkable increment of the cathodic current. The electrochemical performances of tested sensors make them suitable for the quantitative determination of H(2)O(2) substrate both in batch and in FIA. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Study on a negative hydrogen ion source with hot cathode arc discharge.

    Science.gov (United States)

    Lin, S H; Fang, X; Zhang, H J; Qian, C; Ma, B H; Wang, H; Li, X X; Zhang, X Z; Sun, L T; Zhang, Z M; Yuan, P; Zhao, H W

    2014-02-01

    A negative hydrogen (H(-)) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H(-) beam with ɛ N, RMS = 0.08 π mm mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of I(e(-))/I(H(-)) were experimentally studied. The discussion on the result, and opinions to improve the source were given.

  18. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Medley, S.S.; Gorelenkov, N.N.; Andre, R.; Bell, R.E.; Darrow, D.S.; Fredrickson, E.D.; Kaye, S.M.; LeBlanc, B.P.; Roquemore, A.L.

    2004-01-01

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E ∼ 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and

  19. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times

  20. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  1. Low temperature molten salt synthesis of Y2Sn2O7 anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Nithyadharseni, P.; Reddy, M.V.; Ozoemena, Kenneth I.; Balakrishna, R. Geetha; Chowdari, B.V.R.

    2015-01-01

    Highlights: • For the first time Y 2 Sn 2 O 7 compound was prepared at very low temperature by molten salt method. • We studied the effect of reheating on electrochemical properties. • All the compounds showed particle size of below 500 nm. • The all compounds showed a stable and good capacity retention during cycling. - Abstract: For the first time, yttrium tin oxide (Y 2 Sn 2 O 7 ) compound is prepared at low temperature (400 °C) with cubic pyrochlore structure via molten salt method using KOH as a flux for their electrochemical applications. The final product is reheated at three different temperatures of 600, 800 and 1000 °C for 6 h in air, are physically and chemically characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical studies of galvanostatic cycling (GC), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Galvanostatic cycling of Y 2 Sn 2 O 7 compounds are carried out with three different current densities of 60, 100 and 250 mA g −1 and the potential range of 0.005–1.0 V vs. Li. The EIS is carried out to study the electrode kinetics during discharge and charge at various voltages and corresponding variation of resistance and capacitance values are discussed.

  2. Electric discharge during electrosurgery.

    Science.gov (United States)

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I; Keidar, Michael

    2015-04-16

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2). The plasma electron density and electrical conductivities in the channel were found be 10(16) cm(-3) and (1-2) Ohm(-1) cm(-1), respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold.

  3. A model for the operation of helium-filled proportional counter at low temperatures near 4.2 K

    International Nuclear Information System (INIS)

    Masaoka, Sei; Katano, Rintaro; Kishimoto, Shunji; Isozumi, Yasuhito

    2000-01-01

    In order to understand the operation of helium-filled proportional counter (HFPC) from the standpoint of fundamental atomic and molecular processes, we have surveyed previous works on collision processes in discharged helium gas. By analyzing gas gain curve, after-pulses and discharge current experimentally observed at 4.2 K, the electron avalanche and the secondary electron emission from cathode have been related to the collision processes in helium. A simplified model for the HFPC operation at low temperatures near 4.2 K has been constructed with the related processes

  4. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  5. Low-frequency oscillations at high density in JFT-2

    International Nuclear Information System (INIS)

    Maeno, Masaki; Katagiri, Masaki; Suzuki, Norio; Fujisawa, Noboru

    1977-12-01

    Low-frequency oscillations in a plasma were measured with magnetic probes and Si surface-barrier detectors, and behaviour of the high density plasmas was studied. The plasma current profile in the phase of decreasing density after the interruption of gas input is more peaked than during gas input. The introduction of hydrogen during a discharge results in a reduction of the impurities flux. The increase of density by fast gas input is limited with a negative voltage spike. Immediately before a negative voltage spike, oscillations of m=1,2 grow, leading to the spike. (auth.)

  6. Leaching behaviour of low Ca:Si ratio CaO–SiO2H2O systems

    International Nuclear Information System (INIS)

    Swanton, S.W.; Heath, T.G.; Clacher, A.

    2016-01-01

    A dynamic leaching study of the dissolution of low calcium to silicon ratio (C/S) calcium–silicate–hydrate (C–S–H) systems with initial C/S ranging from 0.2 to 0.6 has been undertaken. Dissolution was studied in demineralised water at 25 °C to a degree of leaching of 2.5 m 3 kg −1 . These C–S–H gels show remarkably similar behaviour during early leaching stages, giving an equilibrated pH of ~ 9.9 and a solution phase C/S of ~ 0.29. Over longer times, C–S–H gels with C/S > 0.29 evolve, on leaching, towards a congruent dissolution point with a solid C/S close to 0.84 (consistent with tobermorite) and pH ~ 10.8. C–S–H gels with C/S < 0.29 become increasingly silica-rich on leaching but maintain an alkaline pH > 9.5 down to at least C/S = 0.07 (the lowest ratio reached). For C/S < 0.7, chemical modelling and X-ray diffraction data support an explanation of the incongruent dissolution behaviour of the low C/S C–S–H gels based on the congruent dissolution of distinct amorphous silica and tobermorite-like C–S–H phases. Above C/S of 0.7, the dissolution data are well described by an ideal solid solution model for the C–S–H phases. These results are of relevance to the consideration of the disposal of silica-rich vitrified intermediate-level radioactive wastes in cement-based concepts for geological disposal, where maintenance of alkaline pH values forms a key component of the chemical barrier to radionuclide migration. The implications are that the long-term pH buffering capacity provided by cementitious backfill materials would not be significantly affected by interactions with silica-rich wasteforms, which may lower the net C/S ratio of C–S–H phases, due to the natural tendency of these systems to restore congruent dissolution at pH 10.8.

  7. Numerical study of active particles creation and evolution in a nitrogen point-to-plane afterglow discharge at low pressure

    International Nuclear Information System (INIS)

    Potamianou, S; Spyrou, N; Held, B; Loiseau, J-F

    2006-01-01

    The last part of a numerical study of low-pressure nitrogen cold plasma created by a pulsed discharge in a point-to-plane geometry at 4 Torr is presented. The present work deals with the discharge and plasma behaviour during the falling part of a rectangular shaped applied voltage pulse and completes our investigation of the discharge under the stress of this voltage shape. The relative model is based on fluid description of the cold plasma, on Poisson's equation for the electric field and on balance equations for the excited population taking into account only the most important generation and decay mechanisms of the radiative B 3 Π g , C 3 Π u and the metastables A 3 Σ μ + states of nitrogen, according to the conclusions of our recent work (Potamianou et al 2003 Eur. Phys. J. Appl. Phys. 22 179-88). Results for space and time evolution of the charged particles densities, electric field, potential and electron current density are reported. According to these results, a non-neutral channel is formed that evolves slowly and ends in the formation of a double layer. Excited particle distributions are presented and the influence of the electron current density discussed. It seems that, in this kind of discharge, creation of active particles is not only due to electron current density but also physicochemical mechanisms. The obtained results will help to determine optimal conditions for polymer surface treatment

  8. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  9. Recombination and dissociative recombination of H2+ and H3+ ions on surfaces with application to hydrogen negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1988-12-01

    A four-step model for recombination and dissociative recombination of H 2 + and H 3 + ions on metal surfaces is discussed. Vibrationally excited molecules, H 2 (v''), from H 3 + recombination are produced in a broad spectrum that enhances the excited level distribution. The application of this latter process to hydrogen negative ion discharges is discussed. 5 refs., 3 figs., 1 tab

  10. Thermodynamics of the CSCl-H2O system at low temperatures

    International Nuclear Information System (INIS)

    Monnin, C.; Dubois, M.

    1999-01-01

    The interpretation of fluid-inclusion data requires knowledge of phase diagrams at low (subfreezing) temperatures. From the example of the CsCl-H 2 O system, we here investigate the possibility to build such diagrams from thermodynamic models of aqueous solutions parameterized at higher temperatures. Holmes and Mesmer (1983) have built a model for the thermodynamic properties of CsCl(aq) based on Pitzer's equation fit to thermodynamic data mainly at temperatures above 0 C along with a few freezing-point-depression data down to -8 C. We show how this model can be used along with the published water-ice equilibrium constant and thermodynamic data at 25 C for Cs + (aq), Cl - (aq) and CsCl(s), to predict with confidence the ice-liquid-vapor (ILV) and the salt-liquid-vapor (SLV) curves down to the eutectic temperature for the CsCl-H 2 O system. (orig.)

  11. Experimental and theoretical studies of a high temperature cesium-barium tacitron, with application to low voltage-high current inversion

    International Nuclear Information System (INIS)

    Murray, C.S.; El-Genk, M.S.

    1994-02-01

    A low voltage/high current switch refer-red as ''Cs-Ba tacitron'' is studied for use as a dc to ac inverter in high temperature and/or ionizing radiation environments. The operational characteristics of the Cs-Ba tacitron as a switch were investigated experimentally in three modes: (a) breakdown mode, (b) I-V mode, and (c) current modulation mode. Operation parameters measured include switching frequencies up to 20 kHz, hold-off voltages up to 200 V, current densities in excess of 15 A/CM 2 , switch power density of 1 kW/cm 2 , and a switching efficiency in excess of 90 % at collector voltages greater than 30 V. Also, if the discharge current is circuit limited to a value below the maximum thermal emission current density, the voltage drop is constant and below 3 V

  12. Carbon structures formation in low current high voltage electrical discharge in hydrocarbon vapours

    International Nuclear Information System (INIS)

    Sobczyk, A T; Jaworek, A

    2011-01-01

    The properties of carbon fibers and other carbon structures produced from hydrocarbon vapours decomposed in electrically generated plasma at atmospheric pressure are studied in this paper. The electrical discharge was generated between a stainless steel needle and a plate made of nickel alloy. The carbon fiber has grown at the tip of the needle electrode, while other microflower-like deposits were built at the plate. The physical properties of carbon fibers were investigated by SEM, Raman spectroscopy, XRD, and EDS methods.

  13. Electron-beam sustained glow discharge in a N{sub 2}+CO gas mixture at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azharonok, V V; Filatova, I I; Chubrik, N I; Shimanovich, V D [Belarussian Academy of Sciences, Minsk (Belarus). Inst. of Molecular and Atomic Physics; Gurashvili, V A; Kuzmin, V N; Turkin, N G; Vaselenok, A A [Troitsk Institute of Innovative and Fusion Research (Russian Federation)

    1997-12-31

    A quasi-continuum electron-beam sustained glow discharge in a flow of N{sub 2} + CO gas mixture at cryogenic temperature was studied by emission spectroscopy. The effective values of electron-ion recombination and rate of electron adhesion to electronegative molecules (Fe(CO){sub 5}, Ni(CO){sub 4}, H{sub 2}O) present in the discharge were determined in dependence on the reduced electric field strength E/N. (author). 1 tab., 2 figs., 5 refs.

  14. Reconstructing the history of 14C discharges from Sellafield. Part 2. Aquatic discharges

    International Nuclear Information System (INIS)

    Cook, G.T.; MacKenzie, A.B.; Naysmith, F.H.; Anderson, R.; Naysmith, P.; Kershaw, P.J.

    2004-01-01

    Prior to 1984, the reported marine 14 C discharges from Sellafield were estimates: 0.2 TBq per annum from 1952 to 1969 and 1 TBq per annum until 1984 when measurements commenced. The relationship between the net excess 14 C activity in annually collected Nori (Porphyra umbilicalis) seaweed samples and the annual discharges (estimated and measured) implies that the discharges were not as constant as the estimates. Based on the relationship between post-1984 measured discharges and the excess 14 C in the seaweed, two simple empirical models were used to re-calculate the discharges between 1967 and 1984. Gamma-spectrometry measurements on the seaweed also indicate that Porphyra is a sensitive indicator of changes in discharge of other radionuclides, brought about by the introduction of new waste clean-up technologies within Sellafield. (author)

  15. Potential performance analysis and future trend prediction of electric vehicle with V2G/V2H/V2B capability

    Directory of Open Access Journals (Sweden)

    Dalong Guo

    2016-03-01

    Full Text Available Due to the intermittent nature, renewable energy sources (RES has brought new challenges on load balancing and energy dispatching to the Smart Grid. Potentially served as distributed energy storage, Electric Vehicle’s (EV battery can be used as a way to help mitigate the pressure of fluctuation brought by RES and reinforce the stability of power systems. This paper gives a comprehensive review of the current situation of EV technology and mainly emphasizing three EV discharging operations which are Vehicle to Grid (V2G, Vehicle to Home (V2H, and Vehicle to Building (V2B, respectively. When needed, EV’s battery can discharge and send its surplus energy back to power grid, residential homes, or buildings. Based on our data analysis, we argue that V2G with the largest transmission power losses is potentially less efficient compared with the other two modes. We show that the residential users have the incentive to schedule the charging, V2G, and V2H according to the real-time price (RTP and the market sell-back price. In addition, we discuss some challenges and potential risks resulting from EVs’ fast growth. Finally we propose some suggestions on future power systems and also argue that some incentives or rewards need to be provided to motivate EV owners to behave in the best interests of the overall power systems.

  16. Degradation of nitride coatings in low-pressure gas discharge plasma

    Science.gov (United States)

    Ivanov, Yurii; Shugurov, Vladimir; Krysina, Olga; Petrikova, Elizaveta; Tolkachev, Oleg

    2017-12-01

    The paper provides research data on the defect structure, mechanical characteristics, and tribological properties of commercially pure VT1-0 titanium exposed to surface modification on a COMPLEX laboratory electron-ion plasma setup which allows nitriding, coating deposition, and etching in low-pressure gas discharge plasma in a single vacuum cycle. It is shown that preliminary plasma nitriding forms a columnar Ti2N phase in VT1-0 titanium and that subsequent TiN deposition results in a thin nanocrystalline TiN layer. When the coating-substrate system is etched, the coating fails and the tribological properties of the material degrade greatly.

  17. Study on the surface reaction of LaNi{sub 5} alloy during discharge process in KOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Tan Zuxian [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yang Yifu [Department of Chemistry, Wuhan University, Wuhan 430072 (China)]. E-mail: yang-y-f1@vip.sina.com; Jiang Fengshan [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shao Huixia [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2006-10-05

    A new method for studying surface reaction of LaNi{sub 5} absorbing alloy in KOH solution (pH 12) was established. It is based on tip-substrate voltammetry of scanning electrochemical microscopy (SECM) where the tip faradic current is recorded while scanning the substrate potential. The Pt electrode is selected as tip electrode, and the Pt oxide formation-reduction is used as a pH-dependent reaction while the tip potential is held at a constant value. As substrate surface reactions proceed, the pH of solution can be changed, and then the tip faradic current is recorded. The mechanism of discharge process of LaNi{sub 5} alloy was analyzed by comparing the tip current (I {sub tip}) versus substrate potential (E {sub sub}) curve, which reflects the exchange of H{sup +} or OH{sup -} between the alloy surface and the solution, with the substrate current (I {sub sub}) versus substrate potential (E {sub sub}) curve, which reflects the exchange of electron on the LaNi{sub 5} alloy surface. The results showed that the OH{sup -} adsorption process is occurred before the electron transfer process during discharge process, and the adsorptive OH{sup -} helps the oxidation of adsorbed hydrogen atom on the alloy surface. A quantitative assessment for the maximum changes of pH during discharge process is also proposed, and the variation as large as 2.65 pH unit was detected.

  18. Study on the surface reaction of LaNi{sub 5} alloy during discharge process in KOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zuxian; Yang, Yifu; Jiang, Fengshan; Shao, Huixia [Wuhan University, Wuhan (China). Department of Chemistry

    2006-10-05

    A new method for studying surface reaction of LaNi{sub 5} absorbing alloy in KOH solution (pH 12) was established. It is based on tip-substrate voltammetry of scanning electrochemical microscopy (SECM) where the tip faradic current is recorded while scanning the substrate potential. The Pt electrode is selected as tip electrode, and the Pt oxide formation-reduction is used as a pH-dependent reaction while the tip potential is held at a constant value. As substrate surface reactions proceed, the pH of solution can be changed, and then the tip faradic current is recorded. The mechanism of discharge process of LaNi{sub 5} alloy was analyzed by comparing the tip current (I{sub tip}) versus substrate potential (E{sub sub}) curve, which reflects the exchange of H{sup +} or OH{sup -} between the alloy surface and the solution, with the substrate current (I{sub sub}) versus substrate potential (E{sub sub}) curve, which reflects the exchange of electron on the LaNi{sub 5} alloy surface. The results showed that the OH{sup -} adsorption process is occurred before the electron transfer process during discharge process, and the adsorptive OH{sup -} helps the oxidation of adsorbed hydrogen atom on the alloy surface. A quantitative assessment for the maximum changes of pH during discharge process is also proposed, and the variation as large as 2.65 pH unit was detected. (author)

  19. Pressure and gap length dependence of gap breakdown voltage and discharge current of discharge-pumped KrF excimer laser. Hoden reiki KrF laser no zetsuen hakai den prime atsu to reiki denryu no atsuryoku, gap cho izon sei

    Energy Technology Data Exchange (ETDEWEB)

    Yukimura, K.; Kawakami, H. (Doshisha Univ., Tokyo (Japan)); Hitomi, K. (Kyoto Polytechnic College, Kyoto (Japan))

    1991-04-20

    On the gap destruction characteristics of UV-preionized discharge-pumped KrF excimer laser (charge transfer type) and the electric characteristics of the excited discharge, studies were made by changing the pressure (1.5-3 atm) and the discharge gap length (14-21 mm) of the discharge medium. (1) Gap breakdown voltage and the maximum current of the excited discharge give a similarity by a product of pressure and the gap length at the charge volatge. (2) Insulation breakdown of the gap occurs at the wave front of the applied voltage and the breakdown time gets delayed by the decreasing voltage applied. By setting the ionization index at constant value 20, the gap breakdown voltage is estimated at the error within 10%. (3) The relation between the maximum current, pressure and the gap length product changes the characteristics by the charge voltage of the primary condenser. With the result combined with the standardization of voltage/current of the excited discharge, the electric characteristics at the specific pressure and gap length can be readily known. 10 refs., 10 figs.

  20. Breakdown transient study of plasma distributions in a 2.45 GHz hydrogen discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cortázar, O.D., E-mail: daniel.cortazar@uclm.es [Universidad de Castilla-La Mancha, ETSII-INEI, Applied Mechanics and Projects Department, C.J. Cela s/n, 13170 Ciudad Real (Spain); Megía-Macías, A. [ESS Bilbao Consortium, Polígono Ugaldeguren-III Pol. A 7B, 48170-Zamudio, Vizcaya (Spain); Tarvainen, O.; Koivisto, H. [University of Jyväskylä, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2015-05-01

    Plasma distribution transients associated with the breakdown of a 2.45 GHz hydrogen discharge similar to high current microwave ion sources are studied by means of an ultra-fast frame image acquisition system in visible light range. Eight different plasma distributions have been studied by photographing the 2D projections of the discharge through a transparent plasma electrode. The temporal evolution of images in Balmer-alpha and Fulcher band wavelengths have been recorded associated to atomic and molecular excitation and ionization processes. Some unexpected plasma distributions transient behaviors during breakdown are reported.

  1. Plasma Discharge in Toroidal System

    International Nuclear Information System (INIS)

    Usada, Widdi; Suryadi; Purwadi, Agus; Kasiyo

    1996-01-01

    A toroidal discharge apparatus has been made as an initial research in magnetic confinement system. This system consists of a capacitor, a RF source, an igniter system, a primary coil, a torus, and completed by Rogowski probe as a current detector. In this system, the discharge occurs when the minimum voltage is operated at 5 kV. The experiment result shows that the coupling factor is 0.35, it is proved that there is an equality between estimated and measurement results of the primary inductance i.e 8.5 μH

  2. Hazardous gas treatment using atmospheric pressure microwave discharges

    International Nuclear Information System (INIS)

    Mizeraczyk, Jerzy; Jasinski, Mariusz; Zakrzewski, Zenon

    2005-01-01

    Atmospheric pressure microwave discharge methods and devices used for producing non-thermal plasmas for control of gaseous pollutants are described in this paper. The main part of the paper is concerned with microwave torch discharges (MTDs). Results of laboratory experiments on plasma abatement of several volatile organic compounds (VOCs) in their mixtures with either synthetic air or nitrogen in low (∼100 W) and moderate (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of MTD generators, i.e. low-power coaxial-line-based MTDs, moderate-power waveguide-based coaxial-line MTDs and moderate-power waveguide-based MTDs were used. The gas flow rate and microwave (2.45 GHz) power delivered to the discharge were in the range of 1-3 litre min -1 and 100-400 W, respectively. The concentrations of the processed gaseous pollutants were from several to several tens of per cent. The results showed that the MTD plasmas fully decomposed the VOCs at a relatively low energy cost. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g (kW-h) -1 . This suggests that MTD plasmas can be useful tools for decomposition of highly concentrated VOCs

  3. Free double layers in mercury-arc discharges

    International Nuclear Information System (INIS)

    Maciel, H.S.; Allen, J.E.

    1989-01-01

    A study has been carried out of free double layers formed within the plasma volume of a low-pressure mercury-arc discharge at high current densities. The free double layer is observed to form as a visible boundary, which drifts slowly from the central section of the discharge. Current-driven instabilities are observed as the discharge current is gradually increased to a critical value, at which current limitation is observed to occur. This process, which is accompanied by high-current spikes, ceases when the free double layer becomes visible as a sharp boundary dividing the discharge column into two regions of different luminosities. The layer is observed to form in the later stages of current limitation, the onset of which occurs for a ratio of drift to thermal speed of electrons of about unity. Electrical energy is converted by the layer into kinetic energy of the changed particles. Accordingly high-energy ions were measured by means of an electrostatic energy analyser. The multiple-sheath character of the free 'double layer'', which is inferred from probe measurements of potential profiles, is discussed and comparisons with other space-charge structures with the same topology are made. (author)

  4. Time resolved EUV spectra from Zpinching capillary discharge plasma

    Science.gov (United States)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  5. H2S-Mediated Thermal and Photochemical Methane Activation

    NARCIS (Netherlands)

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V.

    2013-01-01

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with

  6. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece)

    Science.gov (United States)

    Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555

  7. Effects of non-Maxwellian electron velocity distribution function on two-stream instability in low-pressure discharges

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2007-01-01

    Electron emission from discharge chamber walls is important for plasma maintenance in many low-pressure discharges. The electrons emitted from the walls are accelerated by the sheath electric field and are injected into the plasma as an electron beam. Penetration of this beam through the plasma is subject to the two-stream instability, which tends to slow down the beam electrons and heat the plasma electrons. In the present paper, a one-dimensional particle-in-cell code is used to simulate these effects both in a collisionless plasma slab with immobile ions and in a cross-field discharge of a Hall thruster. The two-stream instability occurs if the total electron velocity distribution function of the plasma-beam system is a nonmonotonic function of electron speed. Low-pressure plasmas can be depleted of electrons with energy above the plasma potential. This study reveals that under such conditions the two-stream instability depends crucially on the velocity distribution function of electron emission. It is shown that propagation of the secondary electron beams in Hall thrusters may be free of the two-stream instability if the velocity distribution of secondary electron emission is a monotonically decaying function of speed. In this case, the beams propagate between the walls with minimal loss of the beam current and the secondary electron emission does not affect the thruster plasma properties

  8. Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Zhang Jiao; Wang Yanhui; Wang Dezhen; Zhuang Juan

    2014-01-01

    As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on temporal behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is developed to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2…) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to another, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteristics of the discharge system are studied for further understanding of the radial structure. (low temperature plasma)

  9. Investigation of Peculiarities of a High-Voltage Pulsing Corona Discharge in Carbonic Gas and an Feature Using of Such Discharge for CO2 Dissociation

    International Nuclear Information System (INIS)

    Berezina, G.P.; Mirny, V.I.; Omelaenko, O.L.; Us, V.S.

    2006-01-01

    On laboratory stand of plasmochemical reactor the feature of CO 2 dissociation with the purpose of CO production in high-voltage pulsing corona discharge is investigated at a voltage up to 120 kV, a pulse length of a current 0,5 μs a repetition rate up to 100 Hz. Peculiarities of volt-ampere characteristics of such discharge are studied at different pressures of air and carbonic gas in the discharge chamber and construction of an interior electrode. It is established that in conditions of the carried out experiments a maximum efficiency of CO accretion does not exceed 3,5%

  10. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  11. Corrosion behaviors and contact resistances of the low-carbon steel bipolar plate with a chromized coating containing carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Ger, Ming-Der [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China); Wu, Min-Sheng [Department of Weapon System Engineering, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China)

    2009-08-15

    This work improved the surface performance of low-carbon steel AISI 1020 by a reforming pack chromization process at low temperature (700 C) and investigated the possibility that the modified steels are used as metal bipolar plates (BPP) of PEMFCs. The steel surface was activated by electrical discharge machining (EDM) with different currents before the chromizing procedure. Experimental results indicate that a dense and homogenous Cr-rich layer is formed on the EDM carbon steels by pack chromization. The chromized coating pretreated with electrical discharge currents of 2 A has the lowest corrosion current density, 5.78 x 10{sup -8} Acm{sup -2}, evaluated by potentiodynamic polarization in a 0.5 M H{sub 2}SO{sub 4} solution and the smallest interfacial contact resistance (ICR), 11.8 m{omega}-cm{sup 2}, at 140 N/cm{sup 2}. The carbon steel with a coating containing carbides and nitrides is promising for application as metal BPPs, and this report presents the first research in producing BPPs with carbon steels. (author)

  12. γ-H2AX foci are increased in lymphocytes in vivo in young children 1 h after very low-dose X-irradiation: a pilot study

    International Nuclear Information System (INIS)

    Halm, Brunhild M.; Franke, Adrian A.; Lai, Jennifer F.; Turner, Helen C.; Brenner, David J.; Zohrabian, Vatche M.; DiMauro, Robert

    2014-01-01

    Computed tomography (CT) is an imaging modality involving ionizing radiation. The presence of γ-H2AX foci after low to moderate ionizing radiation exposure has been demonstrated; however it is unknown whether very low ionizing radiation exposure doses from CT exams can induce γ-H2AX formation in vivo in young children. To test whether very low ionizing radiation doses from CT exams can induce lymphocytic γ-H2AX foci (phosphorylated histones used as a marker of DNA damage) formation in vivo in young children. Parents of participating children signed a consent form. Blood samples from three children (ages 3-21 months) undergoing CT exams involving very low blood ionizing radiation exposure doses (blood doses of 0.22-1.22 mGy) were collected immediately before and 1 h post CT exams. Isolated lymphocytes were quantified for γ-H2AX foci by a technician blinded to the radiation status and dose of the patients. Paired t-tests and regression analyses were performed with significance levels set at P < 0.05. We observed a dose-dependent increase in γ-H2AX foci post-CT exams (P = 0.046) among the three children. Ionizing radiation exposure doses led to a linear increase of foci per cell in post-CT samples (102% between lowest and highest dose). We found a significant induction of γ-H2AX foci in lymphocytes from post-CT samples of three very young children. When possible, CT exams should be limited or avoided by possibly applying non-ionizing radiation exposure techniques such as US or MRI. (orig.)

  13. γ-H2AX foci are increased in lymphocytes in vivo in young children 1 h after very low-dose X-irradiation: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Halm, Brunhild M.; Franke, Adrian A.; Lai, Jennifer F. [University of Hawaii Cancer Center, Honolulu, HI (United States); Turner, Helen C.; Brenner, David J.; Zohrabian, Vatche M. [Columbia University Medical Center, Center for Radiological Research, New York, NY (United States); DiMauro, Robert [Kapi' olani Medical Center for Women and Children, Honolulu, HI (United States)

    2014-10-15

    Computed tomography (CT) is an imaging modality involving ionizing radiation. The presence of γ-H2AX foci after low to moderate ionizing radiation exposure has been demonstrated; however it is unknown whether very low ionizing radiation exposure doses from CT exams can induce γ-H2AX formation in vivo in young children. To test whether very low ionizing radiation doses from CT exams can induce lymphocytic γ-H2AX foci (phosphorylated histones used as a marker of DNA damage) formation in vivo in young children. Parents of participating children signed a consent form. Blood samples from three children (ages 3-21 months) undergoing CT exams involving very low blood ionizing radiation exposure doses (blood doses of 0.22-1.22 mGy) were collected immediately before and 1 h post CT exams. Isolated lymphocytes were quantified for γ-H2AX foci by a technician blinded to the radiation status and dose of the patients. Paired t-tests and regression analyses were performed with significance levels set at P < 0.05. We observed a dose-dependent increase in γ-H2AX foci post-CT exams (P = 0.046) among the three children. Ionizing radiation exposure doses led to a linear increase of foci per cell in post-CT samples (102% between lowest and highest dose). We found a significant induction of γ-H2AX foci in lymphocytes from post-CT samples of three very young children. When possible, CT exams should be limited or avoided by possibly applying non-ionizing radiation exposure techniques such as US or MRI. (orig.)

  14. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    Energy Technology Data Exchange (ETDEWEB)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Tang, Kai; Liu, Zhi-jie; Wang, Sen [Key Lab of Materials Modification, Dalian University of Technology, Ministry of Education, Dalian 116024 (China)

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  15. Discharge estimation in a backwater affected meandering river

    Directory of Open Access Journals (Sweden)

    H. Hidayat

    2011-08-01

    Full Text Available Variable effects of backwaters complicate the development of rating curves at hydrometric measurement stations. In areas influenced by backwater, single-parameter rating curve techniques are often inapplicable. To overcome this, several authors have advocated the use of an additional downstream level gauge to estimate the longitudinal surface level gradient, but this is cumbersome in a lowland meandering river with considerable transverse surface level gradients. Recent developments allow river flow to be continuously monitored through velocity measurements with an acoustic Doppler current profiler (H-ADCP, deployed horizontally at a river bank. This approach was adopted to obtain continuous discharge estimates at a cross-section in the River Mahakam at a station located about 300 km upstream of the river mouth in the Mahakam delta. The discharge station represents an area influenced by variable backwater effects from lakes, tributaries and floodplain ponds, and by tides. We applied both the standard index velocity method and a recently developed methodology to obtain a continuous time-series of discharge from the H-ADCP data. Measurements with a boat-mounted ADCP were used for calibration and validation of the model to translate H-ADCP velocity to discharge. As a comparison with conventional discharge estimation techniques, a stage-discharge relation using Jones formula was developed. The discharge rate at the station exceeded 3250 m3 s−1. Discharge series from a traditional stage-discharge relation did not capture the overall discharge dynamics, as inferred from H-ADCP data. For a specific river stage, the discharge range could be as high as 2000 m3 s−1, which is far beyond what could be explained from kinematic wave dynamics. Backwater effects from lakes were shown to be significant, whereas interaction of the river flow with tides may impact discharge variation in the fortnightly frequency band

  16. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.F.F; Lomas, P.; Gowers, C.; Guo, H.; Hawkes, N.; Huysmans, G.T.A.; Jones, T.; Parail, V.V.; Rimini, F.; Schunke, B.

    2000-01-01

    Some models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the thermal or the fast-ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in (Guo H Y et al 2000 Edge transport barrier in JET hot-ion H-modes Nucl. Fusion 40 69) using a large database containing both deuterium-only and deuterium-tritium plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing one to study the dependence of the pedestal height on the edge shear. In addition, the range of plasma currents was extended up to 6 MA. It is shown that the edge data are best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to conclusively eliminate the thermal ion model. (author)

  17. Electron capture from H(2s) by H+ at low energies

    International Nuclear Information System (INIS)

    Blanco, S.A.; Falcon, C.A.; Piacentini, R.D.

    1986-01-01

    Total cross sections for resonant electron capture by protons from metastable H(2s) targets have been computed in a six-state molecular close-coupling formalism. Transitions between degenerate sublevels of the L shell of the target occurring at large internuclear distances have been taken into account in the impact parameter approximation. Cross sections are presented for impact velocities between 0.05 and 0.3 au. The results are compared with theoretical calculations for capture from H(2s) by Li 3+ , C 6+ and N 7+ . (author)

  18. Solar processing of CO2 and H2O, routes for solar fuels

    International Nuclear Information System (INIS)

    Flammant, G.; Abanades, St.

    2008-01-01

    Complete text of publication follows: Concentrated solar energy provides heat in the temperature range 200 C - 3000 C for concentration ratio variation from 10 to 10 000 (three orders of magnitude). Consequently, solar-driven thermochemical processes may be proposed to produce hydrogen from water decomposition and to reduce carbon dioxide. This lecture gives an overview of such processes. High temperature thermochemical cycles for hydrogen production by water splitting are currently studied at PROMES lab, particularly 2-step and 3-step cycles based on the following reaction scheme, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + H 2 O → MOox + H 2 (low temperature non solar step). Volatile and non-volatile oxide cycles are developed from the chemical and the engineering points of view. A similar reaction scheme may be proposed to reduce carbon dioxide with concentrated solar energy (Fig. 1), it comes, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + CO 2 → MOox + CO (low temperature non solar step). As a result gas mixtures such as CO 2 /H 2 and CO/H 2 may be produced by solar energy. Such mixtures are the reactants for liquid fuels production (solar fuels)

  19. Access to high beta advanced inductive plasmas at low injected torque

    International Nuclear Information System (INIS)

    Solomon, W.M.; Grierson, B.A.; Okabayashi, M.; Politzer, P.A.; Buttery, R.J.; Ferron, J.R.; Garofalo, A.M.; Jackson, G.L.; Kinsey, J.E.; La Haye, R.J.; Luce, T.C.; Petty, C.C.; Welander, A.S.; Holcomb, C.T.; Lanctot, M.J.; Hanson, J.M.; Turco, F.; In, Y.

    2013-01-01

    Recent experiments on DIII-D demonstrate that advanced inductive (AI) discharges with high equivalent normalized fusion gain can be accessed and sustained with very low amounts (∼1 N m) of externally injected torque, a level of torque that is anticipated to drive a similar amount of rotation as the beams on ITER, via simple consideration of the scaling of the moment of inertia and confinement time. The AI regime is typically characterized by high confinement, and high β N , allowing the possibility for high performance, high gain operation at reduced plasma current. Discharges achieved β N ∼ 3.1 with H 98(y,2) ∼ 1 at q 95 ∼ 4, and are sustained for the maximum duration of the counter neutral beams (NBs). In addition, plasmas using zero net NB torque from the startup all the way through to the high β N phase have been created. AI discharges are found to become increasingly susceptible to m/n = 2/1 neoclassical tearing modes as the torque is decreased, which if left unmitigated, generally slow and lock, terminating the high performance phase of the discharge. Access is not notably different whether one ramps the torque down at high β N , or ramps β N up at low torque. The use of electron cyclotron heating (ECH) and current drive proved to be an effective method of avoiding such modes, enabling stable operation at high beta and low torque, a portion of phase space that has otherwise been inaccessible. Thermal confinement is significantly reduced at low rotation, a result that is reproduced using the TGLF transport model. Although it is thought that stiffness is increased in regions of low magnetic shear, in these AI plasmas, the reduced confinement occurs at radii outside the low shear, and in fact, higher temperature gradients can be found in the low shear region at low rotation. Momentum transport is also larger at low rotation, but a significant intrinsic torque is measured that is consistent with a previous scaling considering the role of the

  20. Access to high beta advanced inductive plasmas at low injected torque

    Science.gov (United States)

    Solomon, W. M.; Politzer, P. A.; Buttery, R. J.; Holcomb, C. T.; Ferron, J. R.; Garofalo, A. M.; Grierson, B. A.; Hanson, J. M.; In, Y.; Jackson, G. L.; Kinsey, J. E.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Okabayashi, M.; Petty, C. C.; Turco, F.; Welander, A. S.

    2013-09-01

    Recent experiments on DIII-D demonstrate that advanced inductive (AI) discharges with high equivalent normalized fusion gain can be accessed and sustained with very low amounts (∼1 N m) of externally injected torque, a level of torque that is anticipated to drive a similar amount of rotation as the beams on ITER, via simple consideration of the scaling of the moment of inertia and confinement time. The AI regime is typically characterized by high confinement, and high βN, allowing the possibility for high performance, high gain operation at reduced plasma current. Discharges achieved βN ∼ 3.1 with H98(y,2) ∼ 1 at q95 ∼ 4, and are sustained for the maximum duration of the counter neutral beams (NBs). In addition, plasmas using zero net NB torque from the startup all the way through to the high βN phase have been created. AI discharges are found to become increasingly susceptible to m/n = 2/1 neoclassical tearing modes as the torque is decreased, which if left unmitigated, generally slow and lock, terminating the high performance phase of the discharge. Access is not notably different whether one ramps the torque down at high βN, or ramps βN up at low torque. The use of electron cyclotron heating (ECH) and current drive proved to be an effective method of avoiding such modes, enabling stable operation at high beta and low torque, a portion of phase space that has otherwise been inaccessible. Thermal confinement is significantly reduced at low rotation, a result that is reproduced using the TGLF transport model. Although it is thought that stiffness is increased in regions of low magnetic shear, in these AI plasmas, the reduced confinement occurs at radii outside the low shear, and in fact, higher temperature gradients can be found in the low shear region at low rotation. Momentum transport is also larger at low rotation, but a significant intrinsic torque is measured that is consistent with a previous scaling considering the role of the turbulent

  1. Isotopic exchange processes in cold plasmas of H2/D2 mixtures.

    Science.gov (United States)

    Jiménez-Redondo, Miguel; Carrasco, Esther; Herrero, Víctor J; Tanarro, Isabel

    2011-05-28

    Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of

  2. Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches

    Science.gov (United States)

    Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol

    2017-07-01

    The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.

  3. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently

  4. Role of H2O2 on the kinetics of low-affinity high-capacity Na+-dependent alanine transport in SHR proximal tubular epithelial cells

    International Nuclear Information System (INIS)

    Pinto, Vanda; Pinho, Maria Joao; Jose, Pedro A.; Soares-da-Silva, Patricio

    2010-01-01

    Research highlights: → H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. → It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na + -dependent [ 14 C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H 2 O 2 on the Na + -dependent [ 14 C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na + dependence of [ 14 C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na + removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H 2 O 2 levels in the extracellular medium significantly reduced Na + -K m and V max values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na + -dependent [ 14 C]-L-alanine uptake. After removal of apocynin from the culture medium, H 2 O 2 levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na + -K m and V max of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells.

  5. Singlet oxygen generation in O2 flow excited by RF discharge: I. Homogeneous discharge mode: α-mode

    International Nuclear Information System (INIS)

    Braginskiy, O V; Vasilieva, A N; Klopovskiy, K S; Kovalev, A S; Lopaev, D V; Proshina, O V; Rakhimova, T V; Rakhimov, A T

    2005-01-01

    2 (a 1 Δ g ) production by direct electron impact and loss owing to quenching by the tube walls at a low pressure below 4 Torr, as well as by three-body recombination with oxygen atoms with increasing pressure above 7 Torr. The analysis of O 2 (a 1 Δ g ) three-body quenching by oxygen atoms showed that this process could actually have a high rate constant and be able to provide a fast SO deactivation at high pressures. The approximate value of the rate constant-(1-3) x 10 -32 cm 3 s -1 has been obtained from the best agreement between the simulated and experimental data on transport dynamics of O 2 (a 1 Δ g ) molecules and O( 3 P) atoms. It is shown that the RF discharge α-mode corresponds to a discharge with an effective reduced electrical field in a quasi-neutral plasma of about ∼ 30 Td, which makes possible a rather high efficiency of SO production of ∼ 3-5%

  6. Partial discharge measurements on 110kV current transformers. Setting the control value. Case study

    Science.gov (United States)

    Dan, C.; Morar, R.

    2017-05-01

    The case study presents a series of partial discharge measurements, reflecting the state of insulation of 110kV CURRENT TRANSFORMERS located in Sibiu county substations. Measurements were performed based on electrical method, using MPD600: an acquisition and analysis toolkit for detecting, recording, and analyzing partial discharges. MPD600 consists of one acquisition unit, an optical interface and a computer with dedicated software. The system allows measurements of partial discharge on site, even in presence of strong electromagnetic interferences because it provides synchronous acquisition from all measurement points. Therefore, measurements, with the ability to be calibrated, do render: - a value subject to interpretation according to IEC 61869-1:2007 + IEC 61869-2:2012 + IEC 61869-3:2011 + IEC 61869-5:2011 and IEC 60270: 2000; - the possibility to determine the quantitative limit of PD (a certain control value) to which the equipment can be operated safely and repaired with minimal costs (relative to the high costs implied by eliminating the consequences of a failure) identified empirically (process in which the instrument transformer subjected to the tests was completely destroyed).

  7. Current limitation by an electric double layer in ion laser discharges

    International Nuclear Information System (INIS)

    Torven, S.

    1977-12-01

    A theory for current limitation in ion laser discharges is investigated. The basic mechanism considered is saturation of the positive ion flux at an electric double layer by the limited flux of neutral atoms. The result is compared with a recently published synthesis of a large number of experimental data which agree well with those predicted by the double layer model

  8. Ramp discharge in Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, W.H.; Beshara, A.B.; El-Bialy, A.B.; Masoud, M.M. [Plasma and Nuclear Fusion Dept., N.R.C., Atomic Energy Authority, Enshass (Egypt)

    2004-07-01

    A ramp Z-pinch discharge is designed and built in order to increase the pinch ratio and obtain a maximum contraction, and to increase the temperature. The discharge chamber is a cylindrical Pyrex tube of 25 cm long, 18.5 cm, 20 cm inner and outer diameter and two circular Aluminum plates of radius 15 cm separated by 21 cm are inserted into the tube. The tube is filled with He gas at 0.1 mbar. Two capacitor banks are used, the first bank 30 {mu}F and the second fast bank 1.3 {mu}F. The charging voltage was 8 kV for both banks. The discharge current and voltage of each bank are measured by potential divider and Rogowski coil respectively. Also the plasma inductance and resistance are obtained for each case. The plasma inductance has its peak value 300 nH at 4 {mu}s, while the plasma resistance has it minimum 8 m{omega} at the same time in the case of conventional discharge (single bank). In the case of ramp discharge, the inductance has two peaks 440 nH, 380 nH at 4 {mu}s, 9.5 {mu}s respectively, while the resistance has two minimum 4 m{omega}, 20 m{omega} at at 4 {mu}s, 9.5 {mu}s respectively. The temperature has been measure spectroscopically by using relative continuum intensity ratio method. The temperature has its peak value 38 eV at 4 {mu}s for single bank case, while it larger peak value 55 eV for ramp case. (orig.)

  9. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    Science.gov (United States)

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  10. Variability of O2, H2S, and pH in intertidal sediments measured on a highly resolved spatial and temporal scale

    Science.gov (United States)

    Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.

    2003-04-01

    We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.

  11. Facile synthesis technology of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C adding H{sub 2}O{sub 2} in ball mill process

    Energy Technology Data Exchange (ETDEWEB)

    Min, Xiujuan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Mu, Deying [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Department of Environmental Engineering, Harbin University of Commerce, Harbin 150076 (China); Li, Ruhong [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China)

    2016-11-15

    Highlights: • Sintering time of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} reduced to 6 hours by adding hydrogen peroxide. • Electrochemical performance of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} was improved by reducing sintering time. • The Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} production process was simplified during material synthesis stage. - Abstract: Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C has stable structure, high theory specific capacity and good safety performance, therefore it has become the research focus of lithium-ion batteries in recent years. The facile synthesis technology of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C was characterized by adding different amounts of H{sub 2}O{sub 2}. Structure and morphology characteristics were examined by XRD, TG, Raman Spectroscopy, XPS and SEM. Electrochemical performance was investigated by constant current charging and discharging test. The results revealed that the Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C electrochemical performance of adding 15 mL H{sub 2}O{sub 2} was better after sintering during 6 h. At the charge cut-off voltage of 4.3 V, the first discharge capacity at 0.2 C rate reached 127 mAh g{sup −1}. Because of adding H{sub 2}O{sub 2} in the ball-mill dispersant, the vanadium pentoxide formed the wet sol. The molecular-leveled mixture increased the homogeneity of raw materials. Therefore, the addition of H{sub 2}O{sub 2} shortened the sintering time and significantly improved the electrochemical performance of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C.

  12. Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus.

    Directory of Open Access Journals (Sweden)

    Maria C Quintero

    2017-12-01

    Full Text Available Central chemoreceptors are highly sensitive neurons that respond to changes in pH and CO2 levels. An increase in CO2/H+ typically reflects a rise in the firing rate of these neurons, which stimulates an increase in ventilation. Here, we present an ionic current model that reproduces the basic electrophysiological activity of individual CO2/H+-sensitive neurons from the locus coeruleus (LC. We used this model to explore chemoreceptor discharge patterns in response to electrical and chemical stimuli. The modeled neurons showed both stimulus-evoked activity and spontaneous activity under physiological parameters. Neuronal responses to electrical and chemical stimulation showed specific firing patterns of spike frequency adaptation, postinhibitory rebound, and post-stimulation recovery. Conversely, the response to chemical stimulation alone (based on physiological CO2/H+ changes, in the absence of external depolarizing stimulation, showed no signs of postinhibitory rebound or post-stimulation recovery, and no depolarizing sag. A sensitivity analysis for the firing-rate response to the different stimuli revealed that the contribution of an applied stimulus current exceeded that of the chemical signals. The firing-rate response increased indefinitely with injected depolarizing current, but reached saturation with chemical stimuli. Our computational model reproduced the regular pacemaker-like spiking pattern, action potential shape, and most of the membrane properties that characterize CO2/H+-sensitive neurons from the locus coeruleus. This validates the model and highlights its potential as a tool for studying the cellular mechanisms underlying the altered central chemosensitivity present in a variety of disorders such as sudden infant death syndrome, depression, and anxiety. In addition, the model results suggest that small external electrical signals play a greater role in determining the chemosensitive response to changes in CO2/H+ than previously

  13. Modelling electric discharge chemistry

    International Nuclear Information System (INIS)

    McFarlane, J.; Wren, J.C.

    1991-07-01

    The chemistry occurring in a electric discharge was modelled to predict how it would be influenced by discharge conditions. The discharge was characterized by a calculated Boltzmann electron-energy distribution, from which rate constants for electron-molecule processes in air were determined. These rate constants were used in a chemical kinetics calculation that also included reactions between neutral molecules, ions, free radicals and electronically excited species. The model describes how the discharge chemistry was influenced by humidity, electric field, electron number density, and concentrations of key reagents identified in the study. The use of an electric discharge to destroy airborne contaminant molecules was appraised, the targeted contaminants being CF 2 Cl 2 , HCN, and SO 2 . The modelling results indicate that an electric discharge should be able to remove HCN and CF 2 Cl 2 effectively, especially if the discharge conditions have been optimized. Effective destruction is achieved with a moderate electric field (over 1 x 10 -15 V.cm 2 ), a substantial electron number density (over 1 x 10 12 cm -3 ), and the presence of H 2 0 in the process air. The residence time in the discharge was also shown to be important in contaminant destruction. An attempt was made to explain the results of the electric discharge abatement of SO 2 , a component of a simulated flue-gas mixture. Results from the model indicate that the discharge parameters that increase the concentration of hydroxyl radical also increase the rate of decomposition of SO 2 . An objective of the study was to explain the apparent enhancement of SO 2 destruction by the presence of a small amount of NO 2 . It was thought that a likely explanation would be the stabilization of HOSO 2 , an important intermediate in the oxidation of SO 2 by NO 2 . (49 figs., 14 tabs., 75 refs.)

  14. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    International Nuclear Information System (INIS)

    Khan, Ziauddin; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10"–"8 mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m"2 current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H_2O) vapor by 95% and oxygen (O_2) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10"−"8 mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  15. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-02-15

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10{sup –8} mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m{sup 2} current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H{sub 2}O) vapor by 95% and oxygen (O{sub 2}) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10{sup −8} mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  16. Formation of palladium hydrides in low temperature Ar/H{sub 2}-plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, H., E-mail: wulff@uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff-Straße 6, 17487 Greifswald (Germany); Quaas, M. [LITEC-LP, Brandteichstraße 20, 17489 Greifswald (Germany); Deutsch, H.; Ahrens, H. [University of Greifswald, Institute of Physics, Felix-Hausdorff-Straße 6, 17487 Greifswald (Germany); Fröhlich, M. [Leibniz Institute for Plasma Science and Technology e.V., Felix-Hausdorff-Straße 2 (Germany); Helm, C.A. [University of Greifswald, Institute of Physics, Felix-Hausdorff-Straße 6, 17487 Greifswald (Germany)

    2015-12-01

    were treated under low pressure conditions by an Ar/H{sub 2}-plasma. • The formation of Pd hydrides depends on the substrate voltage and the plasma exposition time. • Substrate voltages up to − 50 V cause a lattice dilatation in the fcc Pd unit cell. • Higher biasing conditions cause a lattice shrinking of the fcc Pd structure. • Under longtime plasma exposure the fcc PdH{sub Vac} phases convert into cubic PdH{sub 1.33}.

  17. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

    Science.gov (United States)

    Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

    2018-05-01

    Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

  18. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.; Lomas, P.; Gowers, C.

    2000-01-01

    Models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in using a large database containing both Deuterium-only (DD) and Deuterium-Tritium (DT) plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing to study the dependence of the pedestal height on the edge shear. In addition the range of plasma currents was extended up to 6 MA. It is shown that the edge data is best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to eliminate conclusively the thermal ion model. (author)

  19. Shock waves in water at low energy pulsed electric discharges

    International Nuclear Information System (INIS)

    Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu

    2012-01-01

    Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of ≤1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.

  20. Chemical absorption of H2S for biogas purification

    Directory of Open Access Journals (Sweden)

    Horikawa M.S.

    2004-01-01

    Full Text Available This work presents an experimental study of purification of a biogas by removal of its hydrogen sulphide (H2S content. The H2S was removed by means of chemical absorption in an iron-chelated solution catalyzed by Fe/EDTA, which converts H2S into elemental sulphur (S. Preparation of the catalyst solution and the results of biogas component absorption in the catalyst solution (0.2 mol/L are presented. These results are compared with those for physical absorption into pure water under similar conditions. Experimental results demonstrate that, under the same experimental conditions, a higher percentage of H2S can be removed in the catalytic solution than in water. In a continuous counter current using adequate flow-rate phases contact at room temperature and low gas pressure, the results demonstrate that is possible to totally remove the H2S from the biogas with the prepared catalytic solution.

  1. Plasma self-oscillations in the temperature-limited current regime of a hot cathode discharge

    International Nuclear Information System (INIS)

    Arnas Capeau, C.; Bachet, G.; Doveil, F.

    1995-01-01

    Experimental observations of self-oscillations occurring in the so-called ''temperature-limited current regime'' of a hot cathode discharge are presented. Their frequency and amplitude are strongly dependent on the discharge parameters. The scaling laws of their variation and an example of a period-doubling route to chaos are reported. A two probe experiment showing that the plasma behavior is closely related to the hot cathode sheath stability is also reported. copyright 1995 American Institute of Physics

  2. Investigation of multipactoring discharge in an H-type resonator of an ion linac

    International Nuclear Information System (INIS)

    Lobzev, L.D.; Mazalov, Yu.P.; Gusev, E.V.; Shulika, N.G.

    1993-01-01

    The study on the variation of parameters of an auto generator power supply of an ion linear accelerator which is under construction on the base of the H-type resonator with drift tube comb mounts has been made. The main attention was paid to investigating multipactor discharges. It is concluded, that presence of secondary autonomous self-oscillation circuit providing the field rise with the frequency close to operation frequency leads to the decrease of multipactor discharge intensity level, which is enough for the elimination of their harmful effect on accelerator steady-state performance. 8 refs., 3 figs

  3. The dischargeable cut-off score of Oswestry Disability Index (ODI) in the inpatient care for low back pain with disability.

    Science.gov (United States)

    Park, Sang-Won; Shin, Ye-Sle; Kim, Hye-Jin; Lee, Jin-Ho; Shin, Joon-Shik; Ha, In-Hyuk

    2014-10-01

    The admission due to low back pain (LBP) became prevalent cause of international economic losses. Since LBP patients with disability are often subject to inpatient care, it is important to determine the appropriate time of discharge. The purpose of this study is to set the cut-off value of appropriate Oswestry Disability Index (ODI) at the time of discharge. Of 1,394 LBP patients admitted in hospital specialized in spinal disease, 774 eligible patients with disability were included in this study. And several clinical variables including numerical rating score, ODI, satisfaction level were observed during the hospital stay. We considered satisfaction level as an important factor for discharge, categorized patients into satisfied group and dissatisfied group. Through the statistical analysis, appropriate factor for determining dischargeable patients satisfied with their current condition and its cut-off value of ODI were found. And proper predictors for the cut-off value were extracted statistically and logically from a pool of several clinical indexes. The ODI at the time of discharge was most accurate in determining dischargeable patients. The cut-off value of ODI was 30. Predictors were ODI questions 4 and 6. We set the cut-off value of dischargeable ODI for LBP inpatient with disability and found its predictor.

  4. Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films

    Science.gov (United States)

    El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.

    2006-08-01

    Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).

  5. Waste water discharges into natural waters

    International Nuclear Information System (INIS)

    Marri, P.; Barsanti, P.; Mione, A.; Posarelli, M.

    1996-12-01

    The aqueous discharges into natural waters is a very technical solution expecially for surface buoyant discharges. It is not only convenient to limit the concentration levels of the discharges, but also to improve the turbolent processes that diluite the discharge. Mostly these processes depend by some geometric parameters of the discharge and by some physical parameters of the effluent and of the receiving water body. An appropriate choice of some parameters, using also suitable mathematical models, allows to design discharges with a very high dilution; so the decreasing of the pollutant levels is improved and the environmental impact can be reduced versus a not diluted effluent. The simulations of a mathematical model, here described, prove that in some circumstances, expecially in case of discharges of fresh water into saline water bodies with a low velocity of the current, the dilution is poor; the effluent can be trapped in a narrow water surface layer where the pollutant concentrations remain high. also far away from the discharge point

  6. Investigation of gas discharge ion sources for on-line mass separation

    International Nuclear Information System (INIS)

    Kirchner, R.

    1976-03-01

    The development of efficient gas discharge ion sources with axial beam extraction for on-line mass separation is described. The aim of the investigation was to increase the ion source temperature, the lifetime and the ionisation yield in comparison to present low-pressure are discharge ion sources and to reduce the ion current density from usually 1 to 100 mA/cm 3 . In all ion sources the pressure range below the minimal ignition pressure of the arc discharge was investigated. As a result an ion source was developed which works at small changes in geometry and in electric device of a Nielsen source with high ionization yield (up to 50% for xenon) stabil and without ignition difficulties up to 10 -5 Torr. At a typical pressure of 3 x 10 -5 Torr ion current and ion current density are about 1 μA and 0.1 mA/cm 3 respectively besides high yield and a great emission aperture (diameter 1.2 mm). (orig.) [de

  7. Mechanism of formation of subnanosecond current front in high-voltage pulse open discharge

    Science.gov (United States)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2014-11-01

    The mechanism of subnanosecond current front rise observed previously in the experiment in high-voltage pulse open discharge in helium is studied in kinetic particle-in-cell simulations. The Boltzmann equations for electrons, ions, and fast atoms are solved self-consistently with the Poisson equations for the electrical potential. The partial contributions to the secondary electron emission from the ions, fast atoms, photons, and electrons, bombarding the electrode, are calculated. In simulations, as in the experiment, the discharge glows between two symmetrical cathodes and the anode grid in the midplane at P =6 Torr and the applied voltage of 20 kV. The electron avalanche development is considered for two experimental situations during the last stage of breakdown: (i) with constant voltage and (ii) with decreasing voltage. For case (i), the subnanosecond current front rise is set by photons from the collisional excitation transfer reactions. For the case (ii), the energetic electrons swamp the cathode during voltage drop and provide the secondary electron emission for the subnanosecond current rise, observed in the experiment.

  8. Shear optimization experiments with current profile control on JET

    International Nuclear Information System (INIS)

    1997-01-01

    A record performance on JET has been obtained with shear optimization scenarios. A neutron yield of 5.6x10 16 s -1 in deuterium discharges, and a global energy confinement improvement above the ITER-89 L-mode scaling with H2.5 in L-mode and H ≤ 3 in H-mode have been achieved. The tailoring of plasma current, density and heating power waveforms and current profile control with lower hybrid current drive and ICRF phasing have been essential. Internal energy, particle and momentum transport barriers develop spontaneously upon heating above a threshold power of about 15 MW with neutral beams and ICRH into a low-density target plasma, with a wide central region of slightly negative or flat magnetic shear with q > 1 everywhere. An additional H-mode transition can also raise the pressure in the region between internal and edge transport barriers. The ion heat conductivity falls to the neoclassical level in the improved core confinement region. Pressure profile control through power deposition feedback control makes it possible to work close to the marginal stability boundary for pressure-driven MHD modes. First experiments in deuterium/tritium plasmas, with up to 75% tritium target concentration, have established internal transport barriers already with heating powers at the lowest threshold of pure deuterium plasmas, resulting in a fusion power output of P fusion = 2 MW. (author)

  9. LIF diagnostics of hydroxyl radical in atmospheric pressure He-H2O dielectric barrier discharges

    Czech Academy of Sciences Publication Activity Database

    Dilecce, G.; Ambrico, P. F.; Šimek, Milan; De Benedictis, S.

    2012-01-01

    Roč. 398, č. 4 (2012), s. 142-147 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z20430508 Keywords : Spectroscopic Techniques * Plasma Diagnostics * LIF * OH * Dielectric Barrier Discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2012

  10. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1984-01-01

    Neutron scattering experiments have shown that both the (H3-H4)2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk of the type proposed by Klug et al. (23), can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. The low resolution data are in good agreement with those calculated for a cylindrical model 64 X 27 A, but other elongated models fit those data almost as well, including one that approximates free N-terminal arms at each end. Free arms are not necessary, but they must extend from the ends if they exist. A contrast matching experiment done with 50% deuterated H2b and undeuterated H2a in the reconstituted dimer showed that these two histones must each be rather elongated within the complex and are not just confined to one end. The amount of scattering contrast between the undeuterated and 50% deuterated histones was sufficient to suggest further experiments using complexes reconstituted from mixtures of undeuterated and partially deuterated histones which will help elucidate their arrangement within the histone complexes and within the octamer core of the nucleosome core particle

  11. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Science.gov (United States)

    Tang, Enling; Zhao, Liangliang; Han, Yafei; Zhang, Qingming; Wang, Ruizhi; He, Liping; Liu, Shuhua

    2018-04-01

    Due to the actual situation of spacecraft surface' charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming

  12. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Directory of Open Access Journals (Sweden)

    Enling Tang

    2018-04-01

    Full Text Available Due to the actual situation of spacecraft surface’ charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane, respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low

  13. High-Current Plasma Electron Sources

    International Nuclear Information System (INIS)

    Gushenets, J.Z.; Krokhmal, V.A.; Krasik, Ya. E.; Felsteiner, J.; Gushenets, V.

    2002-01-01

    In this report we present the design, electrical schemes and preliminary results of a test of 4 different electron plasma cathodes operating under Kg h-voltage pulses in a vacuum diode. The first plasma cathode consists of 6 azimuthally symmetrically distributed arc guns and a hollow anode having an output window covered by a metal grid. Plasma formation is initiated by a surface discharge over a ceramic washer placed between a W-made cathode and an intermediate electrode. Further plasma expansion leads to a redistribution of the discharge between the W-cathode and the hollow anode. An accelerating pulse applied between the output anode grid and the collector extracts electrons from this plasma. The operation of another plasma cathode design is based on Penning discharge for preliminary plasma formation. The main glow discharge occurs between an intermediate electrode of the Penning gun and the hollow anode. To keep the background pressure in the accelerating gap at P S 2.5x10 4 Torr either differential pumping or a pulsed gas puff valve were used. The operation of the latter electron plasma source is based on a hollow cathode discharge. To achieve a sharp pressure gradient between the cathode cavity and the accelerating gap a pulsed gas puff valve was used. A specially designed ferroelectric plasma cathode initiated plasma formation inside the hollow cathode. This type of the hollow cathode discharge ignition allowed to achieve a discharge current of 1.2 kA at a background pressure of 2x10 4 Torr. All these cathodes were developed and initially tested inside a planar diode with a background pressure S 2x10 4 Torr under the same conditions: accelerating voltage 180 - 300 kV, pulse duration 200 - 400 ns, electron beam current - 1 - 1.5 kA, and cross-sectional area of the extracted electron beam 113 cm 2

  14. Glow-to-arc transition events in H2-Ar direct current pulsed plasma: Automated measurement of current and voltage

    International Nuclear Information System (INIS)

    Mendes, Luciano A.; Rodrigues, Jhonatam C.; Mafra, Marcio

    2012-01-01

    The glow-to-arc transition phenomena (arcing) observed in plasma reactors used in materials processing was studied through the arcs characteristic current and voltage waveforms. In order to capture these arcs signals, a LABVIEW based automated instrumentation system (ARCVIEW) was developed, including the integration of an oscilloscope equipped with proper current and voltage probes. The system also allows capturing the process parameters at the arc occurrence moments, which were used to map the arcs events conditions. Experiments in H 2 -Ar DC pulsed plasma returned signals data from 215 arcs events, which were analyzed through software routines. According to the results, an anti-arcing system should react in the time order of few microseconds to prevent most of the damage caused by the undesired arcing phenomena.

  15. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    Science.gov (United States)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  16. Synthesis of Nanoparticles in a Pulsed-Periodic Gas Discharge and Their Potential Applications

    Science.gov (United States)

    Ivanov, V. V.; Efimov, A. A.; Myl'nikov, D. A.; Lizunova, A. A.

    2018-03-01

    Conditions for the synthesis of three types nanoparticles (SnO2, Al2O3, and Ag) with typical sizes in the range of 4 to 10 nm and a performance of 0.4 g/h are employed in a pulsed-periodic gas discharge in an atmosphere of air. Spherical Ge nanoparticles with a characteristic size of 13 nm are synthesized by these means for the first time with a performance of around 10 mg/h. The specific energy consumption in the synthesis of nanoparticles is for these materials in the range of 2000 to 5000 kW h/kg. The prospects for using tinoxide nanoparticles in sensor components and jets of silver nanoparticles for aerosol printing are discussed. The merits and demerits of the pulsed gas-discharge method among other gas-phase approaches to the synthesis of nanoparticles are analyzed for the current level of development.

  17. Evaluation of a fuel cell polymer electrolyte with Pt-Sn anode operating with H2, H2-CO mixture, propane and methane

    International Nuclear Information System (INIS)

    Monsalve, Carlos; Hoyos, Bibian

    2005-01-01

    In this work it was tested a proton Exchange membrane fuel cell with a Pt-Sn anode (in a 90:10 ratio) fed with H 2 , a H 2 -CO mixture, propane and methane under a pressure of 10 psi and temperatures of 30, 50 y 70 Celsius degrade. It was found good catalyst tolerance to the CO presence in the hydrogen current, even with catalytic activity to the CO oxidation. For the pure CO, propane and methane cases, the catalytic activity was too low. This results show that the Pt-Sn catalyst it is not appropriated for those fuels.

  18. Low-induction pulse current generator with a volume bus arrangement

    International Nuclear Information System (INIS)

    Bocharov, Yu.N.; Krivosheev, S.I.; Lapin, N.G.; Shneerson, G.A.

    1993-01-01

    Pulse current generator (PC6) with 38 kj stored energy designed for up to 50 kV charging voltage used to obtain magnetic fields within megagauss range, is described. Space (volume) bus arrangement of its modules is used to reduce eigen inductance of PC6. Current is commutated by solid-body spark gaps. Under 3uH inductive load PC6 provides for formation of up to 2.25 MA current pulse with 3.3x10 12 A/s pulse rise time. Technique to determine low inductances as applied to PC6 elements is described. The described PC6 is used for experiments on generation of super-strong pulse magnetic fields in single-loop solenoid with volume occupied by magnetic field, 5-7 mm. Magnetic field with up to 350 T induction amplitude is obtained in these experiments

  19. Rapid pH and PO2 changes in the tissue recording chamber during stoppage of a gas-equilibrated perfusate: effects on calcium currents in ventral horn neurons.

    Science.gov (United States)

    Carlin, K P; Brownstone, R M

    2006-09-01

    In vitro studies often use bicarbonate-buffered saline solutions to mimic the normal extracellular environment of tissues. These solutions are typically equilibrated with gaseous O2 and CO2, the latter interacting with bicarbonate ions to maintain a physiological pH. In vitro tissue chambers, like those used for electrophysiology, are usually continually perfused with the gassed buffer, but stopping the perfusion to add expensive chemicals or acquire imaging data is a common practice. The present study demonstrates that this procedure leads to rapid (PO2 of the detained solution in the tissue chamber. During the first 200 s, pH increased by 0.4 units and resulted in a 25% PO2 reduction of the detained solution. The rates of these changes were dependent on the volume of solution in the chamber. In experiments using acute transverse slices from the lumbar spinal cord of neonatal (postnatal day 0-10) mice, perfusion stoppage of the same duration was accompanied by a 34.7% enhancement of the peak voltage-gated calcium current recorded from ventral horn neurons. In these cells both low voltage-activated and high voltage-activated currents were affected. These currents were unaffected by decreasing PO2 when a CO2-independent buffer was used, suggesting that changes in pH were responsible for the observed effects. It is concluded that the procedure of stopping a bicarbonate/CO2-buffered perfusate results in rapid changes in pH and PO2 of the solution detained in the tissue chamber, and that these changes have the potential to covertly influence experimental results.

  20. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4.nH2O nanorods

    Science.gov (United States)

    Ghosh, Debasis; Giri, Soumen; Das, Chapal Kumar

    2013-10-01

    One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene based composite, which exhibited a high specific capacitance of 367 F g-1 at 5 A g-1 current density and a high energy density of 10.32 W h kg-1 at a power density of 1125 W kg-1 accompanied with long term cyclic stability.One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene