WorldWideScience

Sample records for low-cost arsenic removal

  1. Removal of arsenic from groundwater with low cost multilayer

    International Nuclear Information System (INIS)

    Samad, A.; Rahman, M.A.

    2010-01-01

    A simple, low cost arsenic removal system was developed to treat arsenic contaminated ground water containing 425 +- 4.2 micro g/L arsenic. The system decontaminates arsenic from water by sorption through fine particles of waste materials (Coconut husk's ash, Refused brick dust, Stone dust and Waste newspaper) of multilayer. The treatment efficiency of the process was investigated under various operating conditions that might affect the sorption/ desorption of arsenic. Sorption column method shows the optimum removal of As(III) under the following conditions: initial As concentration (100 micro g/L), sorbent amount (4.0 g for brick dust, 3.0 g for stone dust, 3.0 g for Coconut husk's ash and 0.3 g for waste newspaper), particle size (<355 micro m), treatment flow rate (1.4 mL/min), optimum volume (100 mL) and pH (5.0). Desorption efficiencies with 2M of KOH after the treatment of groundwater were observed in the range of 78 +- 1.2% - 82 +- 1.4%. Average arsenic concentration of treated sample water was 8.30 +- 0.4 micro g/L which is below the WHO guideline value for Bangladesh. Different techniques were used to measure thirteen metals, four anions with pH, conductivity, and temperature to understand the status of other species before and after treatment. The average concentrations of other inorganic constituents of health concern (Cu, Mn, Pb, Cr and Fe) in treated water were below WHO guideline value for drinking water. The present study showed a new method for removal of as from ground water. (author)

  2. Arsenic removal from water using low-cost adsorbents: A comparative study

    Directory of Open Access Journals (Sweden)

    Rajaković Ljubinka V.

    2011-01-01

    Full Text Available Inorganic arsenic removal from water using low-cost adsorbents is presented in this paper. Selective removal of As(III and As(V from water was performed with natural materials (zeolite, bentonite, sepiolite, pyrolusite and limonite and industrial by-products (waste filter sand as a water treatment residual and blast furnace slag from steel production; all inexpensive and locally available. Kinetic and equilibrium studies were realized using batch system techniques under conditions that are likely to occur in real water treatment systems. The natural zeolite and the industrial by-products were found to be good and inexpensive sorbents for arsenic while bentonite and sepiolite clays showed little affinity towards arsenic. The highest maximum sorption capacities were obtained for natural zeolite, 4.07 mg As(V g-1, and waste iron slag, 4.04 mg As(V g-1.

  3. Removal of Arsenic from Groundwater with Low Cost Multilayer Media

    Directory of Open Access Journals (Sweden)

    Abdus Samad

    2010-06-01

    Full Text Available A simple, low cost arsenic removal system was developed to treat arsenic contaminated ground water containing 425 ± 4.2 µg/L arsenic. The system decontaminates arsenic from water by sorption through fine particles of waste materials (Coconut husk’s ash, Refused brick dust, Stone dust and Waste newspaper of multilayer. The treatment efficiency of the process was investigated under various operating conditions that might affect the sorption/ desorption of arsenic. Sorption column method shows the optimum removal of As(III under the following conditions: initial As concentration (100 µg/L, sorbent amount (4.0 g for brick dust, 3.0 g for stone dust, 3.0 g for Coconut husk’s ash and 0.3 g for waste newspaper, particle size (<355 µm, treatment flow rate (1.4 mL/min, optimum volume (100 mL and pH (5.0. Desorption efficiencies with 2M of KOH after the treatment of groundwater were observed in the range of 78 ± 1.2% - 82 ± 1.4%. Average arsenic concentration of treated sample water was 8.30 ± 0.4 µg/L which is below the WHO guideline value for Bangladesh. Different techniques were used to measure thirteen metals, four anions with pH, conductivity, and temperature to understand the status of other species before and after treatment. The average concentrations of other inorganic constituents of health concern (Cu, Mn, Pb, Cr and Fe in treated water were below WHO guideline value for drinking water. The present study showed a new method for removal of as from ground water.

  4. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

    2009-09-14

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  5. Method of arsenic removal from water

    Science.gov (United States)

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  6. Capital and Operating Costs of Small Arsenic Removal Adsorptive Media Systems

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) conducted 50 full-scale demonstration projects on treatment systems removing arsenic from drinking water in 26 states throughout the U.S. The projects were conducted to evaluate the performance, reliability, and cost of arsenic remo...

  7. Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents.

    Science.gov (United States)

    Wang, Yuru; Tsang, Daniel C W

    2013-11-01

    Natural and anthropogenic arsenic (As) contamination of water sources pose serious health concerns, especially for small communities in rural areas. This study assessed the applicability of three industrial byproducts (coal fly ash, lignite, and green waste compost) as the low-cost adsorbents for As(V) removal under various field-relevant conditions (dissolved oxygen, As(V)/Fe ratio, solution pH, and presence of competing species). The physico-chemical properties of the adsorbents were characterized by XRD, XRF, FT-IR, and NMR analysis. Batch experiments demonstrated that coal fly ash could provide effective As(V) removal (82.1%-95%) because it contained high content of amorphous iron/aluminium hydroxides for As(V) adsorption and dissolvable calcium minerals for calcium arsenate precipitation. However, the addition of lignite and green waste compost was found unfavourable since they hindered the As(V) removal by 10%-42% possibly due to dissolution of organic matter and ternary arsenate-iron-organic matter complexes. On the other hand, higher concentrations of dissolved iron (comparing As(V)/Fe ratios of 1:1 and 1:10) and dissolved oxygen (comparing 0.2 and 6 mg/L) only marginally enhanced the As(V) removal at pH 6 and 8. Thus, addition of dissolved iron, water aeration, or pH adjustment became unnecessary because coal fly ash was able to provide effective As(V) removal under the natural range of geochemical conditions. Moreover, the presence of low levels of background competing (0.8 or 8 mg/L of humic acid, phosphate, and silicate) imposed little influence on As(V) removal, possibly because the high adsorption capacity of coal fly ash was far from exhaustion. These results suggested that coal fly ash was a potentially promising adsorbent that warranted further investigation.

  8. Overview of the Performance and Cost Effectiveness of Small Arsenic Removal Technologies

    Science.gov (United States)

    Presentation provides information on the performance and cost of primarily four arsenic removal technologies; adsorptive media, iron removal, coagulation/filtration and the combination system of iron removal followed by adsorptive media.

  9. Regenerating an Arsenic Removal Iron-Based Adsorptive ...

    Science.gov (United States)

    The replacement of exhausted, adsorptive media used to remove arsenic from drinking water accounts for approximately 80% of the total operational and maintenance (O/M) costs of this commonly used small system technology. The results of three, full scale system studies of an on-site media regeneration process (Part 1) showed it to be effective in stripping arsenic and other contaminants from the exhausted media. Part 2, of this two part paper, presents information on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement. The results of the studies indicate that regenerated media is very effective in removing arsenic and the regeneration cost is substantially less than the media replacement cost. On site regeneration, therefore, provides small systems with alternative to media replacement when removing arsenic from drinking water using adsorptive media technology. Part 2 of a two part paper on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement.

  10. Arsenic removal methods for drinking water in the developing countries: technological developments and research needs.

    Science.gov (United States)

    Kabir, Fayzul; Chowdhury, Shakhawat

    2017-11-01

    Arsenic pollution of drinking water is a concern, particularly in the developing countries. Removal of arsenic from drinking water is strongly recommended. Despite the availability of efficient technologies for arsenic removal, the small and rural communities in the developing countries are not capable of employing most of these technologies due to their high cost and technical complexity. There is a need for the "low-cost" and "easy to use" technologies to protect the humans in the arsenic affected developing countries. In this study, arsenic removal technologies were summarized and the low-cost technologies were reviewed. The advantages and disadvantages of these technologies were identified and their scopes of applications and improvements were investigated. The costs were compared in context to the capacity of the low-income populations in the developing countries. Finally, future research directions were proposed to protect the low-income populations in the developing countries.

  11. Treated bottom ash medium and method of arsenic removal from drinking water

    Science.gov (United States)

    Gadgil, Ashok

    2009-06-09

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  12. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    International Nuclear Information System (INIS)

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T.

    2012-01-01

    Nanoscale magnetite (Fe 3 O 4 ) ( 12 O 19 , BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 ± 0.52 nm synthesized by thermolysis method at 320 °C do not show hexagonal phase, however, subsequent annealing at 750 °C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  13. Arsenic removal by magnetic nanocrystalline barium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Hasmukh A.; Byun, Jeehye; Yavuz, Cafer T., E-mail: yavuz@kaist.ac.kr [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST) (Korea, Republic of)

    2012-07-15

    Nanoscale magnetite (Fe{sub 3}O{sub 4}) (<15 nm) is known to remove arsenic efficiently but is very difficult to separate or require high magnetic fields to separate out from the waste water after treatment. Anisotropic hexagonal ferrite (BaFe{sub 12}O{sub 19}, BHF) is a well-known permanent magnet (i.e., fridge magnets) and attractive due to its low cost in making large quantities. BHF offers a viable alternative to magnetite nanocrystals for arsenic removal since it features surfaces similar to iron oxides but with much enhanced magnetism. Herein, we employ BHF nanocrystalline materials for the first time in arsenic removal from wastewater. Our results show better (75 %) arsenic removal than magnetite of the similar sizes. The BHF nanoparticles, 6.06 {+-} 0.52 nm synthesized by thermolysis method at 320 Degree-Sign C do not show hexagonal phase, however, subsequent annealing at 750 Degree-Sign C produced pure hexagonal BHF in >200 nm assemblies. By using BHF, we demonstrate that nanoparticle removal is more efficient and fixed bed type cartridge applications are more possible.

  14. Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries.

    Science.gov (United States)

    Malik, Amir Haider; Khan, Zahid Mehmood; Mahmood, Qaisar; Nasreen, Sadia; Bhatti, Zulfiqar Ahmed

    2009-08-30

    Arsenic concentrations above acceptable standards for drinking water have been detected in many countries and this should therefore is a global issue. The presence of arsenic in subsurface aquifers and drinking water systems is a potentially serious human health hazard. The current population growth in Pakistan and other developing countries will have direct bearing on the water sector for meeting the domestic, industrial and agricultural needs. Pakistan is about to exhaust its available water resources and is on the verge of becoming a water deficit country. Water pollution is a serious menace in Pakistan, as almost 70% of its surface waters as well as its groundwater reserves have contaminated by biological, organic and inorganic pollutants. In some areas of Pakistan, a number of shallow aquifers and tube wells are contaminated with arsenic at levels which are above the recommended USEPA arsenic level of 10 ppb (10 microg L(-1)). Adverse health effects including human mortality from drinking water are well documented and can be attributed to arsenic contamination. The present paper reviews appropriate and low cost methods for the elimination of arsenic from drinking waters. It is recommended that a combination of low cost chemical treatment like ion exchange, filtration and adsorption along with bioremediation may be useful option for arsenic removal from drinking water.

  15. Adsorption Studies for Arsenic Removal Using Activated Moringa oleifera

    Directory of Open Access Journals (Sweden)

    T. Sumathi

    2014-01-01

    Full Text Available A new low cost adsorbent, activated Moringa oleifera has been developed for aqueous arsenic removal. Batch experiments were revealed that As removal was up to 71.3% using activated Moringa oleifera. Kinetics studies revealed that Langmuir isotherm was followed with a better correlation than the Freundlich isotherm. The thermodynamic parameters such as ΔH, ΔS, and ΔG were computed from the experimental data. These values show that the adsorption is endothermic and spontaneous in nature. Thus, this recently developed cost-effective novel biosorbent, activated Moringa oleifera can be used as household level to mitigate the arsenic problem.

  16. Subsurface iron and arsenic removal: Low-cost technology for community-based water supply in Bangladesh

    KAUST Repository

    Van Halem, Doris; Heijman, Bas G J; Johnston, Richard Bart; Huq, Imamul M.; Ghosh, Sanchari K.; Verberk, Jasper Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2010-01-01

    The principle of subsurface or in situ iron and arsenic removal is that aerated water is periodically injected into an anoxic aquifer through a tube well, displacing groundwater containing Fe(II). An oxidation zone is created around the tube well where Fe(II) is oxidised. The freshly formed iron hydroxide surfaces provide new sorption sites for soluble Fe(II) andarsenic. The system's efficiency is determined based on the ratio between abstracted volume with reduced iron/arsenic concentrations (V) and the injected volume (Vi). In the field studypresented in this paper, the small-scale application of this technology was investigated in rural Bangladesh. It was found that at small injection volumes (>1m3) iron removal was successful and became more effective with every successive cycle. For arsenic, however, the system did not prove to be very effective yet. Arsenic retardation was only limited and breakthrough of 10mg/L (WHO guideline) was observed before V/Vi = 1, which corresponds to arrival of groundwater at the well. Possible explanations for insufficient arsenic adsorption are the short contact times within the oxidation zone, and the presence of competing anions, like phosphate. © IWA Publishing 2010.

  17. Subsurface iron and arsenic removal: Low-cost technology for community-based water supply in Bangladesh

    KAUST Repository

    Van Halem, Doris

    2010-12-01

    The principle of subsurface or in situ iron and arsenic removal is that aerated water is periodically injected into an anoxic aquifer through a tube well, displacing groundwater containing Fe(II). An oxidation zone is created around the tube well where Fe(II) is oxidised. The freshly formed iron hydroxide surfaces provide new sorption sites for soluble Fe(II) andarsenic. The system\\'s efficiency is determined based on the ratio between abstracted volume with reduced iron/arsenic concentrations (V) and the injected volume (Vi). In the field studypresented in this paper, the small-scale application of this technology was investigated in rural Bangladesh. It was found that at small injection volumes (>1m3) iron removal was successful and became more effective with every successive cycle. For arsenic, however, the system did not prove to be very effective yet. Arsenic retardation was only limited and breakthrough of 10mg/L (WHO guideline) was observed before V/Vi = 1, which corresponds to arrival of groundwater at the well. Possible explanations for insufficient arsenic adsorption are the short contact times within the oxidation zone, and the presence of competing anions, like phosphate. © IWA Publishing 2010.

  18. Adsorption and removal of arsenic from water by iron ore mining waste.

    Science.gov (United States)

    Nguyen, Tien Vinh; Nguyen, Thi Van Trang; Pham, Tuan Linh; Vigneswaran, Saravanamuth; Ngo, Huu Hao; Kandasamy, J; Nguyen, Hong Khanh; Nguyen, Duc Tho

    2009-01-01

    There is a global need to develop low-cost technologies to remove arsenic from water for individual household water supply. In this study, a purified and enriched waste material (treated magnetite waste, TMW) from the Trai Cau's iron ore mine in the Thai Nguyen Province in Vietnam was examined for its capacity to remove arsenic. The treatment system was packed with TMW that consisted of 75% of ferrous-ferric oxide (Fe(3)O(4)) and had a large surface area of 89.7 m(2)/g. The experiments were conducted at a filtration rate of 0.05 m/h to treat groundwater with an arsenic concentration of 380 microg/L and iron, manganese and phosphate concentrations of 2.07 mg/L, 0.093 mg/L and 1.6 mg/L respectively. The batch experimental results show that this new material was able to absorb up to 0.74 mg arsenic/g. The results also indicated that the treatment system removed more than 90% arsenic giving an effluent with an arsenic concentration of less than 30 microg/L while achieving a removal efficiency of about 80% for Mn(2 + ) and PO(4) (3-). This could be a promising and cost-effective new material for capturing arsenic as well as other metals from groundwater.

  19. Costs of Arsenic Removal Technologies for Small Water Systems: U.S. EPA Arsenic Removal Technology Demonstration Program

    Science.gov (United States)

    As part of the Arsenic Rule Implementation Research Program, between July 2003 and July 2011, the U.S. environmental Protection Agency (EPA) conducted 50 full-scale demonstration projects on treatment systems removing arsenic from drinking water in 26 states throughout the U.S. ...

  20. Arsenic removal by nanoparticles: a review.

    Science.gov (United States)

    Habuda-Stanić, Mirna; Nujić, Marija

    2015-06-01

    Contamination of natural waters with arsenic, which is both toxic and carcinogenic, is widespread. Among various technologies that have been employed for arsenic removal from water, such as coagulation, filtration, membrane separation, ion exchange, etc., adsorption offers many advantages including simple and stable operation, easy handling of waste, absence of added reagents, compact facilities, and generally lower operation cost, but the need for technological innovation for water purification is gaining attention worldwide. Nanotechnology is considered to play a crucial role in providing clean and affordable water to meet human demands. This review presents an overview of nanoparticles and nanobased adsorbents and its efficiencies in arsenic removal from water. The paper highlights the application of nanomaterials and their properties, mechanisms, and advantages over conventional adsorbents for arsenic removal from contaminated water.

  1. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.

    Science.gov (United States)

    Thakur, Lokendra Singh; Mondal, Prasenjit

    2017-04-01

    Co-existence of arsenic and fluoride in groundwater has raised severe health issues to living being. Thus, the present research has been conducted for simultaneous removal of arsenic and fluoride from synthetic groundwater by using electrocoagulation process with aluminum electrode. Effects of initial pH, current density, run time, inter electrode distance and NaCl concentration over percentage removal of arsenic and fluoride as well as operating cost have been studied. The optimum experimental conditions are found to be initial pH: 7, current density: 10 A/m 2 , run time: 95 min, inter electrode distance: 1 cm, NaCl concentration: 0.71 g/l for removal of 98.51% arsenic (initial concentration: 550 μg/l) and 88.33% fluoride (initial concentration: 12 mg/l). The concentration of arsenic and fluoride in treated water are found to be 8.19 μg/l and 1.4 mg/l, respectively, with an operating cost of 0.357 USD/m 3 treated water. Pseudo first and second order kinetic model of individual and simultaneous arsenic and fluoride removal in electrocoagulation have also been studied. Produced sludge characterization studies also confirm the presence of arsenic in As(III) form, and fluoride in sludge. The present electrocoagulation process is able to reduce the arsenic and fluoride concentration of synthetic as well as real groundwater to below 10 μg/l and 1.5 mg/l, respectively, which are maximum contaminant level of these elements in drinking water according to WHO guidelines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Blast furnace residues for arsenic removal from mining-contaminated groundwater.

    Science.gov (United States)

    Carrillo-Pedroza, Fco Raúl; Soria-Aguilar, Ma de Jesús; Martínez-Luevanos, Antonia; Narvaez-García, Víctor

    2014-01-01

    In this work, blast furnace (BF) residues were well characterized and then evaluated as an adsorbent material for arsenic removal from a mining-contaminated groundwater. The adsorption process was analysed using the theories of Freundlich and Langmuir. BF residues were found to be an effective sorbent for As (V) ions. The modelling of adsorption isotherms by empirical models shows that arsenate adsorption is fitted by the Langmuir model, suggesting a monolayer adsorption of arsenic onto adsorbents. Arsenate adsorption onto BF residue is explained by the charge density surface affinity and by the formation of Fe (II) and Fe (III) corrosion products onto BF residue particles. The results indicate that BF residues represent an attractive low-cost absorbent option for the removal of arsenic in wastewater treatment.

  3. Regenerating an Arsenic Removal Iron-Based Adsorptive Media System, Part 2: Performance and Cost

    Science.gov (United States)

    The replacement of exhausted, adsorptive media used to remove arsenic from drinking water accounts for approximately 80% of the total operational and maintenance (O/M) costs of this commonly used small system technology. The results of three, full scale system studies of an on-s...

  4. Arsenic Removal from Aqueous Solutions Using Modified and Unmodified Oak Sawdust

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2016-01-01

    Full Text Available In this research, oak sawdust, in both modified and unmodified forms, was used as an economical and low-cost material for the removal of arsenic from aqueous solutions. For this purpose, arsenic synthetic samples were prepared using NaAsO2 in distilled water and the effects of pH, adsorbent dosage, contact time, and initial As(V concentration were investigated on As(V adsorption using the adsorbents prepared. The results showed that modified sawdust achieved the highest efficiency (>91% over a contact time of 60 min and at pH 7 when the adsorbent dosage was 4gr/L and the initial As(V concentration was 150 µg/L. The data from both adsorbents fitted well to the Langmuir isotherm. Under optimum conditions (an initial As(V concentration of 150 µg/L and optimal absorption pH, contact time, and adsorbent dosage, maximum As(V removal efficiencies were 93.85% and 91.034% with the modified  and unmodified sawdust adsorbents, respectively. Given the availability and low cost of the adsorbent used and the high removal efficiency obtained at  lower adsorbent dosages and contact times, the modified oak sawdust may be recommended as an effective adsorbent for the removal of arsenic (v from aqueous solutions, especially since it requires no need for pH modification.

  5. Integrated bio-oxidation and adsorptive filtration reactor for removal of arsenic from wastewater.

    Science.gov (United States)

    Kamde, Kalyani; Dahake, Rashmi; Pandey, R A; Bansiwal, Amit

    2018-01-08

    Recently, removal of arsenic from different industrial effluent discharged using simple, efficient and low-cost technique has been widely considered. In this study, removal of arsenic (As) from real wastewater has been studied employing modified bio-oxidation followed by adsorptive filtration method in a novel continuous flow through the reactor. This method includes biological oxidation of ferrous to ferric ions by immobilized Acidothiobacillus ferrooxidans bacteria on granulated activated carbon (GAC) in fixed bed bio-column reactor with the adsorptive filtration unit. Removal efficiency was optimized regarding the initial flow rate of media and ferrous ions concentration. Synthetic wastewater sample having different heavy metal ions such as Arsenic (As), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Lead (Pb) and Manganese (Mn) were also used in the study. The structural and surface changes occurring after the treatment process were scrutinized using FT-IR and Scanning Electron Microscopy (SEM) analysis. The finding showed that not only arsenic can be removed considerably in the bioreactor system, but also removing efficiency was much more (oxidation with adsorptive filtration method improves the removal efficiency of arsenic and other heavy metal ions in wastewater sample.

  6. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  7. Adsorption Studies for Arsenic Removal Using Activated Moringa oleifera

    OpenAIRE

    T. Sumathi; G. Alagumuthu

    2014-01-01

    A new low cost adsorbent, activated Moringa oleifera has been developed for aqueous arsenic removal. Batch experiments were revealed that As removal was up to 71.3% using activated Moringa oleifera. Kinetics studies revealed that Langmuir isotherm was followed with a better correlation than the Freundlich isotherm. The thermodynamic parameters such as ΔH, ΔS, and ΔG were computed from the experimental data. These values show that the adsorption is endothermic and spontaneous in nature. Thus, ...

  8. REMOVAL OF ARSENIC FROM DRINKING WATER SUPPLIES BY IRON REMOVAL PROCESS

    Science.gov (United States)

    This design manual is an in-depth presentation of the steps required to design and operate a water treatment plant for removal of arsenic in the As (V) form from drinking water using an iron removal process. The manual also discusses the capital and operating costs including many...

  9. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  10. Arsenic removal using natural biomaterial-based sorbents.

    Science.gov (United States)

    Ansone, Linda; Klavins, Maris; Viksna, Arturs

    2013-10-01

    Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.

  11. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  12. [Arsenic removal by coagulation process and the field expanding experiments for Yangzonghai Lake].

    Science.gov (United States)

    Chen, Jing; Zhang, Shu; Yang, Xiang-jun; Huang, Zhang-jie; Wang, Shi-xiong; Wang, Chong; Wei, Qun-yan; Zhang, Gen-lin; Xiao, Jun

    2015-01-01

    Yangzonghai Lake is the third largest plateau lake in Yunnan province. In June 2008, arsenic contamination was detected in Yangzonghai Lake and the water quality worsens dramatically from standard grade II to worse than grade V. Since Yongzonghai Lake is so large with the area of 31 km2 and the storage capacity of 6.04 x 10(8) m3, those pretreatment operations of the traditional arsenic removal methods, such as pre oxidation, adjusting pH value, are not applicable. In this study, a facile remediation strategy for arsenic removal by coagulation process, in which ferric chloride was directly sprayed into the contaminated water without any pretreatment, was reported. The results showed that the arsenic removal percentage was up to 95.1%-96.7% for 50 L raw water with reagent dosage of 1.62-3.20 mg x L(-1). Furthermore, the pH value of the lake kept constant in the coagulation process, which was beneficial for fish survival. Re-dissolved arsenic from precipitation was not detected in 954 days. The strategy of ferric chloride coagulation were applied to field experiments for lake water with volumes of 1 x 10(4) m3 and 25 x 10(4) m3, in which arsenic was also removed effectively. The reported strategy was of great advantage for simple operation, low cost and ecological safety, therefore it provides a representative example for arsenic contamination treatment of large lake.

  13. Arsenic removal for ceramic water filters

    Directory of Open Access Journals (Sweden)

    Mishant Kumar

    2013-02-01

    Full Text Available Arsenic in drinking water is a hazard to human health and is a known carcinogen (Mass 1992. Resource Development International – Cambodia (RDIC has researched, developed, and manufactured simple ceramic water fi lters (CWF which have proved to be extremely effective in removing pathogens from water. These fi lters however, do not remove arsenic from water, which exists in the source water at levels above the World Health Organisation (WHO guideline of 10μg/L. The aims of this literature based study were to investigate conventional and non-conventional arsenic removal processes, and to discuss the options for applying an arsenic removal technology to the CWFs produced by RDIC. It was found that conventional arsenic removal technologies are diffi cult to implement in the context of household water treatment in a developing country. This study suggested that non-conventional arsenic removal technologies shall be more effective and that field studies must be undertaken to verify the success of such methods.

  14. Removal of arsenic from contaminated water using coagulation enhanced microfiltration

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Dumouchel, A.; Wong, W.P.; Brown, C.E.

    2002-01-01

    Results of an innovative arsenic removal process were presented. The process is based on a combination of coagulation and microfiltration processes. Coagulation-Enhanced Microfiltration (CEMF) may eventually become a full-scale commercial technology. This study focused on the process with respect to groundwater treatment because of the importance of arsenic contamination in drinking water. Most experiments were bench-scale using tap water spiked with arsenic. Ferric chloride, which is commonly used in arsenic removal processes was also added. In addition, some tests were conducted on actual arsenic-contaminated water from the effluent treatment plant of a former mining site in Ontario. Results indicate a high arsenic removal efficiency in both spiked and actual water solutions. The microfiltration significantly reduced the level of arsenic in the treatment. This paper described the characteristics of membrane separation. It also presented information regarding chemically enhanced membrane filtration and coagulation-enhanced microfiltration. Bench-scale tests were conducted with both tubular membranes and with immersed capillary membranes. The effect of iron to arsenic ratios on the effectiveness of the system was also tested. It was recommended that future research should include a field study of the process on a pilot-scale to optimize process parameters and to accurately determine the cost of the process. 16 refs., 8 tabs., 9 figs

  15. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism.

    Science.gov (United States)

    Nidheesh, P V; Singh, T S Anantha

    2017-08-01

    Arsenic contamination in drinking water is a major issue in the present world. Arsenicosis is the disease caused by the regular consumption of arsenic contaminated water, even at a lesser contaminated level. The number of arsenicosis patients is increasing day-by-day. Decontamination of arsenic from the water medium is the only one way to regulate this and the arsenic removal can be fulfilled by water treatment methods based on separation techniques. Electrocoagulation (EC) process is a promising technology for the effective removal of arsenic from aqueous solution. The present review article analyzes the performance of the EC process for arsenic removal. Electrocoagulation using various sacrificial metal anodes such as aluminium, iron, magnesium, etc. is found to be very effective for arsenic decontamination. The performances of each anode are described in detail. A special focus has been made on the mechanism behind the arsenite and arsenate removal by EC process. Main trends in the disposal methods of sludge containing arsenic are also included. Comparison of arsenic decontamination efficiencies of chemical coagulation and EC is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pilot demonstrations of arsenic removal technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal Malcolm D.

    2004-09-01

    The Arsenic Water Technology Partnership (AWTP) program is a multi-year program funded by a congressional appropriation through the Department of Energy to develop and test innovative technologies that have the potential to reduce the costs of arsenic removal from drinking water. The AWTP members include Sandia National Laboratories, the American Water Works Association (Awwa) Research Foundation and WERC (A Consortium for Environmental Education and Technology Development). The program is designed to move technologies from bench-scale tests to field demonstrations. The Awwa Research Foundation is managing bench-scale research programs; Sandia National Laboratories is conducting the pilot demonstration program and WERC will evaluate the economic feasibility of the technologies investigated and conduct technology transfer activities. The objective of the Sandia Arsenic Treatment Technology Demonstration project (SATTD) is the field demonstration testing of both commercial and innovative technologies. The scope for this work includes: (1) Identification of sites for pilot demonstrations; (2) Accelerated identification of candidate technologies through Vendor Forums, proof-of-principle laboratory and local pilot-scale studies, collaboration with the Awwa Research Foundation bench-scale research program and consultation with relevant advisory panels; and (3) Pilot testing multiple technologies at several sites throughout the country, gathering information on: (a) Performance, as measured by arsenic removal; (b) Costs, including capital and Operation and Maintenance (O&M) costs; (c) O&M requirements, including personnel requirements, and level of operator training; and (d) Waste residuals generation. The New Mexico Environment Department has identified over 90 public water systems that currently exceed the 10 {micro}g/L MCL for arsenic. The Sandia Arsenic Treatment Technology Demonstration project is currently operating pilots at three sites in New Mexico. The cities of

  17. A cost-effective system for in-situ geological arsenic adsorption from groundwater.

    Science.gov (United States)

    Shan, Huimei; Ma, Teng; Wang, Yanxin; Zhao, Jie; Han, Hongyin; Deng, Yamin; He, Xin; Dong, Yihui

    2013-11-01

    An effective and low-cost in-situ geological filtration system was developed to treat arsenic-contaminated groundwater in remote rural areas. Hangjinhouqi in western Hetao Plain of Inner Mongolia, China, where groundwater contains a high arsenic concentration, was selected as the study area. Fe-mineral and limestone widely distributed in the study area were used as filter materials. Batch and column experiments as well as field tests were performed to determine optimal filtration parameters and to evaluate the effectiveness of the technology for arsenic removal under different hydrogeochemical conditions. A mixture containing natural Fe-mineral (hematite and goethite) and limestone at a mass ratio of 2:1 was found to be the most effective for arsenic removal. The results indicated that Fe-mineral in the mixture played a major role for arsenic removal. Meanwhile, limestone buffered groundwater pH to be conducive for the optimal arsenic removal. As(III) adsorption and oxidation by iron mineral, and the formation of Ca-As(V) precipitation with Ca contributed from limestone dissolution were likely mechanisms leading to the As removal. Field demonstrations revealed that a geological filter bed filled with the proposed mineral mixture reduced groundwater arsenic concentration from 400 μg/L to below 10 μg/L. The filtration system was continuously operated for a total volume of 365,000L, which is sufficient for drinking water supplying a rural household of 5 persons for 5 years at a rate of 40 L per person per day. © 2013.

  18. Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Yasar, Abdullah; Tabinda, Amtul Bari; Shahzadi, Uzma; Saleem, Pakeeza [GC University, Lahore (Pakistan)

    2014-10-15

    The main focus of this study was the evaluation of arsenic concentration in the ground water of Lahore at different depth and application of different mitigation techniques for arsenic removal. Twenty four hours of solar oxidation gives 90% of arsenic removal as compared to 8 hr. or 16 hr. Among oxides, calcium oxide gives 96% of As removal as compared to 93% by lanthanum oxide. Arsenic removal efficiency was up to 97% by ferric chloride, whereas 95% by alum. Activated alumina showed 99% removal as compared to 97% and 95% removal with bauxite and charcoal, respectively. Elemental analysis of adsorbents showed that the presence of phosphate and silica can cause a reduction of arsenic removal efficiency by activated alumina, bauxite and charcoal. This study has laid a foundation for further research on arsenic in the city of Lahore and has also provided suitable techniques for arsenic removal.

  19. Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan

    International Nuclear Information System (INIS)

    Yasar, Abdullah; Tabinda, Amtul Bari; Shahzadi, Uzma; Saleem, Pakeeza

    2014-01-01

    The main focus of this study was the evaluation of arsenic concentration in the ground water of Lahore at different depth and application of different mitigation techniques for arsenic removal. Twenty four hours of solar oxidation gives 90% of arsenic removal as compared to 8 hr. or 16 hr. Among oxides, calcium oxide gives 96% of As removal as compared to 93% by lanthanum oxide. Arsenic removal efficiency was up to 97% by ferric chloride, whereas 95% by alum. Activated alumina showed 99% removal as compared to 97% and 95% removal with bauxite and charcoal, respectively. Elemental analysis of adsorbents showed that the presence of phosphate and silica can cause a reduction of arsenic removal efficiency by activated alumina, bauxite and charcoal. This study has laid a foundation for further research on arsenic in the city of Lahore and has also provided suitable techniques for arsenic removal

  20. Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Addy, Susan E.A.

    2009-09-17

    ARUBA (Arsenic Removal Using Bottom Ash) has proven effective at removing high concentrations of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate--bottom ash from coal fired power plants--is a waste material readily available in South Asia. In comparison to similar technologies, ARUBA uses less media for arsenic removal due to its high surface area to volume ratio. Hence, less waste is produced. A number of experiments were conducted in Bangladesh to determine the effectiveness of various water treatment protocols. It was found that (1) ARUBA removes more than half of the arsenic from water within five minutes of treatment, (2) ARUBA, that has settled at the bottom of a treatment vessel, continues to remove arsenic for 2-3 days, (3) ARUBA's arsenic removal efficiency can be improved through sequential partial dosing (adding a given amount of ARUBA in fractions versus all at once), and (4) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic levels ten times lower than treating water directly out of the well. Our findings imply a number of tradeoffs between ARUBA's effective arsenic removal capacity, treatment system costs, and waste output. These tradeoffs, some a function of arsenic-related policies in Bangladesh (e.g., waste disposal regulations), must be considered when designing an arsenic removal system. We propose that the most attractive option is to use ARUBA in communityscale water treatment centers, installed as public-private partnerships, in Bangladeshi villages.

  1. Comparing Mixed-Media and Conventional Slow-Sand Filters for Arsenic Removal from Groundwater

    Directory of Open Access Journals (Sweden)

    Karolina M. Śmiech

    2018-01-01

    Full Text Available Arsenic contamination of groundwater is a major public health concern worldwide. The problem has been reported mainly in southern Asia and, especially, in Bangladesh. Slow-sand filters (SSF augmented with iron were proven to be a simple, low-cost and decentralized technique for the treatment of arsenic-contaminated sources. In this research, three pilot-scale SSF (flowrate 6 L·h−1 were tested regarding their capability of removing arsenic from groundwater in conditions similar to those found in countries like Bangladesh (70 µg As(III L−1, 26 °C. From the three, two filters were prepared with mixed media, i.e., sand mixed with corrosive iron matter (CIM filter and iron-coated sand (ICS filter, and a third conventional SSF was used as a reference. The results obtained showed that the CIM filter could remove arsenic below the World Health Organization (WHO guideline concentration of 10 µg·L−1, even for inlet concentrations above 150 µg·L−1. After 230 days of continuous operation the arsenic concentration in the effluent started increasing, indicating depletion or saturation of the CIM layer. The effluent arsenic concentration, however, never exceeded the Bangladeshi standard of 50 µg·L−1 throughout the whole duration of the experiments.

  2. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    International Nuclear Information System (INIS)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu

    2014-01-01

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO 4 3- ) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications

  3. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu [Seoul National Univ., Seoul (Korea, Republic of)

    2014-02-15

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO{sub 4}{sup 3-}) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.

  4. Carbon Nanotubes Technology for Removal of Arsenic from Water

    Directory of Open Access Journals (Sweden)

    Ali Naghizadeh

    2012-08-01

    Full Text Available Please cite this article as: Naghizadeh A, Yari AR, Tashauoei HR, Mahdavi M, Derakhshani E, Rahimi R, Bahmani P. Carbon nanotubes technology for removal of arsenic from water. Arch Hyg Sci 2012;1(1:6-11. Aims of the Study: This study was aimed to investigate the adsorption mechanism of the arsenic removal from water by using carbon nanotubes in continuous adsorption column. Materials & Methods: Independent variables including carbon nanotubes dosage, contact time and breakthrough point were carried out to determine the influence of these parameters on the adsorption capacity of the arsenic from water. Results: Adsorption capacities of single wall and multiwall carbon nanotubes were about 148 mg/g and 95 mg/g respectively. The experimental data were analyzed using Langmuir and Freundlich isotherm models and equilibrium data indicate the best fit obtained with Langmuir isotherm model. Conclusions: Carbon nanotubes can be considered as a promising adsorbent for the removal of arsenic from large volume of aqueous solutions. References: 1. Lomaquahu ES, Smith AH. Feasibility of new epidemiology studies on arsenic exposures at low levels. AWWA Inorganic Contaminants Workshop. San Antonio; 1998. 2. Burkel RS, Stoll RC. Naturally occurring arsenic in sandstone aquifer water supply wells of North Eastern Wisconsin. Ground Water Monit Remediat 1999;19(2:114-21. 3. Mondal P, Majumder CB, Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 2006;137(1: 464-79. 4. Meenakshi RCM. Arsenic removal from water: a review. Asian J Water Environ Pollut 2006;3(1:133-9. 5. Wickramasinghe SR, Binbing H, Zimbron J, Shen Z, Karim MN. Arsenic removal by coagulation and filtration: comparison of ground waters from United States and Bangladesh. Desalination 2004;169:231-44. 6. Hossain MF. Arsenic contamination in Bangladesh-an overview. Agric Ecosyst Environ 2006;113(1-4:1-16. 7. USEPA, Arsenic. Final

  5. Arsenic removal from industrial effluent through electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, N. [Central Electrochemical Research Inst., Karaikudi (India). Dept. of Pollution Control; Madhavan, K. [Coimbatore Inst. of Technology, Coimbatore (India). Dept. of Chemistry

    2001-05-01

    In the present investigation, it is attempted to remove arsenic from smelter industrial wastewater through electro-coagulation. Experiments covering a wide range of operating conditions for removal of the arsenic present in the smelter wastewater are carried out in a batch electrochemical reactor. It has been observed from the present work that arsenic can be removed effectively through electrocoagulation. (orig.)

  6. ARSENIC REMOVAL BY IRON REMOVAL PROCESSES

    Science.gov (United States)

    Presentation will discuss the removal of arsenic from drinking water using iron removal processes that include oxidation/filtration and the manganese greensand processes. Presentation includes results of U.S. EPA field studies conducted in Michigan and Ohio on existing iron remo...

  7. Screening and characterization of useful microorganisms to arsenic removal

    OpenAIRE

    宮武, 宗利; 林, 幸男

    2007-01-01

    Microorganisms were isolated from soil and their arsenic removal abilities were evaluated. Seven out of the 100 isolated strains showed more than 20% arsenic removal. Time courses of arsenic removal and cell growth were investigated in three of these isolated strains. Although the growth rates were different, the dependence of arsenic removal on cell growth was similar in three strains (A-84, 88, 89). Strain A-89 showed highest arsenic removal rate of 63% after first day. Strain A-88 was best...

  8. Arsenic removal in a sulfidogenic fixed-bed column bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Muslum, E-mail: muslumaltun@hotmail.com [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Sahinkaya, Erkan [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Durukan, Ilknur; Bektas, Sema [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Technical University of Crete, Department of Mineral Resources Engineering, Chania (Greece)

    2014-03-01

    Highlights: • Sulfidogenic treatment of As-containing AMD was investigated. • High rate simultaneous removal of As and Fe was achieved. • As was removed without adding alkalinity or adjusting pH. • As and Fe removal mechanisms were elucidated. - Abstract: In the present study, the bioremoval of arsenic from synthetic acidic wastewater containing arsenate (As{sup 5+}) (0.5–20 mg/L), ferrous iron (Fe{sup 2+}) (100–200 mg/L) and sulfate (2000 mg/L) was investigated in an ethanol fed (780–1560 mg/L chemical oxygen demand (COD)) anaerobic up-flow fixed bed column bioreactor at constant hydraulic retention time (HRT) of 9.6 h. Arsenic removal efficiency was low and averaged 8% in case iron was not supplemented to the synthetic wastewater. Neutral to slightly alkaline pH and high sulfide concentration in the bioreactor retarded the precipitation of arsenic. Addition of 100 mg/L Fe{sup 2+} increased arsenic removal efficiency to 63%. Further increase of influent Fe{sup 2+} concentration to 200 mg/L improved arsenic removal to 85%. Decrease of influent COD concentration to its half, 780 mg/L, resulted in further increase of As removal to 96% when Fe{sup 2+} and As{sup 5+} concentrations remained at 200 mg/L and 20 mg/L, respectively. As a result of the sulfidogenic activity in the bioreactor the effluent pH and alkalinity concentration averaged 7.4 ± 0.2 and 1736 ± 239 mg CaCO{sub 3}/L respectively. Electron flow from ethanol to sulfate averaged 72 ± 10%. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the nature of the precipitate generated by sulfate reducing bacteria (SRB) activity. Precipitation of arsenic in the form of As{sub 2}S{sub 3} (orpiment) and co-precipitation with ferrous sulfide (FeS), pyrite (FeS{sub 2}) or arsenopyrite (FeAsS) were the main arsenic removal mechanisms.

  9. Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: Laboratory and field studies

    International Nuclear Information System (INIS)

    Bordoloi, Shreemoyee; Nath, Suresh K.; Gogoi, Sweety; Dutta, Robin K.

    2013-01-01

    Highlights: • Arsenic and iron removed by a systematic oxidation–coagulation at optimized pH. • Used KMnO 4 as oxidant and FeCl 3 as coagulant in presence of NaHCO 3 . • Field trial results are highly encouraging. • The method is efficient, safe, simple and low-cost. • The method is suitable for rural application in developing countries. -- Abstract: A three-step treatment process involving (i) mild alkaline pH-conditioning by NaHCO 3 ; (ii) oxidation of arsenite and ferrous ions by KMnO 4 , itself precipitating as insoluble MnO 2 under the pH condition; and (iii) coagulation by FeCl 3 has been used for simultaneous removal of arsenic and iron ions from water. The treated water is filtered after a residence time of 1–2 h. Laboratory batch experiments were performed to optimize the doses. A field trial was performed with an optimized recipe at 30 households and 5 schools at some highly arsenic affected villages in Assam, India. Simultaneous removals of arsenic from initial 0.1–0.5 mg/L to about 5 μg/L and iron from initial 0.3–5.0 mg/L to less than 0.1 mg/L have been achieved along with final pH between 7.0 and 7.5 after residence time of 1 h. The process also removes other heavy elements, if present, without leaving any additional toxic residue. The small quantity of solid sludge containing mainly ferrihydrite with adsorbed arsenate passes the toxicity characteristic leaching procedure (TCLP) test. The estimated recurring cost is approximately USD 0.16 per/m 3 of purified water. A high efficiency, an extremely low cost, safety, non-requirement of power and simplicity of operation make the technique potential for rural application

  10. Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: Laboratory and field studies

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, Shreemoyee; Nath, Suresh K.; Gogoi, Sweety; Dutta, Robin K., E-mail: robind@tezu.ernet.in

    2013-09-15

    Highlights: • Arsenic and iron removed by a systematic oxidation–coagulation at optimized pH. • Used KMnO{sub 4} as oxidant and FeCl{sub 3} as coagulant in presence of NaHCO{sub 3}. • Field trial results are highly encouraging. • The method is efficient, safe, simple and low-cost. • The method is suitable for rural application in developing countries. -- Abstract: A three-step treatment process involving (i) mild alkaline pH-conditioning by NaHCO{sub 3}; (ii) oxidation of arsenite and ferrous ions by KMnO{sub 4}, itself precipitating as insoluble MnO{sub 2} under the pH condition; and (iii) coagulation by FeCl{sub 3} has been used for simultaneous removal of arsenic and iron ions from water. The treated water is filtered after a residence time of 1–2 h. Laboratory batch experiments were performed to optimize the doses. A field trial was performed with an optimized recipe at 30 households and 5 schools at some highly arsenic affected villages in Assam, India. Simultaneous removals of arsenic from initial 0.1–0.5 mg/L to about 5 μg/L and iron from initial 0.3–5.0 mg/L to less than 0.1 mg/L have been achieved along with final pH between 7.0 and 7.5 after residence time of 1 h. The process also removes other heavy elements, if present, without leaving any additional toxic residue. The small quantity of solid sludge containing mainly ferrihydrite with adsorbed arsenate passes the toxicity characteristic leaching procedure (TCLP) test. The estimated recurring cost is approximately USD 0.16 per/m{sup 3} of purified water. A high efficiency, an extremely low cost, safety, non-requirement of power and simplicity of operation make the technique potential for rural application.

  11. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    Science.gov (United States)

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization.

    Science.gov (United States)

    Lee, Ju-Young; Chaimongkalayon, Nantanee; Lim, Jinho; Ha, Heung Yong; Moon, Seung-Hyeon

    2016-01-01

    Affordable carbon composite electrodes were developed to treat low-concentrated groundwater using capacitive deionization (CDI). A carbon slurry prepared using activated carbon powder (ACP), poly(vinylidene fluoride), and N-methyl-2-pyrrolidone was employed as a casting solution to soak in a low-cost porous substrate. The surface morphology of the carbon composite electrodes was investigated using a video microscope and scanning electron microscopy. The capacitance and electrical conductivity of the carbon composite electrodes were then examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. According to the CV and EIS measurements, the capacitances and electrical conductivities of the carbon composite electrodes were in the range of 8.35-63.41 F g(-1) and 0.298-0.401 S cm(-1), respectively, depending on ACP contents. A CDI cell was assembled with the carbon composite electrodes instead of with electrodes and current collectors. The arsenate removal test included an investigation of the optimization of several important operating parameters, such as applied voltage and solution pH, and it achieved 98.8% removal efficiency using a 1 mg L(-1) arsenate solution at a voltage of 2 V and under a pH 9 condition.

  13. The Costs of Small Drinking Water Systems Removing Arsenic from Groundwater

    Science.gov (United States)

    Between 2003 and 2011, EPA conducted an Arsenic Demonstration Program whereby the Agency purchased, installed and evaluated the performance and cost of 50 small water treatment systems scattered across the USA. A major goal of the program was to collect high-quality cost data (c...

  14. Arsenic removal by manganese greensand filters

    Energy Technology Data Exchange (ETDEWEB)

    Phommavong, T. [Saskatchewan Environment, Regina (Canada); Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1994-12-31

    Some of the small communities in Saskatchewan are expected to have difficulty complying with the new maximum acceptable concentration (MAC) of 25 {micro}g/L for arsenic. A test column was set up in the laboratory to study the removal of arsenic from the potable water using oxidation with KMnO{sub 4}, followed by manganese greensand filtration. Tests were run using water from the tap having a background arsenic concentration of <0.5 {micro}g/L and iron concentration in the range of 0.02 to 0.77 mg/L. The test water was spiked with arsenic and iron. Results showed that 61 % to 98% of arsenic can be removed from the potable water by oxidation with KMnO{sub 4} followed by manganese greensand filtration.

  15. Enhancing arsenic removal from groundwater at household level with naturally occurring iron

    Directory of Open Access Journals (Sweden)

    Anitha Kumari Sharma

    2016-06-01

    Full Text Available A supply of drinking water low in Arsenic (As prevents arsenic poisoning. The presence of high concentrations of iron (Fe in groundwater under the alluvial plains of the large rivers in Southeast Asia is a prerequisite for the simple removal of As. This study investigated the mechanisms and possibilities for enhancing As removal with naturally occurring Fe in a reliable, low cost and sustainable way. The results of the study show that As removal with Fe is greatly enhanced by the addition of an oxidizing agent (preferably KMnO4 immediately after the pumping of groundwater. Further enhancement of As removal in the presence of Fe can be achieved by adding a small volume of a concentrated basic solution of MnO4- and AlO2-, which has a combined oxidation, coagulation and buffering capacity. Best results were obtained when this solution was mixed with the groundwater immediately after its pumping until a pale pink color appeared. Maximum required reaction time was 10 minutes and subsequent filtration of the water was able to reduce the As concentration to near zero. Concentrations of MnO4- and AlO2- can be varied in the solution to achieve sufficient As removal to suit different Fe/As ratios and the presence of interfering co-occurring anions.

  16. Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal.

    Science.gov (United States)

    González-Contreras, Paula; Weijma, Jan; Buisman, Cees J N

    2012-11-15

    In CSTRs, ferrous iron was biologically oxidized followed by crystallization of scorodite (FeAsO(4)·2H(2)O) at pH 1.2 and 72 °C. The CSTRs were fed with 2.8 g L(-1) arsenate and 2.4 g L(-1) ferrous and operated at an HRT of 40 h, without seed addition or crystal recirculation. Both oxidation and crystallization were stable for periods up to 200 days. The arsenic removal efficiency was higher than 99% at feed Fe/As molar ratios between 1 and 2, resulting in effluents with 29 ± 18 mg As L(-1). Arsenic removal decreased to 40% at feed Fe/As molar ratios between 2 and 5. Microorganisms were not affected by arsenic concentrations up to 2.8 g As(5+) L(-1). The bioscorodite solid yield was 3.2 g/g arsenic removed. Bioscorodite crystals precipitated as aggregates, causing scaling on the glass wall of the reactor. The observed morphology through SE microscopy of the precipitates appeared amorphous but XRD analysis confirmed that these were crystalline scorodite. Arsenic leaching of bioscorodite was 0.4 mg L(-1) after 100 days under TCLP conditions, but when jarosite had been co-precipitated leaching was higher at 0.8 g L(-1). The robustness of the continuous process, the high removal efficiency and the very low arsenic leaching rates from bioscorodite sludge make the process very suitable for arsenic removal and disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water.

    Science.gov (United States)

    Fox, Dawn I; Stebbins, Daniela M; Alcantar, Norma A

    2016-03-01

    New methods to remediate arsenic-contaminated water continue to be studied, particularly to fill the need for accessible methods that can significantly impact developing communities. A combination of cactus mucilage and ferric (Fe(III)) salt was investigated as a flocculation-coagulation system to remove arsenic (As) from water. As(V) solutions, ferric nitrate, and mucilage suspensions were mixed and left to stand for various periods of time. Visual and SEM observations confirmed the flocculation action of the mucilage as visible flocs formed and settled to the bottom of the tubes within 3 min. The colloidal suspensions without mucilage were stable for up to 1 week. Sample aliquots were tested for dissolved and total arsenic by ICP-MS and HGAFS. Mucilage treatment improved As removal (over Fe(III)-only treatment); the system removed 75-96% As in 30 min. At neutral pH, removal was dependent on Fe(III) and mucilage concentration and the age of the Fe(III) solution. The process is fast, achieving maximum removal in 30 min, with the majority of As removed in 10-15 min. Standard jar tests with 1000 μg/L As(III) showed that arsenic removal and settling rates were pH-dependent; As removal was between 52% (high pH) and 66% (low pH).

  18. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.

    Science.gov (United States)

    Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori

    2013-01-01

    Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.

  19. Arsenate Removal: Comparison of FSM-16 with Low Cost Modified Rice Husk

    International Nuclear Information System (INIS)

    Daifullah, A.A.M.

    2004-01-01

    The recently discovered meso porous molecular sieve FSM-16 was tested as an absorbent for arsenic (V) sorption from aqueous solutions. Its adsorption behavior was evaluated and compared with a low cost sorbent prepared from available agroresidue, rice husk, (boiled with 5% KOH followed by 10 % HCl). Factors affecting sorption of arsenate ions by the two sorbents (e.g., porosity, surface area of the sorbent, equilibrium time, adsorption rate, ph and temperature) were studied using ICP-MS for analysis. The data of adsorption of the two systems were described according to the S-Langmuir type according to the initial slope. The monolayer coverage was 92 and 68 mg/g for FSM-16 and modified rice husk (MRH),respectively, due to the silica content of the former is higher than the latter. The thermodynamic parameters were evaluated and indicated that this adsorption is endothermic process.It was found that the adsorptive capacity for arsenate using MRH represents 75% of that FSM-16. Therefore, the MRH is useful in the removal of arsenate ions due to its low cost, availability, and its good efficiency in this application and no need to be regenerated

  20. Arsenic removal in drinking water by reverse osmosis

    OpenAIRE

    Ahmad, Md. Fayej

    2012-01-01

    Arsenic is widely distributed in nature in the air, water and soil. Acute and chronic arsenic exposure by drinking water has been reported in many countries, especially Argentina, Bangladesh, India, Mexico, Mongolia, Thailand and Taiwan. There are many techniques used to remove arsenic from drinking water. Among them reverse osmosis is widely used. Therefore the purpose of this study is to find the conditions favorable for removal of arsenic from drinking water by using reverse osmosis ...

  1. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.

  2. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    International Nuclear Information System (INIS)

    Kobya, M.; Gebologlu, U.; Ulu, F.; Oncel, S.; Demirbas, E.

    2011-01-01

    Highlights: → Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. → Operating costs at the optimum conditions were 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. → Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. → The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m -2 ), initial concentration (75-500 μg L -1 ) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m -2 , respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 μg L -1 with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  3. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kobya, M., E-mail: kobya@gyte.edu.tr [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Gebologlu, U.; Ulu, F.; Oncel, S. [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Demirbas, E. [Gebze Institute of Technology, Department of Chemistry, 41400 Gebze (Turkey)

    2011-05-30

    Highlights: > Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. > Operating costs at the optimum conditions were 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. > Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. > The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m{sup -2}), initial concentration (75-500 {mu}g L{sup -1}) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m{sup -2}, respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 {mu}g L{sup -1} with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  4. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  5. Emerging and Innovative Techniques for Arsenic Removal Applied to a Small Water Supply System

    Directory of Open Access Journals (Sweden)

    António J. Alçada

    2009-12-01

    Full Text Available The impact of arsenic on human health has led its drinking water MCL to be drastically reduced from 50 to 10 ppb. Consequently, arsenic levels in many water supply sources have become critical. This has resulted in technical and operational impacts on many drinking water treatment plants that have required onerous upgrading to meet the new standard. This becomes a very sensitive issue in the context of water scarcity and climate change, given the expected increasing demand on groundwater sources. This work presents a case study that describes the development of low-cost techniques for efficient arsenic control in drinking water. The results obtained at the Manteigas WTP (Portugal demonstrate the successful implementation of an effective and flexible process of reactive filtration using iron oxide. At real-scale, very high removal efficiencies of over 95% were obtained.

  6. Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes

    Science.gov (United States)

    2014-01-01

    Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, current density, initial concentration, supporting electrolyte type and stirring speed on removal efficiency were investigated. It has been observed that initial pH was highly effective on the arsenic removal efficiency. The highest removal efficiency was observed at initial pH = 4. The obtained experimental results showed that the efficiency of arsenic removal increased with increasing current density and decreased with increasing arsenic concentration in the solution. Supporting electrolyte had not significant effects on removal, adding supporting electrolyte decreased energy consumption. The effect of stirring speed on removal efficiency was investigated and the best removal efficiency was at the 150 rpm. Under the optimum conditions of initial pH 4, current density of 0.54 mA/cm2, stirring speed of 150 rpm, electrolysis time of 30 minutes, removal was obtained as 99.50%. Energy consumption in the above conditions was calculated as 0.33 kWh/m3. Electrocoagulation with iron electrodes was able to bring down 50 mg/L arsenic concentration to less than 10 μg/L at the end of electrolysis time of 45 minutes with low electrical energy consumption as 0.52 kWh/m3. PMID:24991426

  7. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    Science.gov (United States)

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water.

  8. ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh--Merging Technology with Sustainable Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan E.A.; Gadgil, Ashok J.; Kowolik, Kristin; Kostecki, Robert

    2009-12-01

    Today, 35-77 million Bangladeshis drink arsenic-contaminated groundwater from shallow tube wells. Arsenic remediation efforts have focused on the development and dissemination of household filters that frequently fall into disuse due to the amount of attention and maintenance that they require. A community scale clean water center has many advantages over household filters and allows for both chemical and electricity-based technologies to be beneficial to rural areas. Full cost recovery would enable the treatment center to be sustainable over time. ElectroChemical Arsenic Remediation (ECAR) is compatible with community scale water treatment for rural Bangladesh. We demonstrate the ability of ECAR to reduce arsenic levels> 500 ppb to less than 10 ppb in synthetic and real Bangladesh groundwater samples and examine the influence of several operating parameters on arsenic removal effectiveness. Operating cost and waste estimates are provided. Policy implication recommendations that encourage sustainable community treatment centers are discussed.

  9. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    Science.gov (United States)

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (Pwater were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, Pwater was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  10. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  12. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Application of natural citric acid sources and their role on arsenic removal from drinking water: a green chemistry approach.

    Science.gov (United States)

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Islam, Sk Mijanul; Bundschuh, Jochen; Chatterjee, Debashis; Hidalgo, Manuela

    2013-11-15

    Solar Oxidation and Removal of Arsenic (SORAS) is a low-cost non-hazardous technique for the removal of arsenic (As) from groundwater. In this study, we tested the efficiency of natural citric acid sources extracted from tomato, lemon and lime to promote SORAS for As removal at the household level. The experiment was conducted in the laboratory using both synthetic solutions and natural groundwater samples collected from As-polluted areas in West Bengal. The role of As/Fe molar ratios and citrate doses on As removal efficiency were checked in synthetic samples. The results demonstrate that tomato juice (as citric acid) was more efficient to remove As from both synthetic (percentage of removal: 78-98%) and natural groundwater (90-97%) samples compared to lemon (61-83% and 79-85%, respectively) and lime (39-69% and 63-70%, respectively) juices. The As/Fe molar ratio and the citrate dose showed an 'optimized central tendency' on As removal. Anti-oxidants, e.g. 'hydroxycinnamates', found in tomato, were shown to have a higher capacity to catalyze SORAS photochemical reactions compared to 'flavanones' found in lemon or lime. The application of this method has several advantages, such as eco- and user- friendliness and affordability at the household level compared to other low-cost techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Review of Coagulation Technology for Removal of Arsenic: Case of Chile

    OpenAIRE

    Sancha, Ana María

    2006-01-01

    Coagulation technology has been used since 1970 in northern Chile for removing arsenic from drinking-water. This experience suggests that coagulation is an effective technology for the removal of arsenic. It is currently possible to reduce arsenic from 400 μg/L to 10 μg/L at a rate of 500 L/sec, assuming pH, oxidizing and coagulation agents are strictly controlled. The Chilean experience with the removal of arsenic demonstrates that the water matrix dictates the selection of the arsenic-remov...

  15. Arsenic removal from a high-arsenic wastewater using in situ formed Fe-Mn binary oxide combined with coagulation by poly-aluminum chloride

    International Nuclear Information System (INIS)

    Wu Kun; Wang Hongjie; Liu Ruiping; Zhao Xu; Liu Huijuan; Qu Jiuhui

    2011-01-01

    In this study, in situ formed Fe-Mn binary oxide (FMBO) was applied to treat a practical high-arsenic wastewater (5.81 mg/L). FMBO exhibited a remarkable removal capacity towards both As(III) and As(V), achieving a removal efficiency over 99.5%. However, the FMBO-As particles could not be sufficiently separated by gravitational sedimentation due to their low sizes and negative charges, as being indicated from laser particle size and zeta-potential analysis. Thus, poly-aluminum chloride (PACl) was introduced as a coagulant to facilitate the solid-liquid separation, and it remarkably improved As removal efficiencies. Results of scanning electron microscope (SEM) revealed that PACl contributed to the formation of precipitates with larger sizes and compact surfaces, which was favorable to sedimentation. Moreover, residual soluble As was removed by PACl hydroxides. The optimum dosages of FMBO and PACl were determined to be 60 mg/L and 80 mg/L, respectively. Additionally, the secondary pollution was minimized in FMBO-PACl process. Based on these bench-scale results, a full-scale treatment process was proposed to successfully treat 40,000 m 3 of high-arsenic wastewater in a municipal wastewater treatment plant (MWWTP). The average As concentration in the effluent was about 0.015 mg/L. FMBO-PACl process showed the advantages of high effectiveness, low cost, safety, and ease for operation.

  16. Biotechnology based processes for arsenic removal

    NARCIS (Netherlands)

    Huisman, J.; Olde Weghuis, M.; Gonzalez-Contreras, P.A.

    2011-01-01

    The regulations for arsenic control have become strict. Therefore, better technologies to remove arsenic from bleeds and effluents are desired. In addition, no single solution is suitable for all cases. The properties of the process streams and the storage facilities are major factors determining

  17. Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Eric; Lee, Jiukyu [Interdisciplinary Program in Nanoscience and Technology, Virginia (United States); Cha, Jinmyung [Seoul National Univ., Seoul (Korea, Republic of)

    2013-08-15

    Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite (AsO{sup 2-}) and arsenate (AsO{sub 4}{sup -3}), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of 10 μg/L without adjusting pH and temperature, which would be highly advantageous for practical field application.

  18. Removal of arsenic from ground water samples collected from West Bengal, India

    International Nuclear Information System (INIS)

    Ajith, Nicy; Swain, K.K.; Dalvi, Aditi A.; Verma, R.

    2015-01-01

    Arsenic contamination in ground water is one of the major concerns in many parts of the world including Bangladesh and India. Considering the high toxicity of arsenic, World Health Organization (WHO) has set a provisional guideline value of 10 μg L -1 for arsenic in drinking water. Several methods have been adopted for the removal of arsenic from drinking water. Most of the methods fail to remove As(III), the most toxic form of arsenic. An extra oxidative treatment step is essential for effective removal of total arsenic. Manganese dioxide (MnO 2 ) oxidizes As(III) to As(V). Removal of arsenic from water using manganese dioxide has been reported. During this work, removal of arsenic from ground water samples collected from arsenic contaminated area of West Bengal, India were carried out using MnO 2

  19. Removal of arsenic from drinking water by natural adsorbents

    OpenAIRE

    MD SHAHNOOR ALAM KHAN

    2017-01-01

    The presence of arsenic in groundwater has been reported in many countries across the world and it is a serious threat to public health. The aim of this study was to identify prospective natural materials with high arsenic adsorption capacity and durable hydraulic property to produce adequate flow of water. The comparative study identified Skye sand as the best natural adsorbent. The prototype household filter with Skye sand achieved complete removal of arsenic and iron. Arsenic removal by du...

  20. Pollution magnet: nano-magnetite for arsenic removal from drinking water.

    Science.gov (United States)

    Yavuz, Cafer T; Mayo, J T; Suchecki, Carmen; Wang, Jennifer; Ellsworth, Adam Z; D'Couto, Helen; Quevedo, Elizabeth; Prakash, Arjun; Gonzalez, Laura; Nguyen, Christina; Kelty, Christopher; Colvin, Vicki L

    2010-08-01

    Arsenic contamination in groundwater is a severe global problem, most notably in Southeast Asia where millions suffer from acute and chronic arsenic poisoning. Removing arsenic from groundwater in impoverished rural or urban areas without electricity and with no manufacturing infrastructure remains a significant challenge. Magnetite nanocrystals have proven to be useful in arsenic remediation and could feasibly be synthesized by a thermal decomposition method that employs refluxing of FeOOH and oleic acid in 1-octadecene in a laboratory setup. To reduce the initial cost of production, $US 2600/kg, and make this nanomaterial widely available, we suggest that inexpensive and accessible "everyday" chemicals be used. Here we show that it is possible to create functional and high-quality nanocrystals using methods appropriate for manufacturing in diverse and minimal infrastructure, even those without electricity. We suggest that the transfer of this knowledge is best achieved using an open source concept.

  1. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  2. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.

    Science.gov (United States)

    van Halem, D; Olivero, S; de Vet, W W J M; Verberk, J Q J C; Amy, G L; van Dijk, J C

    2010-11-01

    Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m(3)) into an anoxic aquifer with elevated iron (0.27 mmolL(-1)) and arsenic (0.27μmolL(-1)) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments. Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (R(Fe)) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system's efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at R(Fe)=∼8). R(As) did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic

  3. Arsenic Removal from Natural Groundwater by Electrocoagulation Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    A. M. García-Lara

    2014-01-01

    Full Text Available Contamination of natural groundwater by arsenic (As is a serious problem that appears in some areas of Northern Central Mexico (NCM. In this research, As was removed from NCM wells groundwater by the electrocoagulation (EC technique. Laboratory-scale arsenic electroremoval experiments were carried out at continuous flow rates between 0.25 and 1.00 L min−1 using current densities of 5, 10, and 20 A m−2. Experiments were performed under galvanostatic conditions during 5 min, at constant temperature and pH. The response surface methodology (RSM was used for the optimization of the processing variables (flow rate and current density, response modeling, and predictions. The highest arsenic removal efficiency from underground water (99% was achieved at low flow rates (0.25 L min−1 and high current densities (20 A m−2. The response models developed explained 93.7% variability for As removal efficiency.

  4. Studies on the removal of arsenic (III) from water by a novel hybrid material

    International Nuclear Information System (INIS)

    Mandal, Sandip; Padhi, T.; Patel, R.K.

    2011-01-01

    Highlights: → The removal of As (III) is about 98% at pH 7 with the hybrid material (ZrO-EA). → The hybrid material exhibits specific surface area of 201.62 m 2 /g. → The adsorption of arsenic (III) from aqueous solution by the hybrid material is spontaneous. → The material could be easily regenerated with sodium hydroxide at pH 12. - Abstract: The present work provides a method for removal of the arsenic (III) from water. An ion-exchanger hybrid material zirconium (IV) oxide-ethanolamine (ZrO-EA) is synthesized and characterized which is subsequently used for the removal of selective arsenic (III) from water containing 10,50,100 mg/L of arsenic (III) solution. The probable practical application for arsenic removal from water by this material has also been studied. The various parameters affecting the removal process like initial concentration of As (III), adsorbent dose, contact time, temperature, ionic strength, and pH are investigated. From the data of results, it is indicated that, the adsorbent dose of 0.7 mg/L, contact time 50 min after which the adsorption process comes to equilibrium, temperature (25 ± 2), solution pH (5-7), which are the optimum conditions for adsorption. The typical adsorption isotherms are calculated to know the suitability of the process. The column studies showed 98% recovery of arsenic from water especially at low concentration of arsenic in water samples.

  5. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL PLANTS

    Science.gov (United States)

    This report documents a long term performance study of two iron removal water treatment plants to remove arsenic from drinking water sources. Performance information was collected from one system located in midwest for one full year and at the second system located in the farwest...

  6. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  7. Arsenic Remediation by Synthetic and Natural Adsorbents

    Directory of Open Access Journals (Sweden)

    Muhammad Saqaf Jagirani

    2017-06-01

    Full Text Available The contagion of toxic metals in water is a serious environmental and health concern and threatening problem worldwide. Particularly arsenic contamination in ground water has became great dilemma in the earlier decades. With advent in research for arsenic remediation, standard of drinking water is improving and now reduced to few parts per million (ppm level of arsenic in drinking water sources. However, due to continuous enhancement in environmental pollution, remediation techniques are still needed to achieve the drinking water quality standard. Development of novel and economically feasible removal techniques or materials for selective separation of this toxic specie has been the main focus of research. Several arsenic removal techniques, including membrane separation, coagulation, precipitation, anion exchange have been developed. The aim of this article is to review briefly arsenic chemistry and previous and current available technologies that have been reported various low-cost adsorbents for arsenic removal.

  8. Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies.

    Science.gov (United States)

    Bordoloi, Shreemoyee; Nath, Suresh K; Gogoi, Sweety; Dutta, Robin K

    2013-09-15

    A three-step treatment process involving (i) mild alkaline pH-conditioning by NaHCO₃; (ii) oxidation of arsenite and ferrous ions by KMnO₄, itself precipitating as insoluble MnO₂ under the pH condition; and (iii) coagulation by FeCl₃ has been used for simultaneous removal of arsenic and iron ions from water. The treated water is filtered after a residence time of 1-2 h. Laboratory batch experiments were performed to optimize the doses. A field trial was performed with an optimized recipe at 30 households and 5 schools at some highly arsenic affected villages in Assam, India. Simultaneous removals of arsenic from initial 0.1-0.5 mg/L to about 5 μg/L and iron from initial 0.3-5.0 mg/L to less than 0.1 mg/L have been achieved along with final pH between 7.0 and 7.5 after residence time of 1h. The process also removes other heavy elements, if present, without leaving any additional toxic residue. The small quantity of solid sludge containing mainly ferrihydrite with adsorbed arsenate passes the toxicity characteristic leaching procedure (TCLP) test. The estimated recurring cost is approximately USD 0.16 per/m(3) of purified water. A high efficiency, an extremely low cost, safety, non-requirement of power and simplicity of operation make the technique potential for rural application. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Arsenic removal from acidic solutions with biogenic ferric precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Ahoranta, Sarita H., E-mail: sarita.ahoranta@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Kokko, Marika E., E-mail: marika.kokko@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Papirio, Stefano, E-mail: stefano.papirio@unicas.it [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Özkaya, Bestamin, E-mail: bozkaya@yildiz.edu.tr [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Department of Environmental Engineering, Yildiz Technical University, Davutpasa Campus 34220, Esenler, Istanbul (Turkey); Puhakka, Jaakko A., E-mail: jaakko.puhakka@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2016-04-05

    Highlights: • Continuous and rapid arsenic removal with biogenic jarosite was achieved at pH 3.0. • Arsenic removal was inefficient below pH 2.4 due to reduced Fe–As co-precipitation. • As(V) had better sorption characteristics than As(III). • Biogenic jarosite adsorbed arsenic more effectively than synthetic jarosite. - Abstract: Treatment of acidic solution containing 5 g/L of Fe(II) and 10 mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7 h, 96–98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28 mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH < 2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment.

  10. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL. USEPA DEMONSTRATION PROJECT AT CLIMAX, MN. PROJECT SUMMARY

    Science.gov (United States)

    This document is an eight page summary of the final report on arsenic demonstration project at Climax, MN (EPA/600/R-06/152). The objectives of the project are to evaluate the effectiveness of the Kinetico iron removal system in removing arsenic to meet the new arsenic maximum co...

  11. How Effective are Existing Arsenic Removal Techniques

    Science.gov (United States)

    This presentation will summarize the system performance results of the technologies demonstrated in the arsenic demonstration program. The technologies include adsorptive media, iron removal, iron removal with iron additions, iron removal followed by adsorptive media, coagulatio...

  12. Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Danni; Yuan, Zidan [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Shaofeng, E-mail: wangshaofeng@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Jia, Yongfeng, E-mail: yongfeng.jia@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Demopoulos, George P. [Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada)

    2015-12-30

    Highlights: • Quantitatively studied the incorporation of arsenic into the structure of gypsum. • Arsenic content in the solid increased with pH and initial arsenic concentration. • Calcium arsenate phase precipitated in addition to gypsum at higher pH values. • The structure of gypsum and its morphology was altered by the incorporated arsenate. • The incorporated arsenate formed sainfeldite-like local structure in gypsum. - Abstract: Gypsum precipitates as a major secondary mineral during the iron-arsenate coprecipitation process for the removal of arsenic from hydrometallurgical effluents. However, its role in the fixation of arsenic is still unknown. This work investigated the incorporation of arsenic into gypsum quantitatively during the crystallization process at various pHs and the initial arsenic concentrations. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray absorption near edge spectroscopy (XANES) and scanning electron microscopy (SEM) were employed to characterize the coprecipitated solids. The results showed that arsenate was measurably removed from solution during gypsum crystallization and the removal increased with increasing pH. At lower pH where the system was undersaturated with respect to calcium arsenate, arsenate ions were incorporated into gypsum structure, whereas at higher pH, calcium arsenate was formed and constituted the major arsenate bearing species in the precipitated solids. The findings may have important implications for arsenic speciation and stability of the hydrometallurgical solid wastes.

  13. Removal of arsenic from potable water by adsorptive media treatment techniques

    International Nuclear Information System (INIS)

    Yousuf, S.; Khan, S.; Aslam, M.T.; Khan, A.R.

    2012-01-01

    Summary: This study was conducted to investigate the arsenic removal efficiency of different adsorptive media from water. Different naturally occurring materials such as bauxite, plastic clay, plaster of Paris, lime, alum, and alumina etc. were used for the development of media to remove arsenic As/sup +5/ present in the artificially contaminated water. Different ratios of the selected materials were combined and ignited at 9000 C to enhance its arsenic removing efficiency. It was found that the media bauxite, plastic clay, lime (1:1:1) has a maximum removal (99%) of As +5 species from aqueous media and can be used on- site to reduce the arsenic contamination of potable water. Furthermore, the materials used in this experiment were cheaply and abundantly available within the country. The method is very simple and economically viable, for removal of arsenic from potable water. (author)

  14. Removing arsenic from groundwater in Cambodia using high performance iron adsorbent.

    Science.gov (United States)

    Kang, Y; Takeda, R; Nada, A; Thavarith, L; Tang, S; Nuki, K; Sakurai, K

    2014-09-01

    In Cambodia, groundwater has been contaminated with arsenic, and purification of the water is an urgent issue. From 2010 to 2012, an international collaborative project between Japan and Cambodia for developing arsenic-removing technology from well water was conducted and supported by the foundation of New Energy and Industrial Technology Development Organization, Japan. Quality of well water was surveyed in Kandal, Prey Veng, and Kampong Cham Provinces, and a monitoring trial of the arsenic removal equipment using our patented amorphous iron (hydr)oxide adsorbent was performed. Of the 37 wells surveyed, arsenic concentration of 24 exceeded the Cambodian guideline value (50 μg L(-1)), and those of 27 exceeded the WHO guideline for drinking water (10 μg L(-1)). Levels of arsenic were extremely high in some wells (>1,000-6,000 μg L(-1)), suggesting that arsenic pollution of groundwater is serious in these areas. Based on the survey results, 16 arsenic removal equipments were installed in six schools, three temples, two health centers, four private houses, and one commune office. Over 10 months of monitoring, the average arsenic concentrations of the treated water were between 0 and 10 μg L(-1) at four locations, 10-50 μg L(-1) at eight locations, and >50 μg L(-1) at four locations. The arsenic removal rate ranged in 83.1-99.7%, with an average of 93.8%, indicating that the arsenic removal equipment greatly lower the risk of arsenic exposure to the residents. Results of the field trial showed that As concentration of the treated water could be reduced to condition. This is one of the succeeding As removal techniques that could reduce As concentration of water below the WHO guideline value for As in situ.

  15. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.

    Science.gov (United States)

    Wan, Wei; Pepping, Troy J; Banerji, Tuhin; Chaudhari, Sanjeev; Giammar, Daniel E

    2011-01-01

    Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Arsenic removal in water by means of coagulation-flocculation processes

    International Nuclear Information System (INIS)

    Franco, M. F.; Carro P, M. E.

    2014-01-01

    Arsenic and arsenical compounds are considered as carcinogenic and risky for humans according to epidemiological evidence related with the ingestion of arsenical water during a long period. In many places the only source of drinking water contains arsenic and, therefore, removal strategies have to be investigated. This work shows experimental results of coagulation-flocculation processes implemented to evaluate the efficiency in the removal of arsenic from drinking water. The main objectives include the evaluation of the relevant aspect that controls the removal efficiency. Experimental tests were performed with coagulant concentrations from 5 to 500 mg/L, solid particle concentrations from 0 to 6000 mg/L, and initial arsenic concentrations from 0.5 to 5 mg/L. These variables were simultaneously varied in more than 100 experiments. The efficiency in remediation ranged from 0% to 95%. Removal efficiency near 95% was obtained when using ferric chloride as coagulant, and was close to 80% when using aluminium sulfate as coagulant in arsenate solutions. The remediation efficiency decreased significantly when the ferric chloride concentration was higher than 50 mg/L in relation to the obtained results for aluminum sulfate for different type and concentration of soil particles. The highest removal efficiency were obtained at ph between 3 and 5 in oxidized solutions. Obtained results simulated by means of multiple linear regression analysis (R>0.90) allow determining that the main parameters that control the removal of arsenic from drinking water are coagulant concentration, ph, and solid particles concentration. Conversely, particle mineralogy and coagulant type have less significant effect on the removal by means of coagulation-flocculation mechanisms. Obtained results are relevant for the removal of As in water treatment plants as well as for the development of small scale filters. The samples were studied by scanning electron microscopy and energy dispersive X

  17. Exiguobacterium mediated arsenic removal and its protective effect against arsenic induced toxicity and oxidative damage in freshwater fish, Channa striata

    Directory of Open Access Journals (Sweden)

    Neha Pandey

    2015-01-01

    Full Text Available Arsenic is a toxic metalloid existing widely in the environment, and its removal from contaminated water has become a global challenge. The use of bacteria in this regard finds a promising solution. In the present study, Exiguobacterium sp. As-9, which is an arsenic resistant bacterium, was selected with respect to its arsenic removal efficiency. Quantification of arsenic in the water treated with bacterium showed that Exiguobacterium efficiently removed up to 99% of arsenic in less than 20 h. In order to reveal the possible effect of this bacterium in removal of arsenic from water and protecting fishes from the detrimental effects of arsenic, we initiated a range of studies on fresh water fish, Channa striata. It was observed that the fishes introduced into bacteria treated water displayed no symptoms of arsenic toxicity which was marked by a decreased oxidative damage, whereas the fishes exposed to arsenic revealed a significant (p < 0.05 increase in the oxidative stress together with the elevated levels of malondialdehyde. Determination of the bioaccumulation of arsenic in the liver tissues of C. striata using hydride generation atomic absorption spectrophotometry (HG-AAS revealed an increased As(III accumulation in the fishes exposed to arsenic whereas the arsenic level in the control and bacteria treated fishes were found below the detectable limit. In conclusion, this study presents the strategies of bacterial arsenic removal with possible directions for future research.

  18. Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.

    Science.gov (United States)

    Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha

    2014-04-01

    The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.

  19. Application of titanium dioxide in arsenic removal from water: A review.

    Science.gov (United States)

    Guan, Xiaohong; Du, Juanshan; Meng, Xiaoguang; Sun, Yuankui; Sun, Bo; Hu, Qinghai

    2012-05-15

    Natural arsenic pollution is a global phenomenon and various technologies have been developed to remove arsenic from drinking water. The application of TiO(2) and TiO(2)-based materials in removing inorganic and organic arsenic was summarized. TiO(2)-based arsenic removal methods developed to date have been focused on the photocatalytic oxidation (PCO) of arsenite/organic arsenic to arsenate and adsorption of inorganic and organic arsenic. Many efforts have been taken to improve the performance of TiO(2) by either combing TiO(2) with adsorbents with good adsorption property in one system or developing bifunctional adsorbents with both great photocatalytic ability and high adsorption capacity. Attempts have also been made to immobilize fine TiO(2) particles on supporting materials like chitosan beads or granulate it to facilitate its separation from water. Among the anions commonly exist in groundwater, humic acid and bicarbonate have significant influence on TiO(2) photocatalyzed oxidation of As(III)/organic arsenic while phosphate, silicate, fluoride, and humic acid affect arsenic adsorption by TiO(2)-based materials. There has been a controversy over the TiO(2) PCO mechanisms of arsenite for the past 10 years but the adsorption mechanisms of inorganic and organic arsenic onto TiO(2)-based materials are relatively well established. Future needs in TiO(2)-based arsenic removal technology are proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Optimization of arsenic removal water treatment system through characterization of terminal electron accepting processes.

    Science.gov (United States)

    Upadhyaya, Giridhar; Clancy, Tara M; Brown, Jess; Hayes, Kim F; Raskin, Lutgarde

    2012-11-06

    Terminal electron accepting process (TEAP) zones developed when a simulated groundwater containing dissolved oxygen (DO), nitrate, arsenate, and sulfate was treated in a fixed-bed bioreactor system consisting of two reactors (reactors A and B) in series. When the reactors were operated with an empty bed contact time (EBCT) of 20 min each, DO-, nitrate-, sulfate-, and arsenate-reducing TEAP zones were located within reactor A. As a consequence, sulfate reduction and subsequent arsenic removal through arsenic sulfide precipitation and/or arsenic adsorption on or coprecipitation with iron sulfides occurred in reactor A. This resulted in the removal of arsenic-laden solids during backwashing of reactor A. To minimize this by shifting the sulfate-reducing zone to reactor B, the EBCT of reactor A was sequentially lowered from 20 min to 15, 10, and 7 min. While 50 mg/L (0.81 mM) nitrate was completely removed at all EBCTs, more than 90% of 300 μg/L (4 μM) arsenic was removed with the total EBCT as low as 27 min. Sulfate- and arsenate-reducing bacteria were identified throughout the system through clone libraries and quantitative PCR targeting the 16S rRNA, dissimilatory (bi)sulfite reductase (dsrAB), and dissimilatory arsenate reductase (arrA) genes. Results of reverse transcriptase (RT) qPCR of partial dsrAB (i.e., dsrA) and arrA transcripts corresponded with system performance. The RT qPCR results indicated colocation of sulfate- and arsenate-reducing activities, in the presence of iron(II), suggesting their importance in arsenic removal.

  1. Arsenic Removal Efficiency in Aqueous Solutions Using Reverse Osmosis and Zero-Valent Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Niloofar Saboori

    2018-01-01

    Full Text Available Arsenic is one of the most hazardous pollutants of water resources which threaten human health as well as animals. Therefore arsenic removal from water resources is the priority of health programs. There are several ways to remove arsenic. In this study, reverse osmosis and zero-valent iron nanoparticles methods have been used in a laboratory scale. To perform the test, the variables of temperature, arsenic concentration, pH, iron nanoparticle concentration and mixing time were considered. The results indicated that in both methods of reverse osmosis and iron nanoparticle, through increasing arsenic concentration, arsenic removal efficiency has been also increased. At concentration of 1.5 mg per litre in reverse osmosis method, the maximum efficiency was achieved by 98% and 95.2% removal of arsenic respectively. The effect of temperature and pH were similar in reverse osmosis; by increasing these two variables, arsenic removal percentage also increased. The highest removal rates of 95.98% and 95.56% were observed at pH 9 and Temperature 30oC respectively. The results indicated that in iron nanoparticles method the arsenic removal efficiency increases by increasing mixing time and temperature, while it decreases with increasing pH.

  2. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.

    Science.gov (United States)

    Wang, Yongliang; Lv, Cuicui; Xiao, Li; Fu, Guoyan; Liu, Ya; Ye, Shufeng; Chen, Yunfa

    2018-02-02

    The alkaline leaching solution from arsenic-containing gold concentrate contains a large amount of arsenate ions, which should be removed because it is harmful to the production process and to the environment. In this study, conventional Fe (III) precipitation was used to remove arsenic from the leaching solution. The precipitation reaction was carried out at the normal temperature, and the effects of pH value and Fe/As ratio on the arsenic removal were investigated. The results show that the removal rate of arsenic is distinctive at different pH values, and the effect is best within the pH range of 5.25-5.96. The removal rate can be further increased by increasing the ratio of Fe/As. When the pH = 5.25-5.96 and Fe/As > 1.8, the arsenic in the solution can be reduced to below 5 mg/L. However, the crystallinity of ferric arsenate is poor, and the particle size is small, most of which is about 1 μm. The leaching toxicity test shows the leaching toxicity of precipitates gradually decreased by the increase of Fe/As. The precipitates can be stored safely as the ratio of Fe/As exceeded 2.5.

  3. Removal of Arsenic from Drinking Water Using Modified Activated Alumina

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2005-09-01

    Full Text Available Considering contamination of drinking water to arsenic in some villages ofIran. In order to develop a simple method for household water treatment in rural areas, efficiency of  modified activated alumina with iron compounds- a product of Alcan Company with trade name of AAFS-50- was studied Equilibrium batch experiments were carried out using shaker incubator and arsenic was analyzed with SDDC method. Effects of initial concentration of arsenic, adsorbent dose, oxidation state of arsenic, pH and oxidation with chlorine on adsorption were studied. Correlation coefficient of Freundlich and Laungmuier  isotherms  for As(V and As(III were 0.964 , 0.991 and 0.970, 0.978 respectively . These results show that adsorption of arsenic on modified activated alumina is compatible with both models specially Laungmuier models. Removal efficiency of As(V at 0.5 ,1 and 2 hr increased with doubling the adsorbent dose from 44.8 to 72%, 69.6 to 90.8 and 92.4 to 98% ; respectively. Experiments using different concentrations of arsenic showed that adsorption of arsenic on activated alumina are a first order reaction that is, rate of reaction is dependent on intial; concentration of arsenic. Removal efficiency for concentration of 0.250 mg/L of arsenic, with increasing of reaction time from 15 min to 60 min, increased 1.54 times and reached from 61% to 94%. During 2hrs, removal of As(V and As(III were 96% and 16% respectively. Using 1.5 mg/L Chlorine as oxidant agent, removal of As(III was increased to 94%. In the case of pH effect, rate of adsorption increased for arsenite, with increasing of pH to 8 and decreased with more increasing, so that adsorption at pH 14 was equal to pH 2. For arsenate, the most adsorption was observed at pH between 6 to 8 . These results show that by using the studied activated alumina, there will not be need for adjustment of pH and the activated alumina used in this study could have application as a safe adsorbent for removal of

  4. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  5. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic

  6. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.

    Science.gov (United States)

    Jadhav, Sachin V; Bringas, Eugenio; Yadav, Ganapati D; Rathod, Virendra K; Ortiz, Inmaculada; Marathe, Kumudini V

    2015-10-01

    Chronic contamination of groundwaters by both arsenic (As) and fluoride (F) is frequently observed around the world, which has severely affected millions of people. Fluoride and As are introduced into groundwaters by several sources such as water-rock interactions, anthropogenic activities, and groundwater recharge. Coexistence of these pollutants can have adverse effects due to synergistic and/or antagonistic mechanisms leading to uncertain and complicated health effects, including cancer. Many developing countries are beset with the problem of F and As laden waters, with no affordable technologies to provide clean water supply. The technologies available for the simultaneous removal are akin to chemical treatment, adsorption and membrane processes. However, the presence of competing ions such as phosphate, silicate, nitrate, chloride, carbonate, and sulfate affect the removal efficiency. Highly efficient, low-cost and sustainable technology which could be used by rural populations is of utmost importance for simultaneous removal of both pollutants. This can be realized by using readily available low cost materials coupled with proper disposal units. Synthesis of inexpensive and highly selective nanoadsorbents or nanofunctionalized membranes is required along with encapsulation units to isolate the toxicant loaded materials to avoid their re-entry in aquifers. A vast number of reviews have been published periodically on removal of As or F alone. However, there is a dearth of literature on the simultaneous removal of both. This review critically analyzes this important issue and considers strategies for their removal and safe disposal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal.

    Science.gov (United States)

    Min, Xiaobo; Li, Yangwenjun; Ke, Yong; Shi, Meiqing; Chai, Liyuan; Xue, Ke

    2017-07-01

    Arsenic is one of the major pollutants and a worldwide concern because of its toxicity and chronic effects on human health. An adsorbent of Fe-FeS 2 mixture for effective arsenic removal was successfully prepared by mechanical ball milling. The products before and after arsenic adsorption were characterized with scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent shows high arsenic removal efficiency when molar ratio of iron to pyrite is 5:5. The experimental data of As(III) adsorption are fitted well with the Langmuir isotherm model with a maximal adsorption capacity of 101.123 mg/g. And As(V) data were described perfectly by the Freundlich model with a maximal adsorption capacity of 58.341 L/mg. As(III) is partial oxidized to As(V) during the adsorption process. High arsenic uptake capability and cost-effectiveness of waste make it potentially attractive for arsenic removal.

  8. Influence of operating parameters on the arsenic and boron removal by electrocoagulation

    International Nuclear Information System (INIS)

    Can, B. Z.; Boncukcuoglu, R.; Bayar, S.; Bayhan, Y.K

    2016-01-01

    Despite their high boron contents, some boron deposits contain considerable amounts of arsenic. Its toxicology and health hazard also has been reported for many years. In this work arsenic and boron removal from synthetic water was studied on laboratory scale by electrocoagulation using aluminum electrodes. The influence of main operating parameters such as current density, stirring speed, supporting electrolyte type and concentration on the arsenic and boron removal was investigated. Waste water sample was prepared with initial arsenic concentration of 50 mg L/sup -1/ and boron concentration of 1000 mg L/sup -1/. Current density was varied from 0.18 to 4.28 mA cm/sup -2/, stirring speed was varied as 50, 150, 250, 350 rpm, NaCl, KCl and Na/sub 2/SO/sub 4/ were used as supporting electrolyte. The obtained experimental results showed that efficiency of arsenic and boron removal increased with increasing current density. As the current density increases, the potential difference applied to the system also increases the energy consumption. Increasing the supporting electrolyte concentration increased conductivity of solution and decreased energy consumption. The most favorable supporting electrolyte type was NaCl for arsenic and boron removal. The best stirring speed was 150 rpm for arsenic and boron removal. (author)

  9. Removal of arsenic from drinking water using rice husk

    Science.gov (United States)

    Asif, Zunaira; Chen, Zhi

    2017-06-01

    Rice husk adsorption column method has proved to be a promising solution for arsenic (As) removal over the other conventional methods. The present work investigates the potential of raw rice husk as an adsorbent for the removal of arsenic [As(V)] from drinking water. Effects of various operating parameters such as diameter of column, bed height, flow rate, initial arsenic feed concentration and particle size were investigated using continuous fixed bed column to check the removal efficiency of arsenic. This method shows maximum removal of As, i.e., 90.7 % under the following conditions: rice husk amount 42.5 g; 7 mL/min flow rate in 5 cm diameter column at the bed height of 28 cm for 15 ppb inlet feed concentration. Removal efficiency was increased from 83.4 to 90.7 % by reducing the particle size from 1.18 mm to 710 µm for 15 ppb concentration. Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior. The effect of different operating parameters on the column adsorption was determined using breakthrough curves. In the present study, three kinetic models Adam-Bohart, Thomas and Yoon-Nelson were applied to find out the saturated concentration, fixed bed adsorption capacity and time required for 50 % adsorbate breakthrough, respectively. At the end, solidification was done for disposal of rice husk.

  10. POSTERS FOR WORKSHOP ON EPA’S ARSENIC REMOVAL DEMONSTRATION PROGRAM: RESULTS AND LESSONS LEARNED.

    Science.gov (United States)

    The Workshop included posters on 21 different arsenic demonstration projects. Each poster included information on raw water quality, cost of the system, a schematic of the layout of the system and several graphs and tables on the performance of the system for the removal of arsen...

  11. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.

    Science.gov (United States)

    Klas, Sivan; Kirk, Donald W

    2013-05-15

    The removal of toxic arsenic species from contaminated waters by zero-valent iron (ZVI) has drawn considerable attention in recent years. In this approach, arsenic ions are mainly removed by adsorption to the iron corrosion products. Reduction to zero-valent arsenic on the ZVI surface is possible in the absence of competing oxidants and can reduce arsenic mobility and sludge formation. However, associated removal rates are relatively low. In the current study, simultaneous high reduction and removal rates of arsenite (H3AsO3), the more toxic and mobile environmentally occurring arsenic species, was demonstrated by reacting it with ZVI under limited aeration and relatively low pH. 90% of the removed arsenic was attached to the ZVI particles and 60% of which was in the elemental state. Under the same non-acidic conditions, only 40-60% of the removed arsenic was attached to the ZVI with no change in arsenic oxidation state. Under anaerobic conditions, reduction occurred but total arsenic removal rate was significantly lower and ZVI demand was higher. The effective arsenite removal under acidic oxygen-limited conditions was explained by formation of Fe(II)-solid intermediate on the ZVI surface that provided high surface area and reducing power. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Vinegar-amended anaerobic biosand filter for the removal of arsenic and nitrate from groundwater.

    Science.gov (United States)

    Snyder, Kathryn V; Webster, Tara M; Upadhyaya, Giridhar; Hayes, Kim F; Raskin, Lutgarde

    2016-04-15

    The performance of a vinegar-amended anaerobic biosand filter was evaluated for future application as point-of-use water treatment in rural areas for the removal of arsenic and nitrate from groundwater containing common ions. Due to the importance of sulfate and iron in arsenic removal and their variable concentrations in groundwater, influent sulfate and iron concentrations were varied. Complete removal of influent nitrate (50 mg/L) and over 50% removal of influent arsenic (200 μg/L) occurred. Of all conditions tested, the lowest median effluent arsenic concentration was 88 μg/L. Iron removal occurred completely when 4 mg/L was added, and sulfate concentrations were lowered to a median concentration arsenic concentrations remained above the World Health Organization's arsenic drinking water standard. Further research is necessary to determine if anaerobic biosand filters can be improved to meet the arsenic drinking water standard and to evaluate practical implementation challenges. Copyright © 2016. Published by Elsevier Ltd.

  13. Application of low-cost adsorbents for dye removal--a review.

    Science.gov (United States)

    Gupta, V K; Suhas

    2009-06-01

    Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  14. Application of colloidal gas aphron suspensions produced from Sapindus mukorossi for arsenic removal from contaminated soil.

    Science.gov (United States)

    Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hashim, Mohd Ali; Sen Gupta, Bhaskar

    2015-01-01

    Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Arsenic removal using silver-impregnated Prosopis spicigera L ...

    African Journals Online (AJOL)

    Arsenic removal using silver-impregnated Prosopis spicigera L. wood (PSLW) activated carbon: batch and column studies. ... Arsenic uptake has no regular trend with increasing pH; contains two adsorption maxima, the first adsorption maximum at pH 4.0 and a second adsorption maximum at pH 10.0. The extent of As (III) ...

  16. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    Science.gov (United States)

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-05

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pHremoves iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The effect of nanocrystalline magnetite size on arsenic removal

    Directory of Open Access Journals (Sweden)

    J.T. Mayo et al

    2007-01-01

    Full Text Available Higher environmental standards have made the removal of arsenic from water an important problem for environmental engineering. Iron oxide is a particularly interesting sorbent to consider for this application. Its magnetic properties allow relatively routine dispersal and recovery of the adsorbent into and from groundwater or industrial processing facilities; in addition, iron oxide has strong and specific interactions with both As(III and As(V. Finally, this material can be produced with nanoscale dimensions, which enhance both its capacity and removal. The objective of this study is to evaluate the potential arsenic adsorption by nanoscale iron oxides, specifically magnetite (Fe3O4 nanoparticles. We focus on the effect of Fe3O4 particle size on the adsorption and desorption behavior of As(III and As(V. The results show that the nanoparticle size has a dramatic effect on the adsorption and desorption of arsenic. As particle size is decreased from 300 to 12 nm the adsorption capacities for both As(III and As(V increase nearly 200 times. Interestingly, such an increase is more than expected from simple considerations of surface area and suggests that nanoscale iron oxide materials sorb arsenic through different means than bulk systems. The desorption process, however, exhibits some hysteresis with the effect becoming more pronounced with small nanoparticles. This hysteresis most likely results from a higher arsenic affinity for Fe3O4 nanoparticles. This work suggests that Fe3O4 nanocrystals and magnetic separations offer a promising method for arsenic removal.

  18. In-situ arsenic removal during groundwater recharge through unsaturated alluvium

    Science.gov (United States)

    O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen

    2015-01-01

    OBJECTIVES The purpose of this study was to determine the feasibility and sustainability of in-situ removal of arsenic from water infiltrated through unsaturated alluvium. BACKGROUND Arsenic is naturally present in aquifers throughout the southwestern United States and elsewhere. In January 2006, the U.S. Environmental Protection Agency (EPA) lowered the Maximum Contaminant Level (MCL) for arsenic from 50 to 10 micrograms per liter (g/L). This raised concerns about naturally-occurring arsenic in groundwater. Although commercially available systems using sorbent iron or aluminum oxide resins are available to treat high-arsenic water, these systems are expensive to build and operate, and may generate hazardous waste. Iron and aluminum oxides occur naturally on the surfaces of mineral grains that compose alluvial aquifers. In areas where alluvial deposits are unsaturated, these oxides may sorb arsenic in the same manner as commercial resins, potentially providing an effective low-cost alternative to commercially engineered treatment systems. APPROACH The Antelope Valley within the Mojave Desert of southern California contains a shallow water-table aquifer with arsenic concentrations of 5 g/L, and a deeper aquifer with arsenic concentrations of 30 g/L. Water was pumped from the deep aquifer into a pond and infiltrated through an 80 m-thick unsaturated zone as part of field-scale and laboratory experiments to treat high-arsenic groundwater and recharge the shallow water table aquifer at the site. The field-scale recharge experiment included the following steps: 1) construction of a recharge pond 2) test drilling for sample collection and instrument installation adjacent to the pond 3) monitoring downward migration of water infiltrated from the pond 4) monitoring changes in selected trace-element concentrations as water infiltrated through the unsaturated zone Data from instruments within the borehole adjacent to the pond were supplemented with borehole and

  19. Design of a rural water provision system to decrease arsenic exposure in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-01-09

    Researchers at the Lawrence Berkeley National Laboratory have invented ARUBA (Arsenic Removal Using Bottom Ash) a material that effectively and affordably removes high concentrations of arsenic from contaminated groundwater. The technology is cost-effective because the substrate-bottom ash from coal fired power plants-is a waste material readily available in South Asia. During fieldwork in four sub-districts of Bangladesh, ARUBA reduced groundwater arsenic concentrations as high as 680 ppb to below the Bangladesh standard of 50 ppb. Key results from three trips in Bangladesh and one trip to Cambodia include (1) ARUBA removes more than half of the arsenic from contaminated water within the first five minutes of contact, and continues removing arsenic for 2-3 days; (2) ARUBA's arsenic removal efficiency can be improved through fractionated dosing (adding a given amount of ARUBA in fractions versus all at once); (3) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic concentrations ten times lower than treating water directly out of the well; and (4) the amount of arsenic removed per gram of ARUBA is linearly related to the initial arsenic concentration of the water. Through analysis of existing studies, observations, and informal interviews in Bangladesh, eight design strategies have been developed and used in the design of a low-cost, community-scale water treatment system that uses ARUBA to remove arsenic from drinking water. We have constructed, tested, and analyzed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below 50 ppb, while remaining affordable to people living on less than $2 per day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  20. Small System Use of a Solid Arsenic Oxidizing Media in Place of Chemical Oxidation to Enhance Arsenic Removals

    Science.gov (United States)

    As part of the USEPA Arsenic Demonstration Program, an arsenic removal adsorptive media treatment system (10 gpm) was installed at Head Start School in Buckeye Lake, Ohio on June 28, 2006. The source water (ground water) contained around 20 µg/L of arsenic, existing predominatel...

  1. REMOVAL COPPER, CHROMIUM, ARSENIC FROM OUT-OF- SERVICE CCA-TREATED WOOD MATERIALS

    Directory of Open Access Journals (Sweden)

    Engin Derya Gezer

    2004-11-01

    Full Text Available Remediation can be defined as removing copper, chromium and arsenic from out-of-service CCA treated wood products. There are some various remediation methods that can be applied to remove copper, chromium and arsenic from out-of service CCA treated wood products in order to re-use that wooden materials and minimize adverse impacts of those out-of service CCA treated wood to environment, human health, animals and other living organisms. In this study, those applied various remediation methods to remove copper, chromium and arsenic were summarized.

  2. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    Science.gov (United States)

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Magnetic iron oxide (Fe{sub 3}O{sub 4}) nanoparticles from tea waste for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Lunge, Sneha, E-mail: jagtapsneha@yahoo.co.in [Central Institute of Mining and Fuel Research, Nagpur Unit-II, 17/C, Telenkhedi Area, Nagpur 440001 (India); Singh, Shripal, E-mail: Shripal_singh@yahoo.co.uk [Central Institute of Mining and Fuel Research, Nagpur Unit-II, 17/C, Telenkhedi Area, Nagpur 440001 (India); Sinha, Amalendu, E-mail: director@cmri.nic.in [Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand, 826001 (India)

    2014-04-01

    Magnetic iron oxide nanoparticles (MION-Tea) successfully synthesized using tea waste template. MION-Tea exhibit super magnetic properties under external magnetic field with saturation magnetization value of 6.9 emu/g at room temperature. SEM of MION-Tea shows cuboid/pyramid shaped crystals structure of Fe{sub 3}O{sub 4} (magnetite). TEM of MION-Tea shows the particle size in the range of 5–25 nm. XRD pattern of MION-Tea is identical to magnetite. Magnetic nanoparticles are tested for removal of As(III) and As(V) from aqueous solution. The adsorption data obeyed the Langmuir equation with high adsorption capacity of 188.69 mg/g for arsenic (III), and 153.8 mg/g for arsenic (V). The mean sorption energy (E) calculated from D–R model, indicated physico-chemical sorption process. A pseudo-second-order kinetic model fitted best for As(III) adsorption on MION-Tea and the derived activation energy was 64.27 kJ/mol. Thermodynamics revealed the endothermic nature of adsorption. The effects of solution pH, interfering anions and initial As(III) concentration have been investigated. MION-Tea was very low cost (Rs. 136 per kg). MION-Tea can be reused up to 5 adsorption cycles and regenerated using NaOH. Cost of As(III) removal from water of was estimated to be Rs. 14 for 100 L. Comparison with reported adsorbents proved MION-Tea a potential adsorbent for As(III) and As(V) adsorption. - Highlights: • Used tea has been used to prepare magnetic nanoparticles. • Nanoparticles have particle size of 2-25nm and cuboid/pyramid structure. • Magnetic nanoparticles show high adsorption capacity for arsenic.

  4. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    Science.gov (United States)

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  5. ARSENIC REMOVAL BY PHYTOFILTRATION AND SILICON TREATMENT : A POTENTIAL SOLUTION FOR LOWERING ARSENIC CONCENTRATIONS IN FOOD CROPS

    OpenAIRE

    Sandhi, Arifin

    2017-01-01

    Use of arsenic-rich groundwater for crop irrigation can increase the arsenic (As) content in food crops and act as a carcinogen, compromising human health. Using aquatic plant based phytofiltration is a potential eco-technique for removing arsenic from water. The aquatic moss species Warnstorfia fluitans grows naturally in mining areas in northern Sweden, where high concentrations of arsenic occur in lakes and rivers. This species was selected as a model for field, climate chamber and greenho...

  6. Arsenic removal in solution using non living bio masses of aquatic weed

    International Nuclear Information System (INIS)

    Marin A, M. J.

    2010-01-01

    parameters were the As (V) concentration, contact time, ph and the bio sorbent mass. Maximum removal concentration of As (V) was 75% for both not living biomass using a initial concentration As (V) of 0.1 mg/L, 100 mg of bio sorbent, ph=9, and 24 hours contact time at the same ph value. In particular both bio masses, for their determined properties, were found to be potential bio sorbents/accumulators for arsenic ions from aqueous solution and they can be used in a very low cost metalloid ions removal system. (Author)

  7. THE EFFECT OF PH, PHOSPHATE AND OXIDANT TYPE ON THE REMOVAL OF ARSENIC FROM DRINKING WATER DURING IRON REMOVAL

    Science.gov (United States)

    In many regions of the United States, groundwaters that contain arsenic (primarily As[III]) also contain significant amounts of iron (Fe[II]). Arsenic removal will most likely be achieved by iron removal in many of those cases which will consist of oxidization followed by filtra...

  8. Enhanced arsenic removal from water by hierarchically porous CeO₂-ZrO₂ nanospheres: role of surface- and structure-dependent properties.

    Science.gov (United States)

    Xu, Weihong; Wang, Jing; Wang, Lei; Sheng, Guoping; Liu, Jinhuai; Yu, Hanqing; Huang, Xing-Jiu

    2013-09-15

    Arsenic contaminated natural water is commonly used as drinking water source in some districts of Asia. To meet the increasingly strict drinking water standards, exploration of efficient arsenic removal methods is highly desired. In this study, hierarchically porous CeO₂-ZrO₂ nanospheres were synthesized, and their suitability as arsenic sorbents was examined. The CeO₂-ZrO₂ hollow nanospheres showed an adsorption capacity of 27.1 and 9.2 mg g(-1) for As(V) and As(III), respectively, at an equilibrium arsenic concentration of 0.01 mg L(-1) (the standard for drinking water) under neutral conditions, indicating a high arsenic removal performance of the adsorbent at low arsenic concentrations. Such a great arsenic adsorption capacity was attributed to the high surface hydroxyl density and presence of hierarchically porous network in the hollow nanospheres. The analysis of Fourier transformed infrared spectra and X-ray photoelectron spectroscopy demonstrated that the adsorption of arsenic on the CeO₂-ZrO₂ nanospheres was completed through the formation of a surface complex by substituting hydroxyl with arsenic species. In addition, the CeO₂-ZrO₂ nanospheres were able to remove over 97% arsenic in real underground water with initial arsenic concentration of 0.376 mg L(-1) to meet the guideline limit of arsenic in drinking water regulated by the World Health Organization without any pre-treatment and/or pH adjustment. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes

    OpenAIRE

    Can, Berrin Zeliha; Boncukcuoglu, Recep; Yilmaz, Alper Erdem; Fil, Baybars Ali

    2014-01-01

    Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, curr...

  10. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    International Nuclear Information System (INIS)

    Cornejo, Lorena; Lienqueo, Hugo; Arenas, Maria; Acarapi, Jorge; Contreras, David; Yanez, Jorge; Mansilla, Hector D.

    2008-01-01

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L -1 . Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L -1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L -1 . This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed

  11. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, Lorena [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile)], E-mail: lorenacp@uta.cl; Lienqueo, Hugo; Arenas, Maria [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Acarapi, Jorge [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile); Contreras, David; Yanez, Jorge; Mansilla, Hector D. [Facultad de Ciencias Quimicas, Universidad de Concepcion, Casilla 160C, Concepcion (Chile)

    2008-12-15

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 {mu}g L{sup -1}. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L{sup -1} of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 {mu}g L{sup -1}. This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed.

  12. Cu II Removal from Industrial Wastewater Using Low Cost Adsorbent

    Directory of Open Access Journals (Sweden)

    Salwa Hadi Ahmed

    2018-01-01

    Full Text Available Study the possibility of utilization of waste tires rubber ash (WTRA as a low-cost adsorbent and are available as a type of solid waste for the removal of copper ions from industrial wastewater. Depending on batch adsorption experiments, the effect of different parameters including pH, adsorbent dosage WTRA, contact time, initial concentration of the ion and shacking speed were studied. Results showed that the highest removal Cu+2 ions was 97.8% at pH equal to 6, 120 min contact time, dose WTRA 1.5 g/L, shacking speed 150 rpm. The experimental data were analyzed using the Freundlich and Langmuir isotherm models showed great compatibility with Langmuir model (R2=0.923. Adsorption kinetics was studied and the data was showed agree with Pseudo-first-order equation where the value of (kt=0.5115/min. The study also showed the possibility of using WTRA efficiently as adsorbent and low cost in the removal of copper ions from industrial waste water. DOI: http://dx.doi.org/10.25130/tjes.24.2017.17

  13. Removal of arsenic from water using nano adsorbents and challenges: A review.

    Science.gov (United States)

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Arsenic Removal from Pinctada martensii Enzymatic Hydrolysate by Using Zr(Ⅳ)-Loaded Chelating Resin

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoman; DAI Wenjin; SUN Huili; PAN Jianyu

    2013-01-01

    The present study investigated the removal of inorganic arsenic from Pinctada martensii enzymatic hydrolysate through unmodified resin (D296) and Zr(Ⅳ)-loaded chelating resin (Zr-D401).By loading Zr to macroporous chelating resin D401,the as exchange adsorption active sites are generated.This transforms D401 from a material that does not have the arsenic adsorption capacity into a material that has excellent arsenic exchange adsorption capacity.The static adsorption experiments were conducted to investigate the optimal removal condition for D296 and Zr-D401.The experimental results show that:the optimum condition for D296 is that T=25℃,pH=5,resin additive amount=1 g(50mL)-1,and contact time=10h,the corresponding arsenic removal rate being 65.7%,and protein loss being 2.33%; the optimum condition for Zr-D401 is that T=25 ℃,pH=8,resin additive amount=1 g (50 mL)-1,and contact time=10 h,the corresponding arsenic removal rate being 70.3%,and protein loss being 4.65%.These results show that both of the two resins are effective in arsenic removal for preserving useful substance.Our research provides scientific evidence and advances in the processing technology for heavy metal removal in shellfish.

  15. Iron coated pottery granules for arsenic removal from drinking water.

    Science.gov (United States)

    Dong, Liangjie; Zinin, Pavel V; Cowen, James P; Ming, Li Chung

    2009-09-15

    A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 microg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 microg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q(e)) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP

  16. Iron coated pottery granules for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Dong Liangjie; Zinin, Pavel V.; Cowen, James P.; Ming, Li Chung

    2009-01-01

    A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15 L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 μg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 μg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1 L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q e ) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP) analysis

  17. Heating Changes Bio-Schwertmannite Microstructure and Arsenic(III Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Xingxing Qiao

    2017-01-01

    Full Text Available Schwertmannite (Sch is an efficient adsorbent for arsenic(III removal from arsenic(III-contaminated groundwater. In this study, bio-schertmannite was synthesized in the presence of dissolved ferrous ions and Acidithiobacillus ferrooxidans LX5 in a culture media. Bio-synthesized Sch characteristics, such as total organic carbon (TOC, morphology, chemical functional groups, mineral phase, specific surface area, and pore volume were systematically studied after it was dried at 105 °C and then heated at 250–550 °C. Differences in arsenic(III removal efficiency between 105 °C dried-sch and 250–550 °C heated-sch also were investigated. The results showed that total organic carbon content in Sch and Sch weight gradually decreased when temperature increased from 105 °C to 350 °C. Sch partly transformed to another nanocrystalline or amorphous phase above 350 °C. The specific surface area of 250 °C heated-sch was 110.06 m2/g compared to 5.14 m2/g for the 105 °C dried-sch. Total pore volume of 105 °C dried-sch was 0.025 cm3/g with 32.0% mesopore and 68.0% macropore. However, total pore volume of 250 °C heated-mineral was 0.106 cm3/g with 23.6% micropore, 33.0% mesopore, and 43.4% macropore. The arsenic(III removal efficiency from an initial 1 mg/L arsenic(III solution (pH 7.5 was 25.1% when 0.25 g/L of 105 °C dried-sch was used as adsorbent. However, this efficiency increased to 93.0% when using 250 °C heated-sch as adsorbent. Finally, the highest efficiency for arsenic(III removal was obtained with sch-250 °C due to high amounts of sorption sites in agreement with the high specific surface area (SSA obtained for this sample.

  18. Arsenic removal by coagulation using ferric chloride and chitosan from water

    Directory of Open Access Journals (Sweden)

    Farid Hesami

    2013-01-01

    Conclusions: Chitosan as natural coagulant aid improved arsenic removal efficiency by coagulation process using FeCl 3 . This method can be used for regions with drinking water contaminated with initial arsenic concentration less than 1 000 μg/l.

  19. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.; Van Halem, Doris; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  20. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.

    2012-06-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  1. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan-Red Scoria and Chitosan-Pumice Blends.

    Science.gov (United States)

    Asere, Tsegaye Girma; Mincke, Stein; De Clercq, Jeriffa; Verbeken, Kim; Tessema, Dejene A; Fufa, Fekadu; Stevens, Christian V; Du Laing, Gijs

    2017-08-09

    In different regions across the globe, elevated arsenic contents in the groundwater constitute a major health problem. In this work, a biopolymer chitosan has been blended with volcanic rocks (red scoria and pumice) for arsenic (V) removal. The effect of three blending ratios of chitosan and volcanic rocks (1:2, 1:5 and 1:10) on arsenic removal has been studied. The optimal blending ratio was 1:5 (chitosan: volcanic rocks) with maximum adsorption capacity of 0.72 mg/g and 0.71 mg/g for chitosan: red scoria (Ch-Rs) and chitosan: pumice (Ch-Pu), respectively. The experimental adsorption data fitted well a Langmuir isotherm ( R ² > 0.99) and followed pseudo-second-order kinetics. The high stability of the materials and their high arsenic (V) removal efficiency (~93%) in a wide pH range (4 to 10) are useful for real field applications. Moreover, the blends could be regenerated using 0.05 M NaOH and used for several cycles without losing their original arsenic removal efficiency. The results of the study demonstrate that chitosan-volcanic rock blends should be further explored as a potential sustainable solution for removal of arsenic (V) from water.

  2. Enhanced arsenic removal from water by hierarchically porous CeO{sub 2}–ZrO{sub 2} nanospheres: Role of surface- and structure-dependent properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weihong; Wang, Jing; Wang, Lei [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sheng, Guoping [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Liu, Jinhuai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Hanqing [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Huang, Xing-Jiu, E-mail: xingjiuhuang@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-09-15

    Highlights: • The CeO{sub 2}–ZrO{sub 2} hollow nanospheres had strong affinity and selectivity to arsenic. •The adsorbent showed excellent ability to remove arsenic at low concentrations. • The adsorption mechanism was investigated by FTIR and XPS. • The adsorbent showed potential application for drinking water treatment. -- Abstract: Arsenic contaminated natural water is commonly used as drinking water source in some districts of Asia. To meet the increasingly strict drinking water standards, exploration of efficient arsenic removal methods is highly desired. In this study, hierarchically porous CeO{sub 2}–ZrO{sub 2} nanospheres were synthesized, and their suitability as arsenic sorbents was examined. The CeO{sub 2}–ZrO{sub 2} hollow nanospheres showed an adsorption capacity of 27.1 and 9.2 mg g{sup −1} for As(V) and As(III), respectively, at an equilibrium arsenic concentration of 0.01 mg L{sup −1} (the standard for drinking water) under neutral conditions, indicating a high arsenic removal performance of the adsorbent at low arsenic concentrations. Such a great arsenic adsorption capacity was attributed to the high surface hydroxyl density and presence of hierarchically porous network in the hollow nanospheres. The analysis of Fourier transformed infrared spectra and X-ray photoelectron spectroscopy demonstrated that the adsorption of arsenic on the CeO{sub 2}–ZrO{sub 2} nanospheres was completed through the formation of a surface complex by substituting hydroxyl with arsenic species. In addition, the CeO{sub 2}–ZrO{sub 2} nanospheres were able to remove over 97% arsenic in real underground water with initial arsenic concentration of 0.376 mg L{sup −1} to meet the guideline limit of arsenic in drinking water regulated by the World Health Organization without any pre-treatment and/or pH adjustment.

  3. Removal of arsenic from water by Friedel's salt (FS: 3CaO·Al2O3·CaCl2·10H2O).

    Science.gov (United States)

    Zhang, Danni; Jia, Yongfeng; Ma, Jiayu; Li, Zhibao

    2011-11-15

    Low levels of arsenic can be effectively removed from water by adsorption onto various materials and searching for low-cost, high-efficiency new adsorbents has been a hot topic in recent years. In the present study, the performance of Friedel's salt (FS: 3CaO·Al(2)O(3)·CaCl(2)·10H(2)O), a layered double hydroxide (LDHs), as an adsorbent for arsenic removal from aqueous solution was investigated. Friedel's salt was synthesized at lower temperature (50°C) compared to traditional autoclave methods by reaction of calcium chloride with sodium aluminate. Kinetic study revealed that adsorption of arsenate by Friedel's salt was fast in the first 12h and equilibrium was achieved within 48 h. The adsorption kinetics are well described by second-order Lageren equation. The adsorption capacity of the synthesized sorbent for arsenate at pH 4 and 7 calculated from Langmuir adsorption isotherms was 11.85 and 7.80 mg/g, respectively. Phosphate and silicate markedly decreased the removal of arsenate, especially at higher pH, but sulfate was found to suppress arsenate adsorption at lower pH and the adverse effect was disappeared at pH ≥ 6. Common metal cations (Ca(2+), Mg(2+)) enhanced arsenate adsorption. The results suggest that Friedel's salt is a potential cost-effective adsorbent for arsenate removal in water treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. CAPITAL COSTS OF ARSENIC REMOVAL TECHNOLOGIES, U.S. EPA ARSENIC REMOVAL TECHNOLOGY DEMONSTRATION PROGRAM ROUND 1

    Science.gov (United States)

    On January 18, 2001, the U.S. Environmental Protection Agency (EPA) finalized the maximum contaminant level (MCL) for arsenic at 0.01 mg/L. EPA subsequently revised the rule text to express the MCL as 0.010 mg/L (10 μg/L). The final rule requires all community and non-transient, ...

  5. Small Systems Use of a Solid Arsenic Oxidizing Media in Place of Chemical Oxidation to Enhance Arsenic Removal

    Science.gov (United States)

    Presentation provides information on the need to oxidize As III to As V to increase arsenic removal followed by information on the results of an arsenic demonstration project (Plainview CDS) using a solid oxidizing media (Filox) to oxidize As III. The presentation includes a sho...

  6. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design.

    Science.gov (United States)

    Tanboonchuy, Visanu; Grisdanurak, Nurak; Liao, Chih-Hsiang

    2012-02-29

    This study describes the removal of arsenic species in groundwater by nano zero-valent iron process, including As(III) and As(V). Since the background species may inhibit or promote arsenic removal. The influence of several common ions such as phosphate (PO4(3-)), bicarbonate (HCO3-)), sulfate (SO4(2-)), calcium (Ca2+), chloride (Cl-), and humic acid (HA) were selected to evaluate their effects on arsenic removal. In particular, a 2(6-2) fractional factorial design (FFD) was employed to identify major or interacting factors, which affect arsenic removal in a significant way. As a result of FFD evaluation, PO4(3-) and HA play the role of inhibiting arsenic removal, while Ca2+ was observed to play the promoting one. As for HCO3- and Cl-, the former one inhibits As(III) removal, whereas the later one enhances its removal; on the other hand, As(V) removal was affected only slightly in the presence of HCO3- or Cl-. Hence, it was suggested that the arsenic removal by the nanoiron process can be improved through pretreatment of PO4(3-) and HA. In addition, for the groundwater with high hardness, the nanoiron process can be an advantageous option because of enhancing characteristics of Ca2+. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives.

    Science.gov (United States)

    Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs

    2015-12-22

    This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.

  8. Concurrent arsenic and microbe removal from groundwater using iron electro-coagulation: Mechanisms of E.coli attenuation

    Science.gov (United States)

    Delaire, C.; Van Genuchten, C. M.; Amrose, S. E.; Gadgil, A.

    2013-12-01

    Around 60 million people in South Asia drink groundwater from arsenic contaminated shallow aquifers. Research over the last two decades has focused on arsenic removal alone to mitigate this problem, largely ignoring possible microbial contamination of shallow groundwater. However, diarrheal diseases are still prevalent in the region and recently, fecal indicators and pathogens were detected in shallow tubewells in Bangladesh. Comprehensive treatment technologies addressing both microbial and arsenic contamination are needed and may have a higher social acceptability, contributing to their sustainability in resource poor areas. Iron electro-coagulation (EC) is a low-cost and low-waste process using small amounts of electricity to produce Fe(III)-oxides that serve as an adsorbent for arsenic and a coagulant for microbes. Iron EC relies on the oxidative dissolution of a Fe(0) anode to produce Fe(II) ions that rapidly oxidize and precipitate in the presence of oxygen. In the process, strong oxidants generated by Fenton-like reactions convert As(III) into As(V), which is more amenable to adsorption. In this work, we demonstrate that iron EC can simultaneously remove arsenic and the model organism E.coli in South Asian synthetic groundwater. We find that E.coli is attenuated because it adheres to iron precipitates and is trapped in aggregates that settle out. Some inactivation (~20%, as probed by membrane permeability stains) also takes place, likely due to oxidative stress caused by strong oxidants produced in Fenton-like reactions. We find that pH has a significant effect on E.coli removal from South Asian synthetic groundwater. The iron dosages required to achieve 4-log attenuation (from an initial concentration of 10^6.4 CFU/mL) at pH 6.6. and 7.5 are 25 and 140 mg-Fe/L respectively, other parameters being equal. In this pH range, iron precipitates generated in synthetic groundwater have a negative surface charge, whose variation cannot entirely explain the

  9. Selective Removal of Toxic Metals like Copper and Arsenic from Drinking Water Using Phenol-Formaldehyde Type Chelating Resins

    Directory of Open Access Journals (Sweden)

    Debasis Mohanty

    2009-01-01

    Full Text Available The concentration of different toxic metals has increased beyond environmentally and ecologically permissible levels due to the increase in industrial activity. More than 100 million people of Bangladesh and West Bengal in India are affected by drinking ground water contaminated with arsenic and some parts of India is also affected by poisoning effect of copper, cadmium and fluoride. Different methods have been evolved to reduce the arsenic concentration in drinking water to a maximum permissible level of 10 μg/L where as various methods are also available to separate copper from drinking water. Of the proven methods available today, removal of arsenic by polymeric ion exchangers has been most effective. While chelating ion exchange resins having specific chelating groups attached to a polymer have found extensive use in sorption and pre concentration of Cu2+ ions. Both the methods are coupled here to separate and preconcentrate toxic metal cation Cu2+ and metal anion arsenate(AsO4– at the same time. We have prepared a series of low-cost polymeric resins, which are very efficient in removing copper ion from drinking water and after coordinating with copper ion they act as polymeric ligand exchanger, which are efficiently removing arsenate from drinking water. For this purpose Schiff bases were prepared by condensing o-phenylenediamine with o-, m-, and p-hydroxybenzaldehydes. Condensing these phenolic Schiff bases with formaldehyde afforded the chelating resins in high yields. These resins are loaded with Cu2+, Ni2+ 2+, and Fe3+ ions. The resins and the polychelates are highly insoluble in water. In powdered form the metal ion-loaded resins are found to very efficiently remove arsenate ion from water at neutral pH. Resins loaded with optimum amount of Cu2+ ion is more effective in removing arsenate ions compared to those with Fe3+ ion, apparently because Cu2+ is a stronger Lewis acid than Fe3+. Various parameters influencing the removal of the

  10. Study of the Efficiency of Arsenic Removal from Drinking Water by Granular Ferric Hydroxide (GFH

    Directory of Open Access Journals (Sweden)

    .R. Asgari

    2008-04-01

    Full Text Available Background and ObjectivePollution of surface and ground water to arsenic (As has been reported from many parts of the world and in some regions of Iran especially in Kurdistan province. Natural pollution of water to As is in fact dependent to geological characteristics of a region. To day, various methods have been recommended for As removal that each of which has special advantages and drawbacks. Granular ferric hydroxide (GFH is a relatively new adsorbent available in market which is principally introduced for As removal.MethodsThis study was an applied survey in which the effects of changing contact time, As concentration, adsorbent weight, pH as well as the effect of sulfate and chloride ions in arsenic removal were determined. Moreover, the model of absorption by GFH was studied and compared with Freundlich and Langmuir models. Raw data were analyzed by Excel and SPSS softwares. ResultsResults showed that As adsorption by GFH imitate both the Freundlich and Langmuir equations (with R2 >0.95. Optimum PH was 7.5 and duration of the process about 30 minutes was sufficient for optimum removal of As. It was also found that efficiency of As removal was high when small amounts of adsorbent were used. Furthermore, sulfate and chloride ions in concentrations used in this study had no noticeable effect on As removal and Fe added during process remains in the water more than the standard value (0.3 mg/l.ConclusionAccording to this study, GFH could be considered as a suitable adsorbent for As removal from polluted water resources because of its high performance without any needs to PH adjustment. However, there are few drawbacks such as Fe addition and relatively high initial cost. Keywords: Arsenic, Granular Ferric Hydroxide (GFH, Adsorption, Drinking Water

  11. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Nina Ricci Nicomel

    2015-12-01

    Full Text Available This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.

  12. Subsurface flow wetlands for the removal of arsenic and metals from contaminated water

    OpenAIRE

    Lizama Allende, Katherine

    2017-01-01

    The presence of arsenic (As) in aquatic environments is a worldwide concern due to its toxicity and chronic effects. In many cases, the choice of treatment technologies is limited due to the isolated location of the water source and the high cost of conventional treatment technologies. In addition, other pollutants are often found alongside As, such as iron (Fe) and boron (B). Constructed wetlands have shown capability to remove As and metals. However, few experimental studies have been under...

  13. Effect of alpha-lipoic acid on the removal of arsenic from arsenic-loaded isolated liver tissues of rat

    Directory of Open Access Journals (Sweden)

    Noor-E-Tabassum

    2006-06-01

    Full Text Available The patient of chronic arsenic toxicity shows oxidative stress. To overcome the oxidative stress, several antioxidants such as beta-carotene, ascorbic acid, α-tocopherol, zinc and selenium had been suggested in the treatment of chronic arsenic toxicity. In the present study universal antioxidant (both water and lipid soluble antioxidant α-lipoic acid was used to examine the effectiveness of reducing the amount of arsenic from arsenic-loaded isolated liver tissues of rat. Isolated liver tissues of Long Evans Norwegian rats were cut into small pieces and incubated first in presence or absence of arsenic and then with different concentrations of α-lipoic acid during the second incubation. α-Lipoic acid decreases the amount of arsenic and malondialdehyde (MDA in liver tissues as well as increases the reduced glutathione (GSH level in dose dependent manner. These results suggest that α-lipoic acid remove arsenic from arsenic-loaded isolated liver tissues of rat.

  14. Preparation of Metal Immobilized Orange Waste Gel for Arsenic(V Removal From Water

    Directory of Open Access Journals (Sweden)

    Biplob Kumar Biswas

    2014-05-01

    Full Text Available Abstract - The toxicity of arsenic is known to be a risk to aquatic flora and fauna and to human health even in relatively low concentration. In this research an adsorption gel was prepared from agricultural waste material (orange waste through simple chemical modification in the view to remove arsenic (V from water. Orange waste was crushed into small particles and saponified with Ca(OH2 to prepare saponified orange waste, which was further modified by immobilizing gadolinium(III to obtain desired adsorption material (Gd(III-immobilized SOW gel. The effective pH range for arsenic adsorption was found to be 7.5 – 8.5. Adsorption capacity of the gel was evaluated to be 0.45 mol-arsenic (V/kg. Dynamic adsorption of arsenic (V in column-mode was conducted and a dynamic capacity was found to be 0.39 mol/kg. Elution of arsenate was tested after complete saturation of the column packed with gadolinium-immobilized orange waste adsorption gel. A complete elution of arsenate was achieved with the help of 1 M HCl and 28 times pre-concentration factor was attained. This study showed that a cheap and abundant agro-industrial waste material could be successfully employed for the remediation of arsenic pollution in aquatic environment. Keywords: Arsenic; Orange waste; Gadolinium(III; Adsorption; Elution.

  15. Mechanism of groundwater arsenic removal by goethite-coated mineral sand

    Science.gov (United States)

    Cashion, J. D.; Khan, S. A.; Patti, A. F.; Adeloju, S.; Gates, W. P.

    2017-11-01

    Skye sand (Vic, Australia) has been considered for arsenic removal from groundwater. Analysis showed that the silica sand is coated with poorly crystalline goethite, hematite and clay minerals. Mössbauer spectra taken following arsenic adsorption revealed changes in the recoilless fraction and relaxation behaviour of the goethite compared to the original state, showing that the goethite is the main active species.

  16. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.

    Science.gov (United States)

    Amrose, Susan; Gadgil, Ashok; Srinivasan, Venkat; Kowolik, Kristin; Muller, Marc; Huang, Jessica; Kostecki, Robert

    2013-01-01

    We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 μg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia, while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance over a larger range of current density than in any other single previous EC study (5000-fold: 0.02 - 100 mA/cm(2)) and over a wide range of charge dosage rates (0.060 - 18 Coulombs/L/min). We find that charge dosage rate has significant effects on both removal capacity (μg-As removed/Coulomb) and treatment time and is the appropriate parameter to maintain performance when scaling to different active areas and volumes. We estimate the operating costs of EC treatment in Bangladesh groundwater to be $0.22/m(3). Waste sludge (~80 - 120 mg/L), when tested with the Toxic Characteristic Leachate Protocol (TCLP), is characterized as non-hazardous. Although our focus is on developing a practical device, our results suggest that As[III] is mostly oxidized via a chemical pathway and does not rely on processes occurring at the anode. Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the free supplemental file.

  17. Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads

    International Nuclear Information System (INIS)

    Banerjee, Anupam; Nayak, Dalia; Lahiri, Susanta

    2007-01-01

    This work aims to study the differential attitude of Fe-doped calcium alginate (Fe-CA) beads towards As(III) and As(V) compounds so that speciation-dependent environmentally sustainable methodologies can be developed for removal of arsenic from contaminated water. Throughout the experiment, 76 As has been used as precursor of stable arsenic. The affinity of As(V) towards the Fe-CA beads is greater than that of As(III). Removal efficiency of Fe-CA beads for As(V) increases with increasing number of beads and longer shaking times. At pH 3, 30 Fe-CA beads remove As(V) completely from a solution containing 20 mg kg -1 As(V). The technique has been successfully applied to the ground water collected from an arsenic-contaminated area

  18. Removal of arsenic species from drinking water by Iranian natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Menhaje-Bena, R.; Kazemian, H.; Shahtaheri, S.J.; Ghazi-Khansari, M.

    2003-01-01

    The main objective of this study was to find a relatively inexpensive method for removal of arsenic species from drinking water. The uptake capability of Iron (II) modified natural clinoptilolites and relevant synthetic zeolites A and P was investigated toward inorganic arsenic species from drinking water. Results obtained from sorption experiments, using a batch (static) technique showed that, among the investigated zeolites, modified synthetic zeolite A was the most selective sorbent for removal of arsenate and arsenite from drinking water. Through this study the influencing of factories including temperature, concentration, pH, particle size and interferences was evaluated on removal of arsenic species. The synthetic zeolites and their modified forms were also characterized, using XRD, XRF and thermal analysis techniques. (authors)

  19. Removal of arsenic from wastewaters by cryptocrystalline magnesite: complimenting experimental results with modelling

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2016-02-01

    Full Text Available -1 Journal of Cleaner Production Removal of arsenic from wastewaters by cryptocrystalline magnesite: complimenting experimental results with modelling Vhahangwele Masindi W. Mugera Gitari Keywords: Arsenic Mine leachates Cryptocrystalline...

  20. Comparing Two Operating Configurations in a Full-Scale Arsenic Removal Plant. Case Study: Guatemala

    Directory of Open Access Journals (Sweden)

    Sofía E. Garrido Hoyos

    2013-06-01

    Full Text Available The present study was conducted in Naranjo County located in the municipality of Mixco, Guatemala. The water supply source comes from two wells with a maximum flow of 25.24 and 33.44 L·s−1. The main problem with this source is the high arsenic concentration—between 0.1341 and 0.1671 mg·L−1. The aim of this study was to conduct laboratory tests, basic engineering and supervision of the construction and evaluation of an operations plant using two configurations, A (low-rate sedimentation and ceramic filter and B (high-rate sedimentation and clinoptilolite filter, to remove arsenic present in water for human use and consumption. This plant supplies water to Naranjo County in Mixco, Guatemala (5000 inhabitants. First, a laboratory Jar Test was performed to evaluate arsenic removal efficiency. And second, a conventional clarification plant was then built (design flow: 25.24 L·s−1. The best results were achieved with configuration B, with the following reagents and dosage as defined by the laboratory tests: 10 mg L−1 ferric chloride as coagulant; 1.8 mg·L−1 CH-polyfocal as flocculant and 0.4 mg L−1 MIT03 as color removal; 1 mg L−1 sodium hypochlorite as oxidant and adjusting pH to ≈7.0 with sodium hydroxide. Once the plant began operating, the efficiency of the treatment process was evaluated. The maximum elimination efficiencies were obtained 100% for turbidity (0 UTN, 89.54% (3.66 UPt-Co for color and 96.80% (0.005 mg L−1 for arsenic, values that comply with Guatemalan standards. For this case, the relation between Fe(III dosage/mg and As(V removal was 1:46.

  1. Application of Metal Oxide Heterostructures in Arsenic Removal from Contaminated Water

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-01-01

    Full Text Available It has become one of the major environmental problems for people worldwide to be exposed to high arsenic concentrations through contaminated drinking water, and even the long-term intake of small doses of arsenic has a carcinogenic effect. As an efficient and economic approach for the purification of arsenic-containing water, the adsorbents in adsorption processes have been widely studied. Among a variety of adsorbents reported, the metal oxide heterostructures with high surface area and specific affinity for arsenic adsorption from aqueous systems have demonstrated a promising performance in practical applications. This review paper aims to summarize briefly the metal oxide heterostructures in arsenic removal from contaminated water, so as to provide efficient, economic, and robust solutions for water purification.

  2. Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system

    International Nuclear Information System (INIS)

    Pavez, O.; Palacios, J. M.; Aguilar, C.

    2009-01-01

    In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodec il sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required. (Author) 31 refs

  3. Removal of arsenic from contaminated groundwater by solar-driven membrane distillation

    International Nuclear Information System (INIS)

    Manna, Ajay K.; Sen, Mou; Martin, Andrew R.; Pal, Parimal

    2010-01-01

    Experimental investigations were carried out on removal of arsenic from contaminated groundwater by employing a new flat-sheet cross flow membrane module fitted with a hydrophobic polyvinylidenefluoride (PVDF) microfiltration membrane. The new design of the solar-driven membrane module in direct contact membrane distillation (DCMD) configuration successfully produced almost 100 per cent arsenic-free water from contaminated groundwater in a largely fouling-free operation while permitting high fluxes under reduced temperature polarization. For a feed flow rate of 0.120 m 3 /h, the 0.13 μm PVDF membrane yielded a high flux of 74 kg/(m 2 h) at a feed water temperature of 40 deg. C and, 95 kg/m 2 h at a feed water temperature of 60 deg. C. The encouraging results show that the design could be effectively exploited in the vast arsenic-affected rural areas of South-East Asian countries blessed with abundant sunlight particularly during the critical dry season. - Solar-driven membrane distillation has the potential of removing arsenic from contaminated groundwater.

  4. Comparing mixed-media and conventional slow-sand filters for arsenic removal from groundwater

    NARCIS (Netherlands)

    Śmiech, Karolina M.; Tolsma, Aize; Kovács, Tímea; Dalbosco, Vlade; Yasadi, Kamuran; Groendijk, Leo; Agostinho, Luewton L.F.

    2018-01-01

    Arsenic contamination of groundwater is a major public health concern worldwide. The problem has been reported mainly in southern Asia and, especially, in Bangladesh. Slow-sand filters (SSF) augmented with iron were proven to be a simple, low-cost and decentralized technique for the treatment of

  5. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Parga, Jose R. [Institute Technology of Saltillo, Department of Metallurgy and Materials Science, V. Carranza 2400, C.P. 25280, Saltillo, Coahuila, Mexico (Mexico)]. E-mail: drjrparga@hotmail.com; Cocke, David L. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Valenzuela, Jesus L. [University of Sonora, Hermosillo, Sonora, Mexico (Mexico); Gomes, Jewel A. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Kesmez, Mehmet [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Irwin, George [Lamar University, Department of Chemistry and Physics, Beaumont, TX 77710 (United States); Moreno, Hector [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Weir, Michael [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States)

    2005-09-30

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern Mexico, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of Mexico (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Moessbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study.

  6. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico

    International Nuclear Information System (INIS)

    Parga, Jose R.; Cocke, David L.; Valenzuela, Jesus L.; Gomes, Jewel A.; Kesmez, Mehmet; Irwin, George; Moreno, Hector; Weir, Michael

    2005-01-01

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern Mexico, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of Mexico (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Moessbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study

  7. Iron oxide hydroxide nanoflower assisted removal of arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Raul, Prasanta Kumar, E-mail: prasanta.drdo@gmail.com [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India); Devi, Rashmi Rekha; Umlong, Iohborlang M. [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India); Thakur, Ashim Jyoti [Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam (India); Banerjee, Saumen; Veer, Vijay [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India)

    2014-01-01

    Graphical abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. TEM image clearly reveals that the nanoparticle looks flower like morphology with average particle size less than 20 nm. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature and the data fitted to different isotherm models indicate the heterogeneity of the adsorbent surface. The material can be regenerated up to 70% using dilute hydrochloric acid and it would be utilized for de-arsenification purposes. - Highlights: • The work includes synthesis of iron oxide hydroxide nanoflower and its applicability for the removal of arsenic from water. • The nanoparticle was characterized using modern instrumental methods like FESEM, TEM, BET, XRD, etc. • The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature. • The sorption is multilayered on the heterogeneous surface of the nano adsorbent. • The mechanism of arsenic removal of IOH nanoflower follows both adsorption and ion-exchange. - Abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. The nanoparticle was characterized by X-ray powder diffraction analysis (XRD), BET surface area, FTIR, FESEM and TEM images. TEM image clearly reveals flower like morphology with average particle size less than 20 nm. The nanoflower morphology is also supported by FESEM images. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic and the data fitted to different isotherm models indicate the

  8. Granulated Bog Iron Ores as Sorbents in Passive (BioRemediation Systems for Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Klaudia Debiec

    2018-03-01

    Full Text Available The main element of PbRS (passive (bioremediation systems are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (adsorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (microorganisms used in these systems. Our previous studies showed that bog iron ores (BIOs meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i to investigate the ability of granulated BIOs (gBIOs to remove arsenic from various types of contaminated waters, and (ii to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed, that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (adsorption of other elements, i.e., zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite were effectively removed. Arsenic concentration after treatment was <100 μg/L, which is below the limit for industrial water.

  9. Granulated bog iron ores as sorbents in passive (bio)remediation systems for arsenic removal

    Science.gov (United States)

    Debiec, Klaudia; Rzepa, Grzegorz; Bajda, Tomasz; Uhrynowski, Witold; Sklodowska, Aleksandra; Krzysztoforski, Jan; Drewniak, Lukasz

    2018-03-01

    The main element of PbRS (passive (bio)remediation systems) are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (ad)sorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (micro)organisms used in these systems. Our previous studies showed that bog iron ores (BIOs) meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i) to investigate the ability of granulated BIOs (gBIOs) to remove arsenic from various types of contaminated waters, and (ii) to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (ad)sorption of other elements, i.e. zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite) were effectively removed. Arsenic concentration after treatment was <100 µg/L, which is below the limit for industrial water.

  10. Arsenic removal from aqueous solutions by sorption onto zirconium- and titanium-modified sorbents

    Directory of Open Access Journals (Sweden)

    Ignjatović Ljubiša

    2011-01-01

    Full Text Available Arsenic reduction in drinking water can include treatment by adsorption, switching to alternative water sources, or blending with water that has a lower arsenic concentration. Commercial sorbents MTM, Greensand and BIRM (Clack Corporation were modified with zirconium and titanium after activation. The modifications were performed with titanium tetrachloride and zirconium tetrachloride. The modified sorbents were dried at different temperatures. The sorption of arsenate and arsenite dissolved in drinking water (200μg L-1 onto the sorbents were tested using a batch procedure. After removal of the sorbent, the concentration of arsenic was determined by HG-AAS. Zirconium-modified BIRM showed the best performance for the removal of both arsenite and arsenate. Modification of the greensand did not affect arsenic sorption ability. Zirconium-modified BIRM diminished the concentration of total As to below 5 μg L-1.

  11. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    Science.gov (United States)

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  12. Study on arsenic removal process from water

    Directory of Open Access Journals (Sweden)

    B Bayarmaa

    2014-09-01

    Full Text Available In this study a novel adsorbent, iron oxide, is used for As (V or As (III removal. Some ferric oxides have been reported to be effective for arsenic removal. Ferric oxides powder is a good adsorbent material since it’s has magnetic properties and a good adsorption capacity. The main purpose of this study has been focused on to study the relationship between adsorption capacity (ability, performance and the surface characteristics of the ferric oxide. Prepared sample’s capacity was evaluated. The value was 26.1-67.4 mg/g for As (V and 20.5-47.8 mg/g for As (III. pH dependence was evaluated and when pH increasing, adsorption capacity was decreased. The kinetic was evaluated and about 12 hours reached equilibrium and a capacity of 49 mg/g for As (V and 42 mg/g for As(III was gained. The kinetic constants for arsenic adsorption on the ferrihydrite adsorbent’s were fitted.DOI: http://dx.doi.org/10.5564/mjc.v12i0.172 Mongolian Journal of Chemistry Vol.12 2011: 53-55

  13. A simple chemical free arsenic removal method for community water supply - A case study from West Bengal, India

    International Nuclear Information System (INIS)

    Sen Gupta, B.; Chatterjee, S.; Rott, U.; Kauffman, H.; Bandopadhyay, A.; DeGroot, W.; Nag, N.K.; Carbonell-Barrachina, A.A.; Mukherjee, S.

    2009-01-01

    This report describes a simple chemical free method that was successfully used by a team of European and Indian scientists ( (www.qub.ac.uk/tipot)) to remove arsenic (As) from groundwater in a village in West Bengal, India. Six such plants are now in operation and are being used to supply water to the local population ( (www.insituarsenic.org)). The study was conducted in Kasimpore, a village in North 24 Parganas District, approximately 25 km from Kolkata. In all cases, total As in treated water was less than the WHO guideline value of 10 μg L -1 . The plant produces no sludge and the operation cost is 1.0 US$ per day for producing 2000 L of potable water. - This work presents the chemical free arsenic removal method from groundwater and its successful implementation in West Bengal for community water supply.

  14. Removal of arsenic from aqueous solutions using waste iron columns inoculated with iron bacteria.

    Science.gov (United States)

    Azhdarpoor, Abooalfazl; Nikmanesh, Roya; Samaei, Mohammad Reza

    2015-01-01

    Arsenic contamination of water resources is one of the serious risks threatening natural ecosystems and human health. This study investigates arsenic removal using a waste iron column with and without iron bacteria in continuous and batch phases. In batch experiments, the effects of pH, contact time, initial concentration of arsenic and adsorbent dose were investigated. Results indicated that the highest arsenate removal efficiency occurred at pH 7 (96.76%). On increasing the amount of waste iron from 0.25 to 1 g, the removal rate changed from about 42.37%-96.70%. The results of continuous experiments on the column containing waste iron showed that as the empty bed contact time increased from 5 to 60 min, the secondary arsenate concentration changed from 23 to 6 µg/l. In experiments involving a waste iron column with iron bacteria, an increase in residence time from 5 to 60 min decreased the secondary arsenate concentration from 14.97 to 4.86 µg/l. The results of this study showed that waste iron containing iron bacteria is a good adsorbent for removal of arsenic from contaminated water.

  15. Effect of air-assisted backwashing on the performance of an anaerobic fixed-bed bioreactor that simultaneously removes nitrate and arsenic from drinking water sources.

    Science.gov (United States)

    Upadhyaya, Giridhar; Clancy, Tara M; Snyder, Kathryn V; Brown, Jess; Hayes, Kim F; Raskin, Lutgarde

    2012-03-15

    Contaminant removal from drinking water sources under reducing conditions conducive for the growth of denitrifying, arsenate reducing, and sulfate reducing microbes using a fixed-bed bioreactor may require oxygen-free gas (e.g., N2 gas) during backwashing. However, the use of air-assisted backwashing has practical advantages, including simpler operation, improved safety, and lower cost. A study was conducted to evaluate whether replacing N2 gas with air during backwashing would impact performance in a nitrate and arsenic removing anaerobic bioreactor system that consisted of two biologically active carbon reactors in series. Gas-assisted backwashing, comprised of 2 min of gas injection to fluidize the bed and dislodge biomass and solid phase products, was performed in the first reactor (reactor A) every two days. The second reactor (reactor B) was subjected to N2 gas-assisted backwashing every 3-4 months. Complete removal of 50 mg/L NO3- was achieved in reactor A before and after the switch from N2-assisted backwashing (NAB) to air-assisted backwashing (AAB). Substantial sulfate removal was achieved with both backwashing strategies. Prolonged practice of AAB (more than two months), however, diminished sulfate reduction in reactor B somewhat. Arsenic removal in reactor A was impacted slightly by long-term use of AAB, but arsenic removals achieved by the entire system during NAB and AAB periods were not significantly different (p>0.05) and arsenic concentrations were reduced from approximately 200 μg/L to below 20 μg/L. These results indicate that AAB can be implemented in anaerobic nitrate and arsenic removal systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effect of hexane extract of spinach in the removal of arsenic from rat

    Directory of Open Access Journals (Sweden)

    Badar Uddin Umar

    2007-03-01

    Full Text Available Extensive search is going on for a cheap, easily available and effective remedy of chronic arsenic poisoning. The present study was designed to find the effects of hexane extract of spinach in the removal of arsenic from arsenic treated rat. Rats were fed arsenic trioxide through Ryle’s tube for one month then they were fed on hexane extract (1-4% of spinach for another one month. Hexane extract of spinach decreased accumulated arsenic from rat liver, spleen, kidney, intestine, lungs and skin significantly. Besides, it reduced the oxidative stress caused by arsenic which was evident by decreased levels of malondialdehye (MDA in the above tissues. Hexane extract decreases both arsenic level and MDA level in rat tissues in dose dependent manner, which is more effective at lower doses.

  17. Effect of hexane extract of spinach in the removal of arsenic from rat

    Directory of Open Access Journals (Sweden)

    Badar Uddin Umar

    2007-06-01

    Full Text Available Extensive search is going on for a cheap, easily available and effective remedy of chronic arsenic poisoning. The present study was designed to find the effects of hexane extract of spinach in the removal of arsenic from arsenic treated rat. Rats were fed arsenic trioxide through Ryle’s tube for one month then they were fed on hexane extract (1-4% of spinach for another one month. Hexane extract of spinach decreased accumulated arsenic from rat liver, spleen, kidney, intestine, lungs and skin significantly. Besides, it reduced the oxidative stress caused by arsenic which was evident by decreased levels of malondialdehyde (MDA in the above tissues. Hexane extract decreases both arsenic level and MDA level in rat tissues in dose dependent manner, which is more effective at lower doses.

  18. Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications.

    Science.gov (United States)

    Chauhan, Divya; Dwivedi, Jaya; Sankararamakrishnan, Nalini

    2014-01-01

    Enhanced removal application of both forms of inorganic arsenic from arsenic-contaminated aquifers at near-neutral pH was studied using a novel electrospun chitosan/PVA/zerovalent iron (CPZ) nanofibrous mat. CPZ was carefully examined using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), atomic fluorescence spectroscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Application of the adsorbent towards the removal of total inorganic arsenic in batch mode has also been studied. A suitable mechanism for the adsorption has also been discussed. CPZ nanofibers mat was found capable to remove 200.0±10.0 mg g(-1) of As(V) and 142.9±7.2 mg g(-1) of As(III) from aqueous solution of pH 7.0 at ambient condition. Addition of ethylenediaminetetraacetic acid (EDTA) enabled the stability of iron in zerovalent state (ZVI). Enhanced capacity of the fibrous mat could be attributed to the high surface area of the fibers, presence of ZVI, and presence of functional groups such as amino, carboxyl, and hydroxyl groups of the chitosan and EDTA. Both Langmuir and Freundlich adsorption isotherms were applicable to describe the removal process. The possible mechanism of adsorption has been explained in terms of electrostatic attraction between the protonated amino groups of chitosan/arsenate ions and oxidation of arsenite to arsenate by Fentons generated from ZVI and subsequent complexation of the arsenate with the oxidized iron. These CPZ nanofibrous mats has been prepared with environmentally benign naturally occurring biodegradable biopolymer chitosan, which offers unique advantage in the removal of arsenic from contaminated groundwater.

  19. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water.

    Science.gov (United States)

    Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro

    2011-10-15

    Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The role of orthophosphate and dissolved oxygen in the performance of arsenic-iron removal plants in Bangladesh.

    Science.gov (United States)

    Brennan, Ryan T; McBean, Edward A

    2011-01-01

    Arsenic iron removal plants (AIRPs) are used in some locations in Bangladesh to remove arsenic from groundwater to provide access to safer drinking water. In this study, the influence of orthophosphate in influent water on the performance of 21 (of 105) AIRPs installed in the Manikganj District was evaluated. The degree of aeration was also estimated, and the role of dissolved oxygen in AIRP performance is discussed. AIRP installations were done by a local non-governmental organization (The Society for People's Action in Change and Equity) with financial assistance from the Australian High Commission, Dhaka under the Direct Aid Program of the Australian Government. The presence of orthophosphate in the influent did not influence arsenic removal efficiency in the tested AIRPs, likely due to the high iron concentrations at all sites. The high iron provides adequate surface area for both orthophosphate and arsenic to be removed. Orthophosphate co-precipitated with iron oxides much more quickly than arsenic, in one cleaning cycle study, and is expected to play a more significant role in interfering with arsenic removal at sites with much lower iron concentrations. The aeration trays studied are estimated to introduce at least 2.4-3.7 mg/L of dissolved oxygen. In normal operation, sufficient oxygen is introduced through the aeration tray to fully oxidize all influent iron. The AIRPs studied show promise for use in areas of Bangladesh with high natural iron, where users are concerned with arsenic, iron, or both, in their drinking water.

  1. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    Science.gov (United States)

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years.

  2. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera México.

    Science.gov (United States)

    Parga, Jose R; Cocke, David L; Valenzuela, Jesus L; Gomes, Jewel A; Kesmez, Mehmet; Irwin, George; Moreno, Hector; Weir, Michael

    2005-09-30

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern México, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of México (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Mössbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study.

  3. Removal of groundwater arsenic using a household filter with iron spikes and stainless steel.

    Science.gov (United States)

    Avilés, M; Garrido, S E; Esteller, M V; De la Paz, J S; Najera, C; Cortés, J

    2013-12-15

    Arsenic (As) in groundwater for domestic use poses a worldwide threat to public health, most notably in rural areas. The aims of this study were: first, determine groundwater composition in a mining area in central Mexico (Huautla); second, assess As exposure through human groundwater consumption and; third, develop and test a household filter to obtain drinking water for these rural communities. From the 17th century through the 1990s, mines in the area produced Ag-galena and sphalerite from volcanic rock. Groundwater flooded the mines when they were abandoned due to low silver prices. Local households now use the water to meet domestic needs. Water from the mines was found to have high As content (0.04-0.26 mg L(-1)) and Fe, Mn, Pb and Cd were also above Mexican drinking water standards and WHO guidelines. All the population in the Huautla community was exposed to the metalloid through water used in food preparation. The best As removal was obtained with a filter using oxidized commercial fiber (HCl 2N as oxidant). Concentrations in the effluent were below Mexican drinking water standards (0.025 mg As L(-1) water) during the 105-day (2520 h) filter operation, with a maximum As removal efficiency of 95.4%. The household filter was simple, low-cost and may be very attractive for As removal in rural areas in developing countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

    2010-06-01

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to

  5. Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin.

    Science.gov (United States)

    Corsini, Anna; Colombo, Milena; Muyzer, Gerard; Cavalca, Lucia

    2015-09-01

    A heterotrophic arsenite-oxidizing bacterium, strain 2WW, was isolated from a biofilter treating arsenic-rich groundwater. Comparative analysis of 16S rRNA gene sequences showed that it was closely related (98.7 %) to the alphaproteobacterium Aliihoeflea aesturari strain N8(T). However, it was physiologically different by its ability to grow at relatively low substrate concentrations, low temperatures and by its ability to oxidize arsenite. Here we describe the physiological features of strain 2WW and compare these to its most closely related relative, A. aestuari strain N8(T). In addition, we tested its efficiency to remove arsenic from groundwater in combination with Pf-ferritin. Strain 2WW oxidized arsenite to arsenate between pH 5.0 and 8.0, and from 4 to 30 °C. When the strain was used in combination with a Pf-ferritin-based material for arsenic removal from natural groundwater, the removal efficiency was significantly higher (73 %) than for Pf-ferritin alone (64 %). These results showed that arsenite oxidation by strain 2WW combined with Pf-ferritin-based material has a potential in arsenic removal from contaminated groundwater.

  6. Strategies for low-cost water defluoridation of drinking water - a review of progress

    International Nuclear Information System (INIS)

    Malik, A.H.; Nasreen, S.; Mahmood, Q.; Khan, Z.M.; Sarwar, R.; Khan, A.

    2010-01-01

    One of the biggest challenges of 21 century is to ensure safe drinking water-supplies and environmental sanitation which are vital for protecting the environment, improving health and alleviating poverty. Natural contamination of groundwater sources by fluoride, arsenic and dissolved salts is the main health menace at present in many parts of Pakistan and other countries. Most of the fluoride in drinking water, either occurring naturally or added will be in the form of the free fluoride ion. It is a big challenge to investigate appropriate, low cost methods and technologies to be applied in developing countries to make fluoride contaminated water drinkable. In this paper low cost fluoride removal methods have been discussed and compared for application in developing countries. (author)

  7. Compositions and methods for removing arsenic in water

    Science.gov (United States)

    Gadgil, Ashok Jagannth [El Cerrito, CA

    2011-02-22

    Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.

  8. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    Science.gov (United States)

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  9. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    Science.gov (United States)

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  10. Removal of arsenic and COD from industrial wastewaters by electrocoagulation

    Directory of Open Access Journals (Sweden)

    H. POIROT

    2011-08-01

    Full Text Available The paper deals with the treatment of arsenic-containing industrial wastewaters by electrocoagulation. The waste issued from a paper mill industry downstream of the biological treatment by activated sludge was enriched with arsenic salts for the purpose of investigation of the treatment of mixed pollution. First, the treatment of single polluted waters, i.e. containing either the regular organic charge from the industrial waste or arsenic salts only, was studied. In the case of arsenic-containing waters, a broad selection of experimental data available in the literature was compiled and interpreted using an adsorption model developed previously. The same technique was used in the case of industrial waste. Arsenic-enriched paper mill wastewaters with various amounts of As salts were then treated by electrocoagulation with Fe electrodes. The set of data obtained were interpreted by a model developed on the basis of the separate models. The agreement between predicted and experimental variations of the As concentrations ranging from 0.3 µg/L to 730 µg/L showed that both the organic matter and As salt can be removed from the liquid independently from each other.

  11. Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jisun [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Soonjae [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jinhong [Samsung Electronics Co.Ltd.,(Maetan dong) 129, Samsung-ro Yeongtong-gu, Suwonsi, Gyeonggi-do 443-742, Repubilc of Korea (Korea, Republic of); Ha, Daegwon [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Chang-Gu [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); An, Byungryul [Department of Civil Engineering, Sangmyung University, Cheonan, Chungnam 31066 (Korea, Republic of); Lee, Sang-Hyup [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Mizuseki, Hiroshi, E-mail: mizuseki@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Jae-Woo, E-mail: plead36@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kang, Shinhoo, E-mail: shinkang@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-01-25

    Highlights: • The N-doping can improve the As adsorption performance of carbon-based materials. • The material features high micro- and small meso-pores with exceptional surface area. • Pyrrolic N atoms distributed uniformly on the micropores act as adsorption sites. • The synthesis temperature affected pore properties and surface functional groups. - Abstract: Arsenic in water and wastewater is considered to be a critical contaminant as it poses harmful health risks. In this regard, to meet the stringent regulation of arsenic in aqueous solutions, nitrogen doped carbon-based materials (CN) were prepared as adsorbents and tested for the removal of arsenic ion from aqueous solutions. Nitrogen-doped carbon (CNs) synthesized by chlorination exhibited well-developed micro- and small meso-pores with uniform pore structures. The structure and characteristics of the adsorbents thus developed were confirmed by field-emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Among the CNs developed, CN700 exhibited high adsorption capacity for arsenic (31.08 mg/g). The adsorption efficiency for arsenic ion was confirmed to be affected by pyrrolic nitrogen and micro-pores. These results suggest that CNs are useful adsorbents for the treatment of arsenic, and in particular, CN700 demonstrates potential for application as an adsorbent for the removal of anionic heavy metals from wastewater and sewage.

  12. Regenerating an Arsenic Removal Iron-Based Adsorptive Media System, Part 1: The Regeneration Process

    Science.gov (United States)

    Adsorptive media technology is a frequently used method of removing arsenic by small water systems because of its simplicity and efficiency. Current practice is to replace the media when it no longer reduces arsenic below the USEPA drinking water maximum contaminant level (MCL) ...

  13. Arsenic removal by solar-driven membrane distillation: modeling and experimental investigation with a new flash vaporization module.

    Science.gov (United States)

    Pa, Parimal; Manna, Ajay Kumar; Linnanen, Lassi

    2013-01-01

    A modeling and simulation study was carried out on a new flux-enhancing and solar-driven membrane distillation module for removal of arsenic from contaminated groundwater. The developed new model was validated with rigorous experimental investigations using arsenic-contaminated groundwater. By incorporating flash vaporization dynamics, the model turned out to be substantially different from the existing direct contact membrane distillation models and could successfully predict (with relative error of only 0.042 and a Willmott d-index of 0.997) the performance of such an arsenic removal unit where the existing models exhibited wide variation with experimental findings in the new design. The module with greater than 99% arsenic removal efficiency and greater than 50 L/m2 x h flux could be implemented in arsenic-affected villages in Southeast Asian countries with abundant solar energy, and thus could give relief to millions of affected people. These encouraging results will raise scale-up confidence.

  14. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Dongxue; Zhang, Kai

    2016-01-01

    A novel effective adsorbent of alumina/silica oxide hydrate (ASOH) for arsenic removal was developed through simple chemical reactions using coal fly ash. The iron-modified ASOH with enhancing adsorption activity was further developed from raw fly ash based on the in situ technique. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron micrograph, laser particle size and Brunauer-Emmet-Teller surface area. The results show that the adsorbents are in amorphous and porous structure, the surface areas of which are 8-12 times that of the raw ash. The acidic hydrothermal treatment acts an important role in the formation of the amorphous structure of ASOH rather than zeolite crystal. A series of adsorption experiments for arsenic on them were studied. ASOH can achieve a high removal efficiency for arsenic of 96.4% from water, which is more than 2.5 times that of the raw ash. Iron-modified ASOH can enhance the removal efficiency to reach 99.8% due to the in situ loading of iron (Fe). The condition of synthesis pH = 2-4 is better for iron-modified ASOH to adsorb arsenic from water.

  15. Performance of a New Magnetic Chitosan Nanoparticle to Remove Arsenic and Its Separation from Water

    Directory of Open Access Journals (Sweden)

    Cheng Liu

    2015-01-01

    Full Text Available Removal performance of arsenic in water by a novel magnetic chitosan nanoparticle (MCNP with a diameter of about 10 nm, including adsorption kinetics, adsorption isotherm, main influencing factors, and regeneration effects, was investigated. In addition, the effective separation way for MCNP particles and the new application mode were developed to prompt the application of MCNP. The results showed that MCNP exhibited excellent ability to remove As(V and As(III from water in a wide range of initial concentrations, MCNP removed arsenic rapidly with more than 95% of arsenic adsorbed in initial 15 min, and the whole process fitted well to the pseudo-second-order model. The Langmuir model fits the equilibrium data better than the Freundlich isotherm model and the maximum adsorption capacities of As(V and As(III were 65.5 mg/g and 60.2 mg/g, respectively. The saturated MCNP could be easily regenerated and kept more than 95% of initial adsorption capacity stable after 10 regeneration cycles. A new magnetic material separation method was established to separate MCNP effectively. The continuous-operation instrument developed based on the MCNP could operate stably and guarantee that the concentration of arsenic meets the guideline limit of arsenic in drinking water regulated by the WHO.

  16. Novel uses of rice-husk-ash (a natural silica-carbon matrix) in low-cost water purification applications

    Science.gov (United States)

    Malhotra, Chetan; Patil, Rajshree; Kausley, Shankar; Ahmad, Dilshad

    2013-06-01

    Rice-husk-ash is used as the base material for developing novel compositions to deal with the challenge of purifying drinking water in low-income households in India. For example, rice-husk-ash cast in a matrix of cement and pebbles can be formed into a filtration bed which can trap up to 95% of turbidity and bacteria present in water. This innovation was proliferated in villages across India as a do-it-yourself rural water filter. Another innovation involves embedding silver nanoparticles within the rice husk ash matrix to create a bactericidal filtration bed which has now been commercialized in India as a low-cost for-profit household water purifier. Other innovations include the impregnation of rice-husk-ash with iron hydroxide for the removal of arsenic from water and the impregnation of rice-husk ash with aluminum hydroxide for the removal of fluoride ions from water which together have the potential to benefit over 100 million people across India who are suffering from the health effects of drinking groundwater contaminated with arsenic and fluoride.

  17. Investigation of arsenic removal in batch wise water treatments by means of sequential hydride generation flow injection analysis.

    Science.gov (United States)

    Toda, Kei; Takaki, Mari; Hashem, Md Abul

    2008-08-01

    Arsenic water pollution is a big issue worldwide. Determination of inorganic arsenic in each oxidation state is important because As(III) is much more toxic than As(V). An automated arsenic measurement system was developed based on complete vaporization of As by a sequential procedure and collection/preconcentration of the vaporized AsH(3), which was subsequently measured by a flow analysis. The automated sensitive method was applied to monitoring As(III) and As(V) concentrations in contaminated water standing overnight. Behaviors of arsenics were investigated in different conditions, and unique time dependence profiles were obtained. For example, in the standing of anaerobic water samples, the As(III) concentration immediately began decreasing whereas dead time was observed in the removal of As(V). In normal groundwater conditions, most arsenic was removed from the water simply by standing overnight. To obtain more effective removal, the addition of oxidants and use of steel wools were investigated. Simple batch wise treatments of arsenic contaminated water were demonstrated, and detail of the transitional changes in As(III) and As(V) were investigated.

  18. Dyes removal from water using low cost absorbents

    Science.gov (United States)

    Giraldo, S.; Ramirez, A. P.; Ulloa, M.; Flórez, E.; Y Acelas, N.

    2017-12-01

    In this study, the removal capacity of low cost adsorbents during the adsorption of Methylene Blue (MB) and Congo Red (CR) at different concentrations (50 and 100mg·L-1) was evaluated. These adsorbents were produced from wood wastes (cedar and teak) by chemical activation (ZnCl2). Both studied materials, Activated Cedar (AC) and activated teak (AT) showed a good fit of their experimental data to the pseudo second order kinetic model and Langmuir isotherms. The maximum adsorption capacities for AC were 2000.0 and 444.4mg·g-1 for MB and CR, respectively, while for AT, maximum adsorption capacities of 1052.6 and 86.4mg·g-1 were found for MB and CR, respectively.

  19. Toxic Elements in Soil and Groundwater: Short-Time Study on Electrokinetic Removal of Arsenic in the Presence of other Ions

    Directory of Open Access Journals (Sweden)

    Hafiz Ahmad

    2006-06-01

    Full Text Available The electrokinetic technique is an emerging technology presently tested in situ to remove dissolved heavy metals from contaminated groundwater. There is a growing interest for using this system to cleanse clayey soil contaminated by toxic metallic ions. Currently, there are very few available non-destructive treatment methods that could be successfully applied in situ on low permeable type of soil matrix. The main objective of presented study was to validate and possibly enhance the overall efficiency of decontamination by the electrokinetic technique of the low permeable soil polluted by the arsenic in combination with chromium and copper ions. The chosen mixture of ions was imitating leak of pesticide well known as chromate copper arsenate (CCA. The chosen technique is showing a big promise to be used in the future as a portable, easy to install and run on sites with spills or leaks hard to reach otherwise; such as in the dense populated and urbanized areas. Laboratory electrokinetic experiments were designed to understand and possibly manipulate main mechanisms involved during forced migration of ions. All tests were conducted on artificially contaminated kaolinite (low permeable clay soil. Electrokinetic migration was inducted by the low voltage dc current applied through soil column. Series of experiments were designed to assess the efficiency of arsenic-chromium-copper remediation by applying (1 only dc current; and (2 by altering the soil environment. Obtained results showed that arsenic could be successfully removed from the soil in one day (25 hours span. It was significant time reduction, very important during emergency response. Mass recovered at the end of each test depended on initial condition of soil and type of flushing solution. The best results were obtained, when soil was flushed with either NaOH or NaOCl (total removal efficiency 74.4% and 78.1%, respectively. Direct analysis of remained arsenic in soil after these tests

  20. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Science.gov (United States)

    Moore, Robert C; Holt-Larese, Kathleen C; Bontchev, Ranko

    2013-08-13

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  1. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C.; Larese, Kathleen Caroline; Bontchev, Ranko Panayotov

    2017-05-30

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  2. Removal of the arsenic from contaminated groundwater with use of the new generation of MicroDrop Aqua system

    DEFF Research Database (Denmark)

    Kowalski, Krzysztof; Søgaard, Erik Gydesen

    2012-01-01

    The results from a new pilot scale plant of the MicroDrop Aqua arsenic removal technology are introduced. The technology is based on the employing of electrochemical iron dissolution and efficient aeration prior to sand filtration. The pilot treatment was used to study effectiveness of iron relea...... addition and easily to remove arsenic from contaminated groundwater.......The results from a new pilot scale plant of the MicroDrop Aqua arsenic removal technology are introduced. The technology is based on the employing of electrochemical iron dissolution and efficient aeration prior to sand filtration. The pilot treatment was used to study effectiveness of iron release...... in an electro-dissolution process that is taking place in an iron generator. It was found that there is a need of some extra time to reach a state of steady iron release and that could not be achieved within a short period of 10-20 minutes. The pilot plant proved to be able to remove arsenic to value below 5μg...

  3. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    Science.gov (United States)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Inorganic arsenic removal in rice bran by percolating cooking water.

    Science.gov (United States)

    Signes-Pastor, Antonio J; Carey, Manus; Meharg, Andrew A

    2017-11-01

    Rice bran, a by-product of milling rice, is highly nutritious but contains very high levels of the non-threshold carcinogen inorganic arsenic (i-As), at concentrations around 1mg/kg. This i-As content needs to be reduced to make rice bran a useful food ingredient. Evaluated here is a novel approach to minimizing rice bran i-As content which is also suitable for its stabilization namely, cooking bran in percolating arsenic-free boiling water. Up to 96% of i-As removal was observed for a range of rice bran products, with i-As removal related to the volume of cooking water used. This process reduced the copper, potassium, and phosphorus content, but had little effect on other trace- and macro-nutrient elements in the rice bran. There was little change in organic composition, as assayed by NIR, except for a decrease in the soluble sugar and an increase, due to biomass loss, in dietary fiber. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis and characterization of radiation grafted films for removal of arsenic and some heavy metals from contaminated water

    International Nuclear Information System (INIS)

    Chowdhury, M.N.K.; Khan, M.W.; Mina, M.F.; Beg, M.D.H.; Khan, Maksudur R.; Alam, A.K.M.M.

    2012-01-01

    Grafting of styrene/maleic anhydride and methyl methacrylate/maleic anhydride binary monomers onto the low density polyethylene film was performed using the γ-ray irradiation technique. Then, the synthesized grafted films were treated with different ammonia derivatives for developing chelating functionalization. These chelating products were characterized by the gravimetric method as well as by the Fourier transformed infrared spectroscopic method, and were used for removal of arsenic and some heavy metals from aqueous solutions. The optimum absorbed dose of 30 kGy reveals the graft yielding of about 325% in the films. Uptake of arsenic and some heavy-metal ions (Cr(III), Mn(II), Fe(III), Ni(II), Cu(II) and Pb(II)) from contaminated water by the chelating functionalized films (CFF) was examined by an atomic absorption spectrophotometer. The maximum arsenic removal capacity of 5062 mg/kg has been observed for the film treated with hydroxylamine hydrochloride. The CFF prepared by semicarbazide and thiol analogs show affinity toward the metal ions with an order: Cu(II)>Fe(III)>Mn(II) etc. The results obtained from this study indicate that the functionalized films show good chelating and ion-exchange property for metal ions. - Highlights: ► Optimization of radiation dose for grafting reaction of polyethylene with binary monomers. ► Chelating functionalization of grafted film with various amine compounds. ► Characterization of both grafted and chelating functionalized films. ► Proposed mechanism for both grafting and chelating functionalization reaction. ► Application of the synthesized films for the removal of arsenic and some heavy metals from contaminated water.

  6. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    Science.gov (United States)

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  7. Arsenic removal in water by means of coagulation-flocculation processes; Remocion de arsenico en agua mediante procesos de coagulacion-floculacion

    Energy Technology Data Exchange (ETDEWEB)

    Franco, M. F.; Carro P, M. E., E-mail: ffrancis@efn.uncor.edu [Universidad Nacional de Cordoba, Facultad de Ciencias Exactas, Fisicas y Naturales, Departamento de Construcciones Civiles, Av. Velez Sarsfield 1611, Cordoba (Argentina)

    2014-10-01

    Arsenic and arsenical compounds are considered as carcinogenic and risky for humans according to epidemiological evidence related with the ingestion of arsenical water during a long period. In many places the only source of drinking water contains arsenic and, therefore, removal strategies have to be investigated. This work shows experimental results of coagulation-flocculation processes implemented to evaluate the efficiency in the removal of arsenic from drinking water. The main objectives include the evaluation of the relevant aspect that controls the removal efficiency. Experimental tests were performed with coagulant concentrations from 5 to 500 mg/L, solid particle concentrations from 0 to 6000 mg/L, and initial arsenic concentrations from 0.5 to 5 mg/L. These variables were simultaneously varied in more than 100 experiments. The efficiency in remediation ranged from 0% to 95%. Removal efficiency near 95% was obtained when using ferric chloride as coagulant, and was close to 80% when using aluminium sulfate as coagulant in arsenate solutions. The remediation efficiency decreased significantly when the ferric chloride concentration was higher than 50 mg/L in relation to the obtained results for aluminum sulfate for different type and concentration of soil particles. The highest removal efficiency were obtained at ph between 3 and 5 in oxidized solutions. Obtained results simulated by means of multiple linear regression analysis (R>0.90) allow determining that the main parameters that control the removal of arsenic from drinking water are coagulant concentration, ph, and solid particles concentration. Conversely, particle mineralogy and coagulant type have less significant effect on the removal by means of coagulation-flocculation mechanisms. Obtained results are relevant for the removal of As in water treatment plants as well as for the development of small scale filters. The samples were studied by scanning electron microscopy and energy dispersive X

  8. Mesoporous (organo) silica decorated with magnetic nanoparticles as a reusable nanoadsorbent for arsenic removal from water samples.

    Science.gov (United States)

    Hasanzadeh, Mohammad; Farajbakhsh, Farzad; Shadjou, Nasrin; Jouyban, Abolghasem

    2015-01-01

    Over the last decade, numerous removal methods using solid-supported magnetic nanocomposites have been employed in order to remove arsenic from aqueous solution. In this report, removal of arsenic from aqueous solution by an organo silica, namely, magnetic mobile crystalline material-41 (MCM-41) functionalized by chlorosulphonic acid (MMCM-41-SO3H), was investigated using atomic absorption spectroscopy. The synthesized magnetic mesoporous materials have satisfactory As (V) adsorption capacity. Linearity for arsenic was observed in the concentration range of 5-100 ppb. In addition, the coefficient of determination (R2) was more than 0.999 and the limit of detection (LOD) was 0.061 ppb. Considering these results, MMCM-41-SO3H has a great potential for the removal of As (V) contaminants and potentially for the application in large-scale wastewater treatment plants.

  9. Evaluation and comparison of aluminum-coated pumice and zeolite in arsenic removal from water resources

    Directory of Open Access Journals (Sweden)

    Heidari Masoumeh

    2012-12-01

    Full Text Available Abstract In this research the potential of aluminum-coated pumice and zeolite in arsenic, As (V removal was investigated and compared. Scanning Electron Microscopy (SEM, X-Ray Diffraction (XRD and X-Ray Flaorescence Spectrometry (XRF were carried out to determine the properties of the adsorbents. Several parameters including adsorbent dosage] pH, contact time, and initial As(V concentration were studied. The optimum pH obtained for both adsorbents was pH = 7. As(V adsorption by both adsorbents followed the Freundlich isotherm (for aluminum-coated pumice and zeolite respectively with R2 > 0.98 and R2 > 0.99. The obtained data from kinetics showed that the pseudo-second order model could better explain As(V adsorption for both aluminum-coated pumice and zeolite (R2 > 0.98 and R2 > 0.99 respectively. Because of low cost, both adsorbents may be economically used, but aluminum-coated zeolite showed high efficiency of, due to its porosity and surface area. More than 96% of As(V with initial concentration of 250 μg/L was removed by 10 g/L aluminum-coated zeolite at pH = 7 and in 60 minutes to achieve As(V concentration of 10 μg/L, while only 71% of As(V could be removed by aluminum-coated pumice.

  10. Removal of heavy metals from aqueous solution by an efficient low cost biosorbent (abstract)

    International Nuclear Information System (INIS)

    Alam, S.; Ullah, A.

    2011-01-01

    The aim of this work was to assess the possibility of removing some heavy metals from water by a low-cost bio sorbent. Removal of lead and cadmium which differ in toxicity, as well as in some other characteristics were examined. Sawdust of Morus alba wood modified with 0.5N NaOH was applied as low cost bio sorbent. The sample was characterized by BET surface area, EDX, FTIR and Zeta potential technique. The removal of Cd(II) and Pb(II) by treated sawdust has been found to be concentration, contact time, adsorbate dose and temperature dependent. The adsorption parameters were determined using Freundlich, Langmuir and Tempkin isotherm models. The applicability of kinetic models i.e. pseudo first order, Elovich and parabolic diffusion has also been investigated. Thermodynamic parameters like delta H, delta S and delta G were calculated from the kinetic data. The equilibrium adsorption was achieved in 100 min. The result shows that the adsorbent examined was found to have good adsorption capacity. Surface complexation and ion exchange are the major removal mechanisms involved. The correlation coefficient for Langmuir, Freundlich and Tempkin equation were well fitted. The adsorption follows first-order kinetics. The rate of adsorption was high at high temperature. The positive values of delta S reflect some structural exchange among the active site of the adsorbent and metal ion. The negative value of Gibbs free energy (delta G) shows the spontaneous nature of the process. The findings of the data reveal that the modified Sawdust is a low-cost, easily available bio sorbent and can be use as alternative to other commercial adsorbents as well as for effluent treatment in industries. (author)

  11. Single and combined effects of phosphate, silicate, and natural organic matter on arsenic removal from soft and hard groundwater using ferric chloride

    Science.gov (United States)

    Chanpiwat, Penradee; Hanh, Hoang Thi; Bang, Sunbaek; Kim, Kyoung-Woong

    2017-06-01

    In order to assess the effects of phosphate, silicate and natural organic matter (NOM) on arsenic removal by ferric chloride, batch coprecipitation experiments were conducted over a wide pH range using synthetic hard and soft groundwaters, similar to those found in northern Vietnam. The efficiency of arsenic removal from synthetic groundwater by coprecipitation with FeCl3 was remarkably decreased by the effects of PO4 3-, SiO4 4- and NOM. The negative effects of SiO4 4- and NOM on arsenic removal were not as strong as that of PO4 3-. Combining PO4 3- and SiO4 4- increased the negative effects on both arsenite (As3+) and arsenate (As5+) removal. The introduction of NOM into the synthetic groundwater containing both PO4 3- and SiO4 4- markedly magnified the negative effects on arsenic removal. In contrast, both Ca2+ and Mg2+ substantially increased the removal of As3+ at pH 8-12 and the removal of As5+ over the entire pH range. In the presence of Ca2+ and Mg2+, the interaction of NOM with Fe was either removed or the arsenic binding to Fe-NOM colloidal associations and/or dissolved complexes were flocculated. Removal of arsenic using coprecipitation by FeCl3 could not sufficiently reduce arsenic contents in the groundwater (350 μg/L) to meet the WHO guideline for drinking water (10 μg/L), especially when the arsenic-rich groundwater also contains co-occurring solutes such as PO4 3-, SiO4 4- and NOM; therefore, other remediation processes, such as membrane technology, should be introduced or additionally applied after this coprecipitation process, to ensure the safety of drinking water.

  12. Spectroscopic and Microscopic Characterization of Volcanic Ash from Puyehue-(Chile Eruption: Preliminary Approach for the Application in the Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Irma Lia Botto

    2013-01-01

    Full Text Available Volcanic ash from Puyehue Cordon Caulle Volcanic Complex (Chile, emitted on June 4, 2011, and deposited in Villa La Angostura at ~40 km of the source, was collected and analyzed by Raman spectroscopy, optical and scanning electron microscopy (SEM-EDS, X-ray diffraction (XRD, surface area (BET, and chemical analysis (ICP-AES-MS technique. The mineralogical and physicochemical study revealed that the pyroclastic mixture contains iron oxides in the form of magnetite and hematite as well as pyroxene and plagioclase mineral species and amorphous pumiceous shards. Carbonaceous material was also identified. Physicochemical techniques allow us to select two representative samples (average composition and Fe-rich materials which were used to analyze their performances in the adsorption process to remove arsenic from water. Additional iron activation by means of ferric salts was performed under original sample. Results showed that the low-cost feedstock exhibited a good adsorption capacity to remove the contaminant, depending on the iron content and the water pH.

  13. Arsenic removal from water using iron-coated seaweeds.

    Science.gov (United States)

    Vieira, Bárbara R C; Pintor, Ariana M A; Boaventura, Rui A R; Botelho, Cidália M S; Santos, Sílvia C R

    2017-05-01

    Arsenic is a semi-metal element that can enter in water bodies and drinking water supplies from natural deposits and from mining, industrial and agricultural practices. The aim of the present work was to propose an alternative process for removing As from water, based on adsorption on a brown seaweed (Sargassum muticum), after a simple and inexpensive treatment: coating with iron-oxy (hydroxides). Adsorption equilibrium and kinetics were studied and modeled in terms of As oxidation state (III and V), pH and initial adsorbate concentration. Maximum adsorption capacities of 4.2 mg/g and 7.3 mg/g were obtained at pH 7 and 20 °C for arsenite and arsenate, respectively. When arsenite was used as adsorbate, experimental evidences pointed to the occurrence of redox reactions involving As(III) oxidation to As(V) and Fe(III) reduction to Fe(II), with As(V) uptake by the adsorbent. The proposed adsorption mechanism was then based on the assumption that arsenate was the adsorbed arsenic species. The most relevant drawback found in the present work was the considerable leaching of iron to the solution. Arsenite removal from a mining-influenced water by adsorption plus precipitation was studied and compared to a traditional process of coagulation/flocculation. Both kinds of treatment provided practically 100% of arsenite removal from the contaminated water, leading at best in 12.9 μg/L As after the adsorption and precipitation assays and 14.2 μg/L after the coagulation/flocculation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Synthesis and application of alumina supported nano zero valent zinc as adsorbent for the removal of arsenic and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Hafiz Badaruddin; Abbas, Yasir; Hussain, Mazhar; Akhtar, Naeem; Ansari, Tariq Mahmood [Bahauddin Zakariya University, Multan (Pakistan); Zuber, Muhammad; Zia, Khalid Mahmood [Government College University Faisalabad, Faisalabad (Pakistan); Arain, Shafiq Ahmad [Shah Abdul Latif University, Khairpur (Pakistan)

    2014-02-15

    Arsenic and nitrate are ill-famed environmental pollutants that are responsible for various lethal diseases. Their removal from drinking water is very essential. In present study, newly synthesized alumina supported nano zerovalent zinc (Alumina-nZvZ) has been tested to remove arsenic and nitrate. Quantitative analyses of arsenic have been performed spectrophotometrically and while that of nitrates ions colorimetrically. After optimization of time and amount of adsorbent, Langmuir, Freundlich and D-R isotherms were applied to determine different parameters for the assessment of adsorption. Synthesized samples were characterized by scanning electron microscopy (SEM) to evaluate porosity and void size. Alumina coated with reduced ZnCl{sub 2} showed better efficiency for removal of arsenic and nitrate ions. Kinetics of adsorption was evaluated by using pseudo first-order and pseudo second-order rate equations.

  15. Investigation of mechanism and critical parameters for removal of arsenic from water using Zr-TiO2 composite.

    Science.gov (United States)

    Anđelković, I; Amaizah, N R R; Marković, S B; Stanković, D; Marković, M; Kuzmanović, D; Roglić, G

    2017-09-01

    Using the microwave-hydrothermal method for the synthesis of composite, high surface density of hydroxyl groups, as an active adsorption sites for arsenic, was obtained. Adsorption mechanisms of As(III) and As(V) onto zirconium-doped titanium dioxide (Zr-TiO 2 ) were investigated and proposed using macroscopic and microscopic methods. Obtained results are suggesting inner-sphere and outer-sphere adsorption mechanisms for As(III) and As(V), respectively. This allowed us to identify parameters that are critical for the successful removal of arsenic from water, which is essential information for further optimization of the removal process. The composite was further applied for the removal of As(III) and As(V) from water in a dynamic flow through the reactor. Column study proved that the removal of both arsenic species below the value recommended by WHO can be achieved. Elution of As(III) and As(V) from the composite can be done by using small amounts of 0.01 M NaOH solution resulting in preconcentration of arsenic species and possible multiple usage of composite.

  16. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  17. The Effect of Water Chemistry on the Removal of Arsenic from Drinking Water During Iron Removal Treatment

    Science.gov (United States)

    This research investigates the effects of water chemistry, oxidant type and concentration on the removal of iron and arsenic from drinking water. The research will be conducted using one of the National Risk Management Research Laboratory’s Water Supply and Water Resources Divisi...

  18. Nanostructured Mn-Fe Binary Mixed Oxide: Synthesis, Characterization and Evaluation for Arsenic Removal.

    Science.gov (United States)

    Pillewan, Pradnya; Mukherjee, Shrabanti; Bansiwal, Amit; Rayalu, Sadhana

    2014-07-01

    Adsorption of arsenic on bimetallic Mn and Fe mixed oxide was carried out using both field as well as simulated water. The material was synthesized using hydrothermal method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Langmuir and Freundlich adsorption isotherms were computed using batch adsorption studies to determine the adsorption capacity of Mn-Fe binary mixed oxide for arsenic. Adsorption capacity for MFBMO obtained from Freundlich model was found to be 2.048 mg/g for simulated water and 1.084 mg/g for field water. Mn-Fe binary mixed oxide was found to be effective adsorbent for removal of arsenic from water.

  19. Low doses of arsenic, via perturbing p53, promotes tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, Suthakar, E-mail: s.ganapathy@neu.edu [Center for Drug Development, Northeastern University, Boston (United States); Li, Ping [The First Affiliated Hospital, Zhengzhou University, Zhengzhou (China); The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Fagman, Johan [The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Yu, Tianqi; Lafontant, Jean [Center for Drug Development, Northeastern University, Boston (United States); Zhang, Guojun [The First Affiliated Hospital, Zhengzhou University, Zhengzhou (China); Chen, Changyan [Center for Drug Development, Northeastern University, Boston (United States); The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg (Sweden)

    2016-09-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure.

  20. Low doses of arsenic, via perturbing p53, promotes tumorigenesis

    International Nuclear Information System (INIS)

    Ganapathy, Suthakar; Li, Ping; Fagman, Johan; Yu, Tianqi; Lafontant, Jean; Zhang, Guojun; Chen, Changyan

    2016-01-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure.

  1. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions.

    Science.gov (United States)

    Huang, Zhi; Pei, Qiuling; Sun, Guifan; Zhang, Sichum; Liang, Jiang; Gao, Yi; Zhang, Xinrong

    2008-01-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low selenium status plays important roles in arsenism development. However, no study has been reported for humans suffering from chronic arsenic exposure with low selenium status. Sixty-three subjects were divided into 2 experimental groups by skin lesions (including hyperkeratosis, depigmentation, and hyperpigmentation). Total urine and serum concentrations of arsenic and selenium were determined by ICP-MS with collision/reaction cell. Arsenic species were analysed by ICP-MS coupled with HPLC. The mean concentration of As in the drinking waters was 41.5 microg/l. The selenium dietary intake for the studied population was 31.7 microg Se/d, and which for the cases and controls were 25.9 and 36.3 microg Se/d, respectively. Compared with the controls, the skin lesions cases had lower selenium concentrations in serum and urine (41.4 vs 49.6 microg/l and 71.0 vs 78.8 microg/l, respectively), higher inorganic arsenic (iAs) in serum (5.2 vs 3.4 microg/l, PiAs in serum and urine (20.2) vs 16.9% and 18.3 vs 14.5%, respectively, PiAs and its inhibition to be biotransformed to DMA occurred in human due to chronic exposure of low selenium status.

  2. Study of the Efficiency of Arsenic Removal from Drinking Water by Granular Ferric Hydroxide (GFH

    Directory of Open Access Journals (Sweden)

    A.R Asgari

    2012-05-01

    Full Text Available

    Background and Objective

    Pollution of surface and ground water to arsenic (As has been reported from many parts of the world and in some regions of Iran especially in Kurdistan province. Natural pollution of water to As is in fact dependent to geological characteristics of a region. To day, various methods have been recommended for As removal that each of which has special advantages and drawbacks. Granular ferric hydroxide (GFH is a relatively new adsorbent available in market which is principally introduced for As removal.

     

    Methods

    This study was an applied survey in which the effects of changing contact time, As concentration, adsorbent weight, pH as well as the effect of sulfate and chloride ions in arsenic removal were determined. Moreover, the model of absorption by GFH was studied and compared with Freundlich and Langmuir models. Raw data were analyzed by Excel and SPSS softwares.

     

    Results

    Results showed that As adsorption by GFH imitate both the Freundlich and Langmuir equations (with R2 >0.95. Optimum PH was 7.5 and duration of the process about 30 minutes was sufficient for optimum removal of As. It was also found that efficiency of As removal was high when small amounts of adsorbent were used. Furthermore, sulfate and chloride ions in concentrations used in this study had no noticeable effect on As removal and Fe added during process remains in the water more than the standard value (0.3 mg/l.

     

    Conclusion

    According to this study, GFH could be considered as a suitable adsorbent for As removal from polluted water resources because of its high performance without any needs to PH adjustment. However, there are few drawbacks such as Fe addition and relatively high initial cost.

  3. Ground water pollution by arsenic and its effects on health. Removal of arsenic from water; Suichu karano hiso no jokyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, S.

    1997-07-10

    Recently environmental standard for ground water is established. It is pointed out that the need of arsenic`s removal from water is expected in high level. Present condition of removal techniques of inorganic nitrogen and problems are explained. For example, ferro (III) chloride method is effective in As(V) and most suitable range is pH4{approx}5. Removal is possible until 0.005 when initial concentration is 0.2 mg{center_dot}l{sup -1}. As far as secondary problems are, there are dry treatment of generated sludge and disposal. Earth adsorbent as a new adsorbent is adsorption method is expected. Lanthanum and yttrium compounds possess adsorption for As(III) and As(V) and re-generation use is also possible. For example, removal of As(V) with initial concentration 19 mg{center_dot}l{sup -1} until 0.01 is possible at pH5{approx}77 range when hydroxide lanthanum is used as an adsorbent. Further special characteristics of each method are explained. It is concluded that a good removal method should be selected by considering raw water`s quality, capacity of treatment water, use of treatment water and economics. 29 refs., 2 figs.

  4. Removal of mercury (II), elemental mercury and arsenic from simulated flue gas by ammonium sulphide.

    Science.gov (United States)

    Ning, Ping; Guo, Xiaolong; Wang, Xueqian; Wang, Ping; Ma, Yixing; Lan, Yi

    2015-01-01

    A tubular resistance furnace was used as a reactor to simulate mercury and arsenic in smelter flue gases by heating mercury and arsenic compounds. The flue gas containing Hg(2+), Hg(0) and As was treated with ammonium sulphide. The experiment was conducted to investigate the effects of varying the concentration of ammonium sulphide, the pH value of ammonium sulphide, the temperature of ammonium sulphide, the presence of SO2 and the presence of sulphite ion on removal efficiency. The prepared adsorption products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed that the optimal concentration of ammonium sulphide was 0.8 mol/L. The optimal pH value of ammonium sulphide was 10, and the optimal temperature of ammonium sulphide was 20°C.Under the optimum conditions, the removal efficiency of Hg(2+), Hg(0) and As could reach 99%, 88.8%, 98%, respectively. In addition, SO2 and sulphite ion could reduce the removal efficiency of mercury and arsenic from simulated flue gas.

  5. Arsenic removal from water employing a combined system: photooxidation and adsorption.

    Science.gov (United States)

    Lescano, Maia; Zalazar, Cristina; Brandi, Rodolfo

    2015-03-01

    A combined system employing photochemical oxidation (UV/H2O2) and adsorption for arsenic removal from water was designed and evaluated. In this work, a bench-scale photochemical annular reactor was developed being connected alternately to a pair of adsorption columns filled with titanium dioxide (TiO2) and granular ferric hydroxide (GFH). The experiences were performed by varying the relation of As concentration (As (III)/As (V) weight ratio) at constant hydrogen peroxide concentration and incident radiation. Experimental oxidation results were compared with theoretical predictions using an intrinsic kinetic model previously obtained. In addition, the effectiveness of the process was evaluated using a groundwater sample. The mathematical model of the entire system was developed. It could be used as an effective tool for the design and prediction of the behaviour of these types of systems. The combined technology is efficient and promising for arsenic removal to small and medium scale.

  6. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.

    Science.gov (United States)

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater. © 2013.

  7. Modeling of the adsorptive removal of arsenic(III) using plant biomass: a bioremedial approach

    Science.gov (United States)

    Roy, Palas; Dey, Uttiya; Chattoraj, Soumya; Mukhopadhyay, Debasis; Mondal, Naba Kumar

    2017-06-01

    In the present work, the possibility of using a non-conventional finely ground (250 μm) Azadirachta indica (neem) bark powder [AiBP] has been tested as a low-cost biosorbent for the removal of arsenic(III) from water. The removal of As(III) was studied by performing a series of biosorption experiments (batch and column). The biosorption behavior of As(III) for batch and column operations were examined in the concentration ranges of 50-500 µg L-1 and 500.0-2000.0 µg L-1, respectively. Under optimized batch conditions, the AiBP could remove up to 89.96 % of As(III) in water system. The artificial neural network (ANN) model was developed from batch experimental data sets which provided reasonable predictive performance ( R 2 = 0.961; 0.954) of As(III) biosorption. In batch operation, the initial As(III) concentration had the most significant impact on the biosorption process. For column operation, central composite design (CCD) was applied to investigate the influence on the breakthrough time for optimization of As(III) biosorption process and evaluation of interacting effects of different operating variables. The optimized result of CCD revealed that the AiBP was an effective and economically feasible biosorbent with maximum breakthrough time of 653.9 min, when the independent variables were retained at 2.0 g AiBP dose, 2000.0 µg L-1 initial As(III) concentrations, and 3.0 mL min-1 flow rate, at maximum desirability value of 0.969.

  8. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects.

    Science.gov (United States)

    Luong, Vu T; Cañas Kurz, Edgardo E; Hellriegel, Ulrich; Luu, Tran L; Hoinkis, Jan; Bundschuh, Jochen

    2018-04-15

    Arsenic contamination in groundwater is a critical issue and one that raises great concern around the world as the cause of many negative health impacts on the human body, including internal and external cancers. There are many ways to remove or immobilize arsenic, including membrane technologies, adsorption, sand filtration, ion exchange, and capacitive deionization. These exhibit many different advantages and disadvantages. Among these methods, in-situ subsurface arsenic immobilization by aeration and the subsequent removal of arsenic from the aqueous phase has shown to be very a promising, convenient technology with high treatment efficiency. In contrast to most of other As remediation technologies, in-situ subsurface immobilization offers the advantage of negligible waste production and hence has the potential of being a sustainable treatment option. This paper reviews the application of subsurface arsenic removal (SAR) technologies as well as current modeling approaches. Unlike subsurface iron removal (SIR), which has proven to be technically feasible in a variety of hydrogeochemical settings for many years, SAR is not yet an established solution since it shows vulnerability to diverse geochemical conditions such as pH, Fe:As ratio, and the presence of co-ions. In some situations, this makes it difficult to comply with the stringent guideline value for drinking water recommended by the WHO (10 μg L -1 ). In order to overcome its limitations, more theoretical and experimental studies are needed to show long-term application achievements and help the development of SAR processes into state-of-the-art technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Multifunctional Silver Coated E-33/Iron Oxide Water Filters: Inhibition of Biofilm Growth and Arsenic Removal

    Science.gov (United States)

    Bayoxide® E33 (E-33, Goethite) is a widely used commercial material for arsenic adsorption. It is a mixture of iron oxyhydroxide and oxides. E-33 is primarily used to remove arsenic from water and to a lesser extent, other anions, but generally lacks multifunctuality. It is a non...

  10. TREATMENT TECHNOLOGIES FOR ARSENIC REMOVAL

    Science.gov (United States)

    The United States Environmental Protection Agency (US EPA) recently reduced the arsenic maximum contaminant level (MCL) from 0.050 mg/L to 0.010 mg/L. In order to increase arsenic outreach efforts, a summary of the new rule, related health risks, treatment technologies, and desig...

  11. Arsenic Removal from Aqueous Solutions by Salvadora persica Stem Ash

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2013-01-01

    Full Text Available Arsenic is a naturally occurring metalloid, which is widely distributed in nature and is regarded as the largest mass poisoning in history. In the present study, the adsorption potential of Salvadora persica (S. persica stem ash in a batch system for the removal of As(V from aqueous solutions was investigated. Isotherm studies were carried out to evaluate the effect of contact time (20–240 min, pH (2–11, initial arsenic concentration (50–500 μg/L, and adsorbent dose on sorption efficiency. Maximum removal efficiency of 98.33% and 99.32% was obtained at pH 6, adsorbent dosage 3.5 g/L, initial As(V concentration 500 μg/L, and contact time 80 and 60 min for S. persica stem ash at 300 °C and 500 °C, respectively. Also, the adsorption equilibriums were analyzed by the Langmuir and Freundlich isotherm models. Such equilibriums showed that the adsorption data was well fitted with the Freundlich isotherm model for S. persica stem ash at both 300 °C and 500 °C (R2=0.8983 and 0.9274, resp.. According to achieved results, it was defined that S. persica stem ash can be used effectively for As(V removal from the aqueous environment.

  12. How do operating conditions affect As(III) removal by iron electrocoagulation?

    Science.gov (United States)

    Delaire, Caroline; Amrose, Susan; Zhang, Minghui; Hake, James; Gadgil, Ashok

    2017-04-01

    Iron electrocoagulation (Fe-EC) has been shown to effectively remove arsenic from contaminated groundwater at low cost and has the potential to improve access to safe drinking water for millions of people. Understanding how operating conditions, such as the Fe dosage rate and the O 2 recharge rate, affect arsenic removal at different pH values is crucial to maximize the performance of Fe-EC under economic constraints. In this work, we improved upon an existing computational model to investigate the combined effects of pH, Fe dosage rate, and O 2 recharge rate on arsenic removal in Fe-EC. We showed that the impact of the Fe dosage rate strongly depends on pH and on the O 2 recharge rate, which has important practical implications. We identified the process limiting arsenic removal (As(III) oxidation versus As(V) adsorption) at different pH values, which allowed us to interpret the effect of operating conditions on Fe-EC performance. Finally, we assessed the robustness of the trends predicted by the model, which assumes a constant pH, against lab experiments reproducing more realistic conditions where pH is allowed to drift during treatment as a result of equilibration with atmospheric CO 2 . Our results provide a nuanced understanding of how operating conditions impact arsenic removal by Fe-EC and can inform decisions regarding the operation of this technology in a range of groundwaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    International Nuclear Information System (INIS)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-01-01

    Highlights: ► A continuous electrocoagulation/flotation reactor was designed built and operated. ► Highest NOM removal according to UV 254 was 77% relative to raw groundwater. ► Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. ► Highest As removal archived was 85% (6.2 μg/l), relative to raw groundwater. ► Specific reactor energy and electrode consumption was 1.7 kWh/m 3 and 66 g Al/m 3 . - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm 2 , A/V ratio = 0.248 cm −1 . The NOM removal according to UV 254 absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m 3 . According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  14. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead.

    Science.gov (United States)

    Qi, Jianying; Zhang, Gaosheng; Li, Haining

    2015-10-01

    A novel sorbent of Fe-Mn binary oxide impregnated chitosan bead (FMCB) was fabricated through impregnating Fe-Mn binary oxide into chitosan matrix. The FMCB is sphere-like with a diameter of 1.6-1.8 mm, which is effective for both As(V) and As(III) sorption. The maximal sorption capacities are 39.1 and 54.2 mg/g, respectively, outperforming most of reported granular sorbents. The arsenic was mainly removed by adsorbing onto the Fe-Mn oxide component. The coexisting SO4(2-), HCO3(-) and SiO3(2-) have no great influence on arsenic sorption, whereas, the HPO4(2-) shows negative effects. The arsenic-loaded FMCB could be effectively regenerated using NaOH solution and repeatedly used. In column tests, about 1500 and 3200 bed volumes of simulated groundwater containing 233 μg/L As(V) and As(III) were respectively treated before breakthrough. These results demonstrate the superiority of the FMCB in removing As(V) and As(III), indicating that it is a promising candidate for arsenic removal from real drinking water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    Science.gov (United States)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  16. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL. USEPA DEMONSTRATION PROJECT AT CLIMAX, MN SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Climax, MN site. The objectives of the project are to evaluate (1) the effectiveness of Kinetico’s Macrolite®...

  17. Synthesis and Characterization of Hybrid-Magnetic Nanoparticles and Their Application for Removal of Arsenic from Groundwater

    Directory of Open Access Journals (Sweden)

    Marta A. Bavio

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs were oxidized with different agents and a characterization study was carried out. Then, hybrid-magnetic nanoparticles (HMNPs were synthesized as iron oxide supported on the selected multiwalled carbon nanotubes (MWCNTs-Fe3O4 obtained from MWCNTs oxidized with HNO3. The HMNPs characterization revealed the presence of iron oxide as magnetite onto the MWCNTs surfaces. These HMNPs were used for arsenic removal from groundwater. The adsorption process variables were optimized (concentration of NPs, contact time, and pH, and these systems could remove 39.93 mg As/g adsorbent. Therefore, these nanoparticles appear as a good alternative for removing arsenic from water samples.

  18. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  19. Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure

    International Nuclear Information System (INIS)

    Pu, Y.-S.; Yang, S.-M.; Huang, Y.-K.; Chung, C.-J.; Huang, Steven K.; Chiu, Allen Wen-Hsiang; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2007-01-01

    Arsenic exposure is associated with an increased risk of urothelial carcinoma (UC). To explore the association between individual risk and urinary arsenic profile in subjects without evident exposure, 177 UC cases and 313 age-matched controls were recruited between September 2002 and May 2004 for a case-control study. Urinary arsenic species including the following three categories, inorganic arsenic (As III + As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ), were determined with high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Arsenic methylation profile was assessed by percentages of various arsenic species in the sum of the three categories measured. The primary methylation index (PMI) was defined as the ratio between MMA V and inorganic arsenic. Secondary methylation index (SMI) was determined as the ratio between DMA V and MMA V . Smoking is associated with a significant risk of UC in a dose-dependent manner. After multivariate adjustment, UC cases had a significantly higher sum of all the urinary species measured, higher percent MMA V , lower percent DMA V , higher PMI and lower SMI values compared with controls. Smoking interacts with the urinary arsenic profile in modifying the UC risk. Differential carcinogenic effects of the urinary arsenic profile, however, were seen more prominently in non-smokers than in smokers, suggesting that smoking is not the only major environmental source of arsenic contamination since the UC risk differs in non-smokers. Subjects who have an unfavorable urinary arsenic profile have an increased UC risk even at low exposure levels

  20. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    OpenAIRE

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the finding...

  1. Study of arsenic removal with ionic exchange resins in drinking water from Zimapan, Hidalgo State, Mexico

    International Nuclear Information System (INIS)

    Perez-Moreno, F.; Prieto-Garcia, F.; Rojas-Hernandez, A.; Marmolejo-Santillan, Y.; Salinas-Rodriguez, E.; Patino-Cardona, F.

    2006-01-01

    Anionic exchange resins were research with respect its capacity for removal arsenic content in water. Water of well V from Zimapan Hidalgo Mexico was used to make this research, because this water have a mean concentration of 480±11μg-L''-1 of arsenic and it is available as drinking water. The exchange resins employed were two strong anionic, one macroreticular (IRA-900) and other gel type (IRA-400), as soon as one third anionic weak macroreticular type (IRA-96). The experiments carried with this resins showing that IRA-900 has highest efficient in the process of arsenic removal from drinking water, because, it showed a treatment capacity of 700 V a gua. V r es''-1; while that capacities of IRA-400 e IRA-96 resins were 320 and 52 V a gua .V r es''-1 respectively. The mean concentration of arsenic residue in the treatise water was 24 μg.l''-1 and it is within the maximum level permissible by Mexican official norm for drinking water. (Author) 12 refs

  2. ARSENIC REMOVAL FROM DRINKING WATER BY COAGULATION/FILTRATION AND LIME SOFTENING PLANTS

    Science.gov (United States)

    This report documents a long term performance (one year) study of 3 water treatment plants to remove arsenic from drinking water sources. The 3 plants consisted of 2 conventional coagulation/filtration plants and 1 lime softening plant. The study involved the collecting of weekly...

  3. ARSENIC REMOVAL FROM DRINKING WATER BY ION EXCHANGE AND ACTIVATED ALUMINA PLANTS

    Science.gov (United States)

    This report documents a long term performance study of two ion exchange (IE) and two activated alumina (AA) treatment plants to remove arsenic from drinking water. Performance information was collected on these systems that are located in the northeast for one full year. The stud...

  4. Adsorption and removal of arsenic (V) using crystalline manganese (II,III) oxide: Kinetics, equilibrium, effect of pH and ionic strength.

    Science.gov (United States)

    Babaeivelni, Kamel; Khodadoust, Amid P; Bogdan, Dorin

    2014-01-01

    Manganese (II,III) oxide (Mn3O4) crystalline powder was evaluated as a potential sorbent for removal of arsenic (V) from water. Adsorption isotherm experiments were carried out to determine the adsorption capacity using de-ionized (DI) water, a synthetic solution containing bicarbonate alkalinity, and two natual groundwater samples. Adsorption isotherm data followed the Langmuir and Freundlich equations, indicating favorable adsorption of arsenic (V) onto Mn3O4, while results from the Dubinin-Radushkevich equation were suggestive of chemisorption of arsenic (V). When normalized to the sorbent surface area, the maximum adsorption capacity of Mn3O4 for arsenic (V) was 101 μg m(-2), comparable to that of activated alumina. Arsenic (V) adsorption onto Mn3O4 followed pseudo-second-order kinetics. Adsorption of arsenic (V) was greatest at pH 2, while adsorption at pH 7-9 was within 91% of maximum adsorption, whereas adsorption decreased to 32% of maximum adsorption at pH 10. Surface charge analysis confirmed the adsorption of arsenic (V) onto the acidic surface of the Mn3O4 sorbent with a pHPZC of 7.32. The presence of coexisting ions bicarbonate and phosphate resulted in a decrease in arsenic (V) uptake. Comparable adsorption capacities were obtained for the synthetic solution and both groundwater samples. Overall, crystalline Mn3O4 was an effective and viable sorbent for removal of arsenic (V) from natural water, removing greater than 95% of arsenic (V) from a 1 mg L(-1) solution within 60 min of contact time.

  5. Iron crosslinked alginate as novel nanosorbents for removal of arsenic ions and bacteriological contamination from water

    Directory of Open Access Journals (Sweden)

    Priyanka Singh

    2014-07-01

    Full Text Available Fixed-bed column studies were conducted to evaluate performance of Fe (III crosslinked alginate nanoparticles for the removal of pentavalent arsenic ions [As (V] from aqueous environments. The study involved observing the influences of column bed depth, influent As (V concentration and influent flow rates on the removal of arsenic ions. The total adsorbed quantity, equilibrium uptake and total percentage removal of arsenic were determined from the breakthrough curves obtained at different flow rates, initial metal ion concentration and bed heights. The results showed that column demonstrate fairly well performance at the lowest flow rate. Also, column bed capacity and exhaustion time were found to increase with increasing bed height. When initial metal ion concentration was increased from 0.5 mg/L to 1.5 mg/L, the corresponding adsorption bed capacity decreases from 0.066 to 0.022 mg/g. The Bed Depth Service Time (BDST model was used to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.

  6. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohora, Emilijan, E-mail: emohora@ifc.org [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Roncevic, Srdjan; Dalmacija, Bozo; Agbaba, Jasmina; Watson, Malcolm; Karlovic, Elvira; Dalmacija, Milena [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A continuous electrocoagulation/flotation reactor was designed built and operated. Black-Right-Pointing-Pointer Highest NOM removal according to UV{sub 254} was 77% relative to raw groundwater. Black-Right-Pointing-Pointer Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. Black-Right-Pointing-Pointer Highest As removal archived was 85% (6.2 {mu}g/l), relative to raw groundwater. Black-Right-Pointing-Pointer Specific reactor energy and electrode consumption was 1.7 kWh/m{sup 3} and 66 g Al/m{sup 3}. - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm{sup 2}, A/V ratio = 0.248 cm{sup -1}. The NOM removal according to UV{sub 254} absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 {mu}g As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m{sup 3}. According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  7. Development of Technology for Effective Removal of Arsenic and Cyanides from Drinking Water and Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jae

    2008-02-09

    The purpose of the project was to perform a joint research and development effort focused upon the development of methods and the prototype facility for effective removal of arsenic and cyanides from drinking water and wastewater, based on the UPEC patented technology. The goals of this project were to validate UPEC technology, to manufacture a prototype facility meeting the market requirements, and to introduce it to both industry and municipalities which deal with the water quality. The project involved design and fabrication of one experimental unit and one prototypical industrial unit, and tests at industrial and mining sites. The project used sodium ferrate (Na2FeO4) as the media to remove arsenic in drinking water and convert arsenic into non-hazardous form. The work consisted of distinct phases ending with specific deliverables in development, design, fabrication and testing of prototype systems and eventually producing validation data to support commercial introduction of technology and its successful implementation.

  8. Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency.

    Science.gov (United States)

    Lin, Yi-Feng; Chen, Jia-Ling

    2014-04-15

    Wastewater treatment has drawn significant research attention due to its associated environmental issues. Adsorption is a promising method for treating wastewater. The development of an adsorbent with a high surface area is important. Therefore, we successfully developed mesoporous Fe/carbon aerogel (CA) structures with high specific surface areas of 48 7m(2)/g via the carbonization of composite Fe3O4/phenol-formaldehyde resin structures, which were prepared using a hydrothermal process with the addition of phenol. The mesoporous Fe/CA structures were further used for the adsorption of arsenic ions with a maximum arsenic-ion uptake of calculated 216.9 mg/g, which is higher than that observed for other arsenic adsorbents. Ferromagnetic behavior was observed for the as-prepared mesoporous Fe/CA structures with an excellent response to applied external magnetic fields. As a result, the adsorbent Fe/CA structures can be easily separated from the solution using an external magnetic field. This study develops the mesoporous Fe/CA structures with high specific surface areas and an excellent response to an applied external magnetic field to provide a feasible approach for wastewater treatment including the removal of arsenic ions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA, USEPA DEMONSTRATION PROJECT AT RIMROCK, AZ, SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at Rimrock, AZ. The objectives of the project are to evaluate the effectiveness of AdEdge Arsenic Package Uni...

  10. Arsenic/Radium Removal from Drinking Water by the HMO Process, U.S. EPA Demonstration Project at Greenville, WI

    Science.gov (United States)

    In 2003, the Town of Greenville, Wisconsin was selected for the Round 2 U.S. Environmental Protection Agency (EPA) Arsenic Demonstration Program and a Kinetico Macrolite® pressure filtration system was selected for its ability to remove arsenic. Well reconstruction prior to the ...

  11. Economic benefits of arsenic removal from ground water--a case study from West Bengal, India.

    Science.gov (United States)

    Roy, Joyashree

    2008-07-01

    People living in almost 50% of the districts in West Bengal are exposed to arsenic contaminated water. This paper seeks to estimate the economic costs imposed by arsenic-related health problems. We use data from a primary survey of 473 households carried out in the districts of North 24 Parganas and Midnapore. We take into account household actions to either decrease the exposure of family members to unsafe water or to alleviate the health effects of consuming arsenic-contaminated water. This allows us to assess the benefits of arsenic-safe water by estimating a three equation system that includes averting actions, medical expenditures and a sickness function. We find that by reducing arsenic concentration to the safe limit of 50 microg/l, a representative household will benefit by Rs 297 ($7) per month. The current cost of supplying filtered piped water by the Kolkata Municipal Corporation to households is Rs 127 ($3) per month per household. Thus, investing in safe drinking water is economically feasible and households are willing to pay for such investments if made aware of the effective gain in welfare. Poor households, who make up the highest proportion of arsenic-affected households and incur the largest number of sick days, will be major beneficiaries of such investments.

  12. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria.

    Science.gov (United States)

    de Matos, Letícia Paiva; Costa, Patrícia Freitas; Moreira, Mariana; Gomes, Paula Cristine Silva; de Queiroz Silva, Silvana; Gurgel, Leandro Vinícius Alves; Teixeira, Mônica Cristina

    2018-04-01

    Data presented here are related to the original paper "Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB) mixed culture and alternative low-cost carbon sources" published by same authors (Matos et al., 2018) [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L - 1 . Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format. Refers to https://doi.org/10.1016/j.cej.2017.11.035.

  13. Iron Polymerization and Arsenic Removal During In-Situ Iron Electrocoagulation in Synthetic Bangladeshi Groundwater

    Science.gov (United States)

    van Genuchten, C. M.; Pena, J.; Addy, S.; Gadgil, A.

    2010-12-01

    Millions of people worldwide are exposed to arsenic-contamination in groundwater drinking supplies. The majority of affected people live in rural Bangladesh. Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy that is based on the generation of iron precipitates with a high affinity for arsenic through the electrochemical dissolution of a sacrificial iron anode. Many studies of iron hydrolysis in the presence of co-occurring ions in groundwater such as PO43-, SiO44-, and AsO43- suggest that these ions influence the polymerization and formation of iron oxide phases. However, the combined impact of these ions on precipitates generated by EC is not well understood. X-ray absorption spectroscopy (XAS) was used to examine EC precipitates generated in synthetic Bangladeshi groundwater (SBGW). The iron oxide structure and arsenic binding geometry were investigated as a function of EC operating conditions. As and Fe k-edge spectra were similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm2) used during sample generation. This result suggests that current density does not play a large role in the formation EC precipitates in SBGW. Shell-by-shell fits of Fe K-edge data revealed the presence of a single Fe-Fe interatomic distance at approximately 3.06 Å. The absence of longer ranged Fe-Fe correlations suggests that EC precipitates consist of nano-scale chains (polymers) of FeO6 octahedra sharing equatorial edges. Shell-by-shell fits of As K-edge spectra show arsenic bound in primarily bidentate, binuclear corner sharing complexes. In this coordination geometry, arsenic prevents the formation of FeO6 corner-sharing linkages, which are necessary for 3-dimensional crystal growth. The individual and combined effects of other anions, such as PO43- and SiO44- present in SBGW are currently being investigated to determine the role of these ions in stunting crystal growth. The results provided by this

  14. Arsenic and Nitrate Removal from Drinking Water by Ion Exchange U.S. EPA Demonstration Project at Vale, OR - Final Performance Evaluation Report

    Science.gov (United States)

    As part of the EPA Arsenic Removal Technology Demonstration Program, a 540-gal/min (gpm) ion exchange (IX) system proposed by Kinetico was selected for demonstration at Vale, OR to remove arsenic and nitrate from a groundwater supply to meet their respective maximum contaminant l...

  15. Field Experiments and Reactive Transport Modeling of Subsurface Arsenic Removal in Bangladesh

    NARCIS (Netherlands)

    Rahman, M.M.

    2017-01-01

    The principle of Subsurface Arsenic (As) Removal (SAR) is to extract anoxic groundwater, aerate it and reinject it. Oxygen in the injected water reacts with iron in the resident groundwater to form hydrous ferric oxide (HFO). Dissolved As sorbs onto the HFO, which allows for the extraction of

  16. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network.

    Science.gov (United States)

    Ghosal, Partha S; Kattil, Krishna V; Yadav, Manoj K; Gupta, Ashok K

    2018-03-01

    Olivine, a low-cost natural material, impregnated with iron is introduced in the adsorptive removal of arsenic. A wet impregnation method and subsequent calcination were employed for the preparation of iron/olivine composite. The major preparation process parameter, viz., iron loading and calcination temperature were optimized through the response surface methodology coupled with a factorial design. A significant variation of adsorption capacity of arsenic (measured as total arsenic), i.e., 63.15 to 310.85 mg/kg for arsenite [As(III) T ] and 76.46 to 329.72 mg/kg for arsenate [As(V) T ] was observed, which exhibited the significant effect of the preparation process parameters on the adsorption potential. The iron loading delineated the optima at central points, whereas a monotonous decreasing trend of adsorption capacity for both the As(III) T and As(V) T was observed with the increasing calcination temperature. The variation of adsorption capacity with the increased iron loading is more at lower calcination temperature showing the interactive effect between the factors. The adsorbent prepared at the optimized condition of iron loading and calcination temperature, i.e., 10% and 200 °C, effectively removed the As(III) T and As(V) T by more than 96 and 99%, respectively. The material characterization of the adsorbent showed the formation of the iron compound in the olivine and increase in specific surface area to the tune of 10 multifold compared to the base material, which is conducive to the enhancement of the adsorption capacity. An artificial neural network was applied for the multivariate optimization of the adsorption process from the experimental data of the univariate optimization study and the optimized model showed low values of error functions and high R 2 values of more than 0.99 for As(III) T and As(V) T . The adsorption isotherm and kinetics followed Langmuir model and pseudo second order model, respectively demonstrating the chemisorption in this

  17. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER - PALL CORPORATION MICROZA. MICROFILTRATION SYSTEM

    Science.gov (United States)

    Verification testing of the Pall Corporation Microza. Microfiltration System for arsenic removal was conducted at the Oakland County Drain Commissioner (OCDC) Plum Creek Development well station located in Oakland County, Michigan from August 19 through October 8, 2004. The sourc...

  18. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xianjun, E-mail: xjxie@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Wang, Yanxin, E-mail: yx.wang@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Pi, Kunfu [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Liu, Chongxuan [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China)

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO{sub 4} and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na{sub 2}HAsO{sub 4}) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles

  19. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study

    International Nuclear Information System (INIS)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-01-01

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO 4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na 2 HAsO 4 ) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. - Highlights:

  20. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. Copyright © 2015

  1. Use of Low-cost Adsorbents to Chlorophenols and Organic Matter Removal of Petrochemical Wastewater

    Directory of Open Access Journals (Sweden)

    Aretha Moreira de Oliveira

    2013-11-01

    Full Text Available The removal of 2,4 diclorophenol (2,4-DCF and 2,4,6 trichlorophenol (2,4,6 TCF present in  petrochemical wastewater was evaluated using low-cost adsorbents, such as chitin, chitosan and coconut shells. Batch studies showed that the absorption efficiency for 2,4 DCF and 2,4,6 TCF follow the order: chitosan > chitin > coconut shells. Langmuir and Freundlich models have been applied to experimental isotherms data, to better understand the adsorption mechanisms. Petrochemical wastewater treatment with fixed bed column system using chitinous adsorbents showed a removal of COD (75% , TOG (90% and turbidity (74-89%.

  2. Da-KGM based GO-reinforced FMBO-loaded aerogels for efficient arsenic removal in aqueous solution.

    Science.gov (United States)

    Ye, Shuxin; Jin, Weiping; Huang, Qing; Hu, Ying; Li, Yan; Li, Jing; Li, Bin

    2017-01-01

    Composites based on deacetylated konjac glucomannan (Da-KGM) and graphene oxide (GO) aerogels with iron and manganese oxides (FMBO) for effective removal of arsenic from contaminated water. Da-KGM, which was used as supporting composite matrix here, were firstly treated with GO and loaded FMBO. The obtained Da-KGM/GO/FMBO composite aerogels were characterized by compression test, thermo gravimetric analysis (TGA), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The characteristic results showed that addition of GO exhibited enhanced mechanical properties towards Da-KGM aerogels. What's more, results of FTIR indicated the strong intermolecular hydrogen bond interaction between KGM and GO. Batch adsorption tests were used to evaluate arsenic removal capacity. Da-KGM/GO loaded FMBO composite aerogels exhibited high adsorption ability for arsenite [As(III)] and arsenate [As(V)]. The adsorption results showed that the arsenic for both arsenite [As(III)] and arsenate [As(V)] removal process followed a pseudo-second-order rate equation and Langmuir monolayer adsorption. The maximum As(III) and As(V) uptake capacity of Da-KGM/GO(10%)/FMBO composite aerogels reached 30.21mgg -1 and 12.08mgg -1 respectively according to Langmuir isotherm at pH 7 and 323K. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL. U.S. EPA DEMONSTRATION PROJECT AT CLIMAX, MN. FINAL PERFORMANCE EVALUATION REPORT.

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project following one year of operation at the Climax, Minnesota, site. The objectives of the project were to evaluate: (1) the effectiveness of Kin...

  4. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.

    Science.gov (United States)

    Nitzsche, Katja Sonja; Lan, Vi Mai; Trang, Pham Thi Kim; Viet, Pham Hung; Berg, Michael; Voegelin, Andreas; Planer-Friedrich, Britta; Zahoransky, Jan; Müller, Stefanie-Katharina; Byrne, James Martin; Schröder, Christian; Behrens, Sebastian; Kappler, Andreas

    2015-01-01

    Household sand filters are applied to treat arsenic- and iron-containing anoxic groundwater that is used as drinking water in rural areas of North Vietnam. These filters immobilize poisonous arsenic (As) via co-oxidation with Fe(II) and sorption to or co-precipitation with the formed Fe(III) (oxyhydr)oxides. However, information is lacking regarding the effect of the frequency and duration of filter use as well as of filter sand replacement on the residual As concentrations in the filtered water and on the presence of potentially pathogenic bacteria in the filtered and stored water. We therefore scrutinized a household sand filter with respect to As removal efficiency and the presence of fecal indicator bacteria in treated water as a function of filter operation before and after sand replacement. Quantification of As in the filtered water showed that periods of intense daily use followed by periods of non-use and even sand replacement did not significantly (psand replacement, CFUs of Escherichia coli of sand filters regarding As removal, but indicate a potential risk for human health arising from the enrichment of coliform bacteria during filtration and from E. coli cells that are introduced by sand replacement. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh.

    Science.gov (United States)

    Hassan, Zahid; Sultana, Munawar; van Breukelen, Boris M; Khan, Sirajul I; Röling, Wilfred F M

    2015-04-01

    Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Arsenic removal in drinking water; Eliminacion de arsenico en aguas potables

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Rodriguez, M.

    2003-07-01

    The US Environmental Protection Agency established recently to reduce the maximum contaminant level in drinking water of 50 to 5 {mu}/l. In Japan and Canada the effective MCL are respectively 10 and 25 {mu}g/l. The World Health Organization had recommended in 1993 to go down from 50 to 10 {mu}g/l the maximum quantity of arsenic in the waters. In the sampling sites of the National Network of measure Points of Spain, superior arsenic concentrations have not been detected up to now to the legal limit in the European Community, 50 {mu}g/l, although in some points they are related values between 5 and 50, being that value of 50 {mu}g/l surpassed in punctual captions of underground waters. To go down the MCL to 5 {mu}g/l, it implies to install or to improve the precipitation, floculation, and coagulation in the drinking water plants, that waters whose concentration of output arsenic overcomes that guideline value. In this paper it is made a revision of the chemistry of the arsenic removal in water drink, to lower their concentration to less than 5 {mu}g/l, as well as to show a view of the Spanish situation, in relation to going down their concentration to this level of security for the public health. (Author) 12 refs.

  7. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters

    Directory of Open Access Journals (Sweden)

    Jennyfer Serrano

    2017-12-01

    Full Text Available Fluvial sediments, soils, and natural waters in northern Chile are characterized by high arsenic (As content. Mining operations in this area are potential sources of As and other metal contaminants, due to acid mine drainage (AMD generation. Sulfate Reducing Bacteria (SRB has been used for the treatment of AMD, as they allow for the reduction of sulfate, the generation of alkalinity, and the removal of dissolved heavy metals and metalloids by precipitation as insoluble metal sulfides. Thus, SRB could be used to remove As and other heavy metals from AMD, however the tolerance of SRB to high metal concentrations and low pH is limited. The present study aimed to quantify the impact of SRB in As removal under acidic and As-Fe-rich conditions. Our results show that SRB tolerate low pH (up to 3.5 and high concentrations of As (~3.6 mg·L−1. Batch experiments showed As removal of up to 73%, Iron (Fe removal higher than 78% and a neutralization of pH from acidic to circum-neutral conditions (pH 6–8. In addition, XRD analysis showed the dominance of amorphous minerals, while Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDX analysis showed associations between As, Fe, and sulfur, indicating the presence of Fe-S-As compounds or interaction of As species with amorphous and/or nanocrystalline phases by sorption processes. These results indicate that the As removal was mediated by acid/metal-tolerant SRB and open the potential for the application of new strains of acid/metal-tolerant SRB for the remediation of high-As acid mine waters.

  8. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources.

    Science.gov (United States)

    Huang, Haiming; Xiao, Dean; Zhang, Qingrui; Ding, Li

    2014-12-01

    This paper presents a study concerning ammonia removal from landfill leachate by struvite precipitation with the use of waste phosphoric acid as the phosphate source. The results indicated that the Al(3+) ions present in the waste phosphoric acid significantly affected the struvite precipitation, and a removal ratio of ammonia close to that of pure phosphate salts could be achieved. Nevertheless, large amounts of NaOH were necessary to neutralize the H(+) present in the waste phosphoric acid. To overcome this problem, a low-cost magnesium source was proposed to be used as well as an alkali reagent in the struvite precipitation. The ammonia removal ratios were found to be 83%, with a remaining phosphate of 56 mg/L, by dosing the low-cost MgO in the Mg:N:P molar ratio of 3:1:1. An economic analysis showed that using waste phosphoric acid plus the low-cost MgO could save chemical costs by 68% compared with the use of pure chemicals. Post-treatment employment of a biological anaerobic filter process demonstrated that the high concentration of Mg(2+) remaining in the effluent of the struvite precipitation has no inhibitory effect on the performance of the biological treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. U.S. EPA DEMONSTRATION PROJECT AT SPRINGFIELD, OH. PROJECT SUMMARY

    Science.gov (United States)

    This document is a eight page summary of the final report on arsenic demonstration project at the Chateau Estates Mobile Home Park in Springfield, OH. The objectives of the project are to evaluate the effectiveness of AdEdge Technologies’ AD-33 media in removing arsenic to meet t...

  10. Arsenic contaminated groundwater and its treatment options in Bangladesh.

    Science.gov (United States)

    Jiang, Jia-Qian; Ashekuzzaman, S M; Jiang, Anlun; Sharifuzzaman, S M; Chowdhury, Sayedur Rahman

    2012-12-20

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues.

  11. Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh

    Science.gov (United States)

    Jiang, Jia-Qian; Ashekuzzaman, S. M.; Jiang, Anlun; Sharifuzzaman, S. M.; Chowdhury, Sayedur Rahman

    2012-01-01

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues. PMID:23343979

  12. Pilot demonstrations of arsenic treatment technologies in U.S. Department of Energy Arsenic Water Technology Partnership program.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Aragon, Alicia R.; Siegal Malcolm D.; Dwyer, Brian P.

    2005-01-01

    , waste disposal options and availability of permanent structures to house the test. Conducting pilot tests for media comparison at all sites in need of arsenic treatment would be extremely time consuming and costly. Laboratory studies are being conducted using rapid small-scale column tests (RSSCTs) to predict the performance of pilot-scale adsorption columns. RSSCTs are a rapid and inexpensive method of investigating innovative technologies while varying water quality and/or system design. RSSCTs are scaled down columns packed with smaller diameter adsorption media that receive higher hydraulic loading rates to significantly reduce the duration of experiments. Results for RSSCTs can be obtained in a matter of days to a few weeks, whereas pilot tests can take a number of months to over a year. In the pilot tests, the innovative technologies will be evaluated in terms of adsorptive capacity for arsenic; robustness of performance with respect to water quality parameters including pH, TDS, foulants such as Fe, Mn, silica, and organics, and other metals and radionuclides; and potentially deleterious effects on the water system such as pipe corrosion from low pH levels, fluoride removal, and generation of disinfection by-products. The new arsenic MCL will result in modification of many rural water systems that otherwise would not require treatment. Simultaneous improvement of water quality in systems that will require treatment for other contaminants such as uranium, radon and radium would be an added benefit of this program.

  13. The Efficiency of Inactive Saccharomyces Cerevisiae Biomass on Removing Arsenic from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    MH Ehrampoush

    2014-05-01

    Methods:This experimental study was performed in laboratory scale and was performed on 243 synthetic samples in a batch system. In this study the effect of parameters such as contact time (5,15,30,60,120,min and 24 h, pH (5,7,9, fluoride concentration (100, 250, 500, 750,1000 µg/l and absorbent dosages (0.5,1,2/5,5g/l was evaluated. Finally biosorption kinetic and equilibrium isotherms of adsorbent was investigated. Results: The removal efficiency of inactive Saccharomyces cerevisiae was 89.49% at pH 5, adsorbent dose of 1g/L and initial metal concentration of 100 mg/L. Maximum uptake was observed after the Contact time of 60 minutes. In addition absorption isotherm followed pseudo-second order model with a maximum R2 = 0.999. Conclusion:The results of study showed that biosorption efficiency decreases with increase in pH of solution. Optimum pH of biosorption was 5. The Removal efficiency of arsenic enhanced with increase in mass of Saccharomyces cerevisiae up to 1 g/L, but The Removal efficiency decreased with increase in initial concentration of arsenic. Maximum absorption was observed in 15 minutes.

  14. Arsenic Removal from Drinking Water by Iron Removal U.S. EPA Demonstration Project at Sabin, MN Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from January 30, 2006 to April 29, 2007 at the U.S. Environmental Protection Agency (EPA) Arsenic Removal Technology Demonstration site in Sabin, MN. The main objective of the project was to evaluate the eff...

  15. Removal of arsenic from simulated groundwater using GAC-Ca in batch reactor: kinetics and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Prasenjit; Mohanty, Bikash; Majumder, Chandrajit Balo [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand (India)

    2012-05-15

    This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca{sup 2+} impregnated granular activated charcoal (GAC-Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after {proportional_to}24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC-Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (q{sub max}) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 {mu}g/g. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Removal of arsenic from water using manganese (III) oxide: Adsorption of As(III) and As(V).

    Science.gov (United States)

    Babaeivelni, Kamel; Khodadoust, Amid P

    2016-01-01

    Removal of arsenic from water was evaluated with manganese (III) oxide (Mn2O3) as adsorbent. Adsorption of As(III) and As(V) onto Mn2O3 was favorable according to the Langmuir and Freundlich adsorption equilibrium equations, while chemisorption of arsenic occurred according to the Dubinin-Radushkevich equation. Adsorption parameters from the Langmuir, Freundlich, and Temkin equations showed a greater adsorption and removal of As(III) than As(V) by Mn2O3. Maximum removal of As(III) and As(V) occurred at pH 3-9 and at pH 2, respectively, while removal of As(V) in the pH range of 6-9 was 93% (pH 6) to 61% (pH 9) of the maximum removal. Zeta potential measurements for Mn2O3 in As(III) was likely converted to As(V) solutions indicated that As(III) was likely converted to As(V) on the Mn2O3 surface at pH 3-9. Overall, the effective Mn2O3 sorbent rapidly removed As(III) and As(V) from water in the pH range of 6-9 for natural waters.

  17. Synthesis and characterization of iron nano particles for the arsenic removal in water

    International Nuclear Information System (INIS)

    Gutierrez M, O. E.

    2011-01-01

    The synthesis of iron nanoparticles for the removal of metallic ions in polluted waters has been during the last years study topic for different world organizations. This work presents a synthesis method of conditioned coal with iron nanoparticles starting from the use of leaves of pineapple crown, with the purpose of using it in arsenic removal processes in aqueous phase. For the synthesis of this material, the leaves of the pineapple crown were used like supports structure of the iron nanoparticles. First, the pyrolysis appropriate temperature was determined. For the preparation of the support material, this had contact with a ferric nitrate and hexamine solution, because the preparation of the material and the coal synthesis were realized during the pyrolysis process, where the hexamine molecules and the ferric nitrate react, causing the reduction of the iron particles and their dispersion on the support material, obtaining as product a conditioned coal with iron nanoparticles. For the characterization of the materials were used techniques as: Scanning electron microscopy, Transmission electron microscopy, X-Rays Diffraction), X-Ray photoelectron spectroscopy and Moessbauer spectroscopy; moreover was determined the isoelectric point and the density of surface sites. The arsenic sorption capacity of the materials was evaluated by means of the methodology type lots where was determined the sorption kinetics and isotherms in terms of arsenic concentration and mass. (Author)

  18. Arsenic Removal from Drinking Water by Iron Removal. U.S. EPA Demonstration Project at Sabin, MN. Six-Month Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first six months of the EPA arsenic removal technology demonstration project at the Sabin, MN. The main objective of the project is to evaluate the effectiveness of the Kinetico FM-248-AS ars...

  19. Use of kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents

    Energy Technology Data Exchange (ETDEWEB)

    Foletto, E.L.; Caponi, N.; Collazzo, G.C.; Jahn, S.L.; Dotto, G.L.; Mazutti, M.A. [Universidade Federal de Santa Maria (UFSM), RS (Brazil)

    2016-07-01

    Full text: This study investigated the potential of raw kaolin as a low-cost adsorbent for the removal Malachite Green (MG) from colored effluents. The morphology, chemical structure and the surface properties of the adsorbent were investigated by characterization techniques such as X-ray diffraction, N2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, X-ray fluorescence spectroscopy and scanning electron microscopy. A possible technological application of kaolin is the MG removal from aqueous media, which was investigated by batch adsorption experiments. The adsorption kinetics was studied using the pseudo-first order, pseudo-second order and Elovich models. The adsorption isotherms were studied using Langmuir, Freundlich and Sips models. Maximum adsorption capacity was found to be 128 mg g-1, and this satisfactory result may be associated to some properties of adsorbent. Therefore, the results of this investigation revealed that kaolin can be utilized as a promising low-cost adsorbent to remove MG from colored effluents. (author)

  20. Design and Development of Low Cost, Simple, Rapid and Safe, Modified Field Kits for the Visual Detection and Determination of Arsenic in Drinking Water Samples

    Directory of Open Access Journals (Sweden)

    Y. Anjaneyulu

    2005-08-01

    Full Text Available Arsenic is naturally found in surface and ground waters and the inorganic forms of arsenic are the most toxic forms. The adverse health effects of arsenic may involve the respiratory, gastrointestinal, cardiovascular, nervous, and haematopoietic systems. Arsenic contamination in drinking water is a global problem widely seen in Bangladesh and West Bengal of the Indian sub continent. As there is a great demand for field test kits due to the anticipated reduction of the US EPA arsenic standard from 50ppb to 10ppb a field kit which offers rapid, simple and safe method for precise estimation of arsenic at 10ppb in drinking water samples is developed. Field methods, based on the mercuric-bromide-stain, consist of three different major parts, which are carried out stepwise. The first part of the procedure is to remove serious interference caused by hydrogen sulphide. In commercially available kits either the sulphide is oxidized to sulphate and the excess oxidizing reagent removed prior to the hydride generation step or, the hydrogen sulphide is filtered out by passing the gas stream through a filter impregnated with lead acetate during the hydride generation step. The present method employs cupric chloride in combination with ferric chloride or Fenton’s reagent for the removal of hydrogen sulphide, which is rapid, simple and more efficient. Other interferences at this step of the analyses are normally not expected for drinking water analysis. In the second step, the generation of the arsine gas involves the classical way of using zinc metal and hydrochloric acid, which produce the ‘nascent’ hydrogen, which is the actual reducing agent. Hydrochloric acid can be replaced by sulfamic acid, which is solid and avoids a major disadvantage of having to handle a corrosive liquid in the field. The arsine gas produces a yellowish spot on the reagent paper. Depending on the arsenic content, either, Yellow – H

  1. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.

  2. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation

    Science.gov (United States)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67 μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60 min at 50 mA. Direct electron transfer was mainly responsible at the current below 30 mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30 mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20 mM), while was dramatically increased with increasing the concentration of chloride (0-10 mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions.

  3. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.

    Science.gov (United States)

    Liao, Xiaoyong; Li, You; Yan, Xiulan

    2016-03-01

    Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: 2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at 2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended. Copyright © 2015. Published by Elsevier B.V.

  4. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria

    Directory of Open Access Journals (Sweden)

    Letícia Paiva de Matos

    2018-04-01

    Full Text Available Data presented here are related to the original paper “Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB mixed culture and alternative low-cost carbon sources” published by same authors (Matos et al., 2018 [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L−1. Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format.Refers to https://doi.org/10.1016/j.cej.2017.11.035 Keywords: Arsenite, Sulfate reduction, Bioremediation, Immobilized cells, Acid pH

  5. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Science.gov (United States)

    Malakar, Pradyut; Jana, Bana Bihari; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas. PMID:28974053

  6. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.

    Science.gov (United States)

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-10-02

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus ® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  7. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Directory of Open Access Journals (Sweden)

    Philipp Otter

    2017-10-01

    Full Text Available Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L, iron (5.5 ± 0.8 mg/L, manganese (1.5 ± 0.4 mg/L, phosphate (2.4 ± 1.3 mg/L and ammonium (1.4 ± 0.5 mg/L concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L, >99% for iron (0.03 ± 0.03 mg/L, 96% for manganese (0.06 ± 0.05 mg/L, 72% for phosphate (0.7 ± 0.3 mg/L and 84% for ammonium (0.18 ± 0.12 mg/L were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  8. Application of Activated Carbon for Removal of Arsenic Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2007-01-01

    Full Text Available The activated carbon (AC was used for removal of As(III and As(V ions from aqueous solutions. Sorption experiments were conducted using both batch and column systems. The effect of some important parameters on sorption of these by AC was studied. It was found that among the different factors affecting sorption capacity and efficiency in removal of arsenic from aqueous solutions, the effect of pH and the oxidation state were the most prominent. The optimum pH values for removal of As(III and As(V from aqueous solutions using AC was found 12 and 3 respectively. Impregnation of AC with sulphur contain organic dyes, it is possible to improve As(III uptake considerably.

  9. Low-level arsenic exposure via drinking water consumption and female fecundity - A preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Susko, Michele L. [Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York (United States); Bloom, Michael S., E-mail: mbloom@albany.edu [Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York (United States); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, New York (United States); Neamtiu, Iulia A. [Health Department, Environmental Health Center, Cluj-Napoca (Romania); IMOGEN Research Institute, Cluj-Napoca (Romania); Appleton, Allison A. [Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York (United States); Surdu, Simona [Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, New York (United States); Pop, Cristian [Physico-chemical and Biotoxicological Analysis Laboratory, Environmental Health Center, Cluj-Napoca (Romania); Cluj School of Public Health - College of Political, Administrative and Communication Sciences, Babeș-Bolyai University, Cluj-Napoca (Romania); Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Cluj-Napoca (Romania); Fitzgerald, Edward F. [Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York (United States); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, New York (United States); Anastasiu, Doru [University of Medicine and Pharmacy “Victor Babeș”, Timișoara (Romania); Obstetrics and Gynecology Department of the Emergency County Hospital, Timișoara (Romania); and others

    2017-04-15

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiá¹£ County, Romania. Women (n=94) with planned pregnancies of 5–20 weeks gestation completed a comprehensive physician-administered study questionnaire and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women. For example, 1 µg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P=0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. - Highlights: • We assessed low level drinking water arsenic as a predictor of fecundability. • Arsenic did

  10. Low-level arsenic exposure via drinking water consumption and female fecundity - A preliminary investigation

    International Nuclear Information System (INIS)

    Susko, Michele L.; Bloom, Michael S.; Neamtiu, Iulia A.; Appleton, Allison A.; Surdu, Simona; Pop, Cristian; Fitzgerald, Edward F.; Anastasiu, Doru

    2017-01-01

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiá¹£ County, Romania. Women (n=94) with planned pregnancies of 5–20 weeks gestation completed a comprehensive physician-administered study questionnaire and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women. For example, 1 µg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P=0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. - Highlights: • We assessed low level drinking water arsenic as a predictor of fecundability. • Arsenic did

  11. The role of SO{sub 4}{sup 2−} surface distribution in arsenic removal by iron oxy-hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Tresintsi, S. [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Simeonidis, K., E-mail: ksime@physics.auth.gr [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Department of Mechanical Engineering, University of Thessaly, 38334 Volos (Greece); Pliatsikas, N.; Vourlias, G.; Patsalas, P. [Laboratory of Applied Physics, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Mitrakas, M. [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    This study investigates the contribution of chemisorbed SO{sub 4}{sup 2−} in improving arsenic removal properties of iron oxy-hydroxides through an ion-exchange mechanism. An analytical methodology was developed for the accurate quantification of sulfate ion (SO{sub 4}{sup 2−}) distribution onto the surface and structural compartments of iron oxy-hydroxides synthesized by FeSO{sub 4} precipitation. The procedure is based on the sequential determination of SO{sub 4}{sup 2−} presence in the diffuse and Stern layers, and the structure of these materials as defined by the sulfate-rich environments during the reaction and the variation in acidity (pH 3–12). Physically sorbed SO{sub 4}{sup 2−}, extracted in distilled water, and physically/chemically adsorbed ions on the oxy-hydroxide's surface leached by a 5 mM NaOH solution, were determined using ion chromatography. Total sulfate content was gravimetrically measured by precipitation as BaSO{sub 4}. To validate the suggested method, results were verified by X-ray photoelectron and Fourier-transformed infrared spectroscopy. Results showed that low precipitation pH-values favor the incorporation of sulfate ions into the structure and the inner double layer, while under alkaline conditions ions shift to the diffuse layer. - Graphical abstract: An analytical methodology for the accurate quantification of sulfate ions (SO{sub 4}{sup 2−}) distribution onto the diffuse layer, the Stern layer and the structure of iron oxy-hydroxides used as arsenic removal agents. - Highlights: • Quantification of sulfate ions presence in FeOOH surface compartments. • Preparation pH defines the distribution of sulfates. • XPS and FTIR verify the presence of SO{sub 4}{sup 2−} in the structure, the Stern layer the diffuse layer of FeOOH. • Chemically adsorbed sulfates control the arsenic removal efficiency of iron oxyhydroxides.

  12. Case reports: arsenic pollution in Thailand, Bangladesh, and Hungary.

    Science.gov (United States)

    Jones, Huw; Visoottiviseth, Pornsawan; Bux, M Khoda; Födényi, Rita; Kováts, Nora; Borbély, Gábor; Galbács, Zoltán

    2008-01-01

    Although arsenic contamination in the three countries described herein differs, a number of common themes emerge. In each country, the presence of arsenic is both long term and of geological origin. Moreover, in each of these countries, arsenic was only recently discovered to be a potential public health problem, having been first formally recognized in the 1980s or 1990s. In Bangledesh, exposure of the public to arsenic arose as a result of the search for microbially safe drinking water; this search resulted in the sinking of tube wells into aquifers. In Hungary, the natural bedrock geology was responsible for contamination of aquifer water. The genesis of arsenic contamination in Thailand arose primarily from small-scale alluvial mining activities, which mobilized geologically bound arsenic. Because of the complex chemistry of arsenic, and variability in where it is found and how it is bound, multiple mitigation methods must be considered for mitigating episodes of environmental contamination. The Ron Phibun region of Thailand has a 100-yr history of tin mining. A geological survey of the region was conducted in the mid-1990s by the Department of Mineral Resources and Department of Industry of Thailand, and was supported by the British Geological Society. Skin cancer in Thailand was first reported in 1987, in the southern part of the country; among other symptoms observed, there was evidence of IQ diminutions among the population. Arsenic water levels to 9,000 pg/L were reported; such levels are substantially above any guideline levels. A long-term plan to mitigate arsenic contamination was devised in 1998-2000. The plan involved removal of arsenic-contaminated land and improved management of mining wastes. However, at $22 million, the cost was deemed prohibitive for the regional Thai economy. An alternative solution of providing pipeline drinking water to the exposed population was also unsuccessful, either because arsenic contamination levels did not fall

  13. Arsenic removal in solution using non living bio masses of aquatic weed; Remocion de As en solucion empleando biomasas no vivas de maleza acuatica

    Energy Technology Data Exchange (ETDEWEB)

    Marin A, M J

    2010-07-01

    , investigated parameters were the As (V) concentration, contact time, ph and the bio sorbent mass. Maximum removal concentration of As (V) was 75% for both not living biomass using a initial concentration As (V) of 0.1 mg/L, 100 mg of bio sorbent, ph=9, and 24 hours contact time at the same ph value. In particular both bio masses, for their determined properties, were found to be potential bio sorbents/accumulators for arsenic ions from aqueous solution and they can be used in a very low cost metalloid ions removal system. (Author)

  14. Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2012-12-01

    Full Text Available Arsenic (As causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues.

  15. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL AND ADSORPTIVE MEDIA USEPA DEMONSTRATION PROJECT AT STEWART, MN. SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the EPA arsenic removal technology demonstration project at the Stewart, MN facility. The main objective of the project is to evaluate the effectiveness of Siemens¿ Type II AERALA...

  16. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  17. Construction of a modular arsenic resistance operon in E. coli and the production of arsenic nanoparticles

    Directory of Open Access Journals (Sweden)

    Matthew Charles Edmundson

    2015-10-01

    Full Text Available Arsenic is a widespread contaminant of both land and water around the world. Current methods of decontamination such as phytoremediation and chemical adsorbents can be resource and time intensive, and may not be suitable for some areas such as remote communities where cost and transportation are major issues. Bacterial decontamination, with strict controls preventing environmental release, may offer a cost-effective alternative or provide a financial incentive when used in combination with other remediation techniques. In this study we have produced E. coli strains containing arsenic resistance genes from a number of sources, overexpressing them and testing their effects on arsenic resistance. While the lab E. coli strain JM109 (the wild-type is resistant up to 20 mM sodium arsenate the strain containing our plasmid pEC20 is resistant up to 80 mM. When combined with our construct pArsRBCC arsenic-containing nanoparticles were observed at the cell surface; the elements of pEC20 and pArsRBCC were therefore combined in a modular construct, pArs, in order to evaluate the roles and synergistic effects of the components of the original plasmids in arsenic resistance and nanoparticle formation. We also investigated the use of introducing the lac operator in order to more tightly control expression from pArs. We demonstrate that our strains are able to reduce toxic forms of arsenic into stable, insoluble metallic As(0, providing one way to remove arsenate contamination, and which may also be of benefit for other heavy metals.

  18. Capital and Operating Cost of Small Arsenic Removal System and their Most Frequent Maintenance Problems

    Science.gov (United States)

    This presentation will first summarize the capital and operating cost of treatment systems by type and size of the systems. The treatment systems include adsorptive media (AM) systems, iron removal (IR), coagulation/filtration (CF), ion exchange (IX) systems, and point-of-use rev...

  19. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti; Hristovski, Kiril

    2011-01-01

    Highlights: → The morphology, content and distribution of ZrO 2 nanoparticles inside the pores of GAC are affected by the type of GAC. → Lignite ZrO 2 -GAC exhibited Zr content of 12%, while bituminous based ZrO 2 -GAC exhibited Zr content of 9.5%. → The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO 3 buffered water matrix were ∼8.6 As/g Zr and ∼12.2 mg As/g Zr at pH = 7.6. → The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while ∼1.5 mg As/g Zr and ∼3.2 mg As/g Zr at pH = 7.6. → Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO 2 -GAC, while the one of bituminous ZrO 2 -GAC decreased. - Abstract: This study investigated the effects of in situ ZrO 2 nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 o C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO 2 nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO 3 buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C 0 ∼ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal

  20. Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jorge A.G.; Gonzaga, Maria I.S. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ufl.edu; Srivastava, M. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States)

    2008-07-15

    The effects of timing in phosphate application on plant growth and arsenic removal by arsenic hyperaccumulator Pteris vittata L. of different ages were evaluated. The hydroponic experiment consisted of three plant ages (A{sub 45d}, A{sub 90d} and A{sub 180d}) and three P feeding regimens (P{sub 200+0}, P{sub 134+66} and P{sub 66+134}) growing for 45 d in 0.2-strength Hoagland-Arnon solution containing 145 {mu}g L{sup -1} As. While all plants received 200 {mu}M P, P was added in two phases: during acclimation and after arsenic exposure. High initial P-supply (P{sub 200+0}) favored frond biomass production and plant P uptake, while split-P application (P{sub 134+66} and P{sub 66+134}) favored plant root production. Single P addition favored arsenic accumulation in the roots while split-P addition increased frond arsenic accumulation. Young ferns (A{sub 45d}) in treatment P{sub 134+66} were the most efficient in arsenic removal, reducing arsenic concentration to below 10 {mu}g L{sup -1} in 35 d. The results indicated that the use of young ferns, coupled with feeding of low initial P or split-P application, increased the efficiency of arsenic removal by P. vittata. - Young ferns coupled with split-P application were effective in arsenic removal by Pteris vittata.

  1. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water

    NARCIS (Netherlands)

    Cavalca, L.; Corsini, A.; Zaccheo, P.; Andreoni, V.; Muyzer, G.

    2013-01-01

    Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This

  2. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide.

    Science.gov (United States)

    Wang, Jenny Weijun; Bejan, Dorin; Bunce, Nigel J

    2003-10-01

    Acid mine drainage (AMD), which is caused by the biological oxidation of sulfidic materials, frequently contains arsenic in the form of arsenite, As(III), and/or arsenate, As(V), along with much higher concentrations of dissolved iron. The present work is directed toward the removal of arsenic from synthetic AMD by raising the pH of the solution by electrochemical reduction of H+ to elemental hydrogen and coprecipitation of arsenic with iron(III) hydroxide, following aeration of the catholyte. Electrolysis was carried out at constant current using two-compartment cells separated with a cation exchange membrane. Four different AMD model systems were studied: Fe(III)/As(V), Fe(III)/As(III), Fe(II)/As(V), and Fe(II)/As(III) with the initial concentrations for Fe(III) 260 mg/L, Fe(II) 300 mg/L, As(V), and As(III) 8 mg/L. Essentially quantitative removal of arsenic and iron was achieved in all four systems, and the results were independent of whether the pH was adjusted electrochemically or by the addition of NaOH. Current efficiencies were approximately 85% when the pH of the effluent was 4-7. Residual concentrations of arsenic were close to the drinking water standard proposed by the World Health Organization (10 microg/L), far below the mine waste effluent standard (500 microg/L).

  3. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.

    Science.gov (United States)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60min at 50mA. Direct electron transfer was mainly responsible at the current below 30mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20mM), while was dramatically increased with increasing the concentration of chloride (0-10mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66

    Science.gov (United States)

    Wang, Chenghong; Liu, Xinlei; Chen, J. Paul; Li, Kang

    2015-01-01

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5–280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds. PMID:26559001

  5. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66.

    Science.gov (United States)

    Wang, Chenghong; Liu, Xinlei; Chen, J Paul; Li, Kang

    2015-11-12

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5-280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds.

  6. Behavioral Determinants of Switching to Arsenic-Safe Water Wells: An Analysis of a Randomized Controlled Trial of Health Education Interventions Coupled With Water Arsenic Testing

    Science.gov (United States)

    George, Christine Marie; Inauen, Jennifer; Perin, Jamie; Tighe, Jennifer; Hasan, Khaled; Zheng, Yan

    2017-01-01

    More than 100 million people globally are estimated to be exposed to arsenic in drinking water that exceeds the World Health Organization guideline of 10 µg/L. In an effort to develop and test a low-cost sustainable approach for water arsenic testing in Bangladesh, we conducted a randomized controlled trial which found arsenic educational…

  7. Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations.

    Science.gov (United States)

    Iriel, Analia; Lagorio, M Gabriela; Fernández Cirelli, Alicia

    2015-11-01

    Arsenic (V) uptake from groundwater by using Vallisneria gigantea plants was studied using batch experiments. Reflectance and fluorescence of intact plants were investigated and changes in photophysical properties following arsenic absorption were reported. Good correlations have been found between arsenic concentration in groundwater and parameters derived from reflectance and fluorescence measurements. This system reached its equilibrium after seven days when the removal quantities were strongly dependent on the initial arsenic concentration. Interestingly, Vallisneria plants were able to accumulate from 100 to 600 mg As kg(-1) in roots and fronds although the translocation factors were low (0.6-1.6). Kinetic data for biosorption process followed a first-order law. At low arsenic concentrations the uptake in plants was governed by diffusion aspects. Langmuir, Freundlich and Dubinin-Radushkevich models were applied and results demonstrated that arsenic uptake was better described by the Langmuir model. As a final remark we concluded that a plant of this species should be able to remove 1mg As per week. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA AT GOFFSTOWN, NH SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Orchard Highlands Subdivision site at Goffstown, NH. The objectives of the project are to evaluate the effect...

  9. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    Science.gov (United States)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2017-06-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  10. Arsenic Removal from Drinking Water by Iron Removal and Adsorptive Media U.S. EPA Demonstration Project at Stewart, MN, Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the one-year U.S. Environmental Protection Agency (EPA) arsenic removal technology demonstration project at the Stewart, MN facility. The main objective of the project was to evaluate the effectiveness ...

  11. Characterization of electrocoagulation for removal of chromium and arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Parga, J.R.; Valverde, V. [Institute of Technology of Saltillo, Dept. of Metallurgy and Materials Science, V. Carranza 2400, Saltillo Coah., C.P. 25280 (Mexico); Cocke, D.L.; Gomes, J.A.G.; Kesmez, M.; Moreno, H. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Weir, M.; Mencer, D. [Wilkes University, Dept. of Chemistry, Wilkes-Barre, PA 18766 (United States)

    2005-05-01

    Protection of the global environment and, in particular, providing a sustainable source of clean water is a necessity for human survival. The wide use of heavy metals by modern industries has generated by-products containing heavy metals. Specifically, large quantities of chromium and arsenic containing compounds are being discharged into the environment. This study has been conducted to determine the feasibility of an electrocoagulation (EC) process using air injection to remove these inorganic elements with iron electrodes. Powder X-ray diffraction, scanning electron microscopy, and transmission Moessbauer spectroscopy were used to characterize the solid products formed at iron electrodes during EC. The results of this study suggest that magnetite particles and amorphous iron oxyhydroxides are present in the examined EC products. The field pilot-scale study demonstrated the removal of Cr(VI)/Cr(III) and As(III)/As(V) with an efficiency of more than 99 % from both wastewater and wells. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  12. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    International Nuclear Information System (INIS)

    Kumar, N. Sanjeev; Goel, Sudha

    2010-01-01

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  13. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. Sanjeev [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India); Goel, Sudha, E-mail: sudhagoel@civil.iitkgp.ernet.in [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India)

    2010-01-15

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  14. Removal of radiocobalt from aqueous solutions by adsorption onto low-cost adsorbents

    International Nuclear Information System (INIS)

    Rashad, G.M.; Mahmoud, M.R.; Elewa, A.M.; Essam Metwally; Saad, E.A.

    2016-01-01

    Four clays (bentonite, montmorillonite, diatomite and sepiolite) were used as low-cost adsorbents for removal of Co(II) radionuclides. The effect of the solution pH was studied in the range 1.5-10. The kinetic data were analyzed by the pseudo-first-order, the pseudo-second-order and intraparticle diffusion models. The equilibrium isotherms of Co(II) were analyzed by Langmuir and Freundlich models. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) were calculated and the results showed that the present adsorption processes are feasible, spontaneous and endothermic in nature. Desorption experiments of Co(II)-loaded clays suggested that adsorption of Co(II) was governed by physical adsorption and surface complexation. (author)

  15. Adsorption Properties of Low-Cost Biomaterial Derived from Prunus amygdalus L. for Dye Removal from Water

    Science.gov (United States)

    Deniz, Fatih

    2013-01-01

    The capability of Prunus amygdalus L. (almond) shell for dye removal from aqueous solutions was investigated and methyl orange was used as a model compound. The effects of operational parameters including pH, ionic strength, adsorbent concentration and mesh size, dye concentration, contact time, and temperature on the removal of dye were evaluated. The adsorption kinetics conformed to the pseudo-second-order kinetic model. The equilibrium data pointed out excellent fit to the Langmuir isotherm model with maximum monolayer adsorption capacity of 41.34 mg g−1 at 293 K. Thermodynamic analysis proved a spontaneous, favorable, and exothermic process. It can be concluded that almond shell might be a potential low-cost adsorbent for methyl orange removal from aqueous media. PMID:23935442

  16. Measurement of very low amounts of arsenic in soils and waters: is ICP-MS the indispensable analytical tool?

    Science.gov (United States)

    López-García, Ignacio; Marín-Hernández, Juan Jose; Perez-Sirvent, Carmen; Hernandez-Cordoba, Manuel

    2017-04-01

    The toxicity of arsenic and its wide distribution in the nature needs nowadays not to be emphasized, and the convenience of reliable analytical tools for arsenic determination at very low levels is clear. Leaving aside atomic fluorescence spectrometers specifically designed for this purpose, the task is currently carried out by using inductively coupled plasma mass spectrometry (ICP-MS), a powerful but expensive technique that is not available in all laboratories. However, as the recent literature clearly shows, a similar or even better analytical performance for the determination of several elements can be achieved by replacing the ICP-MS instrument by an AAS spectrometer (which is commonly present in any laboratory and involves low acquisition and maintenance costs) provided that a simple microextraction step is used to preconcentrate the sample. This communication reports the optimization and results obtained with a new analytical procedure based on this idea and focused to the determination of very low concentrations of arsenic in waters and extracts from soils and sediments. The procedure is based on a micro-solid phase extraction process for the separation and preconcentration of arsenic that uses magnetic particles covered with silver nanoparticles functionalized with the sodium salt of 2-mercaptoethane-sulphonate (MESNa). This composite is obtained in an easy way in the laboratory. After the sample is treated with a low amount (only a few milligrams) of the magnetic material, the solid phase is separated by means of a magnetic field, and then introduced into an electrothermal atomizer (ETAAS) for arsenic determination. The preconcentration factor is close to 200 with a detection limit below 0.1 µg L-1 arsenic. Speciation of As(III) and As(V) can be achieved by means of two extractions carried out at different acidity. The results for total arsenic are verified using certified reference materials. The authors are grateful to the Comunidad Autonóma de la

  17. Synthesis of Zero Valent Iron Nanoparticles (nZVI and its Efficiency in Arsenic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2011-03-01

    Full Text Available The aim of this study to synthesize nanoparticle zero valent iron and to determine its efficiency in arsenic removal from aqueous solutions. Nanoparticles were synthesized by reduction of ferric chloride using sodium borohydrid. The experiments were conducted in a batch system and the effects of pH, contact time, and the concentrations of arsenit, arsenat, and nano zero valent iron were investigated. SEM and XRD were applied for the determination of particle size and characterization of the nanoparticles synthesized. SEM results revealed that synthesized particles were of nano size (1-100 nanometers. At pH=7.0, 99% of arsenit and arsenat was removed when nano zero valent iron concentration was 1 (g L-1  over a retention time of  10 min. Based on the results obtained, the removal efficiency was enhanced with increasing nano zero valent iron dosage and reaction time, but decreased with increasing initial concentration and initial solution pH. The significant removal efficiency, high rate of process and short reaction time showed that iron nano particles are of a significant potential for the removal of arsenic from aqueous solutions.

  18. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti [Environmental Technology, College of Technology and Innovation, Arizona State University, 6073 S. Backus Mall, Mesa, AZ 85212 (United States); Hristovski, Kiril, E-mail: Kiril.Hristovski@asu.edu [Environmental Technology, College of Technology and Innovation, Arizona State University, 6073 S. Backus Mall, Mesa, AZ 85212 (United States)

    2011-10-15

    Highlights: {yields} The morphology, content and distribution of ZrO{sub 2} nanoparticles inside the pores of GAC are affected by the type of GAC. {yields} Lignite ZrO{sub 2}-GAC exhibited Zr content of 12%, while bituminous based ZrO{sub 2}-GAC exhibited Zr content of 9.5%. {yields} The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO{sub 3} buffered water matrix were {approx}8.6 As/g Zr and {approx}12.2 mg As/g Zr at pH = 7.6. {yields} The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while {approx}1.5 mg As/g Zr and {approx}3.2 mg As/g Zr at pH = 7.6. {yields} Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO{sub 2}-GAC, while the one of bituminous ZrO{sub 2}-GAC decreased. - Abstract: This study investigated the effects of in situ ZrO{sub 2} nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 {sup o}C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO{sub 2} nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO{sub 3} buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C{sub 0} {approx} 120 {mu}g/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of

  19. Fast Removal of Polybrominated Diphenyl Ethers from Aqueous Solutions by Using Low-Cost Adsorbents

    Directory of Open Access Journals (Sweden)

    Renin Chang

    2017-01-01

    Full Text Available 4-Dibromodiphenyl ether (BDE-3 and 4,4′-dibromodiphenyl ether (BDE-15 are two of the major polybrominated diphenyl ethers used as flame-retardant additives in computer main boards and in fireproof building materials. In this study, we evaluated the potential of three low-cost adsorbents, black tea, green tea, and coconut palm leaf powders, to adsorb BDE-3 and BDE-15 from aqueous solutions. The results showed that pressure steam washing of the adsorbents increased their capacities to adsorb BDE-3 and BDE-15. The maximum adsorption capacities of pressure steam–washed black tea, green tea, and coconut palm leaf powders were 21.85 mg·L−1, 14.56 mg·L−1 and 22.47 mg·L−1, respectively. The results also showed that the adsorption equilibrium (qe was achieved at 4 min. Moreover, 97.8% of BDE-3 and 98.5% of BDE-15 could be removed by adsorbents pretreated with pressure steam washing. The kinetic data fitted well with a pseudo-second-order equation. The adsorption rate constants (k2 of all pressure steam–washed adsorbents ranged from 8.16 × 10−3 to 6.61 × 10−2 g·(mg·L−1−1·s−1, and the amount adsorbed at qe by all pressure steam–washed adsorbents ranged from 4.21 to 4.78 mg·L−1. Green alga Chlorella vulgaris was used as the test organism and the median effective concentration values of BDE-3 and BDE-15 were 7.24 and 3.88 mg·L−1, respectively. After BDE-3 and BDE-15 were removed from the solution, their biotoxicities markedly decreased. These findings indicate that these low-cost adsorbents can be used to remove BDE-3 and BDE-15 from aqueous solutions and wastewater.

  20. Fabrication and characterization of akaganeite/graphene oxide nanocomposite for arsenic removal from water

    Science.gov (United States)

    Trang, Nguyen Thi Thuy; Thy, Lu Thi Mong; Cuong, Pham Mai; Tu, Tran Hoang; Hieu, Nguyen Huu

    2018-04-01

    In this study, akageneite/graphene oxide (β-FeOOH/GO) nanocomposite was fabricated by in situ forced hydrolysis of iron (III) chloride. The structure and morphology of β-FeOOH/GO were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer-Emmett- Teller (BET) specific surface area. XRD, FTIR, and TEM results indicated that β-FeOOH nanoparticles were successfully decorated on the surface of GO nanosheets. The BET specific surface area of β-FeOOH/GO was observed of 97.94 m2/g. The nanocomposite was used as an adsorbent for removal of arsenic (As5+) from water. Adsorption experiments were carried out to investigate contact time, pH values, and As5+ initial concentrations. The adsorption equilibrium time was reached within 180 minutes. The adsorption was well-fitted by a pseudo-second-order kinetic and Langmuir isotherm model. The maximum adsorption capacity of β-FeOOH/GO for As5+ ions of 94.34 mg/g that was calculated from the Langmuir model at pH 3. Accordingly, the nanocomposite β-FeOOH/GO could be considered as a highly efficient adsorbent for removing arsenic from water.

  1. Using environmental chemistry technologies for the removal of arsenic from drinking water, and fat and oil based phase change materials for thermal energy storage

    Science.gov (United States)

    Sutterlin, William R.

    The first four chapters of this dissertation involve the removal of arsenic from drinking water. Various forms of a macroporous char prepared by partial gasification of subbituminous coal were studied for removal of arsenic(V) and arsenic(III) from water. In increasing order of effectiveness for arsenic(V) removal were untreated char water containing 500 micrograms/L of arsenic to levels below 10 micrograms/L. The capacity of the solid to remove arsenic was significantly diminished in water containing 4 mg/L of phosphate. An electrical current passed over 4 g of iron(III) oxide char in a column enabled removal of arsenic(III) from 14,000 mL of 500 micrograms/L arsenic(III) to below 10 micrograms/liter and at significantly higher flow rates than could be employed without electrolysis. The fifth chapter in this dissertation focused on the retention of organics onto a char/concrete pellet. A mixture of naphthalene, pentachlorophenol, biphenyl, toluene, tetrachloroethane, and chlorobenzene were impregnated into a loose granular char, a char/concrete pellet and a sand/concrete pellet. The results showed that the char/concrete pellet had significant advantages over the other forms. Chapters 6--9 focus on phase change materials (PCMs). These PCMs are made from fats and oils. PCMs are perhaps the only proven method that can provide near 100% thermal energy storage. In chapter 7 a novel HPLC method was developed that could provide quantification and qualification of the resulting products formed after PCM synthesis. In chapter 8 thermal cycling studies were conducted on the fat and oil based PCMs. These thermal cycle demonstrated that these PCMs were capable of going through a multitude of freeze and melt processes with little to no degradation if the appropriate preservative is used. Finally in chapter 9 the PCM is incorporated into a simulated 100 th scale house. A traditional freon based evaporator is used to freeze the PCM at night during electrical-off-peak hours

  2. Phytoremediation of arsenic in submerged soil by wetland plants.

    Science.gov (United States)

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.

  3. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production.

    Science.gov (United States)

    Schmidt, Stefan-André; Gukelberger, Ephraim; Hermann, Mario; Fiedler, Florian; Großmann, Benjamin; Hoinkis, Jan; Ghosh, Ashok; Chatterjee, Debashis; Bundschuh, Jochen

    2016-11-15

    Arsenic contamination of groundwater is posing a serious challenge to drinking water supplies on a global scale. In India and Bangladesh, arsenic has caused the most serious public health issue in the world for nearly two decades. The aim of this work was to study an arsenic removal system based on reverse osmosis at pilot scale treating two different water sources from two different locations in the State of Bihar, India. For this purpose two villages, Bind Toli and Ramnagar in the Patna District were selected, both located very close to the river Ganga. The trials were conducted with aerated and non-aerated groundwater. It is the first time that the arsenic removal efficiency for aerated and non-aerated groundwater by reverse osmosis technology in combination with an energy-saving recovery system have been studied. As the principle of reverse osmosis requires a relatively high pressure, its energy demand is naturally high. By using an energy recovery system, this demand can be lowered, leading to an energy demand per liter permeate of 3-4Wh/L only. Due to high iron levels in the groundwater and as a consequence the precipitation of ferric (hydr)oxides, it was necessary to develop a granular media filter for the trials under aeration in order to protect the membrane from clogging. Two different materials, first locally available sand, and second commercially available anthracite were tested in the granular media filter. For the trials with aerated groundwater, total arsenic removal efficiency at both locations was around 99% and the arsenic concentration in permeate was in compliance with the WHO and National Indian Standard of 10μg/L. However, trials under anoxic conditions with non-aerated groundwater could not comply with this standard. Additionally a possible safe discharge of the reverse osmosis concentrate into an abandoned well was studied. It was observed that re-injection of reject water underground may offer a safe disposal option. However, long

  4. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale.

    Science.gov (United States)

    Casentini, Barbara; Falcione, Fabiano Teo; Amalfitano, Stefano; Fazi, Stefano; Rossetti, Simona

    2016-12-01

    Different countries in Europe still suffer of elevated arsenic (As) concentration in groundwaters used for human consumption. In the case of households not connected to the distribution system, decentralized water supply systems, such as Point of Use (POU) and Point of Entry (POE), offer a direct benefit for the consumers. Field scale ex-situ treatment systems based on metallic iron (ZVI) are already available for the production of reduced volumes of drinking water in remote areas (village scale). To address drinking water needs at larger scale, we designed a pilot unit able to produce an elevated daily volume of water for human consumption. We tested the long-term As removal efficiency of a two steps ZVI treatment unit for the production of 400 L/day clean water based on the combination of ZVI corrosion process with sedimentation and retention of freshly formed Fe precipitates. The system treated 100 μg/L As(V)-contaminated oxic groundwater in a discontinuous operation mode at a flow rate of 1 L/min for 31 days. Final removal was 77-96% and the most performing step was aeration/sedimentation (A/S) tank with a 60-94% efficiency. Arsenic in the outflow slightly exceeded the drinking water limit of 10 μg/L only after 6000 L treated and Fe concentration was always below 0.2 mg/L. Under proposed operating conditions ZVI passivation readily occurred and, as a consequence, Fe production sharply decreased. Arsenic mobility attached to particulate was 13-60% after ZVI column and 37-100% after A/S tank. Uniform amorphous cluster of Fe nanoparticles (100 nm) formed during aeration drove As removal process with an adsorption capacity corresponding to 20.5 mg As /g Fe . Research studies often focus only on chemico-physical aspects disregarding the importance of biological processes that may co-occur and interfere with ZVI corrosion, As removal and safe water production. We explored the microbial transport dynamics by flow cytometry, proved as a suitable tool to

  5. Arsenic (III Adsorption Using Palladium Nanoparticles from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Farzaneh Arsiya

    2017-07-01

    Full Text Available The presence of Arsenic in drinking water is the greatest threat to health effects especially in water. The purpose of this study is application of green palladium nanoparticles for removal of trivalent Arsenic from aqueous solutions and also the impact of some factors such as retention time, pH, concentration of palladium nanoparticles and Arsenic concentrations was studied. The values for Arsenic removal from aqueous solutions were measured by furnace atomic adsorption spectrometry (Conter AA700. In the study, Langmuir and Freundlich isotherm models and pseudo-second order kinetic model were studied. The results of  optimization is shown that 0.5 g of nanoparticles can removed %99.8 of Arsenic with initial concentration of  0.5 g/l, in 5 minutes at pH=4. Langmuir model, Freundlich model (R2=0.94 and pseudo-second order kinetic model (R2=0.99 shown high correlation for removing of Arsenic from aqueous solutions. It was found, palladium nanoparticles can be used as an efficient method to remove Arsenic from aqueous solutions in a short time.

  6. Enhanced Column Filtration for Arsenic Removal from Water: Polymer-Templated Iron Oxide Nanoparticles Immobilized on Sand via Layer-by-Layer Deposition

    Science.gov (United States)

    Cheng, Calvin Chia-Hung

    Arsenic is ubiquitous in water sources around the world and is highly toxic. While precipitation and membrane filtration techniques are successfully implemented in developed cities, they are unsuitable for rural and low-resource settings lacking centralized facilities. This thesis presents the use of ultra-small iron oxide (Fe2O3) nanoparticles functionalized on sand granules for use as a house-hold scale adsorption filter. Water-stable alpha-Fe2O3 (hematite) nanoparticles (arsenic adsorption, with 147 +/- 2 mg As(III) per g Fe2O3 and 91 +/- 10 mg As(V) per g Fe2O3. The platform was also used to synthesize iron-based composites, including magnetite (Fe 3O4) and Fe-Cu oxide nanoparticles. For use as a column filter, Fe2O3-PAA nanoparticles were functionalized on sand granules using a layer-by-layer deposition method, with the nanoparticles embedded in the negative layer. The removal of As(III) by the Fe2O 3-PAA functionalized column was described by reversible 1st order kinetics where the forward and reverse rate constants were 0.31 hr -1 and 0.097 hr-1, respectively. Implemented as a passive water filter with 30 x 30 x 50 cm3 dimensions, the filter has an expected lifetime in the order of many years. By controlling the flow rate of the column depending on contamination levels, the filter effectively removes arsenic down to the safety limit of 0.01 mg/L. In a parallel project, the layer-by-layer deposition of Poly(diallydimethyl ammonium chloride) (PDDA) and poly(sodium 5-styrenesulfonate) (PSS) was exploited for a highly practical synthesis of discrete gradient surfaces. By independently controlling the concentration of NaCl in PDDA and PSS deposition solutions, a 2-dimensional matrix of surfaces was created in 96-well microtiter plates. Distinct non-monotonic dye adsorption patterns on the gradient surfaces was observed. Practical knowledge from this project was also used to enhance the nanoparticle surface functionalization described above. In all, a practical

  7. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Chang Qigang; Lin Wei; Ying Weichi

    2010-01-01

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  8. Method of removing arsenic and/or other amphoteric elements from sludge and solid waste materials

    NARCIS (Netherlands)

    Van Breemen, A.N.

    1990-01-01

    Abstract of WO 9006820 (A1) The noxious element arsenic may be removed with high efficiency from iron hydroxide sludge by first subjecting that sludge first to a thermal treatment in the presence of air or oxygen and of an alkaline reagent and next extracting the treated material with water. The

  9. Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: a pilot plant approach.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

    2014-01-01

    The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant.

  10. Assessment of repeated harvests on mercury and arsenic phytoextraction in a multi-contaminated industrial soil

    Directory of Open Access Journals (Sweden)

    Martina Grifoni

    2017-02-01

    Full Text Available Mercury is widely distributed throughout the environment. In many contaminated soils other contaminants are present along with mercury; of these, arsenic is one of the most frequently found metals. In the presence of mixed contamination of this kind, remediation technologies must overcome many difficulties due to the different chemical characteristics of the various contaminants. In this study, repeated assisted phytoextraction cycles with Brassica juncea, were conducted on a laboratory scale to evaluate the removal efficiency of mercury and arsenic from a multi-contaminated industrial soil. The possibility of using only one additive, ammonium thiosulphate, to remove mercury and arsenic from co-contaminated soil simultaneously was also investigated. The thiosulfate addition greatly promoted the plant uptake of both contaminants, with an efficiency comparable to that of phosphate specifically used to mobilize specifically arsenic. Repeated additions of mobilizing agents increased metal availability in soil, promoted plant uptake and consequently increased the removal of contaminants in the studied soil. Repeated treatments with thiosulfate increased the concentration of mercury and arsenic in the Brassica juncea aerial part, but due to toxic effects of mercury that reduce biomass production, the total accumulation of both metals in plants tended to decrease at each subsequent re-growth.The use of a single additive to remove both contaminants simultaneously offers several new advantages to phytoextraction technology in terms of reducing cost and time.

  11. Low-level arsenic exposure via drinking water consumption and female fecundity - A preliminary investigation.

    Science.gov (United States)

    Susko, Michele L; Bloom, Michael S; Neamtiu, Iulia A; Appleton, Allison A; Surdu, Simona; Pop, Cristian; Fitzgerald, Edward F; Anastasiu, Doru; Gurzau, Eugen S

    2017-04-01

    High level arsenic exposure is associated with reproductive toxicity in experimental and observational studies; however, few data exist to assess risks at low levels. Even less data are available to evaluate the impact of low level arsenic exposure on human fecundity. Our aim in this pilot study was a preliminary evaluation of associations between low level drinking water arsenic contamination and female fecundity. This retrospective study was conducted among women previously recruited to a hospital-based case-control study of spontaneous pregnancy loss in Timiṣ County, Romania. Women (n=94) with planned pregnancies of 5-20 weeks gestation completed a comprehensive physician-administered study questionnaire and reported the number of menstrual cycles attempting to conceive as the time to pregnancy (TTP). Drinking water samples were collected from residential drinking water sources and we determined arsenic levels using hydride generation-atomic absorption spectrometry (HG-AAS). Multivariable Cox-proportional hazards regression with Efron approximation was employed to evaluate TTP as a function of drinking water arsenic concentrations among planned pregnancies, adjusted for covariates. There was no main effect for drinking water arsenic exposure, yet the conditional probability for pregnancy was modestly lower among arsenic exposed women with longer TTPs, relative to women with shorter TTPs, and relative to unexposed women. For example, 1µg/L average drinking water arsenic conferred 5%, 8%, and 10% lower likelihoods for pregnancy in the 6th, 9th, and 12th cycles, respectively (P=0.01). While preliminary, our results suggest that low level arsenic contamination in residential drinking water sources may further impair fecundity among women with longer waiting times; however, this hypothesis requires confirmation by a future, more definitive study. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

    International Nuclear Information System (INIS)

    Chen Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H.; Ahsan, Habibul

    2009-01-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (> 300 μg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 μg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominately at low-to-moderate levels (0.1 to 864 μg/L, mean 99 μg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.

  13. Chronic exposure to low concentration of arsenic is immunotoxic to fish: Role of head kidney macrophages as biomarkers of arsenic toxicity to Clarias batrachus

    International Nuclear Information System (INIS)

    Datta, Soma; Ghosh, Debabrata; Saha, Dhira Rani; Bhattacharaya, Shelley; Mazumder, Shibnath

    2009-01-01

    The present study was aimed at elucidating the effect of chronic low-level arsenic exposure on the head kidney (HK) of Clarias batrachus and at determining the changes in head kidney macrophage (HKM) activity in response to arsenic exposure. Chronic exposure (30 days) to arsenic (As 2 O 3 , 0.50 μM) led to significant increase in arsenic content in the HK accompanied by reduction in both HKM number and head kidney somatic index (HKSI). Arsenic induced HK hypertrophy, reduction in melano-macrophage population and increased hemosiderin accumulation. Transmission electron microscopy of 30 days exposed HKM revealed prominent endoplasmic reticulum, chromatin condensation and loss in structural integrity of nuclear membrane. Head kidney macrophages from exposed fish demonstrated significant levels of superoxide anions but on infection with Aeromonas hydrophila were unable to clear the intracellular bacteria and died. Exposure-challenge experiments with A. hydrophila revealed that chronic exposure to micromolar concentration of arsenic interfered with the phagocytic potential of HKM, helped in intracellular survival of the ingested bacteria inside the HKM inducing significant HKM cytotoxicity. The immunosuppressive effect of arsenic was further evident from the ability of A. hydrophila to colonize and disseminate efficiently in exposed fish. Enzyme linked immunosorbent assay indicated that chronic exposure to arsenic suppressed the production of pro-inflammatory 'IL-1β like' factors from HKM. It is concluded that arsenic even at very low concentration is immunotoxic to fish and the changes observed in HKM may provide a useful early biomarker of low-level xenobiotic exposure

  14. Chronic exposure to low concentration of arsenic is immunotoxic to fish: Role of head kidney macrophages as biomarkers of arsenic toxicity to Clarias batrachus

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Soma; Ghosh, Debabrata [Immunobiology Laboratory, School of Life Sciences, Visva Bharati University, Santiniketan 731 235 (India); Saha, Dhira Rani [Microscopy Laboratory, National Institute of Cholera and Enteric Diseases, P-33, Scheme XM, C.I.T. Road, Beliaghata, Kolkata 700 010 (India); Bhattacharaya, Shelley [Environmental Toxicology Laboratory, School of Life Sciences, Visva Bharati University, Santiniketan 731 235 (India); Mazumder, Shibnath [Immunobiology Laboratory, School of Life Sciences, Visva Bharati University, Santiniketan 731 235 (India)], E-mail: shibnath1@yahoo.co.in

    2009-04-09

    The present study was aimed at elucidating the effect of chronic low-level arsenic exposure on the head kidney (HK) of Clarias batrachus and at determining the changes in head kidney macrophage (HKM) activity in response to arsenic exposure. Chronic exposure (30 days) to arsenic (As{sub 2}O{sub 3}, 0.50 {mu}M) led to significant increase in arsenic content in the HK accompanied by reduction in both HKM number and head kidney somatic index (HKSI). Arsenic induced HK hypertrophy, reduction in melano-macrophage population and increased hemosiderin accumulation. Transmission electron microscopy of 30 days exposed HKM revealed prominent endoplasmic reticulum, chromatin condensation and loss in structural integrity of nuclear membrane. Head kidney macrophages from exposed fish demonstrated significant levels of superoxide anions but on infection with Aeromonas hydrophila were unable to clear the intracellular bacteria and died. Exposure-challenge experiments with A. hydrophila revealed that chronic exposure to micromolar concentration of arsenic interfered with the phagocytic potential of HKM, helped in intracellular survival of the ingested bacteria inside the HKM inducing significant HKM cytotoxicity. The immunosuppressive effect of arsenic was further evident from the ability of A. hydrophila to colonize and disseminate efficiently in exposed fish. Enzyme linked immunosorbent assay indicated that chronic exposure to arsenic suppressed the production of pro-inflammatory 'IL-1{beta} like' factors from HKM. It is concluded that arsenic even at very low concentration is immunotoxic to fish and the changes observed in HKM may provide a useful early biomarker of low-level xenobiotic exposure.

  15. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    Science.gov (United States)

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized

  16. Arsenic Removal from Drinking Water by Iron Removal - U.S. EPA Demonstration Project at Northeastern Elementary School in Fountain City, IN - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at Northeastern Elementary School in Fountain City, IN. The main objective of the project was to evaluate the effectiveness of US Water Sys...

  17. Association of Low-Moderate Arsenic Exposure and Arsenic Metabolism with Incident Diabetes and Insulin Resistance in the Strong Heart Family Study.

    Science.gov (United States)

    Grau-Perez, Maria; Kuo, Chin-Chi; Gribble, Matthew O; Balakrishnan, Poojitha; Jones Spratlen, Miranda; Vaidya, Dhananjay; Francesconi, Kevin A; Goessler, Walter; Guallar, Eliseo; Silbergeld, Ellen K; Umans, Jason G; Best, Lyle G; Lee, Elisa T; Howard, Barbara V; Cole, Shelley A; Navas-Acien, Ana

    2017-12-20

    High arsenic exposure has been related to diabetes, but at low-moderate levels the evidence is mixed. Arsenic metabolism, which is partly genetically controlled and may rely on certain B vitamins, plays a role in arsenic toxicity. We evaluated the prospective association of arsenic exposure and metabolism with type 2 diabetes and insulin resistance. We included 1,838 American Indian men and women free of diabetes (median age, 36 y). Arsenic exposure was assessed as the sum of inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) urine concentrations (ΣAs). Arsenic metabolism was evaluated by the proportions of iAs, MMA, and DMA over their sum (iAs%, MMA%, and DMA%). Homeostasis model assessment for insulin resistance (HOMA2-IR) was measured at baseline and follow-up visits. Incident diabetes was evaluated at follow-up. Median ΣAs, iAs%, MMA%, and DMA% was 4.4 μg/g creatinine, 9.5%, 14.4%, and 75.6%, respectively. Over 10,327 person-years of follow-up, 252 participants developed diabetes. Median HOMA2-IR at baseline was 1.5. The fully adjusted hazard ratio [95% confidence interval (CI)] for incident diabetes per an interquartile range increase in ΣAs was 1.57 (95% CI: 1.18, 2.08) in participants without prediabetes at baseline. Arsenic metabolism was not associated with incident diabetes. ΣAs was positively associated with HOMA2-IR at baseline but negatively with HOMA2-IR at follow-up. Increased MMA% was associated with lower HOMA2-IR when either iAs% or DMA% decreased. The association of arsenic metabolism with HOMA2-IR differed by B-vitamin intake and AS3MT genetics variants. Among participants without baseline prediabetes, arsenic exposure was associated with incident diabetes. Low MMA% was cross-sectional and prospectively associated with higher HOMA2-IR. Research is needed to confirm possible interactions of arsenic metabolism with B vitamins and AS3MT variants on diabetes risk. https://doi.org/10.1289/EHP2566.

  18. Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic.

    Science.gov (United States)

    Zhao, Haijuan; Zhong, Chunying; Chen, Honggao; Yao, Jie; Tan, Liqing; Zhang, Youlang; Zhou, Jiangang

    2016-05-01

    A novel bioflocculant (MBF-79) prepared using formaldehyde wastewater as carbon resource was investigated in the study. The optimal conditions for bioflocculant production were determined to be an inoculum size of 7.0%, initial pH of 6.0, and formaldehyde concentration of 350 mg/L. An MBF-79 of 8.97 g/L was achieved as the maximum yield. Three main elements, namely C, H, and O, were present in MBF-79 with relative weigh percentages of 39.17%, 6.74%, and 34.55%, respectively. The Gel permeation chromatography analysis indicated that the approximate molecular weight (MW) of MBF-79 was 230 kDa. MBF-79 primarily comprised polysaccharide (71.2%) and protein (27.9%). Additionally, conditions for the removal of arsenic by MBF-79 were found to be MBF-79 at 120 mg/L, an initial pH 7.0, and a contact time 60 min. Under the optimal conditions, the removal efficiencies of arsenate (0.5 mg/L) and arsenite (0.5 mg/L) were 98.9% and 84.6%, respectively. Overall, these findings indicate bioflocculation offers an effective alternative method of decreasing arsenic during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic(V) and chromium(VI) from aqueous solution

    Science.gov (United States)

    Azzam, Ahmed M.; Shenashen, Mohamed A.; Selim, Mahmoud M.; Yamaguchi, Hitoshi; El-Sewify, Islam M.; Kawada, Satoshi; Alhamid, Abdulaziz A.; El-Safty, Sherif A.

    2017-10-01

    Mesoporous nanospherical necklaces (NSN) of inorganic α-Fe core-organic shell and ethylenediaminetetraacetic acid (EDTA) were fabricated. The necklaces were 1 μm in length and 50 nm in thickness, with massive nanospherical particles connecting and overlapping in a neat micro-/nano-necklace archery cage for capturing/trapping of As(V) and Cr(VI) species from water sources. The α-Fe core and the dressing shell of EDTA provided numerous active sites for adsorption, which led to 100% adsorption uptake of these toxic ions. The adsorption isotherms revealed that NSN adsorbent with mesoporous caves and organic-decorated surfaces was promising and effective for the spontaneous and endothermic removal of both ions from contaminated water. The NSN structure exhibited long-term stability. The adsorption efficiency and uptake of the deleterious arsenic and chromium species were achieved after multi-particulate processing of reuse cycles. The pH-dependent removal of As(V) and Cr(VI) species is an emerging topic in selective adsorption assays among competitive ions. Furthermore, the ion-selective conditions at pH 5 for As(V) and pH 7 for Cr(VI) significantly affected the adsorption capacity and affinity of 306.7 and 406.5 mg g-1 into NSN cages, respectively. The obtained results could be used as a basis to provide effective and low-cost products for the purification of wastewater resources from toxic metals.

  20. Low energy, low cost, efficient CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Trachtenberg; Lihong Bao; David A. Smith; Remy Dumortier [Carbozyme, Inc., Monmouth Junction, NJ (United States)

    2006-07-01

    This paper discusses the development and some characteristics of a new, enzyme-based, contained liquid membrane contactor to capture CO{sub 2}. The enzyme carbonic anhydrase catalyzes the removal of CO{sub 2} while the membrane contactor increases the surface area to allow the reduction of the size of the system. The modular system design is easily scaled to any required size reducing the investment costs. The system captures CO{sub 2} at a low energy and low cost promising to be a cost effective technology for CO{sub 2} capture. 5 refs., 7 figs.

  1. Determination of total arsenic in streams and sediments from Obuasi gold mines

    International Nuclear Information System (INIS)

    Serfor Armah, Yaw

    1994-03-01

    In this work streams and sediments of Obuasi, a major gold mining town in Ghana were analysed. In addition to the total arsenic the parameters determined included the levels of Pe, Al, Nn and Au and nutrients. Leaching of arsenic from the sediment was also carried out to ascertain the rate at which As will be removed from the sediment to acceptable levels. Results indicate that in spite of the newly installed Arsenic Recovery Plant (ARP) which is able to remove about 90% of the arsenic dusts, the streams in the area remain heavily polluted with arsenic. In the water Total Arsenic values range between 0.13 - 20.00ppm. The sediments are also polluted to a depth of at least 30cm with values ranging from 15.38 - 50.00ppm. Contrary to expectations, the gold concentration in both the water and sediment are too low and may not be suitable for exploration. The leaching results show that very little amount of arsenic was leached from the sediments. Even after 20 weeks of continuous leaching less than 1% of As had been leached. This was attributed to the ability of arsenic to form sparingly soluble compounds with Fe, Al, Mn etc in the sediment environment. (au)

  2. Arsenic Removal from Drinking Water by Iron Removal U.S. EPA Demonstration Project at Vintage on the Ponds in Delavan, WI Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at Vintage on the Ponds in Delavan, WI. The objectives of the project were to evaluate: (1) the effectiveness of a Kinetico Macrolite® press...

  3. Enteric virus removal from water by coal-based sorbents: development of low-cost water filters

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, M.; Sattar, S.A.

    1986-01-01

    Using poliovirus type 1 (Sabin) and dechlorinated tap water, several coal-based sorbents were tested for their capacity to remove viruses from water. The sorbents included bituminous coal from Giridih, India, pretreated/impregnated with either alum, ferric hydroxide, lime or manganese dioxide. Filtrasorb-400, commercially available active carbon, was used as a reference. In batch tests, with input virus concentration of 2.34-2.83x10/sup 6/ PFU/1 and sorbent concentration of 10 g/l, alum pretreated coal removed about 96% of the virus when pH of the water was between 6.3 and 8.9. Virus sorption was rapid and a plateau was reached in 30 min. Compared with the active carbon, alum pretreated coal exhibited greater sorption energy and about one log higher limiting poliovirus sorption capacity. Downflow column study indicated the potential of alum pretreated coal as a filter media for removing enteric viruses from water. A previous study showed this sorbent to be capable of removing enteric bacteria as well. Water filters prepared from such low-cost material may prove useful for domestic use in rural areas of India and other developing countries. 19 refs.

  4. Comparative Cost of Colour Removal from Textile Effluents Using Agriculture Wastes

    International Nuclear Information System (INIS)

    Afifi, T.H.; Aboul Fetouh, M.S.; Nassar, F.A.; Riyad, Y.M.

    1999-01-01

    In recent years, investigations have been oriented towards practical use of low cost materials in the treatment of wastewater polluted by dyestuffs. The use of bagasse pith and maize cob as agricultural wastes for the colour removal of dyestuffs, namely, Direct Orange 34, Direct Red 23, Reactive Violet 2 and Reactive Blue 19 from aqueous solution at different concentrations has been investigated. The adsorption capacity for each dye- adsorbent system has been determined. The relative costs of dye removal were reported based on adsorption capacity only. The aim of the present work is to assess the feasibility of two low-cost agriculture-wastes materials to adsorb both direct and reactive dyestuffs on economic basis

  5. Bioscorodite: biological crystallization of scorodite for arsenic removal

    NARCIS (Netherlands)

    Gonzalez-Contreras, P.A.

    2012-01-01

    The use of arsenic is banned for most applications, leading to its accumulation as arsenic trioxide and ferric arsenate sludge. The aim of this thesis was to develop a controlled process for biological crystallization of scorodite from metallurgical streams. In this thesis, the proof of

  6. Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Bortun, Anatoly; Bortun, Mila; Pardini, James; Khainakov, Sergei A.; Garcia, Jose R.

    2010-01-01

    Powder (20-50 μm) mesoporous hydrous zirconium oxide was prepared from a zirconium salt granular precursor. The effect of some process parameters on product morphology, porous structure and adsorption performance has been studied. The use of hydrous zirconium oxide for selective arsenic removal from drinking water is discussed.

  7. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  8. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Villafane, J.F., E-mail: mvjfer@gmail.com [CINVESTAV-IPN Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, A.P. 663, 25900 Saltillo, Coahuila (Mexico); Montero-Ocampo, C.; Garcia-Lara, A.M. [CINVESTAV-IPN Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, A.P. 663, 25900 Saltillo, Coahuila (Mexico)

    2009-12-30

    A systematic study of the effect of design and operation conditions of an electrochemical reactor on the treatment time for arsenic (As) electro-removal from underground water (GW) was carried out to analyse the energy and electrode consumption. The effects of four factors-current density, interelectrode distance, electrode area-volume ratio, and liquid motion driving mode-were evaluated. The response variables were the energy and the electrode consumption and the treatment time to reduce the GW residual As concentration to 10 {mu}g L{sup -1}, which is the maximum contaminant level (MCL) established by the World Health Organization (WHO) in drinking water. The results obtained in this study showed that the factor that had the greatest effect on most of the response variables was the liquid motion driving mode. The best residence time was 20 s, which favoured low energy consumption (58.78 Wh m{sup -3}) and low electrode material loss (9.59 g m{sup -3}).

  9. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water

    International Nuclear Information System (INIS)

    Martinez-Villafane, J.F.; Montero-Ocampo, C.; Garcia-Lara, A.M.

    2009-01-01

    A systematic study of the effect of design and operation conditions of an electrochemical reactor on the treatment time for arsenic (As) electro-removal from underground water (GW) was carried out to analyse the energy and electrode consumption. The effects of four factors-current density, interelectrode distance, electrode area-volume ratio, and liquid motion driving mode-were evaluated. The response variables were the energy and the electrode consumption and the treatment time to reduce the GW residual As concentration to 10 μg L -1 , which is the maximum contaminant level (MCL) established by the World Health Organization (WHO) in drinking water. The results obtained in this study showed that the factor that had the greatest effect on most of the response variables was the liquid motion driving mode. The best residence time was 20 s, which favoured low energy consumption (58.78 Wh m -3 ) and low electrode material loss (9.59 g m -3 ).

  10. Biogenic Fe(III) minerals lower the efficiency of iron-mineral based commercial filter systems for arsenic removal

    DEFF Research Database (Denmark)

    Kleinert, Susanne; Muehe, Eva M.; Posth, Nicole

    2011-01-01

    Millions of people worldwide are affected by As (arsenic) contaminated groundwater. Fe(III) (oxy)hydroxides sorb As efficiently and are therefore used in water purification filters. Commercial filters containing abiogenic Fe(III) (oxy)hydroxides (GEH) showed varying As removal, and it was unclear...

  11. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL. U.S. EPA DEMONSTRATION PROJECT AT VILLAGE ON THE PONDS IN DELAVAN, WI. SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at Vintage on the Ponds at Delavan, WI. The objectives of the project are to evaluate: (1) the effectiveness of Kine...

  12. Carboxymethyl-β-cyclodextrin Modified Magnetic Nanoparticles for Effective Removal of Arsenic from Drinking Water: Synthesis and Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Sedigheh Zeinali

    2016-11-01

    Full Text Available The β-cyclodextrin coated magnetic nanoparticles were prepared by the surface modification of Fe3O4 magnetic nanoparticles using carboxymethyl-β-cyclodextrin. Prepared nanoparticles were characterized by X-ray diffraction analysis, transmission electron microscope, Fourier transform infrared spectroscopy, dynamic light scattering and vibrating sample magnetometer. The β-cyclodextrin modified Fe3O4 nanoparticles have a narrow size distribution with mean diameter about 10 nm. They exhibit superparamagnetic properties at room temperature with saturation magnetization of 48 emu/g. Since, the most reported technologies for arsenic removal are more effective in removing As(V rather than As(III, the adsorption ability of these nanoparticles was investigated for removing As (III from aqueous solution. The adsorption behavior of this material can be influenced by various factors such as contact time, pH, adsorbent dosage and initial concentration of As(III, which their effects were studied. Equilibrium data were fitted by Langmuir isotherm and the maximum removal percentage was obtained about 85% at optimum conditions. Using these modified Fe3O4 nanoparticles, the arsenic concentrations can be reduced to the allowed limits declared by the World Health Organization.

  13. Modeling of the removal of arsenic species from simulated groundwater containing As, Fe, and Mn: a neural network based approach

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Prasenjit; Mohanty, Bikash; Balomajumder, Chandrajit [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand (India); Saraswati, Samir [Department of Mechanical Engineering, Motital Nehru National Institute of Technology, Allahabad, Uttar Pradesh (India)

    2012-03-15

    The present paper deals with the modeling of the removal of total arsenic As(T), trivalent arsenic As(III), and pentavalent arsenic As(V) from synthetic solutions containing total arsenic (0.167-2.0 mg/L), Fe (0.9-2.7 mg/L), and Mn (0.2-0.6 mg/L) in a batch reactor using Fe impregnated granular activated charcoal (GAC-Fe). Mass ratio of As(III) and As(V) in the solution was 1:1. Multi-layer neural network (MLNN) has been used and full factorial design technique has been applied for the selection of input data set. The developed models are able to predict the adsorption of arsenic species with an error limit of -0.3 to +1.7%. Combination of MLNN with design of experiment has been able to generalize the MLNN with less number of experimental points. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. High SO{sub 2} removal duct injection: A low-cost FGD alternative

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1995-12-01

    Sorbent Technologies Corporation, of the United States, is currently developing and demonstrating a new waste free, retrofitable, high-SO{sub 2} removal duct-injection process. Up to 85 percent SO{sub 2} removal is achieved by simply injecting a new dry lime-based sorbent into the flue-gas duct, collecting the sorbent downstream in a particulate collector, and then recycling the sorbent. By avoiding large, expensive components, the process can have low capital costs, making it especially appropriate for smaller, older, less-utilized plants. The key to the new technology is the use of sorbent supports. Supported sorbents are produced by coating hydrated lime onto inexpensive mineral supports, such as exfoliated vermiculite or perlite. Consequently, there are no liquid, sludge, or solid wastes with the new technology. Once saturated with SO{sub 2}, the spent sorbent can be easily pelletized into a valuable soil-conditioning agricultural by-product, for the sustainable development that the future requires. This paper describes Sorbent Technologies` pilot demonstration of supported sorbent injection at the Ohio Edison Company`s R.E. Burger station. The Burger effort is also the first demonstration of the Electric Power Research Institute`s new {open_quotes}COHPAC{close_quotes} baghouse technology in a sorbent-injection desulfurization application.

  15. THE ACCUMULATION AND RELEASE OF ARSENIC FROM DISTRIBUTION SYSTEM SOLIDS

    Science.gov (United States)

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Iron based treatment technologies including iron removal and iron coagulation are effective at reducing arsenic in water because iron surfaces have a stron...

  16. Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal

    International Nuclear Information System (INIS)

    Wang Yangang; Huang Sujun; Kang Shifei; Zhang Chengli; Li Xi

    2012-01-01

    Graphical abstract: A simple and low-cost route to synthesize mesoporous silica materials with high silanol groups has been demonstrated by means of a sol–gel process using citric acid as the template and acid catalyst, further studies on the adsorption of Cu(II) onto the representative amine-functionalized mesoporous silica showed that it had a high Cu(II) removal efficiency. Highlights: ► A low-cost route to synthesize mesoporous silica with high silanol groups was demonstrated. ► Citric acid as the template and acid catalyst for the reaction of tetraethylorthosilicate. ► Water extraction method was an effective technique to remove template which can be recycled. ► The mesoporous silica with high silanol groups was easily modified by functional groups. ► A high Cu(II) removal efficiency on the amine-functionalized mesoporous silica. - Abstract: We report a simple and low-cost route for the synthesis of mesoporous silica materials with high silanol groups by means of a sol–gel process using citric acid as the template, tetraethylorthosilicate (TEOS) as the silica source under aqueous solution system. The citric acid can directly work as an acid catalyst for the hydrolysis of TEOS besides the function as a pore-forming agent in the synthesis. It was found that by using a water extraction method the citric acid template in as-prepared mesoporous silica composite can be easily removed and a high degree of silanol groups were retained in the mesopores, moreover, the citric acid template in the filtrate can be recycled after being dried. The structural properties of the obtained mesoporous silica materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption–desorption analysis. Furthermore, an adsorption of Cu(II) from aqueous solution on the representative amine-functionalized mesoporous silica was investigated

  17. Rethinking Rice Preparation for Highly Efficient Removal of Inorganic Arsenic Using Percolating Cooking Water.

    Science.gov (United States)

    Carey, Manus; Jiujin, Xiao; Gomes Farias, Júlia; Meharg, Andrew A

    2015-01-01

    A novel way of cooking rice to maximize the removal of the carcinogen inorganic arsenic (Asi) is presented here. In conventional rice cooking water and grain are in continuous contact, and it is known that the larger the water:rice cooking ratio, the more Asi removed by cooking, suggesting that the Asi in the grain is mobile in water. Experiments were designed where rice is cooked in a continual stream of percolating near boiling water, either low in Asi, or Asi free. This has the advantage of not only exposing grain to large volumes of cooking water, but also physically removes any Asi leached from the grain into the water receiving vessel. The relationship between cooking water volume and Asi removal in conventional rice cooking was demonstrated for the rice types under study. At a water-to-rice cooking ratio of 12:1, 57±5% of Asi could be removed, average of 6 wholegrain and 6 polished rice samples. Two types of percolating technology were tested, one where the cooking water was recycled through condensing boiling water steam and passing the freshly distilled hot water through the grain in a laboratory setting, and one where tap water was used to cook the rice held in an off-the-shelf coffee percolator in a domestic setting. Both approaches proved highly effective in removing Asi from the cooking rice, with up to 85% of Asi removed from individual rice types. For the recycled water experiment 59±8% and 69±10% of Asi was removed, on average, compared to uncooked rice for polished (n=27) and wholegrain (n=13) rice, respectively. For coffee percolation there was no difference between wholegrain and polished rice, and the effectiveness of Asi removal was 49±7% across 6 wholegrain and 6 polished rice samples. The manuscript explores the potential applications and further optimization of this percolating cooking water, high Asi removal, discovery.

  18. In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad A.; Ullah, Aman, E-mail: amanullah@ualberta.ca

    2014-08-15

    Graphical abstract: - Highlights: • In-situ chemical modification of keratin based material was carried out. • Characterization techniques such as SEM, FTIR, XRD, and DSC were employed. • TGA data was elaborated for its complete thermal and kinetic study. • Sorption of As(III) using modified material was experimentally studied. • Thermodynamics and Isotherm study was made for elucidation of adsorption data. - Abstract: Chemical modification of chicken feathers (CF) and their subsequent role in arsenic removal from water is presented in this paper. The ground CF were chemically treated with four selective dopants such as poly (ethylene glycol) (PEG) diglycidyl ether, poly (N-isopropylacrylamide) (PNIPAM), allyl alcohol (AA) and TrisilanolCyclohexyl POSS. After modification, the solubilized keratin was regenerated by precipitation at acidic pH. The structural changes and properties of modified biopolymer were compared with untreated CF and confirmed by different characterization techniques such as SEM, FTIR, XRD, and DSC. The TGA data was used to discuss thermal decomposition and kinetic behavior of modified biopolymer exhaustively. The modified biopolymers were further investigated as biosorbents for their application in As(III) removal from water. The AA and POSS supported biosorbents executed high removal capacity for As(III) up to 11.5 × 10{sup −2}and 11.0 × 10{sup −2} mg/g from 100 ml arsenic polluted water solution respectively. Thermodynamic parameters such as ΔG{sup 0}, ΔH{sup 0}, ΔS{sup 0} were also evaluated with the finding that overall sorption process was endothermic and spontaneous in nature. Based on linear and non-linear regression analysis, Freundlich Isotherm model showed good fit for obtained sorption data apart from high linear regression values supporting Langmuir isotherm model in sorption of As(III)

  19. Pb(II) removal from aqueous solution by a low-cost adsorbent dry desulfurization slag

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; You, Ruirong [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China); Clark, Malcolm [Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480 (Australia); Yu, Yan, E-mail: yuyan_1972@126.com [College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108 (China)

    2014-09-30

    Highlights: • Dry desulfurization slag, solid waste, was an efficient adsorbent for lead removal. • The adsorption of Pb{sup 2+} onto dry desulfurization slag was generally monolayer. • The rate limiting step in the adsorption process of Pb{sup 2+} was chemisorption. • Pb{sup 2+} was absorbed onto the surface of the sample adsorbent only. • The adsorbent was low-cost and could be recycled. - Abstract: A collectable and non-sintered material prepared as hollow cylindrical shaped pellet from dry desulfurization slag (FGD ash) and ordinary Portland cement (OPC) for wastewater treatments is tested. The characteristic results of powder X-ray diffraction (XRD) and infrared absorption spectroscopy (IR) show that –OH, CO{sub 3}{sup 2−}, SO{sub 3}{sup 2−} and SO{sub 4}{sup 2−} are the possible functional groups responsible for Pb uptake. Adsorption data indicate that Pb removal is pH dependent and optimal at pH 6, with a very rapid initial removal that reaches equilibrium in about 90 min. A maximum removal of 99.2% is seen for 5 mg/L (pH of 6); higher initial Pb concentrations reduce overall removal efficiencies, but generate higher surface loadings. Adsorption process correlates well with both Langmuir and Freundlich models, although the Langmuir isotherm is more favored, providing a maximum adsorption capacity (Qm) of 130.2 mg/g (13 wt%). Pseudo-second order rate kinetic model best describes the Pb removal, and calculated R{sub L} values between 0 and 1, indicate a favored adsorption process that is chemisorption limited. SEM and EDAX analysis of the surface and fracture surface show that Pb occurs as surface precipitates and that Pb is not distributed to the inner core of the pellet. This study demonstrates that dry FGD ash could be successfully used for wastewater Pb removal.

  20. Phosphate interference during in situ treatment for arsenic in groundwater.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-01-01

    Contamination of groundwater by arsenic is a problem in many areas of the world, particularly in West Bengal (India) and Bangladesh, where reducing conditions in groundwater are the cause. In situ treatment is a novel approach wherein, by introduction of dissolved oxygen (DO), advantages over other treatment methods can be achieved through simplicity, not using chemicals, and not requiring disposal of arsenic-rich wastes. A lab-scale test of in situ treatment by air sparging, using a solution with approximately 5.3 mg L(-1) ferrous iron and 200 μg L(-1) arsenate, showed removal of arsenate in the range of 59%. A significant obstacle exists, however, due to the interference of phosphate since phosphate competes for adsorption sites on oxidized iron precipitates. A lab-scale test including 0.5 mg L(-1) phosphate showed negligible removal of arsenate. In situ treatment by air sparging demonstrates considerable promise for removal of arsenic from groundwater where iron is present in considerable quantities and phosphates are low.

  1. Potential of some aquatic plants for removal of arsenic from wastewater by green technology

    Directory of Open Access Journals (Sweden)

    Mohammed Barznji Dana A.

    2015-03-01

    Full Text Available Phytoremediation or green technology is counted among the successful and effective biological contaminated water treatment techniques. Basically, the concept of this green, cost-effective, simple, environmentally nondisruptive method consists in using plants and microbiological processes to reduce contaminants in the ecosystem. Different species from aquatic plants (emerged, free-floating, and submerged have been studied to mitigate toxic contaminants such as arsenic, cadmium, chromium, copper, lead, mercury, zinc, etc. Arsenic is one of the most severe toxic elements; it is widely distributed in the environment, usually found in combination with chloride, oxygen, sulphur and metal ions as a result of mineral dissolution from sedimentary or volcanic rocks and the dilution of geothermal water. The effluents from both industrial and agricultural sectors are also regarded as sources to contaminate water. From the accumulation point of view, several aquatic plants have been mentioned as good arsenic accumulators and their performance is evaluated using the green technology method. These include Spirodela polyrhiza, Wolffia globosa, Lemna gibba, L. minor, Eichhornia crassipes, Azolla caroliniana, Azolla filiculoides, Azolla pinnata, Ceratophyllum demersum and Pistia stratiotes. The up-to-date information illustrated in this review paper generates knowledge about the ability of some common aquatic plants around the globe to remediate arsenic from contaminated water.

  2. ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER — RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH

    Energy Technology Data Exchange (ETDEWEB)

    Kowolik, K; Addy, S.E.A.; Gadgil, A.

    2009-01-01

    According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed “sushi”. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is

  3. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL USEPA DEMONSTRATION PROJECT AT BIG SAUK LAKE MOBILE HOME PARK IN SAUK CENTRE, MN. SIX MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Big Sauk Lake Mobile Home Park (BSLMHP) in Sauk Centre, MN. The objectives of the project are to evaluate the...

  4. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    International Nuclear Information System (INIS)

    Gong, Gordon; Basom, Janet; Mattevada, Sravan; Onger, Frederick

    2015-01-01

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population

  5. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Gordon, E-mail: gordon.gong@ttuhsc.edu [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Basom, Janet [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Mattevada, Sravan [Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX (United States); Onger, Frederick [Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States)

    2015-04-15

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population.

  6. Indian jujuba seed powder as an eco-friendly and a low-cost biosorbent for removal of acid blue 25 from aqueous solution.

    Science.gov (United States)

    Krishna, L Sivarama; Reddy, A Sreenath; Zuhairi, W Y Wan; Taha, M R; Reddy, A Varada

    2014-01-01

    Indian jujuba seed powder (IJSP) has been investigated as a low-cost and an eco-friendly biosorbent, prepared for the removal of Acid Blue 25 (AB25) from aqueous solution. The prepared biomaterial was characterized by using FTIR and scanning electron microscopic studies. The effect of operation variables, such as IJSP dosage, contact time, concentration, pH, and temperature on the removal of AB25 was investigated, using batch biosorption technique. Removal efficiency increased with increase of IJSP dosage but decreased with increase of temperature. The equilibrium data were analyzed by the Langmuir and the Freundlich isotherm models. The data fitted well with the Langmuir model with a maximum biosorption capacity of 54.95 mg g(-1). The pseudo-second-order kinetics was the best for the biosorption of AB25 by IJSP, with good correlation. Thermodynamic parameters such as standard free energy change (ΔG(0)), standard enthalpy changes (ΔH(0)), and standard entropy changes (ΔS(0)) were analyzed. The removal of AB25 from aqueous solution by IJSP was a spontaneous and exothermic adsorption process. The results suggest that IJSP is a potential low-cost and an eco-friendly biosorbent for the AB25 removal from synthetic AB25 wastewater.

  7. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Hamzah, A.; Wong, K.K.; Hasan, F.N.; Mustafa, S.; Khoo, K.S.; Sarmani, S.B.

    2013-01-01

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  8. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA -- USEPA DEMONSTRATION PROJECT AT ROLLINSFORD, NH, SIX MONTH EVALUTION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Rollinsford Water and Sewer District facility in Rollinsford, NH. The objectives of the project are to...

  9. Pilot study for arsenic removal in Hidalgo, Mexico; Estudio piloto para remocion del arsenico, Estado de Hidalgo, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Simeonova, Petkova Veguinia [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico)

    1999-12-01

    Several materials with high content of iron oxides and positive electrostatic surface charge were identified as alternative arsenic sorbents. These properties are characteristic for minerals as hematite, geotite, lepodocrocite, maghemite, etc., widely distributed in the rocks of all these types and ages in the land bark. The natural hematite has been selected for a pilot experimental study conducted in one of the underground sources in Mexico. The obtained arsenic effluent concentration was less than 0.05 mg/l, assuring the current water-drinking standard. The effect of the operational rate and the influence of the silica and other contaminants present in the raw water over the removal efficiency of hematite were also evaluated. The obtained results prove the raw water over the removal efficiency of hematite were also evaluated. The obtained results prove the viability of the hematite for arsenic removal in the real field conditions. [Spanish] Varios minerales de alto contenido de hierro y carga superficial positiva se han identificado como sorbentes alternativos del arsenico. Estas propiedades son caracteristicas de algunos minerales como hematita, goetita, lepodocrocita, maghemita, etc., los cuales se hallan distribuidos ampliamente en las rocas de todos los tipos y edades que hay en la corteza terrestre. El presente estudio fue hecho sobre la hematita por su alta capacidad de adsorcion respecto al arsenico, evaluada a nivel de laboratorio, y por ser un mineral natural disponible en Mexico. La hematita fue aplicada para remover el arsenico presente en el agua de una fuente de abastecimiento en Mexico. Los resultados obtenidos en el campo comprueban la eficacia de la hematita en la remocion del arsenico, habiendose registrado una concentracion menor de 0.05 mg/l en el agua producida, lo cual satisface los requisitos de la normatividad para el consumo humano respecto a este contaminante.

  10. Arsenic transport in irrigation water across rice-field soils in Bangladesh

    International Nuclear Information System (INIS)

    Polizzotto, Matthew L.; Lineberger, Ethan M.; Matteson, Audrey R.; Neumann, Rebecca B.; Badruzzaman, A. Borhan M.; Ashraf Ali, M.

    2013-01-01

    Experiments were conducted to analyze processes impacting arsenic transport in irrigation water flowing over bare rice-field soils in Bangladesh. Dissolved concentrations of As, Fe, P, and Si varied over space and time, according to whether irrigation water was flowing or static. Initially, under flowing conditions, arsenic concentrations in irrigation water were below well-water levels and showed little spatial variability across fields. As flowing-water levels rose, arsenic concentrations were elevated at field inlets and decreased with distance across fields, but under subsequent static conditions, concentrations dropped and were less variable. Laboratory experiments revealed that over half of the initial well-water arsenic was removed from solution by oxidative interaction with other water-column components. Introduction of small quantities of soil further decreased arsenic concentrations in solution. At higher soil-solution ratios, however, soil contributed arsenic to solution via abiotic and biotic desorption. Collectively, these results suggest careful design is required for land-based arsenic-removal schemes. -- Highlights: •We analyzed the processes impacting arsenic transport in flowing irrigation water. •Arsenic in Bangladesh rice-field irrigation water varied over space and time. •Arsenic was correlated with Fe, P, and Si in flowing and static water. •Oxidation, adsorption and desorption reactions controlled arsenic concentrations. •Land-based arsenic removal from water will be impacted by hydraulic conditions. -- Arsenic concentrations in flowing and static irrigation water in Bangladesh varied over space and time, suggesting careful design is required for land-based pre-treatment schemes that aim to remove As from solution

  11. Power plant removal costs

    International Nuclear Information System (INIS)

    Ferguson, J.S.

    1998-01-01

    The financial, regulatory and political significance of the estimated high removal costs of nuclear power plants has generated considerable interest in recent years, and the political significance has resulted in the Nuclear Regulatory Commission (NRC) eliminating the use of conventional depreciation accounting for the decontamination portion of the removal (decommissioning). While nuclear plant licensees are not precluded from utilizing conventional depreciation accounting for the demolition of non-radioactive structures and site restoration, state and federal utility regulators have not been favorably inclined to requests for this distinction. The realization that steam-generating units will be more expensive to remove, relative to their original cost, predates the realization that nuclear units will be expensive. However, the nuclear issues have overshadowed this realization, but are unlikely to continue to do so. Numerous utilities have prepared cost estimates for steam generating units, and this presentation discusses the implications of a number of such estimates that are a matter of public record. The estimates cover nearly 400 gas, oil, coal and lignite generating units. The earliest estimate was made in 1978, and for analysis purposes the author has segregated them between gas and oil units, and coal and lignite units

  12. Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process

    Directory of Open Access Journals (Sweden)

    Qinmeng Wang

    2017-08-01

    Full Text Available The control of arsenic, a toxic and carcinogenic element, is an important issue for all copper smelters. In this work, the reaction mechanism and distribution behavior of arsenic in the bottom blown copper smelting process (SKS process were investigated and compared to the flash smelting process. There are obvious differences of arsenic distribution in the SKS process and flash process, resulting from the differences of oxygen potentials, volatilizations, smelting temperatures, reaction intensities, and mass transfer processes. Under stable production conditions, the distributions of arsenic among matte, slag, and gas phases are 6%, 12%, and 82%, respectively. Less arsenic is reported in the gas phase with the flash process than with the SKS process. The main arsenic species in gas phase are AsS (g, AsO (g, and As2 (g. Arsenic exists in the slag predominantly as As2O3 (l, and in matte as As (l. High matte grade is harmful to the elimination of arsenic to gas. The changing of Fe/SiO2 has slight effects on the distributions of arsenic. In order to enhance the removal of arsenic from the SKS smelting system to the gas phase, low oxygen concentration, low ratios of oxygen/ore, and low matte grade should be chosen. In the SKS smelting process, no dust is recycled, and almost all dust is collected and further treated to eliminate arsenic and recover valuable metals by other process streams.

  13. REMOVAL OF ARSENIC FROM AN AQUEOUS SOLUTION BY PRETREATED WASTE TEA FUNGAL BIOMASS

    Directory of Open Access Journals (Sweden)

    S. Mamisahebei , Gh. R. Jahed Khaniki, A. Torabian, S. Nasseri, K. Naddafi

    2007-04-01

    Full Text Available Arsenic contamination in water poses a serious threat on human health. The tea fungus known as Kombucha is a waste produced during black tea fermentation. The objective of this study was to examine the main aspect of a possible strategy for the removal of arsenates employing tea fungal biomass. The pretreatment of biomass with FeCl3 was found to improve the biosorption efficiency. Arsenics uptake was found to be rapid for all concentrations and reached to 79% of equilibrium capacity of biosorption in 20 min and reached equilibrium in 90 min. The pseudo second-order and first-order models described the biosorption kinetics of As (V with good correlation coefficient (R2>0.93 and better than the other equations. The data obtained from the experiment of biosorption isotherm were analyzed using the Freundlich and Langmuir isotherm models. The equation described the isotherm of As (V biosorption with relatively high correlation coefficient (R2>0.93. According to the Langmuir model, the maximum uptake capacities (qm of tea fungal biomass for As (V were obtained 3.9810-3 mmol/gr. The effect of Na+, K+, Mg+2 and Ca+2 on equilibrium capacities of As was not significant. The variation of sorption efficiency with pH showed that optimum biosorption takes place in the pH ranges of 6 to 8. Promising results were obtained in laboratory experiments and effective As (V removals were observed.

  14. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA - USEPA DEMONSTRATION PROJECT AT DESERT SANDS MDWCA, NM SIX MONTH EVALUATION

    Science.gov (United States)

    This report documents the activities performed during, and the results obtained from, the first six months of the arsenic removal treatment technology demonstration project at the Desert Sands Mutual Domestic Water Consumers Association (MDWCA) facility in Anthony, NM. The object...

  15. Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system; Eliminacion de arsenico mediante flotacion por adsorcion coloidal utilizando floculos de Fe(OH){sub 3} en un sistema de flotacion por aire disuelto

    Energy Technology Data Exchange (ETDEWEB)

    Pavez, O.; Palacios, J. M.; Aguilar, C.

    2009-07-01

    In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodec il sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required. (Author) 31 refs.

  16. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTION MEDIA USEPA DEMONSTRATION PROJECT AT BROWN CITY, MI SIX MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first six months of the arsenic removal treatment technology demonstration project in Brown City, MI. The objectives of the project are to evaluate the effectiveness of Severn Trent Services (...

  17. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  18. Development of low-cost technology for the removal of iron and manganese from ground water in siwa oasis.

    Science.gov (United States)

    El-Naggar, Hesham M

    2010-01-01

    Ground water is the only water resource for Siwa Oasis. It is obtained from natural freshwater wells and springs fed by the Nubian aquifer. Water samples collected from Siwa Oasis had relatively higher iron (Fe) and manganese (Mn) than the permissible limits specified in WHO Guidelines and Egyptian Standards for drinking water quality. Aeration followed by sand filtration is the most commonly used method for the removal of iron from ground water. The study aimed at development of low-cost technology for the removal of iron and manganese from ground water in Siwa Oasis. The study was carried out on Laboratory-scale columns experiments sand filters with variable depths of 15, 30, 45, 60, 75, 90 cm and three graded types of sand were studied. The graded sand (E.S. =0.205 mm, U.C. =3.366, depth of sand = 60 cm and filtration rate = 1.44 m3/m2/hr) was the best type of filter media. Iron and manganese concentrations measured in ground water with aeration only, decreased with an average removal percentage of 16%, 13% respectively. Iron and manganese concentrations after filtration with aeration came down to 0.1123, 0.05 mg/L respectively in all cases from an initial concentration of 1.14, 0.34 mg/L respectively. Advantages of such treatment unit included simplicity, low cost design, and no need for chemical addition. In addition, the only maintenance required was periodic washing of the sand filter or replacement of the sand in order to maintain reasonable flow rate through the system.

  19. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study.

    Science.gov (United States)

    Cui, Jinli; Jing, Chuanyong; Che, Dongsheng; Zhang, Jianfeng; Duan, Shuxuan

    2015-06-01

    Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono- and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5mg/L Ca(ClO)2. By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water (<10 μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 μg/L-0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water. Copyright © 2015. Published by Elsevier B.V.

  20. The influence of temperature, pH/molarity and extractant on the removal of arsenic, chromium and zinc from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Rastas Amofah, Lea; Maurice, Christian; Kumpiene, Jurate [Luleaa Univ. of Technology, Luleaa (Sweden). Dept. of Civil, Environmental and Natural Resources; Bhattacharya, Prosun [Royal Institute of Technology (KTH), Stockholm (Sweden). Dept. of Land and Water Resources Engineering

    2011-12-15

    Normal soil washing leave high residual pollutant content in soil. The remediation could be improved by targeting the extraction to coarser fractions. Further, a low/high extraction pH and higher temperature enhance the pollutant removal, but these measures are costly. In this study, the utility of NaOH, oxalate-citrate (OC) and dithionite-citrate-oxalate (DCO) solutions for extracting of arsenic, chromium and zinc from contaminated soil were assessed and compared. In addition the effects of NaOH concentration and temperature on NaOH extractions, and those of temperature and pH on OC and DCO extractions, were evaluated. A two-level, full-factorial design with a centre point was implemented. Two factors, concentration and temperature,were evaluated in NaOH extractions, and pH and temperature for OC and DCO solutions. In all cases, the extraction temperature was 20 C, 30 C and 40 C. The studied NaOH concentrations were 0.05, 0.075 and 0.1 M. The pH in OC solutions was 3, 5 and 7, and in DCO solutions, 4.7, 6.3 and 6.7. Water-washed and medium coarse soil fraction of arsenic, chromium and zinc contaminated soil was agitated for 15 min with the extraction solution. In NaOH extractions, the temperature and (less strongly) NaOH concentration significantly affected As and Cr mobilisation, but only the latter affected Zn mobilisation. Both pH and temperature significantly (and similarly) influenced As and Cr mobilisation in OC extractions, while only the pH influenced Zn mobilisation. In contrast, the extraction temperature (but not pH) influenced As, Cr and Zn mobilisation in DCO extractions. For all extractants, mobilisation was most efficient at elevated temperature (40 C). None of the extractants reduced the soil's As content to below the Swedish EPA's guideline value. Use of DCO is not recommended because dithionite has a short lifetime and residual arsenic contents in DCO-extracted soil are relatively high. Instead, sequential extraction with NaOH followed

  1. PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water.

    Science.gov (United States)

    Marino, Tiziana; Russo, Francesca; Rezzouk, Lina; Bouzid, Abderrazak; Figoli, Alberto

    2017-09-30

    The aim of this work was the fabrication and the characterization of mixed matrix membranes (MMMs) for arsenic (As) removal from water. Membrane separation was combined with an adsorption process by incorporating the kaolin (KT2) Algerian natural clay in polymeric membranes. The effects of casting solution composition was explored using different amounts of polyethersufone (PES) as a polymer, polyvinyl-pyrrolidone (PVP K17) and polyethylene glycol (PEG 200) as pore former agents, N -methyl pyrrolidone (NMP) as a solvent, and kaolin. Membranes were prepared by coupling Non-solvent Induced Phase Separation and Vapour Induced Phase Separation (NIPS and VIPS, respectively). The influence of the exposure time to controlled humid air and temperature was also investigated. The MMMs obtained were characterized in terms of morphology, pore size, porosity, thickness, contact angle and pure water permeability. Adsorption membrane-based tests were carried out in order to assess the applicability of the membranes produced for As removal from contaminated water. Among the investigated kaolin concentrations (ranging from 0 wt % to 5 wt %), a content of 1.25 wt % led to the MMM with the most promising performance.

  2. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Anne Marie, E-mail: Anne.M.Cooper@asu.edu [Environmental Technology, College of Technology and Innovation. Arizona State University - Polytechnic Campus, 6075 South Williams Campus Loop West, Mesa, AZ 85212 (United States); Hristovski, Kiril D., E-mail: Kiril.Hristovski@asu.edu [Environmental Technology, College of Technology and Innovation, Arizona State University - Polytechnic Campus, 6073 South Backus Mall, Mesa, AZ 85212 (United States); Moeller, Teresia, E-mail: tmoller@solmetex.com [SolmeteX - Division of Layne Christiansen, 50 Bearfoot Road, Northborough, MA 01532 (United States); Westerhoff, Paul, E-mail: p.westerhoff@asu.edu [School of Sustainable Engineering and the Built Environment, Arizona State University, Box 5306, Tempe, AZ 85287-5306 (United States); Sylvester, Paul, E-mail: psylvester@solmetex.com [SolmeteX - Division of Layne Christiansen, 50 Bearfoot Road, Northborough, MA 01532 (United States)

    2010-11-15

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove {approx}6.3 L g{sup -1} dry media and {approx}4 L g{sup -1} dry media of water contaminated with 30 {mu}g L{sup -1} TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only {approx}0.2 L/g dry media for TCE and {approx}2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant.

  3. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons

    International Nuclear Information System (INIS)

    Cooper, Anne Marie; Hristovski, Kiril D.; Moeller, Teresia; Westerhoff, Paul; Sylvester, Paul

    2010-01-01

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g -1 dry media and ∼4 L g -1 dry media of water contaminated with 30 μg L -1 TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant.

  4. Arsenic Removal from Drinking Water by Iron Removal - U.S. EPA Demonstration Project at Big Sauk Lake Mobile Home Park in Sauk Centre, MN Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the one-year arsenic removal treatment technology demonstration project at the Big Sauk Lake Mobile Home Park (BSLMHP) in Sauk Centre, MN. The objectives of the project are to evaluate (1) the effective...

  5. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA USEPA DEMONSTRATION PROJECT AT VALLEY VISTA, AZ SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the EPA arsenic removal technology demonstration project at the Arizona Water Company (AWC) facility in Sedona, AZ, commonly referred to as Valley Vista. The main objective of the...

  6. Performance evaluation of ALCAN-AASF50-ferric coated activated alumina and granular ferric hydroxide (GFH) for arsenic removal in the presence of competitive ions in an active well :Kirtland field trial - initial studies.

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Linnah L.; Krumhansl, James Lee; Siegel, Malcolm Dean; Khandaker, Nadim Reza

    2006-01-01

    This report documents a field trial program carried out at Well No.15 located at Kirtland Air Force Base, Albuquerque, New Mexico, to evaluate the performance of two relatively new arsenic removal media, ALCAN-AASF50 (ferric coated activated alumina) and granular ferric hydroxide (US Filter-GFH). The field trial program showed that both media were able to remove arsenate and meet the new total arsenic maximum contaminant level (MCL) in drinking water of 10 {micro}g/L. The arsenate removal capacity was defined at a breakthrough effluent concentration of 5 {micro}g/L arsenic (50% of the arsenic MCL of 10 {micro}g/L). At an influent pH of 8.1 {+-} 0.4, the arsenate removal capacity of AASF50 was 33.5 mg As(V)/L of dry media (29.9 {micro}g As(V)/g of media on a dry basis). At an influent pH of 7.2 {+-} 0.3, the arsenate removal capacity of GFH was 155 mg As(V)/L of wet media (286 {micro}g As(V)/g of media on a dry basis). Silicate, fluoride, and bicarbonate ions are removed by ALCAN AASF50. Chloride, nitrate, and sulfate ions were not removed by AASF50. The GFH media also removed silicate and bicarbonate ions; however, it did not remove fluoride, chloride, nitrate, and sulfate ions. Differences in the media performance partly reflect the variations in the feed-water pH between the 2 tests. Both the exhausted AASF50 and GFH media passed the Toxicity Characteristic Leaching Procedure (TCLP) test with respect to arsenic and therefore could be disposed as nonhazardous waste.

  7. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Rollinsford, NH, Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at Rollinsford, New Hampshire. The objectives of the project were to evaluate: 1) the effectiveness of AdEdge Technologies’ AD -33TM media ...

  8. Arsenic removal from aqueous solutions using Fe3O4-HBC composite: effect of calcination on adsorbents performance.

    Directory of Open Access Journals (Sweden)

    Shams Ali Baig

    Full Text Available The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C and environment (air and nitrogen were investigated for the adsorptive removal of As(V and As(III from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4 via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2>Fe3O4-HBC (uncalcined>Fe3O4-HBC-400°C(N2>Fe3O4-HBC-400°C(air>Fe3O4-HBC-1000°C(air and the maximum As(V and As(III adsorption capacities were found to be about 3.35 mg g(-1 and 3.07 mg g(-1, respectively. The adsorption of As(V and As(III remained stable in a wider pH range (4-10 using Fe3O4-HBC-1000°C(N2. Additionally, adsorption data fitted well in pseudo-second-order (R2>0.99 rather than pseudo-first-order kinetics model. The adsorption of As(V and As(III onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher strongly inhibited As(V and As(III removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water.

  9. Arsenic removal from aqueous solutions using Fe3O4-HBC composite: effect of calcination on adsorbents performance.

    Science.gov (United States)

    Baig, Shams Ali; Sheng, TianTian; Sun, Chen; Xue, XiaoQin; Tan, LiSha; Xu, XinHua

    2014-01-01

    The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive removal of As(V) and As(III) from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4) via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH) was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2)>Fe3O4-HBC (uncalcined)>Fe3O4-HBC-400°C(N2)>Fe3O4-HBC-400°C(air)>Fe3O4-HBC-1000°C(air) and the maximum As(V) and As(III) adsorption capacities were found to be about 3.35 mg g(-1) and 3.07 mg g(-1), respectively. The adsorption of As(V) and As(III) remained stable in a wider pH range (4-10) using Fe3O4-HBC-1000°C(N2). Additionally, adsorption data fitted well in pseudo-second-order (R2>0.99) rather than pseudo-first-order kinetics model. The adsorption of As(V) and As(III) onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher) strongly inhibited As(V) and As(III) removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water.

  10. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area

    International Nuclear Information System (INIS)

    Chung, C.-J.; Huang, C.-J.; Pu, Y.-S.; Su, C.-T.; Huang, Y.-K.; Chen, Y.-T.; Hsueh, Y.-M.

    2008-01-01

    Arsenic is a well-documented human carcinogen and is known to cause oxidative stress in cultured cells and animals. A hospital-based case-control study was conducted to evaluate the relationship among the levels of urinary 8-hydroxydeoxyguanosine (8-OHdG), the arsenic profile, and urothelial carcinoma (UC). Urinary 8-OHdG was measured by using high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. The urinary species of inorganic arsenic and their metabolites were analyzed by high-performance liquid chromatography (HPLC) and hydride generator-atomic absorption spectrometry (HG-AAS). This study showed that the mean urinary concentration of total arsenics was significantly higher, at 37.67 ± 2.98 μg/g creatinine, for UC patients than for healthy controls of 21.10 ± 0.79 μg/g creatinine (p < 0.01). Urinary 8-OHdG levels correlated with urinary total arsenic concentrations (r = 0.19, p < 0.01). There were significantly higher 8-OHdG levels, of 7.48 ± 0.97 ng/mg creatinine in UC patients, compared to healthy controls of 5.95 ± 0.21 ng/mg creatinine. Furthermore, female UC patients had higher 8-OHdG levels of 9.22 ± 0.75 than those of males at 5.76 ± 0.25 ng/mg creatinine (p < 0.01). Multiple linear regression analyses revealed that high urinary 8-OHdG levels were associated with increased total arsenic concentrations, inorganic arsenite, monomethylarsonic acid (MMA), and dimethylarsenate (DMA) as well as the primary methylation index (PMI) even after adjusting for age, gender, and UC status. The results suggest that oxidative DNA damage was associated with arsenic exposure, even at low urinary level of arsenic

  11. Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study.

    Science.gov (United States)

    Neumann, Anke; Kaegi, Ralf; Voegelin, Andreas; Hussam, Abul; Munir, Abul K M; Hug, Stephan J

    2013-05-07

    The main arsenic mitigation measures in Bangladesh, well-switching and deep tube wells, have reduced As exposure, but water treatment is important where As-free water is not available. Zero-valent iron (ZVI) based SONO household filters, developed in Bangladesh, remove As by corrosion of locally available inexpensive surplus iron and sand filtration in two buckets. We investigated As removal in SONO filters in the field and laboratory, covering a range of typical groundwater concentrations (in mg/L) of As (0.14-0.96), Fe (0-17), P (0-4.4), Ca (45-162), and Mn (0-2.8). Depending on influent Fe(II) concentrations, 20-80% As was removed in the top sand layer, but As removal to safe levels occurred in the ZVI-layer of the first bucket. Residual As, Fe, and Mn were removed after re-aeration in the sand of the second bucket. New and over 8-year-old filters removed As to iron matrix (CIM) of newer filters and predominantly magnetite in older filters. As mass balances indicated that users filtered less than reported volumes of water, pointing to the need for more educational efforts. All tested SONO filters provided safe drinking water without replacement for up to over 8 years of use.

  12. Highly efficient removal of arsenic metal ions with high superficial area hollow magnetite nanoparticles synthetized by AACVD method

    Energy Technology Data Exchange (ETDEWEB)

    Monárrez-Cordero, B.; Amézaga-Madrid, P.; Antúnez-Flores, W.; Leyva-Porras, C.; Pizá-Ruiz, P. [Centro de Investigación en Materiales Avanzados S.C., and Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua, Chih. C.P. 31109 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., and Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua, Chih. C.P. 31109 (Mexico)

    2014-02-15

    Highlights: ► Fast and high arsenic removal efficiency, almost 100% in one minute. ► Successful synthesis of high purity magnetite hollow nanoparticles is reported. ► They were synthesized by one step aerosol assisted CVD technique. ► Detailed microstructural characterization by electron microscopy was performed. -- Abstract: New nanotechnology alternatives and methodologies have been developed in order to overcome the limitations of conventional techniques for metal ions removal from water. Currently, the removal of heavy metals requires multiple steps which include the separation and post-treatment of the generated sludge. Usually, this sludge is composed of dangerous environmental pollutants mixed with the material used for removing the metal ion. Thus, the removal of these metals becomes a challenging task. Herein we report the synthesis of magnetite nanoparticles with high specific area by the aerosol assisted chemical vapour deposition method. Deposition temperature were fixed at 450 °C and a mixture of Ar–air were used as a carrier gas, a flow of 1.0 and 0.015 L min{sup −1} were used for Ar and air, respectively. The precursor solution was a dilution of Fe (II) chloride in methanol, with different concentration 0.01, 0.05 and 0.1 mol dm{sup −3}. The crystalline structure of the nanoparticles was characterized by grazing incidence X-ray diffraction. Morphology and microstructure were analyzed by field emission scanning electron microscopy, scanning probe microscopy and transmission electron microscopy. Magnetic properties were evaluated with a vibrating sample magnetometer and specific area was measured by the Brunauer–Emmett–Teller method. To determine the removal efficiency of arsenic ion from water, several tests were carried out at six exposition times 1, 3, 5, 10, 20 and 30 min. Results showed high removal efficiency, more than 99%, in less than 1 min.

  13. Removal of arsenic in flotation of galena and sphalerite

    Science.gov (United States)

    Yu, Dae-hwan; Kim, Min-kyu; Han, Oh-hyung; Park, Chul-hyun

    2017-04-01

    In Korea, Janggun mine that produces the concentrate of galena (PbS) /sphalerite (ZnS) containing arsenic of 1.3% charges a penalty of US 3/ton to LS-Nikko smelter. Hence in this work, flotation tests for removal of arsenopyrite (FeAsS) from sulfide minerals were carried out using lab scale flotation cell, which maintain grade and recovery of PbS and ZnS in comparison to flotation plant. Particularly, this study was focused on investigating the combination of several chemical reagents such as depressant, collector, activator and etc. that affect flotation performance. In the straight differential flotation for PbS, a PbS grade of 67.80% and a recovery of 80.2% could be obtained with FeAsS removal of 84.1% (0.2% As) under the conditions of 20% feed solids concentration, pH 8.5, 50g/t frother (AF65), 50g/t collector (AP242) and 600g/t As depressant (NaHSO3) and 600g/t Zn depressant (ZnSO4). In the ZnS flotation, the maximum separation achievable for ZnS has been shown to be a grade of 50.27% and a recovery of 88.7%. At this time, FeAsS removal of 87.8% (0.16% As) could be successfully accomplished under pH 11, and 1.2kg/t Zn activator (CuSO4), 100g/t frother (AF65), 100g/t collector (AP211) and 400g/t As depressant (NaHSO3). Acknowledgments This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea

  14. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    Mario Enrique Santander Muñoz

    2015-01-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic poly-acrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  15. FIELD STUDY OF ARSENIC REMOVAL FROM GROUNDWATER BY ZEROVALENT IRON

    Science.gov (United States)

    Contamination of ground-water resources by arsenic is a widespread environmental problem; consequently, there is a need for developments and improvements of remedial technologies to effectively manage arsenic contamination in ground water and soils. In June 2005, a 7 m long, 14 ...

  16. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA U.S. EPA DEMONSTRATION PROJECT AT BRUNI, TX, SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Webb Consolidated Independent School District (Webb CISD) site at Bruni, TX. The main objective of the projec...

  17. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA U.S. EPA DEMONSTRATION PROJECT AT DUMMERSTON, VT SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first six months (from June 22, 2005 through December 22, 2005) of the arsenic removal treatment technology demonstration project at Charette Mobile Home Park (CMHP) in Dummerston, Vermont. T...

  18. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. U.S. EPA DEMONSTRATION PROJECT AT BOW, NH , SIX MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the White Rock Water Company (WRWC) public water system, a small residential drinking water facility in Bo...

  19. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor.

    Science.gov (United States)

    Guzmán, Athziri; Nava, José L; Coreño, Oscar; Rodríguez, Israel; Gutiérrez, Silvia

    2016-02-01

    We investigated simultaneous arsenic and fluoride removal from ground water by electrocoagulation (EC) using aluminum as the sacrificial anode in a continuous filter-press reactor. The groundwater was collected at a depth of 320 m in the Bajío region in Guanajuato Mexico (arsenic 43 µg L(-1), fluoride 2.5 mg L(-1), sulfate 89.6 mg L(-1), phosphate 1.8 mg L(-1), hydrated silica 112.4 mg L(-1), hardness 9.8 mg L(-1), alkalinity 31.3 mg L(-1), pH 7.6 and conductivity 993 µS cm(-1)). EC was performed after arsenite was oxidized to arsenate by addition of 1 mg L(-1) hypochlorite. The EC tests revealed that at current densities of 4, 5 and 6 mA cm(-2) and flow velocities of 0.91 and 1.82 cm s(-1), arsenate was abated and residual fluoride concentration satisfies the WHO standard (CF < 1.5 mg L(-1)). Spectrometric analyses performed on aluminum flocs indicated that these are mainly composed of aluminum-silicates of calcium and magnesium. Arsenate removal by EC involves adsorption on aluminum flocs, while fluoride replaces a hydroxyl group from aluminum aggregates. The best EC was obtained at 4 mA cm(-2) and 1.82 cm s(-1) with electrolytic energy consumption of 0.34 KWh m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mobilization of iron and arsenic from soil by construction and demolition debris landfill leachate.

    Science.gov (United States)

    Wang, Yu; Sikora, Saraya; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2012-05-01

    Column experiments were performed to examine (a) the potential for leachate from construction and demolition (C&D) debris landfills to mobilize naturally-occurring iron and arsenic from soils underlying such facilities and (b) the ability of crushed limestone to remove these aqueous phase pollutants. In duplicate columns, water was added to a 30-cm layer of synthetic C&D debris, with the resulting leachate serially passed through a 30-cm soil layer containing iron and arsenic and a 30-cm crushed limestone layer. This experiment was conducted for two different soil types (one high in iron (10,400mg/kg) and the second high in iron (5400mg/kg) and arsenic (70mg/kg)); also monitored were control columns for both soil types with water infiltration alone. Despite low iron concentrations in the simulated C&D debris leachate, elevated iron concentrations were observed when leachate passed through the soils; reductive dissolution was concluded to be the cause of iron mobilization. In the soil containing elevated arsenic, increased iron mobilization from the soil was accompanied by a similar but delayed arsenic mobilization. Since arsenic sorbs to oxidized iron soil minerals, reductive dissolution of these minerals results in arsenic mobilization. Crushed limestone significantly reduced iron (to values below the detection limit of 0.01mg/L in most cases); however, arsenic was not removed to any significant extent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The Influence of Dosing Modes of Coagulate on Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Zhibin Zhang

    2014-01-01

    Full Text Available Three different dosing modes, including one single dosing mode and two sequential dosing modes, were applied in high-arsenic contaminated water treatment. The results illustrated that the As (V soluble and the As (V nonspecifically sorbed were the insignificant species from Fe-As (V samples in the sequential dosing mode, while they were higher in the single dosing mode. However, it could be further concluded that the mobility of the Fe-As (V in sequential dosing mode was greater than that in single dosing mode. Besides, the main arsenic speciation governing the arsenic-borne coagulates was the As (V associated with poorly crystalline hydrous oxides of Fe in sequential or single dosing mode. Moreover, the particle size distribution analysis indicated that the sequential dosing mode was more prevalent in neutralizing and adsorbing the As (V compared with the single dosing mode. In the FT-IR spectra, the presence of arsenic was highlighted by a well resolved band at 825–829 cm−1. The positions of the As–O stretching vibration bands were shifted gradually as the dosing mode changed from the single to the sequential. This result could be related to the distribution of arsenic speciation in different dosing modes.

  2. Synthesis of Minerals with Iron Oxide and Hydroxide Contents as a Sorption Medium to Remove Arsenic from Water for Human Consumption

    OpenAIRE

    Garrido-Hoyos, Sofia; Romero-Velazquez, Lourdes

    2015-01-01

    Arsenic has been classified as a toxic and carcinogenic chemical element. It therefore presents a serious environmental problem in different regions of the country and the world. In the present work, two adsorbent media were developed and evaluated to remove arsenic from water in the Pájaro Verde mine shaft, Huautla, Tlaquiltenango, Morelos. The media were synthesized and characterized, obtaining a surface area of 43.04 m2·g−1 for the goethite and 2.44 m2·g−1 for silica sand coated with Fe(II...

  3. Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds

    Directory of Open Access Journals (Sweden)

    K. T. Lim

    2014-01-01

    Full Text Available Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal thiols in pyruvate dehydrogenase while arsenate inhibits the oxidative phosphorylation process. The common mechanisms for arsenic detoxification are uptaken by phosphate transporters, aquaglyceroporins, and active extrusion system and reduced by arsenate reductases via dissimilatory reduction mechanism. Some species of autotrophic and heterotrophic microorganisms use arsenic oxyanions for their regeneration of energy. Certain species of microorganisms are able to use arsenate as their nutrient in respiratory process. Detoxification operons are a common form of arsenic resistance in microorganisms. Hence, the use of bioremediation could be an effective and economic way to reduce this pollutant from the environment.

  4. Arsenic Removal from Drinking Water by Coagulation/Filtration U.S. EPA Demonstration Project at Sandusky, MI. Six-Month Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first six months of the EPA arsenic removal technology demonstration project at the City of Sandusky, MI facility. The objectives of the project are to evaluate 1) the effectiveness of Siemen...

  5. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. EPA DEMONSTRATION PROJECT AT QUEEN ANNES COUNTY, MARYLAND SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the community of Prospect Bay at Grasonville in Queen Anne’s County, MD. The objectives of the project were to ev...

  6. Long-term exposure to low-level arsenic in drinking water and diabetes incidence

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Nordsborg, Rikke Baastrup; Andersen, Zorana Jovanovic

    2014-01-01

    BACKGROUND: Established causes of diabetes do not fully explain the present epidemic. High-level arsenic exposure has been implicated in diabetes risk, but the effect of low-level arsenic exposure in drinking water remains unclear. OBJECTIVE: We sought to determine whether long-term exposure to low......-level arsenic in drinking water in Denmark is associated with an increased risk of diabetes using a large prospective cohort. METHODS: During 1993-1997, we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential...... exposure and diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition in which cases of diabetes based solely on blood glucose results were excluded. RESULTS: Over a mean follow-up period of 9.7 years for 52,931 eligible participants, there were a total of 4...

  7. [Studies on markers of exposure and early effect in areas with arsenic pollution: methods and results of the project SEpiAs. Epidemiological studies on population exposed to low-to-moderate arsenic concentration in drinking water].

    Science.gov (United States)

    Bustaffa, Elisa; Bianchi, Fabrizio

    2014-01-01

    Arsenic and its inorganic compounds are classified as human carcinogens. Several epidemiological studies conducted in areas of the world characterized by high arsenic concentration in drinking water, even up to 3,000 μg/l, report associations between arsenic exposure and skin, bladder, lung, liver and kidney cancer as well as cardiovascular diseases, diabetes and reproductive and developmental effects. Since general population is not exposed to these high arsenic concentrations in the last years attention focused on adverse health effects that low-to-moderate arsenic concentrations (0-150 μg/l) in drinking water could induce. The World Health Organization recommends a maximum limit of 10 μg/l for arsenic in drinking water. Almost all epidemiological studies conducted on populations exposed to low-to-moderate arsenic concentrations in drinking water are limited due to problems arising from both individual exposure assessment and low subjects number. The aim of the present review is to collect literature-based evidences regarding adverse health effects associated with exposure to low-to-moderate arsenic concentrations in drinking water (10-150 μg/l) in order to obtain a comprehensive picture of the health outcomes that such exposure can have on general population.

  8. Development of an arsenic trioxide vapor and arsine sampling train

    International Nuclear Information System (INIS)

    Crecelius, E.A.; Sanders, R.W.

    1980-01-01

    A sampling train was evaluated using 76 As tracer for the measurement of particulate arsenic, arsine, and arsenic trioxide vapor in air and industrial process gas streams. In this train, a demister was used to remove droplets of water and oil, and particulates were removed by a filter. Vapor arsenic trioxide was collected in an impinger solution, and arsine gas was collected on silvered quartz beads. Hydrogen sulfide gas did not reduce the arsine trapping efficiency of the silvered beads, and charcoal proved to be an effective trap for both arsine and arsenic trioxide vapor. 1 figure, 2 tables

  9. Treatability study of arsenic, fluoride and nitrate from drinking water by adsorption process

    International Nuclear Information System (INIS)

    Abbas, N.; Irfan, M.; Butt, M.T.

    2014-01-01

    Natural contamination of nitrate, fluoride, arsenic and dissolved salts in ground water sources is the main health menace at present in different parts of Pakistan. The metalloids especially arsenic, fluoride and nitrate pose severe health hazards to human being. The present research work investigated the removal techniques for arsenic, fluoride and nitrate from drinking water by adsorption process. Ion exchange resins, activated carbon and activated alumina were used for removal of selected contaminants. These adsorbents were evaluated by comparing their removal efficiency as well as requisite operator skills. The result of activated alumina was found good as compared to activated carbon, mix bed resins and ion exchange resins (IRA-400) for maximum removal of arsenic, nitrate and fluoride. The removal efficiency of arsenic, fluoride and nitrate were found 96%, 99%, 98% respectively in case of activated alumina. The advantage of adsorption process is easy to use and relatively cheaper as compared to other treatment methodologies. (author)

  10. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    López Alejandro

    2004-10-01

    Full Text Available Abstract Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS. Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS was totally oxidized too, anglesite (PbSO4 formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1. Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight of arsenic removal. Further studies are needed to determine other factors that influence specifically the

  11. ARSENIC REMOVAL FROM DRINKING WATER BY PROCESS MODIFICATION TO COAGULATION/FILTRATION. USEPA DEMONSTRATION PROJECT AT LIDGERWOOD, ND. FINAL PERFORMANCE EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at the Lidgerwood, North Dakota site. The objectives of the project were to evaluate: (1) the effectiveness of process modifications to an e...

  12. Low level arsenic contaminated water consumption and birth outcomes in Romania - an exploratory study

    Science.gov (United States)

    Bloom, Michael S.; Neamtiu, Iulia A.; Surdu, Simona; Pop, Cristian; Anastasiu, Doru; Appleton, Allison A.; Fitzgerald, Edward F.; Gurzau, Eugen S.

    2015-01-01

    Women are exposed to drinking water with low arsenic concentrations (iAs (10 μg/L) was also associated with smaller ponderal index in boys (P=0.023). Our results suggest smoking may potentiate an otherwise benign arsenic exposure. A larger, more definitive biomarker-based study is needed to investigate the potential risks in conjunction with smoking. PMID:26518419

  13. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. (St. Marianna Univ. School of Medicine, Kawasaki (Japan))

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  14. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Taos, NM, Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the EPA arsenic removal technology demonstration project at the Town of Taos in New Mexico. The main objective of the project was to evaluate the effectiveness of Severn Trent Services’ (STS) SORB 33™ ad...

  15. Approaches to increase arsenic awareness in Bangladesh: an evaluation of an arsenic education program.

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H

    2013-06-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning knowledge of arsenic. Respondents were between 18 and 102 years of age, with an average age of 37 years; 99.9% were female. The knowledge of arsenic quiz scores for study participants were significantly higher at follow-up compared with baseline. The intervention was effective in increasing awareness of the safe uses of arsenic-contaminated water and dispelling the misconception that boiling water removes arsenic. At follow-up, nearly all respondents were able to correctly identify the meaning of a red (contaminated) and green (arsenic safe) well relative to arsenic (99%). The educational program also significantly increased the proportion of respondents who were able to correctly identify the health implications of arsenic exposure. However, the intervention was not effective in dispelling the misconceptions in the population that arsenicosis is contagious and that illnesses such as cholera, diarrhea, and vomiting could be caused by arsenic. Further research is needed to develop effective communication strategies to dispel these misconceptions. This study demonstrates that a household-level arsenic educational program can be used to significantly increase arsenic awareness in Bangladesh.

  16. Application of four novel fungal strains to remove arsenic from contaminated water in batch and column modes.

    Science.gov (United States)

    Jaiswal, Virendra; Saxena, Sangeeta; Kaur, Ispreet; Dubey, Priya; Nand, Sampurna; Naseem, Mariya; Singh, Suman B; Srivastava, Pankaj Kumar; Barik, Saroj Kanta

    2018-08-15

    Immobilized biomass of novel indigenous fungal strains FNBR_3, FNBR_6, FNBR_13, and FNBR_19 were evaluated for arsenic (As) removal from aqueous solution. Alginate beads containing 0.1 g biomass were used in a batch experiment (200 mg l -1 As; pH 6). Biosorption equilibrium established in first 2 h with As adsorption (mg g -1 ) as 70, 68, 113 and 90 by FNBR_3, FNBR_6, FNBR_13 and FNBR_19, respectively. The equilibrium was fitted to the Langmuir model (r 2  = 0. 90-0.97). The absorption kinetic followed the pseudo second order. Changes in the surface of fungal cells and intracellular As-uptake by fungal biomass were also confirmed by scanning electron microscopy combined with X-ray energy dispersive spectrometer. The presence of different functional groups on fungal cells capable of As-binding was investigated by FTIR. The As-removal by immobilized fungal beads tested in the packed columns also. The As-adsorption by biomass (qe as mg g -1 ) were recorded as 59.5 (FNBR_3 and FNBR_6), 74.8 (FNBR_13), and 66.3 (FNBR_19) in the column and validated by Thomas model. This is the first report concerning the arsenic removal by immobilized biomass of these novel fungal strains from aqueous solution both in batch and column studies with a prospect of their further industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony.

    Science.gov (United States)

    Qi, Zenglu; Joshi, Tista Prasai; Liu, Ruiping; Li, Yiran; Liu, Huijuan; Qu, Jiuhui

    2018-02-05

    Manganese iron oxide (MnFe 2 O 4 ), an excellent arsenic(As)/antimony(Sb) removal adsorbent, is greatly restricted for the solid-liquid separation. Through the application of superconducting high gradient magnetic separation (HGMS) technique, we herein constructed a facility for the in situ solid-liquid separation of micro-sized MnFe 2 O 4 adsorbent in As/Sb removal process. To the relative low initial concentration 50.0μgL -1 , MnFe 2 O 4 material sorbent can still decrease As or Sb below US EPA's drinking water standard limit. The separation of MnFe 2 O 4 was mainly relied on the flow rate and the amount of steel wools in the HGMS system. At a flow rate 1Lmin -1 and 5% steel wools filling rate, the removal efficacies of As and Sb in natural water with the system were achieved to be 94.6% and 76.8%, respectively. At the meantime, nearly 100% micro-sized MnFe 2 O 4 solid in the continuous field was readily to be separated via HGMS system. In a combination with the experiment results and finite element simulation, the separation was seemed to be independent on the magnetic field intensity, and the maximum separation capacities in various conditions were well predicted using the Thomas model (R 2 =0.87-0.99). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Low cost solar air heater

    International Nuclear Information System (INIS)

    Gill, R.S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    Highlights: ► Single glazed low cost solar air heater is more efficient during summer while double glazed is better in winter. ► For the same initial investment, low cost solar air heaters collect more energy than packed bed solar air heater. ► During off season low cost solar air heater can be stored inside as it is light in weight. - Abstract: Two low cost solar air heaters viz. single glazed and double glazed were designed, fabricated and tested. Thermocole, ultraviolet stabilised plastic sheet, etc. were used for fabrication to reduce the fabrication cost. These were tested simultaneously at no load and with load both in summer and winter seasons along with packed bed solar air heater using iron chips for absorption of radiation. The initial costs of single glazed and double glazed are 22.8% and 26.8% of the initial cost of packed bed solar air heater of the same aperture area. It was found that on a given day at no load, the maximum stagnation temperatures of single glazed and double glazed solar air heater were 43.5 °C and 62.5 °C respectively. The efficiencies of single glazed, double glazed and packed bed solar air heaters corresponding to flow rate of 0.02 m 3 /s-m 2 were 30.29%, 45.05% and 71.68% respectively in winter season. The collector efficiency factor, heat removal factor based on air outlet temperature and air inlet temperature for three solar air heaters were also determined.

  19. ASCR{trademark}: lower NOx removal costs without sacrificing performance

    Energy Technology Data Exchange (ETDEWEB)

    Bible, S.; Rummenhohl, V.; Siebeking, M.; Thomas, R.; Triece, C. [Fuel Tech (United States)

    2011-05-15

    With recent regulatory initiatives, the new Industrial Emissions Directive in Europe, and new rules being proposed by EPA in the USA, the question for power plants is now whether they will be required to reduce NOx emissions in the future to stay in operation, but when. What is needed is a low-capital-cost but high-performance NOx removal technology. 7 figs.

  20. Exploratory experiments to determine the effect of operational parameters on the efficiency of Subsurface Arsenic Removal (SAR) in rural Bangladesh

    NARCIS (Netherlands)

    Rhaman, M.; Bakker, M.; Borges Freitas, S.; Halem, D.; van Breukelen, B.M.; Ahmed, K.; Badruzzaman, A.B.

    2015-01-01

    The principle of subsurface arsenic (As) removal (SAR) is to extract anoxic groundwater, aerate it and re-inject it. Oxygen in the injected water reacts with iron in the resident groundwater to form hydrous ferric oxide (HFO). Dissolved As sorbs onto the HFO, which allows for the extraction of

  1. ARSENIC REMOVAL FROM DRINKING WATER BY ION EXCHANGE. U.S. EPA DEMONSTRATION PROJECT AT FRUITLAND, ID SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first six months of the performance evaluation of a Kinetico ion exchange (IX) system to remove arsenic (As) and nitrate from source water at the City of Fruitland in Idaho. The 250-gal/min (g...

  2. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions.

    Science.gov (United States)

    Zhu, Jin; Baig, Shams Ali; Sheng, Tiantian; Lou, Zimo; Wang, Zhuoxing; Xu, Xinhua

    2015-04-09

    In this study, a novel composite adsorbent (HBC-Fe3O4-MnO2) was synthesized by combining honeycomb briquette cinders (HBC) with Fe3O4 and MnO2 through a co-precipitation process. The purpose was to make the best use of the oxidative property of MnO2 and the adsorptive ability of magnetic Fe3O4 for enhanced As(III) and As(V) removal from aqueous solutions. Experimental results showed that the adsorption capacity of As(III) was observed to be much higher than As(V). The maximum adsorption capacity (2.16 mg/g) was achieved for As(III) by using HBC-Fe3O4-MnO2 (3:2) as compared to HBC-Fe3O4-MnO2 (2:1) and HBC-Fe3O4-MnO2 (1:1). The experimental data of As(V) adsorption fitted well with the Langmuir isotherm model, whereas As(III) data was described perfectly by Freundlich model. The pseudo-second-order kinetic model was fitted well for the entire adsorption process of As(III) and As(V) suggesting that the adsorption is a rate-controlling step. Aqueous solution pH was found to greatly affect the adsorption behavior. Furthermore, co-ions including HCO3(-) and PO4(3-) exhibited greater influence on arsenic removal efficiency, whereas Cl(-), NO3(-), SO4(2-) were found to have negligible effects on arsenic removal. Five consecutive adsorption-regeneration cycles confirmed that the adsorbent could be reusable for successive arsenic treatment and can be used in real treatment applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    International Nuclear Information System (INIS)

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-01-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  4. Arsenic in drinking water wells on the Bolivian high plain: field monitoring and effect of salinity on removal efficiency of iron-oxides-containing filters

    OpenAIRE

    Van den Bergh, Kenneth; Du Laing, Gijs; Montoya, Juan; De Deckere, E; Tack, Filip

    2010-01-01

    In the rural areas around Oruro (Bolivia), untreated groundwater is used directly as drinking water. This research aimed to evaluate the general drinking water quality, with focus on arsenic (As) concentrations, based on analysis of 67 samples from about 16 communities of the Oruro district. Subsequently a filter using Iron Oxide Coated Sand (IOCS) and a filter using a Composite Iron Matrix (CIM) were tested for their arsenic removal capacity using synthetic water mimicking real groundwater. ...

  5. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple shell as low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Ashish S. Sartape

    2017-05-01

    Full Text Available In the present study, the use of low-cost, abundantly available, highly efficient and eco-friendly adsorbent wood apple shell (WAS has been reported as an alternative to the current expensive methods of removing of malachite green (MG dye from aqueous solution. The effects of different variables, adsorbent dosage, initial dye concentration, pH, contact time, temperature etc. were investigated and optimal experimental conditions were ascertained. The Langmuir isotherm model has given a better conformity than the Freundlich model with 80.645 mg/g as maximum adsorption capacity at 299 K. The adsorption of MG on WAS was confirmed by FTIR, SEM study, as it showed the change in characterization before and after adsorption. It was found that the Lagergren’s model could be used for the prediction of the system’s kinetics, while intraparticle diffusion study and Boyd plot were used to furnish the mechanistic study. Thermodynamic study concluded the spontaneous and endothermic nature of the adsorption. Present investigation and comparison with other reported adsorbents concluded that, WAS may be applied as a low-cost attractive option for removal of MG from aqueous solution.

  6. Removal of organic matter from dairy industry waste water using low-cost adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.; Bhole, A.G. [College of Engineering, Badnera (India). Civil Engineering Department

    2002-07-01

    The present study envisages the use of cost-effective adsorbents such as fly ash, bagasse, wheat straw dust, sawdust, and coconut coir for the reduction of the TDS (total dissolved solids) from dairy industry effluent waste water. PAC (powdered activated carbon) was also used and the results were compared. Sorption data have been correlated with both the Langmuir and the Freundlich adsorption isotherm models. The Freundlich static isotherm model is found applicable to all the six adsorbents for removing TDS from the dairy waste water. The order of selectivity is PAC, bagasse, fly ash, sawdust, wheat straw, coconut coir for the removal of TDS at optimum conditions. 8 refs., 6 figs., 3 tabs.

  7. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics

    Directory of Open Access Journals (Sweden)

    Xuesong Xu

    2018-01-01

    Full Text Available Selective removal of arsenic from aqueous solutions with high salinity is required for safe disposal of the concentrate and protection of the environment. The use of drinking water treatment solids (DWTS to remove arsenic from reverse osmosis (RO concentrate was studied by batch sorption experiments. The impacts of solution chemistry, contact time, sorbent dosage, and arsenic concentration on sorption were investigated, and arsenic sorption kinetics and isotherms were modeled. The results indicated that DWTS were effective in removing arsenic from RO concentrate. The arsenic sorption process followed a pseudo-second-order kinetic model. Multilayer adsorption was simulated by Freundlich equation. The maximum sorption capacities were calculated to be 170 mg arsenic per gram of DWTS. Arsenic sorption was enhanced by surface precipitation onto the DWTS due to the high amount of calcium in the RO concentrate and the formation of ternary complexes between arsenic and natural organic matter (NOM bound by the polyvalent cations in DWTS. The interactions between arsenic and NOM in the solid phase and aqueous phase exhibited two-sided effects on arsenic sorption onto DWTS. NOM in aqueous solution hindered the arsenic sorption onto DWTS, while the high organic matter content in solid DWTS phase enhanced arsenic sorption.

  8. Arsenic Removal from Drinking Water by Absorptive Media-U.S. EPA Demonstration Project at Desert Sands MDWCA, NM Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at the Desert Sands Mutual Domestic Water Consumers Association (MDWCA) facility in Anthony, NM. The objectives of the project were to evalu...

  9. Arsenic Removal from Drinking Water by Coagulation/Filtration - U.S. EPA Demonstration Project at Village of Waynesville, IL - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal drinking water treatment technology demonstration project at the Village of Waynesville, IL. The main objective of the project was to evaluate the effectiveness of the Peerless coagu...

  10. Arsenic Removal from Drinking Water by Coagulation/Filtration - U.S. EPA Demonstration Project at Town of Arnaudville, LA - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the United Water Systems’ facility in Arnaudville, LA. The objectives of the project were to evaluate: (1) the effectiveness of K...

  11. Arsenic in Drinking Water—A Global Environmental Problem

    Science.gov (United States)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  12. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    Science.gov (United States)

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  13. Removal of calcium and magnesium ions from hard water using modified Amorphophallus campanulatus skin as a low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Lestari Ajeng Yulianti Dwi

    2018-01-01

    Full Text Available Low cost adsorbent from Amorphophallus campanulatus skin has successfully synthesized to remove calcium and magnesium ions in the syntetic hard water. A. campanulatus skin were dried, crushed into powder form and modified by acid modification. A batch experiment with various parameters was used in this research. Various isotherm models were applied to fit the experimental data. Adsorption capacity of Ca and Mg on KB and KM adsorbents in 100 ppm solution respectively 10,85 mg/g, 27,64 mg/g, 1,79 mg/g and 20,1 mg/g. It was found out that the adsorption behavior of hard mineral ions by adsorbents match well with the Dubinin Radushkevich isotherm model. Based on the result, it can be concluded that a acid modified A. campanulatus skin is quite potential as a new low cost adsorbent which is expected to be applied to Indonesian groundwater which have high degree of hardness.

  14. Effectiveness of low cost toothbrushes, with or without dentifrice, in the removal of bacterial plaque in deciduous teeth

    Directory of Open Access Journals (Sweden)

    Parizotto Symonne Pimentel Castro de Oliveira Lima

    2003-01-01

    Full Text Available The main objective of this study was to compare the effectiveness of a low cost toothbrush ("monoblock" to that of a conventional toothbrush with and without addition of dentifrice with respect to the removal of dental plaque. Thirty-two 4- to 6-year-old children took part in this study: they were evaluated under four experimental conditions defined by the combinations of the values of two factors, toothbrush (conventional or monoblock and use of dentifrice (with or without. The effectiveness of the treatments was defined in terms of the reduction of a bacterial plaque index evaluated before and after toothbrushing. No statistically significant differences were detected between the two types of toothbrushes with respect to the reduction of the bacterial plaque index. Similarly, there were no statistical evidences that the use of dentifrice improves the mechanical control of dental plaque. These results are important from a public health point of view, specially in developing countries, where the dissemination of educational and preventive techniques of low cost are fundamental.

  15. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Pierre, E-mail: pierrelp.hm@gmail.com [Sorbonne Universités – Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05 (France); Battaglia-Brunet, Fabienne; Parmentier, Marc; Joulian, Catherine; Gassaud, Cindy [French Geological Survey (BRGM), 3 av. Claude Guillemin, 45060, BP 36009, Orléans Cedex 2 (France); Fernandez-Rojo, Lidia [HydroSciences Montpellier, UMR 5569 CNRS-IRD-UM, CC57, 163 rue Auguste Broussonet, 34090 Montpellier (France); Guigner, Jean-Michel; Ikogou, Maya; Stetten, Lucie [Sorbonne Universités – Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05 (France); Olivi, Luca [Sincrotrone Trieste ELETTRA, I-34012 Trieste (Italy); Casiot, Corinne [HydroSciences Montpellier, UMR 5569 CNRS-IRD-UM, CC57, 163 rue Auguste Broussonet, 34090 Montpellier (France); Morin, Guillaume [Sorbonne Universités – Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2017-01-05

    Highlights: • SRB activity is evidenced at acidic pH in acid mine drainage water. • Total arsenic and zinc removal from solution is observed. • As, Zn and Fe are observed to precipitate as biogenic sulfides. • Amorphous orpiment (As{sup III}{sub 2}S{sub 3}) and realgar (As{sup II}S) are observed as main As-bearing sulfides. • A mechanism is proposed for the reduction of As{sub 2}S{sub 3} to AsS by biogenic H{sub 2}S under acidic conditions. - Abstract: Acid mine drainages (AMD) are major sources of pollution to the environment. Passive bio-remediation technologies involving sulfate-reducing bacteria (SRB) are promising for treating arsenic contaminated waters. However, mechanisms of biogenic As-sulfide formation need to be better understood to decontaminate AMDs in acidic conditions. Here, we show that a high-As AMD effluent can be decontaminated by an indigenous SRB consortium. AMD water from the Carnoulès mine (Gard, France) was incubated with the consortium under anoxic conditions and As, Zn and Fe concentrations, pH and microbial activity were monitored during 94 days. Precipitated solids were analyzed using electron microscopy (SEM/TEM-EDXS), and Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy at the As K-edge. Total removal of arsenic and zinc from solution (1.06 and 0.23 mmol/L, respectively) was observed in two of the triplicates. While Zn precipitated as ZnS nanoparticles, As precipitated as amorphous orpiment (am-As{sup III}{sub 2}S{sub 3}) (33–73%), and realgar (As{sup II}S) (0–34%), the latter phase exhibiting a particular nanowire morphology. A minor fraction of As is also found as thiol-bound As{sup III} (14–23%). We propose that the formation of the As{sup II}S nanowires results from As{sup III}{sub 2}S{sub 3} reduction by biogenic H{sub 2}S, enhancing the efficiency of As removal. The present description of As immobilization may help to set the basis for bioremediation strategies using SRB.

  16. Nanoparticle Zere-valent Iron Affect on As (V Removal from Drinking Water

    Directory of Open Access Journals (Sweden)

    Hamed Koohpayehzadeh

    2012-10-01

    Full Text Available Arsenic which is present in the underground and surface water is one of the most toxic elements threating human health and animals. Arsenic has been removed in different type of ways. In this study Arsenic removal from drinking water and its decreasing rates were investigated by NZVI (nanoparticle zerovalent iron to standard limit (I.e.  0.01 mg/lit . The tests were conducted on reactor containing 100 ml water containing 1mg/L. Arsenic by virtue of Batch method. The mixture was executed in mixing was done an Oultrasnic device in order to have better mixture and complete distribution of nanoparticles in water. Then the arsenic was removed from the water by VATMAN paper of 0.45 Hm. The remained arsenic in the water was measured by ICP device. In this article the influence of the parameters including mixture time , PH ,NZVI and arcenic doses were examined . Having perfomed many tests the results showed that 1 mg arsenic can be removed 100 percent by 0.05 g NZVI in 8 min. It is possible to remove by 98 percent arsenic in 5-10 PH range. Iron nanopaticle way is an effective and rapid way to remove arsenic from water and various conditions have not considerable effect on it.

  17. The effectiveness of water-treatment systems for arsenic used in 11 homes in Southwestern and Central Ohio, 2013

    Science.gov (United States)

    Thomas, Mary Ann; Ekberg, Mike

    2016-02-23

    In 2013, the U.S. Geological Survey and the Miami Conservancy District investigated the effectiveness of methods used to remove arsenic from drinking water at 11 homes in southwestern and central Ohio. The untreated (raw) ground-water had arsenic concentrations of 7.7–382 micrograms per liter (µg/L), and the median concentration was 30 µg/L. The pH was neutral to slightly alkaline, and redox conditions were strongly reducing, as indicated by high concentrations of iron. The predominant arsenic species was arsenite (As3+), which is difficult to treat because it exists in water as an uncharged compound (H3AsO3).The water-treatment systems included (1) seven single-tap reverse-osmosis systems, (2) two whole-house oxidation/filtration systems, and (3) two systems that included wholehouse anion exchange and single-tap reverse osmosis. All but one system included pretreatment by a water softener, and two systems included preoxidation to convert arsenite (As3+) to arsenate (As5+) before treatment by anion exchange.None of the treatment systems removed all of the arsenic from the drinking water. About one-half of the systems decreased the arsenic concentration to less than the maximum contamination level of 10 µg/L. The effectiveness of the systems varied widely; the percentage of arsenic removed ranged from 2 to 90 percent, and the median was 65 percent.At some sites, the low effectiveness of arsenic removal may have been related to system maintenance and(or) operation issues. At two sites, homeowners acknowledged that the treatment systems had not been maintained for several years. At two other sites, the treatment systems were being maintained, but the water-quality data indicated that one of the components was not working, unbeknownst to the homeowner. EPA research at a small number of sites in Ohio indicated that operation and maintenance of some arsenic-treatment systems was not always simple.Another factor that affected system effectiveness was the quality of

  18. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Merkey, Brian

    2010-01-01

    with high efficiency and relative low costs. However, the removal of nitrogen from domestic wastewater with a low carbon/nitrogen (C/N) ratio can often be limited in municipal wastewater plants (WWTPs) because organic carbon is a limiting factor for denitrification. The present work reviews innovative....... They can effectively be used for nitrogen removal from low C/N domestic wastewater without external carbon addition. In addition, conventional and alternative carbon sources for enhanced biological nitrogen removal were also reviewed. We conclude that alternative carbon sources such as wine distillery...... at large scale for nitrogen removal from low C/N domestic wastewater, (2) further method logic are explored to introduce the Anammox pathway into domestic wastewater treatment, and (3) alternative carbon sources are explored and optimized for supporting the denitrification. With these efforts, cost...

  19. A laboratory study of removing Arsenic from a synthetic copper concentrate

    International Nuclear Information System (INIS)

    Tajadod, J.

    2000-01-01

    Arsenic is the 20th most abundant element if the earth's crust at a level of about 2 ppm. It is a constituent of over 300 minerals and is commonly found in non-ferrous ores such as copper, lead, zinc, gold and uranium. Efficient separation of arsenic minerals from other sulphide minerals is of great importance for the metallurgical performance of flotation processes. This work was undertaken to study the separation of engirt, an arsenic-bearing mineral from chalcopyrite in copper concentrates. To achieve this aim the possible depression of engirt using some sulphide depressants was studied

  20. Geospatial Association between Low Birth Weight and Arsenic in Groundwater in New Hampshire, USA

    Science.gov (United States)

    Shi, Xun; Ayotte, Joseph D.; Onda, Akikazu; Miller, Stephanie; Rees, Judy; Gilbert-Diamond, Diane; Onega, Tracy; Gui, Jiang; Karagas, Margaret; Moeschler, John

    2015-01-01

    Background There is increasing evidence of the role of arsenic in the etiology of adverse human reproductive outcomes. Since drinking water can be a major source of arsenic to pregnant women, the effect of arsenic exposure through drinking water on human birth may be revealed by a geospatial association between arsenic concentration in groundwater and birth problems, particularly in a region where private wells substantially account for water supply, like New Hampshire, US. Methods We calculated town-level rates of preterm birth and term low birth weight (term LBW) for New Hampshire, using data for 1997-2009 and stratified by maternal age. We smoothed the rates using a locally-weighted averaging method to increase the statistical stability. The town-level groundwater arsenic values are from three GIS data layers generated by the US Geological Survey: probability of local groundwater arsenic concentration > 1 μg/L, probability > 5 μg/L, and probability > 10 μg/L. We calculated Pearson's correlation coefficients (r) between the reproductive outcomes (preterm birth and term LBW) and the arsenic values, at both state and county levels. Results For preterm birth, younger mothers (maternal age arsenic level based on the data of probability > 10 μg/L; For older mothers, r = 0.19 when the smoothing threshold = 3,500; A majority of county level r values are positive based on the arsenic data of probability > 10 μg/L. For term LBW, younger mothers (maternal age arsenic level based on the data of probability > 1 μg/L; For older mothers, r = 0.14 when the rates are smoothed with a threshold = 1,000 births and also adjusted by town median household income in 1999, and the arsenic values are the town minimum based on probability > 10 μg/L. At the county level, for younger mothers positive r values prevail, but for older mothers it is a mix. For both birth problems, the several most populous counties - with 60-80% of the state's population and clustering at the southwest

  1. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source?

    International Nuclear Information System (INIS)

    Fatmi, Zafar; Azam, Iqbal; Ahmed, Faiza; Kazi, Ambreen; Gill, Albert Bruce; Kadir, Muhmmad Masood; Ahmed, Mubashir; Ara, Naseem; Janjua, Naveed Zafar

    2009-01-01

    A significant proportion of groundwater in south Asia is contaminated with arsenic. Pakistan has low levels of arsenic in groundwater compared with China, Bangladesh and India. A representative multi-stage cluster survey conducted among 3874 persons ≥15 years of age to determine the prevalence of arsenic skin lesions, its relation with arsenic levels and cumulative arsenic dose in drinking water in a rural district (population: 1.82 million) in Pakistan. Spot-urine arsenic levels were compared among individuals with and without arsenic skin lesions. In addition, the relation of age, body mass index, smoking status with arsenic skin lesions was determined. The geographical distribution of the skin lesions and arsenic-contaminated wells in the district were ascertained using global positioning system. The total arsenic, inorganic and organic forms, in water and spot-urine samples were determined by atomic absorption spectrophotometry. The prevalence of skin lesions of arsenic was estimated for complex survey design, using surveyfreq and surveylogistic options of SAS 9.1 software.The prevalence of definitive cases i.e. hyperkeratosis of both palms and soles, was 3.4 per 1000 and suspected cases i.e. any sign of arsenic skin lesions (melanosis and/or keratosis), were 13.0 per 1000 among ≥15-year-old persons in the district. Cumulative arsenic exposure (dose) was calculated from levels of arsenic in water and duration of use of current drinking water source. Prevalence of skin lesions increases with cumulative arsenic exposure (dose) in drinking water and arsenic levels in urine. Skin lesions were 2.5-fold among individuals with BMI 2 . Geographically, more arsenic-contaminated wells and skin lesions were alongside Indus River, suggests a strong link between arsenic contamination of groundwater with proximity to river.This is the first reported epidemiological and clinical evidence of arsenic skin lesions due to groundwater in Pakistan. Further investigations and

  2. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source?

    Energy Technology Data Exchange (ETDEWEB)

    Fatmi, Zafar, E-mail: zafar.fatmi@aku.edu [Department of Community Health Sciences, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi (Pakistan); Azam, Iqbal; Ahmed, Faiza; Kazi, Ambreen; Gill, Albert Bruce; Kadir, Muhmmad Masood; Ahmed, Mubashir; Ara, Naseem; Janjua, Naveed Zafar [Department of Community Health Sciences, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi (Pakistan)

    2009-07-15

    A significant proportion of groundwater in south Asia is contaminated with arsenic. Pakistan has low levels of arsenic in groundwater compared with China, Bangladesh and India. A representative multi-stage cluster survey conducted among 3874 persons {>=}15 years of age to determine the prevalence of arsenic skin lesions, its relation with arsenic levels and cumulative arsenic dose in drinking water in a rural district (population: 1.82 million) in Pakistan. Spot-urine arsenic levels were compared among individuals with and without arsenic skin lesions. In addition, the relation of age, body mass index, smoking status with arsenic skin lesions was determined. The geographical distribution of the skin lesions and arsenic-contaminated wells in the district were ascertained using global positioning system. The total arsenic, inorganic and organic forms, in water and spot-urine samples were determined by atomic absorption spectrophotometry. The prevalence of skin lesions of arsenic was estimated for complex survey design, using surveyfreq and surveylogistic options of SAS 9.1 software.The prevalence of definitive cases i.e. hyperkeratosis of both palms and soles, was 3.4 per 1000 and suspected cases i.e. any sign of arsenic skin lesions (melanosis and/or keratosis), were 13.0 per 1000 among {>=}15-year-old persons in the district. Cumulative arsenic exposure (dose) was calculated from levels of arsenic in water and duration of use of current drinking water source. Prevalence of skin lesions increases with cumulative arsenic exposure (dose) in drinking water and arsenic levels in urine. Skin lesions were 2.5-fold among individuals with BMI <18.5 kg/m{sup 2}. Geographically, more arsenic-contaminated wells and skin lesions were alongside Indus River, suggests a strong link between arsenic contamination of groundwater with proximity to river.This is the first reported epidemiological and clinical evidence of arsenic skin lesions due to groundwater in Pakistan. Further

  3. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source?

    Science.gov (United States)

    Fatmi, Zafar; Azam, Iqbal; Ahmed, Faiza; Kazi, Ambreen; Gill, Albert Bruce; Kadir, Muhmmad Masood; Ahmed, Mubashir; Ara, Naseem; Janjua, Naveed Zafar

    2009-07-01

    A significant proportion of groundwater in south Asia is contaminated with arsenic. Pakistan has low levels of arsenic in groundwater compared with China, Bangladesh and India. A representative multi-stage cluster survey conducted among 3874 persons > or = 15 years of age to determine the prevalence of arsenic skin lesions, its relation with arsenic levels and cumulative arsenic dose in drinking water in a rural district (population: 1.82 million) in Pakistan. Spot-urine arsenic levels were compared among individuals with and without arsenic skin lesions. In addition, the relation of age, body mass index, smoking status with arsenic skin lesions was determined. The geographical distribution of the skin lesions and arsenic-contaminated wells in the district were ascertained using global positioning system. The total arsenic, inorganic and organic forms, in water and spot-urine samples were determined by atomic absorption spectrophotometry. The prevalence of skin lesions of arsenic was estimated for complex survey design, using surveyfreq and surveylogistic options of SAS 9.1 software.The prevalence of definitive cases i.e. hyperkeratosis of both palms and soles, was 3.4 per 1000 and suspected cases i.e. any sign of arsenic skin lesions (melanosis and/or keratosis), were 13.0 per 1000 among > or = 15-year-old persons in the district. Cumulative arsenic exposure (dose) was calculated from levels of arsenic in water and duration of use of current drinking water source. Prevalence of skin lesions increases with cumulative arsenic exposure (dose) in drinking water and arsenic levels in urine. Skin lesions were 2.5-fold among individuals with BMI <18.5 kg/m2. Geographically, more arsenic-contaminated wells and skin lesions were alongside Indus River, suggests a strong link between arsenic contamination of groundwater with proximity to river.This is the first reported epidemiological and clinical evidence of arsenic skin lesions due to groundwater in Pakistan. Further

  4. Treatability of inorganic arsenic and organoarsenicals in groundwater

    International Nuclear Information System (INIS)

    Kuhlmeier, P.D.; Sherwood, S.P.

    1996-01-01

    A 2-year three-phase study into methods for treatment of mixed inorganic and organic arsenic species to drinking water levels was conducted at a former pesticide facility in Houston, Tex. The species present include monomethylarsinic acid, dimethylarsinic acid, arsenate, and arsenite. Phase One studies reported here included the evaluation of four adsorbents using bottle roll and column flow through techniques, oxidation through the application of Fenton's reagent followed by coprecipitation, coprecipitation without oxidation, and ultraviolet (UV)/ozone tests. The four adsorbents tested were activated carbon, activated alumina, ferrous sulfide, and a strongly basic ion exchange resin. All adsorbents removed some arsenic, but none except ferrous sulfide was sufficiently effective to warrant follow-up studies. Two small ferrous sulfide column tests, run under different conditions, removed arsenic but not to the levels and loading capacities needed to make this method practical. Organic compound destruction was tested using Fenton's reagent (a mixture of hydrogen peroxide and ferrous iron) before coprecipitation. Arsenic was reduced to 170 ppb in the treated liquor. Coprecipitation without oxidative pretreatment produced a liquor containing 260 ppb arsenic. A two-stage Fenton-type coprecipitation procedure produced a supernatant containing 110 ppb total arsenic. Preliminary tests with a second-stage oxidative process, using ozone and UV radiation, showed approximately 80% destruction of an organic-arsenic surrogate (cacodylic acid) in 1 hour

  5. Arsenic reduction from aqueous environment by water lettuce (Pistia stratiotes L.).

    Science.gov (United States)

    Basu, Arindam; Kumar, Sunil; Mukherjee, Somnath

    2003-04-01

    Arsenate uptake by aquatic plant water lettuce (Pistia stratiotes L.) was studied in the laboratory condition to investigate a low cost natural aquatic treatment system for pollutant removal. The plants were harvested from a local pollution free pond in young condition and hydroponically cultured in the laboratory. Bioaccumulation was noticed to be both concentration and duration dependent. The results show that the plant could effectively abosrb arsenic between a range of 0.25 to 5.0 mg/l to the extent of 82.0 to 22.8% for a biomass of 20g/l at pH 7.0 after 144 hours. The results were also plotted in Langmuir and Freundlich isotherms and the data were well fitted. The sorption capacity was evaluated as 1.43 mg/g for Langmuir isotherm and 1.01 mg/g for Freundlich isotherm. The removal efficiency was, however, noted to be maximum (87.5%) at pH 6.5. The effect of biomass quantity has also been investigated along with some metabolic parameters.

  6. Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from Aloe vera leaves shell

    Directory of Open Access Journals (Sweden)

    Yusef Omidi Khaniabadi

    2017-03-01

    Full Text Available Background: Synthetic dyes have several harmful effects on human health as well as aquatic life. In this study, activated carbon (AV-AC, based on Aloe vera leaf shells, was used as a novel agricultural adsorbent, one that is low-cost and available for the removal of Congo red (CR as a carcinogenic dye from aqueous solutions. Methods: In the batch system, the influence of different parameters like contact time, pH, adsorbent dosage, and initial CR concentration were examined on the dye removal from liquid medium. The experimental data were fitted by pseudo-first-order and pseudo-second-order kinetics, and also Langmuir and Freundlich isotherms models. Results: The optimum contact time and pH for the uptake of CR were obtained at 20 minutes and acidic pH of 2. The maximum uptake capacity of CR dye by AV-AC was 1850 mg/g. The results showed that the experimental data were well-fitted by the pseudo-second-order kinetic model (R2 > 0.99 and Freundlich isotherm model (R2 > 0.99. Conclusion: According to the results of our study, the AV-AC is a low-cost, non-toxic, and effective adsorbent for the uptake of CR dye from aqueous media.

  7. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water.

    Science.gov (United States)

    Etmannski, T R; Darton, R C

    2014-08-01

    In this paper we show how the process analysis method (PAM) can be applied to assess the sustainability of options to mitigate arsenic in drinking water in rural India. Stakeholder perspectives, gathered from a fieldwork survey of 933 households in West Bengal in 2012 played a significant role in this assessment. This research found that the 'most important' issues as specified by the technology users are cost, trust, distance from their home to the clean water source (an indicator of convenience), and understanding the health effects of arsenic. We show that utilisation of a technology is related to levels of trust and confidence in a community, making use of a composite trust-confidence indicator. Measures to improve trust between community and organisers of mitigation projects, and to raise confidence in technology and also in fair costing, would help to promote successful deployment of appropriate technology. Attitudes to cost revealed in the surveys are related to the low value placed on arsenic-free water, as also found by other investigators, consistent with a lack of public awareness about the arsenic problem. It is suggested that increased awareness might change attitudes to arsenic-rich waste and its disposal protocols. This waste is often currently discarded in an uncontrolled manner in the local environment, giving rise to the possibility of point-source recontamination. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Ultra-shallow arsenic implant depth profiling using low-energy nitrogen beams

    International Nuclear Information System (INIS)

    Fearn, Sarah; Chater, Richard; McPhail, David

    2004-01-01

    Sputtering of silicon by low-energy nitrogen primary ion beams has been studied by a number of authors to characterize the altered layer, ripple formation and the sputtered yields of secondary ions [Surf. Sci. 424 (1999) 299; Appl. Phys. A: Mater. Sci. Process 53 (1991) 179; Appl. Phys. Lett. 73 (1998) 1287]. This study examines the application of low-energy nitrogen primary ion beams for the possible depth profiling of ultra-shallow arsenic implants into silicon. The emphasis of this work is on the matrix silicon signals in the pre-equilibrium surface region that are used for dose calibration. Problems with these aspects of the concentration depth profiling can give significant inconsistencies well outside the error limits of the quoted dose for the arsenic implantation as independently verified by CV profiling. This occurs during depth profiling with either oxygen primary ion beams (with and without oxygen leaks) or cesium primary ion beams

  9. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun-Hai [State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang, 330013 (China); Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China); Wang, You-Qun [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China); Zhang, Zhi-Bin, E-mail: zhangnjut@163.com [State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang, 330013 (China); Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China); Cao, Xiao-Hong; Nie, Wen-Bin; Li, Qin [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China); Hua, Rong [State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang, 330013 (China); Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Fuzhou, 344000 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Fuzhou, 344000 (China)

    2013-05-15

    In this study, a low-cost and high-efficient carbonaceous adsorbent (HTC-COOH) with carboxylic groups was developed for U(VI) removal from aqueous solution compared with the pristine hydrothermal carbon (HTC). The structure and chemical properties of resultant adsorbents were characterized by Scanning electron microscope (SEM), N{sub 2} adsorption–desorption, Fourier transform-infrared spectra (FT-IR) and acid–base titration. The key factors (solution pH, contact time, initial U(VI) concentrations and temperature) affected the adsorption of U(VI) on adsorbents were investigated using batch experiments. The adsorption of U(VI) on HTC and HTC-COOH was pH-dependent, and increased with temperature and initial ion concentration. The adsorption equilibrium of U(VI) on adsorbents was well defined by the Langmuir isothermal equation, and the monolayer adsorption capacity of HTC-COOH was found to be 205.8 mg/g. The kinetics of adsorption was very in accordance with the pseudo-second-order rate model. The adsorption processes of U(VI) on HTC and HTC-COOH were endothermic and spontaneous in nature according to the thermodynamics of adsorption. Furthermore, HTC-COOH could selectively adsorption of U(VI) in aqueous solution containing co-existing ions (Mg{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Zn{sup 2+} and Mn{sup 2+}). From the results of the experiments, it is found that the HTC-COOH is a potential adsorbent for effective removal of U(VI) from polluted water.

  10. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent

    Science.gov (United States)

    Liu, Yun-Hai; Wang, You-Qun; Zhang, Zhi-Bin; Cao, Xiao-Hong; Nie, Wen-Bin; Li, Qin; Hua, Rong

    2013-05-01

    In this study, a low-cost and high-efficient carbonaceous adsorbent (HTC-COOH) with carboxylic groups was developed for U(VI) removal from aqueous solution compared with the pristine hydrothermal carbon (HTC). The structure and chemical properties of resultant adsorbents were characterized by Scanning electron microscope (SEM), N2 adsorption-desorption, Fourier transform-infrared spectra (FT-IR) and acid-base titration. The key factors (solution pH, contact time, initial U(VI) concentrations and temperature) affected the adsorption of U(VI) on adsorbents were investigated using batch experiments. The adsorption of U(VI) on HTC and HTC-COOH was pH-dependent, and increased with temperature and initial ion concentration. The adsorption equilibrium of U(VI) on adsorbents was well defined by the Langmuir isothermal equation, and the monolayer adsorption capacity of HTC-COOH was found to be 205.8 mg/g. The kinetics of adsorption was very in accordance with the pseudo-second-order rate model. The adsorption processes of U(VI) on HTC and HTC-COOH were endothermic and spontaneous in nature according to the thermodynamics of adsorption. Furthermore, HTC-COOH could selectively adsorption of U(VI) in aqueous solution containing co-existing ions (Mg2+, Co2+, Ni2+, Zn2+ and Mn2+). From the results of the experiments, it is found that the HTC-COOH is a potential adsorbent for effective removal of U(VI) from polluted water.

  11. Removal of arsenic from contaminated groundwater with application of iron electrodissolution, aeration and sand filtration

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Arturi, Kasia; Søgaard, Erik Gydesen

    2014-01-01

    The results from a new water treatment system for arsenic removal are presented. The technology is based on the employment of an electrolytic iron dissolution and efficient aeration procedure prior to sand filtration. The treatment was introduced and investigated in a pilot scale plant and full......, there was a relationship where the higher applied current from the iron generator resulted in a better quality of the produced water. The long period of use also helped to determine a proper iron dosage (the Fe/As ratio 68 mg/mg) and identify carbonate scale formation in the electrochemical process. The electrolytic...

  12. Arsenic Accumulation by Pteris vittata L. in Two Chemically Variant Soils Treated with Arsenical Pesticides - Greenhouse Study

    Science.gov (United States)

    Therapong, C.; Datta, R.; Sarkar, D.; Pachanoor, D.

    2006-05-01

    Arsenic (As) is one of the most toxic elements present in the environment. Over the years, arsenic has found its way to the environment due to its extensive use in agriculture and in industrial practices as pesticides, fertilizers, wood preservatives, smelter wastes and coal combustion ash, all of which are of great environmental concern. Arsenic contamination affects biological activities because it is a carcinogen and a mutagen, which has detrimental effects on the immune system of animals. Remediation of arsenic-contaminated soils has become a major environmental issue in the recent years. Several physical and chemical treatment methods, such as soil washing, co-precipitation, and excavation, have used to remediate As, but all of these methods are rather expensive and can disturb soil physiology and ecology. Phytoremediation, a plant based technology for the removal of toxic contaminants from soil and water is an attractive approach. Of late, this technology has received a high degree of attention from the scientific community because it is environment-friendly and also because of its tremendous cost efficiency compared to the conventional methods. Chinese Brake Fern (Pteris vittata L.) is a known arsenic hyperaccumulator that is being used extensively at present to remove As from soils. However, the degree of efficiency of this plant in accumulating As is likely to be a function of the soil properties. The objective of the reported study was to investigate arsenic uptake by Chinese Brake Fern in As-contaminated soils from the Immokalee (acid sand with minimal As-retention potential) and Millhopper series (sandy loam with high Fe/Al content, hence, high As-retention potential). A greenhouse experiment was designed to evaluate the effects on As uptake by Chinese Brake Fern at two pesticide application rates: 225 mg/kg and 500 mg/kg As in two chemical forms, namely sodium arsenate (AsV) and dimethylarsinic acid (DMA). Each treatment was replicated three times in

  13. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  14. In situ treatment of arsenic-contaminated groundwater by air sparging.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-04-01

    Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Arsenic Removal from Drinking Water by Coagulation/Filtration, U.S. EPA Demonstration Project at the City of Okanogan, WA - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the City of Okanogan, WA facility. The objectives of the project were to evaluate: (1) the effectiveness of Filtronics’ FH-13 Ele...

  16. THE EFFECT OF PH, PHOSPHATE AND OXIDANT ON THE REMOVAL OF ARSENIC FROM DRINKING WATER DURING IRON REMOVAL

    Science.gov (United States)

    Arsenic is a naturally occurring drinking water contaminant that has known adverse human health effects. The recent compilation of new health effects data prompted the U.S. Environmental Protection Agency (USEPA) to recently reduce the previous arsenic maximum contaminant level ...

  17. The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chu, Jan-Show [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shu-Pin [Department of Urology, Kaohsiung Medical University Hospital, College of Medicine Kaohsiung Medical University, Kaohsiung, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Yang, Hsiu-Yuan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2011-12-15

    Our recent study demonstrated the increased risk of renal cell carcinoma (RCC) associated with high urinary total arsenic levels among people living in a low arsenic exposure area. Genomic instability is important in arsenic carcinogenesis. This study evaluated the relationship between the polymorphisms of p53, p21, and MDM2, which plays a role in gene stability, and the arsenic-related RCC risk. Here, we found that p53 Pro/Pro genotype and MDM2 SNP309 GG genotype significantly increased RCC risk compared to the p53 Arg/Arg genotype and MDM2 SNP309 TT genotype. RCC patients with the p53Arg/Arg genotype had a signicantly low percentage of inorganic arsenic, a low percentage of monomethylarsonic acid (MMA), and a high percentage of dimethylarsinic acid (DMA), which indicates efcient arsenic methylation capacity. Subjects with the p53 Arg/Pro + Pro/Pro genotype or MDM2 SNP309 TG + GG genotype, in conjunction with high urinary total arsenic ({>=} 14.02 {mu}g/L), had a signicantly higher RCC risk than those with the p53 Arg/Arg or MDM2 SNP309 TT genotypes and low urinary total arsenic. Taken together, this is the first study to show that a variant genotype of p53 Arg{sup 72}Pro or MDM2 SNP309 may modify the arsenic-related RCC risk even in a non-obvious arsenic exposure area. -- Highlights: Black-Right-Pointing-Pointer Subjects with p53 Pro/Pro or MDM2 GG genotype significantly increased RCC risk. Black-Right-Pointing-Pointer A significant multiplicative joint effect of p53 and p21 on RCC risk. Black-Right-Pointing-Pointer RCC patients with p53 Arg/Arg genotype had efficient arsenic methylation capacity. Black-Right-Pointing-Pointer Joint effect of p53 or MDM2 genotype and high urinary total arsenic on RCC risk.

  18. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    Science.gov (United States)

    2002-10-01

    issue paper does not address three technologies that have been used to treat water containing arsenic: • Biological treatment • Phytoremediation ...arsenic in water, and no aboveground treatments of groundwater conducted at full scale were found. Phytoremediation and electrokinetics are not...Roundtable. September 1998. http://www.frtr.gov/costperf.htm. 1.16 U.S. EPA. Office of Research and Development. Arsenic & Mercury - Workshop on Removal

  19. Solar light induced removal of arsenic from contaminated groundwater: the interplay of solar energy and chemical variables

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.G.; D' Hiriart, J.; Giullitti, J.; Hidalgo, M. del V. [Universidad Nacional de Tucaman (Argentina). Centro de Investigaciones y Transferencia en Quimica Aplicada; Lin, H.; Custo, G.; Litter, M.I. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividad Quimica; Blesa, M.A. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividad Quimica; Universidad Nacional de General San Martin (Argentina)

    2004-11-01

    The removal of arsenic by solar oxidation in individual units (SORAS) is currently being explored as a possible economic and simple technology to treat groundwater in Bangladesh and India. Hydroarsenicism affects also large regions of America, especially Argentina, Chile, Mexico and Peru. In this paper, the efficiency of arsenic removal by solar oxidation coupled with precipitation of iron (hydr)oxide, was assessed under various experimental conditions, both on samples of synthetic water and of groundwater of the province of Tucuman (Argentina). The results demonstrate that the underlying chemistry is very complex, and the efficiency is affected often in unpredictable ways by changes in the chemical matrix, or by changes in the operative conditions. Oxides generated from ferrous salts are more efficient than solids formed by hydrolysis of Fe(III); alkalinity contents (bicarbonate) is also important to permit the adequate precipitation. Addition of small amounts of citric acid (lemon juice) is beneficial, but at larger concentrations the effect is negative, probably because of interference in the formation of the solid. The effect of solar irradiation is variable, depending on the other experimental conditions. Although it is possible to remove As partially without solar irradiation under certain special conditions, a procedure versatile enough to cope with waters of different compositions must be based in the use of solar energy. Light plays the role of accelerating the oxidation of As(III) to As(V), and also affects the nature of the solid and, hence, its sorptive properties. The rationale of the effect of light is therefore appreciably more complex than in the case of heterogeneous photocatalysis with TiO{sub 2}. (Author)

  20. INTERACTIVE WORKSHOP ON ARSENIC REMOVAL FROM DRINKING WATER

    Science.gov (United States)

    In 2005, EPA's Office of Water and Office of Research and Development collaborated to present eleven arsenic training events. The workshops provided in-depth treatment technology training to help those affected; state drinking water staff, design engineers, system owners and cert...

  1. Facile one-pot construction of α-Fe_2O_3/g-C_3N_4 heterojunction for arsenic removal by synchronous visible light catalysis oxidation and adsorption

    International Nuclear Information System (INIS)

    Sun, Suwen; Ji, Chunnuan; Wu, Lingling; Chi, Shenghua; Qu, Rongjun; Li, Yan; Lu, Yangxiao; Sun, Changmei; Xue, Zhongxin

    2017-01-01

    α-Fe_2O_3/g-C_3N_4 composites with heterojunction were prepared by facile one-pot synthesis using ferric chloride and dicyandiamide as precursors. The newly formed composites were applied to remove arsenic from aqueous solution for the first time through synchronous visible light catalysis oxidation and adsorption. α-Fe_2O_3/g-C_3N_4 composites were characterized by wide-angle X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectroscopy, and BET surface analysis. Under visible light irradiation, As(III) was oxidized to As(V) efficiently on the surface of α-Fe_2O_3/g-C_3N_4. In addition, the oxidized arsenic could be adsorbed in situ, resulting in the effective arsenic removal. The enhancement of photocatalytic activity the composites was attributed to the construction of heterojunction between α-Fe_2O_3 and g-C_3N_4. A possible oxidation mechanism of the as-composites for As(III) under visible light irradiation was also elucidated. - Highlights: • α-Fe_2O_3/g-C_3N_4 composites with heterojunction was prepared by facile one-pot synthesis. • The photocatalytic activity of α-Fe_2O_3/g-C_3N_4 composites under visible light irradiation for As(III) was evaluated. • Synchronous visible light catalysis oxidation and adsorption were achieved for the removal of arsenic. • The reasonable oxidation mechanism of the composites for As(III) under visible light irradiation was investigated.

  2. Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer–aquitard system

    International Nuclear Information System (INIS)

    Wang, Ya; Jiao, Jiu Jimmy; Zhu, Sanyuan; Li, Yiliang

    2013-01-01

    Determination of oxidation states of solid-phase arsenic in bulk sediments is a valuable step in the evaluation of its bioavailability and environmental fate in deposits, but is difficult when the sediments have low arsenic contents and heterogeneous distribution of arsenic species. As K-edge X-ray absorption near-edge spectroscopy (XANES) was used to determine quantitatively the oxidation states of arsenic in sediments collected from different depths of boreholes in the Pearl River Delta, China, where the highest aquatic arsenic concentration is 161.4 μg/L, but the highest solid arsenic content only 39.6 mg/kg. The results demonstrated that XANES is efficient in determining arsenic oxidation states of the sediments with low arsenic contents and multiple arsenic species. The study on the high-resolution vertical variations of arsenic oxidation states also indicated that these states are influenced strongly by groundwater activities. With the help of geochemical data, solid arsenic speciation, toxicity and availability were further discussed. -- Highlights: •XANES is efficient in determining arsenic oxidation states of the bulk sediments. •Distribution of arsenic oxidation states is consistent with geochemical conditions. •Arsenic oxidation states are influenced strongly by groundwater activities. -- As K-edge X-ray absorption near-edge spectroscopy is efficient in determining arsenic oxidation states of the bulk sediments with low arsenic contents and heterogeneous distribution of arsenic species

  3. 40 CFR 141.154 - Required additional health information.

    Science.gov (United States)

    2010-07-01

    ... current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as...

  4. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation.

    Science.gov (United States)

    Flanagan, Sara V; Johnston, Richard B; Zheng, Yan

    2012-11-01

    A national drinking water quality survey conducted in 2009 furnished data that were used to make an updated estimate of chronic arsenic exposure in Bangladesh. About 20 million and 45 million people were found to be exposed to concentrations above the national standard of 50 µg/L and the World Health Organization's guideline value of 10 µg/L, respectively. From the updated exposure data and all-cause mortality hazard ratios based on local epidemiological studies, it was estimated that arsenic exposures to concentrations > 50 µg/L and 10-50 µg/L account for an annual 24,000 and perhaps as many as 19,000 adult deaths in the country, respectively. Exposure varies widely in the 64 districts; among adults, arsenic-related deaths account for 0-15% of all deaths. An arsenic-related mortality rate of 1 in every 16 adult deaths could represent an economic burden of 13 billion United States dollars (US$) in lost productivity alone over the next 20 years. Arsenic mitigation should follow a two-tiered approach: (i) prioritizing provision of safe water to an estimated 5 million people exposed to > 200 µg/L arsenic, and (ii) building local arsenic testing capacity. The effectiveness of such an approach was demonstrated during the United Nations Children's Fund 2006-2011 country programme, which provided safe water to arsenic-contaminated areas at a cost of US$ 11 per capita. National scale-up of such an approach would cost a few hundred million US dollars but would improve the health and productivity of the population, especially in future generations.

  5. The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments.

    Science.gov (United States)

    Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M

    2014-01-01

    Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.

  6. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    Science.gov (United States)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2017-09-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  7. Adsorption Studies of Heavy Metals by Low-Cost Adsorbents | Okoli ...

    African Journals Online (AJOL)

    In this study, removal of toxic metals Cr(VI) from artificially contaminated water has been investigated with the aim of detoxifying industrial effluents before their safe disposal onto land or into the river. Two low-cost natural adsorbents, Palm Kernel fiber and Coconut husks, were used to remove Cr(VI) ion from synthesized ...

  8. Low-Cost Servomotor Driver for PFM Control.

    Science.gov (United States)

    Aragon-Jurado, David; Morgado-Estevez, Arturo; Perez-Peña, Fernando

    2017-12-31

    Servomotors have already been around for some decades and they are extremely popular among roboticists due to their simple control technique, reliability and low-cost. They are usually controlled by using Pulse Width Modulation (PWM) and this paper aims to keep the idea of simplicity and low-cost, while introducing a new control technique: Pulse Frequency Modulation (PFM). The objective of this paper is to focus on our development of a low-cost servomotor controller which will allow the research community to use them with PFM. A low-cost commercial servomotor is used as the base system for the development: a small PCB that fits inside the case and allocates all the electronic components to control the motor has been designed to replace the original. The potentiometer is retained as the feedback sensor and a microcontroller is responsible for controlling the position of the motor. The paper compares the performance of a PWM and a PFM controlled servomotor. The comparison shows that the servomotor with our controller achieves a faster mechanism for switching targets and a lower latency. This controller can be used with neuromorphic systems to remove the conversion from events to PWM.

  9. Arsenic Removal from Drinking Water by Adsorptive Media U.S. EPA Demonstration Project at Richmond Elementary School in Susanville, CA Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at Richmond Elementary School in Susanville, CA. The objectives of the project were to evaluate: (1) the effectiveness of an Aquatic Treatme...

  10. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Woodstock Middle School in Woodstock, CT - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed for and the results obtained from the arsenic removal treatment technology demonstration project at the Woodstock Middle School in Woodstock, CT. The objectives of the project were to evaluate the effectiveness of Adsorbsia™ GTO™ me...

  11. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA U.S. EPA DEMONSTRATION PROJECT AT RICHMOND ELEMENTARY SCHOOL IN SUSANVILLE, CA SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first six months of the performance evaluation study of the Aquatic Treatment Systems, Inc. (ATS) adsorptive media arsenic removal system at Richmond Elementary School in Susanville, Californi...

  12. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Geneseo Hills Subdivision, in Geneseo, IL Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at the Geneseo Hills Subdivision in Geneseo, IL. The main objective of the project was to evaluate the effectiveness of AdEdge Technologies...

  13. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    Science.gov (United States)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are

  14. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils.

    Science.gov (United States)

    Datta, Rupali; Quispe, Mario A; Sarkar, Dibyendu

    2011-01-01

    The purpose of this greenhouse study was to assess the capacity of vetiver grass to accumulate arsenic from pesticide-contaminated soils of varying physico-chemical properties. Results indicate that vetiver is capable of tolerating moderate levels of arsenic up to 225 mg/kg. Plant growth and arsenic removal efficiency was strongly influenced by soil properties. Arsenic removal was highest (10.6%) in Millhopper soil contaminated with 45 mg/kg arsenic, which decreased to 4.5 and 0.6% at 225 and 450 mg/kg, respectively. High biomass, widespread root system and environmental tolerance make this plant an attractive choice for the remediation of soils contaminated with moderate levels of arsenic.

  15. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.

    Science.gov (United States)

    Makris, Konstantinos C; Sarkar, Dibyendu; Parsons, Jason G; Datta, Rupali; Gardea-Torresdey, Jorge L

    2009-11-15

    Historic applications of arsenical pesticides to agricultural land have resulted in accumulation of residual arsenic (As) in such soils. In situ immobilization represents a cost-effective and least ecological disrupting treatment technology for soil As. Earlier work in our laboratory showed that drinking-water treatment residuals (WTRs), a low-cost, waste by-product of the drinking-water treatment process exhibit a high affinity for As. Wet chemical experiments (sorption kinetics and desorption) were coupled with X-ray absorption spectroscopy measurements to elucidate the bonding strength and type of As(V) and As(III) sorption by an aluminum-based WTR. A fast (1h), followed by a slower sorption stage resulted in As(V) and As(III) sorption capacities of 96% and 77%, respectively. Arsenic desorption with a 5mM oxalate from the WTR was minimal, being always absorption spectroscopy data showed inner-sphere complexation between As and surface hydroxyls. Reaction time (up to 48h) had no effect on the initial As oxidation state for sorbed As(V) and As(III). A combination of inner-sphere bonding types occurred between As and Al on the WTR surface because mixed surface geometries and interatomic distances were observed.

  16. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.

    Science.gov (United States)

    Fan, Chen-Shiuan; Liou, Sofia Ya Hsuan; Hou, Chia-Hung

    2017-10-01

    A single-pass-mode capacitive deionization (CDI) reactor was used to remove arsenic from groundwater in the presence of multiple ions. The CDI reactor involved an applied voltage of 1.2 V and six cell pairs of activated carbon electrodes, each of which was 20 × 30 cm 2 . The results indicate that this method achieved an effluent arsenic concentration of 0.03 mg L -1 , which is lower than the arsenic concentration standard for drinking water and irrigation sources in Taiwan, during the charging stage. Additionally, the ability of the CDI to remove other coexisting ions was studied. The presence of other ions has a significant influence on the removal of arsenic from groundwater. From the analysis of the electrosorption selectivity, the preference for anion removal could be ordered as follows: NO 3 -  > SO 4 2-  > F -  > Cl - >As. The electrosorption selectivity for cations could be ordered as follows: Ca 2+  > Mg 2+  > Na +  ∼ K + . Moreover, monovalent cations can be replaced by divalent cations at the electrode surface in the later period of the electrosorption stage. Consequently, activated carbon-based capacitive deionization is demonstrated to be a high-potential technology for remediation of arsenic-contaminated groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation

    Directory of Open Access Journals (Sweden)

    Uttiya Dey

    2016-06-01

    Full Text Available Ground water arsenic contamination is a widespread problem in many developing countries including Bangladesh and India. In recent years development of modern innovative technologies for the removal of arsenic from aqueous system has become an interesting topic for research. In this present study, two rod shaped Gram-positive bacteria are being reported, isolated from arsenic affected ground water of Purbasthali block of Burdwan, West Bengal, India, which can tolerate arsenate concentration up to 4500 ppm and 550 ppm of arsenite concentration. From biochemical analysis and 16S rRNA sequencing, they were identified as Bacillus sp. and Aneurinibacillus aneurinilyticus respectively. The isolates SW2 and SW4 can remove 51.45% and 51.99% of arsenite and 53.29% and 50.37% of arsenate, respectively from arsenic containing culture media. Both of the isolate can oxidize arsenite to less toxic arsenate. These two arsenic resistant bacteria can be used as a novel pathway for the bioremediation of arsenic.

  18. An attempt to electrically enhance phytoremediation of arsenic contaminated water

    KAUST Repository

    Kubiak, Jan J.; Khankhane, Premraj J.; Kleingeld, Pieter J.; Lima, Ana T.

    2012-01-01

    Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately

  19. Efficiency of Acacia Tortillis Plant Pod Shell as a Low Cost and Available Adsorbent for the Removal of Phenol

    Directory of Open Access Journals (Sweden)

    Hossien JafariMansoorian

    2015-05-01

    Full Text Available The presence of nondegradable toxic compounds such as phenol in the environment has nowadays led to many health and environmental problems. The present empirical study was conducted on the lab scale to evaluate the efficiency of Acacia tortillis pod shell as a new alternative and low cost adsorbent for removing phenol from aqueous solutions. The experiment was performed in a batch system and the effects of important operation variables including initial phenol concentrations of 0.5, 1, 2, 4, 8, 16, 32, and 64 mg/l, absorbent doses of 0.1, 0.2, 0.4, 0.8, and 1.6g/l in predetermined mesh sizes (ranging over 30-60 and 60-100, pH levels of 2, 4, 6, 8, 10, and 12, and contact times of 10, 20, 30, 40, 50, and 60 min were evaluated. Finally, the Freundlich and Langmuir adsorption isotherms were determined in order to describe the relationship between the colored solution and the absorbent. Results showed that the highest phenol absorption efficiency achieved was above 95% which was obtained with an optimum pH level of 2, an optimum absorbent dose of 0.2 g/l, and a mesh size of 60-100 for a contact time of 10 minutes and at a low pollutant concentration. Increasing phenol concentration increased its removal efficiency but this removal rate was lower at extreme concentrations. Also, the adsorption process was found to be more compatible with the Freundlich model. Based on the results obtained, the pod shells of Acacia tortillis pod shell may be claimed to be an effective, efficient, and cheap absorbent for the removal of phenol from aqueous solutions.

  20. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Seely-Brown Village in Pomfret, CT - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed for and the results obtained from the arsenic removal treatment technology demonstration project at Seely-Brown Village in Pomfret, CT. The objectives of the project were to evaluate the effectiveness of ArsenXnp adsorption media in...

  1. Relationship between long-term exposure to low-level arsenic in drinking water and the prevalence of abnormal blood pressure.

    Science.gov (United States)

    Zhang, Chuanwu; Mao, Guangyun; He, Suxia; Yang, Zuopeng; Yang, Wei; Zhang, Xiaojing; Qiu, Wenting; Ta, Na; Cao, Li; Yang, Hui; Guo, Xiaojuan

    2013-11-15

    Arsenic increases the risk and incidence of cardiovascular disease. To explore the impact of long-term exposure to low-level arsenic in drinking water on blood pressure including pulse pressure (PP) and mean arterial blood pressure (MAP), a cross-sectional study was conducted in 2010 in which the blood pressure of 405 villagers was measured, who had been drinking water with an inorganic arsenic content 30-50 years of arsenic exposure and a 2.95-fold (95%CI: 1.31-6.67) increase in the group with >50 years exposure. Furthermore, the odds ratio for prevalence of abnormal PP and MAP were 1.06 (95%CI: 0.24-4.66) and 0.87 (95%CI: 0.36-2.14) in the group with >30-50 years of exposure, and were 2.46 (95%CI: 0.87-6.97) and 3.75 (95%CI: 1.61-8.71) for the group with >50 years exposure, compared to the group with arsenic exposure ≤ 30 years respectively. Significant trends for Hypertension (p<0.0001), PP (p<0.0001) and MAP (p=0.0016) were found. The prevalence of hypertension and abnormal PP as well as MAP is marked among a low-level arsenic exposure population, and significantly increases with the duration of arsenic exposure. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Bladder/lung cancer mortality in Blackfoot-disease (BFD)-endemic area villages with low (water arsenic levels--an exploration of the dose-response Poisson analysis.

    Science.gov (United States)

    Lamm, Steven H; Robbins, Shayhan A; Zhou, Chao; Lu, Jun; Chen, Rusan; Feinleib, Manning

    2013-02-01

    To examine the analytic role of arsenic exposure on cancer mortality among the low-dose (well water arsenic level villages in the Blackfoot-disease (BFD) endemic area of southwest Taiwan and with respect to the southwest regional data. Poisson analyses of the bladder and lung cancer deaths with respect to arsenic exposure (μg/kg/day) for the low-dose (villages with exposure defined by the village median, mean, or maximum and with or without regional data. Use of the village median well water arsenic level as the exposure metric introduced misclassification bias by including villages with levels >500 μg/L, but use of the village mean or the maximum did not. Poisson analyses using mean or maximum arsenic levels showed significant negative cancer slope factors for models of bladder cancers and of bladder and lung cancers combined. Inclusion of the southwest Taiwan regional data did not change the findings when the model contained an explanatory variable for non-arsenic differences. A positive slope could only be generated by including the comparison population as a separate data point with the assumption of zero arsenic exposure from drinking water and eliminating the variable for non-arsenic risk factors. The cancer rates are higher among the low-dose (villages in the BFD area than in the southwest Taiwan region. However, among the low-dose villages in the BFD area, cancer risks suggest a negative association with well water arsenic levels. Positive differences from regional data seem attributable to non-arsenic ecological factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Time to revisit arsenic regulations: comparing drinking water and rice.

    Science.gov (United States)

    Sauvé, Sébastien

    2014-05-17

    Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l(-1) was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l(-1). Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water.

  4. Application of Gamma Radiation to Enhance Heavy Metals Removal Efficiency to Bacteria Isolated from Ronpiboon District, Nakhon Sri Thamarat Province, Thailand

    International Nuclear Information System (INIS)

    Intrasungkha, Nugul; Wisapan, Walakon; Piadang, Nattayana

    2006-09-01

    The objective of this study was to isolate soil bacteria capable to te move 4 heavy metals, namely, arsenic (As(III)), lead Pb(II) and cadmium f ron old tin mine in Ronpiboon district, Nakhon Sri Thamarat. It was found that there were bacteria which capable to resist arsenic, lead and copper 11, 15, 8 and 2 ileitis, respectively[evacuate;y. The arsenic removal efficiency of these bacteria was evaluated at the low concentration of 1 u g/l. with the results of 7-61%. The lead and copper removal efficiencies at 10 mg/l were found at the range pf 9-98% and 8-40%, respectively. Six isolates of bacteria (KRD, KRH, KRM, KCD13 and KCD14) were selected to be irradiated by gamma radiation at the levels of 2-10 kGy. The heavy metals resistance was found increase in the range of of 125-16% for arsenic, 0-50% for copper, 0-18% for lead and 0-17% for cadmium, respectively. Also ut was found that the low temperature at 4 and -40 degree Celsius can prolong the bacterial survival up to 6 months. Later the arsenic removal experiment in liquid medium was conducted and it was found that the mutants can perform slightly better than wild type only >17%. It was due to the initial concentration of arsenic was too high (10 mg/l). The preliminary study of arsenic removal in soil was also conducted using pack-bed reactor. We found the proper ratio of pack material (soil and gravel) was 1:1 to promote the liquid and air circulation. The suitable medium was found to be acidified mo lass solution which were found promote the growth of tested bacterial isolates.

  5. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  6. Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II)

    International Nuclear Information System (INIS)

    Muniz, G.; Fierro, V.; Celzard, A.; Furdin, G.; Gonzalez-Sanchez, G.; Ballinas, M.L.

    2009-01-01

    Arsenic removal from natural well water from the state of Chihuahua (Mexico) is investigated by adsorption using a commercial activated carbon (AC). The latter is used as such, or after oxidation by several chemicals in aqueous solution: nitric acid, hydrogen peroxide, and ammonium persulphate. Raw and oxidised activated carbons are fully characterised (elementary analysis, surface chemistry, pore texture parameters, pH ZC , and TEM observation). Adsorption of As is measured in the aforementioned water, containing ca. 300 ppb of arsenic: removal of As is poor with the raw AC, and only the most oxidised carbons exhibit higher performances. By contrast, iron-doped ACs are much more efficient for that purpose, though their As uptake strongly depends on their preparation conditions: a number of samples were synthesised by impregnation of raw and oxidised ACs with HCl aqueous solutions of either FeCl 3 or FeCl 2 at various concentrations and various pH. It is shown that iron(II) chloride is better for obtaining high iron contents in the resultant ACs (up to 8.34 wt.%), leading to high As uptake, close to 0.036 mg As/g C. In these conditions, 100% of the As initially present in the natural well water is removed, as soon as the Fe content of the adsorbent is higher than 2 wt.%.

  7. First-principles studies of di-arsenic interstitial and its implications for arsenic-interstitial diffusion in crystalline silicon

    International Nuclear Information System (INIS)

    Kim, Yonghyun; Kirichenko, Taras A.; Kong, Ning; Larson, Larry; Banerjee, Sanjay K.

    2007-01-01

    We propose new structural configurations and novel diffusion mechanisms for neutral di-arsenic interstitial (As 2 I 2 ) in silicon with a first-principle density functional theory simulation within the generalized gradient approximation. With an assumption of excess silicon interstitials and high arsenic concentrations, neutral As 2 I 2 is expected to be favorable and mobile with low-migration barrier. Moreover, because the diffusion barrier of arsenic interstitial pairs (AsI) is very low ( 2 I 2 can be easily formed and likely intermediate stage of larger arsenic interstitial clusters

  8. Silkworm exuviae-A new non-conventional and low-cost adsorbent for removal of methylene blue from aqueous solutions

    International Nuclear Information System (INIS)

    Chen Hao; Zhao Jie; Dai Guoliang

    2011-01-01

    In this paper, silkworm exuviae (SE) waste, an agricultural waste available in large quantity in China, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Kinetic data and sorption equilibrium isotherms were carried out in batch process. The adsorption kinetic experiments revealed that MB adsorption onto SE for different initial dye concentrations all followed pseudo-second order kinetics and were mainly controlled by the film diffusion mechanism. Batch equilibrium results at different temperatures suggest that MB adsorption onto SE can be described perfectly with Freundlich isotherm model compared with Langmuir and D-R isotherm models, and the characteristic parameters for each adsorption isotherm were also determined. Thermodynamic parameters calculated show the adsorption process has been found to be endothermic in nature. The analysis for the values of the mean free energies of adsorption (E a ), the Gibbs free energy (ΔG 0 ) and the effect of ionic strength all demonstrate that the whole adsorption process is mainly dominated by ion-exchange mechanism, which has also been verified by variations in FT-IR spectra and pH value before and after adsorption and desorption studies. The results reveal that SE can be employed as a low-cost alternative to other adsorbents for MB adsorption.

  9. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. U.S. EPA DEMONSTRATION PROJECT AT SOUTH TRUCKEE MEADOWS GENERAL IMPROVEMENT DISTRICT (STMIG), NV. INTERIM EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first 32 weeks of operation of an arsenic and antimony removal technology currently being demonstrated at the South Truckee Meadows General Improvement District (STMGID) in Washoe County, NV. ...

  10. Citrus paradisi: an effective bio-adsorbent for arsenic (v) remediation

    International Nuclear Information System (INIS)

    Khaskheli, M.I.; Memon, S.Q.; Parveen, S.

    2014-01-01

    In the present study As(V) was removed by citrus paradise (grape fruit) peel. Kinetics of the adsorption reaction was analyzed by the Pseudo second order and Morris-weber equations. Freundlich and Langmuir isotherm models were utilized for understanding of the relationship between the arsenic ions and citrus paradise peel adsorbent. The maximum measured uptake capacity of citrus paradise was 37.76 mg.g/sup -1/ at pH 4. FT-IR characterization of unloaded and As (V) loaded citrus paradisi peel adsorbent showed the participation of carbonyl (CO) and hydroxyl (OH) groups in adsorption process. The proposed citrus paradis peel adsorbent with optimized parameters was used for the removal of arsenic from arsenic contaminated real water samples. (author)

  11. Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: a new approach in phytoremediation.

    Science.gov (United States)

    Liao, Xiao-Yong; Chen, Tong-Bin; Xiao, Xi-Yuan; Xie, Hua; Yan, Xiu-Lan; Zhai, Li-Mei; Wu, Bin

    2007-01-01

    Certain plant species have been shown to vigorously accumulate some metals from soil, and thus represent promising and effective remediation alternatives. In order to select the optimum forms of nitrogen (N) fertilizers for the arsenic (As) hyperaccumulator, Pteris vittata L., to maximize As extraction, five forms of N were added individually to different treatments to study the effect of N forms on As uptake of the plants under soil culture in a greenhouse. Although shoot As concentration tended to decrease and As translocation from root to shoot was inhibited, overall As accumulation was greater due to higher biomass when N fertilizer was added. Arsenic accumulation in plants with N fertilization was 100-300% more than in the plants without N fertilization. There were obvious differences in plant biomass and As accumulation among the N forms, i.e., NH4HCO3, (NH4)2S04, Ca(NO3)2, KNO3, urea. The total As accumulation in the plants grown in As-supplied soil, under different forms of N fertilizer, decreased as NH4HCO3>(NH4)2S04 > urea > Ca(NO3)2 >KNO3>CK. The plants treated with N and As accumulated up to 5.3-7.97 mg As/pot and removed 3.7-5.5% As from the soils, compared to approximately 2.3% of As removal in the control. NH4+ -N was apparently more effective than other N fertilizers in stimulating As removal when soil was supplied with As at initiation. No significant differences in available As were found among different forms of N fertilizer after phytoremediation. It is concluded that NH4+ -N was the preferable fertilizer for P. vittata to maximize As removal.

  12. Hydrochemical study of an arsenic-contaminated plain in Guandu, north Taiwan

    Science.gov (United States)

    Hsiao, Yu-Hsiang

    2015-04-01

    Arsenic pollution in Guandu Plain, north Taiwan is a critical issue due to highly developed anthropogenic activities. It was considered that arsenic was carried in by surface water system. Two major rivers, Huanggang Creek and South Huang Greek, flow through Guandu Plain. Both creeks originate from Tatung Volcano Group, which is extensively active in post-volcanic activities. In this study, the hydrochemistry along the two major rivers was studied for tracing the source of arsenic pollution in Guandu Plain. The pH values in the upstream water are in the range from 6 to 8 but dramatically decrease down to 2-4.5 in the downstream area. It can be concluded that the creeks are recharged with very low pH geothermal water. In addition, arsenic shows a different spatial distribution. In Huanggang Creek, arsenic concentration is much higher, about 200 ppb to 500 ppb, in the downstream than in the upstream while arsenic concentration is extremely low, below 1 ppb, in the downstream of South Huang Greek. The geochemical results show that rare earth elements (REEs) are depleted in the upstream both in Huanggang creek and South Huang creek, and the NASC-normalized ratios of heavy to light REE (Lu/La) in the upstream are very close to 1. This demonstrates that the upstream water is geochemically dominated by the interaction between water and sedimentary rock. In the downstream, the NASC-normalized REE pattern shows a quit different type which is depleted in light REEs (much higher Lu/La ratio). It is well known that igneous rock is depleted in light REEs; therefore, arsenic is possibly volcanic origin. In this study, PHREEQC, a thermodynamic modeling program, was also utilized to calculate the saturation index (SI) of hydrous ferric oxide (HFO), which can effectively scavenge arsenic in water. The results demonstrate that SI of HFO is mainly controlled by pH in this study. When pH is greater than 3.5, HFO start to precipitate and remove arsenic from water. Therefore, it is

  13. pH modulates arsenic toxicity in Bacillus licheniformis DAS-2.

    Science.gov (United States)

    Tripti, K; Shardendu

    2016-08-01

    The toxic characteristics of arsenic species, As(V) and As(III) result in ecological risks. Arsenic tolerant bacterium was isolated and identified as the Bacillus licheniformis DAS-2 through 16SrDNA sequencing. B. licheniformis DAS-2 was efficient to tolerate and remove both the As(V)[MIC 8mM] and As(III)[MIC 6mM] from the growth medium. The potential for the removal/uptake of arsenic from the 3, 5 and 7mM As(V) enriched growth media was 100%, 60% and 35% respectively and from the 1, 3 and 5mM As(III) enrichment it was 100%, 99% and 58% respectively at neutral pH. 80% of uptake As(V) was reduced to As(III) in 3mM As(V) enrichment which was gradually decreased to only 17% at 7mM As(V) enrichment at neutral pH. The arsenic toxicity in B. licheniformis DAS-2 was found modulated by pH and was examined through alteration in growth, uptake/removal, reduction and measurement of chemical toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Arsenic species in ecosystems affected by arsenic-rich spring water near an abandoned mine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.T. [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of); Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, H.O., E-mail: dunee@kbsi.re.k [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, C. [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Woo, N.C., E-mail: ncwoo@yonsei.ac.k [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of)

    2009-12-15

    The objectives of this study were to quantitatively estimate the distribution of arsenic with its speciation and to identify potential pathways for transformation of arsenic species from samples of water, sediments, and plants in the ecosystem affected by the Cheongog Spring, where As(V) concentration reached levels up to 0.270 mg L{sup -1}. After flowing about 100 m downstream, the arsenic level showed a marked reduction to 0.044 mg L{sup -1} (about 84% removal) without noticeable changes in major water chemistry. The field study and laboratory hydroponic experiments with the dominant emergent plants along the creek (water dropwort and thunbergian smartweed) indicated that arsenic distribution, reduction, and speciation appear to be controlled by, (i) sorption onto stream sediments in exchangeable fractions, (ii) bioaccumulation by and possible release from emergent plants, and (iii) transformation of As(V) to As(III) and organic species through biological activities. - Biogeochemical reactions with emergent plants and sediments control the fate of arsenic along creeks originating from a high-As Spring.

  15. Aquifer Vulnerability to Arsenic contamination in the Conterminous United States: Health Risks and Economic Implications

    Science.gov (United States)

    Twarakavi, N. C.; Kaluarachchi, J. J.

    2004-12-01

    Arsenic is historically known be toxic to human health. Drinking water contaminated with unsafe levels of arsenic may cause cancer. The toxicity of arsenic is suggested by a MCLG of zero and a low MCL of 10 µg/L, that has been a subject of constant scrutiny. The US Environmental Protection Agency (US EPA), based on the recommendations of the National Academy of Sciences revised the MCL from 1974 value of 50 µg/L to 10 µg/L. The decision was based on a national-level analysis of arsenic concentration data collected by the National Analysis of Water Quality Assessment (NAWQA). Another factor that makes arsenic in drinking water a major issue is the widespread occurrence and a variety of sources. Arsenic occurs naturally in mineral deposits and is also contributed through anthropogenic sources. A methodology using the ordinal logistic regression (LR) method is proposed to predict the probability of occurrence of arsenic in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered the maximum contaminant level (MCL) options of 3, 5, 10, 20, and 50 µg/L as threshold values to estimate the probabilities of arsenic occurrence in ranges defined by a given MCL and a detection limit of 1 µg/L. The fit between the observed and predicted probability of occurrence was around 83% for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic for different aquifer types in the CONUS. The shallow ground water of the western US is more vulnerable to arsenic contamination than the eastern US. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The model results were extended for estimating the health risks and costs posed by arsenic occurrence in the ground water of the United States. The risk assessment showed that counties in southern California, Arizona, Florida, Washington States and a few others scattered

  16. In situ precipitation and sorption of arsenic from groundwater: Laboratory and ex situ field tests

    International Nuclear Information System (INIS)

    Whang, J.M.; Adu-Wusu, K.; Frampton, W.H.; Staib, J.G.

    1997-01-01

    Permeable, reactive walls may provide long term, low-maintenance prevention of off-site migration of contaminated groundwater. Laboratory and ex situ field tests conducted on several arsenic-contaminated groundwaters indicate that both precipitation and sorption can remove arsenic to levels of less than 10 ppb. Precipitation has been induced by adjusting pH, adding selected cations, and/or reducing the oxidation-reduction potential. Adjusting pH or adding cations was most effective when there were high levels of other ionic species with which arsenic could coprecipitate. Reducing the oxidation-reduction potential was effective on a variety of groundwaters. Humate was an effective sorbent at low pH; aluminum and iron materials were effective over a large range of conditions. Long term performance of precipitation systems can be limited by formation of precipitate on reactive surfaces. Long term sorption can be reduced by competing ions, such as phosphate. Laboratory and ex situ field tests indicate that reactive walls may have lifetimes of decades or more

  17. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    Science.gov (United States)

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  18. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    Directory of Open Access Journals (Sweden)

    Drewniak Lukasz

    2014-01-01

    Full Text Available The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i produced siderophores that promote dissolution of minerals, (ii were resistant to dissolved arsenic compounds, (iii were able to use the dissolved arsenates as the terminal electron acceptor, and (iii were able to use copper minerals containing arsenic minerals (e.g., enargite as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  19. Assisted phytoremediation of a multi-contaminated soil: Investigation on arsenic and lead combined mobilization and removal.

    Science.gov (United States)

    Barbafieri, Meri; Pedron, Francesca; Petruzzelli, Gianniantonio; Rosellini, Irene; Franchi, Elisabetta; Bagatin, Roberto; Vocciante, Marco

    2017-12-01

    The removal of contaminants from an earthy matrix by phytoremediation requires the selection of appropriate plant species and a suitable strategy to be effective. In order to set up an assisted phytoremediation intervention related to a disused industrial site affected by an arsenic and lead complex contamination, an extensive experimental investigation on micro and mesocosm scale has been conducted. Particular attention was given to the choice of plant species: using crop plants (Lupinus albus, Helianthus annuus and Brassica juncea) a series of parallel test campaigns have been realized to investigate different scenarios for the reclamation. With regard to the arsenic contamination, which is certainly the most worrying, the possibility of employing a hyper-accumulator species (Pteris vittata) has also been investigated, highlighting advantages and difficulties associated with such an approach. The application of various mobilizing agents in different concentrations was tested, in order to maximize the extraction efficiency of plants in respect of both contaminants, showing the necessity of a chemically assisted approach to promote their uptake and translocation in the shoots. Phosphate addition appears to produce the desired results, positively affecting As phyto-extraction for both hyper-accumulator and crop plants, while minimizing its toxic effects at the investigated concentrations. With regard to Pb, although tests with EDDS have been encouraging, EDTA should be preferred at present due to lower uncertainties about its effectiveness. The performed tests also improved the addition of mobilizing agents, allowing the simultaneous removal of the two metals despite their great diversity (which in general discourages such approach), with significant saving of time and an obvious improvement of the overall process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.

    Science.gov (United States)

    Demir, Aynur; Arisoy, Münevver

    2007-08-17

    The objective of the present study is cost and benefit analysis of biological and chemical removal of hexavalent chromium [Cr(VI)] ions. Cost and benefit analysis were done with refer to two separate studies on removal of Cr(VI), one of heavy metals with a crucial role concerning increase in environmental pollution and disturbance of ecological balance, through biological adsorption and chemical ion-exchange. Methods of biological and chemical removal were compared with regard to their cost and percentage in chrome removal. According to the result of the comparison, cost per unit in chemical removal was calculated 0.24 euros and the ratio of chrome removal was 99.68%, whereas those of biological removal were 0.14 and 59.3% euros. Therefore, it was seen that cost per unit in chemical removal and chrome removal ratio were higher than those of biological removal method. In the current study where chrome removal is seen as immeasurable benefit in terms of human health and the environment, percentages of chrome removal were taken as measurable benefit and cost per unit of the chemicals as measurable cost.